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We have witnessed great interest and a wealth of promise in content-based image retrieval as an
emerging technology. While the last decade laid foundation to such promise, it also paved the way
for a large number of new techniques and systems, got many new people involved, and triggered
stronger association of weakly related fields. In this paper, we survey almost 300 key theoret-
ical and empirical contributions in the current decade related to image retrieval and automatic
image annotation, and discuss the spawning of related sub-fields in the process. We also discuss
significant challenges involved in the adaptation of existing image retrieval techniques to build
systems that can be useful in the real-world. In retrospect of what has been achieved so far, we
also conjecture what the future may hold for image retrieval research.

Categories and Subject Descriptors: H.3.1 [Information Storage and Retrieval]: Content
Analysis and Indexing—Indexing methods; I.4.9 [Image Processing and Computer Vision]:
Applications

General Terms: Algorithms, Documentation, Performance.

Additional Key Words and Phrases: Content-based image retrieval, annotation, tagging, modeling,
learning

1. INTRODUCTION

What Niels Henrik David Bohr exactly meant when he said “Never express yourself
more clearly than you are able to think” is anybody’s guess. In light of the current
discussion, one thought that this well-known quote evokes is that of subtle irony;
there are times and situations when we imagine what we desire, but are unable to
express this desire in precise wording. Take, for instance, a desire to find the perfect
portrait from a collection. Any attempt to express what makes a portrait ‘perfect’
may end up undervaluing the beauty of imagination. In some sense, it may be easier
to find such a picture by looking through the collection and making unconscious
‘matches’ with the one drawn by imagination, than to use textual descriptions that
fail to capture the very essence of perfection. One way to appreciate the importance
of visual interpretation of picture content for indexing and retrieval is this.
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Our motivation to organize things is inherent. Over many years we learned that
this is a key to progress without the loss of what we already possess. For centuries,
text in different languages has been set to order for efficient retrieval, be it manually
in the ancient Bibliotheke, or automatically as in the modern digital libraries. But
when it comes to organizing pictures, man has traditionally outperformed machines
for most tasks. One reason which causes this distinction is that text is man’s
creation, while typical images are a mere replica of what man has seen since birth,
concrete descriptions of which are relatively elusive. Add to this the theory that
the human vision system has evolved genetically over many centuries. Naturally,
the interpretation of what we see is hard to characterize, and even harder to teach
a machine. Yet, over the past decade, ambitious attempts have been made to make
computers learn to understand, index and annotate pictures representing a wide
range of concepts, with much progress.

Content-based image retrieval (CBIR), as we see it today, is any technology
that in principle helps organize digital picture archives by their visual content.
By this definition, anything ranging from an image similarity function to a robust
image annotation engine falls under the purview of CBIR. This characterization
of CBIR as a field of study places it at a unique juncture within the scientific
community. While we witness continued effort in solving the fundamental open
problem of robust image understanding, we also see people from different fields,
e.g., computer vision, machine learning, information retrieval, human-computer
interaction, database systems, Web and data mining, information theory, statistics,
and psychology contributing and becoming part of the CBIR community [Wang
et al. 2006]. Moreover, a lateral bridging of gaps between some of these research
communities is being gradually brought about as a by-product of such contributions,
the impact of which can potentially go beyond CBIR. Again, what we see today as
a few cross-field publications may very well spring into new fields of study in the
foreseeable future.

Amidst such marriages of fields, it is important to recognize the shortcomings
of CBIR as a real-world technology. One problem with all current approaches
is the reliance on visual similarity for judging semantic similarity, which may be
problematic due to the semantic gap [Smeulders et al. 2000] between low-level
content and higher-level concepts. While this intrinsic difficulty in solving the core
problem cannot be denied, we believe that the current state-of-the-art in CBIR
holds enough promise and maturity to be useful for real-world applications, if
aggressive attempts are made. For example, GoogleTM and Yahoo! r© are household
names today, primarily due to the benefits reaped through their use, despite the
fact that robust text understanding is still an open problem. Online photo-sharing
has become extremely popular with Flickr [Flickr 2002] which hosts hundreds of
millions of pictures with diverse content. The video sharing and distribution forum
YouTube has also brought in a new revolution in multimedia usage. Of late, there
is renewed interest in the media about potential real-world applications of CBIR
and image analysis technologies [ScientificAmerican 2006; Discovery 2006; CNN
2005]. We envision that image retrieval will enjoy a success story in the coming
years. We also sense a paradigm shift in the goals of the next-generation CBIR
researchers. The need of the hour is to establish how this technology can reach
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out to the common man the way text-retrieval techniques have. Methods for visual
similarity, or even semantic similarity (if ever perfected), will remain techniques for
building systems. What the average end-user can hope to gain from using such a
system is a different question altogether. For some applications, visual similarity
may in fact be more critical than semantic similarity. For others, visual similarity
may have little significance. Under what scenarios a typical user feels the need for
a CBIR system, what the user sets out to achieve with the system, and how she
expects the system to aid in this process, are some of the key questions that need
to be answered in order to produce a successful system design. Unfortunately, user
studies of this nature have been scarce so far.

Comprehensive surveys exist on the topic of CBIR [Aigrain et al. 1996; Rui et al.
1999; Smeulders et al. 2000; Snoek and Worring 2005], all of which deal primarily
with work prior to the year 2000. Surveys also exist on closely related topics
such as relevance feedback [Zhou and Huang 2003], high-dimensional indexing of
multimedia data [Bohm et al. 2001], face recognition [Zhao et al. 2003] (useful
for face based image retrieval), applications of CBIR to medicine [Muller et al.
2004], and applications to art and cultural imaging [Chen et al. 2005]. Multimedia
information retrieval, as a broader research area covering video, audio, image, and
text analysis has been extensively surveyed [Sebe et al. 2003; Lew et al. 2006]. In
our current survey, we restrict the discussion to image-related research only.

One of the reasons for writing this survey is that CBIR, as a field, has
grown tremendously after the year 2000 in terms of the people involved and the
papers published. Lateral growth has also occurred in terms of the associated
research questions addressed, spanning various fields. To validate the hypothesis
about growth in publications, we conducted a simple exercise. We searched for
publications containing the phrases “Image Retrieval” using Google Scholar [Google
Scholar 2004] and the digital libraries of ACM, IEEE and Springer, within each year
from 1995 to 2005. In order to account for (a) the growth of research in computer
science as a whole and (b) Google’s yearly variations in indexing publications, the
Google Scholar results were normalized using the publication count for the word
“computer” for that year. A plot on another young and fast-growing field within
pattern recognition, support vector machines (SVM), was generated in a similar
manner for comparison. The results can be seen in Fig. 1. Not surprisingly, the
graph indicates similar growth patterns for both fields, although SVM has had
faster growth. These trends indicate, given the implicit assumptions, a roughly
exponential growth in interest in image retrieval and closely related topics. We also
observe particularly strong growth over the last five years, spanning new techniques,
support systems, and application domains.

In this paper, we comprehensively survey, analyze, and quantify current progress
and future prospects of image retrieval. A possible organization of the various facets
of image retrieval as a field is shown in Fig. 2. Our paper follows a similar structure.
Note that the treatment is limited to progress mainly in the current decade, and
only includes work that involves visual analysis in part or full. For the purpose of
completeness, and better readability for the uninitiated, we have introduced key
contributions of the earlier years in Sec. 1.1. Image retrieval purely on the basis of
textual meta-data, Web link structures, or linguistic tags is excluded. The rest of
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Fig. 1. A study of post-1995 publications in CBIR. Top: Normalized trends in publications
containing phrases “image retrieval” and “support vector” in them. Bottom: Publisher wise
break-up of publication count on papers containing “image retrieval” in them.

this paper is arranged as follows: For a CBIR system to be useful in the real-world, a
number of issues need to be taken care of. Hence, the desiderate of real-world image
retrieval systems, including various critical aspects of their design, are discussed in
Sec. 2. Some key approaches and techniques of the current decade are presented in
details, in Sec. 3. Core research in CBIR has given birth to new problems, which
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Fig. 2. Our view of the many facets of image retrieval as a field of research. The view is reflected
in the structure of this paper.

we refer to here as CBIR offshoots. These are discussed in Sec. 4. When distinct
solutions to a problem as open-ended as CBIR are proposed, a natural question
that arises is how to make a fair comparison among them. In Sec. 5, we present
current directions in the evaluation of image retrieval systems. We conclude in
Sec. 6.

1.1 The Early Years

The years 1994-2000 can be thought of as the initial phase of research and
development on image retrieval by content. The progress made during this phase
was lucidly summarized at a high-level in [Smeulders et al. 2000], which has had
a clear influence on progress made in the current decade, and will undoubtedly
continue to influence future work. Therefore, it is pertinent that we provide a brief
summary of the ideas, influences, and trends of the early years (a large part of which
originate in that survey) before describing the same for the new age. In order to do
so, we first quote the various gaps introduced there that define and motivate most
of the related problems:

—The sensory gap is the gap between the object in the world and the information
in a (computational) description derived from a recording of that scene.

—The semantic gap is the lack of coincidence between the information that one
can extract from the visual data and the interpretation that the same data have
for a user in a given situation.
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While the former makes recognition from image content challenging due to
limitations in recording, the latter brings in the issue of a user’s interpretations
of pictures and how it is inherently difficult for visual content to capture them. We
continue briefly summarizing key contributions of the early years that deal with
one or more of these gaps.

In [Smeulders et al. 2000], the domains for image search were classified as
narrow and broad, and to date this remains an extremely important distinction
for the purpose of system design. As mentioned, narrow image domains usually
have limited variability and better-defined visual characteristics (e.g., aviation
related pictures [Airliners.Net 2005]), which makes content-based image search a
tad bit easier to formulate. On the other hand, broad domains tend to have high
variability and unpredictability for the same underlying semantic concepts (e.g.,
Web Images), which makes generalization that much more challenging. As recently
noted in [Huijsmans and Sebe 2005], narrow and broad domains pose a problem
in image search evaluation as well, and appropriate modifications must be made
to standard evaluation metrics for consistency. The survey also lists three broad
categories of image search, (1) search by association, where there is no clear intent
at a picture, but instead the search proceeds by iteratively refined browsing , (2)
aimed search, where a specific picture is sought, and (3) category search, where a
single picture representative of a semantic class is sought, for example, to illustrate
a paragraph of text, as introduced in [Cox et al. 2000]. Also discussed are different
kinds of domain knowledge that can help reduce the sensory gap in image search.
Notable among them are concepts of syntactic similarity, perceptual similarity, and
topological similarity. The overall goal therefore remains to bridge the semantic
and sensorial gaps using the available visual features of images and relevant domain
knowledge, to support the varied search categories, ultimately to satiate the user.
We discuss and extend some of these ideas from new perspectives, in Sec. 2.

In the survey, extraction of visual content from images is split into two parts,
namely image processing and feature construction. The question to ask here is
what features to extract that will help perform meaningful retrieval. In this
context, search has been described as a specification of minimal invariant conditions
that model the user intent, geared at reducing the sensory gap due to accidental
distortions, clutter, occlusion, etc. Key contributions in color, texture, and shape
abstraction have then been discussed. Among the earliest use of color histograms
for image indexing was that in [Swain and Ballard 1991]. Subsequently, feature
extraction in systems such as QBIC [Flickner et al. 1995], Pictoseek [Gevers
and Smeulders 2000], and VisualSEEK [Smith and Chang 1997b] are notable.
Innovations in color constancy, the ability to perceive the same color amidst
environmental changes, were made by including specular reflection and shape
into consideration [Finlayson 1996]. In [Huang et al. 1999] color correlograms
were proposed as enhancements to histograms, that take into consideration spatial
distribution of colors as well. Gabor filters were successfully used for local shape
extraction geared toward matching and retrieval in [Manjunath and Ma 1996].
Daubechies’ wavelet transforms were used for texture feature extraction in the
WBIIS system [Wang et al. 1998]. Viewpoint and occlusion invariant local features
for image retrieval [Schmid and Mohr 1997] received significant attention as a means
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to bridge the sensorial gap. Work on local patch-based salient features [Tuytelaars
and van Gool 1999] found prominence in areas such as image retrieval and stereo
matching. Perceptual grouping of images, important as it is for identifying objects
in pictures, is also a very challenging problem. It has been categorized in the
survey as strong/weak segmentation (data-driven grouping), partitioning (data-
independent grouping, e.g., fixed image blocks), and sign location (grouping based
on a fixed template). Significant progress had been made in field of image
segmentation, e.g., [Zhu and Yuille 1996], where snake and region growing ideas were
combined within a principled framework, and [Shi and Malik 2000], where spectral
graph partitioning was employed for this purpose. From segments come shape and
shape matching needs. In [Del Bimbo and Pala 1997], elastic matching of images
was successfully applied to sketch-based image retrieval. Image representation
by multi-scale contour models were studied in [Mokhtarian 1995]. The use of
graphs to represent spatial relationships between objects, specifically geared toward
medical imaging, was explored in [Petrakis and Faloutsos 1997]. In [Smith and
Chang 1997a], 2D-strings [Chang et al. 1987] were employed for characterizing
spatial relationships among regions. A method for automatic feature selection was
proposed in [Swets and Weng 1996]. In [Smeulders et al. 2000], the topic of visual
content description was concluded with a discussion on the advantages and problems
of image segmentation, along with approaches that can avoid strong segmentation
but still characterize image structure well enough for image retrieval. In the current
decade, many region-based methods for image retrieval have been proposed that do
not depend on strong segmentation. We discuss these and other new innovations
in feature extraction in Sec. 3.1.

Once image features were extracted, the question remained as to how they
could be indexed and matched against each other for retrieval. These methods
essentially aimed to reduce the semantic gap as much as possible, sometimes
reducing the sensorial gap as well in the process. In [Smeulders et al. 2000],
similarity measures were grouped as feature-based matching (e.g., [Swain and
Ballard 1991]), object silhouette based matching (e.g., [Del Bimbo and Pala 1997]),
structural feature matching (hierarchically ordered sets of features, e.g., [Wilson
and Hancock 1997]), salient feature matching (e.g., geometric hashing [Wolfson and
Rigoutsos 1997]), matching at the semantic level (e.g., [Fagin 1997]), and learning
based approaches for similarity matching (e.g., [Wu et al. 2000a] and [Webe et al.
2000]). Closely tied to the similarity measures are how they emulate the user
needs, and more practically, how they can be modified stepwise with feedback
from the user. In this respect, a major advance made in the user interaction
technology for image retrieval was relevance feedback (RF). Important early work
that introduced RF into the image retrieval domain included [Rui et al. 1998],
which was implemented in their MARS system [Rui et al. 1997]. Methods for
visualization of image query results were explored, for example, in [Flickner et al.
1995; Chang et al. 1997]. Content-based image retrieval systems that gained
prominence in this era were, e.g., IBM QBIC [Flickner et al. 1995], VIRAGE [Gupta
and Jain 1997], and NEC AMORE [Mukherjea et al. 1999] in the commercial
domain, and MIT Photobook [Pentland et al. 1994], Columbia VisualSEEK and
WebSEEK [Smith and Chang 1997b], UCSB NeTra [Ma and Manjunath 1997],
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and Stanford WBIIS [Wang et al. 1998] in the academic domain. In [Smeulders
et al. 2000], practical issues such as system implementation and architecture,
their limitations and how to overcome them, the user in the loop, intuitive result
visualization, and system evaluation were discussed, and suggestions were made.
Innovations of the new age based on these suggestions and otherwise are covered
extensively in our survey in Sec. 2, Sec. 3, and Sec. 5.

2. IMAGE RETRIEVAL IN THE REAL-WORLD

Invention of the digital camera has given a common man the privilege to capture his
world in pictures, and conveniently share them with others. One can today generate
volumes of images with content as diverse as family get-togethers and national
park visits. Low-cost storage and easy Web hosting has fueled the metamorphosis
of a common man from a passive consumer of photography in the past, to an
active producer. Today, searchable image data exists with extremely diverse visual
and semantic content, spanning geographically disparate locations and is rapidly
growing in size. All these factors have created innumerable possibilities and hence
considerations for real-world image search system designers.

As far as technological advances are concerned, growth in content-based image
retrieval has been unquestionably rapid. In the recent years, there has been
significant effort put into understanding real-world implications, applications, and
constraints of the technology. Yet, real-world application of the technology is
currently limited. We devote this section to understanding image retrieval in the
real-world and discuss user-expectations, system constraints and requirements, and
research effort to make image retrieval a reality not-so-far in the future.

Designing an omnipotent real-world image search engine capable of serving
all categories of users requires understanding and characterizing user-system
interaction and image search from both user and system points of view. In Fig. 3,
we propose one such dual characterization, and attempt representing all known
possibilities of interaction and search. From a user perspective, embarking on an
image search journey involves considering and taking decisions on the following
fronts: (1) clarity of the user about what she wants, (2) where does the user want
to search, and (3) in what form does the user have her query. In an alternative
view from an image retrieval system perspective, a search translates to making
arrangements as per the following factors: (1) how does the user wish the results
to be presented, (2) where does the user desire to search, (3) what is the nature of
user input/interaction. These factors, with their respective possibilities form our
axes for Fig. 3. In the proposed user and system spaces, real-world image search
instances can be considered as isolated points or point clouds, and search sessions
can consist of trajectories while search engines can be thought of as surfaces. The
intention of drawing cubes versus free 3-D cartesian spaces is to emphasize that
the possibilities are indeed bounded by the size of the Web, the nature of user, and
ways of user-system interaction. We believe that the proposed characterization will
be useful for designing context-dependent search environments for real-world image
retrieval systems.
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Fig. 3. Our views of image retrieval from a user and system perspective.

2.1 User Intent

We augment the search type based classification proposed in [Smeulders et al. 2000]
with a user intent based classification. When users search for pictures, their intent
or clarity about what they desire may vary. We believe that clarity of intent plays
a key role in a user’s expectation from a search system and the nature of her
interaction. It can also act as a guideline for system design. We broadly characterize
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a user by clarity of her intent as follows:

—Browser: A user browsing for pictures with no clear end-goal. A browser’s session
would consist of a series of unrelated searches. A typical browser would jump
across multiple topics during the course of a search session. Her queries would
be incoherent and diverse in topic.

—Surfer: A user surfing with a moderate clarity of an end-goal. A surfer’s actions
may be somewhat exploratory in the beginning with a difference that subsequent
searches are expected to increase the surfer’s clarity of what she wants from the
system.

—Searcher: A user who is very clear about what she is searching for in the system.
A searcher’s session would typically be short with coherent searches leading to
an end-result.

A typical browser values ease of use and manipulation. A browser usually has
plenty of time at hand and expects surprises and random search hints to elongate
her session (e.g., picture of the day, week, etc.). On the other hand, a surfer would
value a search environment which facilitates clarity of her goal. A surfer planning
a holiday would value a hint such as “pictures of most popular destinations”.
At the other extreme, the searcher views an image retrieval system from a core
utilitarian perspective. Completeness of results and clarity of representation would
usually be the most important factors. The impact of real-world usage from user
viewpoint has not been extensively studied. One of the few studies categorizes
users as experts and novices and studies their interaction patterns with respect to
a video library [Christel and Conescu 2005]. In [Armitage and Enser 1997], an
analysis of user needs for visual information retrieval was conducted. In the cited
work, a categorization schema for user queries was proposed with a potential to be
embedded in the visual information retrieval system.

Discussion. In the end, all that matters to an end user is her interaction with
the system, and the corresponding response. The importance of building human-
centered multimedia systems has been expressed lately [Jaimes et al. 2006]. In order
to gain wide acceptance, image retrieval systems need to acquire a human-centered
perspective as well.

2.2 Data Scope

Understanding the nature and scope of image data plays a key role in the complexity
of image search system design. Factors such as the diversity of user-base and
expected user traffic for a search system also largely influence the design. Along
this dimension, we classify search data into the following categories:

—Personal collection: A largely homogeneous collection generally small in size,
accessible primarily to its owner, and usually stored on a local storage media.

—Domain-specific collection: A homogeneous collection providing access to
controlled users with very specific objectives. The collection may be large and
be hosted on distributed storage, depending upon the domain. Examples of such
a collection are biomedical and satellite image databases.
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—Enterprise collection: A heterogeneous collection of pictures accessible to users
within an organization’s Intranet. Pictures may be stored in many different
locations. Access may be uniform or non-uniform depending upon the Intranet
design.

—Archives: These are usually of historical interest and contain large volumes of
structured or semi-structured homogeneous data pertaining to specific topics.
Archives may be accessible to most people on the internet, with some control on
usage. Data is usually stored in multiple disks or large disk arrays.

—Web: World Wide Web pictures are accessible to practically everyone with an
Internet connection. Current WWW image search engines such as Google images
and Yahoo! images have a key crawler component which regularly updates their
local database to reflect on the dynamic nature of the Web. Image collection is
semi-structured, non-homogeneous, and massive in volume and is usually stored
in large disk arrays.

An image retrieval system designed to serve a personal collection should focus on
features such as personalization, flexibility of browsing, and display methodology.
For example, Google’s Picasa system [Picasa 2004] provides a chronological display
of images taking a user on a journey down memory lane. Domain specific collections
may impose specific standards for presentation of results. Searching an archive for
content discovery could involve long user search sessions. Good visualization and
a rich query support system should be the design goal. A system designed for
the Web should be able to support massive user traffic. One way to supplement
software approaches for this purpose is to provide hardware support to the system
architecture. Unfortunately, very little has been explored in this direction, partly
due to the lack of agreed-upon indexing and retrieval methods. The notable
few include an FPGA implementation of a color histogram based image retrieval
system [Kotoulas and Andreadis 2003], an FPGA implementation for sub-image
retrieval within an image database [Nakano and Takamichi 2003], and a method for
efficient retrieval in a network of imaging devices [Woodrow and Heinzelman 2002].

Discussion. Regardless of the nature of the collection, as the expected user-base
grows, factors such as concurrent query support, efficient caching, and parallel and
distributed processing of requests become critical. For futuristic real-world image
retrieval systems, both software and hardware approaches to address these issues
are essential. More realistically, dedicated specialized servers, optimized memory
and storage support, and highly parallelizable image search algorithms to exploit
cluster computing powers are where the future of large scale image search hardware
support lies.

2.3 Query Modalities and Processing

In the realm of image retrieval, an important parameter to measure user-system
interaction level is the complexity of queries supported by the system. From a
user perspective, this translates to the different modalities she can use to query a
system. We describe below the various querying modalities, their characteristics,
and the system support required thereof.

—Keywords: User poses a simple query in the form of a word or a bigram. This
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is currently the most popular way to search images, e.g., the Google and Yahoo!
image search engines.

—Free-text: User frames a complex phrase, a sentence, a question, or a story about
what she desires from the system.

—Image: User wishes to search for an image similar to a query image. Using an
example image is perhaps the most representative way of querying a CBIR system
in the absence of reliable meta-data.

—Graphics: A hand-drawn or computer-generated picture or graphics could be
presented as query.

—Composite: These are methods that involve using one or more of the above
modalities for querying a system. This also covers interactive querying such as
in relevance feedback systems.

The above query modalities require different processing methods and/or support
for user interaction. The processing becomes more complex when visual queries
and/or user interactions are involved. We next broadly characterize query
processing from a system perspective.

—Text-based: Text based query processing usually boils down to performing one or
more simple keyword based searches and retrieving matching pictures. Processing
a free-text could involve parsing, processing, and understanding the query as a
whole. Some form of natural language processing may also be involved.

—Content-based: Content based query processing lies at the heart of all CBIR
systems. Processing of query (image or graphics) involves extraction of visual
features and/or segmentation and search in the visual feature space for similar
images. An appropriate feature representation and a similarity measure to rank
pictures, given a query, are essential here. These will be discussed in detail in
Sec. 3.

—Composite: Composite processing may involve both content and text-based
processing in varying proportions. An example of a system which supports such
processing is the story picturing engine [Joshi et al. 2006].

—Interactive-simple: User interaction using a single modality needs to be supported
by a system. An example is a relevance feedback based image retrieval system.

—Interactive-composite: User may interact using more than one modality (e.g.,
text and images). This is perhaps the most advanced form of query processing
that is required to be performed by an image retrieval system.

Processing text-based queries involves keyword matching using simple set-
theoretic operations and therefore response can be generated very quickly. However
in very large systems, working with millions of pictures and keywords, efficient
indexing methods may be required. Indexing of text has been studied in database
research for decades now. Efficient indexing is critical to building and functioning
of very large text-based databases and search engines. Research on efficient ways
to index images by content has been largely overshadowed by research on efficient
visual representation and similarity measures. Most of the methods used for visual
indexing are adopted from text-indexing research. In [Petrakis et al. 2002], R-trees
are used for indexing images represented as attributed relational graphs (ARG).
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Retrieval of images using wavelet coefficients as image representations and R∗ trees
for indexing has been studied in [Natsev et al. 2004]. Visual content matching using
graph based image representation and an efficient metric indexing algorithm has
been proposed in [Berretti et al. 2001]. More details of techniques for content based
indexing of pictures can be found in [Marsicoi et al. 1997; Bimbo 1999].

Composite querying methods provide the users with more flexibility for
expressing themselves. Some recent innovations in querying include sketch-
based retrieval of color images [Chalechale et al. 2005]. Querying using 3-D
models [Assfalg et al. 2002] has been motivated by the fact that 2-D image queries
are unable to capture the spatial arrangement of objects within the image. In
another interesting work, a multi-modal system involving hand-gestures and speech
for querying and relevance feedback has been presented in [Kaster et al. 2003].
Certain new interaction based querying paradigms which statistically model user’s
interest [Fang et al. 2005a] or help the user refine her queries by providing cues
and hints [Jaimes et al. 2004; Nagamine et al. 2004] have been explored for image
retrieval.

Use of mobile devices has become widespread lately. Mobile users have limited
querying capabilities due to inherent scrolling and typing constraints. Relevance
feedback has been explored for quickly narrowing down search to such user needs.
However, mobile users can be expected to provide only limited feedback. Hence
it becomes necessary to design intelligent feedback methods to cater to users with
small displays. Performances of different relevance feedback algorithms for small
devices have been studied and compared in [Vinay et al. 2004; 2005]. In the cited
work, a tree structured representation for all possible user-system actions was used
to determine an upper bound on performance gains that such systems can achieve.

Discussion. A prerequisite for supporting text-based query processing is the
presence of reliable meta-data with pictures. However, pictures rarely come with
reliable human tags. In recent years, there has been effort put into building
interactive, public domain games for large-scale collection of high-level manual
annotations. One such game (ESP game) has become very popular and has helped
accumulate human annotations for about a hundred thousand pictures [von Ahn
and Dabbish 2004]. Collection of manual tags for pictures has dual advantages of
(1) facilitating text-based querying, and (2) building reliable training datasets for
content-based analysis and automatic annotation algorithms. As explored in [Datta
et al. 2007], it is possible to effectively bridge the paradigms of keyword and content-
based search through a unified framework to provide the user the flexibility of both,
without losing out on the search scope.

2.4 Visualization

Presentation of search results is perhaps one of the most important factors in the
acceptance and popularity of an image retrieval system. We characterize common
visualization schemes for image search as follows:

—Relevance-ordered: The most popular way to present search results, as adopted
by Google and Yahoo! for their image search engine. Results are ordered by
some numeric measure of relevance to the query.

—Time-ordered: Pictures are shown in a chronological ordering rather than by
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relevance. Google’s Picasa system [Picasa 2004] for personal collections provides
an option to visualize a chronological time-line using pictures.

—Clustered: Clustering of images by their meta-data or visual content has been an
active research topic for several years (discussed in Sec. 3). Clustering of search
results, besides being an intuitive and desirable form of presentation, has also
been used to improve retrieval performance [Chen et al. 2005].

—Hierarchical: If meta-data associated with images can be arranged in a tree order
(e.g., WordNet topical hierarchies [Miller 1995]), it can be a very useful aid in
visualization. Hierarchical visualization of search results is desirable for archives
especially for educational purposes.

—Composite: Combining one or more of the above forms of visualization schemes
especially for personalized systems. Hierarchical clustering and visualization of
concept graphs are examples of composite visualizations.

In order to design interfaces for image retrieval systems, it helps to understand
factors like how people manage their digital photographs [Rodden and Wood 2003]
or frame their queries for visual art images [Cunningham et al. 2004]. In [Rodden
et al. 2001], user studies on various ways of arranging images for browsing purposes
are conducted, and the observation is that both visual feature based arrangement
and concept-based arrangement have their own merits and demerits. Thinking
beyond the typical grid-based arrangement of top matching images, spiral and
concentric visualization of retrieval results have been explored in [Torres et al.
2003]. For personal images, innovative arrangements of query results based on
visual content, time-stamps, and efficient use of screen space add new dimensions
to the browsing experience [Huynh et al. 2005].

Portable devices such as personal digital assistants (PDA) and vehicle
communications and control systems are becoming very popular as client side
systems for querying and accessing remote multimedia databases. A portable device
user is often constrained in the way she can formulate her query and interact with
a remote image server. There are inherent scrolling and browsing constraints which
can constrict user feedback. Moreover, there are bandwidth limitations which need
to be taken into consideration, when designing retrieval systems for such devices.
Some additional factors which become important here are size and color depth of
display. Personalization of search for small displays by modeling interaction from
the gathered usage data has been proposed in [Bertini et al. 2005]. An image
attention model for adapting images based on user attention for small displays
has been proposed in [Chen et al. 2003]. Efficient ways of browsing large images
interactively, e.g., those encountered in pathology or remote sensing, using small
displays over a communication channel are discussed in [Li and Sun 2003]. A user
log based approaches to smarter ways of image browsing on mobile devices have
been proposed in [Xie et al. 2005].

Image transcoding techniques, which aim at adapting multimedia (image and
video) content to the capabilities of the client device, have been studied extensively
in the last several years [Shanableh and Ghanbari 2000; Vetro et al. 2003; Bertini
et al. 2003; Cucchiara et al. 2003]. A class of methods known as semantic
transcoding aim at designing intelligent transcoding systems which can adapt
“semantically” to user requirements [Bertini et al. 2003; Cucchiara et al. 2003].
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For achieving this, classes of relevance are constructed and transcoding systems are
programmed differently for different classes.

Discussion. Study of organizations which maintain image management and
retrieval systems has been found to reveal useful insights into system design,
querying, and visualization. In [Tope and Enser 2000], case studies on design and
implementation of many different electronic retrieval systems have been reported.
The final verdict of acceptance/rejection for any visualization scheme comes from
end-users. While simple intuitive interfaces such as grid-based displays have become
mostly acceptable to search engine users, advanced visualization techniques could
still be in the making. It becomes critical for visualization designers to ensure that
the added complexity does not become an overkill.

2.5 Real-world Image Retrieval Systems

Not many image retrieval systems are deployed for public usage, save for Google
Images or Yahoo! Images (which are based primarily on surrounding meta-data
such as filenames and HTML text). Recently, a public domain search engine Riya
(Fig. 4) has been developed which incorporates image retrieval and face recognition
for searching pictures of people and products on the Web. It is also interesting
to note that CBIR technology is being applied to domains as diverse as family
album management, Botany, Astronomy, Mineralogy, and Remote sensing [Zhang
et al. 2003; Wang et al. 2002; Csillaghy et al. 2000; Painter et al. 2003; Schroder
et al. 2000]. A publicly available similarity search tool [Wang et al. 2001] is being
used for an on-line database of over 800, 000 airline-related images [Airliners.Net
2005; Slashdot 2005] (Fig. 4), the integration of similarity search functionality to
a large collection of art and cultural images [GlobalMemoryNet 2006], and the
incorporation of image similarity to a massive picture archive [Terragalleria 2001]
of the renowned travel photographer Q.-T. Luong.

Automatic linguistic indexing of pictures - real-time (ALIPR), an automatic
image annotation system [Li and Wang 2006a] has been recently made public for
people to try and have their pictures annotated. As mentioned earlier, presence
of reliable tags with pictures are necessary for text-based image retrieval. As part
of ALIPR search engine, an effort to automatically validate computer generated
tags with human given annotation is being made to build a very large collection
of searchable images (Fig. 5). Another work-in-progress is a Web image search
system [Joshi et al. 2006] that exploits visual features and textual meta-data using
state-of-the-art algorithms, for a comprehensive search experience.

Discussion. Image analysis and retrieval systems have received widespread public
and media interest of late [ScientificAmerican 2006; Discovery 2006; CNN 2005].
It is reasonable to hope that in the near future, the technology will diversify to
many other domains. We believe that the future of real-world image retrieval lies in
exploiting both text-based and content-based search technologies. While the former
is considered more reliable from a user view point, there is immense potential to
combine the two to build robust image search engines that make the ‘hidden’ part
of the Web images accessible, in the years to come.
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Fig. 4. Real-world use of content-based image retrieval using color, texture, and shape matching.
Top: http://airliners.net, is a photo-sharing community with more than a million airplane-
related pictures. Bottom: http://riya.com is a collection of several million pictures.
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Fig. 5. Real-world use of automatic image annotation, http://alipr.com. The screenshot shows
a random set of uploaded pictures and the annotations given by ALIPR (shown in blue and gray)
and by users (shown in green).

3. IMAGE RETRIEVAL TECHNIQUES: ADDRESSING THE CORE PROBLEM

Despite the effort made in the early years of image retrieval research (Sec. 1.1),
we do not yet have a universally acceptable algorithmic means of characterizing
human vision, more specifically in the context of interpreting images. Hence, it is
not surprising to see continued effort in this direction, either building up on prior
work, or exploring novel directions. Considerations for successful deployment of
CBIR in the real-world are reflected by the research focus in this area.

By the nature of its task, the CBIR technology boils down to two intrinsic
problems: (a) how to mathematically describe an image, and (b) how to assess
the similarity between a pair of images based on their abstracted descriptions.
The first issue arises because the original representation of an image, which is an
array of pixel values, corresponds poorly to our visual response, let alone semantic
understanding of the image. We refer to the mathematical description of an image
for retrieval purposes as its signature. From the design perspective, the extraction
of signatures and the calculation of image similarity cannot be cleanly separated.
The formulation of signatures determines to a large extent the realm for definitions
of similarity measures. On the other hand, intuitions are often the early motivating
factors for designing similarity measures in a certain way, which in turn puts
requirements on the construction of signatures.

In comparison with pre-2000 work in CBIR, a remarkable difference of recent
years has been the increased diversity of image signatures. Advances have been

ACM Transactions on Computing Surveys, Vol. 40, No. 2, April 2008.



18 · R. Datta, D. Joshi, J. Li, and J. Z. Wang

made in both the derivation of new features, e.g., shape, and the construction of
signatures based on these features, with the latter type of progress being more
pronounced. The richness in the mathematical formulation of signatures grows
together with the invention of new methods for measuring similarity. In the rest
of this section, we will first address the extraction of image signatures, and then
the methods for computing image similarity based on the signatures. In terms of
methodology development, a strong trend which has emerged in recent years is the
employment of statistical and machine learning techniques in various aspects of the
CBIR technology. Automatic learning, mainly clustering and classification, is used
to form either fixed or adaptive signatures, to tune similarity measures, and even to
serve as the technical core of certain searching schemes, e.g., relevance feedback. We
thus not only discuss the influence of learning while addressing fundamentals issues
of retrieval but also devote a subsection on clustering and classification, presented
in the context of CBIR. Finally, we review different paradigms of searching with
emphasis on relevance feedback. An actively pursued direction in image retrieval
is to engage human in the searching process, i.e., to include human in the loop.
Although in the very early days of CBIR, several systems were designed with
detailed user preference specifications, the philosophy of engaging users in recent
work has evolved toward more interactive and iterative schemes by leveraging
learning techniques. As a result, the overhead for a user in specifying what she
is looking for at the beginning of a search is much reduced.

3.1 Extraction of Visual Signature

Most CBIR systems perform feature extraction as a pre-processing step. Once
obtained, visual features act as inputs to subsequent image analysis tasks such as
similarity estimation, concept detection, or annotation. Figure 6 illustrates the
procedure of generating image signatures and the main research problems involved.
Following the order typical in feature extraction and processing, we present below
the prominent recent innovations in visual signature extraction. The current decade
has seen great interest in region-based visual signatures, for which segmentation is
the quintessential first step. While we begin discussion with recent progress in image
segmentation, we will see in the subsequent section how there is significant interest
in segmentation-free techniques to feature extraction and signature construction.

Image Segmentation. To acquire a region-based signature, a key step is to
segment images. Reliable segmentation is especially critical for characterizing
shapes within images, without which the shape estimates are largely meaningless.
We described above a widely used segmentation approach based on k-means
clustering. This basic approach enjoys a speed advantage, but is not as refined
as some recently developed methods. One of the most important new advances
in segmentation employs the Normalized Cuts criterion [Shi and Malik 2000].
The problem of image segmentation is mapped to a weighted graph partitioning
problem where the vertex set of the graph is composed of image pixels and edge
weights represent some perceptual similarity between pixel pairs. The normalized
cut segmentation method in [Shi and Malik 2000] is also extended to textured
image segmentation by using cues of contour and texture differences [Malik et al.
2001], and to incorporate known partial grouping priors by solving a constrained
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Fig. 6. An overview on image signature formulation.

optimization problem [Yu and Shi 2004]. The latter has potential for incorporating
real-world application-specific priors, e.g., location and size cues of organs in
pathological images.

Searching of medical image collections has been an increasingly important
research problem of late, due to the high-throughput, high-resolution, and high-
dimensional imaging modalities introduced. In this domain, 3D brain magnetic
resonance (MR) images have been segmented using Hidden Markov Random
Fields and the Expectation-Maximization (EM) algorithm [Zhang et al. 2001],
and the spectral clustering approach has found some success in segmenting
vertebral bodies from sagittal MR images [Carballido-Gamio et al. 2004]. Among
other recent approaches proposed are segmentation based on the mean shift
procedure [Comaniciu and Meer 2002], multi-resolution segmentation of low depth
of field images [Wang et al. 2001], a Bayesian framework based segmentation
involving the Markov chain Monte Carlo technique [Tu and Zhu 2002], and an
EM algorithm based segmentation using a Gaussian mixture model [Carson et al.
2002], forming blobs suitable for image querying and retrieval. A sequential
segmentation approach that starts with texture features and refines segmentation
using color features is explored in [Chen et al. 2002]. An unsupervised approach
for segmentation of images containing homogeneous color/texture regions has been
proposed in [Deng and Manjunath 2001].

While there is no denying that achieving good segmentation is a major
step toward image understanding, some issues plaguing current techniques
are computational complexity, reliability of good segmentation, and acceptable
segmentation quality assessment methods. In the case of image retrieval, some of
the ways of getting around this problem have been to reduce dependence on reliable
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segmentation [Carson et al. 2002], to involve every generated segment of an image
in the matching process to obtain soft similarity measures [Wang et al. 2001], or to
characterize spatial arrangement of color and texture using block-based 2-D multi-
resolution hidden Markov models (MHMM) [Li et al. 2000; Li and Wang 2003].
Another alternative is to use perceptual grouping principles to hierarchically extract
image structures [Iqbal and Aggarwal 2002]. In [Datta et al. 2007], probabilistic
modeling of class-wise color segment interactions has been employed for the purpose
of image categorization and retrieval, to reduce sensitivity to segmentation.

Major Types of Features. A feature is defined to capture a certain visual property
of an image, either globally for the entire image, or locally for a small group of
pixels. Most commonly used features include those reflecting color, texture, shape,
and salient points in an image, which will be discussed one by one shortly. In global
extraction, features are computed to capture overall characteristics of an image. For
instance, in a color layout approach, an image is divided into a small number of sub-
images and the average color components, e.g., red, green, and blue intensities, are
computed for every sub-image. The overall image is thus represented by a vector
of color components where a particular dimension of the vector corresponds to a
certain sub-image location. The advantage of global extraction is the high speed
for both extracting features and computing similarity. However, as evidenced by
the rare use of color layout in recent work, global features are often too rigid to
represent an image. Specifically, they can be over sensitive to location and hence fail
to identify important visual characteristics. To increase the robustness to spatial
transformation, the second approach to form signatures is by local extraction and
an extra step of feature summarization.

In local feature extraction, a set of features are computed for every pixel using its
neighborhood, e.g., average color values across a small block centered around the
pixel. To reduce computation, an image may be divided into small non-overlapping
blocks, and features are computed individually for every block. The features are
still local because of the small block size, but the amount of computation is only a
fraction of that for obtaining features around every pixel. Let the feature vectors
extracted at block or pixel location (i, j) be xi,j , 1 ≤ i ≤ m, 1 ≤ j ≤ n, where the
image size m × n can vary. To achieve a global description of an image, various
ways of summarizing the data set {xi,j , 1 ≤ i ≤ m, 1 ≤ j ≤ n} have been explored,
leading to different types of signatures. A common theme of summarization is to
derive a distribution for xi,j based on the data set.

Exploration of color features was active in the nascency of CBIR, with emphasis
on exploiting color spaces (e.g., LUV) that seem to coincide better with human
vision than the basic RGB color space. In recent years, research on color features has
focused more on the summarization of colors in an image, that is, the construction
of signatures out of colors. A set of color and texture descriptors tested for inclusion
in the MPEG-7 standard, and well suited to natural images and video, is described
in [Manjunath et al. 2001]. These include histogram-based descriptors, spatial color
descriptors and texture descriptors suited for retrieval.

Texture features are intended to capture the granularity and repetitive patterns
of surfaces within in a picture. For instance, grass land, brick walls, teddy bears,
and flower petals differ in texture by smoothness as well as patterns. Their role in
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domain-specific image retrieval, such as in aerial imagery and medical imaging, is
particularly vital due to their close relation to underlying semantics in these cases.
Texture features have been studied for long in image processing, computer vision,
and computer graphics [Haralick 1979], such as multi-orientation filter banks [Malik
and Perona 1990] and wavelet transforms [Unser 1995]. In image processing,
a popular way to form texture features is by using the coefficients of a certain
transform on the original pixel values or more sophisticatedly, statistics computed
from those coefficients. Examples of texture features using the wavelet transform
and the discrete cosine transform can be found in [Do and Vetterli 2002; Li et al.
2000]. In computer vision and graphics, advances have been made in fields such
as texture synthesis, where Markov statistical descriptors based on pairs of wavelet
coefficients at adjacent location/orientation/scale in the images are used [Portilla
and Simoncelli 2000]. Among the earliest work on the use of texture features for
image retrieval are [Manjunath and Ma 1996]. Texture descriptors, apt for inclusion
in the MPEG-7, were broadly discussed in [Manjunath et al. 2001]. Such descriptors
encode significant, general visual characteristics into standard numerical formats,
that can used for various higher-level tasks. A thesaurus for texture, geared toward
aerial image retrieval, has been proposed in [Ma and Manjunath 1998]. The texture
extraction part of this thesaurus building process involves the application of a bank
of Gabor filters [Jain and Farrokhnia 1990] to the images, to encode statistics of the
filtered outputs as texture features. Advances in textured region descriptors have
been made, such as affine and photometric transformation invariant features that
are also robust to the shape of the region in question [Schaffalitzky and Zisserman
2001]. While the target application is the more traditional stereo matching, it has
been shown to have potential for textured image matching and segmentation as
well. Advances in affine-invariant texture feature extraction, designed for texture
recognition, have been made in [Mikolajczyk and Schmid 2004], with the use of
interest point detection for sparsity. Texture features at a point in the image are
meaningful only as a function of its neighborhood, and the (effective) size of this
neighborhood can be thought of as a scale at which these features are computed.
Because a choice of scale is critical to the meaningfulness of such features, it has
been explored as an automatic scale selection problem in [Carson et al. 2002],
specifically to aid image retrieval.

Shape is a key attribute of segmented image regions, and its efficient and
robust representation plays an important role in retrieval. Synonymous with shape
representation is the way such representations are matched with each other. Here we
discuss both shape representations and the particular forms of shape similarities
used in each case. In general, over the years we have seen a shift from global
shape representations, e.g., in [Flickner et al. 1995], to more local descriptors,
e.g., in [Mehrotra and Gary 1995; Berretti et al. 2000; Petrakis et al. 2002],
due to the typical modeling limitations. Representation of shape using discrete
curve evolution to simplify contours is discussed in [Latecki and Lakamper 2000].
This contour simplification helps remove noisy and irrelevant shape features from
consideration. A new shape descriptor for similarity matching, referred to as
shape context, is proposed which is fairly compact yet robust to a number of
geometric transformations [Belongie et al. 2002]. In [Berretti et al. 2000], curves are
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represented by a set of segments or tokens, whose feature representations (curvature
and orientation) are arranged into a metric tree [Ciaccia et al. 1997] for efficient
shape matching and shape-based image retrieval. A dynamic programming (DP)
approach to shape matching is proposed in [Petrakis et al. 2002], where shapes
are approximated as sequences of concave and convex segments. One problem
with this approach is that computation of Fourier descriptors and moments is
slow, although pre-computation may help produce real-time results. Continuing
with Fourier descriptors, exploitation of both the amplitude and phase, and the
use of Dynamic Time Warping (DTW) distance instead of Euclidean distance is
shown to be an accurate shape matching technique in [Bartolini et al. 2005]. The
rotational and starting point invariance otherwise obtained by discarding the phase
information is maintained here by adding compensation terms to the original phase,
thus allowing its exploitation for better discrimination.

Closely associated are approaches that model spatial relations among local image
entities for retrieval. Much of the approaches to spatial modeling and matching
have been influenced by earlier work on iconic indexing [Chang et al. 1987; Chang
et al. 1988] based on the theory of symbolic projections. Here, images are
represented based on orthogonal projections of constituent entities, by encoding
the corresponding bi-directional arrangement on the two axes as a 2D string of
entities and relationships. This way, image matching is effectively converted from a
spatial matching problem to a one-dimensional matching one. Many variants of the
2D string model have been proposed since. In recent years, extensions such as 2D
Be-string [Wang 2003] have been proposed, where the symbolic encoding has been
extended to represent entity locations more precisely, and avoid cutting entities
along their bounding rectangles for improved complexity. Another work on iconic
indexing can be found in [Petraglia et al. 2001], where a symbolic representation of
real images, termed virtual image is proposed, consisting of entities and the binary
spatial relations among them. Compared to traditional iconic representations and
their variants, this approach allows more explicit scene representation and more
efficient retrieval, once again without requiring the entities to be cut. In [Berretti
et al. 2003], a novel alternative to the previously discussed class of spatial
models, weighted walkthroughs, is proposed. This representation allows quantitative
comparison (which is challenging for purely Boolean relationships) of entities, by
incorporating the spatial relationships among each pair of pixels from the two
entities. These quantitative relations allow images to be represented by attributed
relational graphs (ARG), which essentially makes the retrieval problem one of graph
comparison, resulting in improved retrieval performance over other representations.
This idea has been extended to spatial modeling of 3D objects, in [Berretti and Del
Bimbo 2006]. Other image models that capture spatial arrangements between local
features such as interest points, are discussed in the following paragraph.

Features based on local invariants such as corner points or interest points,
traditionally used for stereo matching, are being used in image retrieval as well.
Scale and affine invariant interest points that can deal with significant affine
transformations and illumination changes have been shown effective for image
retrieval [Mikolajczyk and Schmid 2004]. In similar lines, wavelet-based salient
points have been used for retrieval [Tian et al. 2001]. In more recent work, the earth
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mover’s distance [Rubner et al. 2000] has been used for matching locally invariant
features in [Grauman and Darrell 2005], for the purpose of image matching.
The significance of such special points lies in their compact representation of
important image regions, leading to efficient indexing and good discriminative
power, especially in object-based retrieval. In this domain, there has been a
paradigm shift from global feature representations to local descriptors, as evidenced
by a large number of recent publications. Typically, object categories or visual
classes are represented by a combination of local descriptors and their spatial
distributions, sometimes referred to collectively as part-based models. Variations
usually arise out of the ‘prior’ on the geometry imposed on the spatial relationship
between the local parts, with extremes being fully independent (bag of features,
each representing a part or region), and fully connected (constellation model,
[Fergus et al. 2003]). A fully connected model essentially limits the number of
parts that can be modeled, since the algorithm complexity grows exponentially
with it. As a compromise, sparser topologies have been proposed, such as the star
topology [Fergus et al. 2005], a hierarchy, with the lowest levels corresponding to
local features [Bouchard and Triggs 2005], and a geometry where local features are
spatially dependent on their nearest neighbors [Carneiro and Lowe 2006]. Model
learning and categorization performance achieved in [Fergus et al. 2003] has been
improved upon, particularly in learning time, using contextual information and
boosting, in [Amores et al. 2004; Amores et al. 2005]. A recent work [Zhang
et al. 2006] uses segmentation to reduce the number of salient points for enhanced
object representation. A discussion on the pros and cons of different types of color
interest points used in image retrieval can be found in [Gouet and Boujemaa 2002],
while a comparative performance evaluation of the various proposed interest point
detectors is reported in [Mikolajczk and Schmid 2003]. The application of salient
point detection for related feature extraction has also been explored. For example,
interest point detectors have been employed for sparse texture representation, for
the purpose of texture recognition, in [Lazebnik et al. 2003].

Construction of Signatures from Features. In Fig. 6, according to mathematical
formulations, we summarize the types of signatures roughly into vectors and
distributions. As will be discussed in details below, histograms and region-based
signatures can both be regarded as sets of weighted vectors, and when the weights
sum up to one, these sets are equivalent to discrete distributions(discrete in the
sense that the support is finite). Our discussion will focus on region-based signature
and its mathematical connection with histograms because it is the most exploited
type of image signature. We note however, that distributions extracted from a
collection of local feature vectors can be of other forms, for instance, a continuous
density function [Do and Vetterli 2002], or even a spatial stochastic model [Li
and Wang 2004]. A continuous density in general is more precise to describe a
collection of local feature vectors than a discrete distribution with finitely many
support vectors. A stochastic model moves beyond a continuous density by taking
into account spatial dependence among local feature vectors. For special kinds of
images, we may need these sophisticated statistical models to characterize them.
For instance, in [Li and Wang 2004], it is noted that spatial relationship among
pixels is crucial for capturing Chinese ink painting styles. On the other hand,
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more sophisticated statistical models are computationally costly and less intuitive,
a probable reason why their usage is limited.

In earlier work, histogram was a widely used form of distribution. Suppose the
feature vectors are denoted by xi,j ∈ Rd, the d-dimensional Euclidean space. To
form a basic histogram, Rd is divided into fixed bins and the percentage of xi,j ’s
falling into each bin is calculated. Suppose there are k bins. A histogram can then
be treated as a k-dimensional vector (f1, f2, ..., fk)t, where fl is the frequency of
the l-th bin. Improvements over the basic histogram signature have been actively
pursued. In [Hadjidemetriou et al. 2004], a multi-resolution histogram, together
with its associated image matching algorithm, is shown to be effective in retrieving
textured images. Computation of histograms at multiple resolutions continues
to have the simplicity and efficiency of ordinary histograms, but it additionally
captures spatial variations across images. In [Jeong et al. 2004], Gaussian mixture
vector quantization (GMVQ) is used to extract color histograms and shown to yield
better retrieval than uniform quantization and vector quantization with squared
error.

The disadvantages of treating histograms simply as vectors of frequencies are
noted in [Rubner et al. 1998]. The main issue is that the vector representation
ignores the location of bins used to generate the histogram. For measuring
the closeness of distributions, the locations of histogram bins are vital. The
Earth Movers Distance (EMD) is proposed in [Rubner et al. 1998] to take into
consideration bin locations. When EMD is used, histogram is mathematically
a collection of feature vector and frequency pairs: {(z1, f1), (z2, f2), ..., (zk, fk)},
where zl ∈ Rd is the center or location of the l-th bin. It is shown in [Levina and
Bickel 2001] that EMD, when applied to probability frequencies, is equivalent to
the Mallows Distance proposed in the early 1970’s [Mallows 1972], which is a true
metric for general probability measures. A histogram is a special distribution in
the sense that it is discrete, i.e., it takes only countably many different values (for
practical interest, finitely many). Moreover, histograms for different images are
usually derived using a fixed set of bins.

Once the histogram is viewed as {(z1, f1), (z2, f2), ..., (zk, fk)}, a weighted set of
vectors, a natural question to raise is why we have to employ a fixed set of bins
located at z1, ..., zk. A direct extension from histogram is to adpatively generate
zl and fl together and also let the number of bins k depend on the image being
handled. This is essentially the widely used region-based signature, as used in [Deng
et al. 2001; Wang et al. 2001]. Consider the data set {xi,j , 1 ≤ i, 1 ≤ j}. Applying
a clustering procedure, e.g., k-means, to the data set groups the feature vectors xi,j

into k̃ clusters such that the feature vectors in the same clusters tend to be tightly
packed. Let the mean of xi,j ’s in the same cluster l be z′

l. We thus have acquired
a summary of the data set: {(z′

1, f
′

1), ..., (z
′

k′ , f ′

k′)}, where f ′

l is the percentage of
xi,j ’s grouped into cluster l. The collection of pixels (i, j) for which xi,j ’s are in the
same cluster forms a relatively homogeneous region because the common cluster
forces closeness between the visual features in xi,j ’s. This is why clustering of local
feature vectors is a widely used method to segment images, and also why we call
the signature {(z′

1, f
′

1), ..., (z
′

k′ , f ′

k′)} region-based.

With fixed bins, histograms of image feature vectors tend to be sparse in
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multi-dimensional space. In comparison, the region-based signature provides more
compact description of images because it allows the representative vectors z ′

l to
adapt to images. In [Deng et al. 2001; Wang et al. 2001], it is argued that
region-based signature is more efficient computationally for retrieval, and it also
gets around drawbacks associated with earlier propositions such as dimension
reduction and color moment descriptors. Strictly speaking, a region-based
signature is not merely a dynamic histogram representation, and despite the
mathematical connections made above, is not necessarily motivated by the intention
of generalizing histograms. The motivation for using region-based signature, as
argued in [Wang et al. 2001], is that a relatively homogeneous region of color and
texture is likely to correspond to an object in an image. Therefore, by extracting
regions, we obtain, in a crude way, a collection of objects, and with objects in
an image listed, it is easier to engage intuitions for defining similarity measures.
Moreover, although we have z′

l, the mean of xi,j ’s in region l as a natural result
of clustering, the description of the region can be expanded to include features not
contained in z′

l, for instance, shape, which can only be meaningfully computed after
the region has been formed.

Adaptive Image Signature. It is quite intuitive that the same set of visual features
may not work equally well to characterize, say, computer graphics and photographs.
To address this issue, learning methods have been used to tune signatures either
based on images alone or by learning on-the-fly from user feedback. In Fig. 6, we
categorize image signatures according to their adaptivity into static, image-wise
adaptive, and user-wise adaptive. Static signatures are generated in a uniform
manner for all the images.

Image-wise adaptive signatures vary according to the classification of images.
The term semantic-sensitive coined in [Wang et al. 2001] reflects such a mechanism
to adjust signatures, and is a major trait of the SIMPLIcity system in comparison to
the predecessors. Specifically, images are classified into several types first, and then
signatures are formed from different features for these types. Despite the appeal
of semantic-sensitive retrieval as a general framework, the classification conducted
in SIMPLIcity only involves a small number of pre-selected image types (graph vs.
photograph, textured vs. non-textured). The classification method relies on prior
knowledge rather than training, and hence is not set up for extension. More recently,
semantic-sensitive features are also employed in a physics-motivated approach [Ng
et al. 2005], where images are distinguished as either photo-realistic rendering or
photograph.

Care must be taken to ensure that the added robustness provided by
heterogeneous feature representation does not compromise on the efficiency of
indexing and retrieval. When a large number of image features are available,
one way to improve generalization and efficiency is to work with a feature
subset or impose different weights on the features. To avoid a combinatorial
search, an automatic feature subset selection algorithm for SVMs is proposed
in [Weston et al. 2000]. Some of the other recent, more generic feature selection
propositions involve boosting [Tieu and Viola 2004], evolutionary searching [Kim
et al. 2000], Bayes classification error [Carneiro and Vasconcelos 2005], and feature
dependency/similarity measures [Mitra et al. 2002]. An alternative way of obtaining
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feature weights based on user logs has been explored in [Muller et al. 2004]. A survey
and performance comparison of some recent algorithms on the topic can be found
in [Guyon and Elisseeff 2003].

Discussion. The various methods for visual signature extraction come with
their share of advantages and limitations. While global features give the “big
picture”, local features represent the details. Therefore, depending on the scale
of the key content or pattern, an appropriate representation should be chosen.
In this sense, hybrid representations may sometimes be more attractive but this
may come at additional complexity. While segmentation is intended to recognize
objects in a scene, precise segmentation still remains an open problem. Therefore,
alternative approaches to characterize structure may be more suitable. However,
such a representation may lose the charm of clear interpretability. Among
different approaches to segmentation, there is often a trade-off between quality
and complexity, which might lead to a difference in eventual search performance
and speed. Hence, a choice on the image signature to be used should depend on
the desirability of the system.

In contrast with the early years (Sec. 1.1), we have witnessed a major shift from
global feature representations for images such as color histograms and global shape
descriptors to local features and descriptors, such as salient points, region-based
features, spatial model features, and robust local shape characterizations. It is
not hard to imagine that this shift was triggered by a realization that the image
domain was too deep for global features to reduce the semantic gap. Local features
often correspond with more meaningful image components such as rigid objects and
entities, which make association of semantics with image portions straightforward.
The future in image feature or signature representation resides both in theory
and practise. Many years of research has made it clear that emulating human
vision is very challenging, but instead, practical approaches can help build useful
systems. While the endeavor to characterize vision will likely continue, particularly
in the core field of computer vision, practical approaches, e.g., fusion of local and
global representations for top-down as well as a bottom-up representations, will
potentially improve retrieval performance and user satisfaction in such systems.
The availability of three dimensional image data and stereo image data, whenever
obtainable, should be exploited to extract features more coherent with the human
vision system. In summary, reducing the sensorial gap in tandem with the semantic
gap should continue be a goal for the future.

3.2 Image Similarity using Visual Signature

Once a decision on the choice of image signatures is made, how to use them for
accurate image retrieval is the next concern. There has been a large number of
fundamentally different frameworks proposed in the recent years. Some of the key
motivating factors behind the design of the proposed image similarity measures can
be summarized as follows:

— agreement with semantics

— robustness to noise (invariant to perturbations)

— computational efficiency (ability to work real-time and in large-scale)
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Fig. 7. Different types of image similarity measures, their mathematical formulations and
techniques for computing them.

— invariance to background (allowing region-based querying)

— local linearity (i.e., following triangle inequality in a neighborhood)

The various techniques can be grouped according to their design philosophies, as
follows:

— treating features as vectors, non-vector representations, or ensembles

— using region-based similarity, global similarity, or a combination of both

— computing similarities over linear space or non-linear manifold

— role played by image segments in similarity computation

— stochastic, fuzzy, or deterministic similarity measures

— use of supervised, semi-supervised, or unsupervised learning

Leaving out those discussed in [Smeulders et al. 2000], here we focus on some of
the more recent approaches to image similarity computation.

Figure 7 shows the basic types of signatures, distances (‘dissimilarity measures’)
exploited, and underlying techniques needed to calculate these distances. For each
type of signatures, we also elucidate on its mathematical representation, which to
a large extent determines the choice of distances and the employment of related
methodologies. We will start discussion on the region-based signature since its
widespread use occurred in the current decade. The technical emphasis on region-
based signature is the definition of distance between sets of vectors, which is not
as obvious as defining distance between single vectors. Research on this problem is
further enriched by the effort to optimally choose a subset of regions pertaining to
users’ interests and by that to increase robustness against inaccurate segmentation.
Although global feature vectors had already been extensively used in the early
years of CBIR, advances were achieved in recent years by introducing state-of-the-
art learning techniques, e.g., manifold embedding. Research efforts have been made
to search for nonlinear manifolds in which the geodesic distances may correspond
better to human perception. Instead of describing an image by a set of segmented
regions, summaries of local feature vectors such as codebook and probability
density functions have been used as signatures. Codebooks are generated by vector
quantization, and the codewords are sometimes treated symbolically with text
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retrieval techniques applied to them. An effective way to obtain a density estimation
is by fitting a Gaussian mixture model [Hastie et al. 2001], and the Kullback-Leibler
distance is often used to measure the disparity between distributions.

First consider an image signature in the form of a weighted set of feature vectors
{(z1, p1), (z2, p2), ..., (zn, pn)}, where zi’s are the feature vectors and pi’s are the
corresponding weights assigned to them. The region-based signature discussed
above bears such a form, so a histogram can be represented in this way. Let us

denote two signatures by Im = {(z
(m)
1 , p

(m)
1 ), (z

(m)
2 , p

(m)
2 ), ..., (z

(m)
nm , p

(m)
nm )}, m = 1, 2.

A natural approach to defining a region-based similarity measure is to match z
(1)
i ’s

with z
(2)
i ’s and then combine the distances between these vectors as a distance

between sets of vectors.
One approach to matching [Wang et al. 2001] is by assigning a weight to every

pair z
(1)
i and z

(2)
j , 1 ≤ i ≤ n1, 1 ≤ j ≤ n2, and the weight si,j indicates the

significance of associating z
(1)
i with z

(2)
j . One motivation for the soft matching is to

reduce the effect of inaccurate segmentation on retrieval. The weights are subject

to constraints, the most common ones being
∑

i si,j = p
(2)
j and

∑

j si,j = p
(1)
i . Once

the weights are determined, the distance between I1 and I2 is aggregated from the
pair-wise distances between individual vectors:

D(I1, I2) =

n1
∑

i=1

n2
∑

j=1

si,jd(z
(1)
i , z

(2)
j ) , (1)

where the vector distance d(·, ·) can be defined in diverse ways depending on the

system. Other matching methods include the Hausdorff distance, where every z
(1)
i

is matched to its closest vector in I2, say z
(2)
i′ , and the distance between I1 and

I2 is the maximum among all d(z
(1)
i , z

(2)
i′ ). The Hausdorff distance is symmetrized

by computing additionally the distance with the role of I1 and I2 reversed and
choosing the larger one of the two distances:

DH(I1, I2) = max

(

max
i

min
j

d(z
(1)
i , z

(2)
j ), max

j
min

i
d(z

(2)
j , z

(1)
i )

)

. (2)

The Hausdorff distance is used for image retrieval in [Ko and Byun 2002].

One heuristic to decide the matching weights si,j for the pair (z
(1)
i , z

(2)
j ) is to

seek si,j ’s such that D(I1, I2) in (1) is minimized subject to certain constraints

on si,j . Suppose
∑

i p
(1)
i = 1 and

∑

j p
(2)
j = 1. This can always be made true

by normalization as long as there is no attempt to assign one image an overall

higher signficance than the other. In practice, p
(1)
i ’s (or p

(2)
j ’s) often correspond to

probabilities and automatically yield unit sum. Since p
(1)
i indicates the significance

of region z
(1)
i and

∑

j si,j reflects the total influence of z
(1)
i in the calculation of

D(I1, I2), it is natural to require
∑

j si,j = p
(1)
i , for all i, and similarly

∑

i si,j = p
(2)
j ,

for all j. Additionally, we have the basic requirement si,j ≥ 0 for all i, j. The
definition of the distance is thus

D(I1, I2) = min
si,j

n1
∑

i=1

n2
∑

j=1

si,jd(z
(1)
i , z

(2)
j ) , (3)
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subject to
∑

j si,j = p
(1)
i , for all i,

∑

i si,j = p
(2)
j , for all j, and si,j ≥ 0 for

all i, j. This distance is precisely the Mallows distance in the case of discrete
distributions [Mallows 1972].

The Earth Mover’s Distance [Rubner et al. 2000] (EMD) proposed early in the
decade represents another soft matching scheme for signatures in the form of sets
of vectors. The measure treated the problem of image matching as one of “moving”
components of the color histograms of images from one to the other, with minimum
effort, synonymous with moving earth piles to fill holes. When pi and p′j are
probabilities, EMD is equivalent to the Mallows distance. Another useful matching
based distance is the IRM (integrated region matching) distance [Li et al. 2000].
The IRM distance uses the most similar highest priority (MSHP) principle to match
regions. The weights si,j are subject to the same constraints as in the Mallows
distance, but D(I1, I2) is not computed by minimization. Instead, the MSHP
criterion entails that a pair of regions across two images with the smallest distance
among all the region pairs ought to be given the highest priority in matching, that
is, to be assigned with a maximum valid weight si,j . The matching is conducted

recursively until all the region weights are consumed, i.e.,
∑

j si,j = p
(1)
i and

∑

i si,j = p
(2)
j have been achieved for all i and j. IRM is significantly faster to

compute than the Mallows distance and has been found to be not inferior if not
better in terms of retrieval results.

Improvements over the basic matching idea have been made from different
perspectives. These include tuning features according to image types, choosing
region weights in more sophisticated ways, improving robustness against inaccurate
segmentation, and speeding up retrieval. In the SIMPLIcity system [Wang et al.
2001], a preliminary categorization (e.g., graph vs. photograph, textured vs. non-
textured) is applied to images and different sets of features are used for each
category. Region based image retrieval, under the assumption of a hidden semantic
concept underlying image generation, is explored in [Zhang and Zhang 2004]. Here,
a uniform, sparse region-based visual dictionary is obtained using self-organizing
map (SOM) based quantization, and images/regions are assumed to be generated
probabilistically, conditional on hidden or latent variables that reflect on their
underlying semantics. A framework for region-based image retrieval, with particular
focus on efficiency, is proposed in [Jing et al. 2004a]. Here, vector quantization (VQ)
is employed to build a region codebook from training images, each entry sparsely
or compactly represented, with distinct advantages of efficiency and effectiveness
in each case. To further speed up retrieval, a tree-structured clustering is applied
to images to narrow down the search range [Du and Wang 2001]. The system first
uses a relatively simple signature, specifically a vector, to decide which cluster an
image belongs to, and then uses the region-based signature and the IRM distance
to compare the query with images in the chosen cluster.

A variation of IRM is attempted in [Chen and Wang 2002] to employ fuzziness
to account for inaccurate segmentation to a greater extent. A new representation
for object retrieval in cluttered images, without relying on accurate segmentation is
proposed in [Amores et al. 2004]. Here, image model learning and categorization is
improved upon using contextual information and boosting algorithms. A windowed
search over location and scale is shown more effective in object-based image retrieval
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than methods based on inaccurate segmentation [Hoiem et al. 2004]. A hybrid
approach involves the use of rectangular blocks for coarse foreground/background
segmentation on the user’s query region-of-interest (ROI), followed by a database
search using only the foreground regions [Dagli and Huang 2004].

Without user input, image similarity measures usually attempt to take all the
regions in an image into consideration. This may not be the best practice when
users’ interest is more specifically indicated than an example query image. For
instance, if the query is a sketch drawn by a user, it may be meaningless to let the
left out areas in the sketch affect image comparison. It can be more desirable to
match the sketch to only a relevant subset of regions automatically determined by
the retrieval system, as explored in [Ko and Byun 2002].

Even if the user starts searching with an example query image, it is sometimes
assumed that he or she is willing to specify a portion of the image as of interest.
This argument has led to the concept of region-based querying. The Blobworld
system [Carson et al. 2002], instead of performing image to image matching, lets
users select one or more homogeneous color-texture segments or blobs, as region(s)
of interest. For example, if one or more segmented blobs identified by the user
roughly correspond to a typical “tiger”, then her search becomes equivalent to
searching for the “tiger” object within images. For this purpose, the pictures are
segmented into blobs using the E-M algorithm, and each blob bi is represented as
a color-texture feature vector vi. Given a query blob bi, and every blob bj in the
database, the most similar blob has score

µi = max
j

exp

(

(vi − vj)
TΣ(vi − vj)

2

)

, (4)

where matrix Σ corresponds to user-adjustable weights on specific color and texture
features. The similarity measure is further extended to handle compound queries
using fuzzy logic. While this method can lead to more precise formulation of user
queries, and can help users understand the computer’s responses better, it also
requires greater involvement from and dependence on them. For finding images
containing scaled or translated versions of query objects, retrieval can also be
performed without any explicit involvement of the user [Natsev et al. 2004].

As discussed previously, regions are obtained by segmenting images using local
feature vectors. Roughly speaking, region-based signatures can be regarded as a
result of summarizing these feature vectors. Along the line of using a summary
of local feature vectors as the signature, there are other approaches explored. For
instance, in [Iqbal and Aggarwal 2002], primitive image features are hierarchically
and perceptually grouped and their inter-relationships are used to characterize
structure [Iqbal and Aggarwal 2002]. Another approach is the use of vector
quantization (VQ) on image blocks to generate codebooks for representation and
retrieval, taking inspiration from data compression and text-based strategies [Zhu
et al. 2000]. For textured images, segmentation is not critical. Instead, distributions
of the feature vectors are estimated and used as signatures. Methods for texture
retrieval using the Kullback-Leibler (K-L) divergence have been proposed in [Do
and Vetterli 2002; Mathiassen et al. 2002]. The K-L divergence, also known as
the relative entropy, is an asymmetric information theoretic measure of difference
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between two distributions f(·) and g(·), defined as

K(f, g) =

∫ +∞

−∞

f(x)log
f(x)

g(x)
dx, K(f, g) =

∑

x

f(x)log
f(x)

g(x)
(5)

in the continuous and discrete cases respectively. Fractal block code based image
histograms have been shown effective in retrieval on texture databases [Pi et al.
2005]. The use of the MPEG-7 content descriptors to train self-organizing maps
(SOM) for image retrieval is explored in [Laaksonen et al. 2002].

When images are represented as single vectors, many authors note the apparent
difficulty in measuring perceptual image distance by metrics in any given linear
feature space. One approach to tackle this issue is to search for a non-linear
manifold in which the image vectors lie, and to replace the Euclidean distance by
the geodesic distance. The assumption here is that visual perception corresponds
better with this non-linear subspace than the original linear space. Computation
of similarity may then be more appropriate if performed non-linearly along the
manifold. This idea is explored and applied to image similarity and ranking in [He
2004; Vasconcelos and Lippman 2005; He et al. 2004; He et al. 2004a; Zhou et al.
2003]. Typical methods for learning underlying manifolds, which essentially amount
to non-linear dimension reduction, are Locally-linear Embedding (LLE), Isomap,
and multi-dimensional scaling (MDS) [de Silva and Tenenbaum 2003].

Distance

Measure

Input Computation Complexity Metric Comments

Euclidean
(L2norm)

~Xa, ~Xb ∈
� n

(vectors)

~Xa · ~Xb Θ(n) Yes Popular, fast,
L1 also used

Weighted
Euclidean

~Xa, ~Xb ∈
�

n

W ∈
�

n (vec.
+ wts.)

~XT
a [W ] ~Xb

[·] ←
diagonalize

Θ(n) Yes Allows
features to be
weighted

Hausdorff Vector sets:
{ ~X

(1)
a , .., ~X

(p)
a }

{ ~X
(
b
1), .., ~X

(q)
b
}

See Eqn. 2 Θ(pqn)
(d(·, ·)← L2

norm)

Yes Sets corr. to
image
segments

Mallows Vector sets:
{ ~X

(1)
a , .., ~X

(p)
a }

{ ~X
(
b
1), .., ~X

(q)
b
}

Signific.: S

See Eqn. 3 Θ(pqn) +
variable
part

Yes The EMD is
its special
case

IRM Vector sets:
{ ~X

(1)
a , .., ~X

(p)
a }

{ ~X
(
b
1), .., ~X

(q)
b
}

Signific.: S

See Eqn. 3 Θ(pqn) +
variable
part

No Much faster
than Mallows
computation
in practise

K-L
divergence

~F , ~G ∈
�

m

(histograms)

�
x F (x) log F (x)

G(x)
Θ(m) No Asymmetric,

compares
distributions

Table I. Popular distances measures used for similarity computation in image retrieval.

The different distance measures discussed so far have their own advantages and
disadvantages. While simple methods lead to very efficient computation, which
in turn make image ranking scalable - a quality that greatly benefits real-world
applications, they often are not effective enough to be useful. Depending on the
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specific application and on the image signatures constructed, a very important
step in the design of an image retrieval system is the choice of distance measure.
Factors that differ across various distance measures include type of input, method
of computation, computational complexity, and whether the measure is a metric or
not. In table I, we summarize the distance measures according to these factors, for
ease of comparison.

In the previous subsection, we discussed tuning image signatures by categorizing
images or by learning from user preferences. A tightly related issue is to tune
image similarity measures. It is in fact impossible to completely set apart the
two types of adaptivity since tuning signatures ultimately results in the change
of similarity. Referring a tuning method in one way or the other is often merely a
matter of whichever is easier to understand. Automatic learning of image similarity
measures with the help of contextual information has been explored in [Wu et al.
2005]. In the case that a valid pairwise image similarity metric exists despite the
absence of an explicit vectored representation in some metric space, anchoring can
be used for ranking images [Natsev and Smith 2002]. Anchoring involves choosing
a set of representative vantage images, and using the similarity measure to map
an image into a vector. Suppose there exists a valid metric d(Fi, Fj) between each
image pair, and a chosen set of K vantage images {A1, ..., AK}. A vantage space
transformation V : F → RK then maps each image Fi in the database to a vectored
representation V (Fi) as follows:

V (Fi) =< d(Fi, A1), ..., d(Fi, AK) > . (6)

With the resultant vector embedding, and after similarly mapping a query image
in the same space, standard ranking methods may be applied for retrieval. When
images are represented as ensembles of feature vectors, or underlying distributions
of the low-level features, visual similarity can be ascertained by means of non-
parametric tests such as Wald-Wolfowitz [Theoharatos et al. 2005] and K-L
divergence [Do and Vetterli 2002]. When images are conceived as bags of feature
vectors corresponding to regions, multiple-instance learning (MIL) can be used for
similarity computation [Zhang et al. 2002].

A number of probabilistic frameworks for CBIR have been proposed in the
last few years [Jin and Hauptmann 2002; Vasconcelos and Lippman 2000b]. The
idea in [Vasconcelos and Lippman 2000b] is to integrate feature selection, feature
representation, and similarity measure into a combined Bayesian formulation, with
the objective of minimizing the probability of retrieval error. One problem with
this approach is the computational complexity involved in estimating probabilistic
similarity measures. The complexity is reduced in [Vasconcelos 2004] using VQ to
approximately model the probability distribution of the image features.

Discussion. As shown in Fig. 7, similarity computation can be performed with
feature vectors, region-based signatures, or summarized local features. The main
advantage of single vector representing an image is that algebraic and geometric
operations can be performed efficiently and in a principled fashion. However,
many such representations lack the necessary detail to represent complex image
semantics. For example, a picture of two cups on a plate by the window sill cannot
easily be mapped to a finite vector representation, simply because the space of
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component semantics is extremely large, in practice. Instead, if a concatenation
of region descriptors is used to represent a picture, it is more feasible to map
component semantics (e.g., cup, window) to the image regions. On the other hand,
extracting semantically coherent regions is in itself very challenging. Probabilistic
representations can potentially provide an alternative, allowing rich descriptions
with limited parametrization.

The early years (Sec. 1.1) showed us the benefits as well as the limitations of
feature vector representations. They also paved the way for the new breed of
region-based methods, which have now become more standard than ever before.
The idea of region-based image querying also gained prominence in the last few
years. Many new salient feature based spatial models were introduced, particularly
for recognizing objects within images, building up mostly on pre-2000 work. The
idea that image similarity is better characterized by geodesic distances over a non-
linear manifold embedded in the feature space has improved upon earlier notions of
a linear embedding of images. A number of systems have also been introduced for
public usage in the recent years. The future of image similarity measures lie in many
different avenues. The subjectivity in similarity needs to be incorporated more
rigorously into image similarity measures, to achieve what can be called personalized
image search. This can also potentially incorporate ideas beyond the semantics,
such as aesthetics and personal preferences in style and content. Extensions of the
idea of non-linear image manifolds to incorporate the whole spectrum of natural
images, and to allow adaptability for personalization, are avenues to look at. While
development of useful systems continues to remain critical, the ever-eluding problem
of reducing the semantic gap needs concerted attention.

3.3 Clustering and Classification

Over the years it has been observed that it is too ambitious to expect a single
similarity measure to produce robust perceptually meaningful ranking of images. As
an alternative, attempts have been made to augment the effort with learning-based
techniques. In table II, for both clustering and classification, we summarize the
augmentations to traditional image similarity based retrieval, the specific techniques
exploited, and the limitations respectively.

Image classification or categorization has often been treated as a pre-processing
step for speeding up image retrieval in large databases and improving accuracy, or
performing automatic image annotation. Similarly, in the absence of labeled data,
unsupervised clustering has often been found to be useful for retrieval speedup as
well as improved result visualization. While image clustering inherently depends on
a similarity measure, image categorization has been performed by varied methods
that neither require nor make use of similarity metrics. Image categorization is often
followed by a step of similarity measurement, restricted to those images in a large
database that belong to the same visual class as predicted for the query. In such
cases, the retrieval process is intertwined, whereby categorization and similarity
matching steps together form the retrieval process. Similar arguments hold for
clustering as well, due to which, in many cases, it is also a fundamental ‘early’ step
in image retrieval.

In the recent years, a considerable amount of innovations have been accomplished
for both clustering and classification, with tremendously diverse target applications.
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Augmentation
(User
Involvement)

Purpose Techniques Drawbacks

Clustering

(minimal)
Meaningful
result
visualization,
faster retrieval,
efficient storage

Side-information,
kernel mapping, k-
means, hierarchical,
metric learning [Chen
and Wang 2004]
[Hastie et al. 2001]
[Sebe et al. 2000] [Wu
et al. 2005]

Same low-level
features, poor
user adaptability

Classification

(requires
prior training data,
not interactive)

Pre-processing,
fast/accurate
retrieval,
automatic
organization

SVM, MIL, statistical
models, Bayesian
classifiers,
k-NN, trees [Zhang
et al. 2002] [Hastie
et al. 2001] [Panda
and Chang 2006]

Training
introduces bias,
many classes
unseen

Relevance Feedback

(significant,
interactive)

Capture
user and query
specific
semantics,
refine rank
accordingly

Feature re-weighting,
region weighting,
active learning,
memory/mental
retrieval,
boosting [Hastie et al.
2001] [Rui et al. 1998]
[Jaimes
et al. 2004] [Fang and
Geman 2005]

Same low level
features,
increased user
involvement

Table II. Comparison of three different learning techniques in their application to image retrieval.

It is not our intention here to provide a general review of these technologies. We
refer to [Hastie et al. 2001] for basic principles and a more comprehensive review.
We will restrict ourselves to new methods and applications appeared in image
retrieval and closely related topics.

Unsupervised clustering techniques are a natural fit when handling large,
unstructured image repositories such as the Web. Figure 8 summarizes clustering
techniques according to the principles of clustering and shows the applicability
of different methods when the mathematical representation of learning instances
varies. Again, we divide the instances to be clustered into three types: vectors, sets
of vectors, and stochastic processes (including distributions), which are consistent
with the categorization of image signatures discussed in the previous subsection.
From the perspective of application, clustering specifically for Web images has
received particular attention from the multimedia community, where meta-data is
often available for exploitation in addition to visual features [Wang et al. 2004; Gao
et al. 2005; Cai et al. 2004].

Clustering methods fall roughly into three types: pair-wise distance based,
optimization of an overall clustering quality measure, and statistical modeling.
The pair-wise distance based methods, e.g., linkage clustering and spectral graph
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partitioning, are of general applicability since the mathematical representation of
the instances becomes irrelevant. They are particularly appealing in image retrieval
because image signatures often have complex formulation. One disadvantage,
however, is the high computational cost because we need to compute an order
of n2 pair-wise distances, where n is the size of the data set. In [Zheng et al. 2004],
a locality preserving spectral clustering technique is employed for image clustering
in a way that unseen images can be placed into clusters more easily than with
traditional methods. In CBIR systems which retrieve images ranked by relevance
to the query image only, similarity information among the retrieved images is not
considered. In this respect, [Chen et al. 2005] proposes the use of a new spectral
clustering [Shi and Malik 2000] based approach to incorporate such information
into the retrieval process. In particular, clusters are dynamically generated, tailored
specifically to the query image each time, to improve retrieval performance.

Clustering based on the optimization of an overall measure of the clustering
quality is a fundamental approach explored since the early days of pattern
recognition. The immensely popular method, k-means clustering, is one example.
In k-means, the merit of a clustering result is measured by the sum of within-cluster
distances between every vector and its cluster centroid. This criterion ensures that
clusters generated are tight, a heuristic generally accepted. Here, if the number of
clusters is not specified, a simple method to determine this number is to gradually
increase it until the average distance between a vector and its cluster centroid
is below a given threshold. A more sophisticated way to determine the number
of clusters is the competitive agglomeration algorithm, with application to image
clustering [Saux and Boujemaa 2002]. In [Gordon et al. 2003], an unsupervised
clustering approach for images has been proposed using the Information Bottleneck
(IB) principle. The proposed method works for discrete (histograms) as well as
continuous (Gaussian mixture) image representations. Clustering based on the IB
principle [Tishby et al. 1999] can be summarized as follows: given two variables A

(which we try to compress/cluster) and B (which contains relevant information),
and their joint distribution Pr(A, B), we seek to perform soft partitioning of A by
a probabilistic mapping V , i.e., Pr(V |A), in a way that the mutual information
among A and V is minimized, while the relevant information among B and V is
maximized.

In k-means clustering, a centroid vector is computed for every cluster. This
centroid vector is chosen to minimize the sum of within-cluster distances. When
the Euclidean distance is used, it can easily be shown that the centroid ought to be
the average of the vectors in a cluster. For non-vector data, the determination
of the centroid can be challenging. The extension of k-means to instances
represented by sets of weighted vectors is made in [Li and Wang 2006b], namely,
the D2-clustering algorithm. The Mallows distance is used for region-based image
signatures represented as sets of weighted arbitrary vectors. When the weights
assigned to the vectors are probabilities, this representation is essentially a discrete
distribution. The centroid for every cluster is also a discrete distribution, for which
both the probabilities and the vectors in the support domain need to be solved.
Although D2-clustering share the same intrinsic criterion of clustering as k-means,
computationally, it is much more complex due to the complexity of the instances
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Fig. 8. Paradigms of clustering methods and their scopes of applications.

themselves. Large-scale linear programming is used for the optimization in D2-
clustering. Another algorithm for clustering sets of vectors is developed using the
IRM distance [Li 2005]. As compared with D2-clustering, this algorithm is similar
in principle and significantly faster, but it has weaker optimization properties.

Statistical modeling is another important paradigm of clustering. The general
idea is to treat every cluster as a pattern characterized by a relatively restrictive
distribution, and the overall data set is thus a mixture of these distributions. For
continuous vector data, the most used distribution of individual vectors is the
Gaussian distribution. By fitting a mixture of Gaussians to a data set, usually
by the EM algorithm [McLachlan and Peel 2000], we estimate the means and
covariance matrices of the Gaussian components, which correspond to the center
locations and shapes of clusters. One advantage of the mixture modeling approach
is that it not only provides a partition of data but also yields an estimated density,
which sometimes is itself desired [Do and Vetterli 2002]. The component in a
mixture model is not always a multivariate distribution. For instance, in [Li and
Wang 2004], the objects to be clustered are large areas of images, and every cluster
is characterized by a 2-D MHMM. As long as a probability measure can be set
up to describe a cluster, the mixture modeling approach applies seamlessly. When
it is difficult to form a probability measure in a certain space, a mixture model
can be established by clustering the data and mapping each cluster to a distance-
preserving Euclidean space [Li and Wang 2006b]. In this case, the mixture model is
not used to yield clustering but to better represent a data set and eventually result
in better classification.

Image categorization (classification) is advantageous when the image database
is well-specified, and labeled training samples are available. Domain-specific
collections such as medical image databases, remotely sensed imagery, and art
and cultural image databases are examples where categorization can be beneficial.
Classification is typically applied for either automatic annotation, or for organizing
unseen images into broad categories for the purpose of retrieval. Here we discuss
the latter. Classification methods can be divided into two major branches:
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discriminative modeling and generative modeling approaches. In discriminative
modeling, classification boundaries or posterior probabilities of classes are estimated
directly, e.g., SVM and decision trees. In generative modeling, the density of data
within each class is estimated and the Bayes formula is then used to compute
the posterior. Discriminative modeling approaches are more direct at optimizing
classification boundaries. On the other hand, the generative modeling approaches
are easier to incorporate prior knowledge and can be used more conveniently when
there are many classes.

Bayesian classification is used for the purpose of image retrieval in [Vailaya et al.
2001]. A textured/non-textured and graph/photograph classification is applied as
a pre-processing to image retrieval in [Wang et al. 2001]. Supervised classification
based on SVMs has been applied to images in [Goh et al. 2001]. A more recent
work describes an efficient method for processing multimedia queries in an SVM
based supervised learning framework [Panda and Chang 2006]. SVMs have also
been used in an MIL framework in [Chen and Wang 2004]. In the MIL framework,
a set of say l training images for learning an image category are conceived as labeled
bags {(B1, y1), ..., (Bl, yl)}, where each bag Bi is a collection of instances vij ∈ Rm.
Each instance vij corresponds to a segmented region j of a training image i, and
yi ∈ {−1, +1} indicating negative or positive example with respect to the category
in question. The key idea is to map these bags into a new feature space where
SVMs can be trained for eventual classification. Image classification based on a
generative model for the purpose of retrieval is explored in [Datta et al. 2007].

Discussion. Clustering is a hard problem with two unknowns, i.e., the number
of clusters, and the clusters themselves. In image retrieval, clustering helps in
visualization and retrieval efficiency. The usual problems of clustering based
applications appear here as well, whereby the clusters may not be representative
enough or accurate for visualization. While supervised classification is more
systematic, the availability of comprehensive training data is often scarce. In
particular, the veracity of “ground truth” in image data itself is a subjective
question.

Clustering and classification for the purpose of image retrieval received relatively
less attention in the early years. The spotlight was on feature extraction and
similarity computation. With the need for practical systems that scale well to
billions of images and millions of users, practical hacks such as pre-clustering and
fast classification have become critical. The popularization of new information-
theoretic clustering methods and classification methods such as SVM and Boosting,
have led to their extensive use in the image retrieval domain as well. New generative
models such as Latent Dirichlet Allocation (LDA) and 2D-MHMM have made
their way into image modeling and annotation. The future, in our opinion, lies
in supervised and unsupervised generative models for characterizing the various
facets of images and meta-data. There is often a lot of structured and unstructured
data available with the images that can be potentially exploited through joint
modeling, clustering, and classification. It is difficult to guess how much these
methods can help bridge the semantic or sensorial gap, but one thing is for sure:
system implementations can greatly benefit in various ways from the efficiency that
these learning-based methods can produce.

ACM Transactions on Computing Surveys, Vol. 40, No. 2, April 2008.



38 · R. Datta, D. Joshi, J. Li, and J. Z. Wang

3.4 Relevance Feedback based Search Paradigms

The approach to search has an undeniable tie with the underlying core technology
because it defines the goals and the means to achieve them. One way to look
at the types of search is the modality (e.g., query by keyword/keyphrase, by
example images, or a combination of both, as discussed in Sec. 2). Other ways
to characterize search is by the nature and level of human and system interaction
involved, and the user intent (Sec. 2). In this section, we concentrate on the latter
categorization, exploring the different search paradigms that affect how humans
interact and systems interpret/respond.

Relevance feedback (RF) is a query modification technique which attempts to
capture the user’s precise needs through iterative feedback and query refinement.
It can be thought of as an alternative search paradigm, complementing other
paradigms such as keyword based search. Ever since its inception in the CBIR
community [Rui et al. 1998], a great deal of interest has been generated. In
the absence of a reliable framework for modeling high-level image semantics and
subjectivity of perception, the user’s feedback provides a way to learn case-specific
query semantics. While a comprehensive review can be found in [Zhou and Huang
2003], here we present a short overview of recent work in RF, and the various ways
these advances can be categorized. We group them here based on the nature of
the advancements made, resulting in (possibly overlapping) sets of techniques that
have pushed the frontiers in a common domain, which include (a) learning-based
advancements, (b) feedback specification novelties, (c) user-driven methods, (d)
probabilistic methods, (e) region-based methods, and (f) other advancements.

Learning-based Advancements. Based on the user’s relevant feedback, learning
based approaches are typically used to appropriately modify the feature set or
the similarity measure. However, in practise, a user’s RF results in only a small
number of labeled images pertaining to each high-level concept. This, along with
other unique challenges pertinent to RF have generated interest in novel machine
learning techniques to solve the problem, such as one-class learning, active learning,
and manifold learning. To circumvent the problem of learning from small training
sets, a discriminant-EM algorithm is proposed to make use of unlabeled images in
the database for selecting more discriminating features [Wu et al. 2000b]. One the
other hand, it is often the case that the positive examples received due to feedback
are more consistently located in the feature space than negative examples, which
may consist of any irrelevant image. This leads to a natural formulation of one-
class SVM for learning relevant regions in the feature space from feedback [Chen
et al. 2002]. Let {v1, ...,vn}, vi ∈ Rd be a set of n positive training samples. The
idea is to find a mapping Φ(vi) such that most samples are tightly contained in
a hyper-sphere of radius R in the mapped space subject to regularization. The
primal form of the objective function is thus given by

min
R,e,c

(

R2+
1

kn

∑

i

ei

)

subject to ||Φ(vi)−c||2 ≤ R2+ei, ei ≥ 0, i ∈ {1, ..., n}. (7)

Here, c is the hyper-sphere center in the mapped space, and k ∈ [0, 1] is a constant
that controls the trade-off between radius of the sphere and number of samples it
can hold. Among other techniques, a principled approach to optimal learning from
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RF is explored in [Rui and Huang 2000]. We can also view RF as an active learning
process, where the learner chooses an appropriate subset for feedback from the
user in each round based on her previous rounds of feedback, instead of choosing a
random subset. Active learning using SVMs was introduced into RF in [Tong and
Chang 2001]. Extensions to active learning have also been proposed [Goh et al.
2004; He et al. 2004b]. In [He et al. 2004], it is conceived that image features reside
on a manifold embedded in the Euclidean feature space. Under this assumption,
relevant images to the query provided by RF, along with their nearest neighbors,
are used to construct a sub-graph over the images. The geodesic distances, i.e., the
shortest path on the graph between pairs of vertices representing image pairs, are
then used to rank images for retrieval.

Feedback Specification Novelties. Traditionally, RF has engaged the user in
multiple rounds of feedback, each round consisting of one set each of positive
and negative examples in relation to the intended query. However, recent work
has introduce other paradigms of query specification that have been found to
be either more intuitive, or more effective. Feedback based directly on image
semantics characterized by manually defined image labels, and appropriately termed
semantic feedback, is proposed in [Yang et al. 2005b]. A well-known issue with
feedback solicitation is that multiple rounds of feedback test the user’s patience.
To circumvent this problem, user logs on earlier feedback can be used in query
refinement, thus reducing the user engagement in RF, as shown in [Hoi and Lyu
2004b]. Innovation has also come in the form of the nature by which feedback is
specified by the user. In [Kim and Chung 2003], the notion of a multi-point query,
where multiple image examples may be used as query and in intermediate RF step,
is introduced. At each round of the RF, clusters of images found relevant based on
the previous feedback step are computed, whose representatives form the input for
the next round of RF. It is well known that there is generally an asymmetry between
the sets of positive and negative image examples presented by the user. In order
to address this asymmetry during RF when treating it as a two-class problem, a
biased discriminant analysis based approach has been proposed in [Zhou and Huang
2001b]. While most algorithms treat RF as a two-class problem, it is often intuitive
to consider multiple groups of images as relevant or irrelevant [Hoi and Lyu 2004a;
Nakazato et al. 2003; Zhou and Huang 2001a]. For example, a user looking for cars
can highlight groups of blue and red cars as relevant, since it may not be possible to
represent the concept car uniformly in a visual feature space. Another novelty in
feedback specification is the use of multi-level relevance scores, to indicate varying
degrees of relevance [Wu et al. 2004].

User-driven Methods. While much of the past attempt at RF has focused on
the machine’s ability to learn from the user feedback, the user’s point of view
in providing the feedback has largely been taken for granted. Of late, there
has been some interest in design RF paradigms aimed to help users. In some
new developments, there have been attempts at tailoring the search experience by
providing the user with cues and hints for more specific query formulation [Jaimes
et al. 2004; Nagamine et al. 2004]. While the approach may still involve RF from
the system point of view, it is argued that the human memory can benefit from
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cues provided, for better query formulation. A similar search paradigm proposed
in [Fang and Geman 2005; Fang et al. 2005b] models successive user response using
a Bayesian, information-theoretic framework. The goal is to ‘learn’ a distribution
over the image database representing the mental image of the user and use this
distribution for retrieval. Another well-known issue with human being in the loop
is that multiple rounds of feedback are often bothersome for the user, which have
been alleviated in [Hoi and Lyu 2004b] by making use of logs that contain earlier
feedback given by that user. Recently, a manifold learning technique to capture
user preference over a semantic manifold from RF is proposed in [Lin et al. 2005].

Probabilistic Methods. Probabilistic models, while popular in early years of
image retrieval for tackling the basic problem, have found increasing patronage
for performing RF in the recent years. Probabilistic approaches have been taken
in [Cox et al. 2000; Su et al. 2003; Vasconcelos and Lippman 2000a]. In [Cox et al.
2000], the PicHunter system is proposed, where uncertainty about the user’s goal
is represented by a distribution over the potential goals, following which the Bayes’
rule helps select the target image. In [Su et al. 2003], RF is incorporated using a
Bayesian classifier based re-ranking of the images after each feedback step. The
main assumption used here is that the features of the positive examples, which
potentially reside in the same semantic class, are all generated by an underlying
Gaussian density. The RF approach in [Vasconcelos and Lippman 2000a] is based
on the intuition that the system’s belief at a particular time about the user’s intent
is a prior, while the following user feedback is new information obtained. Together,
they help compute the new belief about the intent, using the Bayes’ rule, which in
turn becomes the prior for the next feedback round.

Region-based Methods. With increased popularity of region-based image
retrieval [Carson et al. 2002; Wang et al. 2001; Ko and Byun 2002], attempts
have been made to incorporate the region factor into RF. In [Jing et al. 2004a], two
different RF scenarios are considered, and retrieval is tailored to support each of
them through query point modification and SVM-based classification respectively.
In this feedback process, the region importance (RI) for each segmented region is
learned, for successively better retrieval. This core idea, that of integrating region-
based retrieval with relevance feedback, has been further detailed for the two RF
scenarios in [Jing et al. 2004b].

Other Advancements. Besides the set of methods grouped together, there have
been a number of isolated advancements covering various aspects of RF. For
example, methods for performing RF using visual as well as textual features (meta-
data) in unified frameworks have been reported in [Lu et al. 2000; Zhou and
Huang 2002; Amores et al. 2004; Jing et al. 2005]. A tree-structured SOM has
been used as an underlying technique for RF [Laaksonen et al. 2001] in a CBIR
system [Laaksonen et al. 2002]. A well-known RF problem with query specification
is that after each round of user interaction, the top query results need to be
recomputed following some modification. A way to speed up this nearest-neighbor
search is proposed in [Wu and Manjunath 2001]. The use of RF for helping capture
the relationship between low-level features and high-level semantics, a fundamental
problem in image retrieval, has been attempted using logs of user feedbacks, in [Han
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et al. 2005].

Discussion. Relevance feedback provides a compromise between a fully
automated, unsupervised system and one based on the subjective user needs. While
query refinement is an attractive proposition when it comes to a very diverse
user base, there is also the question of how well the feedbacks can be utilized for
refinement. Whereas a user would prefer shorter feedback sessions, there is an issue
as to how much feedback is enough for the system to learn the user needs. One issue
which has been largely ignored in past RF research is that the user’s needs might
evolve over the feedback steps, making the assumption of a fixed target weaker.
New approaches such as [Jaimes et al. 2004; Fang and Geman 2005] have started
incorporating this aspect of the user’s mind in the RF process.

Relevance feedback was introduced into image retrieval at the fag end of the
previous decade (Sec. 1.1). Today, it is a more mature field, spanning many different
sub-topics and addressing a number of practical concerns keeping in mind the user
in the loop. While this has happened, one issue is that we do not see many real-
world implementations of the relevance feedback technology either in the image
or in the text retrieval domain. This is potentially due to the feedback process
that the users must go through, that tests the user’s patience. New ideas such
as memory retrieval, that actually provide the user with benefits in the feedback
process, may possibly be one answer to popularizing RF. The future of this field
clearly lies in its practical applicability, focusing on how the user can be made to
go through least effort to convey the desired semantics. The breaking points of the
utility derived out of this process, at which the user runs out of patience and at
which she is satisfied with the response, must be studied for better system design.

3.5 Multimodal Fusion and Retrieval

Media relevant to the broad area of multimedia retrieval and annotation includes,
but is not limited to, images, text, free-text (unstructured, e.g., paragraphs),
graphics, video, and any conceivable combination of them. Thus far, we have
encountered a multitude of techniques for modeling and retrieval of images, and
text associated with those images. While not covered here, the reader may be
aware of equally broad spectrums of techniques for text, video, music, and speech
retrieval. In many cases, these independent, media-specific methods do not suffice
to satiate the needs of users who are seeking what they can best describe only by a
combination of media. Therein lies the need for multimodal fusion as a technique
for satisfying such user queries. We consider this as one of the ‘core’ techniques
because in principal, it is distinct from any of the methods we have discussed
so far. Even with very good retrieval algorithms available independently for two
different media, effectively combining them for multimodal retrieval may be far
from trivial. Research in fusion learning for multimodal queries therefore attempts
to learn optimal combination strategies and models.

Fortunately (for researchers) or unfortunately (for users), precious little
multimodal fusion has been attempted in the context of image retrieval and
annotation. This opens avenues for exploring novel user interfaces, querying models,
and result visualization techniques pertinent to image retrieval, in combination with
other media. Having said that, we must point out that multimodal fusion has indeed
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been attempted in the more obvious problem settings within video retrieval. With
this field as an example, we briefly expose readers to multimodal fusion, in the hope
that it motivates image retrieval research that takes advantage of these techniques.
We believe that the need for mutimodal retrieval in relation to images will soon
grow in stature.

When video data comes with closed-captions and/or associated audio track, these
can prove to be useful meta-data for retrieval as well. One of the key problems
faced in video retrieval research is therefore combination or fusion of responses
from these multiple modalities. It has been observed and reported that multimodal
fusion almost always enhances retrieval performance for video [Hauptmann and
Christel 2004]. Usually, fusion involves learning some kind of combination rules
across multiple decision streams (ranked lists or classifier response) using a certain
amount of data with ground truth as validation set. This is also referred to as
late fusion. Alternative approaches to fusion involve classifier re-training. In [Wu
et al. 2004], multimodal fusion has been treated as a two-step problem. The first
step involves finding statistically independent modalities, followed by super-kernel
fusion to determine their optimal combination. Fusion approaches have been found
to be beneficial for important video applications such as detection of documentary
scene changes [Velivelli et al. 2004] and story segmentation [Zhai et al. 2005]. Fusion
learning has been found to outperform naive fusion approaches as well as the oracle
(best performer) for TRECVID 2005 query retrieval task. [Joshi et al. 2007].

Discussion. Fusion learning is an off-line process while fusion application at
real-time is computationally inexpensive. Hence multimodal fusion is an excellent
method to boost retrieval performance at real-time. However, special care needs
to be taken to ensure that the fusion rules do not overfit the validation set used
for learning them. Usually, data resampling techniques such as bagging are found
to help avoid overfitting to some extent. Fusion techniques can also be used to
leverage classifiers built for numerous concepts with possible semantic coherence,
whether the underlying data is image or video.

Fusion for image retrieval is a fairly novel area, with very little achieved in the
early ages. The ideas of fusion go hand in hand with practical, viable, system
development, which is critical for the future of image retrieval research. We live
in a truly multi-media world, and we as humans always take the benefit of each
media for sensory interpretation (see, hear, smell, taste, touch). There is no reason
why advantage of all available media (images, video, audio, text) should not be
taken for building useful systems. The future lies in harnessing as many channels
of information as possible, and fusing them in smart, practical ways to solve real
problems. Principled approaches to fusion, particularly probabilistic ones, can also
help provide performance guarantees, which in turn convert to quality standards
for public-domain systems.

4. CBIR OFFSHOOTS: PROBLEMS AND APPLICATIONS OF THE NEW AGE

Smeulders et al. [Smeulders et al. 2000] surveyed CBIR at the end of what they
referred to as early years. The field was presented as a natural successor to certain
existing disciplines such as computer vision, information retrieval and machine
learning. However, in the last few years, CBIR has evolved and emerged as a mature
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research effort in its own right. A significant section of the research community is
now shifting attention to certain problems which are peripheral, yet of immense
significance to image retrieval systems, directly or indirectly. Moreover, newly
discovered problems are being solved with tools that were intended for image
retrieval. In this section, we discuss some such directions. Note that much of
these peripheral ideas are in their infancy, and have likelihood of breaking into
adulthood if sufficiently nurtured by the relevant research communities. Owing to
the exploratory nature of the current approaches to these problems, a discussion on
where these sub-fields are heading and what opportunities lie ahead in the future
for innovation is necessary.

4.1 Words and Pictures

While at the problem of understanding picture content, it was soon learned that
in principle, associating those pictures with textual descriptions was only one
step ahead. This led to the formulation of a new but closely associated problem
called automatic image annotation, often referred to as auto-annotation or linguistic
indexing. The primary purpose of a practical content-based image retrieval system
is to discover images pertaining to a given concept in the absence of reliable
meta-data. All attempts at automated concept discovery, annotation, or linguistic
indexing essentially adhere to that objective. Annotation can facilitate image search
through the use of text. If the resultant automated mapping between images
and words can be trusted, text-based image searching can be semantically more
meaningful than search in the absence of any text. Here we discuss two different
schools of thought which have been used to address this problem.

4.1.1 Joint Word-Picture Modeling Approach. Many of the approaches to image
annotation have been inspired by research in the text domain. Ideas from text
modeling have been successfully imported to jointly model textual and visual data.
In [Duygulu et al. 2002], the problem of annotation is treated as a translation from a
set of image segments to a set of words, in a way analogous to linguistic translation.
A multi-modal extension of a well known hierarchical text model is proposed. Each
word, describing a picture, is believed to have been generated by a node in a
hierarchical concept tree. This assumption is coherent with the hierarchical model
for nouns and verbs adopted by Wordnet [Miller 1995]. This translation model
is extended [Jin et al. 2005] to eliminate uncorrelated words from among those
generated, making used of the Wordnet ontology. In [Blei and Jordan 2003], the
Latent Dirichlet Allocation (LDA) model is proposed for modeling associations
between words and pictures.

In all such approaches, images are typically represented by properties of each of
their segments or blobs. Once all the pictures have been segmented, quantization
can be used to obtain a finite vocabulary of blobs. Thus pictures under such models
are treated as bags of words and blobs, each of which are assumed to have been
generated by aspects. Aspects are hidden variables which spawn a multivariate
distribution over blobs and a multinomial distribution over words. Once the joint
word-blob probabilities have been learned, the annotation problem for a given
image is reduced to a likelihood problem relating blobs and words. The spatial
relationships between blobs is not directly captured by the model. However, this
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is expected to be implicitly modeled in the generative distribution. Most of these
techniques rely on precise segmentation, which is still challenging. Despite the
limitations, such modeling approaches remain popular.

Cross-Media relevance models models have been used for image annotation
in [Jeon et al. 2003; Lavrenko et al. 2003]. A closely related approach involves
coherent language models, which exploits word-to-word correlations to strengthen
annotation decisions [Jin et al. 2004]. All the annotation strategies discussed so
far model visual and textual features separately prior to association. A departure
from this trend is seen in [Monay and Gatica-Perez 2003], where probabilistic latent
semantic analysis (PLSA) is used on uniform vectored data consisting of both visual
features and textual annotations. This model is extended to a nonlinear latent
semantic analysis for image annotation in [Liu and Tang 2005].

4.1.2 Supervised Categorization Approach. An alternative approach is to treat
image annotation as a supervised categorization problem. Concept detection
through supervised classification, involving simple concepts such as city, landscape,
and sunset is achieved with high accuracy in [Vailaya et al. 2001]. More recently,
image annotation using a novel structure-composition model, and a WordNet-based
word saliency measure has been proposed in [Datta et al. 2007]. One of the earliest
attempts at image annotation can be found in [Li and Wang 2003]. The system,
ALIP (Automatic Linguistic Indexing of Pictures) uses a 2-D multi-resolution
hidden Markov models based approach to capture inter-scale and intra-scale spatial
dependencies of image features of given semantic categories. Models for individual
categories are learned independently and stored. The annotation step involves
calculating likelihoods of the query image given each learned model/category, and
choosing annotations with bias toward statistically salient words corresponding to
the most likely categories. A real time image annotation system ALIPR (Automatic
Linguistic Indexing of Pictures - Real Time) has been recently proposed in [Li
and Wang 2006a]. ALIPR inherits its high level learning architecture from ALIP.
However, the modeling approach is simpler, hence leading to real-time computations
of statistical likelihoods. Being the first real time image annotation engine, ALIPR
has generated considerable interest for real-world applications [Alipr 2006].

Learning concepts from user’s feedback in a dynamically changing image database
using Gaussian mixture models is discussed in [Dong and Bhanu 2003]. An approach
to soft annotation, using Bayes Point machines, to give images a confidence level
for each trained semantic label is explored in [Chang et al. 2003]. This vector of
confidence labels can be exploited to rank relevant images in case of a keyword
search. A confidence based dynamic ensemble of SVM classifiers is used for
annotation in [Li et al. 2003]. Multiple instance learning based approaches have
been proposed for semantic categorization of images [Chen and Wang 2004] and to
learn the correspondence between image regions and keywords [Yang et al. 2005a].
Concept learning based on a fusion of complementary classification techniques with
limited training samples is proposed in [Natsev et al. 2005]. Annotating images in
dynamic settings (e.g., Yahoo! Flickr), where images and publicly generated tags
arrive into a system asynchronously over time, has been explored using a meta-
learning framework in [Datta et al. 2007].

Discussion: Automated annotation is widely recognized as an extremely difficult
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question. We humans segment objects better than machines, having learned to
associate over a long period of time, through multiple viewpoints, and literally
through a “streaming video” at all times, which partly accounts for our natural
segmentation capability. The association of words and blobs becomes truly
meaningful only when blobs isolate objects well. Moreover, how exactly our brain
does this association is unclear. While Biology tries to answer this fundamental
question, researchers in information retrieval tend to take a pragmatic stand in that
they aim to build systems of practical significance. Ultimately, the desire is to be
able to use keyword queries for all images regardless of any manual annotations that
they may have. To this end, a recent attempt at bridging the retrieval-annotation
gap has been made [Datta et al. 2007].

4.2 Stories and Pictures

While the association between words and pictures is fairly well studied, deciding on
an appropriate picture set for a given story is a relatively new problem. Attempts
at tackling this problem are made in [Barnard et al. 2003; Joshi et al. 2006]. By a
story, we refer to a descriptive piece of text suitable for illustration in a practical
sense. Possible applications of such systems could be automatic illustration of news
articles at news agencies, or educational story illustration in textbooks.

The problem, however, poses several challenges. (1) People might attach different
levels of importance to ideas, concepts, and places discussed in a story. This
subjectivity is hard to quantify and may be a result of past experiences, dislikes,
and prejudices. (2) Any illustration system is constrained by the image repository
from which the system selects pictures. An automated system may misperform
if relevant pictures are not present or poorly represented in the repository. (3)
Certain concepts might be over-represented in the repository. Choosing a few
representative pictures would then require a ranking scheme to discriminate among
relevant pictures by some means. It is not easily perceived what this discrimination
should be based on.

A practical system which performs this task would require some way of identifying
relevant keywords in a story and using a ranking scheme to determine representative
pictures. In [Barnard et al. 2003], the idea of auto-illustration is introduced as
an inverse problem of auto-annotation. In [Joshi et al. 2006], image importance
with respect to a story is quantified by the use of mutual reinforcement principle.
Given an annotated image database, pairwise reinforcement is based on both visual
similarity as well as Wordnet-based lexical similarity. This importance criteria is
then used for choosing elite pictures to illustrate the story in question.

Discussion: Evidently, work in this direction has been very limited, even though
the problem is one of practical importance. One reason for this could be that goals
of auto-illustration or story-picturing are not as clearly defined as CBIR or image
annotation. This brings us to the question of evaluation - how do we differentiate
good illustrations from poor ones? The approach taken in [Joshi et al. 2006] is
that of user studies to determine agreement of human preference and automatic
selection of pictures. Other better approaches to evaluation may be possible. One
thing is clear though - a concrete formulation to the problem and an acceptable
evaluation strategy for solutions are essentially two sides of the same coin.
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4.3 Aesthetics and Pictures

Thus far, the focus of CBIR has been on semantics. There have been numerous
discussion on the semantic gap. Imagine a situation where this gap has been
bridged. This would mean, for example, finding all ‘dog’ pictures in response to
a ‘dog’ query. In text-based search engines, a query containing ‘dog’ will yield
millions of Web pages. The smart search engine will then try to analyze the query
to rank the best matches higher. The rationale for doing so is that of predicting
what is most desirable based on the query. What, in CBIR, is analogous to such
ranking, given that a large subset of the images are determined to be semantically
relevant? This question has been recently addressed in [Datta et al. 2006].

We conjecture that one way to distinguish among images of similar semantics
is by their quality. Quality can be perceived at two levels, one involving concrete
image parameters like size, aspect ratio and color depth, and the other involving
higher-level perception, which we denote as aesthetics. While it is trivial to rank
images based on the former, the differences may not be significant enough to use
as ranking criteria. On the other hand, aesthetics is the kind of emotions a picture
arouses in people. Given this vague definition, and the subjectivity associated
with emotion, it is open to dispute how to aesthetically distinguish pictures. As
discussed below, current attempts to model aesthetics have had limited success,
and the limitation arises primarily from the inability to extract information related
to perceived emotions from pixel information. In a sense, this is analogous to
the concept of semantic gap [Smeulders et al. 2000] in the domain of aesthetics
inference, and probably a wider one at this moment. To formalize this analogy, we
propose to define what we call the aesthetics gap, as follows:

The aesthetics gap is the lack of coincidence between the information
that one can extract from low-level visual data (i.e., pixels in digital
images) and the interpretation of emotions that the visual data may
arouse in a particular user in a given situation.

Despite the challenge in dealing with this gap, in our opinion, modeling aesthetics
of images is an important open problem that will only get more prominent as time
passes. Given a feasible model, a new dimension to image understanding will be
added, benefiting CBIR and allied communities.

Discussion: The question remains how this problem can be approached. Given
the high subjectivity of aesthetics, it may help to re-define the goal as a model
that can characterize aesthetics in general. One way to model aesthetics in
general is to study photo rating trends in public photo-sharing communities such
as [Photo.Net 1993], an approach that has been followed in [Datta et al. 2006]. The
site supports peer-rating of photographs based on aesthetics. This has generated a
large database of ratings corresponding to the over one million photographs hosted.
A discussion on the significance of these ratings, and aesthetic quality in general,
can be found in [Photo.Net(RatingSystem) 1993]. Another attempt [Ke et al. 2006]
at distinguishing high-quality images from low-quality ones has found similar levels
of success with data obtained from yet another peer-rated photo contest oriented
Website [DPChallenge.com 2002]. The idea of learning to assess visual aesthetics
from such training data has been further pursued for the purpose of selecting high-
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quality pictures and eliminating low-quality ones from image collections, in [Datta
et al. 2007]. One caveat: Uncontrolled publicly collected data are naturally inclined
to noise. When drawing conclusions about the data, this assumption must be kept
in mind. Alternatively, ways to get around the noisy portions must be devised.

4.4 Art, Culture, and Pictures

Art and culture have always played an important role in human lives. Over the
centuries, hundreds of museums and art galleries have preserved our diverse cultural
heritage and served as important sources of education and learning. However, of
late, concerns are being expressed to archive all ancient historical and cultural
materials in digital form for posterity [Chen et al. 2005]. This is particularly
important for two reasons:

— Computers have become and will remain the primary medium for learning and
education in the years to come. Hence, digital representation of cultural artifacts
and pictures is bound to increase their popularity. Moreover, accessing digital
archives is effortless and can practically be done from any corner of the world.

— As opposed to digital media, cultural artifacts and old paintings are subject to
wear with time, prone to disasters and vandalism [Chen et al. 2005].

In such a scenario, a key application of CBIR technology is to help preserve
and analyze our history, in digital media form. Growing research interest in the
field is evident from the fact that in the year 2004, IEEE Transactions on Image
Processing organized a special issue to discuss state-of-the-art in image processing
applications for cultural heritage [IEEE(TIP) 2004]. The main focus of this issue
was on modeling, retrieval, and authentication of cultural heritage images. Besides
facilitating search and retrieval in large art/cultural image databases, statistical
learning techniques have also been proposed to capture properties of brush strokes
of painters [Li and Wang 2004; Melzer et al. 1998; Sablatnig et al. 1998; Lyu
et al. 2004; Berezhnoy et al. 2005]. Such techniques can potentially be used to
study similarities and differences among artists across countries, cultures, and time.
Comprehensive surveys on latest advances in art imaging research can be found
in [Martinez et al. 2002; Maitre et al. 2001; Barni et al. 2005; Chen et al. 2005].

Discussion: While it is tough to say that automatic image analysis techniques can
match the experience of art connoisseurs, they can definitely be used to complement
human expertise. Statistical methods can sometime capture subtle characteristics
of art which even a human eye can miss [Lyu et al. 2004].

4.5 Web and Pictures

The Web connects systems to systems, systems to people, and people with other
people. Hosting a system on the Web is significantly different from hosting it in a
private network or a single machine. What makes things different is that we can
no longer make assumptions about the users, their understanding of the system,
their way of interacting, their contributions to the system, and their expectations
from the system. Moreover, Web-based systems muster support of the masses only
as long as they are useful to them. Without support, there is no meaning to such
a system. This makes the creation of Web-based CBIR systems more challenging
than the core questions of CBIR, aggravated further by the fact that multimedia
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searching is typically more complex than generic searching [Jansen et al. 2003].
Thankfully, the problem has recently received a lot of attention from the community,
enough to have a survey dedicated specifically to it [Kherfi et al. 2004].

While we cannot make assumptions about generic Web-based CBIR systems,
those designed keeping in mind specific communities can be done with some
assumptions. Web-based CBIR services for copyright protection, tourism,
entertainment, crime prevention, research, and education are some domain-specific
possibilities, as reported in [Kherfi et al. 2004]. One of the key tasks of Web
image retrieval is crawling images. A smart Web-crawler that attempts to associate
captions with images to extract useful meta-data in the crawling process is reported
in [Rowe 2002].

There have been many algorithms proposed for image search based on
surrounding text, including those implemented in Google and Yahoo! image
search. Here we discuss work that exploits image content in part or full for
retrieval. One of the earlier systems for Web-based CBIR, iFind, incorporating
relevance feedback was proposed in [Zhang et al. 2000]. More recently, Cortina, a
combined content and meta-data based image search engine is made public [Quack
et al. 2004]. Other approaches to Web-based image retrieval include mutual
reinforcement [Wang et al. 2004], bootstrapping for annotation propagation [Feng
et al. 2004], and nonparametric density estimation with application to an art image
collection [Smolka et al. 2004]. Image grouping methods such as unsupervised
clustering are extremely critical for heterogeneous repositories such as the Web (as
discussed in Sec. 3.3), and this is explored in [Wang et al. 2004; Gao et al. 2005; Cai
et al. 2004; Jing et al. 2006]. More recently, rank fusion for Web image retrieval from
multiple online picture forums has been proposed [Zhang et al. 2006]. Innovative
interface designs for Web image search have been explored in [Yee et al. 2003; Li
et al. 2004]. The SIMPLIcity system [Wang et al. 2001] has been incorporated
into popular Websites such as Airliners.net [Airliners.Net 2005], Global Memory
Net [GlobalMemoryNet 2006], and Terragalleria [Terragalleria 2001].

Discussion: The impact of CBIR can be best experienced through a Web-based
image search service that gains popularity to the proportion of its text-based
counterparts. Unfortunately, at the time of writing this survey, this goal is elusive.
Having said that, the significant progress in CBIR for the Web raises hopes for such
systems in the coming years.

4.6 Security and Pictures

The interactions between CBIR and information security had been non-existent,
until recently, when new perspectives emerged to strengthen the ties. Two such
perspectives are human interactive proofs (HIPs), and the enforcement of copyright
protection.

While on one hand, we are constantly pushing the frontiers of science to design
intelligent systems that can imitate human capabilities, we cannot deny the inherent
security risks associated with extremely smart computer programs. One such risk
is when Websites or public servers are attacked by malicious programs that request
service on massive scale. Programs can be written to automatically consume large
amount of Web resources or bias results in on-line voting. The HIPs, also known
as CAPTCHAs, are a savior in these situations. These are interfaces designed to
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differentiate between humans and automated programs, based on the response to
posed questions. The most common CAPTCHAs use distorted text, as seen in
public Websites such as Yahoo!, MSN, and PayPal. Recently, a number of OCR-
based techniques have been proposed to break text-based CAPTCHAs [Mori and
Malik 2003]. This has paved the way for natural image based CAPTCHAs, owing
to the fact that CBIR is generally considered a much more difficult problem than
OCR. The first formalization of image based CAPTCHAs is found in [Chew and
Tygar 2004], where pictures chosen at random are displayed and questions asked,
e.g., what does the picture contain, which picture is the odd one out conceptually,
etc. A problem with this approach is the possibility that CBIR and concept learning
techniques such as [Barnard et al. 2003; Li and Wang 2003] can be used to attack
image based CAPTCHAs. This will eventually lead to the same problem faced
by text-based CAPTCHAs. To alleviate this problem, a CBIR system is used
as a validation technique in order to distort images before being presented to
users [Datta et al. 2005]. The distortions are chosen such that probabilistically,
CBIR systems find it difficult to grasp the image concepts and hence are unable to
simulate human response.

The second issue is image copy protection and forgery detection. Photographs
taken by one person and posted online are often copied and passed on as someone
else’s artistry. Logos and Trademarks of well-established organizations have often
been duplicated by lesser-known firms, with or without minor modification, and
with a clear intention to mislead patrons. While plagiarism of this nature is
a world-wide phenomenon today, protection of the relevant copyrights is a very
challenging task. The use of CBIR to help identify and possible enforce these
copyrights is a relatively new field of study. In the case of exact copies, detecting
them is trivial: extraction and comparison of a simple file signature is sufficient.
However, when changes to the pictures or logos are made, image similarity measures
such as those employed in CBIR are necessary. The changes could be one or
more of down-sampling, lowering of color-depth, warping, shearing, cropping, de-
colorizing, palette shifting, changing contrast/brightness, image stamping, etc. The
problem then becomes one of near-duplicate detection, in which case the similarity
measures must be robust to these changes. Interest point detectors for generating
localized image descriptors robust to such changes have been used for near-duplicate
detection in [Ke et al. 2004]. A part-based image similarity measure that is derived
from the stochastic matching of Attributed Relational Graphs is exploited for near-
duplicate detection in [Zhang and Chang 2004].

Discussion: Much of security research is on anticipation of possible attack
strategies. While image-based CAPTCHA systems anticipate the use of CBIR
for attacks, near-duplicate detectors anticipate possible image distortion methods a
copyright infringer may employ. Whether CBIR proves useful to security is yet to
be seen, but dabbling with problems of this nature certainly helps CBIR grow as a
field. For example, as noted in [Zhang and Chang 2004], near-duplicate detection
also finds application in weaving news stories across diverse video sources for news
summarization. The generation of new ideas as offshoots, or in the process of
solving other problems is the very essence of this section.
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4.7 Machine Learning and Pictures

While more often than not machine learning has been used to help solve the
fundamental problem of image retrieval, there are instances where new and generic
machine learning and data mining techniques have been developed in attempts
to serve this purpose. The correspondence-LDA [Blei and Jordan 2003] model,
proposed for joint word-image modeling, has since been applied to problems in
bioinformatics [Zheng et al. 2006]. Probabilistic graphical models such as 2-
D multiresolution hidden Markov models [Li and Wang 2003] and cross-media
relevance models [Jeon et al. 2003], though primarily used for image annotation
applications, are contributions to machine learning research. Similarly, multiple
instance learning research has benefited by work on image categorization [Chen
and Wang 2004]. Active learning using SVMs were proposed for relevance
feedback [Tong and Chang 2001] and helped popularize active learning in other
domains as well.

Automatic learning of a similarity metric or distance from ground-truth data
has been explored for various task such as clustering and classification. One
way to achieve this is to learn a generalized Mahalanobis distance metric, such
as those general-purpose methods proposed in [Xing et al. 2003; Bar-hillel et al.
2005]. On the other hand, kernel-based learning of image similarity, using context
information, with applications to image clustering was explored in [Wu et al. 2005].
This could potentially be used for more generic cases of metric learning given side-
information. In the use of a Mahalanobis metric for distance computation, an
implicit assumption is that the underlying data distribution is Gaussian, which
may not always be appropriate. An important work uses a principled approach
to determine appropriate similarity metrics based on the nature of underlying
distributions, which is determined using ground-truth data [Sebe et al. 2000]. In a
subsequent work, a boosting approach to learning a boosted distance measure that
is analogous to the weighted Euclidean norm, has been applied to stereo matching
and video motion tracking [Yu et al. 2006] and classification/recognition tasks on
popular datasets [Amores et al. 2006].

Discussion: When it comes to recognizing pictures, even humans undergo a
learning process. So it is not surprising to see the synergy between machine learning
and image retrieval, when it comes to training computers to do the same. In fact,
the challenges associated with learning from images have actually helped push the
scientific frontier in machine learning research in its own right.

4.8 Epilogue

While Sections 2 and 3 discussed techniques and real-world aspects of CBIR, in this
section, we have described applications that employ those techniques. In Table III
we present a qualitative requirement analysis of the various applications, involving
a mapping from the aspects (techniques and features) to these applications. The
entries are intended to be interpreted in the following manner:

—Essential - Aspects that are required in all scenarios.

—Optional - Aspects that may/may not be critical depending on the specific goals.

—Desirable - Aspects that are likely to add value to the application in all cases.
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Applications
& Offshoots

Similarity
measure

User
feedback

Machine
learning

Visualization Scalability

Automatic

annotation

optional optional essential optional optional

Story

illustration

essential desirable essential desirable desirable

Image-based

CAPTCHA

essential essential optional essential essential

Copy

detection

essential desirable optional desirable essential

Visual

aesthetics

optional desirable essential desirable optional

Web image

search

essential optional optional essential essential

Art image

analysis

optional desirable essential desirable desirable

Table III. A qualitative requirement analysis of various CBIR offshoots and applications.

The distinction between classifying an aspect as ‘optional’ or ‘desirable’ can be
understood by the following examples. Scalability for automatic annotation is
termed ‘optional’ here because such an application can serve two purposes: (1)
to be able to quickly tag a large number of pictures in a short time, and (2) to be
able to produce accurate and consistent tags to pictures or to refine existing noisy
tags, perhaps as an off-line process. Because of the compromise made in these two
goals, their scalability requirement may be different. As a second example, consider
that in art image analysis, having an expert user to be involved in every step of the
analysis is highly ‘desirable’, unlike in large scale image annotation, where a user
validation at each step may be infeasible.

5. EVALUATION STRATEGIES

Whenever there are multiple competing products in the market, customers typically
resort to statistics, reviews, and public opinions in order to make a well-informed
selection. A direct analogy can be drawn for CBIR. With the numerous competing
techniques and systems proposed and in operation, evaluation becomes a critical
issue. Even from the point of view of researchers, a benchmark for evaluation of
CBIR would allow them choose from many different proposed ideas and to test new
approaches against older ones. For any information retrieval system, a strategy for
evaluation involves determining the following:

—An appropriate dataset for evaluation: The dataset should be general enough to
cover a large range of semantics from a human point of view. Also, the dataset
should be large enough for the evaluation to be statistically significant.

—A ground truth for relevance for the problem at hand: Ground truth is a very
subjective issue, especially for multimedia. Usually, people associate a given
picture with a wide range of high level semantics.

—An appropriate metric and criteria for evaluating competing approaches: The
evaluation criteria should try to model human requirements from a population
perspective.
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Moreover, it is desirable to have a forum or gathering at regular intervals for
discussing different approaches, their respective performances, and shortcomings
with the evaluation strategy. The problem of CBIR evaluation, however, is very
challenging. The above mentioned points often make it very difficult to decide
upon an evaluation dataset and obtain reliable ground-truth for it. Deciding on a
metric and evaluation criteria is another difficult problem. An objective evaluation
of results could be unfair and incomplete since CBIR technology is eventually
expected to satisfy the needs of people who use it. In spite of these challenges,
researchers have agreed upon certain evaluation datasets, benchmarks, and forums
for multimedia retrieval evaluation. These are described as follows.

5.1 Evaluation Metrics

CBIR is essentially an information retrieval problem. Therefore, evaluation metrics
have been quite naturally adopted from information retrieval research. Two of the
most popular evaluation measures are:

—Precision: The percentage of retrieved pictures that are relevant to the query.

—Recall: The percentage of all the relevant pictures in the search database which
are retrieved.

Notice that when the query in question is a picture, relevance is extremely
subjective. Information retrieval research has shown that precision and recall
follow an inverse relationship. Precision falls while recall increases as the number
of retrieved pictures, often termed as scope, increases. Hence, it is typical to
have a high numeric value for both precision and recall. Traditionally, results
are summarized as precision-recall curves or precision-scope curves. A criticism for
precision stems from the fact that it is calculated for the entire retrieved set and is
unaffected by the respective rankings of the relevant entities in the retrieved list.

A measure which addresses the above problem and is very popular in CBIR
community is average-precision (AP). In a ranked list of retrieved entities with
respect to a query, if precision is calculated at the depth of every relevant entity
obtained, then average precision is given as the mean of all the individual precision
scores. As is obvious, this metric is highly influenced by high-ranked relevant
entities and not so much by those toward the bottom of the ranked list. The
arithmetic mean of average precision calculated over a number of different queries
is often reported as mean average precision (MAP) and is one of the evaluation
measures used by the TRECVID community [TRECVID 2001]. A comprehensive
overview and discussion on performance measures for CBIR has been presented
in [Huijsmans and Sebe 2005]. The authors of the cited work discuss the influence
of individual class sizes to these measures, in a CBIR system. The importance of
normalization of performance measures with respect to scope and class-sizes has
been emphasized.

5.2 Evaluation Criteria

As observed in [Shirahatti and Barnard 2005], CBIR is meaningful only in its service
to human users. At the same time, it is difficult to quantify user requirements as
objective relevance based scores. As discussed in Sec. 2, users may be classified into
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several types based on their clarity of intent and search patterns. Depending upon
the end goal, a user may value different features of a CBIR system.

An interesting user driven evaluation criteria has been proposed in [Shirahatti
and Barnard 2005]. The authors construct a mapping of various retrieval algorithm
scores to human assessment of similarity. As a consequence of this, different retrieval
algorithms can be evaluated against the same user determined scale. Another
work studies user information needs with respect to image retrieval using American
memory photo archives [Choi and Rasmussen 2002]. It has been observed that users
of an image retrieval system value several important criteria such as image quality,
clarity, and associated meta-data besides image semantics.

5.3 Evaluation Datasets and Forums

Traditionally, in the absence of benchmarks, Corel Stock Photos and
Caltech101 [Caltech101 2004] have been used for CBIR evaluation. The authors of
Caltech101 have released a new version of their dataset called Caltech256 including
256 picture categories. The pitfalls of using Corel pictures have been discussed
in [Muller et al. 2002], and a more rigorous CBIR benchmarking is suggested. The
Benchathlon Project [Benchathlon 2005; Gunther and Beratta 2001] was initiated
to get the CBIR community come together for formulating evaluation strategies.
ImageCLEF [ImageCLEF 2006], a track as part of a cross-language evaluation
forum, focuses on evaluation strategies for CBIR. Another important effort in this
direction is the ImagEVAL workshop [ImagEVAL 2005] where the importance of
user-oriented evaluation has been emphasized. The ImagEVAL effort stresses on
criteria such as the quality of user-interface, response time, and adaptiveness of
a CBIR system to a new domain. The TRECVID benchmark is very popular in
the CBIR community to validate their search and retrieval algorithms [TRECVID
2001; Smeaton and Over 2003]. The TRECVID workshop conducted yearly by
the National Institute of Science and Technology (NIST) attracts research teams
from all over the world into addressing competitive problems in content based video
search and retrieval. A comprehensive overview of benchmarking in CBIR can be
found in [Muller et al. 2001].

5.4 Discussion

From the current trends and the effort being put into benchmarking in CBIR, the
following design goals emerge:

— Coverage: Benchmarks should ideally cover the entire spectrum of cases expected
in real-world scenarios. This should affect the choice of evaluation datasets.

— Unbiasedness: Benchmarks should not show any bias toward particular
algorithms or methodologies. In particular, factors such as accuracy, speed,
compatibility, and adaptiveness should be given as much importance as required
for the target application.

— User-focus: General purpose CBIR applications are designed for use by human
users. A fair benchmark for such applications should adequately reflect user
interest and satisfaction.

Evaluation is critical for CBIR as well as its offshoot research areas. Ideally,
evaluation should be subjective, context-specific, and community-based. For
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example, Web-based image retrieval is best judged by a typical sampling of Internet
users whereas evaluation of retrieval for biomedical applications will require users
with domain knowledge and expertise. Automated annotation is best evaluated in
the context of what detail the systems are aiming at. Depending on application, it
may or may not be sufficient to label a rose as a flower. Illustration of stories can
be best appreciated by how readers receive them.

In summary, evaluation is a vital component of system design that needs to be
performed keeping in mind the end-users. CBIR and its offshoots are no exceptions.
Developing user-centric benchmarks is a next generation challenge for researchers in
CBIR and associated areas. However, it is important to maintain a balance between
exploring new and exciting research problems and developing rigorous evaluation
methods for the existing ones [Wang et al. 2006].

6. DISCUSSION AND CONCLUSIONS

We have presented a comprehensive survey, highlighting current progress, emerging
directions, the spawning of new fields, and methods for evaluation relevant to the
young and exciting field of image retrieval. We have contrasted early years of
image retrieval with the progress in the current decade, and conjectured specific
future directions alongside. We believe that the field will experience a paradigm
shift in the foreseeable future, with the focus being more on application-oriented,
domain-specific work, generating considerable impact in day-to-day life.

As part of an effort to understand the field of image retrieval better, we
compiled research trends in image retrieval using Google Scholar’s search tool and
its computed citation scores. Graphs for publication counts and citation scores
have been generated for (1) sub-fields of image retrieval, and (2) venues/journals
relevant to image retrieval research. Further analysis has been made on the impact
that image retrieval has had in merging interests among different fields of study,
such as multimedia (MM), machine learning (ML), information retrieval (IR),
computer vision (CV), and human-computer interaction (HCI). Firstly, the trends
indicate that the field is extremely diverse, and can only grow to be more so in
the future. Second, we note that image retrieval has likely been the cause for
quite a few otherwise-unrelated fields of research being brought close together.
Third, interesting facts have emerged, such as: Most of the MM, CV, and AI work
related to image retrieval have been published in information related venues and
received high citations. At the same time, AI related work published in CV venues
have generated considerable impact. At a higher level, the trends indicate that
while systems, feature extraction, and relevance feedback have received a lot of
attention, application-oriented aspects such as interface, visualization, scalability,
and evaluation have traditionally received lesser consideration. We feel that for all
practical purposes, these aspects should also be considered equally important. Due
to the dynamic nature of this information, we have decided to host it externally, and
update it from time to time, at http://wang.ist.psu.edu/ survey/analysis.

The quality (resolution and color depth), nature (dimensionality), and
throughput (rate of generation) of images acquired have all been on an upward
growth path in the recent times. With the advent of very large scale images (e.g.,
Google and Yahoo! aerial maps), biomedical and astronomical imagery which are
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typically of high resolution/dimension and are often captured at high throughput,
pose yet new challenges to image retrieval research. A long term goal of research
should therefore also include the ability to make high-resolution, high-dimension,
and high-throughput images searchable by content. Meanwhile, we do hope that
the quest for robust and reliable image understanding technology will continue. The
future of CBIR depends a lot on the collective focus and overall progress in each
aspect of image retrieval, and how much the average individual stands to benefit
from it.
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