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Acceleration of femtosecond pulses to superluminal velocities by Gouy
phase shift
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Abstract. The phase and the group velocities are calcu-
lated in a three-dimensional neighbourhood of the focus
of an aberration-free lens illuminated by a spatially Gaus-
sian beam. The Gouy phase shift caused by the diffraction
results in superluminal pulse propagation on the optical
axis within the Rayleigh range.

PACS: 42.10, 42.60.E

The study of the intensity and phase distribution of a con-
verging spherical light wave passing through a circular
aperture has been undertaken by several authors [1—3].
One of the most interesting results of these treatments is
that the phase behaviour near the focus differs from that
of a converging perfect spherical wave. This phase differ-
ence discovered by Gouy is called phase anomaly. The
predictions of the theoretical treatments have been veri-
fied by experiments both with light and with microwaves
[2—5]. For microwaves, the phase fronts can be measured
directly [4, 5]. The experimental results show that the
scalar diffraction theory can be used if j@a@ f, where j is
the wavelength, a is the radius of the diffracting aperture
and f is focal length measured from the aperture. The
scalar treatment yields a reasonably accurate description
of the optical images up to Numerical Apertures (NA) as
high as 0.6 [6].

Because of the phase anomaly, we expect that the
phase velocity could differ from the phase velocity of
a perfect converging spherical wave which has a phase
velocity of c, where c is the velocity of light in the infinite
free space. Since the phase distribution (and thus the phase
velocity) depends on the wavelength a difference between
the phase and the group velocity is expected. There is
a strong analogy between the pulse propagation in disper-
sive medium and the diffraction of light caused by a hole
in the opaque screen [7] and it is known that the group
velocity in dispersive medium can exceed c [8]. So the
following question arises: could the diffraction by a circu-
lar aperture cause such a phase distribution in space

which results in a superluminal pulse propagation. In the
rest of this paper, we show that the phase anomaly in the
vicinity of the focus leads to superluminal pulse propaga-
tion.

1 Phase anomaly of a focused Gaussian beam in the
vicinity of the focus

Consider a monochromatic beam focused by an aberra-
tion-free thin lens which fills a circular aperture of radius
a in an opaque screen. For reasons of simplicity and
applicability to laser beams we assume that the incoming
beam is a spatially Gaussian beam having a beam waist of
w
0
. The phase anomaly for a Gaussian beam is much more

well behaved than the one for a spatially homogeneous
wave [9]. We also assume that the truncation of the
Gaussian beam is weak and the focal length of the lens is
much greater than the radius of the aperture, that is
w
0
@a@ f, where f is the focal length of the lens. In this

approximation, the focused beam behind the lens remains
Gaussian but the beam waist w

f
is changed [10]. If the

waist of the incoming beam is situated on the lens, the
beam waist of the focused beam is located at a distance
d from the lens given by (Fig. 1)
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Fig. 1. The phase fronts of a focused Gaussian beam (solid lines)
differ from the phase fronts of a perfect spherical wave (dashed lines).
This phase difference discovered by Gouy is called as phase anom-
aly. The optical axis (z) is given by arctan(z/z

f
), where z

f
is the

Rayleigh length of the focused beam. The distance between two
neighbouring spherical wave fronts (dashed lines) is j. The phase
anomaly and the intensity distribution depend on the frequency.
This dispersion causes that the phase velocity differs from the group
velocity.

focused beam and R(z*)"z*[1#(z
f
/z*)2] is the curva-

ture of the phase front at a point z* on the optical
axis.

Equation (2) shows that the phase of a Gaussian beam
differs from a converging perfect spherical wave. In Fig. 1
the phase fronts of a focused Gaussian beam are plotted
with solid lines. The dashed lines show the phase fronts
of a perfect spherical wave. The distance between two
neighbouring spherical phase fronts is j. The phase dif-
ference (i.e. the Gouy phase shift) on the optical axis is
arctan(z*/z

f
). Since z

f
depends on j the phase anomaly

also depends on j. Because of this dispersion, a difference
between the phase and the group velocities is expected.

In order to study the pure effects caused by the Gouy
phase shift, we assume that the lens is free of chromatic
error, that is f (j)"f

0
. For practical cases (z

0
/f

0
)2A1, for

example, if j"0.5 lm, w
0
"2 mm and f

0
"40 mm,

(z
0
/f

0
)2"(2n · 102)2+4 · 105. Then the small shift in posi-

tion between the geometrical focus and the beam waist is
negligible [(1)], that is d"f

0
and so z*"z, where z is

a coordinate along the optical axis measured from the

focus (Fig. 1). In this approximation the beam waist of the
focused beam is given by
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where u"c ·k. Then (2) becomes
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2 Phase velocity

The phase velocity is defined by l
1
"u/ D+U D [11]. Be-

cause of the axial symmetry of U it takes the form
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Substituting (4) into (5) one can obtain the phase velocity
at a point P by
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where o and f are dimensionless variables defined by
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and 0"w
0
/ f

0
is the divergence of the focused beam. On

the optical axis (i.e. o"0) (6) leads to
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Figure 2a shows the phase velocity on the optical axis for
different values of the divergence. It is easy to see from (8)
that the phase velocity on the optical axis is larger than
c and it reaches its maximum at the focus given by
l
1,.!9

"c/[1!02/2]+c/cos0, which is the sweep speed
of a pulse on the optical axis falling under the angle of
divergence 0.

The position of the phase front on the optical axis in
a moment t is determined by t"U(0, z)/u"z/c!
arctan(Kuz)/u. Of course, one can obtain this equation
by integration using (8), too. For Dz DAz

f
it has an asymp-

totic form: z"ct#sign(z) j/4. This means that far from
the focus if z(0, the phase front lags behind, while if
z'0, it precedes the phase front of a perfect spherical
wave with a distance j/4 as it is shown in Fig. 1. This is
why the phase velocity is larger than c.

In the focal plane (i.e. f"0 in (6)) one can calculate the
phase velocity by
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Fig. 2. a The phase velocity on the optical axis (z-axis) for different
values of the divergence of the focused beam. The maximum is given
by l

1,.!9
"c/cos0 . b The phase velocity in the focal plane. 1/0

corresponds to the beam waist. l
1
'c inside the beam waist and

l
1
(c outside.

The graph of (9) is plotted in Fig. 2b. It follows from (9)
that l

1
'c if o(1/0, l

1
"c if o"1/0 and l

1
(c if

o'1/0. Since o"1/0 corresponds to r"w
f

[(3, 7)] the
phase velocity in the focal plane is larger than c within the
beam waist and it is less than c outside the beam waist.

3 Group velocity

The group velocity is defined by [12]
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where u
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is the central frequency of the pulse. From (4) we

have
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Inserting (11) into (10) the group velocity is given by
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Fig. 3. a The group velocity on the optical axis (z-axis) for different
values of 0 (0"w

0
/f
0

is the divergence of the focused beam). The
maximum is given by l

',.!9
"c/cos 0. f

0
"1/02 corresponds to

z"z
f0

, where z
f0

is the Rayleigh length for the central frequency.
l
'
'c inside the Rayleigh range and l

'
(c outside. The average of

the group velocity is c. b The group velocity in the focal plane
decreases faster than the phase velocity (Fig. 2b).
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where o
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"o (u

0
) and f
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). On the optical axis (i.e.
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Equation (13) is plotted in Fig. 3a for different values of
divergence 0 . Analysing (13) one can conclude that the
group velocity on the optical axis equals c if f

0
"

$1/02. According to (7) f
0
"$1/02 corresponds to

z"$z
f0

, where z
f0

"z
f
(u

0
) that is the Rayleigh length

at u
0
. The group velocity on the optical axis is larger than
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c within the interval (!z
f0

, z
f0

) and less than c outside. It
reaches its maximum in the focus (f

0
"0) given by

l
' ,.!9

"c/[1!02/2]+c/cos0 . The minimum is
achieved in z"$J3z

f0
and it can be calculated by

l
',.*/
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The position of the pulse front on the optical axis in

a moment t is determined by t"LU(0, z)/Lu"z/c!
Kz/[1#(Ku

0
z)2]. The asymptotic form of this equation

is z"ct, which means that far from the focus the pulse
front moves on the optical axis as the phase front of
a spherical wave does (dashed lines in Fig. 1) and the
average of the group velocity equals c.

The group velocity in the focal plane (i.e. f
0
"0) is

given by
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It differs from the phase velocity (9) in the factor 3 of
(02o

0
)2 only, which results in that the group velocity

decreases faster than the phase velocity as a function of the
radius in the focal plane. It follows from (14) that l
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Fig. 3b shows the group velocity in the focal plane for
different values of 0 .

4 Conclusions

It has been shown that the Gouy phase shift causes abnor-
mal pulse propagation in the neighbourhood of the focus
of an aberration-free lens. It should be noted that the
cause of the superluminality described in [13—17] has
a completely different origin because in that case the
superluminality is caused by the dispersion of the medium
where the waves propagates in. In the case discussed
above, the phase structure in the medium is induced by the
diffraction and it arises in non-dispersive medium, even in
vacuum as it was assumed during this calculation. Since
the Gouy phase shift is generated by the diffraction it does
not depend on the dispersion of the lens material. As far as
we know, this kind of superluminal pulse propagation was
not recognized before. Our results do not violate the
theory of special relativity because the group velocity is
the velocity of the peak of the pulse and an intensity
maximum could move faster than c; it does not carry
information.

In order to obtain analytical expressions, we used
several approximations: we assumed that the light can be
described by a scalar quantity and we considered paraxial
approximation; besides, the small shift in position be-
tween the geometrical focus and the beam waist is omit-
ted. As it has been mentioned if j@a@ f, the vector and

scalar diffraction theory leads to the same result, so the
scalar treatment of the light is appropriate in our case.
Using the method described in [18] which is still paraxial
approximation but where the focal shift is taken into
account, (13) has been confirmed numerically for a 6 fs
long Gaussian pulse with 620 nm central wavelength. Nu-
merical evaluation of the generalized Kirchhoff integral
[19] has been performed [20]. These calculations confirm
the predictions of the paraxial approximation derived
above. The phase and the group velocity in the focus
exceeds c but it is smaller than the one predicted by
the paraxial approximation. Assuming j"0.5 lm, w

0
"

2 mm, a"8 mm (a/w
0
"4 i.e. the truncation of the input

Gaussian beam is weak) the relative errors caused by our
approximations are less than 0.0144%, 0.0029% and
0.0009% for 0"w

0
/f
0

of 1
10

, 1
15

and 1
20

, respectively.
The phase anomaly in the vicinity of the focus appears

in case of homogeneous illumination, but the phase be-
haviour is more complicated. So similar abnormal pulse
propagation can occur in that case as well. A superluminal
pulse propagation described above might have a consider-
able effect on the strong-field high-harmonics-generation
experiments [21] since the propagation speeds of the
harmonics are affected by the wavelength as well.
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