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Abstract

This paper presents a knowledge-based approach for automatic 3D
reconstruction of buildings from aerial images. By combining the image
analysis with information from GIS maps and specific knowledge of the
buildings the complexity of the building reconstruction task can be greatly
reduced. The building reconstruction process is described as a tree search in
the space of possible building hypotheses. Hypotheses derived from outlines
of building footprints from the map are fit against image pixel gradients. To
guide the search of the tree an evaluation function based on information
theory principles is defined. The proposed evaluation function defines the
score of matching between a hypothesised building model and the image pixel
gradients. It uses a mutual information measure and MDL criterion to select
the best fit to image data in the tree search.

1  Introduction

3D building reconstruction has been an active research topic in computer vision in
recent years. Most approaches have focused on the reconstruction of specific building
models: rectilinear shapes [12, 14], flat roofs [7, 8] or parametric models [4]. But buildings
show a much wider variety in their shape. Other approaches employ a generic roof model
that assumes planar roof surfaces [3, 11, 15]. These 3D roof planes are generated by
grouping the coplanar 3D lines or corners computed from the images. However, the
feature extractors can fragment or miss boundary lines, due to low contrast, occlusions,
and bad perspective.  To overcome these problems, the image data has to be combined
with other data sources, for example fusing images with scanned [10] or digital maps [6].
These approaches represent the newest trend in 3D building reconstruction.

Our strategy for 3D reconstruction of buildings combines pairs of stereo images with
large-scale Geographic Information System (GIS) maps and domain knowledge as
additional information sources. The 2D GIS map contains the outline of footprints of the
buildings. The knowledge about the problem domain is represented by a building library
containing primitive building models. Although, buildings reveal a high variability in



shape, even complex buildings can be generated by combining simple building models
with flat, gable or hip roof.

This paper is organized as follows: Section 2 presents a brief overview of the steps
involved in our method. The next section describes the generation of building
hypotheses. Section 4 describes an evaluation function based on mutual information for
determining the best building hypothesis. Section 5 presents some results. The
conclusions and future work are discussed in the final section.

2    Method Overview

One of the important issues in the proposed method is separation of the building
detection process from that of building reconstruction. The fact that the reconstruction
process is focused on one building reduces the complexity of the reconstruction by a
large amount. The localization of buildings in the images can be performed based on the
ground plan of the buildings contained in the map. This method was described in detail
in [16]. The actual building reconstruction process is formulated as a multi-level
hypothesis generation and verification scheme and it is implemented as a search tree.

Because a complex building can be described as an aggregation of simple building
models, the first step is the partitioning of the buildings into simple building-parts. These
building parts might correspond to one of the building models defined in the building
library. In the first attempt the partitioning is done using only the ground plan of a
building defined in the GIS map. Each of the partitioning schemes will start up a branch
in the search tree.

As basic building models we can consider a flat roof, a gable roof and a hip roof
building. The approach of modelling buildings using a set of basic building models
(primitives) suggests the usage of Constructive Solid Geometry (CSG) representation for
building description.

Next, the tree will be expanded with a level corresponding to the different building
hypotheses generated for each building-part obtained after partitioning of the ground
plan. The building hypotheses can be verified by back projecting them into the images
and then matching with the information extracted from the image. The matching has to
define a score function that will be used to guide the search in the tree. Finally the CSG
tree representing a building will be given by the best fit of the building models
corresponding to the building partitions.

3     Generation of Building Hypotheses

3.1   Partitioning into Building-parts

The first step of the actual reconstruction process is the partitioning of the building in
simple building parts, which might correspond to a building model defined in the
building library. First, the partitioning is done using only the ground plans of a building
defined in the GIS map. If the ground plan of the building is not a rectangle, then it can
be divided in rectangles, called partitions. Then, a partitioning scheme can be defined as



a subdivision of a building into disjoint partitions. A building can have multiple
partitioning schemes (figure 1). Each of these partitioning schemes will start up a branch
in the search tree.

To avoid a blind search method of the tree,
the Minimum Description Length (MDL)
principle can be used. This principle provides
a means of giving higher priority to the
partitioning schemes with a smaller number of
rectangles.

If all the partitioning schemes are rejected
by the tree search then the partitioning has to
be refined using image information as well.
This process will start up a new branch in the
search tree and the whole process is
repeated.

3.2   Generating Building-part Hypotheses

3.2.1   Library of Building Primitives
To cope with the complexity of aerial images we have to incorporate specific knowledge
about buildings. Since most buildings can be describe as an aggregation of simple
building types, the knowledge about the problem domain can be represented in a
building library containing the simple building models. In this way a complex building
can be seen as a CSG tree, where the leaf nodes contain primitive building models and
the internal nodes contain boolean operations such as union, intersection, difference.

The basic building models in the building library are described by parametric models
having pose and shape parameters. For instance to describe a flat roof building 6
parameters are necessary: width, length, height, x, y coordinates of the building reference
point and the orientation in the xy-plane. For a gable roof an extra parameter, the height
of the ridge has to be considered.

3.2.2   Parameter Estimation
The parameters of the model are estimated in a two-step method. First an approximate
estimation is done based on the information from the map and 3D information extracted
from images.

The x, y coordinates and the orientation of a building primitive are given by the
ground plan of the building. The parameters width and length are the width and the
length of the rectangle corresponding to the ground plan of the building part. The height
of the building primitive is computed taking into account the heights of the
reconstructed 3D corners of the building part. For a gable roof the height of the ridge is
considered as the height of the reconstructed 3D top line if the top lines were detected in
both images and the 3D line could be reconstructed. Otherwise, the approximate position
of the projected ridge in the images can be deducted taken into account the symmetry of
a gable roof.  Then the 3D ridge can be reconstructed by matching these two
approximate line segments. At this stage the estimation is influenced by uncertainties of
the knowledge sources. The uncertainties are due to the accuracy of the GIS map, the
roof extensions, and estimated height [16].

In order to handle these uncertainties, a more precise estimation of the parameters is
obtained using a fitting algorithm. This algorithm fits the edges of the projected wire

Figure 1. Ground plan of a building
and possible partitioning schemes of it



frame of the model to gradients of the pixels from both images simultaneously [19]. This
algorithm is similar to the one described by Lowe [9].

4    Evaluation of Building Models

The 3D reconstruction of a building can be seen as a tree search. The search space for
the best fit building model can be represented as a tree with the nodes of the tree
representing the different building primitive hypotheses. The tree is generated
incrementally by the search method.

The root node of the tree represents the initial state, where only the ground plan of
the building is known. The first level of the tree contains all the possible partitioning
schemes of a building. The second level contains the partitions corresponding to each
partitioning scheme.  Next, the search tree is expanded with a level corresponding to
different building hypotheses generated for each building partition. The a priori
knowledge about the building types from the data set, if it is available, can guide the
process of building hypotheses generation. Consequently, the more frequently
occurring building models are treated first.

There are two problems that have to be considered at the search of the tree:
• Definition of an evaluation function to guide the search to the best solution
• Definition of a stop criterion that speeds up the search by reducing the search

space.
In this paper we describe the definition of an evaluation function in detail.
From the possible hypotheses of a matching between an object model and an image,

one wants to select the hypothesis that maximizes some appropriate evaluation function.
Therefore, an evaluation function is defined to measure for the quality of the match.
Usually, an evaluation function is based on error models that describe how an image
feature may differ from what the object model has predicted. Two main categories of
approaches for defining evaluation functions can be distinguished. Ad hoc evaluation
functions were used by Ayache [1], Beveridge [2], Grimson [5]. With this approach,
components of the evaluation function are combined using trade-off parameters that are
determined empirically. Other class of evaluation functions is based on statistical theory.
Match quality measures are often defined using Bayesian probability theory ([13], [18]).
Our evaluation function belongs to this latest category, using a mutual information
based measure.

4.1   Mutual Information

To guide the search of the tree we have developed an evaluation function based on
information theory.  This evaluation function can be used to compare different building
hypotheses in order to choose the best one from a set of building hypotheses.

The evaluation function defines the score of matching between the hypothesized
building model and the images. Matching can be seen as a communication problem,
where the model description M = {m1, m2, …} is transmitted through a communication
channel into the image D = {d1, d2, … }. The image data will be similar to the model data



but sometimes it is corrupted due to occlusions, noise, etc. The similarity between the
two descriptions can be measured by the mutual information I(M; D).

The mutual information is defined as the difference between the self-information and
the conditional information [20]:

( ; ) ( ) ( | )= −i j i j iI m d I d I d m (1)

where = −j jI (d ) logP(d )  and = −j i j iI ( d | m ) log P ( d | m )
Thus, the mutual information can be written as:

= j i
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j
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The descriptions of the model and image data depend on the level of abstraction
chosen. A lot of work has been done on computing matching scores. Generally, one can
distinguish between feature based and intensity based approaches. The feature-based
methods require segmentation of the images before the matching process. But, usually
the segmentation needs selection of a threshold. In addition, the extracted features are
influenced by noise, bad contrast and occlusions in the image. To overcome these
problems we do the matching between the model and the images and the evaluation of
the matching at the lowest level of abstraction, namely at pixel level. The attributes dealt
with at this level are gradients.

Thus, the mutual information between an image pixel and the corresponding model
point is given by:

= i m
m i

i

P(grad | point )
I ( point ;point ) log

P(grad )
(3)

Another advantage of our evaluation function is the simplicity. The distribution of
the gradients at random image points and also the conditional distribution of the
gradients along the projected roof edges can be determined by training.

Our evaluation function gives a positive response where points match with high
confidence, a negative response where there is a clear mismatch, and zero response in
the points where there is neither evidence for match nor evidence against a match.

The mutual information for a model line is found by taking the sum of the points of
the line:
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∈
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The total information for a building model in both images is given by the sum over all
points on all projected model lines in all images:

2
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4.2   Minimum Description Length Principle

The goal is to select the model Mi from a list of models M = { M1, M2, … }, which best fits
the image data, knowing the transformations.

If all the models have the same complexity, this goal could be achieved by choosing
the model with the highest mutual information. But the mutual information between a
model and the image data increases with the complexity of a model. Therefore, the mutual



information between different building models and image data are not directly
comparable and cannot be used as an evaluation function.

The problem can be solved using the MDL principle. This principle selects the model
Mi with the shortest complete description of the data, thus the model that minimises

( | ) ( )+i iL D M L M
If the code used for the description is optimal, the length of the description is

equivalent to its information content.

 ( ) ( )=i iL M I M  and ( | ) ( | )=i iL D M I D M (6)

Thus, the minimum description length principle minimizes:

+i iI ( D | M ) I ( M ) (7)

By using the definition of the mutual information:

= −i iI (D;M ) I ( D ) I ( D | M ) (8)

the formula (7) can be expressed as:

+ −i iI ( M ) I ( D ) I ( D | M ) (9)

Since I(D) is constant, the expression −i iI (D;M ) I ( M )has to be maximized

Therefore, it follows that the best model is given by:

−opt i imax
i

M : ( I ( M ; D ) L( M )) (10)

and the expression = −i i iScore(M ) I(D;M ) I(M )can be used as an evaluation

function for the matching between building model and image data.

4.2   Relation MAP and MDL

It can be shown that the MAP (maximum a posteriori) and the MDL principle lead to the
same solution. The maximum a posterior strategy selects the model Mi that maximizes the
conditional probability of the model given the data D, P(Mi | D).

By using Bayes’ formula:

= i i
i

P( D | M )P(M )
P( M | D )

P( D )
(11)

Since P(D)  is constant, MAP states that i iP( D | M )P(M )has to be maximised.

The minimum description length principle minimizes: +i iI ( D | M ) I ( M )
This can be written as:

+ = − −
= − =>
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logP(D|M )P(M ) min
(12)

Therefore, MDL maximises i iP( D | M )P(M )  like MAP.



4.3   Computation of the Gradient Distribution

In order to calculate the score function for matching between a building model and the
image data as defined in (10), we need to know the a priori probabilities P(gradi) and the
conditional probabilities P(gradi | pointm).

The probabilities of the gradient at random image points can be obtained directly from
the images. The gradient distribution is determined as the histogram of the gradient
values in the regions of the images where there is a building. The delineation of these
regions in the images was described in [16]. The obtained a priori probability P(gradi) is
shown in figure 2a. In [15] Sullivan also estimated the gradient distribution from
histogram for identification of cars in traffic scenes.

The conditional probability density function of the gradient along the projected roof
edges can be determined from training matches by analysing the probabilities of
gradients in these training matches. Some image lines corresponding to model lines are
selected manually. Next, the histogram of the gradient values along these lines is
computed. The obtained conditional probability density function P(gradi | pointm) is
shown in figure 2b.

Knowing these two distributions, the mutual information can be computed using (3)
and this is shown in figure 2c.

5     Results

The test data consists of high-resolution aerial images. The scale of the images is 1:3000
and they are scanned at 600 dpi. Therefore, one pixel in the image corresponds to about
12.7 cm in object space. Two images with 60% overlap are used. The interior orientation
parameters of the camera and also the exterior orientation parameters of the images are
known. A 2D GIS map containing the ground planes of the buildings is given. In our
current implementation, three hypotheses are generated corresponding to a flat roof
building primitive and two gable roof primitives with different orientations. Therefore we
can reconstruct only flat roof buildings, gable roof buildings or buildings formed by
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Figure 2. a) Gradient distribution P(gradi)   b) Conditional probability density of the
gradient P(gradi|pointm)  c) Mutual information I(pointm; pointi)



combining these two building types. However, the building library can be easily
extended with other primitive building models. Also, we assume that the buildings have
only 90o corners. This is actually a limitation of the models described in the building

library, since both flat roof
building and gable roof
building model require
rectangular base.

The first experiment was
to generate and evaluate
building hypotheses for
simple buildings composed
by only one building
primitive. First building
hypotheses derived from
outlines of building
footprints from the map are
generated corresponding to
the building models from
the building library. Next,
the building hypotheses are
fit to the image data. The
scores computed for
matching the hypotheses
against the images are used

to choose the best model. The resultant building models projected back into one of the
images are presented in figure 3.

Next, we tested our approach on complex buildings (figure 4). First, the partitioning of
the building into building primitives based on the ground plan was performed. Then, for
each resultant building primitive, hypotheses are generated. Evaluating the partition
schemes we found that the partitions presented in figure 4 are the best ones.

The results from the proposed approach are encouraging. The method worked well
even in difficult conditions (figure 4a, one of the sides of the building is shadowed),
where feature based approaches would have failed. Problems can appear in case of
building parts with very small size. To overcome this problem, constraints, which
describe geometric relationships between building primitives, were incorporated in the
fitting algorithm (figure 4c).

6     Conclusions

A knowledge-based approach for automatic 3D reconstruction of buildings from aerial
images was presented. The 3D reconstruction of buildings was described as a search
tree. The generation of the search tree containing the multiple consistent building
primitive hypotheses was described. To guide the search of the tree an evaluation
function using mutual information was defined. The mutual information is computed
directly from the image gradients. This evaluation function allows comparison of
different building hypotheses. The robustness of this evaluation function is assured by

Initial scores (before fitting):
Score flat = -274.5 Score flat = -157.2
Scoregable = -325.3 Scoregable = -467.7

Final scores (after fitting):
Score flat = -185.3 Score flat = 251.6
Scoregable = 618.7 Scoregable = -365.2

Figure 3.  Reconstructed roof models projected back
into the image



working directly with the image gradients. In this way the problems encountered in
feature based measures are avoided.

Future work will be directed towards the definition of the expected amount of mutual
information needed for a reliable matching. This will to be used as stop criterion for the
tree search in order to speed up the search.  The search can be further speeded up by
sorting the building hypotheses based on a priori knowledge about the building types
from the data set.

Next, the resultant building hypothesis described as a CSG tree has to be verified by
back projecting it into the images and fitting it to the image data. The fitting algorithm
will consider only the visible edges of the wire-frame model, which can be determined by
a hidden line analysis algorithm.
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