
Programmable Command Languages
for Window Systems

Rlchard Joel Cohn
CMU-CS-88-139

June 1988

_egie

Programmable Command Languages for Window Systems

Report number CMU-CS-88-139

Copyright © 1988 by Richard Joel Cohn. All rights reserved.

This dissertation was submitted in partial fulfillment of the requirements for the degree of Doctor of
Philosophy in Computer Science at Carnegie Mellon University.

The research in this dissertation was supported by the Information Technology Center, a joint project of
Carnegie Mellon University and International Business Machines Corporation.

This dissertation was produced with Scribe. Illustrations were produced with Pic, Troff, and TranScript.

Aldus and PageMaker are trademarks of Aldus Corporation. Apple and Macintosh are registered trademarks of Apple
Computer, Inc. Clads is a trademark of Clads Corporation. DEC is a trademark of Digital Equipment Corporation.
Hypercard is a trademark of Apple Computer, Inc. IBM is a registered trademark of International Business Machines
Corporation. MacDraw, MacPaint, and MacWrite are registered trademarks of Clads Corporation. NeWS and Sun-3
are trademarks of Sun Microsystems, Inc. PostScript and TranScript are trademarks of Adobe Systems, Inc. Scribe is a
registered trademark of Scribe Systems. SmaUtalk-80is a trademark of Xerox Corporation. Tempo is a trademark of
Affinity Microsystems, Ltd. UNIXis a registered trademark of AT&T Bell Laboratories.

Abstract

Programmable command and macro languages have long served as important tools for
users of computer systems. This thesis describes the design and implementation of a

general-purpose command language for a window system. This has never been tried be-
fore because these systems are new and because the problems inherent in providing a

command language for a window system are hard.

The thesis describes the requirements for a command language that can drive a wide

variety of window system applications. Comparing these requirements with the

properties of window systems and direct manipulation user interfaces shows why these
requirements are difficult to meet and why some obvious approaches to the command

language problem fail.

The thesis presents a practical strategy for providing a command language based on a

compromise approach. This strategy defines an architecture in which developers provide
programmable interfaces to their applications. Interfaces specify, at a semantic level, the

objects understood by applications and the operations that manipulate these objects. The

system incorporates these operations into a system-wide command language. The com-

mand language interpreter communicates with applications using remote procedure calls

(RPC), enabling users to write command language programs that access operations of one

or more applications transparently. The thesis describes a prototype implementation for

Andrew, a multiple-process, multiple-window environment based on the UNIX operating
system. While the prototype uses Lisp as the command language and C as the applica-

tion implementation language, the RPC mechanism makes possible the use of multiple

command and implementation languages.

This architecture Simplifies the mechanics of providing interfaces to applications, but the

task of interface design is intrinsically difficult. The thesis examines interfaces built for a

variety of applications and extracts from this experience a set of guidelines for designing

command language interfaces and interactive applications.

Acknowledgments

I still don't quite believe that I've actually finished--rather, almost finished--I still have

to write the acknowledgments. Completing my doctorate was much more difficult than I

imagined, but I have gotten much more help along the way than I ever could have hoped

for. Now I get to thank everyone for their help. Thanking is easy; repaying is going to
take a lot longer. But I'm working on it.

My committee provided guidance and good ideas. My advisor, Jim Morris,

patiently wandered with me along the path to a proposal and eventually to the real thing.
It was a learning experience for both of us. Gene Ball, my advisor and boss in a former

life, made many helpful suggestions, especially to and from the airport. My other com-

mittee members, Dario Giuse and Ed Smith, provided comments that helped improve the
thesis as well.

Having read one or two theses myself, I greatly appreciate the time spent by those

who read mine and helped make it better: Mike Horowitz, Pedro Szekely, Edith Eligator,
Claire Bono, and Mitch Silverstein. They weren't on my committee; they didn't have to
read it.

While I often wondered if I really should be working on a PhD, I never doubted that

Carnegie Mellon, with its Computer Science Department and Information Technology

Center, was the right place to do it. The department has an amazing combination ot"great

people and great support that makes the environment around here very special. I just

hope it stays that way. The people at the ITC made my stay at CMU much more pleasant
than it otherwise would have been.

My officemates over the years have taught me a lot. Watching Satish, Andy, Ed,

and Carl graduate showed me that it was hard, but not that hard. David suggested work-
ing with Jim, helped me get going, and most importantly, helped me stop.

I came to Pittsburgh to go to school. I ended up experiencing much more. The

people who I want to acknowledge most are the friends I've made along the way. Very
special thanks to Sharon, Suzanne, Mitch, Laurie, Kathy, and Claire. I would never have
finished without you.

The more important the contribution, the less I have to say. I wouldn't have finished

without the support of my friends; I wouldn't have gotten here in the first place without
my family.

iv ABSTRACT

Contents

1. Introduction 1
1.1 Motivation 1
1.2 The thesis 3
1.3 Thesis overview 4
1.4 A note on diction 5

2. Command Languages 7
2,1 Commandlanguagebasics 7

2.1.1 Uses of commandlanguages 10
2.1.2 Evaluation 11

2.2 Completeness of command languages 14
2.3 Completeness in text-based systems 16
2.4 Completeness in window systems 17

2.4.1 Visual applications 18
2.4.2 Direct manipulation interfaces 21
2.4.3 Window managers 23

2.5 Summary 25

3. Approaches to the Problem 27
3.1 Text-basedcommand languages 27

3.1.1 Application-specificlanguages 27
3.1.2 Package-specific languages 29
3.1.3 System-wide languages 31

3.2 Input recorders 34
3.2.1 Simple recorders 36
3.2.2 Recorders with editing 37
3.2.3 Recorders with inferencing 39

3.3 Summary 39

4. Whisper 41
4.1 A model of computation 42
4.2 An example of Whisper usage 45
4.3 User's view 47
4.4 Developer's view 48
4.5 Implementation details 50

4.5.1 The run-time system 50
4.5.2 Managing object references 54

4.6 A programming-by-example interface 55
4.6.1 Asimple recorder 55
4.6.2 A recorder with editing 57

4.7 Further extensions 62

viii CONTENTS

4.8 Summary 63
5. Case Studies 65

5.1 The testbed system 65
5.2 Asimple calculator 68
5.3 Adrawing editor 71

5.3.1 Access to data 74
5.3.2 Interface to mouse operations 74
5.3.3 Other interface decisions 76
5.3.4 Completeness 78
5.3.5 Use of the Delta interface 79

5.4 A document editor 80
5.4.1 Text editing 80
5.4.2 Inset editing 82
5.4.3 Completeness 85

5.5 A mail reader 86
5.5.1 Emacs Batmail 86
5.5.2 Whisper Batmail 88
5.5.3 Evaluation 90

5.6 Summary 92
6. Evaluation and Conclusions 93

6.1 Prototype evaluation 93
6.1.1 Completeness 93
6.1.2 Feasibility 94
6.1.3 Ease of use 95
6.1.4 Efficiency 97
6.1.5 Generality 98

6.2 Review of key design decisions 99
6.2.1 Testbed system 99
6.2.2 Base command language 100
6.2.3 Multiple process architecture 100
6.2.4 Object references 103

6.3 Implications for interactive application design 104
6.4 Future Work 108
6.5 Thesis Contributions 109

Appendix A. Additions to XLisp 111

Appendix B. The Interface Generator 113
Appendix C. Some Whisper Interfaces 115

C.1 A calculator 115
C.2 A drawing editor 116
C.3 A document editor 118

Appendix D. The Calculator Program 127
D.1 Whisper interface code 127
D.2 The main progam 131
D.3 The calc inset 132

References 137

Illustrations

2.1 Cost comparison of programming approaches 13
2.2 A hierarchy of applications 18
2.3 The Macintosh control panel 22
2.4 Awindow system display 24
3.1 A model of user interface management systems 30
3.2 UIMS preparation phase 31
3.3 Invoking a Macintosh application 36
3.4 A SmallStar macro program 37
3.5 A SmallStar data description 38
3.6 Tempo's conditional tests 39
4.1 The Whisper process structure 43
4.2 User interface and command language as clients 43
4.3 User interface implemented by command language 44
4.4 Separate programming and user interfaces 44
4.5 The Andrew calculator display 45
4.6 User invokes Delta from XLisp interpreter 52
4.7 User types (create-object)inside XLisp interpreter 52
4.8 User exits Delta from inside XLisp interpreter 53
4.9 User invokes Delta from the Typescript 53
4.10 User executes (draw-ellipses)inside Delta 54
4.11 User exits Delta from inside Delta 54
4.12 A selected box 56
4.13 Duplicating the box 56
4.14 The box and its copy 56
4.15 Adjusting the new box 56
4.16 The final result 57
4.17 A Delta data description 58
4.18 Implementation of macro recording 61
4.19 Implementation of macro replay 62
5.1 The window manager process structure 66
5.2 The Delta display 71
5.3 Top-level data description for double-width lines 75
5.4 Second-level data description for double-width lines 75
5.5 Editing a Delta object 77
5.6 A macro-generated drawing 79
5.7 The BrandX display 81
5.8 The Batmail display 87
5.9 MLisp Batmail process structure 87
5.10 The Whisper Batmail display 89
5.11 Whisper Batmail process structure 89

X ILLUSTRATIONS

6.1 Separate programming and user interfaces 105
6.2 User interface and command language as clients 106
6.3 Input and output translation 107

Tables

2.1 Example command languages 9
4.1 Example translations of mouse coordinates 60
5.1 Standard Base Editor inset methods 67
5.2 Standard Base Editor data object methods 67
5.3 Operations defined by the calculator interface 69
5.4 Variables defined by the calculator interface 69
5.5 Operations defined by the Delta interface 72
5.6 Inset operations defined by applications 83
6.1 Function call timings (msec/call) 97

To my family

Introduction

The limits of my language mean the limits of my mind.
Ludwig Wittgenstein

Command languages have long served as an important tool for users of computer sys-
tems. This thesis examines the use of a command language in a window environment

and presents an architecture that supports its development.

1.1 MOTIVATION

The computer science community has devoted much attention to the design, implemen-
tation, and evaluation of user interfaces. System designers are concerned with how a user

interacts with a program as well as with what the program can do. Hardware advances

over the past ten years, especially the migration to personal computers, have allowed

programmers to expend more resources on a system's user interface. With the exception

of the most powerful supercomputers, the truism that computer time is more expensive
than people's time no longer holds.

Designers are still experimenting, trying to determine how best to take advantage of in-
creased resources and new technology. New input devices, such as mice and touch

tablets, give a designer much more flexibility in obtaining responses from users. High-
resolution bitmap displays permit a designer to provide much more information much

faster than was previously possible. The amount of computing power available to a

single user has increased tremendously in terms of processor speed and physical memory.

Greater resources give the software designer the opportunity to invent new techniques
and implement ideas that were previously impractical. The set of interaction techniques

collectively referred to by the term direct manipulation has greatly simplified the inter-

face presented to the user by many application programs. Direct manipulation interfaces

represent objects graphically and replace textual commands with direct manipulation of
objects on the screen using a pointing device.

2 Chapter1: INTRODUCTION

Another significant advance in user interface development is the multiple-window

paradigm. A window manager sits between users and their applications, providing one or
more virtual screens for each program. The user directs input to a particular window
with a mouse or similar device. The term window system will be used here to describe a

computer system where a user interacts with applications through a window manager and
where many of these applications have direct manipulation interfaces.

A window system is an example of an enhancement to existing techniquesmit has not
replaced standard operating system interfaces. On the other hand, some new tools are

expected to supersede existing ones. One traditional system element that has been

neglected by system developers is the programmable command language. Command lan-

guages have been found to be extremely useful in conventional text-based environments,
sometimes serving as the primary programming tool for users [Dolotta 80, Cowlishaw

84]. However, some user interface designers feel that a command language is an
anachronism. Command languages were once needed because operations were invoked

by lengthy and hard-to-remember commands. Use of the mouse, particularly in the

domain of text editing, simplifies or eliminates many commands. Given these improve-

ments, some argue that a tool to combine commands is no longer necessary.

The reports of the demise of command languages are greatly exaggerated. Combining
commands in a macro is useful no matter what input mechanisms are available to the

user. The introduction of the mouse has not eliminated all tedious and repetitious opera-
tions. Command language programs encapsulate a sequence of actions that are time-

consuming (a sequence of file transfer commands, for example), need to be repeated ex-

actly (a demonstration or test sequence), or are difficult to recall. Command languages

enable users to customize and extend their environment by adding new operations. A
command language is especially useful within an editor, where it can serve as an exten-

sion language, providing new commands for specialized kinds of editing.

The desire for some kind of command language is apparent in the marketplace, even for
computers targeted towards relatively unsophisticated users. Several macro recorders

have been introduced for the Apple Macintosh, allowing a user to easily replace a se-

quence of mouse clicks and keys by a single command. The inclusion of a macro facility
in the Excel spreadsheet package has been a key factor in its dominance of the Macintosh
spreadsheet market [Reich 85].

1.1 MOTIVATION 3

1.2 THE THESIS

A window system should provide a tool that satisfies these needs, allowing users to

automate tasks within any application and those tasks that involve more than one applica-

tion. The tool should deal gracefully with the special features of window system applica-
tions, particularly those with direct manipulation interfaces. It should be easy for users to

write macros and easy for developers to incorporate the command language into their
applications.

Existing techniques do not meet these objectives. Command languages designed for con-

ventional text-based environments cannot easily be extended to work with window sys-

tems, especially with applications that manipulate graphical data. Other potential solu-

tions are inflexible, restricting the developer's choice of interface style or implementation
language.

This thesis presents a strategy for implementing command languages for window systems

and describes a prototype design and implementation. This strategy defines an architec-

ture in which software developers provide programmable interfaces to applications. An

interface specifies, at a semantic level, the objects understood by applications and the

operations that can manipulate these objects. These interfaces are incorporated into a

system-wide general-purpose command language. A command language interpreter, im-

plemented as a stand-alone process, is responsible for executing command language
programs. It relies on remote procedure calls to invoke application functions.

Taking advantage of the operations made available by application interfaces, command

language programs can carry out the same tasks that users perform interactively. The

remote procedure call mechanism enables users to write command language programs

that transparently combine commands from multiple applications. By permitting inter-

faces to be specified in terms of application-level objects and operations, this approach

deals more effectively with the high-bandwidth communication typical of window sys-
tems than do alternatives that function at a lower level of abstraction. At the same time,

the architecture is flexible enough to support a wide range of applications in a
heterogeneous environment.

While this design simplifies the mechanics of providing an interface to an application, the
task of interface design is intrinsically difficult. The thesis examines interfaces built for a

variety of applications and extracts from this experience a set of guidelines for designing
interfaces. Following these guidelines will lead to more flexible and more modular sys-
tems, even where a command language is not planned. While the thesis addresses the

specific problem of providing a command language for window systems, this research

has also served as a vehicle for studying more general user interface issues, particularly
those relating to the structuring of applications.

4 Chapter1: INTRODUCTION

1.3 THESIS OVERVIEW

This chapter has served to introduce and motivate the topic of command languages for
window systems, suggesting that while useful, they are difficult to implement. It has

briefly discussed the strategy adopted by this thesis. The remaining chapters elaborate
and justify the claims made here.

The next chapter examines the issues to be addressed by a command language for win-

dow systems. It explains what a command language should provide in a window en-

vironment and identifies some of the difficulties faced by the command language design-
er.

Chapter 3 discusses some approaches to the problem, including text-based languages and

input recorders. It evaluates these alternatives based on criteria established in Chapter 2.

Chapter 4 presents a new approach to the command language problem based on the "

strategy outlined in Section 1.2. It describes a prototype command language system P
called Whisper that demonstrates the viability of this approach. The chapter also

describes some shortcomings of the prototype and explains how they could be addressed
by extensions to the system.

Chapter 5 describes a few application interfaces, including a drawing editor, a text editor,

and a mail reader. These case studies provide evidence that the Whisper design supports
a variety of applications, including those that manipulate graphics as well as text.

The final chapter critically evaluates the prototype system and the research underlying it.
The chapter explains how the techniques used here can be applied in other contexts,
presents some suggestions for future research, and summarizes the contributions of the
thesis.

The appendices contain some details about the prototype system. Appendix A describes

the command language itself. Appendix B describes the language used to specify

Whisper interfaces. The actual specifications for the applications discussed in Chapter 5
appear in Appendix C. Appendix D contains most of the code of a simple application, a
desk calculator.

1.3 THESISOVERVIEW 5

1.4 A NOTE ON DICTION

I have tried in vain to avoid the use of "he" and "his" as generic pronouns. As Mary-
Claire van Leunen notes in A Handbook for Scholars, no one has yet found a reasonable
substitute.

6 Chapter 1" INTRODUCTION

Command Languages

In 1973, C. J. Stephenson wrote, "Advances in computer languages during the past fif-

teen years have not generally been reflected in command and control languages. Those
in common use are for the most part primitive and awkward" [Stephenson 73]. The same

can be said today with respect to user interface design. The introduction of windowing
and direct manipulation interfaces has made many systems easier to use. However, these

systems do not provide command languages that meet the needs of their users. In fact,
some provide no command language at all.

This chapter explains what a command language for a window system should provide

and the issues that must be addressed in designing such a language. Given the vagueness
of the term "command language," the chapter first provides a concise definition and

describes some important characteristics of this class of computer language. The fi_llow-

ing section introduces the notion of completeness as a way of measuring the power of a

command language. Subsequent sections examine completeness in text-based systems
and window systems.

2.1 COMMAND LANGUAGE BASICS

A command language is a computer language that provides an interface to an application

or operating system. The language consists of the commands of the underlying system.

This definition uses the word "language" in its most general sense, meaning the symbols

and gestures used for communication, in this case between a user and a program. This
thesis focuses on programmable command languages. A program is a set of instructions

that automate some process; a programmable command language enables a user to

specify the process in a form that can be executed by the computer. Command language
programs, in effect, extend the interface between the user and the system, allowing the
user to create new commands and modify existing ones.

8 Chapter2: COMMANDLANGUAGES

The term command language is also used to describe a particular type of user interface,
one which is text-based, as distinguished from a menu-driven or visual interface. I will

not use this latter definition here, and unless otherwise noted, command language will

imply programmable command language. Throughout the thesis, "program" will refer to
a command language program written by a "user," while "application" will denote a

program written in a general-purpose programming language by an application
"developer" or "designer."

Extension languages are one type of command languages. An extension language is an

application-specific command language, providing a programmable interface to a single
application. While an operating system has a command language, an editor has an exten-

sion language. Part of my thesis is that the same language should provide an interface to
applications and the system as a whole, eliminating the need for this distinction. In the

discussion that follows, I will not distinguish extension from command languages.

As Maurice Wilkes first observed, a computer language consists of "two languages, one
inside the other; an outer language that is concerned with the flow of control and an inner

language which operates on the data" [Wilkes 68]. Table 2.1 lists a number of command

languages and the inner languages they support. While the distinction between inner and

outer languages exists in any computer language, it is especially visible in command lan-

guages. Although programming languages rarely support more than one inner language,
a few command languages do provide interfaces to a number of systems. Rexx and its

predecessors, Exec and Exec 2, are prominent examples [Cowlishaw 84].

The distinction between inner and outer languages is often blurred. Most manuals, in

fact, present the two languages together. 1 However, separating them allows developers
to use the outer language to support multiple applications (inner languages), reducing im-
plementation costs for themselves and learning time for users.

The outer language determines the form of command language programs. A program
may consist of a list of input events, user commands, or procedures with associated

parameters. It may be a linear sequence of instructions or a full-fledged program, includ-
ing control structures, variables, and subroutines. The most common form of a command

language program is the macro, a command that replaces an unconditional sequence of

commands. Command languages include keyboard macro facilities and programming-
by-example systems as well as general-purpose programming languages.

A system that provides a command language allows a user to be replaced by a program.
The myriad of command languages share one common feature: each permits the user to

1See,forexample,the Bourneshellandtm]x Emacsmanuals[Bourne78,Gosling82].

2.1 COMMAND LANGUAGE BASICS 9

Table 2.1. Example command languages

Command Inner
Language Language Description

Bourne shell UNiX The first widely used UNIXcommand language [Bourne
78].

C Shell UNIX A Bourne shell descendant with a C-like syntax [Joy 79].

BAT files MS-DOS A simple command language for creating batch files
[DOS 86].

Rexx VM/CMS A command language that supports multiple applications
XEdit including the operating system, a text editor, and a
GDDM graphics system [Cowlishaw 84, XEdit 83, GDDM 83].

PCL Tops-20 An extension to the Tops-20 Exec that supports a pro-
grammable interface to applications as well as the operat-
ing system [PCL 82].

Awk text A language that associates actions with patterns found in
manipulation lines of a text file [Aho 87].

Teco Tops-20 Emacs Teco, a line editor, was the implementation and extension
language for the original Emacs [Stallman 81].

MLisp UNiXEmacs The first version of Emacs implemented on UNiXprovided
a Lisp-like extension language [Gosling 82].

SpiceLisp Hemlock Hemlock is an Emacs-like editor whose implementation
and extension languages are both Lisp [MacLachlan 84].

capture in written form what can be done interactively and then to execute the stored

program. An application often makes no distinction between commands issued directly

by the user and those issued by a command language program. This is not by accicient--

applications are easier to build if they only need to provide a single interface. This ex-

plains the bizarre syntax of some command languages. While programming languages

seem to be designed to be aesthetically pleasing, command languages are often designed

to generate commands for unsuspecting applications.

The similarity between the interactive and programmable form of a command language

makes the language easier to learn and use. The elements of the inner language are those

users employ interactively everyday. Users find they have been writing (unrecorded)

command language programs every time they use the system. They can move gradually

from simple macros to complex programs as they learn the non-interactive components
of the command language.

10 Chapter2: COMMANDLANGUAGES

2. 1.1 Uses of command languages

Command languages are flexible tools that support a variety of uses. This section

describes the most common uses of these languages.

Keyboard macros are the simplest yet most common use of command languages. Many

applications provide a facility which allows a user to record a sequence of keystrokes that
can be played back later. The language constructs are exactly the interactive commands

available to the user, and so there is little that even the casual user must learn to begin
using keyboard macros. Although some systems allow macros to be saved for use in

future sessions, in practice few macros are saved since most are written to perform a very
specific task. It is frequently easier to rewrite a macro than to design a general one.
Since macros are so easy to construct, it is often worthwhile to create one that will be
used just a few times and then discarded.

Command languages frequently serve to customize an environment. Many interactive

applications allow a user to define a personal profile which changes default parameter

settings, declares command synonyms, and issues start-up commands. Applications with

more powerful command languages extend the purpose of the profile, permitting a user to
modify or add new commands. Support for customization does have some drawbacks,

including increased difficulty in training new users, in transfer of knowledge between
users, and in maintenance of extensions as the underlying system changes [Betts 87].

Command languages are also used to write programs to carry out tasks too complex for a

keyboard macro, yet simple enough not to require the use of a general programming lan-

guage. An example is a program that removes backup and temporary files from a user's

directories. These programs are more difficult to construct than keyboard macros, and so

are less likely to be written for a specific task and then thrown away. However, tasks that

fall into this category, sometimes called "personal programming" or "programming in the

small," do not require the efficiency or robustness that general-purpose programming lan-
guages provide. In many cases, the command language program is easier to write than

the corresponding program in an ordinary programming language because it can make

use of higher level primitives provided by some applications. The languages listed in

Table 2.1 are all used for this type of programming. In an operating system command

language, the primitives are programs, and the command language serves as a "glue" lan-
guage, tying together independently written applications.

Some command languages are powerful enough to support the development of applica-
tions usually implemented in a general programming language. A wide range of

programs have been written using MLisp, the UNIX Emacs extension language, although

most of these programs seem to be mail readers [Borenstein 88a]. In fact, for the past

2.1 COMMANDLANGUAGEBASICS 11

few years (1985-1987), the most widely used electronic bulletin board reader inside the

Computer Science Department at Carnegie Mellon University has been one written in

MLisp [Borenstein 85]. As is true for personal programming, the command language

approach is attractive because of the powerful primitives available. An interpreted com-

mand language is especially suited for the iterative nature of user interface development
[Sheil 83].

Yet another use of command languages is to test programs. Regression testing is a

method of determining if changes to a program have introduced bugs into supposedly

unmodified parts of the program. To see if the program has regressed, a tester records

the response of the original program to a set of inputs, subjects the modified program to

the same inputs, and compares the responses to the original output [Petschenik 85]. A

tester can automate the process by recording inputs in a command language script. If the

command language can record output, then testing can be completely automated.

If the command language includes a recording mechanism, it can be used for another
kind of testing--human factors evaluation. Observing real users trying new applications

and new application features helps user interface specialists and application developers

learn what works and what needs to be revised. Recording user input in a script is often

more practical than the two most common alternatives--videotaping and recording user
sessions by hand--since the data is saved in a form that can be easily analyzed. For

example, one study of UNIX analyzed frequency and grouping of operating system com-

mands [Kraut 83]. A problem with this approach is the huge amount of information

recorded. The UNIX study limited keystroke recording to just a few subjects and

depended on semantic information (a record of process invocations) for the rest of the

group. Another study depended entirely on semantic information [Hanson 84].

2.1.2 Evaluation

A command language, like any other tool, is successful if it makes its users more produc-

tive. For any given task, four factors determine command language productivity:

• Feasibility. Can the language be used to perform the task?

• Ease of use. How easily can the language be used to perform the task?

• Efficiency. How quickly can the task be performed?

• Generality. What constraints does the language impose on applications and
the underlying system?

This section discusses each factor and its importance in determining the quality of a com-

mand language.

12 Chapter2: COMMANDLANGUAGES

Feasibility

Determining the feasibility of using a command language for a range of tasks is the first

step in the language's evaluation. A command language does not stand alone. If a task

requires the use of one or more applications, can the command language be used with

these applications? Even when the command language is available within an application,

its use may be limited. For each interactive command, is there a corresponding function
in the command language?

Ease of use

Ease of use is critical to the success of a command language. Command languages rarely
provide functionality otherwise unavailable; usually a task performed by a macro can be

done by hand or by a program written in a standard programming language. Given a
particular task, a command language is useful only if it is faster to write and execute a

macro than it is to do the task by hand or to write and execute a program using a general-
purpose programming language.

A user must estimate the cost of each approach, with the best solution determined by the
amount of use expected, as illustrated by Figure 2.1. Two factors determine cost: the

time required to write the program (zero when executed by hand) and the time required to

execute it. If the task will be repeated, the value of the command and programming
language solutions increases since the cost of writing the program is amortized over the

number of executions. As the number of repetitions grows, it becomes more likely that

the programming language approach will be the most efficient since it is usually fastest

per repetition. The usefulness of a command language cannot be predicted without

knowing the environment in which it will be used. Command languages are less valuable

in easy-to-use systems and in systems with easy-to-use programming languages.

A language's primitives--the components of its outer and inner languagesmlargely
determine its ease of use. While feasibility addresses the question of whether the lan-

guage supports an operation, ease of use determines how appropriate the language primi-
tives are for solving particular problems. A command language with powerful but low-
level primitives may be too difficult for many people to use.

Additional criteria, outside the language itself, need to be examined as well. These con-

siderations center on the language's development environment and include ease of crea-

tion, turn-around time for making changes, and the availability of debugging tools. For

example, keyboard macros are easy to create but difficult or impossible to edit, while

more traditional command languages require more work to create but are easily modified
and tested.

2.1 COMMAND LANGUAGE BASICS 13

._E
v

to
O
o

Executedby hand

--- Commandlanguageprogram

C program

Number of Repetitions

Figure 2.1. Cost comparison of programming approaches

Efficiency

While command language efficiency is determined by the time required to prepare a

program and the time required to execute it, preparation time is often more important.

One study of UNIX shell programs found that many are three orders of magnitude less

efficient than equivalent C programs [Dolotta 80]. Users found this to be an acceptable

trade-off of "machine efficiency" for "people efficiency" (ease of use).

Even when using a relatively inefficient command language, most of the time needed to

execute a macro is spent inside inner language primitives. The primitives of the inner

language of a command language are usually much more powerful than those of the outer

language and take correspondingly longer to execute. This difference does not usually

exist for programming languages.

Generality

Generality measures how a command language constrains its client applications. A com-

mand language is a tool that works through the cooperation of a set of independent ap-

plications. Cooperation requires that applications accept certain restrictions. These

restrictions can have a least-common-denominator effect, preventing applications from

using certain features that cannot be incorporated across the system, and reducing the

choice of user interface techniques. For example, to avoid dependencies on particular

window managers, a user interface toolkit may prevent the use of operations that are not

provided by all window managers. In this way, constraints affect user productivity by

limiting the capabilities of the system and its components.

14 Chapter2: COMMANDLANGUAGES

All command languages impose constraints. All impose some computation model on

programs, although application developers can decide how strictly to follow this model.

The less closely they follow the model, the less system functionality they can make use

of, and the less their application's user interface matches the rest of the system.

The UNIX shell, for example, models an application as a filter acting on a stream [Pike

84]. Applications read data from standard input, write data to standard output, and send

special messages to standard error. Applications that follow these conventions can read

input from a file or another process, as well as interactively. The same is true for writing

data. Treating input and output symmetrically makes it possible for a shell programmer

to compose functions using pipes.

While successful, the UNIX model demonstrates the problems inherent in imposing con-

straints on applications. Numerous exceptions to the model exist since it does not handle

interactive applications well. Applications can be driven by scripts as long as they read

from standard input. However, output is more problematic. Many applications act on a

database (mail readers, text editors, and bibliography managers as well as general

databases) rather than generating output. In these cases, standard input consists of con-

trol commands only, without any data. Standard output is used for feedback as well as

data. Simply dividing output into standard output and standard error does not provide

fine enough control. Some applications never fit the model. The Diff file comparator,

for example, requires two inputs. The UNIX model, while simple and powerful, is too

restrictive for many applications.

2.2 COMPLETENESS OF COMMAND LANGUAGES

While the four factors discussed above can be used to evaluate a command language,

they cannot be measured precisely. This section presents the concept of completeness,

which, though still qualitative, can be more rigorously evaluated. Completeness is

closely related to both feasibility and ease of use. Understanding completeness also

makes it easier to determine what a command language should provide in a window sys-

tem. It helps to identify the services that existing command languages provide and the

analogous services that command languages for window systems should provide.

A command language permits users to write programs that can do much of what can be

done interactively. A system is complete only if users are able to accomplish in a com-

mand language program everything they are able to do interactively.

Both the inner and outer languages affect completeness. A user interacts with a system

by invoking operations, examining the results of these operations, and invoking more

operations based on analysis of these results. The inner language must make available a

2.2 COMPLETENESSOF COMMANDLANGUAGES 15

full set of operations for completeness to hold. The outer language must permit a
program to manipulate operation results and make decisions based on these results.

Completeness should be evaluated with respect to a level of abstraction in the user inter-

face. Consider a drawing editor such as MacDraw for the Apple Macintosh. MacDraw

allows the user to draw geometric objects on a page. It represents an object as a sequence
of pixels determined by the position of the object and the resolution of the display. To

add a box to a drawing, the user presses the mouse button at one corner and drags the
cursor to the location of the other corner. As the user drags the cursor, the box is shown

as it would appear if the user released the mouse button at that point. This type of inter-
action, called rubber-banding, is an example of semantic feedback. The definition of

completeness seems to imply that the command language should be able to specify the
meanderings of the mouse as the user determines the final box corner. The definition

further implies that a command language program should be able to determine exactly
what pixels represent the box since a careful user could do the same. While this infor-

mation may be important in some contexts, it is more often irrelevant and is outside the

underlying model of the application. Identifying layers of user interaction makes it pos-

sible to precisely state what information should be accessible from a command language
program.

Many researchers have proposed models of human-computer interaction [Foley 82, Card
83, Shneiderman 87]. The model I present here, examining user interaction at four
levels, is based on these earlier ones.

• The conceptual layer defines the task concepts understood by the user. At
this level, the user can describe a task independent of any computer system
or application program.

• The semantic layer specifies functionality in terms of a specific application's
implementation of task concepts. Both the conceptual and semantic layers
describe classes of objects and operations on these objects.

• The syntactic layer defines the structure of tokens used to invoke operations
and to create output.

• The lexical layer maps physical actions into tokens and tokens into display
effects. In most systems, a window manager or graphics package handles
this mapping.

Depending on what is of interest, rubber-banding of a box can be analyzed at any of the
four levels. At the conceptual level, the user creates a box in a drawing. At the semantic

level, the user invokes MacDraw's create-box operator. In this example, there is little
difference between the conceptual and semantic levels. If MacDraw did not have a

create-box operator, the user would have to map the conceptual task into a sequence of

create-line operations. At the syntactic level, the application receives input events cor-

16 Chapter2: COMMANDLANGUAGES

responding to pressing the mouse button, moving the mouse, and releasing the button.
The mapping between the lexical and syntactic levels is trivial here, but it need not be.

The same syntactic tokens could be generated by another source, such as a macro re-

corder. Note that in this example, the path of the mouse and the time delay between input
events are important only at the two lowest levels. This is usually true. Furthermore, in

applications that do not provide feedback, the lexical layer can serve as a filter, prevent-
ing mouse movement or time delays from entering the stream of syntactic tokens.

The effect of the user's actions on the display can also be analyzed at each level. At the

conceptual level, the user has created a geometric entity of a certain length and width. At

the semantic level, MacDraw defines the box internally using some data structure. At the

syntactic level, the program draws the box by issuing commands to the low-level

graphics package. At the lexical level, MacDraw represents the box by a set of pixels on
the screen or by a box drawn on paper.

The importance of completeness differs at each level of user interaction. Completeness

at the conceptual level is critical for a command language. If the language is incomplete
at this level, the user may need to rely on interactive operations to perform a task. At the

semantic level, completeness is desirable but operations may be replaced with equivalent
ones without affecting the conceptual level. The syntactic level is usually invisible to the

user but does affect application programs. This is the most natural point to plug in a
command language. If the command language can mimic the stream of tokens that the

user produces interactively and consume the output the application produces, no changes
are needed in the application to support the command language. As the next two sections

will explain, lexical completeness is easy to attain in text-based systems but presents
problems in other systems. Lexical and semantic completeness determine ease of use of

a command language, while conceptual completeness determines feasibility.

2.3 COMPLETENESS IN TEXT-BASED SYSTEMS

Completeness is not difficult to achieve in text-based systems. Every action a user can

carry out consists of pressing keys. Although the user may view a command language

program as producing a sequence of commands for the environment, in practice most
command languages provide applications an uninterpreted stream of characters. The user

sees no difference between commands issued from a program and those invoked inter-

actively. The application sees no difference eithermit receives the same input stream in
both cases. 2

2This is not strictly true. In UNIX,for example,an applicationcan determineif its input source is a
programandalter its behavioraccordingly.

2.3 COMPLETENESSIN TEXT-BASEDSYSTEMS 17

Some of the most widely used text-based operating systems, including UNIX, MS-DOS,
VM/CMS, and Tops-20, include nearly complete command languages [Bourne 78, DOS

86, Rexx 83, PCL 82]. In these systems, users enter commands by typing a line of text

followed by a termination character. A command language can provide lexical complete-

ness by adopting the same approach, sending lines of text to applications. Simple com-

mand language programs can be created by placing a list of commands in a file as they

would have been typed to the system executive. The languages all provide some way of

gathering output. Command language programs can evaluate this output and alter execu-
tion through the use of conditionals, gotos, variables, and, in some cases, subroutines.

Because so much of a user's time is spent inside applications, a command language

should be able to execute subcommands within an application as well as invoke the ap-
plication itself. A powerful command language will not increase productivity if a user is
rarely in the environment in which the language works.

However, completeness does not often hold at the application level for existing command

languages. In UNIX and MS-DOS, for example, the system command language is un-

available inside applications. The Tops-20 command language, PCL, does allow a script

to send input to an application and to read the output generated. Rexx permits applica-

tions to supply their own interface, but few do. In many systems, a few applications fill
this void by supplying their own command language.

While the UNIX shell language cannot be used inside an application, it can send input to a
program and record the program's output. The output can be examined to determine the

next program to run. String pattern matching programs can aid output processing.
However, this style of command language programming doesn't work with screen-based

applications. Rather than assuming the output device is a teletype, these applications

support character-addressable displays. The command language can generate input for
this type of application but cannot evaluate output. The output is too low-level, contain-

ing device-dependent terminal instructions interspersed with data. This same problem

appears in window systems but is more severe since the use of screen-based applications
is much greater.

2.4 COMPLETENESS IN WINDOW SYSTEMS

The introduction of workstations with pointing devices and bitmap displays has led to

numerous advances in user interfaces. Mice and other pointing devices have greatly
changed the nature of input a user can supply. New displays have made it possible to

display graphics as well as more text than before--potential output bandwidth is orders
of magnitude greater. While character-addressable displays made it feasible to move
away from the simple teletype style of interaction, the combination of mouse and all-

18 Chapter 2: COMMAND LANGUAGES

points-addressable display have accelerated this trend, making computers much easier to
use.

This section reviews the differences between window systems and the more traditional

systems for which most command languages were designed, and then draws some con-

clusions about what should be provided by a complete command language for a window

system. It also notes some problems that arise in handling window system features.

2.4.1 Visual applications

An obvious change made possible by new hardware is the introduction of applications

whose underlying data is inherently visual. While Ivan Sutherland created the first inter-

active drawing editor over twenty years ago [Sutherland 63], only recently have drawing

programs become widely available. First vector and now bitmap displays support the

manipulation of graphical objects. Bitmap displays in particular allow applications to

display a tremendous amount of data, much more than was ever practical in text-based
systems.

Applications vary greatly in the amount of data represented by the same bitmap. By

examining application output at an appropriate level of abstraction, the data bandwidth

becomes more manageable. Applications exist within a hierarchy of abstraction, some of

whose levels are shown in Figure 2.2.

Calculator

Mail Reader I

Network Editor Text Editor

Object-Based Page Layout
Drawing Editor Editor

Bitmap Editor Abstraction

Figure 2.2. A hierarchy of applications

2.4 COMPLETENESSIN WINDOWSYSTEMS 19

While all the applications pictured present information using a bitmap, the underlying
data varies:

• The data managed by a bitmap editor such as MacPaint is just a matrix of
zeros and ones, represented by a bitmap whose pixels are white or black.
The user has control over every bit. The mapping between internal data and
the display is one-to-one: "What you see is all you've got."

• The drawing editor, whose display is superficially similar to a bitmap
editor's, manipulates a set of geometric objects. The actual bits that
represent a line are not part of the application's data but just an effect of the
presentation. The user can specify the location of the line but not its bit-by-
bit representation. The program has complete control over how to represent
the line at the limited resolution provided by the display.

• A page layout program, such as PageMaker, provides the user with the
ability to specify the exact location of text, but not at the pixel level. The
program exists midway in the hierarchy.

• The network editor, an application that models electrical circuits and logic
diagrams, only stores objects and their connectivity. The layout of the ob-
jects is not part of the data and not under user control.

• A text editor with automatic formatting, such as MacWrite, is similar to the
network editor. The user specifies what a document contains but not how it
is laid out.

• The mail reader's display (see Figure 5.10 on page 89) has little connection
to its data, compared to the other applications. Users have little control over
layout, although they do control the content of messages, just as they deter-
mine the contents of documents in a text editor. Other objects, such as the
list of message titles, cannot be changed. While implemented as documents
managed by the text editor, these objects have more structure than ordinary
text.

• Of all the applications shown in Figure 2.2, the calculator is the most
abstract. Its array of buttons (see Figure 4.5 on page 45) is part of its input
interface. Only the number display represents output. The bitmap displays a
string which corresponds to an internal number.

The more abstract the application, the less inherently visual is its data, and the greater is

the distance from the data's intemal representation to its external representation. While
the distance from the bitmap editor's data to its display is small, the distance for the cal-
culator is much greater.

The inability of a user to control details of the presentation characterizes a more abstract

interface. The difference between the text and page layout editors, for example, is that a

user cannot specify page locations in the text editor. The key step in placing an applica-

tion in the hierarchy of Figure 2.2 is classifying the information provided by the applica-
tion as part of the presentation or as part of the underlying data. In the text editor, text

20 Chapter2: COMMANDLANGUAGES

location is part of the presentation, while in the page layout editor, it is part of the data.
Similarly, in the network editor, object location is part of the presentation, while in the

bitmap editor, it is part of the data. Intuitively, data is what gets written to the disk, and

the presentation is everything else. 3 For tools that produce documents (including text,
drawing, table, equation, and graph editors), an alternative to the disk rule is that some-

thing is data if it affects the final product--the printed page. More generally, for any
application that produces multiple views---on paper and on the screen, or all on the
screen---data is what is common to all views.

The great amount of data presented by visual applications creates a problem for a com-

mand language. The type of data is just as much a problem. A user often examines the

output of one command to determine the next command to invoke. In a text-based sys-

tem, a command language can simulate this examination by performing string-matching

operations to compare actual output against expected results. This programmed pattern
recognition may not be possible given the output of visual applications. It is much more

difficult to recognize patterns in graphic commands than it is in text strings.

Recognizing the distinction between data and its presentation can make a command lan-

guage for a window system more usable, at least for more abstract applications. Com-

pleteness requires that application data be accessible. For a drawing editor, this means

the user must have access to the objects in the drawing, and for each object, to its defin-

ing points and attributes. An application whose command language interface provides

access to this information but not to the raw display is semantically but not lexically com-
plete. For a more abstract application, this strategy both reduces the sheer amount of data

and converts it to a more manipulable form. For an application as concrete as the bitmap

editor, there is no distinction between its internal data and its display, and so the only
interface that can be provided is the raw bitmap.

While this discussion has focused on output, much the same is true for input. Consider
the example presented in Section 2.2: a drawing editor that allows a user to create a box

by dragging a corner to its final destination. Even if the command language interface to
this operation only specifies two comers, no semantic information is lost. The level of

abstraction should be decided on a command-by-command basis. A bitmap editor might

provide the same box creation operation and use the same command language interface.

However, it might also have a sketch operation that paints each pixel crossed by the path
of the mouse cursor while it is held down. In this case, the input cannot be condensed if
semantic completeness is to be maintained.

3Thereis an exception to this rule: a programmay choose to preservesome presentationinformation
suchas thecurrentlocationin thedocumentor thecurrentselection.

2.4 COMPLETENESSIN WINDOWSYSTEMS 21

The idea of condensing input is not specific to window systems. Most existing textual

command languages do not give access to low-level keyboard interfaces, instead provid-

ing some more convenient interface. The UNIX teletype driver, for example, supports a
limited editing capability. While an application may obtain input as the user enters it,
most applications read a line at a time, permitting the user to edit the line of text until an

end-of-line character is entered. The application program is unaware of any editing, only
seeing the final result. The system eliminates timing data in the same way. While this
information is available, most applications never see it.

The choice of abstraction level depends on the objectives of the command language as

well as on the application. For example, if a command language is used for regression
testing, it may be necessary to record and replay user commands exactly and to examine

application output at the graphic command (syntactic) or bitmap (lexical) level. For most

command language uses, however, semantic completeness of output is "good enough."

2. 4.2 Direct manipulation interfaces

Many applications, graphical as well as non-graphical, take advantage of new technology

to provide the user a more direct interface to their underlying data and operations. The
features of direct manipulation interfaces [Shneiderman 87] include:

• Constantly visible objects and actions of interest.

• Rapid, reversible, incremental actions.

• Replacement of textual commands by direct manipulation of objects of interest.

This style of interaction, pioneered by researchers at the Xerox Palo Alto Research Cen-

ter [Goldberg 84, Teitelman 85], was introduced into the computer mainstream by the

Apple Macintosh. Figure 2.3 shows a typical direct manipulation display, a Macintosh

program that allows users to learn about and change system parameters. The control
panel constantly displays the range of legal settings for each parameter as well as its cur-

rent value. A user sets a parameter by clicking the mouse button, not by entering values
from the keyboard.

Hutchins, Holland, and Norman describe these interfaces at a more abstract level

[Hutchins 86]. Direct manipulation interfaces provide a "feeling of directness" charac-
terized by:

• Engagement. A feeling of communicating with the objects of interest, not a
computer.

• Articulatory distance. Closeness of task and system objects at the lexical
level. Articulatory distance measures the degree to which the form of com-
munication reflects the task objects and operations.

22 Chapter 2: COMMAND LANGUAGES

-r-l,,,, ,,,, , Control Panel

• • • • AppleTalk 7mmmm
mmmm

• • • • _ Connected 6mmmm
mmmm
m m m m C_ Disconnected 5

DesktopPattern :" " 4

I Mouse 3_ _IF ""_ Tracking 2

"°'°'" I-?JYourDouble-ClickSpeed 1
"" 0

© Speaker
Mouse Tablet Volume

PointBlinking C] (_]C)

Slow Fast RAM _ C) i_2.0 Cache J 32KI On Off

Key Repeat Rate I',',',',',',',',',',',',,l FFFR Delay untilRepeat000 0 :...........,,",...... 0 0@00
Slow Fast ,, , Off Long Short

Figure 2.3. The Macintosh control panel

• Semantic distance. Closeness of task and system objects at the semantic
level. Semantic distance measures the degree to which the semantic con-

cepts presented by the interface correspond to the user's concepts and goals.

Direct manipulation interfaces provide more feedback than other interface styles, often at

a semantic level. An example of semantic feedback is the use of "gravity" in a drawing

editor. As the user rubber-bands a line, the editor may restrict the placement of the line's

endpoint to existing points whenever the cursor is close to one of these points. The use

of gravity assumes that the user rarely wants to place two points very close to one

another. If they are close, the user most likely wants the points to coincide.

The features that make direct manipulation interfaces easy to use are the same that make

integration with a command language difficult: continuous visibility of objects, rapid

actions, and replacement of text commands by graphical manipulation.

• Implicit computation. In a text-based system, the user must make explicit
queries to determine the state of the system. In a direct manipulation inter-
face, the user can obtain information just by examining the display. Often, a
user will choose data by directly selecting a displayed item rather than com-
puting the selection. The user performs a critical part of the computation in
his head. It is difficult to automatically record this type of information in a
command language script. For example, while writing a macro in a text
editor, the user may select a word. The system cannot determine the search
method used to choose the word: its position or its content.

• Level of abstraction. Rapid incremental actions are easy to carry out but

2.4 COMPLETENESSINWINDOWSYSTEMS 23

hard to understand in retrospect. It is difficult for a person to read and edit a
macro that contains many simple low-level operations.

• No textual interface. A command language interface is trivial to define when
a user interface is text-based. The commands of the user interface can serve
as the inner language of the command language. However, the user interface
is only the starting point for the design of the command language interface
for an application with a direct manipulation interface.

Semantic feedback causes problems related to these issues. For example, when users

take advantage of gravity while drawing lines, they are actually querying the application
about the location of existing lines during the create operation. Semantic feedback em-

beds high-level query operations within simple low-level operations.

In sum, direct manipulation interfaces greatly increase the bandwidth of communication

between the user and the system for non-graphical as well as graphical applications. Not

coincidentally, this communication is no longer purely textual and sequential. Both of
these developments pose problems for command languages, which tend to be oriented

towards low-bandwidth text-based applications.

2. 4.3 Window managers

One of the ideas resulting from the development of powerful workstations is the multiple
window paradigm. By placing concurrent applications in physically distinct virtual ter-
minals, this paradigm has made multi-tasking easier to understand and to use.

While multi-tasking operating systems have existed for quite some time, only sophis-
ticated users had been able to take advantage of this feature and only in a limited fashion

in text-based systems. In standard UNIX, for example, multiple programs can run simul-

taneously, but the system displays output as it is generated, often interleaving the results

of the executing programs. There is no physical separation of the output of different

applications. Furthermore, because the user cannot easily specify input destination, only
one program can actively seek input at a time. For these reasons, the use of multiple

processes tends to be limited to simple batch processes such as compilations and print
requests.

In a window system, even novices are likely to execute multiple interactive programs

simultaneously. The multiple window paradigm has significantly changed the way users

interact with the system. As shown in Figure 2.4, windows divide information provided

by applications into physically distinct regions of the screen. Many common tasks may
involve more than one application. While using one application to carry out a task, the

user may need to access information via a different application, perhaps to obtain help or
to find a file. The use of another window to execute the second application allows the

24 Chapter2: COMMANDLANGUAGES

kventee= =ubee=_l folders with new me_
rSlJ orl_cs,madc_(Locd 8bnrd, 12of 479 new)
E_J andrew,_pes (Local Bboard,2 of 475new)
El,/ an_w.hint= (Local Bbomd,2 of550ncw)
E_]_" anda_eapicy-_op (Local]]bo_rd,Oof 4T new)
E2],/ mndrcw.we=h(Local_oard, 1 of 55new)
E_]_/ orLmmd-se.'wice,s(Locld Bbom'd,i of 29nrw)

•/ 22-Fe.b-88GLopin enS_e.ncl.AixonWahl (715+0)
V" 23-Feb_8 gem K/m Ca/- Ayand Ogura t_J476.f] 4-

Tom Kha Oal

To:. (4-_ se..,-vinl_)
Subject:
CC: Won't Claret $ cupsThai Chick= Broth(rrz_pc fx_lows)mrchiclumstock

Won't HSdim 7.ct_s u_weete.zed co¢or_tt
VZ cup tmmn J_

Aewt 1.,2cup Rsh s_
3-4 piece=dd_l 8d_nKamot
3-4 temonleaves_¢Xtsp,1e0_1=¢1ZeSt
Z sta_cs 8ndy minced lemon iLrass,or2 top. ddcd _ton _us
One.8-oz,can _'¢awmu_hroom_
2 whol_ chicken breasts, _'lcd, boned, end slicedinto 1-i_ piece
ZR'e.shgreen _ p_op_s, _iLou,adlys_e,d 1/_ d_ck
U2 top. sulL&

He.a¢_te ch/cken bro_ b_ a la_e, pot. Add rile co_ _ and st:h"_orout4y un_ blended. Add
lemon jtdcc and fish smsc_ Stir in salanp root. lemonlc..-ves,lemon iLrus, musbromns,
chicken. SIn_ner1_-20 n_es, or undich/c_ met_ is Justcooked. Stir_ ckglpeppers and
su_,Brandservehot

ThatCh__Y,_m_-om (SoupO,_)

Make=10cups

Re,a4yto sendan_w moss.e. Ch¢cl_01nctngmessase,serversr.a_,,done..

Figure 2.4. A window system display

user to obtain this information without altering the context developed in the original ap-

plication. Sometimes the user may only need to confirm some facts without explicitly
moving data between the two applications, while in other situations the information itself

must be transferred. Some systems provide tools that encourage this style of interaction.
For example, a few support a cut and paste facility that allows the user to select and

move information from one application to another without using an intermediary file.

Traditional command languages do not support this kind of interaction between applica-
tions.

The window manager has taken over some of the responsibilities traditionally held by the

command language. In window systems running on top of UNIX, for example, users of-
ten change or kill the active process using window manager commands rather than shell
commands. Cut and paste replaces, to some extent, the features in the shell that allow the

user to move data between applications. The Macintosh provides a more extreme ex-

ample. With no textual command language available, users must rely exclusively on the
window manager (the Finder) and cut and paste.

A command language for a window system must incorporate comparable functionality.

2.4 COMPLETENESSIN WINDOWSYSTEMS 25

A command language program, like the user, should be able to communicate with mul-

tiple active applications at the same time. Given this capability, a program could perform

some actions within one application, examine the results, and carry out operations in
another application based on these results. Within this framework, the command lan-

guage could easily support tools already available interactively that allow a user to move

data from one application to another, including cut and paste.

2.5 SUMMARY

After defining some basic concepts and describing uses of command languages, this
chapter established four evaluation criteria: feasibility, generality, ease of use, and ef-

ficiency. Feasibility determines whether a command language can be used to perform a

task, while generality determines the constraints the language places on the underlying
system and applications. Ease of use and efficiency determine how well suited a com-
mand language is for a task.

While these criteria are helpful in comparing languages, the notion of completeness

provides a more objective measure of the power of a command language. A language is
complete, at a given level of abstraction, if a command language program can do what a

user can do interactively. If a command language is lexically complete, users may' write

programs with the same commands that are available interactively. Semantic complete-
ness ensures that any function provided interactively has an equivalent in the command
language.

Lexical completeness is desirable since it greatly simplifies learning a command lan-
guage and enables users to create programs quickly and easily. It also increases

generality, since, in some implementations, command language programs can be sub-

stituted for an interactive user without the application's knowledge. However, charac-
teristics of window systems and direct manipulation user interfaces often make semantic

completeness a more appropriate objective. Operating at a semantic level allows a com-

mand language to condense the high bandwidth of input and output typical of window

systems. It also allows programs to manipulate graphical data more conveniently.

Moreover, semantic descriptions of operations produce more readable and more easily
modifiable command language programs. Understanding of this trade-off will aid in the

evaluation of command language alternatives to be presented in the next chapter.

26 Chapter 2: COMMAND LANGUAGES

Approaches to the Problem

Command languages have a long history, beginning with job control languages that

managed tasks in early batch computer systems. The introduction of interactive comput-
ing led to a new generation of more powerful languages. More recently, the introduction

of direct manipulation interfaces has spurred the development of input recorders and pro-

gramming by example. This chapter reviews these tools, emphasizing their use or poten-

tial use in window systems. It begins with traditional text-based languages, and then

moves on to input recorders--command languages in which users create programs by

executing them rather than explicitly writing them down.

3.1 TEXT-BASED COMMAND LANGUAGES

Most command languages are text-based, even in window systems. The obvious reason
is that alternatives have become generally available only in the past few years. However,

there is a more compelling reason for the predominance of text-based languages: written

language is more expressive for many purposes than images. Fine details and large

amounts of data can often be manipulated more easily. For both these reasons, current

window systems provide a wide range of text-based command languages.

3.1.1 Application-specific languages

One of the most successful approaches to the command language problem has been the

development of extension languages---command languages within applications. Although
most common for text editors, particularly the Emacs family, 1 command languages have

been written for many applications, including drawing editors and spreadsheet programs

[Raker 85, Hergert 86].

1Severaldistincttext editorsshare the name"Emacs"[Stallman81,Gosling82,Stallman86]. The key
featurecommonto all instancesof Emacsis extensibility.Unlessotherwisenoted,commentsaboutEmacs
applyto all versionsof the editor.

28 Chapter3: APPROACHESTO THE PROBLEM

For example, Excel, a Macintosh spreadsheet program, provides a macro language that is
as powerful as some programming languages [Hergert 86]. A macro is a column in a
spreadsheet; each cell in the column contains a statement of the macro. Users write mac-

ros on the spreadsheet and can refer to an expression or statement in the program by its

location in the spreadsheet. Statements use the same syntax as cell formulas, enabling
users to avoid learning a new language. However, since the cell language was not
designed as a programming language, it has some unusual and inconvenient features. For

example, storage for variables must be explicitly allocated since a variable is just another

cell in a spreadsheet. Despite these problems, Excel has become the most popular
spreadsheet for the Macintosh, in large part due to its macro capabilities.

UNIXprovides many application-specific languages as well as tools for building new ones

[Bentley 86a]. The UNIX pipe mechanism makes it convenient to build languages imple-

mented as preprocessors for other languages by enabling the output of one process to be
tied to the input of another. For example, preprocessors for Troff, the UNIX document

formatter, allow users to create pictures, tables, equations, and graphs [Kernighan

84, Kernighan 82, Bentley 86b]. All these "little languages" fill a specific niche yet

make use of facilities in more general languages. For example, text in pictures may in-

clude ordinary formatting commands passed through to Troff. The graph language uses

the picture language to generate Troff commands that place graph elements on the page.
Make, Awk, and Sed are examples of little languages outside the domain of document

production [Kernighan 84]. Each of these languages is tailored towards the particular
kind of object it can manipulate.

HyperTalk, the language embedded in the Macintosh's HyperCard, is another example
[Goodman 87]. HyperCard is an application that allows users to build stacks of cards

containing text and graphics. Each card is a window full of information. A card may

contain buttons that are links to other cards or that trigger the execution of HyperTalk
programs. HyperCard has been used to implement address books and calendars, a car

repair manual, and a HyperCard programming manual that includes working examples of
HyperTalk programs.

HyperTalk scripts create pictures by describing, in an English-like syntax, interactive

commands that would draw the desired graphics. For example, the following script will
draw a circle:

chooseselecttool
doMenuselectall
doMenuclear picture -- deleteeverything
reset paint -- setstandardconditions
chooseovaltool
set lineSizeto 2 -- doubleline width
set dragSpeedto 0 -- drawas fastaspossible
dragfrom 10, 10 to 250, 250 -- dragasuser would

3.1 TEXT-BASEDCOMMANDLANGUAGES 29

HyperTalk's inner language mimics the interactive interface as closely as possible in or-
der to ease the transition from user to programmer.

An application-specific language can be a very effective tool. It is often easier to use and

more efficient than a system-wide language. Generality is not an issue since the language

is designed for the application. The language can be tailored to the task at hand, provid-

ing constructs useful for the particular application and dispensing with costly but in-
appropriate features.

Several disadvantages can outweigh these considerations. The ease of use of a task-

specific language must be compared to the cost of learning and remembering yet another

language. As is true for interactive interfaces, consistency across applications is impor-

tant. Secondly, it is more efficient to provide a single command language than to imple-
ment one for each application. Savings can be achieved in development time, main-

tenance costs, and system size. Finally, a set of application-specific command languages
cannot be used to program tasks that involve more than one application.

3.1.2 Package-specific languages

A related yet more general solution is to provide a programmable interface within a

library or support package. For example, Grits is a database package running on the

Andrew system that has been used to build a variety of applications, from an on-line

questionnaire to a data retrieval and analysis program called The Great American History
Machine [Miller 86].

From one perspective, UNIX Emacs is also a support package, serving as a base for many

applications, from mail readers to directory editors to cheese-ordering programs

[Borenstein 88a]. Its extension language serves as both a language for writing macros

and as a language for implementing user interface applications. The editor's ability to tie
processes to text buffers enables it to function as a window manager for character-
addressable terminals.

Another example is NEWS, the Network Extensible Window System [NEWS 86]. NeWS

includes the PostScript page description language [Adobe 85] as an extension language,
permitting clients to define new commands. These commands, actually PostScript

programs, can be downloaded into the window manager to improve performance. The

NeWS extension language, unlike a typical command language, is intended for use by

application developers, not end users. While available to all window manager clients, the
language supports a narrowly defined range of tasks.

A package-specific language has the same advantages as the application-specific ap-
proach without all the disadvantages. Since the domain of these packages is limited, the

30 Chapter3: APPROACHESTO THEPROBLEM

language can still be tailored as appropriate. Furthermore, the cost of implementation

and learning can be amortized over a set of applications. If all applications in a system

use the package, the language is effectively a system-wide command language.

However, most package-specific languages do not permit mixing of operations from mul-
tiple applications.

User interface management systems

One particular kind of support package is the user interface management system. A

UIMS provides the programmer with a variety of tools that are designed to simplify the
creation of high quality user interfaces [Thomas 83, Olsen 84, Pfaff 85]. A UIMS intro-

duces a higher level of abstraction for input and output so that the developer can take

advantage of the bitmap display without dealing with formatting details.

According to the model of Tanner and Buxton [Tanner 85], the components of a typical
UIMS correspond to two phases of user interface development: preparation and run-

time. (See Figure 3.1. 2) In the preparation phase, the application developer specifies an

application interfacemthe operations and data of the underlying functionalitymand a
dialogue description--how the application is presented to the user. The UIMS uses the

dialogue and application interface specifications and a library of interaction techniques to

generate a user interface specification (Figure 3.2). The run-time phase supports the ex-

ecution of this specification. Some UIMSs support a follow-up phase by collecting data
about user interaction for later analysis.

@ ne,ace@r Specification

Figure 3.1. A model of user interface management systems

The style of programming mandated by the typical UIMS makes it easy to add a com-

mand language, although no UIMS described in the literature now supports one. By re-

quiring the developer to specify the application interface and the dialogue description,

most UIMSs force the programmer to separate the user interface from the base applica-
tion. The code for the user interface is generated automatically by the system from these

specifications. The application interface could be extended to provide a programmable

interface for users of the application. Since the user interface would access the applica-
tion functionality through the same interface, the command language programmer would
be guaranteed the same functionality as the interactive user.

2Figures3.1 and 3.2 are modifiedversionsof diagramsthat originallyappeared in Hill's thesis[Hill
87a].

3.1 TEXT-BASEDCOMMANDLANGUAGES 31

Dialogue
Specification

Interaction I UserTechnique ._ Interface

Library I Specification

Application
Interface

Specification

Figure 3.2. UIMS preparation phase

3.1.3 System-wide languages

While application- and package-specific approaches solve the command language

program in a limited domain, only a system-wide command language can provide a total

solution. A system-wide language, by definition, supports a diverse set of applications.

Most implementations obtain this generality by positioning the language at a very low
level so that it can see and control all application input and output without the

application's knowledge. In text-based systems, this strategy can achieve lexical com-

pleteness. As Chapter 2 explained, this approach is not effective in window systems.

System designers have tried several new tacks, including extending existing languages,
adopting an object-oriented approach, and providing an open system with a single lan-
guage for both developers and users.

Traditional languages and extensions

Operating system command languages such as the Bourne Shell and the C Shell have

proven themselves by being of practical use for thousands of users over the course of

several years [Dolotta 80]. Even in a window system, these languages can be used to
automate many of the tasks that a user might want to do. However, the command lan-

guage programmer has no control over windows and other new objects. The programmer

does not have the same control over simultaneously executing programs that is available

interactively. Mouse input cannot be provided to programs. Straightforward extensions

can overcome some of these problems, but others cannot be disposed of as easily. More

than trivial improvements are needed to enable these languages to handle graphical out-
put, to invoke and receive results from application subcommands, and to mix subcom-

mands from different programs. However, while weak in terms of completeness, most

operating system command languages impose few constraints on applications.

Other work has concentrated on particular aspects of interaction in window systems.

32 Chapter3: APPROACHESTO THE PROBLEM

Gill, for example, designed an interwindow communication facility analogous to pipes
[Gill 86]. Window-based processes can be dynamically linked by window channels.

Filters can be inserted in channels to modify the data stream. This system has only been

used with terminal emulator windows and does not deal with a key issue, the processing
of graphical output.

Object-oriented languages

Much of the research on command languages in the past few years has focused on

presenting an object-oriented model to the user. One of the first object-oriented com-

mand languages was COLA, a command language for the multi-processor C.mmp

[Snodgrass 83]. Smallworld is another experiment in object-oriented programming in a
typescript-based system [Laff 85]. Its developers have extended the Rexx command lan-

guage to include several of Smalltalk-80's key concepts. The principal goal of the sys-

tem is not to provide another programming language, but to allow users to better organize
files, programs, and system commands into one manageable whole. SmaUworld has also

been used to explore the utility of the object-oriented paradigm in a conventional setting.
Ewing has developed a Smalltalk-80 interface to UNIX, including a window interface to
the shell [Ewing 86].

Single-language systems

Another candidate for a command language is a programming language whose instruc-

tions can be invoked interactively. Smalltalk-80 and Lisp are examples of programming

languages that possess some of the most desirable characteristics of programmable com-

mand languages. Programs are easy to create, and execution is immediate. They become
first-class citizens of the environment, invoked just as system commands are.
Smalltalk-80, in particular, is well-suited for window environments. It is embedded in an

interactive programming environment with a powerful graphical interface. Its object-
oriented paradigm meshes well with the style of interaction presented by the Smalltalk-80

tools [Goldberg 84]. Systems have been introduced commercially based on both Lisp
and Smalltalk-80.

However, any single-language system possesses one major disadvantage. Like package-
specific languages, these monolingual systems have too restrictive a domain to meet the

goals for a command language for a window system. In some cases, the language is
available only within a closed system that does not provide access to needed facilities.
Sometimes, a single-language system is not appropriate or not available for non-technical

reasons. While unsuitable for a system that must support a heterogeneous set of applica-
tions, under some circumstances a user interface management or single-language system
may be the solution of choice.

3.1 TEXT-BASEDCOMMANDLANGUAGES 33

Other approaches

Keedy and Thomson have implemented a system in which the command language inter-

face is at the procedure rather than program level [Keedy 85]. The language can call any

entry point in a module. Programs are special only in that they are modules with a single
entry point. Typed parameters may be passed to procedures invoked from within com-

mand language programs. The system is similar to the one proposed in Chapter 4.
However, its emphasis is on providing a flexible programming environment in a text-
based system.

Gates has suggested that applications communicate with a command language via a com-
mon application protocol [Gates 87]. One example of a protocol is the MS Windows

Dynamic Data Exchange, based on shared memory. Existing applications must be ex-

tended to take advantage of this strategy. Developers would be willing to pay this price,
Gates claims, if their programs are able to remain autonomous and distinct and if the

programming interface does not require a complete redesign. This proposal focuses on

text-based applications and suggests that there should be a one-to-one correspondence
between the user and programming interface.

Notldn, Griswold, and Donner have investigated a similar strategy [Notldn 87]. Their

major concern is not command languages but application enhancement--how to manage
the extension of functionality. They list three requirements for extension mechanisms:

procedure-based interfaces, support of multiple extension languages, and speed. Ira their

approach, applications are described as abstract data types. Applications and extensions

are compiled and dynamically linked into a process called the Extension Interpreter (EI),

just as new functions can be loaded into a programming language interpreter. By using a

remote procedure call interface, EI is able to support multiple extension languages--the

current system supports C and Icon. EI permits any application to support extensions by
simply defining an abstract data type interface. All applications share the same extension
mechanism.

Tinylisp, a small lexically-scoped dialect of Lisp, serves as both an application extension

language and a system command language for a Modula-2+ environment [Ellis 87].

Tinylisp is written as a Modula-2+ module that can be bound into any application. Both
languages can call functions in the other language. Tinylisp overcomes most of the draw-

backs of extension languages. By providing one language that can be used by any ap-
plication, it reduces implementation costs for developers and learning costs for users.

CUSP was a command language expressly designed for a window system, the Xerox Star

Information System [Smith 82]. The language failed as a commercial product. Its major

problems included an arcane syntax and its failure to permit the user to specify all the
objects available interactively [Halbert 85].

34 Chapter3: APPROACHESTOTHE PROBLEM

3.2 INPUT RECORDERS

The simplest approach to the command language problem is to provide an input recorder
that saves commands in a script as the user carries them out. The script can later be

played back as if the user had re-entered the commands. The principal advantage of this

approach is its simplicity for both users and application developers. A user can easily
learn the macro language since its interface is exactly the interactive interface. A re-

corder provides the user with a visual language---a command language with a direct ma-

nipulation user interface [Chang 87].. The command language implementor can install

the replay mechanism at a very low level, with little or no change to most parts of the
system.

However, input recorders have serious drawbacks, particularly in window systems:

• Recorders cope poorly with the high bandwidth of interaction in window
systems.

• Recorders usually do not permit conditional execution because they ignore
output of commands.

• While easy to record a simple macro, it is difficult to design general ones.

Most input recorders save all input while in record mode. This practice works well in

text-based systems. In an application with a direct manipulation interface, small in-

cremental actions are more common. Commands that require the user to drag the mouse

are difficult to record unless the macro facility can determine the exact input events that

the application receives. Similarly, the use of time in direct manipulation user interfaces

causes problems. A common practice in some highly interactive applications is to imple-

ment buttons that carry out some action until the button is released. For example, an

editor may scroll text in a window while the user holds a mouse button. The input re-

corder must obtain the number of input events received and, possibly, the time between

these events in order to faithfully reproduce the command. When a system permits ap-
plications to poll for input events, these problems worsen since the system (and the

recorder) cannot determine what events the application received and processed.

Macro recorders permit the user to record any command invoked interactively. However,

as noted in Section 2.4.2, macros in a direct manipulation interface cannot be completely
specified automatically because part of the computation--the search method used to

select data--is implicit. The user often bases actions on the current state of the applica-
tion. Because many application objects are continuously visible, no explicit command is

required to determine this state. Most recorders do not permit a macro to determine ap-
plication state nor to invoke commands conditionally based on it.

The greatest drawback to macro recorders is that it is difficult for users to write general-

3.2 INPUTRECORDERS 35

ized programs. Users are never interested in writing a macro to do exactly what they

have just done. Even the simplest macro facilities implicitly parameterize some
operands. For example, macro recorders in screen-based text editors such as Emacs treat

the current position in the text as a macro parameter.

Most recorders permit only "straight-line code," a sequence of commands executed by
the user. Macro facilities rarely permit macros to contain explicit parameters, conditional

statements, or other control structures. The command language programmer is rarely
able to generalize macros or to automate decisions made interactively.

Given the limited generalization available, a macro writer must choose the commands to

be invoked in the macro to obtain the degree of generalization desired. In a text editing
macro, this often means choosing between cursor positioning commands and search com-

mands. Consider a macro to insert a space at the beginning of a line of text. If the user
wants to insert the space at the beginning of the current line, and the text cursor is at the

third character, he might use the backward-character command to get to the beginning of
the line. If writing a macro, he would probably use the beginning-of-line command in-

stead. If he wanted to add the space to all lines containing a certain word, he might use a

combination of a search command and the beginning-of-line command. While the input

recorder mechanism is simple to use, designing a macro can be a complex task.

Macro recorders determine the amount of generalization available to the macro writer by
deciding how much context to save in a macro [Horn 87]. Context is the collection of

information that determines the interpretation of a command, and can include cursor loca-

tion, selection, display layout, and active modes. The simplest approach is to save no

context at all. This works well for Emacs because most user commands are relative, not

absolute. The same approach can fail miserably in a direct manipulation application that

depends on mouse input. Many programs interpret events according to the location of the
mouse cursor with respect to regions of the screen, ff a macro records absolute cursor

location or location relative to a window, then the layout of the display is part of the
application context, and the macro may behave differently depending on the screen

layout when the macro is executed. For example, the Macintosh permits users to invoke

applications by double-clicking on an icon representing the application (Figure 3.3). A
macro that performs the same action will fail if the icons are rearranged.

Despite these problems, many researchers and developers have implemented systems that

record input. The remainder of this section reviews some of these systems and explains
how they have dealt with the problems inherent in macro recorders.

36 Chapter 3: APPROACHES TO THE PROBLEM

-I--I', MacWrite

6 items 114Kindisk 277K available

2
I"lao_trite4.2 Rolodex White Screen

TempoMacros UI Resu]ts Screen0

G

Figure 3.3. Invoking a Macintosh application

3.2.1 Simple recorders

Simple recorders are so easy to implement and use that their use is widespread. Even

editors such as Emacs that have powerful extension languages provide macro recorders

as well. Input recorders can also be found in user interface management systems and

too]_ts, providing applications with a simple command language at little cost.

Whimsy is a script recorder for the Andrew window manager [Cohn 87]. The window

manager is an attractive level to install a recorder. On Andrew, all programs use the

window manager directly or interact with the user through a Typescript window, an

editor window that contains a UNIX shell (see Figure 2.4). Therefore, a window manager

script can be used to drive any program that runs on the system. Installing the macro

facility inside the window manager guarantees that applications will be unaffected by the

recording or replaying of a script. In either case, an application sees the usual stream of

input events.

The recorder reduces the amount of data recorded by taking advantage of the com-

munication protocol between the window manager and applications. An application

specifies to the window manager what kinds of mouse input it is interested in: only down

button transitions, down and up, or mouse movement as well as button presses. Whimsy

records only the input of interest to the application. Since window manager applications

cannot poll for input, most timing problems disappear. However, some applications be-

have differently if the time between input events changed. For these applications,

Whimsy provides a "real-time" mode which sends input events to the application at the

rate they were recorded. This mode is not always reliable. Because Whimsy is part of

the window manager, it can observe when input events are generated, but not when they

3.2 INPUT RECORDERS 37

are received by an application. Even in real-time mode, applications may receive events

with slightly different time delays, causing subtle changes in behavior.

Whimsy goes beyond input recording in order to support the examination and manipu-

lation of command results. Users can record window manager output commands

generated by the application. These commands tell the window manager to write text or

draw a line or some other graphic. Even though these commands are at the syntactic

rather than lexical level, they are still too low-level and too great in number to be useful

in scripts.

Whimsy's biggest problem is that it cannot reliably execute scripts because different

screen layouts would produce different results. Because the Andrew window manager

tiles windows rather than overlaps them, windows are often different sizes. (In most

overlapping window managers, applications can specify that they need a specific size

window.) Moreover, applications attempt to format themselves according to the size of

their window by adjusting the size of regions and fonts.

3.2.2 Recorders with editing

Several systems have attacked the generalization problem by letting users edit a macro

once it is recorded. The editor should present scripts in an understandable and easily

modifiable format. The system must provide control structures that allow users to

parameterize macros and test conditions. If the editor's user interface is complex, then

the user may be better off writing scripts by hand rather than using the recorder.

Halbert implemented a system called SmallStar as part of his thesis on programming by

example [Halbert 84]. Users record macros that consist of straight-line code. Later, they

can edit their programs to parametefize operations and add conditional statements.

SmallStar presents a recorded script to the user as a form (Figure 3.4).

...:.:.:...:.:,:-:.:.:.:.:,'e.:.:.:.._:_.:_:,:.._:.:::...:; ':i :::_:;;';';';';';';';';';';';';';';';:;';';';';';';':';';';';';;; _._:; _:_::.':::__:_i _,::'_.(_...... ,';!_.(_:'_":

Close Start Record'gliilSto p Record'gli11st Step li_ii_!ii_illil] 1_ _ -]- _1__-_ --

Open Negotiations.

Move Negotiations. _ to the Desktop.

Close Negotiations.

Figure 3.4. A SmallStar macro program

The system displays parameters, called data descriptions, and predicates of conditional

38 Chapter 3: APPROACHES TO THE PROBLEM

statements as property sheets associated with the program. A data description presents a

set of search methods that can be used to specify an object. Each method includes one or

more parameters that determine the particular data. For example, Figure 3.5 shows a data

description for the Treaty document selected in Figure 3.4. The description includes both

the pattem matched, version, and age of the file, and identifies the active method. The

user can modify the description to generalize the pattern or make the data a macro

parameter by choosing the prompt method.

Done Ca _L _, _, f_!i_!_!!_::..
.... ::,.......... ?.:_.,..,::

Choose using II_r_,11Vd=llPOSITION IPROMPTI

Name Pattern I Treaty I

Version [OLDEST _ BEFORE[AFTER I BErWEEN

• ::,...., / _:_:__::::_:::::<_:f:_,:;::::_i :!:i.::".:i ::_ :."_¢"..:"..::,_._.'_._.':.:,_..._

Figure 3.5. A SmallStar data description

Halbert dealt with the context problem by recording semantic rather than lexical infor-

mation. Note that the operations recorded in the script in Figure 3.4 do not specify

keystrokes or mouse button transitions or locations. Halbert modified each application in

his system to translate low-level input data into SmallStar virtual machine commands.

Tempo is a commercially available input recorder for the Macintosh [Tempo 86]. As in

SmallStar, users may edit recorded macros. Rather than examining a static description of

the program, a user plays back the macro, stopping at the point at which he wants to

make a change. He can add additional commands, an interactive prompt, a conditional

test, or a loop. A test examines the contents of the Clipboard, a temporary storage loca-

tion for text and graphics. Figure 3.6 shows the tests Tempo provides.

Unlike SmallStar, Tempo operates at the lexical level. Its designers had little choice

since generality was a key goal_the system is intended to work with arbitrary Macintosh

applications. Use of the Clipboard permits users to automate some decision-making, but

tests are limited to text visible on the screen that can be copied to the Clipboard.

Graphics are off-limits. Furthermore, as in other lexically-based recorders, macros fail

when a user replays location-dependent actions in a window whose contents have been

rearranged.

3.2 INPUTRECORDERS 39

Select an option: I Cancel]

0 Pause _Branch [0 K]
0 Open Application 0 Loop
...................................o.o

Branch: Branch Unconditionally

©<
©>
©=
0 <>

0 <= _} Branch and Return...

0>= 0 Branch and End...

Always 0 £_I :_:_ _

Figure 3.6. Tempo's conditional tests

3.2.3 Recorders with inferencing

While editing example scripts has been successful in permitting macro writers to express

conditionals and generalize programs, it is a compromise between pure programming by
example and normal programming. Some systems have tried to provide generalization

by inferring the user's intentions. Typically, the user records several examples of an

action, and the system determines what items are parameters by finding differences in the

examples. Editing by Example is a system that allows users to create text editing scripts

following this approach [Nix 85]. Because its domain is limited, Editing by Example is
more successful than most inferencing systems. These systems are often hard to use be-

cause the user must guess at the kind of example required to build a program, making
programming by example as difficult as normal programming.

3.3 SUMMARY

This chapter has examined a variety of approaches to the command language problem.

Each approach has sought and achieved some balance of feasibility, generality, ease of
use, and efficiency. While some systems have been more successful than others, all have
been stymied by the difficulties described in Chapter 2.

The analysis in Chapter 2 and the systems in this chapter have shown that feasibility and

40 Chapter3: APPROACHESTO THE PROBLEM

ease of use can be obtained only at the cost of generality. Furthermore, only a system
that functions at a semantic level will be able to achieve completeness, manipulating

graphics as well as textual data, capturing the kinds of decisions users make interactively,
and combining commands from multiple applications. Requiring semantic completeness

does not rule out the use of input recorders but does require a mapping from the lexical

input provided by a recorder to a semantic representation. The next chapter will make

use of these observations to present a new approach.

Whisper
Lr

The goal of this thesis is to devise a practical strategy for implementing complete com-

mand languages for window systems. Previous chapters have expanded on this goal,

detailing the requirements of such a command language and the shortcomings of existing

systems. This chapter describes Whisper, a new approach to the problem.

All command languages provide some interface between the command language system
and the application. Command languages usually place this interface at the lexical level,

allowing applications to accept input from the command language transparently--the ap-
plication cannot distinguish a command language program from an interactive user. The

previous chapter showed that this approach fails for direct manipulation applications.

Another weakness of existing systems is that they do not support the extended

functionality provided by window systems. As described in Chapter 2, users of window

systems typically execute multiple programs concurrently and transfer data between run-

ning applications. A command language for a window system should support similar

functionality. At the same time, the system should impose minimal requirements on ap-

plications, making it possible to support a variety of programs with different styles or

interaction techniques, possibly written in different languages. Only by providing an
open system will it be practical to modify existing applications to use the command lan-
guage.

Whisper is a prototype command language system that demonstrates the viability of a

command language in a window environment in which most applications support direct
manipulation interfaces. Its most significant features are that:

• It supports command language interfaces defined at the semantic rather than
lexical level.

• It permits a command language program to combine subcommands from
multiple applications.

While other systems support the definition of application interfaces at the semantic level,

42 Chapter4: WHISPER

none have used them to provide a command language interface. Previous attempts to
provide command languages for window systems have operated at the lexical level.

Moreover, none have supported multiple, active, heterogeneous applications within a
single command language program.

This chapter describes Whisper in greater detail. The next section introduces its basic

components and the model of computation underlying Whisper. The following section
presents a simple example. Then, the prototype system is examined from the user's and

developer's perspectives. Some details of the implementation follow. The chapter con-

cludes by identifying extensions to the prototype system, the most important being a
programming-by-example front-end.

4.1 A MODEL OF COMPUTATION

While the demonstration system consists of several distinct parts, Whisper is really a
framework for applications, the definition of a structure that supports a command lan-

guage in a window system. This framework is independent of a particular user environ-

ment and outer language, and the inner language is determined by participating applica-
tions. However, it does rely on a specific model of computation--the client-server
paradigm.

Under the client-server model, a process provides resources to clients who make contact

with it. For example, on many UNIX systems, an "FTP server" allows users on remote
computers to request the transfer of files between the server's machine and the user's

machine. Users execute a client program that contacts the server, carries out the user's

requests using a protocol defined by the server, and terminates the connection. The
operating system supports the establishment of well-known addresses for standard ser-
vices, allowing clients to find the correct server.

Whisper provides users with an interpreted command language. The interpreter is a

client process of server applications. These servers provide access to data or special
forms of computation. For example, a mail reader provides access to a user's mail

database, while a text editor makes available documents and generic editing functions. A

simple calculator provides arithmetic services, while a calculator with memory provides

access to data as well as to functions. A statistical function package is no more than a

sophisticated calculator. The Polylith, a research project at the University of Illinois,
supports a similar model with emphasis on mathematical computation [Purtilo 85].

A Whisper application defines its services with an interface specification that describes,

at a semantic level, the application's objects and operations. Command language

programs access these services using interface operations. The interpreter is a separate

4.1 A MODELOF COMPUTATION 43

process, independent of any application, and can easily communicate with multiple ap-
plications. This structure, shown in Figure 4.1, makes it possible for the user to write

macros that require the services of more than one application. In this respect, Whisper
differs from application-specific extension languages.

Figure 4. l. The Whisper process structure

Application developers can view the system in either of two ways. As in programs writ-

ten on top of user interface management systems, the services provided by the application
can be separated from the user interface. In this view, shown in Figure 4.2, the user

interface and command language are both clients of the application, although the user
interface will most likely be part of the same process as the application.

Command

Language_Application Programming
Functionality Interface User

User _
Interface

Figure 4.2. User interface and command language as clients

Given an appropriate programming interface, the command language can serve as the

development language for the application's user interface (Figure 4.3). Alternatively,

the user interface and programming interface can be viewed as completely independent

(Figure 4.4). Unlike the first approach, this design does not guarantee completeness, but
it is the most flexible and will sometimes be the only option for applications retrofitted to

use Whisper, as was the case for the applications to be discussed in Chapter 5. As the

44 Chapter 4: WHISPER

Command User
Language _ Interface

Application Programming _,_ j
Functionality Interface

User

Figure 4.3. User interface implemented by command language

principle of separation of user interface and application functionality gains wider accep-

tance, more applications will fit the first model even when designed without Whisper in
mind [Szekely 88].

Programming Command

Interface _ Language
Application

Functionality _-
User

Interface _ ._ User

Figure 4.4. Separate programming and user interfaces

There are some important differences between Whisper and the standard client-server

model. Server programs usually have a single interfaceka network connection. There is

no direct user interface. Instead, users must communicate with servers via client

programs that do have user interfaces. Servers frequently are designed to provide service

to more than one client at a time by providing a separate connection for each client. A

connection is nothing more than a collection of data that the server uses that is specific to

a client. If multiple clients access independent data, clients usually cannot detect that

they are sharing the server. If shared data is involved, the server must ensure that client

requests do not conflict.

Interactive users do not expect to share an application with other clients, unless they

specifically invoke those clients. Few workstation applications support multiple

connections--general databases are the most important exceptions. Because applications

are written to support a single client, it is not possible to isolate enough state per client to

make multiple connections transparent to users. (One source of errors in the implemen-

tation of Whisper applications has been an implicit assumption in these applications that
there is only one thread of control.)

Despite these differences, the client-server paradigm is a useful model of computation for

4.1 A MODELOF COMPUTATION 45

Whisper. A developer structures an application so that it can provide a service in the

form of access to functions and application-specific data. A command language

programmer sees a language with access to a set of services.

4.2 AN EXAMPLE OF WHISPER USAGE

This section provides a quick introduction to Whisper by describing its use with a single

application, a four-function calculator. The calculator, whose display is shown in Figure
4.5, emulates a real calculator without operator precedence. The user operates the cal-

culator by clicking on the desired button or pressing the corresponding key.

Figure 4.5. The Andrew calculator display

The user interface for the prototype Whisper is a Lisp interpreter. A special function

allows the user to start up an application from inside the interpreter. The application

behaves as usual, except that it can accept input from the interpreter as well as from its

user interface. Once the application is running, Lisp programs that contain application
calls can be loaded and evaluated as if they were ordinary Lisp functions. Invisible to the

user is a mechanism that executes a remote procedure call (RPC) in order to evaluate

application functions. As calculator functions are executed, the calculator display

changes to reflect its current state.

The command language interface to the calculator is straightforward: there is a one-to-

one mapping between the semantic-level user interface operations and application inter-

face functions. Functions permit the command language programmer to enter digits and

apply the four arithmetic functions, invoke the equals operation, and clear the display.
The interface also includes a function to enter a number instead of a single digit. The

following is an excerpt from the interface: 1

1Section4.4 describes the interfacespecificationlanguage. AppendixC.1 contains the complete cal-
culatorinterface.

46 Chapter 4: WHISPER

(defop calc-digit KeyDigit (current-calc character) () float)
; (calc-digit digit-char) ---)current-value

(defop calc-function KeyFunction (current-calc character) () float)
; (calc-function function-char) --) current-value
; function-char may be one of +, -, x, /

(defop calc-equals KeyEqual (current-calc) 0 float)
; (calc-equals) _ current-value

(defop calc-clear KeyClear (current-calc) () float)
; (calc-clear) --) nil

(defop calc-enter Enter (current-calc float) 0)
; (calc-enter number) ---)nil
; This is a function written only for the programming interface.
; It is more convenient than using calc-digit, calc-point, and calc-negate.

Each defop statement lists the name of the operation, the C function that implements it,

the in parameter types, the out parameter types, and the return type, if any. Current-calc

is a special parameter that is automatically supplied to the C routine. Current-value is the

number displayed by the calculator. Comments (prefixed by semi-colons) describe how
each function is called and what is returned.

Suppose a command language programmer, unaware that Lisp includes arithmetic func-

tions, decides to implement his own set. The following program packages the add func-

tion in a more convenient form than is provided by the raw calculator interface.

(defun calc-add (&rest args) (calc-add-1 args)) ; &rest packages arguments into a list

(defun calc-add-1 (args)
(calc-enter (float (car args))) ; enter the first argument
(if (cdr args) ; if there are more args,

(progn ; invoke + and recursively call calc-add-1
(calc-function #\+) ; #1+represents the character '+'
(calc-add-1 (cdr args)))

(calc-equals))) ; else invoke = and return the sum

Calc-add returns the sum of its arguments. Calc-add-1 is a helper function that enters

each argument and invokes the interface's add function. After the last argument is en-
tered, calc-add-1 invokes the equals function and returns the sum.

This example has briefly shown what a Whisper interface and program look like. The

next two sections explain Whisper further, in terms of how end-users and application

developers use the system.

4.2 AN EXAMPLEOF WHISPERUSAGE 47

4.3 USER'S VIEW

The foundation of the system is XLisp, a small Common Lisp subset [Betz 86].

Modifications to XLisp allow users to access application programs through the inter-
preter. A few special functions provide control over starting up new applications, switch-

ing between active ones, and exiting applications. The start-up command

begin-application loads the command language interface, invokes the application, and

creates a connection between it and the interpreter. The user may have multiple applica-
tions active at the same time and use the select-application command to switch between

them. The currently active application receives all application interface function calls.

The end-application command sends a special quit message to the application. Appendix
A describes the complete set of XLisp extensions.

Associated with each application is a programming interface. An interface defines func-

tions and variables implemented by an application. The interface functions can be those

normally available via menus, mouse clicks, or keys, as well as lower-level functions not

otherwise accessible. Functions may have in and out parameters; functions with multiple
out parameters return a list of results. Parameters may be integers, floats, characters,

strings, booleans, or objects. Whisper objects are similar to operating system capabilities

[Strom 83] and Smalltalk objects [Goldberg 831, providing controlled access to private

data. 2 A command language program can manipulate this internal data by using objects

as parameters in interface operations. For example, a drawing editor may export objects
that represent the graphical entities in a drawing and provide a set of operations on these
objects.

Whisper users may treat the command language as the extension language for a particular
application, as the calculator example demonstrates, or they may use it to communicate

between applications by passing information from one active application to another. Of
course, they may still take advantage of existing communication methods such as cut and
paste.

Applications need not be started up from the interpreter; they can initiate communication

themselves and request the evaluation of XLisp functions. If an application chooses to do

this, it will usually provide the user a way to execute Whisper commands directly. The
calculator, for example, could allow the user to create new buttons that invoke functions

defined with the command language. In the course of evaluating a function, the inter-

preter will send back requests to the application to execute operators it finds. The func-

2UnlikeSmalltalk-80,Whisperdoes not provide an inheritancemechanismfor definingnew classes of
objects.

48 Chapter4: WHISPER

tion may contain calls to other applications as well, allowing one application to use the
services of others. This capability is the key to the implementation of the mail reader
described in Section 5.5.

4.4 DEVELOPER'S VIEW

Whisper requires that an application developer: (1) specify a programming interface, and
(2) modify the application so that it can process interface requests. The difficult (and

interesting) task is designing the Whisper interface. Once this is done, the developer can
trivially incorporate the interface into the application.

The quality of application interfaces determines the success of a Whisper implemen-

tation. A developer has great latitude in specifying the programming interface to an ap-
plication. The system only provides a mechanism for interface specification; this thesis

provides guidelines that can aid developers in defining good interfaces. Chapters 5 and 6

discuss this subject, while the rest of this section describes the mechanism Whisper sup-
ports.

An application developer specifies an interface by defining its constituent functions and

variables. Using a simple Lisp-like language, the developer defines each external

operator and variable name, the corresponding implementation routine or variable, and

the routine parameter and return types. For example, the full calculator interface, found

in Appendix C.1, includes two variables and eight operators. (Appendix B spells out the
details of the interface specification language.) Whisper generates the code needed to

implement the necessary remote procedure calls based on the interface description.

While C is the only implementation language currently supported, the system is designed
to support any number of implementation languages.

The interface specification is similar in form to that required by user interface manage-

ment systems such as MIKE [Olsen 86]. In addition to the standard parameter descrip-

tions, the interface may specify that a parameter is provided automatically by the applica-
tion or that it should assume a default value if the user does not specify it. This reduces

the number of trivial routines that the developer must write that only serve to package up
lower-level routines.

The prototype system supports a few basic types of parameters and variables, and maps

these types between the command and implementation languages. If developers need to
export a function that uses unsupported parameter types, they must wrap this function

inside another that translates a legal type into the one used. Alternatively, a function can

export an indirect reference to an application data type through the use of objects.

4.4 DEVELOPER'SVIEW 49

To export an object, the application interface must first declare its class, or type. Once

the object type is declared, it may be used wherever a standard type is used: as the type

of a variable, function parameter, or function return value. The system guarantees that an
input parameter that is an object is valid, that is, that it corresponds to the previous value

of an exported variable, an output parameter, or a return value that is an object of the

same type. Applications may invalidate objects that have been exported. Once the object
value is invalidated, Whisper will not accept it as the value for a variable or input

parameter. An application may find it necessary to invalidate an object if the correspond-
ing application object is deleted.

A stand-alone program, Wgen, reads the interface specification and produces two code

fragments: one that can be read by XLisp and one that should be included in the applica-

tion. The interface generator enables the system to hide much of the underlying remote
procedure call mechanism. It is similar to tools such as Courier [Birrell 84] and

Matchmaker [Jones 86] that automate the implementation of generic remote procedure
calls.

The Lisp code generated by Wgen defines macros that make the interface operators ap-
pear to be ordinary Lisp functions. It also declares external application variables and
identifies the version of the interface that it defines.

The C fragment created by Wgen defines an initialization procedure that should be called

by the application. The code defines data structures used by Whisper library routines to

respond to function calls and variable accesses by checking the number and types of in-
put arguments and returning the requested data---operator results or variable values. The

code fragment is included in the C module that implements the interface. For example,
the code produced by Wgen given the calculator interface specification can be found in
Appendix D. 1.

A set of library routines handle the house-keeping necessary to process incoming func-

tion requests and to package up outgoing requests. The application must call a special
routine that checks if a request is waiting to be processed just as it must check if user

input is pending. However, if the application uses a user interface toolkit that provides
external control [Green 85], this call can be hidden in the toolkit. In a toolkit with exter-

nal control, the user interface calls application functions, and the toolkit hides the "main

loop" of the program inside the user interface. Both the checks for user input and for

Whisper requests can be placed in this main loop. The toolkit used by the calculator does
in fact provide external control; the Whisper routine that checks for requests is not visible
in the calculator implementation shown in Appendix D.

Whisper interfaces can mimic the module structure of an application. If the functions

50 Chapter4: WHISPER

that define the external operations occur in several modules, a sub-interface can be

specified for each module, and all will be loaded when the application is invoked. If

modules are shared by applications, each application automatically inherits the interface

to each shared module. For example, the calculator, as well as the drawing and document

editors described in Chapter 5, inherit interfaces defined by the underlying toolkit.

4.5 IMPLEMENTATION DETAILS

I implemented the prototype system in the Andrew environment developed at Carnegie
Mellon University's Information Technology Center[Morris 86]. Andrew is a
UNix-based window environment for workstations. It includes two levels of user inter-

face tools: a network-based window manager provides low-level access to input devices

and the display, while a toolkit called the Base Editor handles many of the details of the
user interface for applications. I used an experimental version of the Base Editor known

as BX. The window manager, BX, the XLisp interpreter, Wgen, and the Whisper library
are all written in C. Whisper can be incorporated into any C application on Andrew, but
some features are useful only in BX applications.

There are two major components of the Whisper system. The first, described in the pre-
vious section, is Wgen, the program that translates interface specifications into the C and

Lisp code fragments needed to support communication between the command language
interpreter and applications. The other, and more significant, component of Whisper is

its run-time system. This section explains some details of the run-time system and the
implementation of objects.

4.5. 1 The run-time system

The Whisper run-time system consists of a command language interpreter and the
Whisper library included in participating applications. As noted above, the command

language interpreter is a version of XLisp extended to provide functions that initiate and

terminate connections to external applications, and invoke operators and access variables

defined by external applications. An RPC package called R [Kazar 87] handles the low-

level communication details. R transmits data between processes using the External Data

Representation protocol [XDR 86], providing machine and language independence. Both

the XLisp interpreter and the Whisper library make use of LWP, a light-weight process

package [Rosenberg 86]. This allows both XLisp and Whisper applications to process

RPC requests while waiting for user input. It also permits an application to process
Whisper requests even while its own request is pending.

The figures in this section illustrate interaction between a user, the XLisp interpreter, and

4.5 IMPLEMENTATIONDETAILS 51

a typical Whisper application called Delta, an Andrew drawing editor. 3 An arrow

represents communication between two entities: user input, a remote procedure call, or a

system call. The diagrams show the relative ordering but not the absolute duration of

events. Return values are not shown in the diagrams.

The first three figures describe what occurs when the user interacts with the interpreter,

either interactively or by submitting a program to it. This corresponds to the use of

Whisper as a command language for the entire system. The remaining figures show the

user interacting directly with an application. In this situation, Whisper functions as an

extension language for the application. The user interacts indirectly with the interpreter

by invoking functions in the application that happen to be implemented in XLisp rather
than in C.

Figure 4.6 describes the sequence of events that occurs when an application program is

begun from within XLisp. To start up an application, the user issues the
begin-application command. In response, XLisp uses the standard UNIX call system to

actually create the application process. It then waits for a ready-to-interact message from

the application. Before Delta issues this message, it initializes its Whisper interface. Its
interface consists of several subinterfaces. Each interface sends its own

load-new-interface message to XLisp, prompting XLisp to load the Lisp file that cor-

responds to the C interface defined within the application. Once XLisp receives a

ready-to-interact message, the original begin-application call retums.

Figure 4.7 describes the evaluation of a function defined by the application's interface.

When the user types an expression to the XLisp interpreter that includes an interface

function, XLisp sends a message containing the name of the operator and any arguments

the user has supplied. The application processes the arguments, invokes the correspond-

ing C routine, and returns a success code and the routine's out parameters and return

value. Accessing a variable value is much like a function call with no arguments and a

single return value. Setting a variable is similar to a function call with a single input
argument.

The C routines provided by the Whisper library carry out the bulk of the work needed to
execute remote operations. These routines unpack the message, determine if the operator

is legal, compare the types of the arguments found to those expected, 4 execute the ap-

plication routine corresponding to the function name, and pack up and send back the

results or an error. Under ordinary circumstances, the application routine cannot distin-

guish between an ordinary invocation and invocation by Whisper.

3Referto Section5.3fora descriptionof Delta.

4Moreextensive(semantic)checkingmustbe donein theapplicationroutineitself.

52 Chapter4: WHISPER

Time User XLisp Delta

(begin-application"delta")

system("delta")

(load-new-interface "delta")

I >

(load-new-interface "decmds")

I >,

(ready-to-interact)

I

Figure 4.6. User invokes Delta from XLisp interpreter

Time User XLisp Delta

(create-object) I I

"create-object"

Figure 4.7. User types (create-object) inside XLisp interpreter

Figure 4.8 shows how a user exits an application from inside the XLisp interpreter.

Whisper defines the command end-application that invokes a quit operation defined by
the application. (All applications must define a quit function which is expected to clean

up the program's state before exiting.) If the operation is successful, XLisp marks the
application as inactive.

In Figure 4.9, the user starts up the application as he would in a system without Whisper,

in this case by invoking the delta command in the Typescript. The Typescript, a terminal

emulator that runs the UNIX shell, starts up Delta much like XLisp did in the first ex-

ample. Interspersed with Delta's standard initialization sequence are remote procedure
calls to XLisp, which is listening for messages sent to a well-known address. (The

Whisper library determines this address.) The hello-application message informs XLisp

that a new Whisper application is starting up. As in the previous example, Delta then
sends a sequence of load-new-interface messages that describe its interface.

4.5 IMPLEMENTATION DETAILS 53

Time User XLisp Delta

(end-application)

J "quit"

Figure 4.8. User exits Delta from inside XLisp interpreter

Time User Typescript Delta XLisp

delta

i system("delta")

I i , ,
•'_ _ _ ,

]

J I i (hello-application
"delta") I

__ (load-new-interface"delta") I

(load-new-interface

"decmds") J

Figure 4.9. User invokes Delta from the Typescript

The next figure shows the user invoking a command written in XLisp that includes

several functions defined by Delta's interface. This operation may have been a menu

option or bound to a key. XLisp evaluates the expression that Delta sends to it. In the

course of evaluation, XLisp sends several function calls back to Delta. A light-weight

process created by the Whisper initialization routine handles the execution of these func-

tions within Delta while another awaits the return of the original draw-ellipses function.

Note that it is also possible for the command to cause XLisp to invoke functions in other

applications.

The last figure shows what occurs when the user exits Delta. As part of the application's

termination, a message must be sent to XLisp. This message enables the interpreter to

destroy data structures that are no longer necessary since this instance of Delta will not

communicate further with XLisp.

54 Chapter 4: WHISPER

Time User Delta XLisp

(draw-ellipses)

(draw-ellipses)

J (set-tool ellipse-tool) ._l

(create-object ...)

F- '
"-1

.°.

J

J

Figure 4.10. User executes (draw-ellipses) inside Delta

Time User Delta XLisp

Quit I

I '1
(goodbye-application "delta")

1

1
< I

Figure 4.11. User exits Delta from inside Delta

4.5.2 Managing object references

As described in Section 4.3, objects provide applications a type-safe method of exporting

references to internal data. Each time an application returns a value to the interpreter that

is a object, Whisper stores the object and its type in a hash table. Whenever an applica-

tion function requires an input parameter that is an object or an application variable is set

whose type is an object type, Whisper looks up the incoming value in the hash table. If

the value is not found or is of the wrong type, the call fails and the Whisper library

returns a special error code to the interpreter. Under normal circumstances, the applica-

tion is unaware of the object table. However, if an application needs to invalidate an

object, it calls a Whisper routine that removes the object from the table.

In the current implementation, an object is just the address of the internal data. Returning

4.5 IMPLEMENTATIONDETAILS 55

an index to the table rather than the address itself would permit an application to move

the data without invalidating the object. This is useful since there are situations, espe-
cially in C programs, where an object may be repositioned in memory.

4.6 A PROGRAMMING-BY-EXAMPLE INTERFACE

An important feature of many command languages is that the interface provided by the
command language is similar to the user interface, enabling users to transfer their

knowledge of interactive commands to command language programming. A full im-

plementation of Whisper would provide this feature by making available a programming-
by-example front-end to the system. This front-end would enable naive users to treat

Whisper as a simple keyboard macro system. The recorder would generate Lisp code

that corresponds to the sequence of input events invoked by the user. More sophisticated
users could use this mechanism as a starting point for complex programs.

This section discusses two extensions to Whisper: a simple recorder that saves and

replays macros, and a more sophisticated recorder that supports macro editing. While I
did not implement either extension, the Whisper design provides the lower level facilities
required by these recorders.

4.6.1 A simple recorder

A Whisper recorder would appear to the unsophisticated user no different from an or-

dinary recorder. The user enters a remembering mode during which all input is recorded.

Recorded macros can be played back at any time. Working in conjunction with the

system's window manager, the recorder issues commands to one or more applications in
multiple windows.

While most recorders save raw input events, the Whisper recorder saves the application
interface commands bound to these events. This assumes, of course, that there is a well-

defined mapping from key and mouse events to interface functions. This mapping could

be provided if more information is included in Whisper interface specifications. The

product of a recording is an ordinary Whisper program that defines an XLisp function.

The user can modify the function by editing its text and adding commands, parameters,
and control structures.

Consider a Delta user who wants to record a macro that creates a box inside an existing
one. Given a selected box (Figure 4.12), he uses the Duplicate operator (Figure 4.13),
which creates a new box slightly offset from the original (Figure 4.14).

56 Chapter 4: WHISPER

[No File wheatlan_

r-] O _:'_ ., ° ._,_
I

!;::............................ 1....................... |l t......................JIL..................... Ji_........_::_..........:.........._.._..][::

Figure 4.12. A selected box

f t;

l_ G T J, . ILayou_

Figure 4.13. Duplicating the box

Figure 4.14. The box and its copy

He then moves the bottom right comer of the new box inside the original so that the

distance between the two boxes is constant on all sides (Figure 4.15).

Figure 4.15. Adjusting the new box

4.6 A PROGRAMMING-BY-EXAMPLEINTERFACE 57

Finally, he deselects the new box (Figure 4.16).

Figure 4.16. The final result

Delta records the following program in response to this series of steps:
(defun create-double-box

(ccmds-duplicate) ; createa copyof theselection(thebox)
(ccmds-move-handle4 -10.010.0) ; movesoutheasthandleleft, up 10units
(ccmds-deselect-object))

The user supplied the function name. Menu commands such as Duplicate are translated

into the corresponding interface function. Delta translates mouse commands according to

the specific function carried out. Rather than recording a generic mouse-operation func-

tion, Delta records move-handle. This translation is application-specific and must be

done by Delta, which passes the information on to the Whisper interpreter. The

move-handle command specifies which handle (4 corresponds to the southeast corner)
and the distance to move in Delta drawing units.

4.6.2 A recorder with editing

The Whisper user interface could be further enhanced by incorporating a programming-
by-example system more sophisticated than a simple recorder. A system like Halbert's

SmallStar, described in Section 3.2.2, meshes well with Whisper. The addition of some

SmallStar features would provide Whisper users with a direct manipulation interface to

the command language, yet allow them to change macros, to generalize them, and to

apply conditional tests and iteration. Halbert's techniques can be applied to Whisper be-

cause SmallStar and Whisper have a similar view of applications. Both represent the user
interface at a semantic level, recording application functions rather than lower-level lex-
ical information.

This section describes how aspects of SmallStar can be added to Whisper: data descrip-

tions, control structures, and command elision. It discusses one area where the Whisper

design diverges from SmallStar--the selection of objects. Finally, this section presents
an implementation of recording and replay.

58 Chapter4: WHISPER

SmaliStar features

More information must be included in Whisper interface specifications for Whisper to
support data descriptions. Descriptions can be generated automatically for some com-

mon objects, including text strings and documents. Others, such as Delta's drawing ele-
ments, must be defined by the interface. The extended interface must describe the search

methods for each type of object that will generate a data description. The additional

information needed consists of a display format, C code to generate parameter values

from an object instance, and C code to generate a set of objects from user-supplied
values.

Figure 4.17 shows a prototype Delta data description. The description could have been

generated when the user selected a line while recording a macro. Position in Drawing is

computed to be the center of the line. The Box is defined to be a bounding box. These
two search methods are analogous to operations available to the user:

• selecting an object by clicking on it, and

• selecting objects by enclosing them in a box.

The Prompt search method, if chosen, will ask the user to select an object when the
macro is executed. The interface specification includes the name of a C routine that will

handle this selection. Section 5.3.1 further discusses the design of Delta data descrip-
tions.

":' ::::::::::::._'_:_::_,:_ ,_,,_ ,_,.,,'_s,.,,_._ ,,_.. ,,..,, _.',_...... :,.,:; .:.:.:.:,:. ,',','.'.','.',_.s_..• :' • /

Chooseusing_ PROMPT]

Position in drawing: X 11.2 I Y I_'_1

m::_,_,:::::;_:i_i2i;iii ,_, ii:iiiii.li:ii:!w i_:i_,.mi ii_:iii._::i_im_,!',;#.._ i!ii2i;i
:°............... : :i............... : : :

!"" ;""":.:';".;;;"""i'i:_.)::::':;::'!::::_::::::::"'"":."': ".""',":'"' r".'.'":: ".""".'":;""".""............. .
<.,:':'.._i..,.:,:.:..,,i:_,_%ii_i _!..ii_",;ii!_.:,._i_i_b!.:!ii:i(.'i:.i_i!i_-C!.';i":_:_ii.i ii}i_'?_?.i:i "!!"_::::"..:_"_i"i

Figure 4.17. A Delta data description

The mechanism developed by Halbert allows a user to add control structures, including
conditional tests, to a recorded macro. Incorporated in Whisper, these tests would be able

to examine values returned by any function in the command language interface. In most

4.6 A PROGRAMMING-BY-EXAMPLEINTERFACE 59

editing applications, however, almost all interface functions that return information are

inquiries about the object being edited. For example, most Delta functions with return

values provide data about objects in the user's drawing. In these applications, data
descriptions, which can be considered implicit conditionals, will be used much more fre-
quently than explicit tests (as Halbert observed).

While recording semantic rather than lexical information is critical to obtaining compact,
readable macros, it is not enough. Elision, the reduction of a sequence of commands to a

single command, also leads to condensed macros. For example, if a series of

insert-character commands of a text editor are replaced by a single insert-string, the size

of a macro can be greatly reduced. Eliding of commands is even more important for
operations invoked by the mouse. For example, Delta provides a move command similar

to the one provided by Apple's MacDraw. The user can move the cursor to an object,

push down a mouse button, and drag the object to a new location by moving the mouse

with the button down. Delta implements this operation with three separate functions cor-

responding to the down-press, drag, and release of the mouse button. The user, however,

considers the operation to be a single atomic command. A sequence of commands should

be elided when the user considers them to be a single operation. In this example, the

interface specification would describe the mapping of the three operations into a single
command. The application must provide an implementation of the merged command.

Object selection

In the SmallStar system, the act of selection is never explicitly recorded in a macro. In-

stead, each object that uses a selection explicitly references it, and a data description is

generated for it. If the same object or objects are referenced several times, a single
description is used. While Whisper could adopt this approach, it is better to treat selec-

tion as an ordinary operation and record the operation in the macro.

There are two differences in Whisper that make it more appropriate to treat selection as

an ordinary operation. The first is that Andrew applications have no concept of a stan-

dard global selection. Each application is free to implement the concept of selection or

not. Whisper cannot make assumptions about the properties of a selection. The second

difference is that Andrew applications support a wider range of selection techniques than
do SmallStar applications. The drawing editor has several selection methods and more

could be added. The user can create a selection using a sequence of commands. While

this command sequence could be specified by a data description, it would be easier to
modify if Whisper treated it like other sequences of commands and not as data.

Selection is actually just one example of the translation of mouse coordinates into infor-

mation meaningful to the application, and, more generally, an example of turning lexical
information into semantic information. Rarely should a macro record window coor-

60 Chapter4: WHISPER

dinates associated with mouse input since this data will usually not be valid between in-
vocations of the macro and is not meaningful to the user who wants to edit the macro.

Each interface operator that uses mouse input should provide a function (specified in the
interface) that translates coordinates into the arguments it needs. Table 4.1 shows some

example translations. This information, like other data in the macro, would be

represented by a data description. While the data actually recorded still may not be what

the user wants, it is more easily modified in this form. For example, the user will rarely

want a macro that applies some function to the 322nd character in a document. By

providing a data description that refers to a character rather than a window position,

Whisper makes it possible for the user to generalize the description into something more

reasonable, such as current character or first character of the current paragraph.

Table 4.1. Example translations of mouse coordinates

Program Translation

Drawingeditor Worldcoordinatesof the drawing(unitsmightbe inches,for example).
Text editor Indextoa characterin the document.

Scrollbar Verticaldistancein unitsappropriateto objectbeingscrolled(linesof text or
distancein drawingunits).

Mail reader Indexto a mail message.

Bitmapeditor Coordinateof the bitmap(anidentitytransformation).

In order to provide this facility, application functions that use mouse coordinates must

obtain this data in a standard way, and the function that uses the information must be

separated from the one that converts the coordinates into a more appropriate form. This

separation is much the same as what must be done for commands that require other kinds

of data, such as text strings and numbers. Interactive commands often prompt the user
for a string. Two examples are Save As in MacWrite and write-named-file in Emacs.

The corresponding interface function should take a string as an input argument. To avoid

forcing the user to write an interface function that simply prompts for a string and calls

the real application function, a standard function can be provided that prompts for a string
when a function is called interactively but uses the supplied argument when the function

is called from a program. This technique is similar to that used by Gnu and UNIX Emacs.

In addition to a get-string function, the system can provide more specialized functions
such as get-file-name and get-function-name. While some standard functions would be

provided, the application could include its own. These functions can be viewed as type-
checking functions.

4.6 A PROGRAMMING-BY-EXAMPLEINTERFACE 61

Implementation

The programming-by-example interface would be provided by extensions to the Whisper
library. To record a macro, a user chooses Record from an application menu. This ac-

tion invokes a Whisper library routine that notifies the interpreter that a recording should

begin. Figure 4.18 shows the sequence of events that occurs in response to user input

once a user begins recording a macro. The window manager sends a stream of input
events to Delta to be processed by the BX input handler. The handler maps events to

application functions as usual, but while recording, sends both the input event and ap-

plication function to a Whisper library routine as well. The Whisper routine maps this

information into an interface function and data descriptions which it sends to the Whisper
interpreter. Normally, this mapping is one-to-one, but it will sometimes use elision to

compress multiple input events into a single recorded function. The application's
Whisper interface specification defines the mapping between interactive functions and

command language functions. The interpreter records the information passed to it by the
application for future playback.

Delta

mouse _l input _l BX Whisper interface

Window stream Library "_ Library functions Whisperkeyboard Manager _ output vl Interpreter

display < [c'ommands l_l Application

-q Functions

Figure 4.18. Implementation of macro recording

A similar sequence of events, shown in Figure 4.19, occurs when a user plays back a
macro. The application provides a list of macros to choose from. Once a user selects a

macro, a Whisper library routine asks the interpreter to execute it. The interpreter ex-
ecutes the macro as if it were an ordinary XLisp function, sending interface functions to

the application for evaluation. Function side effects result in changes to application data
which in turn cause the application to generate window manager output commands that
update the display.

62 Chapter4: WHISPER

Delta

mouse _! Window _[input fBXs_e-am Library _ Whisper l_lfuncti°n_

Whisperkeyboard--- / Library
Manager L output Interpreter

display = [commands l-_ Applicati°nt_Functions

Figure 4.19. Implementation of macro replay

4.7 FURTHER EXTENSIONS

While a programming-by-example user interface is the most important missing com-
ponent of Whisper, other extensions are important for a production system. These ad-

ditions include a command language interface to the window manager, separate name

spaces for applications, better handling of synchronization issues, and more general ar-
gument types for application interface functions.

A user of a windowing system interacts with the window manager's user interface more
than any other user interface. A production version of Whisper should include an inter-

face specification for the window manager. In Andrew, the specification would include

functions that create, modify, and destroy windows and save a snapshot of the screen.
Andrew's window interface is minimalist: it provides nine functions on a menu and three

available using the mouse, and most of these twelve functions only serve to move win-

dows around on the screen. On other systems, the window manager is combined with

other functionality, making its application interface more important. For example, the
Macintosh Finder combines window and file management.

The current version of Whisper installs all names in a single name space. External names

can be shared by applications because names are not associated with applications. A
function name is handed to the current application for evaluation. However, it is not

possible for a name to represent a variable in one application and a function in another.

Moreover, name conflicts can occur within an application since interfaces may be loaded

by library files as well as by user modules. Using a more object-oriented approach, in

which name bindings are determined by the object on which the named function operates
would simplify command language programming.

Although Whisper permits users to interact with applications at the same time command

language processing is carried out, it provides no synchronization of this activity. The

current system relies on friendly users to avoid disaster, but a real system should protect
the application.

4.7 FURTHEREXTENSIONS 63

Whisper provides a basic set of argument types for application functions. The more types

Whisper provides, the more likely that the interface can access existing functions, making

it easier for developers to incorporate Whisper into their application. Whisper should

provide array and structured types as well as variants of the standard types (such as short

integers).

4.8 SUMMARY

This chapter has described the design and implementation of Whisper, a prototype com-

mand language for window systems. Unlike most command languages, Whisper operates

at a semantic level, overcoming many of the problems found in other approaches, as

described in Chapter 3. Application developers define the inner language of Whisper by

specifying programmable interfaces that describe application objects and operations.

Whisper cannot guarantee completeness even at the semantic level; it is determined by

the application interfaces.

Users may treat Whisper as the extension language for a particular application or as a

general-purpose command language that can communicate with multiple applications.

Given the ease of use of input recorders, it is worth providing a macro interface to

Whisper even if the interface hides some of the command language's power. This chap-

ter has described how a programming-by-example system, similar to SmallStar could be

incorporated into Whisper.

64 Chapter 4: WHISPER

Case Studies

Meaningful testing of a command language system is a difficult task. For any particular
task, a command language is useful only if it is faster to write and execute a macro than it

is to perform the task by hand or to write and execute a program in a programming lan-

guage. To provide statistically meaningful results, experiments would require a group of

subjects to perform several tasks using three methods: execution by hand, a Whisper
program, and a C program.

I did not have the resources needed to carry out this kind of extensive testing. Because

the applications for which I planned to provide interfaces were undergoing rapid change

while I was building Whisper, I used a more stable but abandoned version of the system.

It became impractical to recruit even a small number of users, since I would be asking

them to use not just Whisper, but unsupported applications as well. As a partial sub-
stitute for user trials, I provided interfaces for more applications and wrote more com-

mand language programs than I had originally intended. This chapter describes my ex-
perience writing interfaces and macros for several applications.

5.1 THE TESTBED SYSTEM

As described in the previous chapter, I implemented Whisper in the Andrew environ-

ment. In this environment, almost all interactive applications do not interact directly with
the display and mouse or even the window manager, but with the Base Editor, a user

interface toolkit. While Whisper does not depend on the toolkit, all applications for

which I created interfaces use an experimental version of the Base Editor (called BX),
and some features were added to Whisper to make it more convenient to write interfaces

for BX applications. While restricting the tested applications to BX programs limited the
range of user interface styles Whisper had to cope with, the use of BX enabled me to

learn about the interactions of a command language system with a user interface toolkit,
experience that is applicable to other toolkits.

66 Chapter5: CASESTUDIES

The Andrew window manager [Gosling 86a] is an autonomous process that mediates

client processes' access to input/output devices: the keyboard, mouse, and display. Its
process structure, shown in Figure 5.1, is similar to that of other network-based window

managers such as X and NeWS [Scheifler 86, Gosling 86b, NeWS 86]. The window

manager provides clients with a stream of input that includes both mouse events and

keystrokes. An RPC interface specifies output commands that a client can use to draw

graphics and text in a window on the screen. The window manager also notifies the
client whenever the user reshapes or destroys the client window.

Clients WindowManager

__

- mouse
_ display

keyboard

Figure 5.1. The window manager process structure

The Base Editor toolkit is a library of routines included in client applications. It provides
a higher-level interface to programs, handling many of the details of communication with

the window manager. It also makes available some powerful data types including
insets, 1 documents, scrollbars, and buttons. An inset displays a data object in a rectan-

gular region of a window. A document, one example of a data object, is used to manipu-
late text, and can range in size from a short string to an entire PhD thesis. A scrollbar,

displayed adjacent to an inset, provides the user with the ability to view different parts of
the inset's data object.

BX is an object-oriented system with only two classes of objects: insets and data

]In thecurrentversionof the BaseEditor,calledtheAndrewtoolkitor BE2,a "view"is the equivalentof
a BX inset [Palay88].

5.1 THE TESTBED SYSTEM 67

objects. 2 A data object is a permanent entity such as a document, drawing, or table data,

while an inset provides a view of a data object. Insets often contain other insets and can

be organized in a tree structure. In fact, the principal motivation behind BX's insets is to

support editing of structured objects, such as documents that contain figures and equa-

tions. A BX application usually consists of a small amount of code that creates a window

for use by an inset, while the inset itself implements most of the application functionality.

Control is maintained by BX. The main program, insets, and data objects provide

routines that are invoked by the BX main loop.

BX requires insets and data objects to provide a standard set of methods that the toolkit

uses to manage user input, screen update, and reading and writing of data. The most
important standard methods are described in Tables 5.1 and 5.2.

Table 5.1. Standard Base Editor inset methods

Method Description

New Create and initialize an instance of the inset.

Destroy Destroy an instance of the inset, releasing its memory.

FullUpdate Ask the inset to redraw itself.

Update Ask the inset to selectively update itself based on changes since the last update.

Keyln Inform the inset that a key has been received.

Hit Inform the inset that a mouse event has been received.

DataChanged Inform the inset that its data object has changed.

Print Ask the inset to print itself.

Table 5.2. Standard Base Editor data object methods

Method Description

NewData Create a new instance of the data object.

FreeData Destroy an instance of a data object.

Read Read a description of a data object from a file.

Write Write a description of a data object to a file.

GetModified Ask if the data object has been modified.

SetModified Inform the data object that it has been modified.

InsetName Ask for the name of an inset that can view the object.

2The Andrew toolkit uses a C preprocessor similar to C++ to provide a full object hierarchy.

68 Chapter5: CASESTUDIES

The BX main loop processes user input by calling an inset's Hit or Keyln routine. When

no input is available, the main loop initiates screen update by calling the Update routine
of the main inset. Commands called by the Hit and Keyln routines usually do not update

the screen directly but save information that to be used by the Update procedure, reduc-

ing the number of updates when the user provides more than one input event in a short

time. 3 This program structure, in which control is external to the application, made it

possible to easily incorporate Whisper into the toolkit. The delayed update mechanism
ensured that most commands separated output from data structure changes, allowing

most Whisper macros to be executed with only a single update.

5.2 A SIMPLE CALCULATOR

In the first test of Whisper I added a programmable interface to a simple calculator. This

calculator, briefly discussed in Section 4.2, consists of three insets. A calc inset contains

two children insets: an array of buttons and a label. Labels display a single line of text.

The calculator uses a label to display its current the value.

The calculator interface is split into two parts. The main program provides a quit

operator and the calc inset provides functions corresponding to the button operations.

Tables 5.3 and 5.4 list the interface operations and variables, while Appendix C.1 con-
tains the interface specification provided to Whisper. 4 BX library modules, included as

part of the calculator, provide additional utility functions.

Even an interface as simple as the calculator's provides insight into the advantages and

disadvantages of the Whisper approach. While it was easy to create a complete Whisper

interface, the process demonstrated some of the problems that occur when an application

that is designed to support a direct manipulation interface is extended to support a com-

mand language. Several issues arose that reappeared in other applications as well:

choice of interface level, interface safety, exposure of internal parameters, and mapping

of mouse input to semantic level functions.

The calculator is an application that can easily be provided with a provably complete

interface. Each input function available to the user has an analogue in the command

language interface. The only output of the program is the current display value. Since

the interface provides the user access to this value, the interface is complete. While com-

3ApplicationHitroutineswill sometimesissue outputcommandsdirectlyin order to provide dynamic
feedback. Section5.3.2discussessomeimplicationsof this implementationtechnique.

4Byconvention,operationsand variablesin Whisperinterfacesare prefixedby the nameof the module
that implementsthem. Quitis an exception.

5.2 A SIMPLE CALCULATOR 69

Table 5.3. Operations defined by the calculator interface

Operation Description

quit Exit the program.

cale-enter (number)
Enter number into the calculator.

calc-digit (digit)_ current-value
Concatenate digitonto the calculator's current value and return the new value.

talc-point Concatenate a decimal point onto the calculator's current value.

calc-function (function)_ current-value
Apply the pending function and make function,one of +, -, *, or/, the new
pending function and return the result.

calc-clear-entry Set the current value to zero.

calc-clear Reset the calculator.

calc-negate _ current-value
Negate the current value.

calc-equals _ current-value
Apply the pending function to the current value and return the result.

Table 5.4. Variables defined by the calculator interface

Variable Description

calc-display The current (displayed) value of the calculator.

calc-register The value of the calculator's internal register. When calc-equals is invoked, the
pending function is carried out on calc-register and calc-display.

pleteness seems trivial in this example, it demonstrates the difference in power between

the Whisper approach and keyboard macros. In an ordinary keyboard macro system,

macros would not be able to examine the calculator output. In a system that captured the

output at the window manager level, the macro would have to distinguish between win-

dow manager operations that redrew the calculator itself and those that updated the dis-

play value. The value update in Andrew is done by drawing a string in the window. This

command would have to be watched for and its argument converted to a number. While

this kind of manipulation of the output stream is imaginable for the calculator, it is not

feasible for more complex applications.

While completeness requires that functionality provided by the user interface be available

through the command language, it does not dictate the interface level. An operation that

is appropriate in an interactive interface may be too low-level in a command language

interface. Entering numbers in the calculator provides one example. Users operate the

calculator by clicking on buttons or by typing keys that correspond to the buttons. To

enter the number -4.2, the user can type the four corresponding keys. However, a

70 Chapter5: CASESTUDIES

program in which four functions must be called to enter this number would be clumsy to

write and difficult to read. To make command language programming easier, an enter

function was added that took a number as an argument. In the programming-by-example

system, elision could be used to automatically simplify calculator macros, converting a
series of steps into a single enter operation.

The simplest implementation of the talc-digit operator illustrates the interface safety

problem. This function is used to enter digits into the calculator. The corresponding C

function, KeyDigit, accepts an input parameter of type character. KeyDigit performs no

checks to ensure that the character is a digit since all invocations of KeyDigit guarantee

that the argument is a digit. However, once this function becomes public, some kind of
check must be done. One solution is to implement calc-digit by a public function that
checks its argument before calling the private KeyDigit. Another is to add the check to

KeyDigit itself. A third solution is to extend the interface language to support input ar-
guments with restricted types. The interface generator would automatically construct the

code needed to enforce the restrictions, guaranteeing, as in the first option, that KeyDigit
would only be called with legitimate input. In general the third approach is best since it

imposes no unnecessary overhead on the user interface and minimizes the changes that
must be made to the original program. This approach, however, is limited to cases where

the restrictions do not change during the application's execution.

The Base Editor requires operations bound to keys and standard inset methods to accept

the inset instance as their first argument. However, the command language programmer
gains nothing from this flexibility if an application contains only one instance of an inset.

The calculator application contains a single calc inset. To hide this additional complexity
from the command language programmer, Whisper provides automatic parameters that

are supplied to implementation routines by the interface but are never seen by the com-
mand language programmer.

Section 4.6.2 explained that mouse as well as keyboard input should be converted from
the lexical to the semantic level. In the calculator, the mouse can be used to invoke an

operation that is bound to one of the visible buttons. This mapping, handled by the but-
ton inset, is transparent to the calc inset. In the programming-by-example version of

Whisper, the button inset would report the results of its mapping to Whisper. Button
operations would then be recorded in macros when the user either clicked a calculator

button or typed the corresponding key.

5.2 A SIMPLE CALCULATOR 71

5.3 A DRAWING EDITOR

Delta is an object-based drawing editor with an interface similar to MacDraw's (Figure

5.2). The user may draw lines, curves, or text by first clicking on a button in the palette,

an array of buttons on the left-hand side of the window, and then clicking at two points

that define the object's location. After choosing the top-most button (the up arrow), the

user can select objects by clicking on them and can move the selected objects by drag-
ging them to a new location with the mouse button held down. Menu commands enable

the user to copy, delete, and scale objects. The horizontal and vertical scrollbars allow

the user to view different parts of a drawing. An area at the bottom of the window dis-

plays messages and prompts the user for text input.

=
Layout L

®
[-'7 Clear

Toggle Aspect Preserve

0 Select All

Double Size

fT. Halve Size
T Write FileRead File

o._:_,_Window Manager I PreviewPrint

1 z L___I Quit
Unix J

Figure 5.2. The Delta display

Delta, like the calculator, consists of a main program that creates and installs an inset in a

window. Almost all of the application code is actually part of the inset. This inset can be

inserted into a document and will provide the same functionality there as it does when

editing a stand-alone drawing. The Delta inset de contains children insets that provide
the scrollbars, message line, palette, and drawing surface, or canvas.

Delta's Whisper interface is split into three modules: the main program contains the quit
operator, the decmds module contains operators that turn on and off the display of
children insets (the palette and scrollbars), and the ccmds (canvas commands) module

contains drawing operators. Table 5.5 summarizes and Appendix C.2 contains the full
Whisper interface.

72 Chapter 5: CASE STUDIES

Table 5.5. Operations defined by the Delta interface

Operation Description

quit Exit the program.

decmds-toggle-palette Toggle the palette on or off.

decmds-toggle-scrollbar Toggle the scrollbars on or off.

decmds-get-state _ (palette-state scrollbar-state)
Return the status of the palette and scrollbars (t or nil).

ccmds-set-tool (tool)
Change the current "tool," one of the buttons in the palette. The
interface defines names for the tools.

ccmds-create-object (x2 y2 xl yl) _ created-object
Create an object of the current type (defined by the current tool) using
the two points as if they were generated using the first and second
clicks of the mouse.

ccmds-select-by-location (x y) --, object
Return the object at the location or nil.

ccmds-extend-by-location (x y) _ object
Extend the selection to the location. Return the first object in the
selection or nil.

ccmds-move-selection (x y)
Move the selection by (x,y).

ccmds-move-handle (handle x y)
Move the handle of the selection by (x,y). The interface defines
names for the nine handles (shown in Figure 5.5).

ccmds-first-object (object-type) _ object
Select all objects that match the string object-type (or all objects if the
string is ""). Return the first object or nil.

ccmds-next-object _ object
Cycle through a list of selections created by ccmds-first-object.
Return the next object or nil if there are no more.

ccmds-select-object (object)
Add object to the selection.

ccmds-deselect-object (object)
Remove object from the selection.

ccmds-get-n-vertices (object) _ n-vertices
Return the number of vertices the object has.

ccmds-get-vertex (vertex object) --_(x y)
Return the location of the object's numbered vertex.

ccmds-get-width (object) _ width
Return the width (thickness) of the object.

ccmds-set-width (object width)
Set the width (thickness) of the object.

5.3 A DRAWING EDITOR 73

Table 5.5. Operations defined by the Delta interface (cont.)

Operation Description

ccmds-get-visible-box -->(xminyminxmaxymax)
Return the extent of the drawing currently visible.

ccmds-show-point (x y)
Scroll the drawing so that (x,y)is in the center of the visible box.

ccmds-set-zoom (zoom-factor)
Set the current zoom factor.

ccmds-get-zoom _ zoom-factor
Get the current zoom factor.

ccmds-clear Delete the selection.

ccmds-duplicate (x y)
Duplicate the selection, offset (x,y)from the original.

ccmds-reshape Toggle reshape mode.

ccmds-select-all Select all objects in the drawing.

ccmds-read-drawing Prompt for a file-name and read a drawing from that file.

ccmds-read-named-drawing (file-name)
Read a drawing from file-name.

ccmds-write-drawing Prompt for a file-name and write the drawing to that file.

ccmds-write-named-drawing (file-name)
Write the drawing to file-name.

Providing a programming interface to Delta was the most difficult test of Whisper. As

discussed in Section 2.4, the class of programs that includes Delta is among the least

abstract in a hierarchy of applications. Not only does a drawing editor such as Delta use

a graphical direct manipulation interface, but the underlying objects manipulated by the

program are graphical as well, and more difficult to describe in a command language.

Many text-based applications have programmable interfaces. Text-based applications

with direct manipulation interfaces pose additional problems, but despite surface changes

the applications still can be described by a few concepts and operations that are express-

ible in a written language. For example, there are only minor differences between the

Whisper interface to the calculator described in the previous section and one that is com-

pletely text-driven. However, the semantic information contained in a drawing editor is

less easily expressed in textual language. The information content of the Delta display is

much greater than the calculator display's.

74 Chapter5: CASESTUDIES

5.3.1 Access to data

The most important decision to be made in designing the Delta interface was determining
how to provide access to drawing state, permitting macros to learn about a drawing's

contents. In Delta, as in most direct manipulation interfaces, the interface designer must
provide explicit operations that correspond to the implicit commands a user executes

while examining the display. (See Section 2.4.2.) I chose to provide a generator func-

tion, next-object, that cycles through the current selection, retuming a reference to
another selected object each time it is called. Additional functions, such as

get-n-vertices, return information about an objecrs attributes. Another interface function

allows the command language programmer to deselect a particular object. These func-

tions allow the programmer to select all the objects in the drawing or in a region, examine

each object, and apply editing operations to "interesting" objects. For example, the fol-
lowing program selects all double-width lines in the drawing:

(defunselect-double-lines0
(let (object)

(ccmds-select-all) ; selectall objectsin the drawing
(setqobject(ccmds-first-object"line")) ;get the first line
(do () ((nullobject)) ; quitwhenno morelines

(if (/= (ccmds-get-widthobject)2) ; if line widthNOT2
(ccmds-deselect-objectobject)) ; deselectit

(setqobject (ccmds-next-object"line"))))) ;get the next line

While this interface is suitable for programming in the command language directly, in a

programming-by-example system the use of data descriptions would simplify the selec-

tion process. To create the same macro using the programming-by-example interface, a

user would record a macro in which he selects a line. He would then edit the macro,

specifying line width 2 in the data description. Delta data descriptions would have two
levels. The first describes the group of objects as a whole (Figure 5.3), and the second is

available to specify details about the particular type of object (Figure 5.4). Here, the first

level specifies that the macro operates on fines, and the second level specifies double-
width lines.

5.3.2 Interface to mouse operations

The second major step involved in designing the Delta interface was deciding how to

package the operations provided by the mouse. Depending on the program's mode, the
mouse may be used to create, select, move, or scale objects or move selected vertices.

Moreover, these operations are actually broken up into separate phases associated with
pressing down, dragging, and releasing the mouse button.

The interface could have provided a single function corresponding to all these operations

that bases its actions on current statemthis is how Delta's user interface is implemented.

