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ADVANCED HALL ELECTRIC PROPULSION FOR FUTURE 
IN-SPACE TRANSPORTATION 

 
Steven R. Oleson and John M. Sankovic  

National Aeronautics and Space Administration 
 Glenn Research Center 
Cleveland, Ohio 44135 

 
ABSTRACT 

The Hall thruster is an electric propulsion device used for multiple in-space applications including orbit 
raising, on-orbit maneuvers, and de-orbit functions. These in-space propulsion functions are currently 
performed by toxic hydrazine monopropellant or hydrazine derivative/nitrogen tetroxide bi-propellant 
thrusters. The Hall thruster operates nominally in the 1500 s specific impulse regime. It provides greater 
thrust to power than conventional gridded ion engines, thus reducing trip times and operational life when 
compared to that technology in Earth orbit applications. The technology in the far term, by adding a 
second acceleration stage, has shown promise of providing over 4000s Isp, the regime of the gridded ion 
engine and necessary for deep space applications. The Hall thruster system consists of three parts, the 
thruster, the power processor, and the propellant system.  The technology is operational and commercially 
available at the 1.5 kW power level and 5kW application is underway.  NASA is looking toward 10 kW 
and eventually 50 kW-class engines for ambitious space transportation applications. The former allows 
launch vehicle step-down for GEO missions and demanding planetary missions such as Europa Lander, 
while the latter allows quick all-electric propulsion LEO to GEO transfers and non-nuclear transportation 
human Mars missions.  
 
TECHNOLOGY DESCRIPTION 
HALL THRUSTER OPERATION 
The Hall thruster is an electric propulsion device used for orbit raising, on-orbit maneuvers, and de-orbit 
functions which are currently performed by hydrazine monopropellant or hydrazine derivative/nitrogen 
tetroxide bi-propellant thrusters. The Hall thruster nominally operates in the 1500 s specific impulse 
regime.  It provides greater thrust to power than the conventional gridded ion engines, thus reducing trip 
times and requiring lower operational lifetimes when compared to that technology in Earth Orbit 
applications.  The technology in the far term, by adding a second acceleration stage, has shown promise 
of providing over 4000s Isp, the regime of the gridded ion and necessary for deep space applications.   
 
The Hall thruster system consists of three parts, the thruster, the power processor, and the propellant 
system.  A simplified schematic diagram of a Hall thruster is presented in figure. 1 and an overview of the 
underlying physics is available in Ref. 1. The typical propellant for a Hall thruster is a high molecular 
weight inert gas such as xenon.  A power processor is used to generate an electrical discharge between a 
cathode and an annular anode through which the majority of propellant is injected.   A critical element of 
the device is the incorporation of a radial magnetic field, which serves to impart a spin to the electrons 
coming from the cathode and to retard their flow to the anode.  The spinning electrons collide with the 
neutral xenon, ionizing it.  The xenon ions are then accelerated from the discharge chamber by the electric 
potential maintained across the electrodes by the power processor.  The velocity of the exiting ions, and 
hence the specific impulse, is governed by the voltage applied by the discharge power supply and is 
typically 15,000-16,000 m/s at 300 V.   A sample Hall electric thruster is shown in figure 2. 
 
HISTORICAL DEVELOPMENT 
As with the majority of electric propulsion devices, a great of deal of early research and technology 
development was accomplished in the 1960’s in both the United States and in the Soviet Union.  At that 
time, high erosion rates and low performance led to the cessation of research on Hall thrusters in the US, 
in favor of the development of gridded ion accelerators.  This effort culminated with the successful flight 
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demonstrations of ion systems on SERT 1 in 1964 and SERT 2 in 1970.  In the Soviet Union, the opposite 
approach was taken.  With the inability of attaining long life with low grid erosion, the Hall thruster 
efforts became the primary focus of development in the Soviet Union.  In 1971 aboard a METEOR 
spacecraft, the first Hall thruster was flown.  Over the next two decades several dozen 0.66 kW SPT-70 
thrusters were used operationally in space. These flights and Russian advances in Hall thruster technology 
went virtually unnoticed by the rest of the electric propulsion community until approximately 1990.    

 
 
At that time two events occurred simultaneously, an increase in openness between the USSR and the US 
and a reconfiguration of the SDIO space architecture to focus on small low Earth orbit (LEO) spacecraft.  
The SDIO recognized the value of advanced propulsion and quickly took the lead in reaching out to the 
electric propulsion community in the USSR.  After the evaluation of data provided by the USSR on the 
Stationary Plasma Thruster, the SDIO sponsored a team of US government specialists from the Jet 
Propulsion Laboratory, NASA Glenn Research Center, and USAF Phillips Laboratory to visit two 
laboratories in the USSR in 1991.  This group worked jointly with Russian specialists to determine if the 
technology had promise for incorporation on US spacecraft. The team was given unprecedented access to 
the yet not flight proven 1.35 kW SPT-100 thruster (Fig. 2). Testing was performed at both the Scientific-
Research Institute of Thermal Processes (NIITP) (now Keldysh Research Center (KeRC)), Moscow, 
Russia and the Construction Bureau “Fakel”, Kaliningrad, Kaliningrad Region, Russia. Under the Soviet 
system NIITP had responsibility for implementation of the government electric propulsion program, 
similar in function to a NASA laboratory, while Fakel was responsible for the production of flight 
thrusters, similar to a US commercial rocket company. Also participating in the evaluation were 
representatives from the academic community including A. Morozov, from the Kurchatov Atomic Energy 
Institute, responsible for the initial design of the Stationary Plasma Thruster.  The findings of the team 
were that the technology appeared very promising; however, further evaluation in the US at specialized 
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NASA electric propulsion testbeds was recommended.  Issues considered were performance at space 
representative conditions (very low vacuum chamber background pressures), impacts of the thruster on 
Western spacecraft, and the life of the device. The recommendations were followed, and an  
SPT-100 was purchased by the US government and delivered to NASA GRC for further evaluation. 

 
 

Hall thruster technology work continued seamlessly under the successor agency to the SDIO, the BMDO.  
The BMDO has supported the development of joint US/Russian commercial ventures to provide Hall 
thruster technology to government and commercial users.  Two of the earliest and strongest partnerships 
were International Scientific Products (ISP) (San Jose, CA and now part of Pratt & Whitney) and NIITP, 
and Space Systems/Loral (SS/L) (Palo Alto, CA) and Fakel. A third business relationship followed and 
included the Central Scientific Research Institute of Machine Building (TsNIIMash) and Olin Aerospace 
Corp. (OAC) (Redmond, WA) (now Primex Aerospace Co.) centering on the 1.35 kW Thruster with 
Anode Layer (TAL) version of the Hall thruster. Primex has since decided to pursue Hall technology 
using commercial funding with the Busek Co., based in Boston.  TsNIIMash is now teamed with Boeing 
to provide the TAL technology.   
 
Acting as the implementing agency for the BMDO in all electric propulsion activities, NASA GRC was 
tasked with bringing the technology to a level of development and demonstration acceptable to the US 
user community.  The early vision was to take Russian thruster technology and combine it with US power 
electronics.  The result when combined with specialized Russian and US propellant system components 
would be enabling technology for the worldwide spacecraft market.    
 
The BMDO program consisted of three phases: (1) technology evaluation, (2) propulsion system design 
and ground demonstration, and finally (3) flight demonstration. The early technology evaluation program 
has helped the commercialization of the Fakel SPT-100 with baselined flights on future Space 
Systems/Loral spacecraft. The “Thruster-on-a-Pallet” ground demonstration program (RHETT1) 
demonstrated a compact, minimal spacecraft interface, joint US/Russian Hall thruster propulsion system 
centered on KeRC T-100 thruster, which piqued the interest of TRW. The culmination of the 
BMDO/NASA GRC program was the use of a low-power Hall thruster system operationally on the NRO 
STEx spacecraft under the NRL Electric Propulsion Demonstration Module (EPDM) program.2, 3 That 
multiagency effort resulted in the first use of a Hall thruster on a US spacecraft. The flight propulsion 
system hardware for that system was supplied by the NASA GRC through BMDO sponsorship under the 
RHETT2 program and consists of a TsNIIMash TAL D-55. The efforts over the last several years have 
established a significant industrial base in the US. Potential technology providers now include Atlantic 
Research Corp. (ARC), Boeing, Primex, and Pratt & Whitney.   

Figure 2.—Sample Hall Electric Thruster. 
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CURRENT/PLANNED PROGRAMS 
The 1.5kW power level is appropriate for orbit-raising and maneuvering of mid-range LEO class 
spacecraft; however, larger LEO payloads and GEO spacecraft require higher thrust which equates to 
higher power electric propulsion systems. The 5 kW-class technology is near maturity.  Industry has 
baselined the technology on next-generation commercial comsats for stationkeeping and orbit insertion, 
including SS/Loral’s next generation comsat. The AF under IHPRPT is supporting the development of the 
SPT-140 with ARC, including a high performance power processor at SS/Loral.  NASA lessons learned 
from the RHETT2 development program included the need for low-cost power processing technology.  
The problem of acceptance of the technology for future flights hinges on the ability to change spacecraft 
platforms with little non-recurring cost.   With that in mind NASA under both BMDO and NASA 
FutureX program sponsorship developed and ground demonstrated a revolutionary power processor 
technology on the Express program, which sacrificed performance (efficiency) for dramatic cost 
reductions.  NASA partnered with TRW and Space Power Inc on the Express Project. NASA’s recent 
development dollars have been devoted to 10kW domestic thrusters.  The higher power is tailored as the 
first step in the space transportation cost reduction process. A 10 kW engine designed and built for NASA 
by Space Power Inc. has undergone performance testing and has also completed a 1000 hr erosion 
evaluation test.  Used alone or combined with advanced chemical systems, at least a 2x increase in 
payload is possible to GEO and planetary missions, such as Europa Lander are enabled off Delta II-class 
vehicles. NASA is now embarking on a 50 kW class engine program for future space transportation 
needs. This class of engine provides the ability to do full LEO to GEO transfers in reasonable time 
periods, reduces launch requirements for large platforms such as Space Solar Power by a factor of 2, and 
enables a non-nuclear transfer technology for human Mars missions while decreasing boosters required. 
The 50 kW program will first consist of design options and a proof-of-concept build and test. Figure 3 
presents the Hall thruster development roadmap. The benefits of Hall electric thruster technology are 
discussed next. 

Figure 3.—Hall Thruster Development Roadmap. 

SOASOASOASOA          NEAR TERM         NEAR TERM         NEAR TERM         NEAR TERM                                                                                                                                   FAR TERM           FAR TERM           FAR TERM           FAR TERM

Hall ThrusterHall ThrusterHall ThrusterHall Thruster

10 kW
Domestic
Engine

2.3 kW 2-
Stage Concept
Evaluation

100 W
Feasibility
Assessment

50 kW
Domestic
Engine

TimeTimeTimeTime

TTTT
RRRR
LLLL

LLLL
eeee
vvvv
eeee
llll

Code RCode RCode RCode R
Future XFuture XFuture XFuture X
PathfinderPathfinderPathfinderPathfinder

Express/T-160

5 kW Russian Engine

Low-Cost Modular
PPU

Code RCode RCode RCode R
In-In-In-In-
spacespacespacespace
FocusedFocusedFocusedFocused

CodeCodeCodeCode
S/MS/MS/MS/M
CETDPCETDPCETDPCETDP

Ea r th

PP
U

T-160E , MV,
FCU,  a nd
Xe FG

X

EAST

Z
NO RT

H

Y
WEST

SOUTH



NASA/TM—2001-210676 5 

IN-SPACE APPLICATIONS 
 
Earth Orbit In-Space Transportation 
Several applications of Hall thrusters exist which allow great savings in transportation costs. These 
include LEO satellite constellations, combined chemical/electric GEO insertions, and all electric LEO to 
GEO. In most of the applications the Hall propulsion system is used cradle to grave; in-space delivery, 
operation maneuvers, and end-of-life disposal are all functions performed by the same Hall thruster 
propulsion system. In the following missions Hall thruster propulsion systems provide a cost benefit by 
using a smaller launch vehicle or by increasing the payload for the existing launch vehicle.  
 
LEO Satellites 
The advantages of a Hall thruster system for a LEO constellation mission are shown by a sample use on a 
Globalstar-type constellation.4 Comparing chemical, arcjets, Hall, and ion thrusters for the orbit raise and 
deorbit, the launch mass is varied by choosing different starting altitudes.  The spacecraft breakdowns are 
shown in figure 4. The reduced mass of the Hall thruster system allows an extra satellite to be added to 
each Delta launch vehicle as shown in figure 5.  This reduces the required Delta launch fleet by three 
launch vehicles (11 instead of 14).  The orbit raise assumes a continuous circumferential thrusting spiral 
using the payload’s power collection and storage systems. De-orbit is merely the reverse of the initial 
orbit raise.  Hall thruster operations could be autonomous similar to those of STEX and Deep Space 1 
NSTAR ion propulsion system.  
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Figure 4.—LEO Satellite Masses. 
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GEO Satellites 
Near-Term Orbit Insertion 
Hall thrusters are currently employed on several Russian geosynchronous communication satellites for 
stationkeeping duties. By enlarging the Hall thruster system to multiple 5 kW modules to take advantage 
of all the available satellite payload power (>20 kW in the near term), a short one to two month orbit 
insertion can be performed to significantly increase the payload mass (20 to 35%) as shown in figure 6.5,6 
The Hall thruster system outperforms a gridded ion system since it has an Isp performance closer to the 
optimal for the orbit insertion. (See references 5 and 6 for a complete explanation.) The delivery 
operations are as follows (Fig. 7): (1) launch to into a roughly geosynchronous transfer orbit by an 
expendable launch vehicle, (2) burn of the on-board apogee chemical system (which has some fuel off-
loaded) to place the satellite into an inclined orbit with a perigee above the belts and apogee above GEO 
altitude,  (3) Hall thruster operation to raise perigee, lower apogee, and change plane. The perigee height 
is set to avoid the damaging proton radiation belts.  Several satellite providers plan on use of this orbit 
insertion technique. 

Figure 6.—GEO Payload Advantages with Hall Technology. 
 

  
Figure 7.—Orbit Insertion Concept. 
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Mid-Term Orbit Insertion 
The next step is to remove the need for an upper stage to allow for an even greater benefit:  doubling 
payloads for re-useable launch vehicles (RLVs) (no upper stage) or providing a launch vehicle step-down 
as shown in figure 8. For near term 40 kW payloads, the use of multiple 10 kW modules and a 60 day 
insertion can provide a step-down from an Atlas IIAR to a Delta 7920, approximately halving the launch 
costs. Payloads can be increased even more by allowing longer trip times. As shown in figure 9, the Hall 
thruster starting orbit is lowered even further than in the previous method.7 The delivery operations are as 
follows (Fig. 9):  (1) launch to LEO by an expendable launch vehicle or RLV without an upper stage, (2) 
burn of an expanded on-board apogee chemical system to place the spacecraft in an elliptical inclined 
starting orbit with apogee below GEO, (3) Hall thruster operation to raise perigee, apogee, and change 
plane. Part of the orbit raising operation will occur in the radiation belts, perhaps necessitating advanced 
radiation resistant arrays, although the exposure times should be a month or less.   
 
 

 
 
 
 
 

GEO

Nominal GTO

EP Starting Orbit

Figure 9.—All On-Board Propulsion, LEO to GEO Concept. 
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Far-Term Orbit Raising 
As power levels increase even more (50 kW class thrusters) GEO spacecraft should be able to transfer 
directly from LEO to GEO in a few months time. In these cases a payload increase of almost four times is 
possible. Again autonomous steering can be used to reduce operations costs.   
 
Concepts delivering even larger platforms, such as space solar power satellites, have been studied.8  
50 to 100 kW class Hall thrusters are the best electric propulsion system choice in order to reduce 
required launch fleet while minimizing delivery time. A comparison of Hall technology for the delivery 
of space solar power nodes is shown in figure 10. The Hall technology requires half the launch vehicles of 
a chemical in-space system and delivers the complete set of nodes from ground to GEO in less time based 
on a three launch per day limit. 

 
 

 

 
Interplanetary In-Space Transportation 
Robotic Missions 
Interplanetary missions can also benefit from Hall thrusters in some cases just by using them in Earth 
space to minimize the chemical escape stage requirements as suggested by Gefert and Hack.9 As an 
example, a Europa Lander mission using two 10 kW Hall systems would allow a launch vehicle step-
down from an Atlas IIAS to a Delta 7920 and only require a ~10% increase in trip time.  The mission 
operations are as follows (Fig. 11): (1) launch to LEO by an expendable launch vehicle or RLV,  
(2) Hall thruster operation to raise only apogee, and place spacecraft in a highly elliptical orbit, just short 
of escape, (3) Burn of an on-board chemical system to place the spacecraft on an escape trajectory to the 
target, (4) capture is performed electrically, chemically or with aerobraking. Reuse of the Hall thruster 
systems may be possible for near planet operations.   
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Piloted Missions 
Piloted Mars missions can also benefit from same mission scenario as described above. 9,10 This savings in 
chemical escape propellant can approximately halve the needed launch vehicle fleet compared to all 
chemical and provides a non-nuclear option for manned Mars exploration. The pump-up operations are as 
follows: (1) launch to LEO of crew and cargo transports and a high power Hall thruster stage by several 
expendable launch vehicles, (2) Hall thruster operation to raise only apogee, and place spacecraft in a 
highly elliptical orbit, just short of escape (3) Utilize a crew taxi to man the Mars vehicle, (Hall stage 
separated at this point) (4) Burn of an on-board chemical system to place the space craft on an escape 
trajectory to the planet, (5) capture is performed with aerobraking. The Hall thruster stage (Fig. 12) is 
returned to LEO for other manned /cargo transfers.   

 
 
Multi-Mode Missions 
Hall thrusters may also be operated in a wide range of specific impulse.  The so-called 'Two Stage' Hall 
thruster could provide 'fast' lower planetary escape and maneuvering Isps (~1500 to 2000 sec) while also 
providing higher interplanetary transfer Isps (~3000 to 4000 sec).  A similar concept suggested by Liefer 
utilized a set of separable Hall thrusters for the planetary escape and a set of gridded ion thrusters for the 
planetary transfer.11 This concept allowed for a launch vehicle reduction. This two stage Hall thruster 
could provide highly flexible, ‘on-the-fly’ re-configurable planetary missions and ample maneuverability 
at the target and can provide up to 15% more payload and simplicity compared to the Liefer Ion and Hall 
thruster concept.12 The mission operations are as follows (Fig. 13): (1) launch to GTO by an expendable 
launch vehicle, perhaps as a secondary payload, (2) Hall thruster single stage operation to raise only 
apogee, and place the spacecraft on an escape trajectory, (3) Hall thruster two stage operation for 
planetary space transfers, (4) capture is performed with the Hall system or with aerobraking  

Planetary Transfer Orbit

SEP Transfer

Chemical Escape Burn

Figure 11.—Planetary Pump-Up Scenario. 

Figure 12.—HEDS Mars Hall Electric Stage. 
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(5) Hall thruster single stage operation would provide systems near planet maneuvering depending on 
mission changing mission needs.    
 
This variable Isp concept is also beneficial for earth orbit missions.  Studies have shown that up to 100 kg 
of payload can be added to Atlas class geosynchronous spacecraft just by using a low Isp (~1700 sec) for 
the orbit insertion and a high Isp  (~3000 sec) for the stationkeeping phase. 
 

 
 
 
 
CONCLUSIONS 
The Hall thruster is a non-toxic, electric propulsion device, which can be used for earth orbital and in-
space applications including orbit raising, on-orbit maneuvers, ∆V and de-orbit functions. Hall 
technology can also be beneficial for interplanetary applications by significantly reducing the chemical 
escape propellant. Hall technology is operational and commercially available at the 1.5 kW power level 
and the 5kW application is nearing use.  NASA is looking toward 10kW power levels for in-space 
transportation applications such as no-upper stage RLV missions and launch vehicle step-down missions 
for geosynchronous and interplanetary missions. Eventually 50 kW-class engines will allow LEO to GEO 
orbit raising and piloted Mars exploration. The technology in the far term, by adding a second 
acceleration stage and/or higher voltage capability, has shown promise of providing over 3000s Isp, most 
beneficial for stationkeeping and deep space applications. By using both high and low Isp modes in one 
thruster even more payload mass can be delivered for multi-phase earth and interplanetary missions. 
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