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Preface

This report documents the formulation of program Regres of the Orbit Determination Program
(ODP) of the Jet Propulsion Laboratory (JPL). Program Regres calculates the computed values of
observed quantities (e.g., doppler and range observables) obtained at the tracking stations of the
Deep Space Network (DSN). It also calculates media corrections for the computed values of the
observables and partial derivatives of the computed values of the observables with respect to the
solve-for parameter vector q. The Orbit Data Editor (ODE) obtains the actual quantities that are
observed by the DSN. These quantities are used to calculate the “observed” values of the DSN
data types using the formulation given in this report. These “observables” are given to program
Regres on the OD file. The definitions of the observed values of the DSN data types calculated in
the ODE and the computed values of the DSN data types calculated in program Regres are the
same. The estimation programs of the ODP set fit the computed values of the observables to the
observed values of the observables in a least squares sense by differentially correcting the values
of the solve-for parameters. This process uses the observed-minus-computed residuals and the par-
tial derivatives of the computed values of the observables with respect to the solve-for parameter
vector q calculated in program Regres. The resulting estimated values of the solve-for parameters
determine the trajectory of the spacecraft.

The last external report that documented the Regres formulation was Moyer (1971) (see Sec-
tion 14, References). That report gave the complete formulation of the ODP. This report gives the
formulation for program Regres only. I started working on the Regres formulation when I arrived
at JPL in 1963. Prior to publication of this document, the Regres formulation was contained in
parts of Moyer (1971), and in many JPL-internal memoranda. The purpose of writing this docu-
ment was to place the entire Regres formulation in a widely available external document. It will be
used in the Next-Generation Navigation Software, which is currently under development at JPL.
Also, the formulation is available and can be used by any organization that is developing an ODP.
It applies for navigating a spacecraft anywhere in the Solar System.

Theodore D. Moyer
October 2000
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SECTION  1

INTRODUCTION

For determining the trajectory of a spacecraft, computed values of
observed quantities are fit to the observables by varying the values of the model
parameters. The estimated values of these so-called solve-for parameters
determine the trajectory of the spacecraft. This report documents the current
formulation for the observed and computed values of the observables and the
corresponding partial derivatives of the computed observables with respect to
the solve-for parameters. This formulation is used in program Regres of the
Orbit Determination Program (ODP) of the Jet Propulsion Laboratory. This
third-generation program has been used to determine spacecraft trajectories for
lunar and planetary missions since 1968. Recently, it has also been used to
determine the orbits of Earth satellites.

The last external report which documented the Regres formulation was
Moyer (1971). The scope of that report was the formulation of the entire ODP.
This report documents the complete formulation of program Regres of the ODP
and the relativistic terms of the formulation of program PV, which generates the
spacecraft trajectory and the corresponding partial derivatives with respect to
the estimable parameters. Thus, this document contains all of the relativistic
terms that affect the computed values of observed quantities. The complete
formulation of program PV will eventually be documented by Richard F.
Sunseri, the programmer/analyst for that program. The user�s guide for the
ODP is given in DPTRAJ-ODP User�s Reference Manual (2000).

All of the observables can be placed into the following broad categories:
doppler, range, spacecraft and quasar very long baseline interferometry (VLBI),
and angular observables. They are described in detail in Section 13. The model
parameters whose values can be estimated can be placed into the following
categories:

(a) Dynamic parameters that determine the spacecraft trajectory,
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(b) Station location parameters that determine the Earth-fixed locations
of the tracking stations,

(c) Earth orientation parameters that determine the space-fixed
orientation of the Earth,

(d) Reference parameters that determine the relative positions of the
celestial bodies of the Solar System,

(e) Quadratic coefficients of corrections to atomic time at the spacecraft
and tracking stations,

(f) Quadratic coefficients of the correction to the spacecraft transmitter
frequency (when it is the transmitter),

(g) Range biases,

(h) Parameters of the Earth�s troposphere and ionosphere,

(i) The relativity parameters β and γ,

(j) The right ascensions and declinations of quasars.

Those parameters, such as range biases, that affect the computed values of
the observables but not the position vectors of the participants (the spacecraft
and the tracking stations) are referred to as observational parameters.

There are two variations of the formulations used in programs PV and
Regres of the ODP. One of these is the original formulation which is referred to
the Solar-System barycentric relativistic frame of reference. It applies for a
spacecraft anywhere in the Solar System. The alternate formulation is referred to
the local geocentric relativistic frame of reference. It applies for a spacecraft near
the Earth, such as an Earth orbiter. Note that lunar missions must be analyzed in
the Solar-System barycentric frame of reference.

The errors in the computed values of range and doppler observables due
to neglected terms in the formulation for computing them are less than 0.2 m
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(one-way) and 10�6 m/s per astronomical unit (AU) of range to the spacecraft.
These figures assume two-way data (the receiving station on Earth is the
transmitting station). Also, they do not account for errors in input items, such as
the planetary and spacecraft ephemerides, precession and nutation models, and
tracking station locations.

Section 2 discusses time scales and the calculation of time differences. This
material is presented first because time is discussed in all of the other sections of
this report. The planetary and satellite ephemerides and the quantities
interpolated from them are described in Section 3. Section 4 presents the
equations used in program PV for the acceleration of the spacecraft due to
gravity only (Newtonian and relativistic terms) in the Solar-System barycentric
and local geocentric frames of reference. Section 5 gives the extensive
formulation for the geocentric space-fixed position, velocity, and acceleration
vectors of a fixed tracking station on Earth. The formulation for the space-fixed
position, velocity, and acceleration vectors of a landed spacecraft on one of the
celestial bodies of the Solar System is given in Section 6. Section 7 gives the four
algorithms used for calculating the difference between coordinate time of
general relativity and atomic time at the transmission or reception time at a
tracking station on Earth or an Earth satellite. Section 8 gives the light-time
equation and the algorithm for the spacecraft light-time solution. It also gives the
corresponding quantities for the quasar light-time solution used in calculating the
computed values of quasar VLBI observables. The formulation used to compute
the auxiliary angles is given in Section 9. The calculation of antenna, tropospheric,
and charged-particle corrections is described in Section 10. Section 11 describes
how precision range (round-trip or one-way light times) and quasar delays are
calculated from quantities computed in Sections 7 to 10. The partial derivatives of
the computed precision ranges and quasar delays with respect to the solve-for
parameters are given in Section 12. Section 13 gives the formulations for the
observed and computed values of the various types of doppler, range, VLBI, and
angular observables, and the equations for calculating media corrections for the
computed values of the observables and partial derivatives of the computed
values of the observables with respect to the solve-for parameters. The Orbit
Data Editor (ODE) obtains the observed quantities from the tracking stations and
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converts them to the �observables� which are used in program Regres, using the
formulations given in Section 13. The references are given in Section 14.
Acronyms used throughout this document are given in Section 15.
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2.1 INTRODUCTION

This section is presented first because time is discussed in all of the other
sections of this report. The various time scales used in programs PV and Regres
of the ODP are described in Section 2.2. A time difference is the difference
between values of an epoch recorded in two different time scales. Section 2.3
describes the time differences and gives the equations used for calculating them.
Some of the time differences are obtained by interpolation of input files, which
are described in Section 2.4. Section 2.5 presents time transformation trees. These
figures indicate how to transform an epoch in one time scale to the
corresponding epoch in any other time scale by adding and/or subtracting the
intervening time differences. Time transformation trees are given for reception
or transmission at a tracking station on Earth and at an Earth satellite.

Time in any time scale is represented as seconds past January 1, 2000, 12h

in that time scale. This epoch is J2000.0, which is the start of the Julian year 2000.
The Julian Date for this epoch is JD 245,1545.0.

2.2 TIME SCALES

2.2.1 EPHEMERIS TIME (ET)

Ephemeris time (ET) means coordinate time, which is the time coordinate
of general relativity. It is either coordinate time of the Solar-System barycentric
space-time frame of reference or coordinate time of the local geocentric space-
time frame of reference, depending upon which reference frame the ODP user
has selected. It is the independent variable for the motion of celestial bodies,
spacecraft, and light rays. The scale of ET in each of these two reference frames is
defined below in Section 2.3.1.

2.2.2 INTERNATIONAL ATOMIC TIME (TAI)

International Atomic Time (TAI) is based upon the SI second
(International System of Units). From p. 40�41 of the Explanatory Supplement to
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the Astronomical Almanac (1992), it is defined to be the duration of 9,192,631,770
periods of the radiation corresponding to the transition between two hyperfine
levels of the ground state of the cesium-133 atom. It is further stated that this
definition applies on the geoid (mean sea level). TAI is obtained from a
worldwide system of synchronized atomic clocks. It is calculated as a weighted
average of times obtained from the individual clocks, and corrections are applied
for known effects.

Time obtained from a clock on board an Earth satellite will be referenced
to satellite International Atomic Time. Satellite TAI is an imaginary time scale
obtained from an ideal atomic clock on the satellite. It agrees on average with
TAI obtained from atomic clocks on Earth.

2.2.3 UNIVERSAL TIME (UT1 AND UT1R)

Universal Time (UT) is the measure of time that is the basis for all civil
time-keeping. It is an observed time scale, and the specific version used in the
ODP is UT1. It is used to calculate mean sidereal time, which is the Greenwich
hour angle of the mean equinox of date, measured in the true equator of date.
Adding the equation of the equinoxes gives true sidereal time, which is used to
calculate the position of the tracking station relative to the true equator and
equinox of date. The equation for calculating mean sidereal time from observed
UT1 is given in Section 5.3.6. From p. 51 of the Explanatory Supplement to the

Astronomical Almanac (1992), the rate of UT1 is chosen so that a day of 86400 s of
UT1 is close to the duration of the mean solar day. The phase of UT1 is chosen so
that the Sun crosses the Greenwich meridian at approximately 12h UT1.

Observed UT1 contains 41 short-period terms with periods between 5 and
35 days which are caused by long-period solid Earth tides. The algorithm for
calculating the sum ∆UT1 of the 41 short-period terms of UT1 is given in Section
5.3.3. If ∆UT1 is subtracted from UT1, the result is called UT1R (where R means
regularized). If UT1R is input to the ODP, the sum ∆UT1 must be calculated and
added to UT1R to produce UT1, which is used to calculate mean sidereal time.
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2.2.4 COORDINATED UNIVERSAL TIME (UTC)

Coordinated Universal Time (UTC) is standard time for 0° longitude. Since
January 1, 1972, UTC uses the SI second and has been behind International
Atomic Time TAI by an integer number of seconds. UTC is maintained within
0.90 s of observed UT1 by adding a positive or negative leap second to UTC. A
leap second is usually positive, which has the effect of retarding UTC by one
second; it is usually added at the end of June or December. After a positive leap
second was added at the end of December, 1998, TAI − UTC increased from 31 s
to 32 s; at the beginning of 1972, it was 10 s. The history of TAI − UTC is given in
International Earth Rotation Service (1998), Table II-3, p. II-7.

2.2.5 GPS OR TOPEX MASTER TIME (GPS OR TPX)

GPS master time (GPS) is an atomic time scale, which is used instead of
UTC as a reference time scale for GPS receiving stations on Earth and for GPS
satellites. Similarly, TOPEX master time (TPX) is an atomic time scale used as a
reference time scale on the TOPEX satellite. GPS time and TPX time are each an
integer number of seconds behind TAI or satellite TAI. As opposed to UTC, these
atomic time scales do not contain leap seconds. Therefore, the constant offsets
from TAI or satellite TAI do not change.

2.2.6 STATION TIME (ST)

Station time (ST) is atomic time at a Deep Space Network (DSN) tracking
station on Earth, a GPS receiving station on Earth, a GPS satellite, or the TOPEX
satellite. These atomic time scales depart by small amounts from the
corresponding reference time scales. The reference time scale for a DSN tracking
station on Earth is UTC. For a GPS receiving station on Earth or a GPS satellite,
the reference time scale is GPS master time (GPS). For the TOPEX satellite, the
reference time scale is TOPEX master time (TPX). Note, the TPX and GPS time
scales can be used for any Earth-orbiting spacecraft.
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2.3 TIME DIFFERENCES

2.3.1 ET − TAI

2.3.1.1 The Metric Tensor and the Metric

This section gives the equations for the n-body metric tensor and the
corresponding expression for the interval ds. All of the relativistic equations in
programs PV and Regres of the ODP can be derived from these equations or
from simplifications of them. The components of the Parameterized Post�
Newtonian (PPN) n-body point-mass metric tensor, which contains the PPN
parameters β and γ  of Will and Nordtvedt (1972), are given by the following
equations, where the subscripts 1 through 4 refer to the four space-time
coordinates. Subscripts 1, 2, and 3 refer to position coordinates, and 4 refers to
coordinate time t multiplied by the speed of light c.

    

g g g
c r
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i jj i
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where the indices j and k refer to the n bodies and k includes body i, whose
motion is desired. Also,

  µ j = gravitational constant for body j.
= Gmj, where G is the universal gravitational constant and

mj is the rest mass of body j.
c = speed of light.

Let the position, velocity, and acceleration vectors of body j, with rectangular
components referred to a non-rotating frame of reference whose origin is
located at the barycenter of the system of n bodies, be denoted by :
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where the dots denote differentiation with respect to coordinate time t. Then,   ri j

and     
ús j

2 can be obtained from:

      ri j j i j i
2 = − ⋅ −( ) ( )r r r r (2�8)

      
ú ú ús j j j

2 = ⋅r r (2�9)

From Eq. (2�8), the first and second partial derivatives of   ri j  with respect to
coordinate time t (obtained by holding the rectangular components of the
position vector of body i fixed) are given by:
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Since this equation is used to evaluate the last term of Eq. (2�6) which is of order

    1
4c , and higher order terms are ignored, the acceleration of body j can be

evaluated from Newtonian theory:

      

úúr
r r

j
k k j

jkk j
r

=
−( )

≠
∑

µ
3 (2�12)

where k includes body i whose motion is desired.

The invariant interval ds between two events with differences in their
space and time coordinates of dx1, dx2, dx3, and dx4 is given by

    ds g dx dxpq
p q2 = (2�13)

where the repeated indices are summed over the integers 1 through 4 and gpq is
the n-body metric tensor given by Eqs. (2�1) to (2�6) and related equations. The
four space-time coordinates are the three position coordinates of point i (where
the interval ds is recorded) and the speed of light c multiplied by coordinate
time t:
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Substituting the components of the metric tensor and the differentials of (2�14)
into (2�13) gives

    

ds g c dt g dx dy dz

g dx cdt g dy cdt g dz cdt

i i i

i i i

2
44

2 2
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2 2 2

14 24 342 2 2

= + + +( )
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All of the terms of this equation are required in order to calculate the n-body
point-mass relativistic perturbative acceleration in the Solar-System barycentric
frame of reference (Section 4.4.1). However, all other relativistic terms in
programs PV and Regres of the ODP can be derived from Eq. (2�15), where each
component of the metric tensor contains terms to order     1

2c  only. Substituting
terms to order     1

2c  from Eqs. (2�1) to (2�6) into Eq. (2�15) and scaling the four
space-time coordinates by the constant scale factor l gives
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where the subscript i has been deleted from the position components of point i,
and U > 0 is the gravitational potential at point i which is given by

  

U
r

j

i jj i

=
≠
∑µ

(2�17)

where the summation includes the bodies of the Solar System in the Solar-
System barycentric frame of reference. In the local geocentric frame of reference,
U is the gravitational potential due to the Earth only. The scale factor l, whose
value is very close to unity, will be represented by

    l L= +1 (2�18)

The scale factor l does not affect the equations of motion for bodies or light.
However, it does affect the rate of an atomic clock, which records the interval ds

divided by the speed of light c. The definitions for L which apply for the Solar-
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System barycentric frame of reference and for the local geocentric frame of
reference are defined below in Sections 2.3.1.2 and 2.3.1.3. Numerical values for L
in these two frames of reference are not required in this section in order to
obtain the various expressions for ET − TAI. However, they are required in
Section 4.3 to transform the geocentric space-fixed position vector of the tracking
station from the local geocentric frame of reference to the Solar-System
barycentric frame of reference. They are also used in that section to transform
the gravitational constant of the Earth from its value in the Solar-System
barycentric frame of reference to its value in the local geocentric frame of
reference.

An approximate solution to Einstein�s field equations for the case of a
massless particle moving in the gravitational field of n massive bodies was first
obtained by Droste (1916). de Sitter (1915�1916 and 1916�1917) extended the
work of Droste to account for the mass of the body whose motion is desired.
However, he made a theoretical error in the calculation of one of his terms,
which was corrected by Eddington and Clark (1938). The Droste/de
Sitter/Eddington and Clark metric tensor is the same as Eqs. (2�1) to (2�6) and
Eq. (2�11), if the PPN parameters β and γ are set to their general relativistic
values of unity. The PPN metric of Will and Nordtvedt (1972) has a different
form. However, Shahid-Saless and Ashby (1988) used a gauge transformation to
transform the PPN metric to the Eddington and Clark metric. The resulting
metric tensor given by Eqs. (11) to (13) of Shahid-Saless and Ashby (1988), with
the PPN parameters ζ1 and ζ2 set to their general relativistic values of zero, is
equal to (the negative of) the metric tensor given by Eqs. (2�1) to (2�6) and
(2�11) above. The corresponding n-body Lagrangian was first derived by
Estabrook (1971). The n-body point-mass relativistic perturbative acceleration
given in Section 4.4.1 can be derived from the n-body metric tensor or the
corresponding Lagrangian.

2.3.1.2 Solar-System Barycentric Frame of Reference

This section presents two expressions for coordinate time ET in the Solar-
System barycentric frame of reference minus International Atomic Time TAI. In
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the expression given in Subsection 2.3.1.2.1, TAI is obtained from a fixed atomic
clock at a tracking station on Earth. In the expression given in Subsection
2.3.1.2.2, TAI is obtained from an atomic clock on an Earth satellite. As stated
above in Section 2.2.2, satellite TAI agrees on average with TAI obtained from
fixed atomic clocks on Earth. An approximation for either of these two
expressions for ET − TAI is given in Subsection 2.3.1.2.3.

In both expressions for ET − TAI, coordinate time ET and International
Atomic Time TAI run on average at the same rate. Both of these expressions
contain the same constant offset in seconds plus periodic terms. The specific
coordinate time (ET) used in the ODP is referred to as Barycentric Dynamical
Time (TDB) on p. 42 of the Explanatory Supplement (1992). From p. 41 of this
reference, TDB shall differ from TAI + 32.184 seconds (exactly) by periodic terms
only. Hence, the constant offset appearing in the expressions for ET − TAI will be
32.184 s. The Explanatory Supplement (1992) also refers (on p. 46) to Barycentric
Coordinate Time (TCB) which differs from TDB in rate. This alternate form of
coordinate time (TCB) is not used in the ODP.

The differential equation relating coordinate time ET in the Solar-System
barycentric frame of reference and International Atomic Time TAI at a tracking
station on Earth or on an Earth satellite can be obtained from Eq. (2−16). Since
the differential equation and the resulting expression for ET − TAI will contain
terms to order     1

2c  only, the second factor containing the gravitational potential
U can be deleted. The resulting expression for the interval ds (which is called the
metric) is the Newtonian approximation to the n-body metric.

An interval of proper time dτ recorded on an atomic clock is related to the
interval ds along its world line by

  
d

ds
c

τ = (2�19)

Proper time τ will refer specifically to International Atomic Time TAI. In
Eq. (2�16), t will refer specifically to coordinate time (ET) in the Solar-System
barycentric frame of reference. In Eq. (2�18), it will be seen that the constant L is
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of order     1
2c . Substituting Eqs. (2�19) and (2�18) into (2�16), expanding and

retaining terms to order     1
2c  gives the differential equation relating TAI and ET:

    

d
dt

U

c

v

c
L

τ = − − +1
1
22

2

2 (2�20)

where U is the gravitational potential (2�17) at the tracking station on Earth or at
the Earth satellite, and v is the Solar-System barycentric velocity of the tracking
station on Earth or the Earth satellite, given by
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
 (2�21)

From Eq. (2�20), TAI will run on average at the same rate as ET if the constant L
has the value

    
L

c
U v= 〈 + 〉1 1

22
2 (2�22)

where the brackets 〈 〉  denote the long-term time average value of the quantity
contained within them. From (2�20) and (2�22), it can be seen that the desired
expression for ET − TAI at a tracking station on Earth or at an Earth satellite can
be obtained by integrating periodic variations in the gravitational potential U at
this point and periodic variations in the square of the Solar-System barycentric
velocity of this point.

The value of the constant L, which applies in the Solar-System barycentric
frame of reference, is obtained in Section 4.3.1.2 by evaluating Eq. (2�22) at mean
sea level on Earth. If L were evaluated at the location of an Earth satellite, a
different value would be obtained. This offset value of L is used in Eq. (2�20) in
order to force satellite TAI to run on average at the same rate as coordinate time
ET in the Solar-System barycentric frame of reference. Any departure in the rate
of atomic time on the Earth satellite from the rate of satellite TAI can be
absorbed into the quadratic time offset described below in Section 2.3.5.
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2.3.1.2.1 Tracking Station on Earth

Eq. (2�20) was evaluated in Moyer (1981) for proper time τ equal to
International Atomic Time TAI obtained from an atomic clock located at a fixed
tracking station on Earth. This equation was integrated to give an expression for
coordinate time ET in the Solar-System barycentric frame of reference minus TAI
obtained at a fixed tracking station on Earth. The derivation was simplified by
using a first-order expansion of the gravitational potential and integration by
parts. This technique was first applied to this problem by Thomas (1975). Moyer
(1981) gives two different expressions for calculating ET − TAI at a tracking
station on Earth. Eq. (46) of Part 1 is the �vector form� of the expression. It is a
function of position and velocity vectors of various celestial bodies of the Solar
System and the geocentric space-fixed position vector of the tracking station on
Earth. This equation was converted to a function of time given by Eq. (38) of
Part 2 and related equations. The ODP previously calculated ET − TAI as a
function of time. However, it currently calculates ET − TAI from the vector form
of the equation. The vector form is more accurate and easier to calculate.
Furthermore, it was easier to modify the derivation of the vector form so that
the resulting expression for ET − TAI applied for TAI obtained at an Earth
satellite. However, evaluation of ET − TAI from the vector form of the equation
sometimes requires the use of an iterative procedure because the required
vectors are not always available until after the time difference is calculated.

Appendix A of Moyer (1981) describes the calculation of the computed
values of two-way (same transmitting and receiving station) and three-way
(different transmitting and receiving stations) range and doppler observables
and shows how the ET − TAI time differences are used in these calculations. It
also gives equations for the direct and indirect effects of various types of terms
of ET − TAI on the computed values of these observables. The indirect effects are
due to the effects of ET − TAI on the reception time at the receiving station, the
reflection time at the spacecraft, and the transmission time at the transmitting
station. Changes in these epochs have an indirect effect on the computed
observables. Appendix B of Moyer (1981) develops criteria for the retained terms
of ET − TAI. The accuracy of two-way range observables of the DSN is currently
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about 1�2 m in the one-way range ρ from the tracking station to the spacecraft.
It was desired to limit the direct effect of neglected terms of ET − TAI on ρ to an
RSS error of 1�2 m at a range ρ of 10 Astronomical Units (AU). The RSS direct
error in computed two-way range observables due to neglected terms of ET −
TAI, expressed as the equivalent change in the one-way range ρ, is 0.13 m per
AU or 1.3 m at 10 AU. The accuracy of two-way doppler observables of the DSN
is about 0.4 x 10�5 m/s in the one-way range rate   úρ  under the very best of
conditions. The RSS direct error in computed two-way doppler observables due
to neglected terms of ET − TAI, expressed as the equivalent change in   úρ , is 0.4 x
10�6 m/s per AU or 0.4 x 10�5 m/s at 10 AU. The RSS value of neglected terms of
ET − TAI is about 4.2 µs. For a range rate of 30 km/s, this produces an indirect
error in ρ of 0.13 m. For a spacecraft in heliocentric cruise, the indirect error in   úρ
is negligible. However, for a spacecraft near Jupiter where the acceleration can
be about 25 m/s2, the indirect error in   úρ  can be up to 10�4 m/s. For a Jupiter
flyby, estimation of the spacecraft state vector relative to Jupiter will eliminate a
constant error in ET − TAI, and consequently, the indirect error in   úρ  will be
reduced to less than 10�6 m/s. For a Jupiter orbiter, the indirect error can be
reduced by estimating the spacecraft state and a time-varying clock offset at the
tracking station.

The vector form of the expression for coordinate time ET in the Solar-
System barycentric frame of reference minus International Atomic Time TAI
obtained from an atomic clock at a tracking station on Earth is Eq. (46) of Part 1
of Moyer (1981):
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where
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      r ri
j

i
jand ú = space-fixed position and velocity vectors of point i

relative to point j, km and km/s. They are a function of
coordinate time ET, and the time derivative is with
respect to ET.

       Superscript or subscript C = Solar-System barycenter, S = Sun, B = Earth-
Moon barycenter, E = Earth, M = Moon, J = Jupiter,
Sa = Saturn, and A = location of atomic clock on Earth
which reads TAI.

  µ µ µS J Sa,  ,  = gravitational constants of the Sun, Jupiter, and Saturn,
km3/s2.

c = speed of light, km/s.

All of the vectors in Eq. (2�23) except the geocentric space-fixed position
vector of the tracking station on Earth can be interpolated from the planetary
ephemeris or computed from these quantities as described in Section 3.
Calculation of the geocentric space-fixed position vector of the tracking station is
described in Section 5. Section 7 gives algorithms for computing ET − TAI at the
reception time or transmission time at a tracking station on Earth or an Earth
satellite.

Eq. (2�23) for ET − TAI contains the clock synchronization term (listed
below in the next paragraph) which depends upon the location of the atomic
clock which reads International Atomic Time TAI and five location-independent
periodic terms. The sum of the location-independent terms can also be obtained
by numerical integration as described in Fukushima (1995). There are several
alternate expressions for ET − TAI which have greater accuracies than Eq. (2�23)
and more than 100 additional periodic terms. Fairhead and Bretagnon (1990) give
an expression containing 127 terms with a quoted accuracy of 100 ns. They also
have an expression containing 750 terms with an accuracy of 1 ns. Hirayama et al.
(1987) present an expression containing 131 periodic terms with a quoted
accuracy of 5 ns. Fukushima (1995) developed an extended version of this
expression containing 1637 terms. These expressions were fit to the numerically
integrated periodic terms of Fukushima (1995) for the JPL planetary ephemeris
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DE245 (obtained from E. M. Standish1). In fitting the more accurate expression of
Fairhead and Bretagnon (1990) to the numerical terms, some analytical terms
were deleted, and the coefficients of an empirical correction term were
estimated. The numerical minus analytical residuals for this modified expression
(containing 515 terms) were less than 3 ns. For the other four unmodified
expressions, the residuals varied from �131 ns to +64 ns.

2.3.1.2.2 Earth Satellite

The derivation of Eq. (2�23) is given in Moyer (1981). This derivation has
been modified so that it applies for coordinate time ET in the Solar-System
barycentric frame of reference minus satellite International Atomic Time TAI
obtained from an atomic clock on an Earth satellite. The resulting expression for
ET − TAISAT, where the subscript indicates that TAI is satellite TAI, is Eq. (2�23)
with one term changed plus one new periodic term. The term of (2�23), which is
changed, is the third periodic term on the right hand side:

      

1
2c
úr rE

C
A
E⋅( )

In this term, the point A no longer refers to the location of the tracking station
on Earth. For this application, it refers to the position of the Earth satellite. The
new periodic term is PSAT:

      
P

c
SAT SAT

E
SAT
E= ⋅( )2

2
úr r (2�24)

where     r rSAT
E

SAT
E and ú  are the geocentric space-fixed position and velocity vectors

of the Earth satellite interpolated from the satellite ephemeris as a function of
coordinate time ET of the Solar-System barycentric frame of reference. Applying
these two changes to Eq. (2�23) gives the desired expression for coordinate time
ET in the Solar-System barycentric frame of reference minus satellite TAI
obtained from an atomic clock on an Earth satellite:

                                                
1 Unofficial interim version, never released.
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    ET TAI ET TAISAT A SAT SAT− = −[ ] += P (2�25)

where the first term on the right hand side means Eq. (2�23) evaluated with     rA
E

equal to the geocentric space-fixed position vector of the Earth satellite,     r SAT
E ,

and PSAT is given by Eq. (2�24). Interpolation of the planetary ephemeris and the
satellite ephemeris at the ET value of the epoch will give all of the vectors
required to evaluate Eq. (2�25).

2.3.1.2.3 Approximate Expression

A number of algorithms require an approximate expression for
coordinate time ET in the Solar-System barycentric frame of reference minus
International Atomic Time TAI at a tracking station on Earth or an Earth satellite.
The approximate expression consists of the first two terms on the right hand side
of Eq. (2�23) converted to a function of time. The second of these two terms is
the 1.6 ms annual term. The remaining periodic terms of (2�23) have amplitudes
of 21 µs or less. The second term on the right hand side of Eqs. (37) and (38) of
Part 2 of Moyer (1981) is the 1.6 ms annual term with an analytical expression
and a numerical value for the amplitude, respectively. The amplitude of this term
is proportional to the eccentricity e of the heliocentric orbit of the Earth-Moon
barycenter, which is given by the quadratic on p. 98 of the Explanatory

Supplement (1961). Changing the value of e from its J1975 value of 0.01672 to its
J2000 value of 0.01671 changes the amplitude of the 1.6 ms term from 1.658 ms to
1.657 ms. Hence, the approximate expression for ET − TAI in seconds at a
tracking station on Earth or an Earth satellite in the Solar-System barycentric
frame of reference is given by

    ET TAI− = + × −32 184 1 657 10 3. . sinE (2�26)

where the eccentric anomaly of the heliocentric orbit of the Earth-Moon
barycenter is given approximately by Eq. (40) of Part 2 of Moyer (1981):

    E M M= + 0 01671. sin (2�27)
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The mean anomaly M of the heliocentric orbit of the Earth-Moon barycenter  is
given by (in radians):

    M t= + × −6 239 996 1 990 968 71 10 7. , . , , (2�28)

where t is ET or TAI in seconds past J2000.0. This linear expression is tangent to
the cubic given on p. 98 of the Explanatory Supplement (1961) at J2000.

2.3.1.3 Geocentric Frame of Reference

The expression for the interval ds in the local geocentric frame of
reference is Eq. (2�16) with the gravitational potential U replaced by the term of
(2�17) due to the Earth. This is the one-body metric of Schwarzschild expressed
in isotropic coordinates and containing all terms in the metric tensor to order

    1
2c .

This section presents two expressions for coordinate time ET in the local
geocentric frame of reference minus International Atomic Time TAI. In the
expression given in Subsection 2.3.1.3.1, TAI is obtained from a fixed atomic clock
at a tracking station on Earth. In the expression given in Subsection 2.3.1.3.2, TAI
is satellite TAI obtained from an atomic clock on an Earth satellite.

In both expressions for ET − TAI, coordinate time ET in the local
geocentric frame of reference and International Atomic Time TAI or satellite TAI
run on average at the same rate. Both of these expressions contain the same
constant offset of 32.184 s. The specific coordinate time ET used in these
expressions is referred to as Terrestrial Dynamical Time (TDT) or Terrestrial
Time (TT) on pp. 42 and 47 of the Explanatory Supplement (1992). This reference
also refers (on pp. 46�47) to Geocentric Coordinate Time (TCG), which differs
from TT in rate. This alternate form of coordinate time (TCG) in the geocentric
frame is not used in the ODP.

The differential equation relating International Atomic Time TAI at a
tracking station on Earth or satellite TAI recorded on an atomic clock on an Earth
satellite (both denoted by τ), and coordinate time ET in the local geocentric frame
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of reference (denoted as t) is given by Eq. (2�20), where the constant L (denoted
as LGC in the geocentric frame of reference) is given by Eq. (2�22), the
gravitational potential U is replaced by the term of (2�17) due to the Earth, and v
given by (2�21) is the geocentric velocity of the tracking station or the Earth
satellite.

The value of the constant LGC which applies in the local geocentric frame
of reference is obtained in Section 4.3 by evaluating Eq. (2�22), as modified in the
preceding paragraph, at mean sea level on Earth. If LGC were evaluated at the
location of an Earth satellite, a different value would be obtained. This offset
value of LGC is used in Eq. (2�20) in order to force satellite TAI to run on average
at the same rate as coordinate time ET in the geocentric frame of reference. Any
departure in the rate of atomic time on the Earth satellite from the rate of
satellite TAI can be absorbed into the quadratic time offset described below in
Section 2.3.5.

2.3.1.3.1 Tracking Station on Earth

For a fixed atomic clock at a tracking station on Earth, the gravitational
potential at the clock due to the Earth and the geocentric velocity of the clock are
nearly constant, and periodic variations in these quantities will be ignored.
Hence, the constant values of U and v in (2�20) cancel the corresponding values
in (2�22) and (2�20) reduces to

    

d
dt
τ = 1 (2�29)

and coordinate time ET in the local geocentric frame of reference minus
International Atomic Time TAI at a tracking station on Earth is a constant:

  ET TAI  s− = 32 184. (2�30)

From pp. 42 and 47 of the Explanatory Supplement (1992), Terrestrial Dynamical
Time (TDT) or Terrestrial Time (TT), denoted here as coordinate time ET in the
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local geocentric frame of reference, minus International Atomic Time TAI is
equal to 32.184 s.

2.3.1.3.2 Earth Satellite

For satellite International Atomic Time TAI obtained from an atomic clock
on an Earth satellite which is moving on a geocentric elliptical orbit, the
gravitational potential U at the satellite due to the Earth and the square of the
geocentric velocity v of the satellite in Eq. (2�20) will vary periodically from their
average values in (2�22) due to the eccentricity of the elliptical orbit. Using the
point-mass gravitational potential due to the Earth, Eqs. (2�20) and (2�22) can be
integrated to give the following expression for coordinate time ET in the local
geocentric frame of reference minus satellite TAI:

    ET TAI  sSAT SAT− = +32 184. P (2�31)

where PSAT is given by Eq. (2�24). The geocentric space-fixed position and
velocity vectors of the Earth satellite in (2�24) are interpolated from the satellite
ephemeris at the ET value of the epoch. Note that the form of PSAT, which is due
to the elliptical orbit of the satellite about the Earth, is the same as the first
periodic term of (2�23), which is due to the elliptical orbit of the Earth-Moon
barycenter about the Sun. In each case, one-half of the term is due to the
variation in the gravitational potential of the central body, and the other half of
the term is due to the variation in the square of the velocity.

2.3.2 TAI − UTC

From Section 2.2.4, TAI − UTC is an integer number of seconds. Its value
at any given time can be obtained by interpolating either of the input files for
time differences discussed below in Section 2.4 with the UTC value of the epoch
as the argument.
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2.3.3 TAI − GPS AND TAI − TPX

From Section 2.2.5, TAI − GPS and TAI − TPX are constants. The user can
input the values of these constants to the ODP on the General Input Program
(GIN) file.

2.3.4 TAI − UT1 AND TAI − UT1R

Universal Time UT1 and its regularized form UT1R were discussed in
Section 2.2.3. The value of TAI − UT1 or UT1R can be obtained by interpolating
either of the input files for time differences as discussed in Section 2.4.

2.3.5 QUADRATIC OFFSETS BETWEEN STATION TIME ST AND UTC

OR (GPS OR TPX) MASTER TIME

Section 2.2.6 discussed station time ST at a DSN tracking station on Earth,
a GPS receiving station on Earth, a GPS satellite, and the TOPEX satellite. Each of
these atomic time scales departs by a small amount from the corresponding
reference time scale. The reference time scale is UTC for a DSN tracking station
on Earth, GPS Master Time (GPS) for a GPS receiving station on Earth or a GPS
satellite, and TOPEX Master Time (TPX) for the TOPEX satellite. The time
differences UTC − ST, GPS − ST at a GPS receiving station on Earth or a GPS
satellite, or TPX − ST are all represented by the following quadratic function of
time:

    UTC or GPS or TPX ST( ) − = + −( ) + −( )a b t t c t t0 0
2 (2�32)

where a, b, and c are quadratic coefficients specified by time block with start time
t0 at each station or satellite, and t is the current time. The time scale for t and t0 is
either of the two time scales related by (2�32).

2.4 INPUT FILES FOR TIME DIFFERENCES, POLAR
MOTION, AND NUTATION ANGLE CORRECTIONS

Some of the time differences used in the ODP are obtained by
interpolation of either of two different input files that the ODP can read. The
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older of these two files is the so-called STOIC file (named after the program
which originally created it) which contains the TP (timing and polar motion)
array. This array contains the time differences TAI − UTC and TAI − UT1 or
UT1R, the X and Y coordinates of the Earth�s true pole of date relative to the
mean pole of 1903.0 (defined in Section 5.2.5), and the time derivatives of each of
these four quantities at each time argument, which is specifically UTC. The fixed
size of the TP array limits the timespan of the data to about three years if the
data is spaced a month apart. The newer of these two files is the Earth
Orientation Parameter (EOP) file. It contains the four quantities which are in the
TP array plus the corrections δψ and δε to the nutations in longitude ∆ψ and
obliquity ∆ε, respectively (defined in Section 5.3.5). The nominal values of the
two nutation angles are obtained from the 1980 IAU (International Astronomical
Union) Theory of Nutation (Seidelmann, 1982). The EOP file contains the values
of these six quantities at each time argument, which is UTC. It does not contain
the time derivatives of the six quantities. The file is open-ended and the data
spacing is usually about a day.

For each quantity in the TP array, the value and rate at each of two
successive time points defines a cubic. The cubic and its time derivative can be
evaluated at the interpolation time. The only exception to this is TAI − UTC
which is constant between two successive time points. Interpolation of each
quantity on the EOP file, except TAI − UTC, requires the value of the quantity at
each of four successive time points. The algorithm and code are due to X X
Newhall. The first three points are fit to a quadratic, which is differentiated to
give the derivative at the second point. Applying the same procedure to the last
three points gives the derivative at point three. The values and derivatives at
points two and three produce a cubic that is valid between these two points. The
cubic and its time derivative can be evaluated at the interpolation time which
must be between points two and three. Note that interpolation of each of these
two files produces a continuous function and its derivative.

Interpolation of the TP array yields TAI − UT1 or UT1R, whichever is
input. If it is the latter, program Regres calculates ∆UT1 (see Section 2.2.3) and
subtracts it from TAI − UT1R to give TAI − UT1. If the EOP file contains
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TAI − UT1, the interpolation program converts it internally to TAI − UT1R, which
is the quantity that is always interpolated. The program calculates ∆UT1, which is
subtracted from the interpolated quantity to give TAI − UT1, which is always the
output quantity.

The quantities on the EOP file, Earth-fixed station coordinates (see
Section 5), quasar coordinates (Section 8), and the frame-tie rotation matrix
(Section 5) are determined on a real-time basis at the Jet Propulsion Laboratory
(JPL) by fitting to Very Long Baseline Interferometry (VLBI) data, Lunar Laser
Ranging (LLR) data, and data obtained from the International Earth Rotation
Service (IERS). The data in the TP array currently comes from the same solution.
Previously, it was obtained from the IERS.

2.5 TIME TRANSFORMATION TREES

This section presents two time transformation trees that show how the
reception time in station time ST or the transmission time in coordinate time ET
at a fixed tracking station on Earth or an Earth satellite is transformed to all of
the other time scales. Each time transformation tree shows the route or path that
must be taken to transform the ST or ET value of the epoch to the corresponding
values in all of the other time scales. In general, each time transformation tree is
not an algorithm which must be evaluated at a particular place in the code.
Instead, each time transformation tree is broken into several parts, which are
evaluated in different parts of the code. When the calculation of time
transformations is described in the various sections of this report, the
corresponding parts of the calculations described in the following five
subsections will be referenced.

In the time transformation trees, ET refers to coordinate time in the Solar-
System barycentric frame of reference or to coordinate time in the local
geocentric frame of reference, depending upon which frame of reference has
been specified by the ODP user.

The reception time in station time ST is the known data time tag for a
range data point. For a doppler data point, it is the time tag for the data point
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plus or minus one-half of the count interval (see Section 13). For quasar VLBI
data points, the reception time in station time ST at station 1 is the data time tag
for wideband data. For narrowband data, it is the time tag plus or minus one-
half of the count interval (see Section 13). The transmission time in coordinate
time ET at a tracking station on Earth or an Earth satellite is obtained from the
spacecraft light-time solution. The reception time in coordinate time ET at
station 2 for a quasar VLBI data point is obtained from the quasar light-time
solution.

2.5.1 RECEPTION AT DSN TRACKING STATION ON EARTH

Fig. 2�1 shows the time transformation tree used at the reception time or
transmission time at a tracking station on Earth. For a DSN tracking station,
Coordinated Universal Time UTC is used and GPS master time is not used. This
section will evaluate the time transformations in Fig. 2�1 at the reception time t3

at a DSN tracking station on Earth.

Calculate UTC − ST from Eq. (2�32) using t3(ST) as the argument. Add
UTC − ST to t3(ST) to give t3(UTC). Use it as the argument to interpolate the TP
array or the EOP file for the value of TAI − UTC. Add it to t3(UTC) to give
t3(TAI). Use it as the argument to calculate ET − TAI from Eq. (2�23) or (2�30)
using the algorithm given in Section 7.3.1. Add ET − TAI to t3(TAI) to give t3(ET).
The algorithm for computing ET − TAI also produces all of the position, velocity,
and acceleration vectors required at t3(ET).

One of these vectors is the geocentric space-fixed position vector of the
tracking station, which is computed from the formulation of Section 5. In order
to calculate this vector, the argument t3(ET) must be transformed to t3(UTC) and
used as the argument to interpolate the TP array or the EOP file for TAI − UT1,
the X and Y coordinates of the Earth�s true pole of date, and, if the latter file is
used, the nutation corrections δψ and δε. The time difference TAI − UT1 is
subtracted from t3(TAI) to give t3(UT1).
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ET

TAI

UTC or GPS UT1, X, Y, δψ, δε

ST

Figure 2�1 Time Transformations at a Tracking Station on Earth

The transformation of t3(ET) to t3(UTC) is accomplished as follows.
Calculate ET − TAI from Eq. (2�23) in the Solar-System barycentric frame of
reference or from (2�30) in the local geocentric frame of reference. In the former
case, the geocentric space-fixed position vector of the tracking station is
computed as a function of ET from the simplified algorithm given in Section
5.3.6.3. Subtract ET − TAI from t3(ET) to give t3(TAI). Use it as the argument to
interpolate the TP array or the EOP file for TAI − UTC, and subtract it from
t3(TAI) to give t3(UTC). Use it as the argument to re-interpolate the TP array or
the EOP file for TAI − UTC and subtract it from t3(TAI) to give the final value of
t3(UTC). Near a leap second in UTC, the second value obtained for UTC may
differ from the first value by exactly one second.

2.5.2 RECEPTION AT GPS RECEIVING STATION ON EARTH

For a GPS receiving station on Earth, ST (see Fig. 2�1) is referred to GPS
(GPS master time) and not to UTC. Calculate GPS − ST from Eq. (2�32) using
t3(ST) as the argument. Add GPS − ST to t3(ST) to give t3(GPS). Obtain TAI − GPS
from the GIN file and add it to t3(GPS) to give t3(TAI). Use it as the argument to
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calculate ET − TAI from Eq. (2�23) or (2�30) using the algorithm given in Section
7.3.1. Add ET − TAI to t3(TAI) to give t3(ET). The algorithm for computing
ET − TAI also produces all of the position, velocity, and acceleration vectors
required at t3(ET). The last two paragraphs of Section 2.5.1 also apply here.

2.5.3 RECEPTION AT THE TOPEX SATELLITE

Fig. 2�2 shows the time transformation tree used at the reception time or
transmission time at an Earth satellite. For the TOPEX satellite, station time ST is
referred to TPX (TOPEX master time). Calculate TPX − ST from Eq. (2�32) using
t3(ST) as the argument. Add TPX − ST to t3(ST) to give t3(TPX). Obtain TAI − TPX
from the GIN file and add it to t3(TPX) to give t3(TAI). Use it as the argument to
calculate ET − TAI from Eq. (2�25) or (2�31) using the algorithm given in Section
7.3.3. Add ET − TAI to t3(TAI) to give t3(ET).

The algorithm for computing ET − TAI also produces all of the position, velocity,
and acceleration vectors required at t3(ET).

ET

TAI

GPS or TPX

ST

Figure 2�2 Time Transformations at an Earth Satellite
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2.5.4 TRANSMISSION AT DSN TRACKING STATION ON EARTH

The time transformation tree shown in Fig. 2�1 is used at the transmission
time t1(ET) at a DSN tracking station on Earth. It is also used at the reception
time t2(ET) at station 2 on Earth for a quasar VLBI data point. This epoch, which
will be denoted here as t1(ET), and all of the required position, velocity, and
acceleration vectors at this epoch are available from the spacecraft light-time
solution (see Section 8.3) or the quasar light-time solution (Section 8.4). The
geocentric space-fixed position vector of the tracking station is calculated in
either of these two light-time solutions by using the time transformations
described above in the last two paragraphs of Section 2.5.1.

Using t1(ET) as the argument, calculate ET − TAI from Eq. (2�23) or (2�30).
In the former equation, all of the required position and velocity vectors are
available from the light-time solution. Subtract ET − TAI from t1(ET) to give
t1(TAI). Using t1(TAI) as the argument, interpolate the TP array or the EOP file
for TAI − UTC and subtract it from t1(TAI) to give t1(UTC). Using it as the
argument, re-interpolate the TP array or the EOP file for TAI − UTC and subtract
it from t1(TAI) to give the final value of t1(UTC). Use it as the argument to
calculate UTC − ST from Eq. (2�32), and subtract it from t1(UTC) to give t1(ST).

2.5.5 TRANSMISSION AT A GPS SATELLITE

The time transformation tree shown in Fig. 2�2 is used at the transmission
time t2(ET) at a GPS satellite. This epoch and all of the required position, velocity,
and acceleration vectors at this epoch are available from the spacecraft (the GPS
satellite) light-time solution (Section 8.3).

Using t2(ET) as the argument, calculate ET − TAI from Eq. (2�25) or (2�31),
where all of the required position and velocity vectors are available from the
light-time solution. Subtract ET − TAI from t2(ET) to give t2(TAI). Obtain
TAI − GPS from the GIN file and subtract it from t2(TAI) to give t2(GPS). Use it as
the argument to calculate GPS − ST from Eq. (2�32), and subtract it from t2(GPS)
to give t2(ST).
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3.1 PLANETARY EPHEMERIS AND SMALL-BODY
EPHEMERIS

3.1.1 DESCRIPTION

Interpolation of the planetary ephemeris produces the position (P),
velocity (V), and acceleration (A) vectors of the major celestial bodies of the Solar
System. The P, V, and A vectors of the Sun, Mercury, Venus, the Earth-Moon
barycenter, and the barycenters of the planetary systems Mars, Jupiter, Saturn,
Uranus, Neptune, and Pluto are relative to the Solar-System barycenter. The P,
V, and A vectors of the Moon are relative to the Earth. All of these vectors have
rectangular components referred to the space-fixed coordinate system, which is
nominally aligned with the mean Earth equator and equinox of J2000. The time
argument is seconds of coordinate time (ET) past J2000 in the Solar-System
barycentric space-time frame of reference.

The planetary ephemeris is obtained from a simultaneous numerical
integration of the equations of motion for the nine planets, the Moon, and the
lunar physical librations. The P, V, and A vectors of the Sun relative to the Solar-
System barycenter are calculated from the relativistic definition of the center of
mass of the Solar System and its time derivatives. This method for performing
the numerical integration is an iterative process. A detailed description of the
process of creating the planetary ephemeris is given in Newhall et al. (1983). The
values of the parameters needed to perform the numerical integration are
obtained by fitting computed values of the observations of the Solar-System
bodies to the corresponding observed values in a least squares sense. The
equations of motion are given in Newhall et al. (1983). The observations include
optical data (transit and photographic), radar ranging, spacecraft ranging, and
lunar laser ranging. The observations and the parameters of the fit are discussed
in great detail in Standish (1990) and also in Newhall et al. (1983).

The numerical integration produces a file of positions, velocities, and
accelerations at equally spaced times for each component being integrated. This
information is represented by using Chebyshev polynomials as described in
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detail in Newhall (1989). Each of the three components of the position of the nine
planets and the Sun relative to the Solar-System barycenter and the Moon
relative to the Earth are represented by an Nth-degree expansion in Chebyshev
polynomials. Table 1 of Newhall (1989) gives the polynomial degree N and the
time span or granule length of the polynomial used for each of the eleven
ephemeris bodies. The polynomial degree N varies from 5 to 13, and the granule
length varies from 4 to 32 days. Velocity and acceleration components are
obtained by replacing the Chebyshev polynomials in the Nth-degree expansions
in Chebyshev polynomials with their first- and second-time derivatives.

The various celestial reference frames are all nominally aligned with the
mean Earth equator and equinox of J2000. The celestial reference frame defined
by the planetary ephemeris (the planetary ephemeris frame, PEF) can have a
slightly different orientation for each planetary ephemeris. The right ascensions
and declinations of quasars and the geocentric space-fixed position vectors of
tracking stations on Earth are referred to the radio frame (RF). This particular
celestial reference frame is maintained by the International Earth Rotation
Service (IERS). The rotation from the PEF to the RF is modelled in the ODP. This
frame-tie rotation matrix is a function of solve-for rotations about the three axes
of the space-fixed coordinate system as described in detail in Section 5.3. The
three rotation angles are different for each planetary ephemeris. However, for
any DE400-series planetary ephemeris (e.g., DE405), the PEF is the RF, and the
three frame-tie rotation angles are zero. The space-fixed coordinate system
adopted for use in the ODP is the PEF for the planetary ephemeris being used.
The spacecraft ephemeris is numerically integrated in the PEF. It will be seen in
Section 5 that geocentric space-fixed position vectors of Earth-fixed tracking
stations are rotated from the RF to the PEF using the frame-tie rotation matrix.
Also, Section 8.4 shows that space-fixed unit vectors to quasars are also rotated
from the RF to the PEF.

Heliocentric space-fixed P, V, and A vectors of asteroids and comets are
obtained by interpolating the small-body ephemeris. The celestial reference
frame of the small-body ephemeris is assumed to be that of the planetary
ephemeris being used by the ODP. Adding P, V, and A vectors of the Sun
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relative to the Solar-System barycenter, obtained by interpolating the planetary
ephemeris, gives space-fixed P, V, and A vectors of asteroids and comets relative
to the Solar-System barycenter.

3.1.2 POSITION, VELOCITY, AND ACCELERATION VECTORS

INTERPOLATED FROM THE PLANETARY EPHEMERIS AND A

SMALL-BODY EPHEMERIS

3.1.2.1 Position, Velocity, and Acceleration Vectors Which Can Be

Interpolated From the Planetary Ephemeris and a Small-Body

Ephemeris

Let

      r r ra
b

a
b

a
b,  ,  and ú úú

denote position, velocity, and acceleration vectors of point a relative to point b.
The planetary ephemeris can be interpolated for the position (P), velocity (V),
and acceleration (A) vectors of the nine planets (P) relative to the Solar-System
barycenter (C):

    r r rP
C

P
C

P
C,  ,  and ú úú

where P can be Mercury (Me), Venus (V), the Earth-Moon barycenter (B), and
the barycenters of the planetary systems Mars (Ma), Jupiter (J), Saturn (Sa),
Uranus (U), Neptune (N), and Pluto (Pl). The planetary ephemeris can also be
interpolated for the P, V, and A vectors of the Sun (S) relative to the Solar-
System barycenter (C):

    r r rS
C

S
C

S
C,  ,  and ú úú

and the Moon (M) relative to the Earth (E).

    r r rM
E

M
E

M
E,  ,  and ú úú
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These latter vectors can be broken down into their component parts:

    
r r r r rB

E
M
E ,  =

+
→1

1 µ
ú úú (3�1)

and

    
r r r r rM

B
M
E ,  =

+
→µ

µ1
ú úú (3�2)

where B is the Earth-Moon barycenter,

  
µ

µ
µ

= E

M
(3�3)

and
µE, µM = gravitational constants of the Earth and Moon, km3/s2.

The small-body ephemeris can be interpolated for the P, V, and A vectors
of asteroids and comets (P) relative to the Sun (S):

    r r rP
S

P
S

P
S,  ,  and ú úú

The time argument for interpolating the planetary ephemeris and a small-
body ephemeris for the vectors listed above is seconds of coordinate time
(denoted as ET) past J2000 in the Solar-System barycentric space-time frame of
reference. The planetary and small-body ephemerides use Chebyshev
polynomials to represent the rectangular components of the above vectors in
kilometers and seconds of coordinate time ET. The planetary ephemeris contains
the scale factor AU, which is the number of kilometers per astronomical unit, and
the Earth-Moon mass ratio µ given by Eq. (3�3). Eqs. (3�1) and (3�2) are
evaluated in the interpolator for the planetary ephemeris. Solutions for planetary
and small-body ephemerides are obtained in astronomical units and days of
86400 s of coordinate time ET. Each solution for a planetary ephemeris includes
an estimate for the scale factor AU. It is used to convert solutions for planetary
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and small-body ephemerides from astronomical units and days to kilometers
and seconds.

The vectors interpolated from the planetary and small-body ephemerides
have rectangular components referred to the space-fixed coordinate system of
the planetary ephemeris, which is nominally aligned with the mean Earth
equator and equinox of J2000. The misalignment of the planetary ephemeris
frame (PEF) from the radio frame (RF) is accounted for in the ODP as described
above in the penultimate paragraph of Section 3.1.1.

The planetary ephemeris represents the P, V, and A vectors of Mercury,
Venus, the Earth-Moon barycenter, the barycenters of the planetary systems
Mars through Pluto, the Sun, the Earth, and the Moon relative to the Solar-
System barycenter. The interpolator adds or subtracts the various vectors listed
above to obtain the P, V, and A vectors of any one of these points relative to any
other of these points. It specifically calculates the P, V, and A vectors for the
points specified by the user relative to the center that he specifies.

As stated in Section 3.1.1, adding Solar-System barycentric P, V, and A
vectors of the Sun, obtained by interpolating the planetary ephemeris, to
heliocentric P, V, and A vectors of an asteroid or a comet, obtained by
interpolating a small-body ephemeris, gives Solar-System barycentric P, V, and
A vectors of an asteroid or a comet.

3.1.2.2 Gravitational Constants on the Planetary Ephemeris and a

Small-Body Ephemeris

The planetary ephemeris contains the gravitational constants for Mercury;
Venus; the Earth, the Moon, and their sum; the planetary systems Mars through
Pluto; and the Sun. From Section 2.3.1.1, each of these gravitational constants µ is
the product of the universal gravitational constant G and the rest mass m of the
body or system of bodies. The gravitational constants are given in astronomical
units cubed per day squared and in kilometers cubed per second squared, where
the latter set (which is used in the ODP) is obtained from the former set by
multiplying by AU3/(86400)2. The gravitational constant of the Sun in
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astronomical units cubed per day squared is the square of the Gaussian
gravitational constant, which defines the length of one astronomical unit. The
gravitational constant of the Sun (µS) in kilometers cubed per second squared is
thus a function of the value of the scale factor AU. The ODP user is not allowed
to estimate the values of µS and AU, which are obtained from the planetary
ephemeris.

The small-body ephemeris contains the gravitational constants (in units of
kilometers cubed per second squared) for all of the bodies (asteroids and comets)
contained in the file.

3.1.2.3 Vectors Interpolated From the Planetary Ephemeris and a

Small-Body Ephemeris in a Spacecraft Light-Time Solution and in a

Quasar Light-Time Solution

For a spacecraft light-time solution, the planetary ephemeris is
interpolated at the ET values of the reception time t3 at a tracking station on
Earth or an Earth satellite, the reflection time or transmission time t2 at the
spacecraft, and (if the spacecraft is not the transmitter) at the transmission time t1

at a tracking station on Earth or an Earth satellite. For a quasar light-time
solution, the planetary ephemeris is interpolated at the ET values of the reception
time t1 of the quasar wavefront at receiver 1 and the reception time t2 of the
quasar wavefront at receiver 2. Receiver 1 and receiver 2 can each be a tracking
station on Earth or an Earth satellite.

For a spacecraft light-time solution, the small-body ephemeris may be
interpolated at the ET value of the reflection time or transmission time t2 at the
spacecraft.

3.1.2.3.1 Spacecraft or Quasar Light-Time Solution in the Solar-System
Barycentric Frame of Reference

For either of these light-time solutions, interpolate the planetary
ephemeris and the small-body ephemeris for the P, V, and A vectors of the
following bodies or planetary system centers of mass at the specified times. The
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name of a planet (other than the Earth) implies the barycenter of the planetary
system. If the origin of these vectors is not specified, it is the Solar-System
barycenter (C).

1. The Sun, Jupiter, and Saturn at each interpolation epoch.

2. If the relativistic light-time delay (see Section 8) is calculated for
Mercury, Venus, the Earth, the Moon, or the barycenters of the
planetary systems Mars, Uranus, Neptune, or Pluto, interpolate
vectors for each of these bodies at each interpolation epoch.

3. The participant central body (PCB) is the intermediate body between
the participant (e.g., a tracking station or the spacecraft) and the
Solar-System barycenter. If the PCB is the Earth, which it will be at t3

and t1 for a spacecraft light-time solution and at t1 and t2 for a quasar
light-time solution, interpolate vectors for the Earth-Moon
barycenter, the Earth, the Moon, and the geocentric Moon and its
component parts (Eqs. 3�1 and 3�2).

4. Interpolate vectors for the PCB at t2 for a spacecraft light-time
solution. The PCB is the center of integration (COI) for the spacecraft
ephemeris, or it is the body on which a landed spacecraft is resting. If
the COI is the Sun, Mercury, Venus, the Earth, the Moon, or the
barycenter of one of the planetary systems Mars through Pluto,
interpolate vectors for this point. If the COI is the planet or a satellite
of an outer planet system, interpolate vectors for the barycenter of
this planetary system. If a landed spacecraft is on Mercury, Venus, or
the Moon, obtain vectors for this body. If a landed spacecraft is on
the planet or a satellite of one of the outer planet systems, interpolate
vectors for the barycenter of this planetary system. If the PCB is the
Earth or the Moon, interpolate all of the vectors listed above in
item 3.

If the center of integration for the spacecraft ephemeris or the body
upon which a landed spacecraft is resting is an asteroid or a comet,
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interpolate the small-body ephemeris for the heliocentric vectors of
the asteroid or comet at t2. Add the Solar-System barycentric vectors
of the Sun (available from Step 1) to give the Solar-System
barycentric vectors of the asteroid or comet.

5. At t2 for a one-way doppler (F1) data point or a one-way wideband
or narrowband spacecraft interferometry observable (IWS or INS)
(see Section 13), interpolate vectors for the Sun, Mercury, Venus, the
Earth, the Moon, and the barycenters of the planetary systems Mars
through Pluto. Program PV interpolates the small-body ephemeris
for the vectors of the small bodies (up to ten of them) specified in the
input variables XBNUM and XBNAM. It calculates the acceleration of
the spacecraft due to these small bodies. At t2 for F1, IWS, or INS,
program Regres should interpolate the small-body ephemeris for the
heliocentric vectors of the small bodies specified in the input arrays
XBNUM and XBNAM. If there are more names in these arrays than
are on the small-body ephemeris, obtain vectors for the latter set. It
is up to the ODP user to make sure that the small-body ephemeris
that Regres is reading contains the asteroid or comet that the
spacecraft is encountering and that the number and name of this
body are contained in the input arrays XBNUM and XBNAM.
Convert the heliocentric vectors for the small bodies to Solar-System
barycentric vectors as described above in item 4.

3.1.2.3.2 Spacecraft Light-Time Solution in the Geocentric Frame of Reference

The geocentric light-time solution (see Section 8) is used to process
GPS/TOPEX data (see Section 13). The only quantities required from the
planetary ephemeris are the geocentric position vectors of the Sun and the Moon
at the reception time t3 if the receiver is a tracking station on Earth. They are
used to compute the displacement of the station due to solid Earth tides. If this
one-way light-time solution is ever extended to the round-trip mode, these same
vectors will be required at the transmission time t1.
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3.1.3 PARTIAL DERIVATIVES OF POSITION VECTORS

INTERPOLATED FROM THE PLANETARY EPHEMERIS AND A

SMALL-BODY EPHEMERIS WITH RESPECT TO REFERENCE

PARAMETERS

3.1.3.1 Required Partial Derivatives

The ODP calculates partial derivatives of the computed values of the
observables with respect to the parameter vector q. The parameter vector q

includes solve-for parameters and consider parameters. The former parameters
are those whose values are estimated in the filter. The latter parameters are
those whose uncertainties are considered when calculating the uncertainties in
the values of the estimated parameters.

Calculation of the partial derivatives of the computed values of the
observables with respect to q requires the partial derivatives of certain position
vectors interpolated from the planetary and small-body ephemerides with
respect to q. The partial derivative of the Solar-System barycentric position
vector of the Earth with respect to q is required at t3 and t1 for a spacecraft light-
time solution and at t1 and t2 for a quasar light-time solution. Also required is the
partial derivative of the Solar-System barycentric position vector of the PCB at t2

for a spacecraft light-time solution (see Section 3.1.2.3.1, item 4). These partial
derivatives are non-zero only for the so-called reference parameters. For the
planetary ephemeris, they are the Brouwer and Clemence Set III orbital element
corrections for the nine planetary ephemerides and for the geocentric lunar
ephemeris, the AU scaling factor for the planetary ephemeris (which can be
considered but not estimated), and the gravitational constants for the Earth (µE)
and the Moon (µM). For a small-body ephemeris, the reference parameters are
the Brouwer and Clemence Set III orbital element corrections or the Keplerian
orbital parameters e, q, Tp, Ω, ω and i, dynamical parameters such as the
cometary nongravitational parameters A1 and A2, and the AU scaling factor
from the planetary ephemeris.

The Set III partials for the planetary ephemeris are obtained by
interpolating the planetary partials file. The contents of this file and the



SECTION  3

3�12

procedure used to create it are described in Section 3.1.3.2. The partial derivatives
of the heliocentric position vector of an asteroid or a comet with respect to the
Set III orbital element corrections or the Keplerian orbital parameters, and
dynamical parameters A1 and A2 are obtained by interpolating the small-body
partials file. Section 3.1.3.3 gives the equations for the required partial derivatives
of position vectors obtained from the planetary ephemeris and a small-body
ephemeris with respect to the reference parameters.

3.1.3.2 The Planetary Partials File

The planetary partials file can be interpolated for the partial derivatives of
the position (P) and velocity (V) vectors of the nine planets (P) relative to the Sun
(S) with respect to the six Brouwer and Clemence Set III orbital element
corrections (∆E):

    

∂
∂

∂
∂

r

E

r

E
P
S

P
S

,  
∆ ∆

ú

where P can be Mercury (Me), Venus (V), the Earth-Moon barycenter (B), and
the barycenters of the planetary systems Mars (Ma), Jupiter (J), Saturn (Sa),
Uranus (U), Neptune (N), and Pluto (Pl). The planetary partials file can also be
interpolated for the partial derivatives of the P and V vectors of the Moon (M)
relative to the Earth (E) with respect to ∆E:
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The time argument for interpolating the planetary partials file is seconds
of coordinate time (ET) past J2000 in the Solar-System barycentric space-time
frame of reference. The P and V vectors in the interpolated partial derivatives
have rectangular components referred to the space-fixed coordinate system
nominally aligned with the mean Earth equator and equinox of J2000 (i.e., the
planetary ephemeris frame) and have units of kilometers and kilometers per
second.
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The Brouwer and Clemence Set III orbital element corrections ∆E are six
parameters that represent corrections to the osculating orbital elements at the
osculation epoch t0(ET):
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∆ ∆
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∆
∆
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where

a = semimajor axis of osculating elliptical orbit
e = eccentricity

M0 = value of mean anomaly at osculation epoch t0(ET)
∆p, ∆q, ∆w = right-handed rotations of the orbit about the P, Q, and W

axes, respectively, where P is directed from the focus to
perifocus, Q is π/2 rad ahead of P in the orbital plane,
and W = P x Q

The partial derivatives of position and velocity vectors with respect to Set
III orbital element corrections which are listed above and are contained in the
planetary partials file are calculated from the following equation:
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and
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This 6 x 6 matrix U is obtained by numerical integration. The partial derivatives
of     r r and ú  at the osculation epoch t0 with respect to the Set III orbital element
corrections ∆E at this epoch are calculated from Eqs. (115) to (148) of Moyer
(1971) using     r r and ú  interpolated from the planetary ephemeris at the osculation
epoch t0(ET). Note that these vectors are Sun-centered for the nine planetary
ephemerides. For the ten ephemerides on the planetary partials file, the
osculation epoch t0(ET) is June 28, 1969, 0h (JD 2440400.5).

Future versions of the planetary partials file will probably be generated
from finite difference partial derivatives instead of numerically integrated partial
derivatives.

3.1.3.3 Equations for the Required Partial Derivatives of Position Vectors

With Respect to Reference Parameters

This section gives the equations for the partial derivatives of the position
vectors (measured in kilometers) of the Earth (E), the Moon (M), a planet (P)
(which can be Mercury, Venus, and the barycenters of the planetary systems
Mars through Pluto), the Sun (S), and an asteroid or a comet (P) relative to the
Solar-System barycenter (C) with respect to the reference parameters. These
partial derivatives are calculated at the epochs (t1, t2, or t3) specified in Section
3.1.3.1.

The partial derivative of the Solar-System barycentric position vector of a
body b (which can be the Earth, the Moon, a planet, the Sun, an asteroid, or a
comet) with respect to the AU scaling factor is given by:

      

∂
∂

r rb
C

b
C

AU AU
= (3�8)

where the position vectors are in kilometers and AU is kilometers/astronomical
unit.
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The following equations give the partial derivatives of the required
position vectors with respect to Set III orbital element corrections (or the
alternate Keplerian orbital parameters for the orbit of an asteroid or a comet),
the gravitational constants of the Earth and the Moon, and the cometary
nongravitational parameters A1 and A2. Only the non-zero partials are given.
The high-level equations for the partials of the Solar-System barycentric position
vectors of the Earth and the Moon are given by:
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r
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r

q

r
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E
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= − (3�9)
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where
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=
∆

(3�11)

which is interpolated from the planetary partials file. The non-zero partials for
the last term of Eq. (3�9) are given by:
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+
1

1
(3�12)

where µ is given by Eq. (3�3) and the Set III partials for the geocentric lunar
ephemeris  are obtained from the planetary partials file.

    

∂
∂µ µ µ

r rB
E

E

M
E

M

= −
+( )1 2 (3�13)

    

∂
∂µ

µ

µ µ

r rB
E

M

M
E

M

=
+( )1 2 (3�14)



SECTION  3

3�16

Similarly, the non-zero partials for the last term of Eq. (3�10) are given by:
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The partial derivative of the Solar-System barycentric position vector of a planet
(P) other than the Earth-Moon barycenter is given by:

    

∂
∂

∂
∂

r

q

r

E
P
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P
S

P
=

∆
(3�18)

which is interpolated from the planetary partials file. The partial derivative of the
Solar-System barycentric position vector of the Sun with respect to reference
parameters is given by:

    

∂
∂
r

q
S
C

= 0 (3�19)

except for the partial with respect to the AU scaling factor which is given by
Eq. (3�8).

The partial derivative of the Solar-System barycentric position vector of
an asteroid or a comet (P) is given by:
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where the parameter vector q includes Set III orbital element corrections (or the
alternate Keplerian orbital parameters) and the cometary nongravitational
parameters A1 and A2. These partial derivatives are interpolated from the small-
body partials file.

3.1.4 CORRECTING THE PLANETARY EPHEMERIS

The ODP user can estimate Set III corrections and then use program
EPHCOR (ephemeris correction) to linearly differentially correct the Chebyshev
polynomial coefficients on the planetary ephemeris. The ODP can be executed
with the original planetary ephemeris or a differentially corrected one. The
program cannot obtain an iterative solution for Set III corrections. It only
estimates linear differential corrections for the planetary ephemeris being used.

3.2 SATELLITE EPHEMERIDES

3.2.1 DESCRIPTION

Interpolation of the satellite ephemeris for a planetary system produces
the position (P), velocity (V), and acceleration (A) vectors of the satellites and the
planet relative to the barycenter of the planetary system. These vectors have
rectangular components referred to a space-fixed coordinate system which is
nominally aligned with the mean Earth equator and equinox of J2000. It is
assumed that each satellite ephemeris is aligned with the planetary ephemeris
frame (PEF) of the particular planetary ephemeris used in executing the ODP.
The time argument is seconds of coordinate time (ET) past J2000 in the Solar-
System barycentric space-time frame of reference.

The satellite ephemerides were obtained from theories or from numerical
integration. The process of forming a satellite ephemeris by numerical
integration is described in Peters (1981). Jacobson (1997) describes the sources of
the satellite ephemerides for Mars, Jupiter, Saturn, Uranus, Neptune, and Pluto.
Although the source of each satellite ephemeris is different, the format of each
working satellite ephemeris is the same. Each of the three components of the
position of each satellite and the planet relative to the system barycenter is
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represented by an Nth-degree expansion in Chebyshev polynomials. This
representation is the same as that of the planetary ephemeris. Each of the three
components of the velocity of each of these bodies is represented by an
independent expansion in Chebyshev polynomials. The velocity components are
only the same as differentiated position components if the ephemeris was
generated by numerical integration. Acceleration components are obtained by
replacing the Chebyshev polynomials in the Nth-degree expansions in
Chebyshev polynomials (for position components) with their second time
derivatives.

3.2.2 POSITION, VELOCITY, AND ACCELERATION VECTORS

INTERPOLATED FROM SATELLITE EPHEMERIDES

3.2.2.1 Interpolation of Satellite Ephemerides

For each satellite ephemeris, the interpolated position, velocity, and
acceleration  vectors of the satellites and the planet relative to the barycenter of
the planetary system are in units of kilometers, kilometers per second, and
kilometers per second squared, respectively.

Each satellite ephemeris contains the gravitational constant µ of the
planetary system (e.g., µJ of the Jupiter system) in kilometers cubed per second
squared. In the ODP, this system gravitational constant overstores the value
obtained from the planetary ephemeris. Each satellite ephemeris also contains
the gravitational constants of each planetary satellite in kilometers cubed per
second squared. The system µ and the µ for each satellite can be estimated. The
gravitational constant for the planet must be calculated as the system µ minus
the sum of the gravitational constants of the satellites.

Each satellite ephemeris contains the position vector of the planet (0)
relative to the barycenter (P) of the planetary system. However, it is more
accurate to calculate it from the position vectors of the n satellites and the
gravitational constants of the satellites and the planetary system:
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where µi is the gravitational constant of satellite i. The gravitational constant µ0

of the planet is calculated from:

    
µ µ µ0 P= −

=
∑ i
i

n

1

(3�22)

where µP is the gravitational constant of the planetary system.

3.2.2.2 Vectors Interpolated From Satellite Ephemerides

Satellite ephemerides are used in program Regres of the ODP to calculate
the gravitational potential at the spacecraft, which is used to calculate the change
in the time difference ET − TAI (see Section 2) at the spacecraft during the
transmission interval for one-way doppler (F1) observables and one-way
narrowband (INS) and wideband (IWS) spacecraft interferometry observables
(see Section 11). For F1 or one-way IWS, there are two one-way spacecraft light-
time solutions. For one-way INS, there are four. For each of these light-time
solutions, if the spacecraft is within the sphere of influence of one of the
planetary systems Mars through Pluto, the satellite ephemeris for this planetary
system is interpolated at the transmission time t2 for the position, velocity, and
acceleration vectors of the satellites and the planet. As noted above, the vectors
for the planet are calculated from the vectors for the satellites using Eqs. (3�21)
and (3�22).

If a landed spacecraft is resting upon a satellite or the planet of one of the
outer planet systems, or the center of integration for the spacecraft ephemeris is
one of these bodies, the satellite ephemeris for this planetary system must be
interpolated at the transmission or reflection time t2 for the position, velocity,
and acceleration vectors of the body that the spacecraft is resting upon or the
body that is the center of integration for the spacecraft ephemeris. These vectors
are relative to the barycenter of the planetary system. If the body is the planet,
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use Eqs. (3�21) and (3�22). Furthermore, if the data type is F1 or one-way INS or
IWS, we need the position, velocity, and acceleration vectors of all of the satellites
and the planet to calculate the gravitational potential at the lander or free
spacecraft.

3.2.3 PARTIAL DERIVATIVES OF POSITION VECTORS

INTERPOLATED FROM SATELLITE EPHEMERIDES

A satellite partials file for a planetary system contains the partial
derivatives of the space-fixed position vectors of the satellites relative to the
barycenter of the planetary system with respect to the solve-for parameters (q).
The rectangular components of these partial derivatives are represented by
expansions in Chebyshev polynomials. This representation is the same as that
used for position components on the planetary ephemeris. The partial derivative
of the position vector of the planet relative to the barycenter of the planetary
system with respect to the solve-for parameters is obtained (below) from the
satellite partials by differentiating Eqs. (3�21) and (3�22) with respect to q. Note
that additional terms are obtained by differentiating the coefficients in these
equations with respect to the gravitational constants of the satellites and the
planetary system. If the satellite ephemeris was obtained from a theory, the
parameter vector q consists of the adjustable parameters of the theory. If the
satellite ephemeris was obtained by numerical integration, q consists of the state
vectors (position and velocity components) of each satellite, the gravitational
constants of each satellite and the planetary system, the right ascension and
declination of the planet�s pole and their time derivatives, and the zonal
harmonic coefficients of the planet.

From Eq. (3�21), the partial derivative of the position vector of the planet
(0) relative to the barycenter of the planetary system (P) due only to the
variation of the satellite position vectors with q is given by:
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where the partial derivatives of the satellite position vectors with respect to q are
interpolated from the satellite partials file. The partial derivative of the position
vector of the planet with respect to the gravitational constant µi of satellite i must
be incremented by (obtained by differentiating the coefficients in Eqs. 3�21 and
3�22):
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(3�24)

The partial derivative of the position vector of the planet with respect to the
gravitational constant µP of the planetary system must be incremented by:
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(3�25)
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4.1 INTRODUCTION

This section gives the equations for the acceleration of the spacecraft
relative to the center of integration due to gravity only. These equations include
Newtonian and relativistic acceleration terms. The complete formulation for
program PV, which generates the spacecraft ephemeris and the corresponding
partials file, will eventually be documented by Richard F. Sunseri, the
programmer/analyst for program PV. The relativistic equations of motion are
given in this section so that this document will contain all of the relativistic
equations used in calculating the computed values of observed quantities.

The relativistic equations of motion are given for the Solar-System
barycentric frame of reference and also for the local geocentric frame of
reference. In deriving these equations, transformations of coordinates between
these two relativistic space-time frames of reference are developed. These
relativistic transformations are also used in program Regres.

Section 4.2 gives a general description of the spacecraft ephemeris and the
corresponding partials file, which are used in program Regres. Section 4.3
develops transformations between the coordinates of the local geocentric frame
of reference and the Solar-System barycentric frame of reference. The relativistic
equations of motion for the Solar-System barycentric frame of reference, which
apply for a spacecraft anywhere in the Solar System, are given in Section 4.4.
Section 4.5 gives the corresponding equations for the local geocentric frame of
reference. These equations apply for a spacecraft near the Earth, such as an Earth
orbiter.

The gravitational equations presented are not complete. The changes in
the Earth�s harmonic coefficients due to solid-Earth tides and ocean tides are not
included. The equations of motion presented in this section use the body-fixed to
space-fixed rotation matrices for the various celestial bodies of the Solar System.
The rotation matrix used for the Earth is given in Section 5.3. The matrix used for
all of the other bodies of the Solar System is given in Section 6.3.
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4.2 GENERAL DESCRIPTION OF PROGRAM PV

The spacecraft acceleration relative to the center of integration (COI) is
integrated numerically to produce the spacecraft ephemeris. This ephemeris can
be represented in the Solar-System barycentric frame of reference for a
spacecraft anywhere in the Solar System or in the local geocentric frame of
reference for a spacecraft near the Earth. Interpolation of the spacecraft
ephemeris for either of these two space-time frames of reference gives the space-
fixed position, velocity, and acceleration vectors of the spacecraft relative to the
center of integration in km, km/s, and km/s2. The ephemeris is interpolated at
the ET value of the interpolation epoch (coordinate time in the Solar-System
barycentric or local geocentric frame of reference). The space-fixed reference
frame for the spacecraft ephemeris is the reference frame of the planetary
ephemeris used to generate the spacecraft ephemeris.

The COI for the spacecraft ephemeris can be the center of mass of the Sun
(S), Mercury (Me), Venus (V), Earth (E), the Moon (M), an asteroid or a comet,
the center of mass of the planetary systems Mars (Ma), Jupiter (J), Saturn (Sa),
Uranus (U), Neptune (N), or Pluto (Pl), or the planet or a satellite of any of these
outer planet systems. The current COI is determined by the spheres of influence
centered on each of these points (except the Sun). If the spacecraft is within the
sphere of influence of a body or planetary system, the COI is the center of mass
of that body or planetary system. Otherwise, the COI is the Sun. The radii of the
spheres of influence are parameters on the GIN file, and hence can be varied by
the ODP user. Note that the sphere of influence for the Moon is contained within
the sphere of influence for the Earth.

The variational equations calculate the partial derivatives of the spacecraft
acceleration vector with respect to the parameter vector q (consisting of solve-
for and consider parameters). These partial derivatives are numerically
integrated to produce the spacecraft partials file. Interpolation of the spacecraft
partials file with an ET epoch produces the partial derivatives of the position,
velocity, and acceleration vectors of the spacecraft relative to the COI with
respect to q.
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4.3 TRANSFORMATIONS BETWEEN COORDINATES OF
THE LOCAL GEOCENTRIC FRAME OF REFERENCE
AND THE SOLAR-SYSTEM BARYCENTRIC FRAME OF
REFERENCE

Section 4.3.1 gives the equation for transforming Earth-centered space-
fixed position coordinates of an Earth-fixed tracking station or a near-Earth
spacecraft from the local geocentric to the Solar-System barycentric space-time
frame of reference. Section 4.3.2 gives the equation relating the differential of
coordinate time in the local geocentric frame of reference to the differential of
coordinate time in the Solar-System barycentric frame of reference. Section 4.3.3
shows how the expression for coordinate time in the Solar-System barycentric
frame of reference minus coordinate time in the local geocentric frame of
reference can be obtained from equations in Section 2. Section 4.3.4 gives the
equation relating the values of the gravitational constant µ of a celestial body in
the local geocentric and Solar-System barycentric frames of reference.

4.3.1 POSITION COORDINATES

4.3.1.1 Derivation of Transformation

The Lorentz transformation given by Eqs. (7a) and (7b) of Hellings (1986)
transforms space and time coordinates of the Solar-System barycentric space-
time frame of reference to space and time coordinates of the local geocentric
frame of reference. The barycentric coordinates are those of a flat space-time
which is tangent to the curved space-time of the barycentric frame at the location
of the Earth. The geocentric coordinates are those of a flat space-time which is
tangent to the curved space-time of the local geocentric frame a large distance
from the Earth. Let the space and time coordinates in these two flat space-time
frames of reference be denoted by:

    ′ ′r rBC GC,  = space-fixed geocentric position vectors of tracking station
or near-Earth spacecraft expressed in the space
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coordinates of the flat Solar-System barycentric (BC) and
geocentric (GC) frames of reference, respectively.

    ′ ′t tBC GC,  = coordinate times in the flat Solar-System barycentric and
geocentric frames of reference, respectively.

Also, let

VE = space-fixed velocity vector of Earth relative to Solar-
System barycenter.

VE = magnitude of VE

The Lorentz transformation given by Eqs. (7a) and (7b) of Hellings (1986) is:
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which contains terms to order 1/c2. Note that if VE is along the x axis, these
equations reduce to the usual text-book Lorentz transformation to order 1/c2.

The metric (the expression for the square of the interval ds) in the Solar-
System barycentric space-time frame of reference is given by Eqs. (2�16) to
(2�18), where the constant L in the scale factor l is defined by Eq. (2�22) evaluated
at mean sea level on Earth. The barycentric coordinates       ′ ′tBC BCand r , which are
flat (Minkowskian) in a local region near Earth, are related to the global
coordinates of the barycentric metric (2�16) by what Hellings (1986) refers to as
an infinitesimal transformation:
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where UE is the gravitational potential U given by Eq. (2�17) at the Earth due to
all other bodies.

The metric in the local geocentric space-time frame of reference is also
given by Eqs. (2�16) to (2�18) and (2�22). However, the gravitational potential U
in (2�16) and (2�22) only contains the term of (2�17) due to the Earth. The
velocity v in (2�22) changes from the Solar-System barycentric velocity to the
geocentric velocity. The constant LGC in the scale factor lGC (where GC refers to
the value in the local geocentric frame of reference) is obtained by evaluating
(2�22) at mean sea level on Earth. The transformation from the coordinates

      ′ ′tGC GC and r  of the flat space-time (which is tangent to the curved space-time of
the local geocentric frame a large distance from the Earth) to the coordinates of
the local geocentric metric is obtained from the geocentric metric with the
gravitational potential U due to the Earth deleted:

    dt L dt′ = +( )GC GC GC1 (4�5)

      ′ = +( )r rGC GC GC1 L (4�6)

Let the constant L in the barycentric frame minus the constant LGC in the
local geocentric frame be denoted as     �L :

    
�L L L= − GC (4�7)

Substituting Eqs. (4�3) and (4�4) into the right-hand side of Eqs. (4�1) and
(4�2) and substituting (4�5) and (4�6) into the left-hand side and using
Eq. (4�7) gives the modified Lorentz transformation which transforms the space
and time coordinates of the Solar-System barycentric metric to those of the local
geocentric metric:
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For the next step, we need an expression relating the geocentric space-
fixed position vectors of an Earth-fixed tracking station or a near-Earth spacecraft
in the local geocentric and Solar-System barycentric space-time frames of
reference. Furthermore, the two ends of the position vector in the barycentric
frame should be observed simultaneously in coordinate time in that frame. The
desired relation is obtained from (4�9) by setting dtBC = 0 and solving for rBC.
Retaining terms to order 1/c2 gives:
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The inverse transformation, which applies for the condition that dtBC = 0, is:
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Section 4.3.1.2 will develop expressions for L, LGC, and their difference     �L  (see
Eq. 4�7) and obtain numerical values for these three constants. The gravitational
potential UE at the Earth can be calculated from Eq. (2�17) where i = E (Earth).
The position vectors of the major bodies of the Solar System relative to the Earth
are obtained by interpolating the planetary ephemeris as described in Section
3.1.2.1. The magnitudes of these vectors equal rij = rEj in the denominator of
Eq. (2�17). The gravitational constants µj of the major bodies of the Solar System
in the numerator of Eq. (2�17) are obtained from the planetary ephemeris as
described in Section 3.1.2.2. When the planetary ephemeris is interpolated, the
velocity vector VE of the Earth relative to the Solar-System barycenter is also
obtained as described in Section 3.1.2.1.
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The derivation of Eqs. (4�10) and (4�11) is a minor variation of a similar
derivation in Hellings (1986). The changes to the derivation were suggested by
R. W. Hellings. Eq. (4�10) is the same as Eq. (46) of Huang, Ries, Tapley, and
Watkins (1990), which will be referred to as HRTW (1990), if the two terms of
(46) containing the acceleration of the Earth are ignored. Ignoring these two
terms in (4�10) and (4�11) produces an error in the transformed space-fixed
position vector of an Earth-fixed tracking station of less than 0.01 mm.

Tracking station coordinates and position coordinates of near-Earth
spacecraft ephemerides integrated in the local geocentric frame of reference are
expressed in the space coordinates of the local geocentric space-time frame of
reference. Eq. (4�10) and will be used to transform the geocentric space-fixed
position vector of an Earth-fixed tracking station from the local geocentric space-
time frame of reference in which it is computed (Section 5) to the Solar-System
barycentric space-time frame of reference. The transformed position vector will
be used in the Solar-System barycentric light-time solution (Section 8). Eqs. (4�10)
and (4�11) will be used in Section 4.4.5 to calculate the acceleration of a near-
Earth spacecraft due to the Earth�s harmonic coefficients in the Solar-System
barycentric frame of reference.

In transforming the geocentric space-fixed position vector of a fixed
tracking station on Earth from the local geocentric frame of reference to the
Solar-System barycentric frame of reference using Eq. (4�10), the first term of
this equation reduces the geocentric radius of the tracking station by about
16 cm. This term accounts for the different scale factors used in the two frames of
reference and the effect of the gravitational potential on measured space
coordinates near the Earth in the barycentric frame. The second term of
Eq. (4�10) reduces the component of the station position vector along the Earth�s
velocity vector by up to 3 cm. The diameter of the Earth in the direction of the
Earth�s velocity is reduced by about 6 cm as viewed in the Solar-System
barycentric space-time frame of reference. This effect is due to the different
definitions of simultaneity in the two frames of reference, which have a relative
velocity of about 30 km/s. The second term of Eq. (4�10) is the Lorentz
contraction.
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4.3.1.2 Expressions for Scale Factors

The metric (Eq. 2�16) contains the scale factor l given by Eq. (2�18). The
constant L in (2�18) is the departure of l from unity. The constant L is defined by
Eq. (2�22). The values of L that apply in the Solar-System barycentric frame (L)
and the local geocentric frame (LGC) are evaluated from Eq. (2�22) as described in
Sections 2.3.1.2 and 2.3.1.3, respectively. From Eq. (4�7), the constant     �L  is L

minus LGC. This section will give equations and numerical values for L, LGC, and

    �L .

To sufficient accuracy, the numerical value of the constant L, which applies
in the Solar-System barycentric space-time frame of reference, can be calculated
from:
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(4�12)

The number of significant digits given for the parameters in Eq. (4�12) is
sufficient to calculate L to seven significant digits. The gravitational constants µ
for the Sun (S), Mercury (Me), Venus (V), and the  planetary systems Mars (Ma),
Jupiter (J), Saturn (Sa), Uranus (U), Neptune (N), and Pluto (Pl), the planetary
ephemeris scaling factor AU (which is the number of kilometers per
astronomical unit), and the speed of light c were obtained from Standish et al.

(1995):

µS = 132,712,440,018. km3/s2

µMe = 22,032. km3/s2

µV = 324,859. km3/s2

µMa = 42,828. km3/s2

µJ = 126,712,768. km3/s2

µSa = 37,940,626. km3/s2

µU = 5,794,549. km3/s2
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µN = 6,836,534. km3/s2

µPl = 982. km3/s2

AU = 149,597,870.691 km/astronomical unit
c = 299,792.458 km/s

The semi-major axes (a) in astronomical units of the heliocentric orbits of the
Earth-Moon barycenter (B) and the planetary systems Mars through Pluto were
obtained from Table 5.8.1 on page 316 of the Explanatory Supplement (1992). To
sufficient accuracy, the values at the epoch J2000.0 can be used:

aB = 1.000,000,11
aMa = 1.523,66

aJ = 5.203,36
aSa = 9.537
aU = 19.191
aN = 30.069
aPl = 39.482

From Standish et al. (1995) or Chapter 1 of International Earth Rotation Service
(1992), the gravitational constant for the Moon is given by:

µM = 4902.8 km3/s2

From Table 15.4 on page 701 of the Explanatory Supplement (1992), the semi-
major axis of the geocentric orbit of the Moon in kilometers is given to sufficient
accuracy by:

aM = 3.844 x 105 km

From Chapter 1 or Chapter 6 of International Earth Rotation Service (1992), or
from Standish et al. (1995), values of the gravitational constant of the Earth (µE),
the mean equatorial radius of the Earth (ae), and the second zonal harmonic
coefficient of the Earth (J2), rounded to more than enough significant digits to
calculate L to seven significant digits are given by:
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µE = 398,600.44 km3/s2

ae = 6378.136 km
J2 = 1.082,63 x 10−3

It will be seen in Section 4.3.4 that the gravitational constant of the Earth has
slightly different values in the Solar-System barycentric and geocentric frames of
reference. However, the difference of about 0.006 km3/s2 is not significant here.
From Table 15.4 on page 701 of the Explanatory Supplement (1992), the inertial
rotation rate of the Earth (ωE) is given by:

ωE = 0.729,2115 x 10−4 rad/s

Substituting numerical values into Eq. (4�12) and rounding the resulting value of
L to seven significant digits gives:

    L = 1 550 520. ,  x 10-8 (4�13)

Secular variations in the semi-major axes of the orbits of the planets prevent the
calculation of L from Eq. (4�12) to more than seven significant digits.

Of the five terms of Eq. (4�12), only the third and fifth terms apply for LGC

in the local geocentric space-time frame of reference:

    
L

c a
J

aGC
E

e
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22

2 2 2µ
ω (4�14)

Substituting numerical values into Eq. (4�14) and rounding the resulting value of
LGC to 1 x 10−14 (as in 4�13) gives:

    LGC
-8 x 10= 0 069 693. , (4�15)

From Eq. (4�7), the expression for     �L  is given by Eq. (4�12) minus
Eq. (4�14), which is given by terms one, two, and four of (4�12):
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Substituting numerical values into Eq. (4�16) and rounding the resulting value of

    �L  to seven significant digits gives:

    � . ,L = 1 480 827 x 10-8 (4�17)

The same value is obtained by subtracting Eq. (4�15) from Eq. (4�13), according
to Eq. (4�7).

Fukushima (1995) has obtained numerical values for L, LGC, and     �L , which
he denotes as LB, LG, and LC, respectively, by numerical integration. His values
of these constants (given in his equations (41), (40), and (38)) contain three to
four more significant digits than given here and round to the values given in Eqs.
(4�13), (4�15), and (4�17).

The numerical values of L and LGC  will be used in Sections 11 and 13 to
calculate the computed values of one-way doppler (F1) observables in the Solar-
System barycentric and local geocentric frames of reference, respectively. The
numerical value of     �L  is used in Eqs. (4�10) and (4�11) and throughout Section 4.3.

4.3.2 DIFFERENTIAL EQUATION FOR TIME COORDINATES

In order to calculate the acceleration of a near-Earth spacecraft due to the
Earth�s harmonic coefficients in the Solar-System barycentric frame of reference
(in Section 4.4.5), an expression is required for dtGC/dtBC evaluated at the
spacecraft. An interval of proper time dτ recorded on an atomic clock carried by
the spacecraft divided by the corresponding interval of coordinate time dtBC in
the Solar-System barycentric frame of reference is given by Eq. (2�20):

    

d
dt

U

c

v

c
L

τ

BC
= − − +1

22

2

2 (4�18)
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where U is the gravitational potential at the spacecraft given by Eq. (2�17), v is
the Solar-System barycentric velocity of the spacecraft given by Eq. (2�21), and L
is given by Eq. (4�13). The interval dτ divided by the corresponding interval of
coordinate time dtGC in the local geocentric frame of reference is given by:

    

d
dt

U

c

v

c
L

τ

GC

GC
GC

E
= −

( )
− +1

22

2

2 (4�19)

where U(E) is the gravitational potential at the spacecraft due to the Earth, vGC is
the geocentric velocity of the spacecraft, and LGC is given by Eq. (4�15). If the
spacecraft atomic clock were placed at mean sea level on Earth, it would run at
the same rate as International Atomic Time TAI. The TAI rate is the same as the
rate of coordinate time in the local geocentric frame of reference. The average
rate of TAI is the same as the rate of coordinate time in the Solar-System
barycentric frame of reference.

If the gradient of the gravitational potential UE at the Earth due to all
other bodies is ignored, the gravitational potential U at a near-Earth spacecraft
can be approximated by:

    U U U≈ + ( )E E (4�20)

Also, v2 in Eq. (4�18) can be expressed as:

      v V v2 2 22= + ⋅ +E E GCV rú (4�21)

where     úr  is the geocentric space-fixed velocity vector of the near-Earth spacecraft.
Dividing Eq. (4�18) by Eq. (4�19), substituting Eqs. (4�20), (4�21), and (4�7), and
retaining terms to order 1/c2 gives:
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dt
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E E
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2
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2 2
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(4�22)
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Since terms of order 1/c4 are ignored,     úr  can be evaluated in the local geocentric
frame of reference or in the Solar-System barycentric frame of reference. The
inverse of Eq. (4�22) is Eq. (47) of HRTW (1990), except that I have ignored the
term

      
−

⋅úV rE

c2

in Eq. (4�22) which arises from the gradient of UE.

Eq. (4�22) gives the rate of dtGC relative to dtBC at a point in the local
geocentric frame of reference that has a geocentric space-fixed velocity vector of

    úr . The first four terms on the right-hand side of Eq. (4�22) represent periodic
variations in the rate of geocentric coordinate time with variations in the
gravitational potential at the Earth and the Solar-System barycentric velocity of
the Earth. The last term on the right-hand side of (4�22) plus the neglected term
is the negative of the time derivative of the clock synchronization term in the
expression for ET − TAI at an Earth satellite. This is the fourth term on the right-
hand side of Eq. (2�23), which is used in Eq. (2�25).

4.3.3 TIME COORDINATES

Eq. (4�22), plus the neglected term listed after it, can be integrated to give
an expression for coordinate time tBC in the barycentric frame of reference minus
coordinate time tGC in the local geocentric frame of reference. However, this
derivation is the same as that for Eq. (2�23) for ET − TAI at a tracking station on
Earth. In this equation, ET is coordinate time in the Solar-System barycentric
frame of reference and TAI is International Atomic Time obtained from an
atomic clock at the tracking station. From Eq. (2�30), TAI plus 32.184 s is
coordinate time in the local geocentric frame of reference. Hence, the desired
expression for tBC minus tGC is the right-hand side of Eq. (2�23) with the constant
32.184 s deleted. In this expression,     rA

E  is the geocentric space-fixed position
vector of the point A where the time difference tBC − tGC is desired. The term
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containing     rA
E  is the time synchronization term, which comes from the Lorentz

transformation, and the remaining terms are periodic.

4.3.4 GRAVITATIONAL CONSTANTS

The gravitational constant of a body (defined after Eq. 2�6) has units of
km3/s2. The �physical� or �measured� or �proper� gravitational constant of a
body is measured in the scaled space and time coordinates of the underlying
metric. Eq. (2�16) for the metric in the Solar-System barycentric or local
geocentric frame of reference shows the space and time coordinates multiplied
by the scale factor l given by Eq. (2�18). The equations of motion for bodies and
light are independent of the scale factor l. The gravitational constants used in the
equations of motion are expressed in the unscaled space and time coordinates of
the underlying metric. Since the physical gravitational constant contains three
scaled coordinates in the numerator and two scaled coordinates in the
denominator, it is equal to the unscaled gravitational constant used in the
equations of motion multiplied by the scale factor l. The unscaled gravitational
constants µBC and µGC of a body used in the equations of motion in the Solar-
System barycentric and local geocentric frames of reference, respectively, are
given by the following functions of the common physical gravitational constant
of the body:

    
µ

µ
BC

physical=
+1 L

(4�23)

    
µ

µ
GC

physical

GC1+
=

L
(4�24)

The gravitational constants µBC of the celestial bodies of the Solar System are
estimated in fitting the planetary ephemeris to the observations of the Solar-
System bodies. The corresponding gravitational constants in the local geocentric
frame of reference are obtained from Eqs. (4�23) and (4�24) by eliminating
µphysical, using Eq. (4�7), and retaining terms to order 1/c2:
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µ µGC BC= +( )1 �L (4�25)

where     �L  is given by Eq. (4�17). In practice, the only gravitational constant whose
value must be transformed from its value in the barycentric frame to its value in
the local geocentric frame is the gravitational constant of the Earth.

Eq. (4�23) is the same as Eq. (5) or (15) of Misner (1982) and the same to
order 1/c2 as Eqs. (21), (23), and (25) of Hellings (1986). Eq. (4�25) is the same to
order 1/c2 as Eq. (62) of HRTW (1990).

The gravitational constants µBC of the bodies of the Solar System obtained
from the planetary ephemeris and from satellite ephemerides are described in
Sections 3.1.2.2 and 3.2.2.1.

4.4 RELATIVISTIC EQUATIONS OF MOTION IN SOLAR-
SYSTEM BARYCENTRIC FRAME OF REFERENCE

This section specifies the equations for calculating the acceleration of a
spacecraft located anywhere in the Solar System relative to the center of
integration (see Section 4.2) due to gravity only. This acceleration is calculated in
the Solar-System barycentric space-time frame of reference as the acceleration of
the spacecraft relative to the Solar-System barycenter minus the acceleration of
the center of integration relative to the Solar-System barycenter. Section 4.4.1
specifies the point-mass Newtonian acceleration plus the relativistic perturbative
acceleration due to a body. These equations are used to calculate the acceleration
of the spacecraft and the acceleration of the center of integration due to the
celestial bodies of the Solar System. The acceleration of a near-Earth spacecraft is
affected by geodesic precession, as discussed in Section 4.4.2. The acceleration
due to geodesic precession is included in the relativistic point-mass perturbative
acceleration specified in Section 4.4.1. The Lense-Thirring relativistic acceleration
of a near-Earth spacecraft due to the rotation of the Earth is given in Section
4.4.3. The standard model for calculating the acceleration of a spacecraft due to
the harmonic coefficients of a nearby celestial body is discussed in Section 4.4.4.
This model uses the formulation in Moyer (1971) and calculates the Newtonian
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acceleration due to the oblateness of a celestial body in the rest frame of the
body. Section 4.4.5 gives a more accurate model for calculating the acceleration
of a near-Earth spacecraft due to the harmonic coefficients of the Earth in the
Solar-System barycentric frame of reference. Section 4.4.6 gives the formulation
for calculating the acceleration of the Earth or Moon (when one of these bodies is
the center of integration) due to the oblateness of the Earth and the Moon. This
model is also used to calculate the acceleration of the planet or a satellite of one
of the outer planet systems due to oblateness when one of these bodies is the
center of integration.

The Solar System contains eleven major bodies: the nine planets, the Sun,
and the Moon. The input array PERB for program GIN contains an element for
each of these bodies, which can be 0, 1, 2, or 3. The value of 3 can only be used
for the Earth. The value of the element of the PERB array for a body determines
which terms of the acceleration of the spacecraft due to the body and the
acceleration of the center of integration due to the body are computed. For a 0,
no acceleration terms due to the body are computed. For a 1, the Newtonian
acceleration terms due to the body are calculated. For a 2, the Newtonian and
relativistic perturbative acceleration terms are calculated. For the Earth, a value
of 3 gives these terms plus the acceleration due to geodesic precession, and the
Lense-Thirring precession if the spacecraft is within the Earth�s sphere of
influence. Furthermore, if the spacecraft is within the Earth�s oblateness sphere,
the acceleration of the spacecraft due to the Earth�s harmonic coefficients is
calculated in the Solar-System barycentric frame of reference (i.e., from the
formulation of Section 4.4.5 instead of Section 4.4.4). The Newtonian acceleration
terms due to asteroids and comets on the small-body ephemeris are calculated if
the body number is placed into input array XBNUM, the body name is placed
into input array XBNAM, and either is placed into input array XBPERB. All three
of these inputs are for program GIN.

For a near-Earth spacecraft, all acceleration terms that are of order 10−12

or greater relative to the Newtonian acceleration of the spacecraft due to the
Earth are retained.
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4.4.1 POINT-MASS NEWTONIAN AND RELATIVISTIC PERTURBATIVE

ACCELERATIONS

The point-mass Newtonian acceleration plus the point-mass relativistic
perturbative acceleration of body i due to each other body j of the Solar System
is given by Eq. (54) of Moyer (1971). The ODP contains the PPN (Parameterized
Post�Newtonian) parameters β and γ of Will and Nordtvedt (1972). However,
Eq. (54) of Moyer (1971) only contains the parameter γ. Eq. (54) can be
parameterized with β and γ  by comparing the terms of (54) to the
corresponding terms of Eq. (6.78) of Will (1981). Will�s equation is parameterized
with β and γ, which are unity in general relativity, and α  1, α  2, and ξ, which are
zero in general relativity. Setting these small parameters to zero in Eq. (6.78) of
Will (1981) and comparing the remaining terms to Eq. (54) of Moyer (1971) gives
the β and γ parameterized version of Eq. (54) of Moyer (1971):
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where the notation is defined after Eq. (2�6) and by Eqs. (2�7) to (2�9). The space-
fixed position, velocity, and acceleration vectors of points i, j, k, and l are referred
to the Solar-System barycenter. The rectangular components of these vectors are
referred to the space-fixed coordinate system of the planetary ephemeris. The
dots denote differentiation with respect to coordinate time of the Solar-System
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barycentric frame of reference. The gravitational constants of the Sun, Mercury,
Venus, the Earth, the Moon, and the planetary systems Mars through Pluto are
the values associated with the Solar-System barycentric frame of reference, and
they are obtained from the planetary ephemeris. If a satellite ephemeris is used
for a planetary system, the gravitational constant for the planetary system
obtained from the satellite ephemeris will overstore the value from the planetary
ephemeris in the ODP. The gravitational constants of asteroids and comets are
obtained from the small-body ephemeris.

The first term of Eq. (4�26) is the point-mass Newtonian acceleration of
body i:
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The remaining terms of Eq. (4�26) are the point-mass relativistic perturbative
acceleration of body i. The acceleration of the spacecraft (point i) relative to the
Solar-System barycenter due to the Sun, Mercury, Venus, the Earth, the Moon,
the barycenters of the planetary systems Mars through Pluto, and asteroids and
comets is calculated from Eq. (4�26). However, the terms included in the
calculation are controlled by the arrays PERB and XBPERB. If the element of the
PERB array for a perturbing body j in (4�26) is 1, the acceleration of the
spacecraft due to that body is calculated from Eq. (4�27). If PERB is 2 or 3, the
acceleration of the spacecraft due to body j is calculated from Eq. (4�26). If PERB
is 0, the acceleration of the spacecraft due to body j is not calculated. The
acceleration of the spacecraft due to each asteroid and comet included in the
XBPERB array is calculated from Eq. (4�27). The acceleration of the center of
integration (if it is the Sun, Mercury, Venus, the Earth, the Moon, the barycenter
of one of the planetary systems Mars through Pluto, an asteroid, or a comet)
relative to the Solar-System barycenter is also calculated from Eq. (4�26) using
the PERB and XBPERB arrays as described above. The perturbing bodies for the
center of integration are the same as those for the spacecraft except that the
center of integration is excluded. The acceleration of the spacecraft relative to the
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center of integration is the acceleration of the spacecraft minus the acceleration of
the center of integration.

Evaluation of the relativistic perturbative acceleration terms of Eq. (4�26)
requires the acceleration (      

úúrj ) of body j in two places. Since terms of order 1/c4

are ignored, the Newtonian acceleration given by Eq. (4�27) or Eq. (2�12) can be
used. Calculation of the relativistic perturbative acceleration of body i due to
perturbing body j using Eq. (4�26) requires the just-mentioned Newtonian
acceleration of body j, the gravitational potential at body j, and the gravitational
potential at body i. The contribution to these gravitational potentials and
accelerations due to the mass of a Solar-System body will not be computed if the
element of the PERB array for that body is zero or the body (if it is an asteroid or
a comet) is not included in the XBPERB array. Note that the mass of body i

contributes to the Newtonian acceleration of each perturbing body j and the
gravitational potential at each perturbing body j.

If the spacecraft is outside the sphere of influence of a planetary system
(Mars, Jupiter, Saturn, Uranus, Neptune, or Pluto), the acceleration of the
spacecraft due to that planetary system is calculated from the gravitational
constant of the planetary system located at the barycenter of the planetary
system (obtained from the planetary ephemeris). However, if the spacecraft is
inside the sphere of influence of a planetary system and a satellite ephemeris for
that planetary system is used, then the acceleration of the spacecraft due to each
satellite and the planet of the planetary system is calculated. The gravitational
constants of each of these bodies and their positions relative to the barycenter of
the planetary system are obtained from the satellite ephemeris as described in
Section 3.2.2.1. If the element of the PERB array for the planetary system is 1, the
acceleration of the spacecraft due to each body of the planetary system is
Newtonian (i.e., calculated from Eq. 4�27). If the element of the PERB array is 2,
these acceleration terms are relativistic (i.e., calculated from Eq. 4�26).

If the center of integration (COI) for the spacecraft ephemeris is the planet
or a satellite of one of the outer planet systems, the acceleration of the COI due
to the distant bodies of the Solar System is calculated from Eq. (4�26) as
described above, except that the position of the planet or satellite which is the
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COI is used instead of the position of the barycenter of the planetary system. The
acceleration of the COI due to each of the other bodies of the planetary system is
calculated from Eq. (4�26) if PERB for the planetary system is 2 and from
Eq. (4�27) if PERB for the planetary system is 1.

The remainder of this section will show how the n-body point-mass
relativistic equations of motion (Eq. 4�26) can be derived from the n-body point-
mass metric tensor and related equations (Eqs. 2�1 to 2�15). The trajectory of a
massless particle or a celestial body in the gravitational field of n other celestial
bodies is a geodesic curve which extremizes the integral of the interval ds

between two points:

    
δ ds =∫ 0 (4�28)

Special conditions for treating the mass of body i whose motion is desired will be
given below. In order to obtain the equations of motion with coordinate time t
of the Solar-System barycentric frame of reference as the independent variable,
Eq. (4�28) is written as

    
δ L dt =∫ 0 (4�29)

where the Lagrangian L is given by:

  
L

ds
dt

= (4�30)

An expression for L2 is obtained from Eq. (2�15) for ds2 by replacing differentials
of the space coordinates of body i by derivatives of the space coordinates with
respect to coordinate time t multiplied by dt, and then dividing the resulting
equation by dt2. The Lagrangian L could be obtained by expanding the square
root of L2 in powers of 1/c2. Given L, the equations of motion that extremize the
integral (4�29) are the Euler-Lagrange equations:
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where
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A simpler procedure for obtaining the equations of motion directly from
derivatives of L2 is developed as follows. The Euler-Lagrange equations are
unchanged by multiplying both terms by L:
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Differentiating     L L xi∂ ∂ ú( ) with respect to t gives:
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where
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dt

= (4�35)

The equations of motion are obtained by substituting the last term of Eq. (4�34)
into (4�33):
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The derivatives   L L xi∂ ∂( ) and     L L xi∂ ∂ ú( ) are obtained by differentiation of the
expression for L2. Because the equations of motion contain terms to order 1/c2

only,
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L
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c
= ≈2 2 (4�37)

where L2 has been replaced by its leading term c2 and     LLú  is obtained by
differentiating a simplified expression for L2 containing terms to order 1/c0 only.
The required expression for L2 is obtained from Eq. (2�15) as described above:
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where the components of the n-body metric tensor are obtained from Eqs. (2�1)
to (2�6) and Eq. (2�11). The n-body point-mass relativistic equations of motion
(Eq. 4�26) can be derived by evaluating Eq. (4�36) using Eqs. (4�37) and (4�38).
However, in evaluating the partial derivatives of Eq. (4�38) with respect to the
position components of body i, the gravitational potential at each perturbing
body j and the Newtonian acceleration of each perturbing body j must be
considered to be functions of coordinate time t only. These functions must not be
differentiated with respect to the position components of body i. These special
conditions were pointed out to me by Dr. Frank B. Estabrook and Dr. Hugo
Wahlquist of the Jet Propulsion Laboratory. This particular derivation of
Eq. (4�26), for the case where β = 1, is given in Section II of Appendix A of Moyer
(1971).

4.4.2 GEODESIC PRECESSION

Geodesic precession is due to the motion of the Earth through the Sun�s
gravitational field. It causes the pole of the orbit of an Earth satellite to precess
about the normal to the ecliptic at the rate of 19.2″ x 10−3/year. This causes the
ascending node of the orbit of an Earth satellite on the ecliptic to increase in
celestial longitude by 19.2 mas/year. This same effect decreases the general
precession in longitude by the same amount (see Explanatory Supplement (1961),
p. 170).
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In the Solar-System barycentric space-time frame of reference, the
geocentric acceleration of a near-Earth spacecraft due to geodesic precession is
included in the point-mass relativistic perturbative acceleration of the spacecraft
calculated from Eq. (4�26) minus the point-mass relativistic perturbative
acceleration of the Earth calculated from the same equation (see Dickey,
Newhall, and Williams (1989) and HRTW (1990)). When the geocentric
acceleration of a near-Earth spacecraft is calculated in the local geocentric space-
time frame of reference, a separate equation is required for calculating the
acceleration due to geodesic precession (Section 4.5.3).

4.4.3 LENSE-THIRRING PRECESSION

The unit vector S in the direction of the north pole of the orbit of an Earth
satellite undergoes the general relativistic Lense-Thirring precession due to the
rotation of the Earth. The unit vector S precesses at the rate:

    

d
dt
S

S= ×ΩΩ (4�39)

where Ω is the Lense-Thirring angular velocity vector. From Will (1981), Eq. (9.5),
term 2,
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where

G = constant of gravitation
=   6 67259 10 20. × −  km /s kg3 2

r = space-fixed geocentric position vector of near-Earth
spacecraft, km

r = magnitude of r
J = angular momentum vector of the Earth
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Eq. (4�40) with γ equal to its general relativistic value of unity is also given in
Misner, Thorne, and Wheeler (1973), Eq. (40.37) (with ∆1 = ∆2 = 1, their general
relativistic values). The angular momentum vector of the Earth is given by:

      
J P= ( )0 33068 2. m aE e E

2kg km
s

ω (4�41)

where ae and ωE are defined after Eq. (4�12) and:

mE = mass of the Earth, kg
P = unit vector aligned with the Earth�s spin axis and directed

toward the north pole

The constant 0.33068 in Eq. (4�41) is the polar moment of inertia C of the Earth
divided by mE ae

2. It was computed by J. G. Williams of the Jet Propulsion
Laboratory as J2 (definition and numerical value given after Eq. 4�12) which is
equal to (C − A)/mE ae

2 (see Kaula (1968), p. 68, Eq. 2.1.32), where A is the
equatorial moment of inertia of the Earth, divided by (C − A)/C = 0.0032739935
(see Seidelmann (1982), p. 96, parameter H).

The angular velocity vector Ω given by Eq. (4�40) is the local rotation rate
of the inertial geocentric frame of reference relative to a non-rotating geocentric
frame. The equations of motion in a non-rotating geocentric frame are those of a
coordinate system rotating with the angular velocity − Ω. So, to the equations of
motion in a non-rotating geocentric frame of reference , we must add the
Coriolis acceleration     − ×2ωω úr , where ω is the angular velocity − Ω and     úr  is the
geocentric space-fixed velocity vector of the near-Earth spacecraft. Thus, in the
non-rotating local geocentric space-time frame of reference or the Solar-System
barycentric space-time frame of reference, the acceleration of a near-Earth
spacecraft due to the Lense-Thirring precession is given by:

    úú úr r= ×2ΩΩ (4�42)

The ratio of this acceleration to the Newtonian acceleration of an Earth satellite is
a maximum for a very near Earth satellite. The angular rate ΩΩ  is about 2 x 10−14
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rad/s for the TOPEX satellite (semi-major axis = 7712 km). The corresponding
acceleration computed from Eq. (4�42) is about 3 x 10−13 km/s2. Since the
Newtonian acceleration of the TOPEX satellite is about 0.7 x 10−2 km/s2, the
Lense-Thirring acceleration is approximately 4 x 10−11 times the Newtonian
acceleration. In the non-rotating geocentric frame, we should also add the
centrifugal acceleration − Ω × Ω × r. However, this acceleration is a maximum of
about 10−21 times the Newtonian acceleration, which can safely be ignored.

Substituting Eq. (4�41) into Eq. (4�40) and substituting the result into
Eq. (4�42) and using

µE = GmE

= gravitational constant of the Earth, km3/s2

as defined after Eq. (2�6) gives:

      
úú

.
ú úr r r r P r P=

( ) +( )
×( ) ⋅( ) + ×( )





0 33068 1 32

2 3 2

γ µ ωE e E
2

km

s

a

c r r
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In order to calculate the Lense-Thirring acceleration from Eq. (4�43), an
expression is required for the pole vector P in the space-fixed coordinate system
of the planetary ephemeris (see Section 3.1.1). It could be calculated from
polynomials for the right ascension and declination of the Earth�s mean north
pole of date. However, the following simpler algorithm was suggested by J.G.
Williams. In the Earth-fixed coordinate system aligned with the true pole, prime
meridian, and equator of date,
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(4�44)

In the space-fixed coordinate system of the planetary ephemeris, P is given by:
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where TE is the 3 x 3 rotation matrix from Earth-fixed coordinates referred to the
true pole, prime meridian, and equator of date to the space-fixed coordinate
system of the planetary ephemeris. The algorithm for calculating the
transformation matrix TE for the Earth is given in Section 5.3. Rather than
formally calculating the space-fixed pole vector P from Eq. (4�45), it is given
simply by the third column of TE.

Eq. (4�43) with γ = 1 (general relativity) and expressed in terms of J given
by Eq. (4�41) or J/mE instead of P is given by Eq. (9.5.19) on p. 232 of Weinberg
(1972) and Eq. (41) of HRTW (1990), respectively.

4.4.4 NEWTONIAN ACCELERATION OF SPACECRAFT DUE TO THE

HARMONIC COEFFICIENTS OF A CELESTIAL BODY

This section presents the model for the Newtonian acceleration of the
spacecraft due to the oblateness of a nearby celestial body. This acceleration is
only calculated if the spacecraft is within the oblateness sphere of the body.
Section 4.4.5 gives the model for the relativistic acceleration of a near-Earth
spacecraft due to the oblateness of the Earth. This more-accurate model will be
used if the element of the PERB array for the Earth is set to 3 instead of 1 or 2.
The relativistic model of Section 4.4.5 may eventually be applied to other Solar-
System bodies in addition to the Earth. The relativistic acceleration of a near-
Earth spacecraft due to the Earth�s oblateness includes the calculation of the
Newtonian oblateness acceleration from the equations of this section.

The acceleration of the center of integration due to oblateness is calculated
when the center of integration is the Earth or the Moon. This model is given in
Section 4.4.6 and includes the effects of the oblateness of the Earth and the Moon.
The acceleration of the center of integration due to the oblateness of the Sun is
not calculated because the Sun cannot currently be modelled as an oblate body in
the ODP. If the center of integration is the planet or a satellite of one of the outer
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planet systems, the acceleration of the center of integration due to the oblateness
of the bodies of the planetary system is calculated from the above model as
described in Section 4.4.6.

The Newtonian acceleration of the spacecraft due to the oblateness of a
nearby celestial body can be calculated for any body in the Solar System except
the Sun. These bodies consist of the nine planets, the Moon, the satellites of the
outer planets Mars through Pluto, asteroids, and comets. Calculation of the
acceleration due to a satellite or the planet of one of the outer planet systems
requires the use of a satellite ephemeris for that system.

Calculation of the Newtonian acceleration of the spacecraft due to the
oblateness of a nearby body B requires the 3 x 3 body-fixed to space-fixed
rotation matrix TB for body B. If body B is the Earth (E), the body-fixed to space-
fixed transformation matrix TE for the Earth rotates from one of two possible
Earth-fixed coordinate systems selected by the user to the space-fixed coordinate
system of the planetary ephemeris (see Section 3.1.1). One of these Earth-fixed
coordinate systems is aligned with the mean pole, prime meridian, and equator
of 1903.0. The other Earth-fixed coordinate system is aligned with the true pole,
prime meridian, and equator of date. For the former case, the matrix TE includes
rotations through the X and Y angular coordinates of the true pole of date
relative to the mean pole of 1903.0. The formulation for calculating either version
of the transformation matrix TE for the Earth is given in Section 5.3. For every
other body B in the Solar System except the Earth, the transformation matrix TB

rotates from the body-fixed coordinate system aligned with the true pole, prime
meridian, and equator of date to the space-fixed coordinate system of the
planetary ephemeris. The formulation for calculating TB is given in Section 6.3. If
nutation terms are not included in calculating TB, the body-fixed coordinate
system is aligned with the mean pole, prime meridian, and equator of date.

Note that if the body-fixed coordinate system for the Earth is aligned with
the mean pole of 1903.0 instead of the true pole of date, the tesseral harmonic
coefficients C21 and S21 for the Earth must be non-zero to account for the offset
of the mean pole of date (assumed to be the mean figure axis) from the mean
pole of 1903.0. This is discussed further in Section 5.2.8.
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The Newtonian acceleration of the spacecraft due to the oblateness of a
nearby body B is obtained by rotating the space-fixed position vector of the
spacecraft to the body-fixed coordinate system, calculating the oblateness
acceleration in the body-fixed coordinate system, and then rotating the
acceleration of the spacecraft due to oblateness from the body-fixed coordinate
system to the space-fixed coordinate system. However, the oblateness
acceleration is not calculated in one of the body-fixed equatorial coordinate
systems described above, but in the body-fixed up-east-north coordinate system.
So, one additional rotation matrix is needed in addition to the matrix TB. The
following paragraph gives the equations for rotating between the space-fixed
coordinate system of the planetary ephemeris and the body-fixed up-east-north
coordinate system. The equations for calculating the Newtonian oblateness
acceleration in the body-fixed up-east-north coordinate system are given in
Moyer (1971).

Let

r = space-fixed position vector of the spacecraft relative to
the center of integration (COI) of the spacecraft
ephemeris. This vector is represented in the space-fixed
coordinate system of the planetary ephemeris.

    rB
COI = space-fixed position vector of the oblate body B relative

to the center of integration. This vector is obtained from
the planetary ephemeris as described in Section 3.1.2.1
and, if necessary, a satellite ephemeris as described in
Section 3.2.2.1.

Then, the space-fixed position vector of the spacecraft (S/C) relative to the oblate
body B is given by:

    r r rS/C
B

B
COI= − (4�46)

It is related to the corresponding body-fixed position vector rb of the spacecraft
by:
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      r rS/C
B

B b= T (4�47)

where the body B can be the Earth (E). The specific equatorial body-fixed
coordinate system that rb is referred to is the body-fixed coordinate system of
the body-fixed to space-fixed transformation matrix TB, as discussed above. The
inverse transformation of Eq. (4�47) is:

      r rb B
T

S/C
B= T (4�48)

where the superscript T indicates the transpose of the matrix.

Let   ′r  denote the position vector of the spacecraft relative to the oblate
body B in the body-fixed up-east-north rectangular coordinate system (x′y′z′).
The x′ axis is directed outward along the radius to the spacecraft, the y′ axis is
directed east, and the z′ axis is directed north. The transformation from
equatorial body-fixed coordinates to up-east-north body-fixed coordinates is
given by:

      ′ =r rR b (4�49)

where the 3 x 3 rotation matrix R is given by Eq. (161) of Moyer (1971). The
matrix R is a function of sines and cosines of the latitude φ and longitude λ of the
spacecraft measured in the body-fixed equatorial coordinate system. Given the
rectangular components of rb from Eq. (4�48), the sines and cosines of φ and λ
are given by Eqs. (165) to (168) of Moyer (1971).

Substituting Eq. (4�48) into (4�49) gives the transformation from the
space-fixed position vector of the spacecraft relative to the oblate body B to the
corresponding body-fixed position vector in the up-east-north coordinate
system:

      ′ = ≡r r rRT GB
T

S/C
B

S/C
B (4�50)

The inverse transformation is:
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      r r rS/C
B

B
T T= ′ ≡ ′T R G (4�51)

The following paragraph will describe the calculation of the acceleration of the
spacecraft due to the oblateness of body B in the body-fixed up-east-north
coordinate system. Given this acceleration,     úú ′r , the oblateness acceleration in the
space-fixed coordinate system of the planetary ephemeris is given by the second
derivative of Eq. (4�51), obtained holding the transformation matrix G fixed:

      úú úúr r= ′GT (4�52)

The rotation matrix G is not differentiated because the oblateness acceleration     úú ′r

is the inertial acceleration of the spacecraft with rectangular components along
the instantanteous positions of the axes of the body-fixed up-east-north
coordinate system.

Given the space-fixed position vector of the spacecraft relative to the
oblate body B given by Eq. (4�46), calculate the rectangular components of rb

from Eq. (4�48). Using these rectangular components, calculate the radius r from
the oblate body B to the spacecraft and the sines and cosines of the latitude φ and
longitude λ of the spacecraft measured in the body-fixed equatorial coordinate
system from Eqs. (165) to (168) of Moyer (1971). Given r, φ, and λ, calculate the
acceleration of the spacecraft due to the oblateness of body B in the body-fixed
up-east-north coordinate system from the sum of Eqs. (173) and (174) of Moyer
(1971). Eq. (173) gives the acceleration due to the zonal harmonic coefficients Jn,
and Eq. (174) gives the acceleration due to the tesseral harmonic coefficients Cnm

and Snm. These equations are a function of the Legendre polynomial Pn of degree
n in sin φ, the associated Legendre function   Pn

m  defined by Eq. (155) of Moyer
(1971), and the derivatives of both of these functions with respect to sin φ. These
four functions are functions of sin φ and cos φ and are computed recursively from
Eqs. (175) to (183) of Moyer (1971). Given the oblateness acceleration     úú ′r  in the
body-fixed up-east-north coordinate system, rotate it into the space-fixed
coordinate system of the planetary ephemeris using Eq. (4�52).
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Eqs. (173) and (174) of Moyer (1971) can be derived from the expressions
for the gravitational potential, which are given by Eqs. (154) to (159) of Moyer
(1971).

4.4.5 RELATIVISTIC ACCELERATION OF SPACECRAFT DUE TO THE

HARMONIC COEFFICIENTS OF THE EARTH

In the Solar-System barycentric space-time frame of reference, the Earth is
foreshortened in the direction of motion, which distorts the harmonic expansion
of its gravitational potential. In the geocentric frame, however, the shape of the
Earth and its gravitational potential are unaffected. The acceleration of a near-
Earth spacecraft in the Solar-System barycentric frame of reference due to the
oblateness of the Earth is calculated from the algorithm obtained from HRTW
(1990), which is detailed in the following paragraphs. This algorithm calculates
the oblateness acceleration in the local geocentric space-time frame of reference,
where the gravitational potential of the Earth is known, and utilizes the
relativistic coordinate transformations between the Solar-System barycentric and
local geocentric frames of reference developed in Section 4.3.

The trajectory of a near-Earth spacecraft in the Solar-System barycentric
space-time frame of reference is obtained by numerical integration with
coordinate time tBC of the barycentric frame as the independent variable. At each
integration step, the current Earth-centered space-fixed position vector of the
spacecraft rBC in the Solar-System barycentric space-time frame of reference,
calculated from Eq. (4�46), where B is the Earth E, is transformed to rGC in the
geocentric space-time frame of reference using Eq. (4�11), which is evaluated as
described after it. Then, using rGC  as the input, the Newtonian acceleration of the
near-Earth spacecraft     úúrGC  due to the harmonic coefficients of the Earth in the
geocentric frame of reference is calculated from the algorithm of Section 4.4.4. In
evaluating this algorithm, the gravitational constant of the Earth should be the
value in the local geocentric frame of reference calculated from the value in the
barycentric frame (obtained from the planetary ephemeris) using Eq. (4�25). The
acceleration     úúrGC  is then transformed to the acceleration     úúrBC in the barycentric
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frame using the second derivative of Eq. (4�10), which is derived in the next
paragraph.

In Eq. (4�10), rBC is a function of coordinate time tBC in the barycentric
frame, and rGC is a function of coordinate time tGC in the geocentric frame. First,
Eq. (4�10) will be differentiated with respect to tBC. In carrying out this
differentiation, VE and UE are considered to be constant, and     �L  is constant. It is
shown in HRTW (1990) that differentiation of VE and UE  yields (after
differentiating Eq. 4�10 twice) acceleration terms which are of order 10−14 or
smaller relative to the Newtonian acceleration of a near-Earth spacecraft. In
differentiating the right-hand side of Eq. (4�10),
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= (4�53)

where dtGC/dtBC is given by Eq. (4�22). Differentiating Eq. (4�10) with respect to
tBC using Eqs. (4�53) and (4�22), and retaining terms to order 1/c2 gives:
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where       ú ú ú ú úr r r r r r rBC BC BC GC GC GC BC GC,  ,  and  or = = =d dt d dt  since terms of
order 1/c4 are ignored. Differentiating Eq. (4�54) with respect to tBC using
Eqs. (4�53) and (4�22), holding VE and UE fixed, and retaining terms to order
1/c2 gives:
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(4�55)

where       úú úúr r r rBC BC BC GC GC GC and = =d dt d dt2 2 2 2 . Since it is not necessary to
transform     ú úr rBC GC to  from the inverse of Eq. (4�54) in order to calculate     úúrGC  as
described in the preceding paragraph, the geocentric space-fixed velocity vector

    úr  of the near-Earth spacecraft can most conveniently be evaluated with     ú úr r= BC,
which is given by the derivative of Eq. (4�46), where B is the Earth E.
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Given the acceleration of a near-Earth spacecraft due to the oblateness of
the Earth calculated in the local geocentric space-time frame of reference as
described above, Eq. (4�55) transforms this acceleration to the corresponding
acceleration in the Solar-System barycentric space-time frame of reference. The
acceleration     úú úúr rBC GC−  obtained from Eq. (4�55), with γ  set equal to its general
relativistic value of unity, is Eq. (59) of HRTW (1990). The relativistic acceleration
of a near-Earth spacecraft due to the oblateness of the Earth minus the
corresponding Newtonian acceleration is of order 10−8 relative to the Newtonian
oblateness acceleration, which is of order 10−3 relative to the Newtonian
acceleration of the spacecraft due to the point-mass Earth. Hence, the relativistic
oblateness acceleration minus the Newtonian oblateness acceleration of a near-
Earth spacecraft is of order 10−11 relative to the Newtonian acceleration of the
spacecraft due to the Earth.

4.4.6 ACCELERATION OF THE CENTER OF INTEGRATION DUE TO

OBLATENESS

The acceleration of the center of integration due to oblateness is calculated
when the center of integration is the Earth or the Moon and accounts for the
oblateness of both of these bodies. The model for this acceleration is derived
below. If the center of integration is the planet or a satellite of one of the outer
planet systems, this model is used to calculate the acceleration of the center of
integration due to the oblateness of the bodies of the planetary system as
described at the end of this section.

The force of attraction between the Earth and the Moon consists of:

1. The force of attraction between the point-mass Earth and the point-
mass Moon.

2. The force of attraction between the oblate part of the Earth (i.e., the
Earth�s harmonic coefficients) and the point-mass Moon.

3. The force of attraction between the oblate part of the Moon (i.e., the
Moon�s harmonic coefficients) and the point-mass Earth.
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4. The force of attraction between the oblate part of the Earth and the
oblate part of the Moon.

The force 1 is accounted for in Section 4.4.1. The formulation of this section
accounts for the forces 2 and 3, but ignores the force 4, which is negligible.

Let

    úúrM E( ) = acceleration of point-mass Moon due to the oblateness of
the Earth

    úúrE M( ) = acceleration of point-mass Earth due to the oblateness of
the Moon

These accelerations, with rectangular components referred to the space-fixed
coordinate system of the planetary ephemeris, are computed from the
Newtonian formulation of Section 4.4.4. In calculating     úúrM E( ), the Moon is treated
as the spacecraft and Eq. (4�46) for the space-fixed position vector of the
spacecraft relative to the oblate body is replaced by the space-fixed geocentric
position vector of the Moon     rM

E  interpolated from the planetary ephemeris (see
Section 3.1.2.1). Similarly, in calculating     úúrE M( ), the Earth is treated as the
spacecraft, and Eq. (4�46) is replaced by     − r M

E .

Consider the force of attraction between the Earth and the Moon due to
the oblateness of the Earth, assuming the Moon to be a point mass. This force
produces     úúrM E( ) and:

    úúrE E( ) = acceleration of the Earth due to the force of attraction
between the oblate part of the Earth and the point-mass
Moon

Since these two accelerations are derived from equal and opposite forces,

    
úú úúr rE

M

E
ME E( ) = − ( )µ

µ
(4�56)
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where µE and µM are the gravitational constants of the Earth and Moon,
obtained from the planetary ephemeris. Similarly, consider the force of attraction
between the Earth and the Moon due to the oblateness of the Moon, assuming
the Earth to be a point mass. This force produces     úúrE M( ) and:

    úúrM M( ) = acceleration of the Moon due to the force of attraction
between the oblate part of the Moon and the point-mass
Earth

Since these two accelerations are derived from equal and opposite forces,

    
úú úúr rM

E

M
EM M( ) = − ( )µ

µ
(4�57)

The acceleration of the Earth due to the oblateness of the Earth attracting
the point-mass Moon and the oblateness of the Moon attracting the point-mass
Earth is given by:
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(4�58)

Similarly, the acceleration of the Moon due to the oblateness of the Earth
attracting the point-mass Moon and the oblateness of the Moon attracting the
point-mass Earth is given by:
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(4�59)

The accelerations     úúrE and     úúrM are functions of the harmonic coefficients of the
Earth and the Moon. Also,     úúrE is proportional to µM and     úúrM is proportional to µE.
The ODP evaluates Eqs. (4�58) and (4�59) using the harmonic coefficients J2, C22,
and S22 only for the Earth and the Moon. The negative of Eqs. (4�58) and (4�59)
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are contributions to the acceleration of the spacecraft relative to the Earth and
the Moon, respectively.

The acceleration of the Earth due to its own oblateness in the presence of
the point-mass Moon is approximately 5 x 10−11 times the Newtonian
acceleration of a GPS (Global Positioning System) satellite (semi-major axis
a ≈ 26,560 km). This ratio is smaller for the TOPEX satellite. For a GPS satellite,
the acceleration of the satellite due to the oblateness of the Moon minus the
acceleration of the Earth due to the oblateness of the Moon is of order 10−13

relative to the Newtonian acceleration of the satellite.

The Earth (or the Moon) is also accelerated due to the oblateness of the
Earth (or the Moon) attracting the point-mass Sun. The acceleration of the Earth
due to its own oblateness in the presence of the point-mass Sun is about 6 x 10−14

times the Newtonian acceleration of a GPS satellite. In the ODP, Eqs. (4�58) and
(4�59) do not include the acceleration of the Earth and the Moon, respectively,
due to the interaction of the oblateness of these bodies with the point-mass Sun.

If the center of integration is the planet or a satellite of one of the outer
planet systems, the above model is used to calculate the acceleration of the center
of integration due to the oblateness of the bodies of the planetary system.

If the center of integration is satellite i of one of the outer planet systems,
the acceleration of satellite i due to the oblateness of the planet and due to the
oblateness of satellite i acting on the point mass of the planet is calculated from
Eq. (4�59), where M refers to satellite i and E refers to the planet. If the spacecraft
is within the harmonic sphere of satellite j, the acceleration of satellite i due to the
oblateness of satellite j and due to the oblateness of satellite i acting on the point
mass of satellite j is calculated from Eq. (4�59), where M refers to satellite i and E
refers to satellite j. Note that the masses of the satellites and the planet are
obtained as described in Section 3.2.2.1.

If the center of integration is the planet of one of the outer planet systems,
the acceleration of the planet due to the oblateness of satellite i and due to the
oblateness of the planet acting on the point mass of satellite i is calculated from
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Eq. (4�58), where E refers to the planet and M refers to satellite i. This calculation
is performed for each satellite of the planetary system and the resulting
accelerations of the planet are summed.

If the center of integration is the barycenter of one of the outer planet
systems, the acceleration of the barycenter due to the oblateness of the bodies of
the outer planet system is zero.

4.5 RELATIVISTIC EQUATIONS OF MOTION IN LOCAL
GEOCENTRIC FRAME OF REFERENCE

This section specifies the equations for calculating the acceleration of a
near-Earth spacecraft (typically, an Earth satellite) relative to the center of mass
of the Earth due to gravity only. This acceleration is calculated in the local
geocentric space-time frame of reference. Section 4.5.1 specifies the Newtonian
point-mass acceleration of a near-Earth spacecraft due to the Sun, the Moon, the
planets, asteroids, and comets minus the corresponding acceleration of the Earth.
In the local geocentric space-time frame of reference, the n-body point-mass
relativistic perturbative acceleration reduces to the acceleration obtained from
the 1-body Schwarzschild isotropic metric for the Earth (specified in Section 4.5.2)
plus the acceleration due to geodesic precession (specified in Section 4.5.3). The
Lense-Thirring relativistic acceleration of a near-Earth spacecraft due to the
rotation of the Earth is given in Section 4.5.4. Section 4.5.5 specifies the calculation
of the acceleration of a near-Earth spacecraft due to the oblateness of the Earth
and the Moon from the Newtonian model of Section 4.4.4. Section 4.5.6 specifies
the calculation of the acceleration of the Earth (which is subtracted from the
acceleration of the spacecraft) due to the oblateness of the Earth and the Moon
using the model of Section 4.4.6.

The time argument used to evaluate all acceleration models and
interpolate the spacecraft ephemeris is coordinate time tGC of the local geocentric
space-time frame of reference. It is also used to interpolate the planetary
ephemeris instead of the actual argument, which is coordinate time tBC of the
Solar-System barycentric frame of reference. The gravitational constant of the
Earth used in all models is the value calculated from the corresponding value in
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the Solar-System barycentric frame (obtained from the planetary ephemeris)
using Eq. (4�25).

All acceleration terms which are of order 10−12 or greater relative to the
Newtonian acceleration of the spacecraft due to the Earth are retained.

4.5.1 POINT-MASS NEWTONIAN ACCELERATION

The point-mass Newtonian acceleration of a near-Earth spacecraft relative
to the center of mass of the Earth in the local geocentric space-time frame of
reference is calculated the same as in the Solar-System barycentric space-time
frame of reference as described in Section 4.4.1 (when the center of integration in
the barycentric frame is the Earth). The point-mass Newtonian acceleration is the
acceleration of the near-Earth spacecraft calculated from Eq. (4�27) minus the
acceleration of the Earth calculated from the same equation. Terms are obtained
for the Sun, Mercury, Venus, the Earth, the Moon, the planetary systems Mars
through Pluto, asteroids, and comets. The Earth accelerates the spacecraft. The
remaining bodies accelerate the spacecraft relative to the Earth. If the element of
the PERB array for any of these bodies is 0, or an asteroid or a comet is not
included in the XBPERB array, the acceleration due to that body is not calculated.
The only difference from the calculations in the barycentric frame is that the
value of the gravitational constant of the Earth in the local geocentric frame is
calculated from the value in the barycentric frame (obtained from the planetary
ephemeris) using Eq. (4�25).

The independent variable for the equations of motion in the geocentric
frame of reference is coordinate time tGC of the geocentric frame. However, the
time argument for interpolating the planetary ephemeris for the position vectors
of the perturbing bodies is coordinate time tBC of the barycentric frame. It could
be obtained by adding tBC − tGC to tGC. From Section 4.3.3, the time difference
tBC − tGC is given by the right-hand side of Eq. (2�23) with the constant 32.184 s
deleted. For this application, the clock synchronization term, which is the third
dot product term, is evaluated with the geocentric space-fixed position vector of
the near-Earth spacecraft. The remaining terms of Eq. (2�23) are periodic terms.
The time difference tBC − tGC affects the position vectors of the perturbing bodies
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and hence the acceleration of a near-Earth spacecraft relative to the Earth. For a
GPS satellite, this effect is of order 10−18 relative to the Newtonian acceleration of
the satellite due to the Earth, which is negligible. Therefore, in the local
geocentric space-time frame of reference, the planetary ephemeris can be
interpolated with coordinate time tGC of the geocentric frame in order to obtain
the position vectors of the perturbing bodies.

Lengths and times in the Solar-System barycentric space-time frame of
reference are smaller than those of the local geocentric space-time frame of
reference by the factor 1 +     �L  (i.e., the barycentric frame values are the geocentric
frame values divided by this factor), where     �L  is given by Eq. (4�17). From Eq.
(4�25), gravitational constants in the barycentric frame are also smaller than
those of the local geocentric frame by the same factor 1 +     �L . The point-mass
Newtonian acceleration of a near-Earth spacecraft relative to the Earth due to all
perturbing bodies except the Earth is computed from gravitational constants and
distances in the barycentric frame (both obtained from the planetary ephemeris).
This differential inverse radius-squared perturbative acceleration is high by the
factor 1 +     �L , and can be converted to the correct value in the local geocentric
frame of reference by multiplying it by 1 −     �L . For a GPS satellite, the resulting
correction is of order 10−13 relative to the Newtonian acceleration of the satellite
due to the Earth. It is doubtful if such a small effect could be seen in the data and
hence, the point-mass Newtonian acceleration of a near-Earth spacecraft relative
to the Earth due to all perturbing bodies except the Earth is not multiplied by the
correction factor 1 −     �L . The point-mass Newtonian acceleration of a near-Earth
spacecraft due to the Earth is computed from the gravitational constant of the
Earth in the geocentric frame calculated from Eq. (4�25) and the geocentric radius
to the spacecraft represented in the geocentric frame. Hence, this calculation is
correct in the geocentric frame.

4.5.2 POINT-MASS RELATIVISTIC PERTURBATIVE ACCELERATION

DUE TO THE EARTH

HRTW (1990) show that the n-body point-mass relativistic perturbative
acceleration in the Solar-System barycentric space-time frame of reference
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reduces to the relativistic perturbative acceleration obtained from the one-body
Schwarzschild isotropic metric for the Earth (specified in this section) plus the
acceleration due to geodesic precession (specified in the next section) in the local
geocentric space-time frame of reference.

The n-body point-mass metric tensor is given by Eqs. (2�1) to (2�12).
Simplifying these equations to the case of one massive body (the Earth) and a
massless particle (a near-Earth spacecraft) and substituting them into Eqs. (2�13)
to (2�15) for the interval ds gives:

    
ds

c r c r
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where the subscript i has been removed from the coordinates of the spacecraft.
The gravitational constant of the Earth µE in the local geocentric frame of
reference is calculated from the corresponding value in the Solar-System
barycentric frame of reference using Eq. (4�25). When β and γ are equal to their
general relativistic values of unity, this is the Schwarzschild isotropic one-body
point-mass metric, which has been expanded, retaining all terms to order 1/c2.
See Moyer (1971), Eq. (8). Dividing Eq. (4�60) by dt2 according to Eq. (4�30) and
denoting dx/dt as     úx , etc., gives the expression for the square of the Lagrangian
L. Differentiation of L2 gives expressions for     L L x L L x LL∂ ∂ ∂ ∂,  ,  and / ú ú . Also, the
second of these three expressions must be differentiated with respect to
coordinate time t of the local geocentric frame. Substituting all four of these
expressions into Eqs. (4�36) and (4�37) gives the point-mass equations of motion
due to the Earth in the local geocentric frame of reference. Subtracting the point-
mass Newtonian acceleration of a near-Earth spacecraft due to the Earth gives
the following expression for the point-mass relativistic perturbative acceleration
of a near-Earth spacecraft in the local geocentric space-time frame of reference:
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This same equation can be obtained by simplifying Eq. (4�26) to the case of one
perturbing body (the Earth) and removing the Newtonian term. In Eq. (4�61),

    r r,  ú = geocentric space-fixed position and velocity vectors of
near-Earth spacecraft

r = magnitude of r

    ús = magnitude of     úr

For an Earth satellite, the relativistic perturbative acceleration given by
Eq. (4�61) will always be less than 10−8 times the Newtonian acceleration of the
satellite. It will usually be of order 10−9 or smaller.

4.5.3 GEODESIC PRECESSION

Geodesic precession was introduced in Section 4.4.2. In the Solar-System
barycentric space-time frame of reference, the acceleration due to geodesic
precession is included in the point-mass relativistic perturbative acceleration
calculated from Eq. (4�26). However, in the local geocentric space-time frame of
reference, it must be calculated separately.

The precession rate of the north pole S of the orbit of an Earth satellite
about the normal to the ecliptic is given by Eq. (4�39), where Ω is the angular
velocity vector due to geodesic precession. From Will (1981), p. 209, Eq. (9.5), the
first term,
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where       r rE E and j jú  are space-fixed position and velocity vectors of the Earth
relative to body j, rEj is the magnitude of       rE

j , and µj is the gravitational constant
of body j. The second vector in the cross product is the gradient of the
gravitational potential U > 0 at the Earth due to body j. In Eq. (4�62), the only
body j which can produce an acceleration of a near-Earth spacecraft greater than
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order 10−14 relative to the Newtonian acceleration of the spacecraft is the Sun.
Setting Ω equal to the term due to the Sun (j = S) and evaluating that term gives:
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When γ = 1, this equation is equal to Eq. (43) of HRTW (1990). Eq. (4�63) in the
form of one term of Eq. (4�62) is given in Misner, Thorne, and Wheeler (1973),
Eq. (40.33b), term 3, and Eq. (40.34), line 3. When reading the references given in
this section, consider the geocentric orbit of the Earth satellite to be a gyroscope
in orbit about the Sun.

The inertial geocentric frame of reference is rotating with the angular
velocity Ω given by Eq. (4�63) relative to the Solar-System barycentric frame of
reference. However, the ODP uses a non-inertial geocentric frame of reference,
which is non-rotating relative to the barycentric frame of reference. When
formulating the equations of motion in the non-inertial geocentric frame of
reference, it must be considered to be rotating with the angular velocity − Ω.
Hence, in addition to the usual equations of motion in the non-rotating
geocentric frame of reference, we must add the centrifugal acceleration
− ω x ω x r and the Coriolis acceleration − 2ω x     úr , where the angular velocity ω of
the coordinate system relative to the inertial frame is − Ω. The ratio of the
centrifugal acceleration to the Newtonian acceleration increases with distance
from the Earth. For a GPS satellite, it is of order 10−21, which is negligible. The
Coriolis acceleration of a near-Earth spacecraft due to geodesic precession is:

    úú úr r= ×2ΩΩ (4�64)

where Ω is given by Eq. (4�63) and     úr  is the space-fixed geocentric velocity vector
of the near-Earth spacecraft. The ratio of this acceleration to the Newtonian
acceleration increases with distance from the Earth. For a GPS satellite, it is about
4 x 10−11. Eq. (4�64) is also given by the second term of Eq. (40) of HRTW (1990).
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The position and velocity vectors in Eq. (4�63) are interpolated from the
planetary ephemeris, and the additional velocity vector in Eq. (4�64) is
interpolated from the geocentric spacecraft ephemeris. The argument for each of
these interpolations is coordinate time tGC of the local geocentric space-time
frame of reference.

4.5.4 LENSE-THIRRING PRECESSION

The acceleration of a near-Earth spacecraft due to the Lense-Thirring
precession is calculated from the formulation of Section 4.4.3, specifically
Eqs. (4�43) and (4�45). In Eq. (4�43), the geocentric space-fixed position and
velocity vectors of the near-Earth spacecraft are interpolated from the geocentric
spacecraft ephemeris using coordinate time tGC in the local geocentric frame of
reference as the argument. In Eq. (4�45), TE is the rotation matrix from Earth-
fixed coordinates referred to the true pole, prime meridian, and equator of date
to the space-fixed coordinate system of the planetary ephemeris. It is calculated
from the formulation given in Section 5.3. The time argument for calculating TE

is coordinate time ET (coordinate time tBC of the Solar-System barycentric frame
or coordinate time tGC of the local geocentric frame). It will be seen in Section 5.3
that the internal time transformation from the argument ET to universal time
UT1 used in calculating TE  in the local geocentric frame of reference is different
from the time transformation used in calculating TE in the Solar-System
barycentric frame of reference. Furthermore, the time transformation used in
program PV in the barycentric frame is simpler than the one used in program
Regres in that frame. Because the acceleration due to the Lense-Thirring
precession is so small (see Section 4.4.3), the gravitational constant of the Earth in
Eq. (4�43) can be the value in the Solar-System barycentric frame or the
corresponding value in the local geocentric frame computed from Eq. (4�25).
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4.5.5 NEWTONIAN ACCELERATION OF NEAR-EARTH SPACECRAFT

DUE TO THE HARMONIC COEFFICIENTS OF THE EARTH AND

THE MOON

In the local geocentric space-time frame of reference, the acceleration of a
near-Earth spacecraft due to the oblateness of the Earth and the Moon is
calculated from the Newtonian model of Section 4.4.4. In Eq. (4�46), the space-
fixed position vector r of the spacecraft relative to the center of integration (the
Earth in the local geocentric frame of reference) is interpolated from the
geocentric spacecraft ephemeris as a function of coordinate time tGC of the local
geocentric frame of reference. The second term of Eq. (4�46) is interpolated from
the planetary ephemeris as a function of tGC. When the oblate body B is the Earth
E, the second term of Eq. (4�46) is zero. When the oblate body B is the Moon M,
the second term of Eq. (4�46) is the geocentric position vector of the Moon.

In calculating the acceleration of a near-Earth spacecraft due to the
oblateness of the Earth, the gravitational constant of the Earth must be the value
in the local geocentric frame of reference, calculated from the corresponding
value in the Solar-System barycentric frame using Eq. (4�25). In calculating the
acceleration due to the oblateness of the Moon, the gravitational constant of the
Moon can be the value in the Solar-System barycentric frame of reference,
obtained from the planetary ephemeris. The same value must be used in the next
section in calculating the acceleration of the Earth due to the oblateness of the
Earth and the Moon.

In Eqs. (4�48), (4�51), and (4�52), the Earth-fixed to space-fixed
transformation matrix TE and the Moon-fixed to space-fixed transformation
matrix TM are evaluated from the formulations given in Sections 5.3 and 6.3,
respectively, as a function of coordinate time tGC of the local geocentric frame of
reference. The correct argument for evaluating TE and TM is coordinate time tBC

of the Solar-System barycentric frame of reference. Approximating it with tGC

produces errors in the calculated oblateness accelerations which are of order
10−16 relative to the Newtonian acceleration of the spacecraft due to the Earth.
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4.5.6 ACCELERATION OF THE CENTER OF INTEGRATION DUE TO

OBLATENESS

In the local geocentric frame of reference, the center of integration is the
Earth. The acceleration of the Earth due to oblateness accounts for the oblateness
of the Earth and the Moon. This acceleration is calculated from the formulation of
Section 4.4.6, specifically Eq. (4�58). In this equation, the acceleration of the point-
mass Earth due to the oblateness of the Moon and the acceleration of the point-
mass Moon due to the oblateness of the Earth are calculated from the Newtonian
model of Section 4.4.4. Both of these calculations require the geocentric space-
fixed position vector of the Moon. To sufficient accuracy, it can be interpolated
from the planetary ephemeris using coordinate time tGC of the local geocentric
frame of reference as the argument. Also, to sufficient accuracy, tGC can be used
as the argument for calculating the body-fixed to space-fixed transformation
matrix TE for the Earth and TM for the Moon.

In Eq. (4�58), the acceleration of the Earth due to the oblateness of the
Earth and the Moon is proportional to the gravitational constant of the Moon. It
can be the value in the Solar-System barycentric frame of reference, which is the
same value used in the preceding section to calculate the acceleration of a near-
Earth spacecraft due to the oblateness of the Moon.

The negative of the acceleration of the Earth due to the oblateness of the
Earth and the Moon is a contribution to the acceleration of a near-Earth
spacecraft relative to the Earth in the local geocentric frame of reference.
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5.1 INTRODUCTION

This section gives the extensive formulation for the geocentric space-fixed
position, velocity, and acceleration vectors of a fixed tracking station on Earth.
These vectors are referred to the celestial reference frame defined by the
planetary ephemeris (the planetary ephemeris frame, PEF).

Section 5.2 gives the formulation for the Earth-fixed position vector rb of a
fixed tracking station on Earth. The rectangular components of this vector are
referred to the true pole, prime meridian, and equator of date. The formulation
includes terms for the coordinates of the tracking station (referred to the mean
pole, prime meridian, and equator of 1903.0), the Earth-fixed velocity
components of the tracking station due to plate motion, polar motion, solid
Earth tides, ocean loading, and the pole tide. Section 5.3 gives the formulation for
the Earth-fixed to space-fixed transformation matrix TE and its first and second
time derivatives with respect to coordinate time ET. The matrix TE includes the
frame-tie rotation matrix, which relates the radio frame RF (a particular celestial
reference frame maintained by the International Earth Rotation Service, IERS)
and the PEF. Without the frame-tie rotation matrix, the matrix TE would rotate
to the RF. With the frame-tie rotation matrix included, TE rotates to the PEF.
Program PV uses an alternate version of TE which rotates from the Earth-fixed
coordinate system referred to the mean pole, prime meridian, and equator of
1903.0. This version of TE is obtained from the version used in Regres by adding
rotations through the polar motion angles X and Y.

Section 5.4 uses rb and TE and its time derivatives to calculate the
geocentric space-fixed position, velocity, and acceleration vectors of a fixed
tracking station on Earth, referred to the PEF. When the ODP uses the Solar-
System barycentric space-time frame of reference, the geocentric space-fixed
position vector of the tracking station is transformed from the local geocentric
space-time frame of reference to the Solar-System barycentric space-time frame
of reference using Eq. (4�10).
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The partial derivatives of the geocentric space-fixed position vector of the
tracking station with respect to Earth-fixed station coordinates and other solve-
for parameters are given in Section 5.5.

The time argument for calculating the Earth-fixed position vector rb and
the Earth-fixed to space-fixed transformation matrix TE and its time derivatives is
coordinate time ET in the Solar-System barycentric or local geocentric space-time
frame of reference. For a spacecraft light-time solution, the time argument will
be the reception time t3(ET) in coordinate time ET at the receiving station on
Earth or the transmission time t1(ET) at the transmitting station on Earth. For a
quasar light-time solution, the time argument will be the reception time t1(ET) of
the quasar wavefront at receiving station 1 on Earth or the reception time t2(ET)
of the wavefront at receiving station 2 on Earth.

5.2 EARTH-FIXED POSITION VECTOR OF TRACKING
STATION

The Earth-fixed position vector rb of a fixed tracking station on Earth, with
rectangular components referred to the true pole, prime meridian, and equator
of date, is given by the following sum of terms:
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Subsections 5.2.1 to 5.2.8 correspond to the eight terms of Eq. (5�1). Each section
defines the corresponding term of Eq. (5�1) and gives the formulation for
computing it.

5.2.1 1903.0 POSITION VECTOR OF TRACKING STATION OR NEARBY

SURVEY BENCHMARK

The first term of Eq. (5�1) contains the geocentric Earth-fixed position
vector     rb0

 of the tracking station or a nearby survey benchmark, with
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rectangular components referred to the mean pole, prime meridian, and equator
of 1903.0. The station location is the intersection of the two axes of the antenna. If
the axes do not intersect, it is on the primary axis (Earth-fixed) where the
secondary axis (which moves relative to the Earth as the antenna rotates) would
intersect it if the axis offset b were reduced to zero. The Earth-fixed position
vector     rb0

 is multiplied by the solve-for scale factor α, whose nominal value is
unity. The vector     rb0

 is calculated from cylindrical or spherical station
coordinates obtained from the GIN file. For cylindrical coordinates,

      

rb0
=

















u

u

v

cos
sin

λ
λ km (5�2)

where u is the distance from the 1903.0 pole, v is the perpendicular distance from
the 1903.0 equatorial plane (positive north of the equator), and λ is the east
longitude (degrees). For spherical coordinates,

      

rb0
=

















r

r

r

cos cos
cos sin

sin

φ λ
φ λ

φ
km (5�3)

where r is the geocentric radius, φ is the geocentric latitude measured from the
1903.0 equatorial plane (degrees), and λ is the east longitude. Since the Earth-
fixed velocity vector     úrb  in term three of Eq. (5�1) acts from the user input epoch
t0 to the current time t, the station coordinates in Eqs. (5�2) and (5�3) are the
values at t0.

5.2.2 VECTOR OFFSET FROM SURVEY BENCHMARK TO TRACKING

STATION

If the first term of Eq. (5�1) contains the geocentric Earth-fixed position
vector of a survey benchmark, the second term is the Earth-fixed position vector
from the benchmark to the station location, with rectangular components
referred to the mean pole, prime meridian, and equator of 1903.0:
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      ∆r N E Zb N E U0
= + +d d d km (5�4)

where dN, dE, and dU are the components of this vector along the north N, east E,
and zenith Z unit vectors at the benchmark. These unit vectors are computed
from the geodetic latitude φg and the east longitude λ of the benchmark:

    

Z =
















cos cos
cos sin

sin

φ λ
φ λ

φ

g

g

g

(5�5)

    

N =
−
−

















sin cos
sin sin

cos

φ λ
φ λ

φ

g

g

g

(5�6)

    

E =
−















sin
cos

λ
λ

0
(5�7)

The geodetic latitude is computed from:

  
φ φ φ φg g= −( ) + (5�8)

where φ is the geocentric latitude of the benchmark and (φg − φ) is computed
from Eq. (386) of Moyer (1971) (or an equivalent equation), which is a function of
φ and the geocentric radius r of the tracking station. Evaluation of Eqs. (5�5) to
(5�8) requires the spherical station coordinates r, φ, and λ relative to the mean
pole, prime meridian, and equator of 1903.0. If the input station coordinates are
cylindrical, they can be converted to spherical coordinates using:

    r u v= +2 2 (5�9)

    
φ = 





−tan 1 v
u

(5�10)
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λ λ= (5�11)

5.2.3 DISPLACEMENT DUE TO EARTH-FIXED VELOCITY VECTOR

The third term of Eq. (5�1) is the displacement of the tracking station due
to the Earth-fixed velocity vector     úrb  of the tracking station (due to plate motion)
acting from the user input epoch t0 to the current time t. These epochs are
measured in coordinate time ET of the Solar-System barycentric or local
geocentric frame of reference. The Earth-fixed velocity vector is calculated from:

      
ú

.
r N E Zb = + +( )1

3 15576 x 1012 N E Uv v v km/s (5�12)

where vN, vE, and vU are the components of     úrb  along the north, east, and zenith
unit vectors in cm/year. These vectors are calculated from the 1903.0 spherical
coordinates of the tracking station (at the epoch t0) using Eqs. (5�5) to (5�8). The
same set of solve-for velocity components can be used for all tracking stations
within each DSN complex.

5.2.4 ORIGIN OFFSET

The fourth term of Eq. (5�1) is the Earth-fixed vector rO from the center of
mass of the Earth to the fixed point within the Earth, which is the origin for the
input station coordinates used to compute     rb0

 from Eq. (5�2) or (5�3). The vector
rO has rectangular components referred to the mean pole, prime meridian and
equator of 1903.0:

      

rO

O

O

O

=
















x

y

z

km (5�13)
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5.2.5 POLAR MOTION

The sum of the first four terms of Eq. (5�1) is referred to the mean pole,
prime meridian, and equator of 1903.0. The fifth term of Eq. (5�1) is the polar
motion correction ∆rPM. Addition of the fifth term to the sum of the first four
terms rotates this approximation to rb from the mean pole, prime meridian, and
equator of 1903.0 to the true pole, prime meridian, and equator of date.

In order to calculate the polar motion correction ∆rPM, the time argument
for calculating rb must be converted from coordinate time ET to Coordinated
Universal Time UTC, as described in Subsection 5.2.5.1. The argument UTC is
used to interpolate the TP (timing and polar motion) array or the EOP (Earth
Orientation Parameter) file for the X and Y angular coordinates of the true pole
of date relative to the mean pole of 1903.0. The equation for calculating ∆rPM

from the X and Y coordinates of the true pole of date is derived in Subsection
5.2.5.2.

5.2.5.1 Time Transformation and Interpolation for Coordinates of the Pole

The time argument for calculating rb must be converted from coordinate
time ET to International Atomic Time TAI and then to Coordinated Universal
Time UTC. In the Solar-System barycentric space-time frame of reference,
calculate ET − TAI from the approximate expression given by Eqs. (2�26) to
(2�28). In the latter equation, t is the ET value of the time argument expressed in
seconds past J2000.0. In the local geocentric space-time frame of reference,
ET − TAI is given by Eq. (2�30). Subtract ET − TAI from ET to give TAI. Using
TAI as the argument, interpolate the TP array or the EOP file for TAI − UTC and
subtract it from TAI to give UTC. Using UTC as the argument, re-interpolate the
TP array or the EOP file for TAI − UTC and subtract it from TAI to give a second
value of UTC. Using the second value of UTC as the argument, interpolate the
TP array or the EOP file for the X and Y angular coordinates of the true pole of
date relative to the mean pole of 1903.0. Convert these coordinates from seconds
of arc to radians. The X and Y coordinates are measured south along the 0° and
90° W meridians, respectively, of 1903.0.



POSITION  VECTOR  OF  TRACKING  STATION

5�11

5.2.5.2 Polar Motion Correction

The sum of the first four terms of Eq. (5�1) is an approximation to the
Earth-fixed position vector of a fixed tracking station on Earth, with rectangular
components referred to the mean pole, prime meridian, and equator of 1903.0.
Let this vector be denoted by:

      

rb

b

b

b 1903.0

1903.0
=

















x

y

z

km (5�14)

This vector can be rotated from the rectangular coordinate system referred to
the mean pole, prime meridian, and equator of 1903.0 to the rectangular
coordinate system referred to the true pole, prime meridian, and equator of date
using:

      r rb x y btrue 1903.0
= ( ) ( )R Y R X km (5�15)

where Ry(X) is a rotation of the Earth-fixed 1903.0 rectangular coordinate system
about its y axis through the angle X, and Rx(Y) is a rotation of the resulting
coordinate system about its x axis through the angle Y. The coordinate system
rotation matrices for the rotation of a rectangular coordinate system about its x,
y, and z axes through the angle θ (using the right-hand rule) and their
derivatives with respect to θ are given by:

    

R
dR

dx
xθ θ θ

θ θ

θ
θ

θ θ
θ θ

( ) =
−

















( )
= −

− −

















1 0 0
0
0

0 0 0
0
0

cos sin
sin cos

sin cos
cos sin

(5�16)

    

R
dR

dy
yθ

θ θ

θ θ

θ

θ

θ θ

θ θ
( ) =

−















( )
=

− −

−

















cos sin

sin cos

sin cos

cos sin

0
0 1 0

0

0
0 0 0

0
(5�17)
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R
dR

dz
zθ

θ θ
θ θ

θ
θ

θ θ
θ θ( ) = −

















( )
=

−
− −

















cos sin
sin cos

sin cos
cos sin

0
0

0 0 1

0
0

0 0 0
(5�18)

The polar motion correction ∆rPM in Eq. (5�1) is defined to be:

    ∆r r rPM b btrue 1903.0
= − km (5�19)

Substituting Eq. (5�15) gives:

      
∆r rPM x y b1903.0

= ( ) ( ) −[ ]R Y R X I km (5�20)

where I is the 3 x 3 identity matrix:

    

I =
















1 0 0
0 1 0
0 0 1

(5�21)

Eq. (5�20) is evaluated by substituting Eqs. (5�14), (5�16), (5�17), and (5�21). The
two coordinate system rotation matrices are evaluated using the first-order
approximations: cos X = cos Y = 1, sin X = X, and sin Y = Y. In the product of the
two matrices, the second-order term XY is ignored. The resulting expression for
the polar motion correction is:

      

∆rPM

b

b

b b

=
−

−

















z X

z Y

x X y Y

km (5�22)

where, from Eq. (5�14), xb, yb, and zb are rectangular components referred to the
mean pole, prime meridian, and equator of 1903.0 of the Earth-fixed position
vector of a fixed tracking station on Earth, calculated from the first four terms of
Eq. (5�1).
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The effect of the neglected second-order terms in Eq. (5�22) on the Earth-
fixed position vector of a tracking station is less than 0.1 mm. The components of
the polar motion correction (5�22) are less than 20 m.

5.2.6 SOLID EARTH TIDES

The sixth term of Eq. (5�1) is the displacement ∆rSET of a fixed tracking
station on Earth due to solid Earth tides. The Earth-fixed rectangular components
of this vector are referred to the true pole, prime meridian, and equator of date.
Subsection 5.2.6.1 gives the expression for the tidal potential W2 at the tracking
station, which is calculated from the Earth-fixed position vectors of the tracking
station, the Moon, and the Sun. Subsection 5.2.6.2 derives the equations for the
first-order displacement of the tracking station due to solid earth tides. The
components of this displacement are calculated from W2 and its derivatives with
respect to the tracking station coordinates. Subsection 5.2.6.3 expresses the tidal
potential as a spherical harmonic expansion. The equations for calculating the
angular argument for each term (a specific tide) of the tidal potential are given in
that section and in Subsection 5.2.6.4. The displacement of the tracking station
due to each term of the tidal potential is proportional to the Love number h2 in
the radial direction and the Love number l2 in the north and east directions.
These Love numbers are frequency dependent and are different for each term of
the tide-generating potential. However, the equation in Subsection 5.2.6.2 for the
first-order tidal displacement uses constant values of h2 and l2. Subsection 5.2.6.5
gives a second-order correction to the tidal displacement of a tracking station. It
is a correction to the radial displacement due to the departure of the value of h2

for a particular term of the astronomical tide-generating potential (the so-called
K1 diurnal tide) from the constant value of h2 used in calculating the first-order
tidal displacement. Subsection 5.2.6.6 develops expressions for the constant part
of the displacement of a tracking station due to solid Earth tides. This permanent
tidal displacement is included in the expression for the first-order displacement. If
the permanent tidal displacement was subtracted from the sum of the first-order
and second-order tidal displacements, then the estimated coordinates of the
tracking station would include the permanent tidal displacement. However, this
is not done by international agreement.
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5.2.6.1 Tidal Potential W2

The tidal potential can be represented to sufficient accuracy by the
spherical harmonic function W2, which is of the second degree. Second-degree
tidal displacements are on the order of 50 cm. Third-degree tidal displacements
are less than a centimeter and are ignored. The tidal potential W2, which is based
upon a spherical Earth and a point-mass perturbing Moon or Sun, is given by
Eq. (1.11) on p. 15 of Melchior (1966). Adding the terms due to the Moon and the
Sun gives:

    

W
r

R
z

j

jj
j2

2

3
2

3
2

2
3 1= −( )

=
∑ µ

cos km2/s2 (5�23)

where

j = disturbing body (2 = Moon, 3 = Sun).
µj = gravitational constant of body j, km3/s2.
Rj = geocentric radial coordinate of body j, km.
r = geocentric radial coordinate of tracking station (W2 is the

tidal potential at that point), km.
zj = angle measured at the center of the Earth from the

tracking station to body j.

In order to calculate cos zj, let

Rj = geocentric Earth-fixed position vector of body j, with
rectangular components referred to the true pole, prime
meridian, and equator of date.

r = geocentric Earth-fixed position vector of the tracking
station, with rectangular components referred to the true
pole, prime meridian, and equator of date.
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The unit vectors       
� �R rj  and  are given by:

      

�R
R

j
j

jR
= (5�24)

      
�r

r=
r

(5�25)

where Rj and r are the magnitudes of Rj and r, respectively. Then,

      cos � �z j j= ⋅r R (5�26)

Melchior (1966) calculated the rectangular components of the acceleration
at a tracking station on Earth due to the disturbing body (the Moon or the Sun)
minus the corresponding acceleration components at the center of the Earth. He
used these relative acceleration components to calculate the variation dg in the
radial gravity g (on a spherical Earth) and the deflection e of the vertical due to
disturbing body j. His expression for dg is his Eq. (1.10):

    
dg

r

R
z g

r
R

zj
j

j
j

j
j= − −( ) =















 −( )µ

µ
µ3

2
3

23 1 1 3cos cos
E

km/s2 (5�27)

where g is the acceleration of gravity at the tracking station given by:

    
g

r
=

µE
2 km/s2 (5�28)

where
µE = gravitational constant of the Earth, km3/s2.

Eq. (5�27) can be obtained from the term of Eq. (5�23) for disturbing body j

using:
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dg

W
r

= −
∂
∂

2 (5�29)

Melchior�s expression for the deflection e of the vertical is his Eq. (1.9):

    
e

r
R

z
j

j
j=

















3
2

2

3µ
µE

sin (5�30)

This equation can be obtained from the term of Eq. (5�23) for disturbing body j

using:

    
e

g r
W
zj

= − 1 2∂
∂

(5�31)

5.2.6.2 First-Order Displacement of the Tracking Station Due to Solid Earth

Tides

From Melchior (1966), p. 114, Eq. (2.19), the components of the
displacement of the tracking station due to solid Earth tides are given by the
following functions of the tidal potential W2 and its partial derivatives with
respect to the geocentric latitude φ and longitude λ of the tracking station:

    
s

h
g

Wr = 2
2 km (5�32)

    
s

l
g

W
φ

∂
∂φ

= 2 2 km (5�33)

    
s

l
g

W
λ φ

∂
∂λ

= 2 2

cos
km (5�34)

where the displacement sr is in the geocentric radial direction. The transverse
displacements sφ and sλ are normal to the geocentric radius, directed toward the
north and east, respectively. The acceleration of gravity g at the tracking station



POSITION  VECTOR  OF  TRACKING  STATION

5�17

is given by Eq. (5�28). The quantities h2 and l2 are second-degree Love numbers.
From International Earth Rotation Service (1992), p. 57, the nominal values of
these Love numbers are:

    

h

l
2

2

0 6090
0 0852

=
=

.

.
(5�35)

Wahr (1981), p. 699, Table 5 lists these numerical values as the appropriate values
for any semi-diurnal tide component.

Eq. (5�32) follows because the geoid (mean sea level) is an equipotential
surface, where the potential is the sum of the gravitational and centrifugal
potential (see Subsection 5.2.8). Addition of the tidal potential W2 requires the
radial displacement of the ocean given by Eq. (5�32) with h2 = unity in order to
keep the potential constant. Eqs. (5�33) and (5�34) with l2 = unity give the
transverse displacements of the ocean. If these equations are multiplied by g and
divided by r, the right-hand sides give the transverse tidal accelerations, which
are balanced by the left-hand sides, which are the components of gravity at the
displaced positions normal to the geocentric radial at the original position. These
accelerations are equal and opposite.

The displacement of the Earth-fixed position vector rb of the tracking
station due to solid Earth tides is given by:

      ∆r r N Eb = + +s s sr � φ λ km (5�36)

where, for a spherical Earth, the north and east unit vectors are given by:

    

N =
−
−

















sin cos
sin sin

cos

φ λ
φ λ

φ
(5�37)
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E =
−















sin
cos

λ
λ

0
(5�38)

The unit vector     �r  in the geocentric radial direction is given by:

    

�
cos cos
cos sin

sin
r =

















φ λ
φ λ

φ
(5�39)

and

    

∂
∂φ

�r
N= (5�40)

    

∂
∂λ

φ
�

cos
r

E= ( ) (5�41)

The geocentric latitude φ, longitude λ, all Earth-fixed vectors and unit vectors
appearing in this section, and the displacement ∆rb are referred to the Earth-fixed
rectangular coordinate system aligned with the true pole, prime meridian, and
equator of date.

Evaluating sr using Eqs. (5�32), (5�28), (5�23), and (5�26) gives:

      

s h
r

R
r

j

j
j

j

= ⋅( ) −





=
∑2

4

3

2

2

3
3
2

1
2

µ
µE

� �R r km (5�42)

Evaluating sφ using Eqs. (5�33), (5�28), (5�23), (5�26), and (5�40) gives:

      

s l
r

R

j

j
j j

j
φ

µ
µ

= ⋅( ) ⋅( )
=
∑3 2

4

3
2

3

E

� � �R r R N km (5�43)
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Evaluating sλ using Eqs. (5�34), (5�28), (5�23), (5�26), and (5�41) gives:

      

s l
r

R

j

j
j j

j
λ

µ
µ

= ⋅( ) ⋅( )
=
∑3 2

4

3
2

3

E

� � �R r R E km (5�44)

After substituting Eqs. (5�42) to (5�44) into (5�36), the sum of terms two and
three of (5�36) is given by a common factor multiplied by the following function,
which can be expressed as:

      
� � � � � �R N N R E E R R r rj j j j⋅( ) + ⋅( ) = − ⋅( ) (5�45)

Hence, substituting Eqs. (5�42) to (5�44) into (5�36) and then substituting
Eq. (5�45) into the resulting expression gives the following equation for the first-
order term of the displacement of the Earth-fixed tracking station due to solid
Earth tides:

      

∆r R r R R r rb
E

= ⋅( ) + −





⋅( ) −



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
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
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j j j
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3 2
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3 3
2 2

� � � � � �

km (5�46)

This is Eq. (6) on p. 57 of International Earth Rotation Service (1992).

Eq. (5�46) was derived assuming that the solid Earth responds
instantaneously to the tide-producing potential W2. In order to allow for a delay
in the elastic response of the solid Earth to W2, the radial, north, and east
components of the displacement of the tracking station will be computed from
Eqs. (5�42) to (5�44) using phase-shifted values of the unit vectors     �r , N, and E:

      
� � �r r r N Ep ,  = →L (5�47)

where L is a positive rotation of the Earth-fixed rectangular coordinate system
about its z axis through the angle ψ (see Eq. 5�18):
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L = −





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









cos sin
sin cos

ψ ψ
ψ ψ

0
0

0 0 1
(5�48)

The phase shift ψ will be an input constant (nominally 0°). If Eqs. (5�37) to (5�39)
and (5�48) are substituted into Eq. (5�47), it is seen that the phase-shifted unit
vectors     N E rp p p,  ,  and �  can be calculated from Eqs. (5�37) to (5�39) with the
longitude λ of the tracking station replaced with λ − ψ. Using these phase-shifted
unit vectors to calculate the radial, north, and east components of the tidal
displacement of the tracking station from Eqs. (5�42) to (5�44) causes the peak
radial tide to occur ψ/ωE seconds after the tracking station meridian passes
under the disturbing body (the Moon or the Sun), where ωE is the angular
rotation rate of the Earth.

The radial, north, and east displacements calculated from Eqs. (5�42) to
(5�44) using the phase-shifted unit vectors     N E rp p p,  ,  and �  are substituted into
Eq. (5�36). However, the unit vectors     N E r,  ,  and �  appearing explicitly in
Eq. (5�36) are not phase shifted. Before substituting Eq. (5�45) into this phase-
shifted version of Eq. (5�36), two modifications must be made. First, evaluate
Eq. (5�45) with the phase-shifted unit vectors     N E rp p p,  ,  and � :

      
� � � � � �R N N R E E R R r rj j j j⋅( ) + ⋅( ) = − ⋅( )p p p p p p (5�49)

Next, pre-multiply each term of this equation by LT, which gives:

      
� � � � � �R N N R E E R R r rj j j jL⋅( ) + ⋅( ) = − ⋅( )p p

T
p (5�50)

Substituting Eq. (5�50) into the phase-shifted version of Eq. (5�36) gives the
phase-shifted version of Eq. (5�46):

      

∆r R r R R r rb
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km (5�51)
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If the phase shift ψ is set to zero, this equation reduces to Eq. (5�46). Eq. (5�51) is
the final expression for the first-order term of the displacement of the Earth-fixed
tracking station due to solid Earth tides.

Eq. (5�51) is evaluated by executing the following steps:

1. The geocentric Earth-fixed position vector r of the tracking station,
with rectangular components referred to the true pole, prime
meridian, and equator of date is given by the sum of the first five
terms of Eq. (5�1). Calculate the magnitude r of the vector r, and
then calculate the unit vector     �r  to the tracking station from
Eq. (5�25). Using the input phase shift ψ, calculate L from Eq. (5�48)
and the phase-shifted unit vector     

�rp  to the tracking station from Eq.
(5�47). In evaluating Eq. (5�51), the unit vector     �r  is used once and the
phase-shifted unit vector     

�rp  is used twice.

2. The time argument for calculating the geocentric Earth-fixed and
space-fixed position vectors of the fixed tracking station on Earth is
coordinate time ET in the Solar-System barycentric or local
geocentric space-time frame of reference. Using this ET time
argument, interpolate the planetary ephemeris for the geocentric (E)
space-fixed position vectors of the Moon (M) and the Sun (S):

    r rM
E

S
E   ,    

3. Using the ET time argument, calculate the 3 x 3 Earth-fixed to space-
fixed transformation matrix TE (using the formulation given in
Section 5.3).

4. Transform the geocentric space-fixed position vectors of the Moon
and the Sun to the corresponding Earth-fixed position vectors, with
rectangular components referred to the true pole, prime meridian,
and equator of date:

      R r2 = TE
T

M
E km (5�52)
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      R r3 = TE
T

S
E km (5�53)

where the superscript T indicates the transpose of the matrix.
Calculate the magnitudes R2 and R3 of these vectors. Then calculate
the unit vector     

�R2 to the Moon and the unit vector     
�R3 to the Sun

from Eq. (5�24).

5. Using r,     �r ,     
�rp , and L from step 1; R2, R3,     

�R2, and     
�R3 from step 4; the

input values of the Love numbers h2 and l2; and the gravitational
constants µ2 of the Moon, µ3 of the Sun, and µE of the Earth obtained
from the planetary ephemeris, calculate the first-order term of the
Earth-fixed displacement ∆rSET (term six of Eq. 5�1) of the tracking
station due to solid Earth tides from Eq. (5�51).

5.2.6.3 Expansion of the Tidal Potential

Cartwright and Tayler (1971) and Wahr (1981) express the tidal potential
W (divided by the acceleration of gravity g given by Eq. 5�28) as a spherical
harmonic expansion with time-dependent (i.e., sinusoidal) coefficients1.
However, their equations are vague and ambiguous. These equations were
compared to the corresponding equations in Melchior (1966). This comparison
enabled the exact form of the spherical harmonic expansion of W/g to be
determined. It is given by:

    

W
g

H W ms n
m

s
sm

n

n

= ( ) +( )∑∑∑
==

φ θ λ
cos
sin

02

3

m (5�54)

where the cosine applies when (n + m) is even and the sine applies when (n + m)
is odd. Let     Wn

m φ λ,( )  be the normalized spherical harmonic of degree n and
order m in the geocentric latitude φ and longitude λ of the point on a spherical

                                                
1Since terms of different degree are included, the subscript 2 of W2 (indicating degree 2) is

dropped.
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Earth where W/g is evaluated. From Eq. (10) of Cartwright and Tayler (1971) or
Eq. (2.4) of Wahr (1981), it is given by:

    
W

n n m
n m

P en
m m

n
m imφ λ

π
φ λ,( ) = −( ) + ⋅

−( )
+( )









 ( )1

2 1
4

1
2!

!
sin (5�55)

where     Pn
m sinφ( )  is the associated Legendre function of sine latitude. From

Eq. (3.49) of Jackson (1975), without the factor (−1)m which is included separately
in Eq. (5�55),

    
P

d

d
Pn

m m
m

m nsin cos
sin

sinφ φ
φ

φ( ) =
( )

( ) (5�56)

which is Eq. (155) of Moyer (1971). In Eq. (5�56),     Pn sinφ( ) is the Legendre
polynomial of degree n in sin φ. From Eq. (3.16) of Jackson (1975),

    
P

n

d

d
n n

n

n

n
sin

! sin
sinφ

φ
φ( ) =

( )
−( )1

2
12 (5�57)

The Legendre polynomials can be computed from this equation or can be
computed recursively from Eqs. (175) to (177) of Moyer (1971). Substituting
Eq. (5�57) into Eq. (5�56) gives     Pn

m sinφ( ) as a direct function of sin φ:

    
Pn

m sinφ( ) = cosm φ
2n n!

dn+m

d sinφ( )n+m
sin2 φ − 1( )n

(5�58)

This is Eq. (11) of Cartwright and Tayler (1971) and Eq. (2.5) of Wahr (1981). In
Eq. (5�54),     W Wn

m
n
mφ φ λ( ) ( ) is ,  given by Eq. (5�55) without the factor   e imλ . That

is,

    W e Wn
m im

n
mφ φ λλ( ) = ( )− , (5�59)
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which is a function of the geocentric latitude φ. The function   Wn
m φ( ) given by

Eqs. (5�55) to (5�59) has been evaluated for n = 2 and 3 for m = 0 to n in Table 2
of Cartwright and Tayler (1971) and on pages 99 and 100 of Jackson (1975).
However, these functions are expressed in terms of sines and cosines of the co-
latitude (90° − φ).

Each term of Eq. (5�54) corresponds to a specific solid Earth tide. The
summation is over the degree n, the order m which varies from 0 to n, and all of
the tides s for a given degree n and order m. For each tide s, Hs is the amplitude
(in meters) and θs is the phase angle or astronomical argument, which is defined
by the sequence of six integers n1 through n6. Given these integers, the value of
θs at a given time t is computed from the equation on p. 53 of International Earth
Rotation Service (1992):

    
θs = ni βi

i=1

6

∑ (5�60)

where β1 through β6 are the Doodson variables. They are astronomical angles
which are computed from sums and differences of the five fundamental angular
arguments of the nutation series and mean sidereal time. The definitions of β1

through β6 and the polynomials for computing them as a function of time are
given in Subsection 5.2.6.4. For each tide, the six integers n1 through n6 are coded
into the Doodson argument number (see p. 65 of International Earth Rotation
Service (1992)):

    n1 n2 + 5( ) n3 + 5( ). n4 + 5( ) n5 + 5( ) n6 + 5( ) (5�61)

This is a sequence of six positive integers separated by a central dot. The
Doodson variables β2 through β6 are slowly varying angles. However, β1

contains mean sidereal time and has a frequency of about 1 cycle/day. Also, the
integer n1 in the Doodson argument number for each tide is equal to the order
m:

    n1 = m (5�62)
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Hence, from Eq. (5�60), the frequency of θs in Eq. (5�54) is about 1 cycle/day for
all diurnal tides (n1 = m = 1) and about 2 cycles/day for all semi-diurnal tides
(n1 = m = 2). For all long-period tides, n1 = m = 0. Since θs contains the term
n1β1 = mβ1 which contains the term mθM, where θM is mean sidereal time, the
argument θs +mλ in Eq. (5�54) contains the term m(θM + λ).

Cartwright and Tayler (1971) gives values of the amplitude Hs (in meters)
and the Doodson argument number for a large number of tides. This
information for tides of the second degree (n = 2) is given in Tables 4a, b, and c.
These tables apply for long-period tides (m = 0), diurnal tides (m = 1), and semi-
diurnal tides (m = 2), respectively. The same information for tides of the third
degree (n = 3) is given in Tables 5a, b, and c. Table 5d applies for ter-diurnal tides
(m = 3) of the third degree. For each tide, column 1 lists the six integers n1

through n6. Columns 2, 3, and 4 give the amplitude Hs for three different time
periods, which are identified in Table 3 of this reference. We will use the values
from the latest time period (May 23, 1951 to May 23, 1969), which are given in
column 4. Column 5 gives the six integers n1 through n6 coded into the Doodson
argument number. We do not use the last two columns of these tables. After
correcting a small error, the information for the second-degree tides in Tables 4a,
b, and c of Cartwright and Tayler (1971) was recalculated and presented in Tables
1a, b, and c of Cartwright and Edden (1973). The information given for the third-
degree tides in Tables 5a, b, c, and d of Cartwright and Tayler (1971) was
unaffected by the small error. From Cartwright and Tayler (1971), lunar tides
were computed for degree 2 and 3, and solar tides were computed for degree 2
only. From the above-mentioned tables, the amplitude Hs of individual second-
degree tides is up to about 0.63 meters (for the semi-diurnal lunar tide M2,
Doodson argument 255.555). The third-degree tides have amplitudes Hs up to
about 0.008 meters.

5.2.6.4 The Doodson Variables

In Eq. (5�54), θs is the astronomical argument for a particular tide s. The
argument θs is defined by the sequence of six integers n1 through n6 (which are
coded into the Doodson argument number) and is calculated from Eq. (5�60). In
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this equation, β1 through β6 are the Doodson variables. This section defines them
and gives equations for computing them.

From pages 53 and 54 of International Earth Rotation Service (1992), the
six Doodson variables β1 through β6 are functions of the five fundamental
arguments l,   ′l , F, D, and Ω (defined below) of the nutation series and mean
sidereal time θM:

β2 = s = F + Ω = Mean Longitude of the Moon
β3 = h = s − D = Mean Longitude of the Sun
β4 = p = s − l = Longitude of the Moon�s Mean Perigee
β5 =   ′N = − Ω = Negative of the Longitude of the

   Moon�s Mean Ascending Node  (5�63)
β6 = p1 = s − D −   ′l = Longitude of the Sun�s Mean Perigee
β1 = τ = θM + π − s = Mean Lunar Time (Greenwich Hour

   Angle of Mean Moon plus 12 hours)

From p. 32 of International Earth Rotation Service (1992), or p. 98 of Seidelman
(1982), the fundamental arguments of the nutation series are:
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l =  Mean Anomaly of the Moon

= 134°5 ′7 4 ′′6 .733 + 1325r + 198°5 ′2 0 ′′2 .633( ) T + 3 ′′1 .310T 2 + ′′0 .064 T 3

′l = Mean Anomaly of the Sun

= 357°3 ′1 3 ′′9 .804 + 99r + 359°0 ′3 0 ′′1 .224( ) T − ′′0 .577 T 2 − ′′0 .012T 3

F = Mean Argument of Latitude of the Moon
= L − Ω,  where L = Mean Longitude of the Moon and Ω is defined below

= 93°1 ′6 1 ′′8 .877 + 1342r + 82°0 ′1 0 ′′3 .137( ) T − 1 ′′3 .257 T 2 + ′′0 .011T 3

D = Mean Elongation of the Moon from the Sun
= L − Ls ,  where Ls = Mean Longitude of the Sun

= 297°5 ′1 0 ′′1 .307 + 1236r + 307°0 ′6 4 ′′1 .328( ) T − ′′6 .891T 2 + ′′0 .019T 3

Ω = Longitude of the Mean Ascending Node of the Lunar Orbit on the
Ecliptic,  Measured from the Mean Equinox of Date

= 125°0 ′2 4 ′′0 .280 − 5r + 134°0 ′8 1 ′′0 .539( ) T + ′′7 .455T 2 + ′′0 .008T 3

(5�64)

where   1r = 360°= 129600 ′′0  and

    

T =

×

Julian centuries of 36525 days of 86400 s of coordinate time ET
  (in the Solar - System barycentric or local geocentric frame of reference)

  past January 1,  2000,  12 ET (J2000.0;  JED 245,1545.0)

=  
ET

86400 36525

h

(5�65)

where

ET = seconds of coordinate time past J2000.0

Converting Eqs. (5�64) to arcseconds gives
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l = 485,86 ′′6 .733 + 1,717,915,92 ′′2 .633T + 3 ′′1 .310T 2 + ′′0 .064 T 3

′l = 1,287,09 ′′9 .804 + 129,596,58 ′′1 .224 T − ′′0 .577 T 2 − ′′0 .012T 3

F = 335,77 ′′8 .877 + 1,739,527,26 ′′3 .137 T − 1 ′′3 .257 T 2 + ′′0 .011T 3

D = 1,072,26 ′′1 .307 + 1,602,961,60 ′′1 .328T − ′′6 .891T 2 + ′′0 .019T 3

Ω = 450,16 ′′0 .280 − 6,962,89 ′′0 .539T + ′′7 .455T 2 + ′′0 .008T 3

(5�66)

Calculation of the Doodson variable β1 requires mean sidereal time θM.
The ODP code calculates true sidereal time θ, which is θM plus a nutation term,
which is less than 10−4 rad. From Eq. (5�42), the radial solid Earth tide varies
from about +32 cm to −16 cm. If the maximum positive displacement were
calculated from Eqs. (5�32) and (5�54) (instead of Eq. 5�51) using true sidereal
time θ instead of mean sidereal time θM to calculate β1, which is used to calculate
θs from Eq. (5�60), the error would be less than 0.06 mm. However, we only use
the expansion of the tidal potential and the Doodson variables to calculate the
second-order correction to the tidal displacement of the tracking station (Section
5.2.6.5) and the tracking station displacement due to ocean loading (Section 5.2.7).
These corrections are no more than a few centimeters and the error in
computing them from θ  instead of θM is less than 0.002 mm, which is negligible.
Hence, β1 in Eq. (5�63) is calculated from θ instead of θM.

The formulation for calculating sidereal time θ is given in Section 5.3.6.2.
This formulation includes the transformation of the time argument from
coordinate time ET to Universal Time UT1.

Calculation of the six Doodson variables β1 through β6 from Eqs. (5�63)
requires the calculation of l,   ′l , F, D, and Ω from Eqs. (5�66), where T is
computed from the ET value of the epoch using Eq. (5�65). These five angles
must be converted from arcseconds to radians by dividing by
206,264.806,247,096. The ET value of the epoch is also used to calculate true
sidereal time θ, which is used instead of mean sidereal time θM in calculating β1.
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5.2.6.5 Second-Order Correction to the Tidal Displacement of the Tracking

Station

Second-order tidal displacements account for the departure of the
frequency-dependent Love numbers h2 and l2 from the constant values
(Eq. 5�35) used to calculate the first-order tidal displacement from Eq. (5�51).

The tidal displacements in the radial, north, and east directions could be
computed from Eqs. (5�32) to (5�34), where W2/g is replaced by W/g given by
Eq. (5�54). In these equations, h2 and l2 are frequency dependent. That is, they
are different for each term of Eq. (5�54) that they multiply. The second-order
tidal displacements can be computed from Eqs. (5�32) to (5�34) and (5�54) by
replacing h2 and l2 with ∆h2 and ∆l2, which are the departures of h2 and l2 (for a
particular tide or term of Eq. 5�54) from the constant values (Eq. 5�35) used in
computing the first-order tidal displacement from Eq. (5�51).

The number of terms contained in the second-order tidal displacement
depends upon the error criterion used. International Earth Rotation Service
(1992), p. 57, used a cutoff of 5 mm (which I adopt) and obtained one term in the
radial direction and no terms in the north and east directions.

The frequency-dependent values of h2 and l2 are given in Table 5 on p. 699
of Wahr (1981). There are significant variations of h2 and l2 (denoted as h0 and l0
by Wahr) with the frequency of the individual diurnal (n = 2, m = 1) tides. The
values given by Eq. (5�35) apply for all semi-diurnal (n = 2, m = 2) tides. Hence,
there are no second-order corrections for the semi-diurnal tides. Constant values
of h2 and l2 (which differ from those in Eq. 5�35) apply for all long-period (n = 2,
m = 0) tides.

The second-order tidal displacements in the north and east directions are a
maximum of about 1 mm each, which can be ignored. The only tide that
produces a radial second-order displacement greater than 5 mm is the K1 diurnal
tide (Doodson number 165.555). It produces a correction of about 13 mm. A few
other diurnal tides produce second-order radial corrections which vary from a
fraction of a millimeter to 1.8 mm. Their sum is about 4 mm, which is just under
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the criterion and is ignored. A few long-period tides produce a total radial
correction of about 0.4 mm, which is also ignored.

The remainder of this section derives the second-order radial tidal
displacement due to the K1 diurnal tide. From Eq. (5�32), the second-order
correction to the radial tidal displacement is given by:

    
∆ ∆s h

W
gr =





2 km (5�67)

where W/g is the term of Eq. (5�54) for the K1 diurnal (n = 2, m = 1) tide:

    

W
g

H WK K= ( ) +( )1 12
1 φ θ λsin km (5�68)

From Eqs. (5�55) to (5�59) or from Table 2 on p. 52 of Cartwright and Tayler
(1971),

    
W 2

1 φ( ) = − 3
2

5
24 π

sin 2φ (5�69)

For the K1 diurnal tide (Doodson argument number 165.555), n1 = m = 1, n2 = 1,
and n3 = n4 = n5 = n6 = 0. Hence, from Eqs. (5�60) and (5�63),

    θ β β θ π θ πK s s
1 1 2= + = + − + = +M M (5�70)

and

    
sin sin sinθ λ θ π λ θ λK1

+( ) = + +( ) = − +( )M M (5�71)

From Table 5 on p. 699 of Wahr (1981), the value of h2 for the K1 tide is 0.520.
However, p. 57 of International Earth Rotation Service (1992) quotes a value of
0.5203 from Wahr�s theory. Using this value and the value of h2 from Eq. (5�35)
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which is used in computing the first-order tidal displacement from Eq. (5�51)
gives:

    ∆h2 0 5203 0 6090 0 0887= − = −. . . (5�72)

From p. 259 of Cartwright and Edden (1973), the value of the amplitude Hs for
the K1 tide is:

    HK1
0 36878= .  m (5�73)

From Eqs. (5�67) to (5�73), the second-order term of the radial displacement of
the Earth-fixed tracking station due to solid Earth tides is:

    

∆sr = −( )( ) −



 − +( )[ ]

= − ×( ) +( )−

0 0887 0 36878
3
2

5
24

2

1 264 10 25

. . sin sin

. sin sin

 m

 km

M

M

π
φ θ λ

φ θ λ
(5�74)

where φ and λ are the geocentric latitude and longitude of the tracking station,
referred to the true pole, prime meridian, and equator of date. However, since
this term is so small, φ and λ can be evaluated with the input 1903.0 station
coordinates, which are uncorrected for polar motion. Also, as discussed in the
previous section, mean sidereal time θM can be replaced with true sidereal time θ,
with a resulting error of less than 0.002 mm. For a tracking station with a latitude
of   ± 45° , the amplitude of ∆sr is 1.3 cm. The second form of Eq. (5�74) is given on
p. 58 of International Earth Rotation Service (1992).

In Eq. (5�51) for the first-order displacement of the tracking station due to
solid Earth tides, the radial, north, and east displacements were computed from
phase-shifted values of the unit vector     �r  to the tracking station and the
corresponding north N and east E vectors. This is equivalent to calculating these
components of the displacement with the longitude λ of the tracking station
reduced by the phase shift ψ (see Eqs. 5�47 and 5�48). Although this phase shift
was not considered in the expansion of the tidal potential, it can be added by
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replacing λ with (λ − ψ) in Eq. (5�54). It follows that this same substitution should
be made in Eqs. (5�68), (5�71), and (5�74).

The second-order term of the displacement of the tracking station due to
solid Earth tides is obtained by substituting ∆sr given by Eq. (5�74) (with λ
replaced by λ − ψ) and     ∆sφ = ∆sλ = 0 into Eq. (5�36):

      ∆ ∆r rb = sr � km (5�75)

where     �r  is obtained by substituting the first five terms of Eq. (5�1) into
Eq. (5�25).

5.2.6.6 Permanent Displacement of the Tracking Station Due to Solid Earth

Tides

This section develops the equations for the constant part of the
displacement of the tracking station due to solid Earth tides. This permanent tidal
displacement is included in the calculated first-order tidal displacement. If the
permanent tidal displacement was subtracted from the sum of the first-order and
second-order tidal displacements, then the estimated coordinates of the tracking
station would include the permanent tidal displacement. However, this
calculation is not performed in any of the major orbit determination programs
that calculate solid Earth tides. Hence, to be consistent, we will not subtract the
permanent tidal displacement from the sum of the first-order and second-order
tidal displacements.

The remainder of this section derives the equations for calculating the
permanent displacement of the tracking station due to solid Earth tides.
However, these equations will not be evaluated. This are given for information
only.

The permanent tidal displacement of the tracking station is calculated
from Eqs. (5�32) to (5�34), where W2/g is the zero-frequency term of Eq. (5�54).
From Cartwright and Edden (1973), the zero-frequency tide has the Doodson
argument number 055.555. This means that n1 = m = 0 and n2 through n6 are
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zero. Hence, from Eq. (5�60), the astronomical argument θs is zero. Since n = 2
and m = 0 for the zero-frequency tide,

    

cos
sin

cosθ λs m+( ) = ( ) =0 1 (5�76)

and the zero-frequency term of Eq. (5�54) is:

    

W
g

H Ws= ( )2
0 φ m (5�77)

From Cartwright and Edden (1973), the amplitude Hs for the zero-frequency tide
is:

    Hs = − 0 31455.  m (5�78)

From Eqs. (5�55) to (5�59), or from Cartwright and Tayler (1971), p. 52,

    
W2

0 25
4

3
2

1
2

φ
π

φ( ) = −



sin (5�79)

and

    

∂W 2
0 φ( )

∂φ
= 3

2
5

4π
sin 2φ (5�80)

From Wahr (1981), p. 699, Table 5, the values of the Love numbers h2 and
l2 that apply for any long-period tide (n = 2, m = 0) are:

    

h

l
2

2

0 606
0 0840

=
=

.

.
(5�81)

The actual permanent tide should be computed from these values of h2 and l2.
However, if the permanent tide is calculated for the purpose of subtracting it
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from the first-order tidal displacement calculated from Eq. (5�51) (in order to
eliminate the permanent tide that is included in the first-order tidal
displacement), then the permanent tide should be computed from h2 and l2 given
by Eq. (5�35), since these values were used in Eq. (5�51).

The radial component of the permanent tide at the tracking station is
obtained by substituting Eqs. (5�77) to (5�79) into Eq. (5�32):

    

s h

h
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
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φ
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(5�82)

Substituting the partial derivative of Eq. (5�77) with respect to φ, Eq. (5�78), and
Eq. (5�80) into Eq. (5�33) gives the north component of the permanent tide at the
tracking station:

    

s l

l

φ π
φ

φ

= −( ) 






= − ×( )−

2

2
3

0 31455
3
2
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2
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. sin

. sin

 m

 km

(5�83)

Using the values of h2 and l2 from Eq. (5�35), the coefficients in Eqs. (5�82) and
(5�83), which multiply the functions of φ are −0.12083 m and −0.02536 m,
respectively. Eqs. (5�82) and (5�83) with these numerical coefficients, are Eqs. (8a)
and (8b) on p. 58 of International Earth Rotation Service (1992). Since Eqs. (5�77)
and (5�79) are not a function of the longitude λ of the tracking station, the east
component of the permanent tide at the tracking station, computed from
Eq. (5�34), is zero.

From Eq. (5�36), with the east component sλ set to zero, the permanent
displacement of the tracking station due to solid Earth tides is given by:

      ∆r r Nb = +s sr � φ km (5�84)
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where sr and sφ are given by Eqs. (5�82) and (5�83). The unit vector     �r  to the
tracking station is obtained by substituting the first five terms of Eq. (5�1) into
Eq. (5�25). The north vector N is calculated from Eq. (5�37). The geocentric
latitude φ and longitude λ of the tracking station used to evaluate sr, sφ, and N

can be the input 1903.0 values, which are uncorrected for polar motion. The error
due to ignoring polar motion in these calculations is less than 0.001 mm.

5.2.7 OCEAN LOADING

The seventh term of Eq. (5�1) is the displacement ∆rOL of a fixed tracking
station on Earth due to ocean loading. This is a centimeter-level periodic
displacement due to the periodic ocean tides. It is calculated from the model of
Scherneck (1991). The displacements in the geocentric radial, north, and east
directions (on a spherical Earth) are given by:

    
s Ar s

r
s s s

r

s

= + + −( )−

=
∑10 3

1

11

cos θ χ φ km (5�85)

    
s As s s s

s
φ θ χ φ= − + −( )−

=
∑10 3

1

11
S Scos km (5�86)

    
s As s s s

s
λ θ χ φ= − + −( )−

=
∑10 3

1

11
W Wcos km (5�87)

where     A A As
r

s s,  ,  and S W  are the amplitudes (in meters) of the radial, south, and
west displacements for tide s. The astronomical argument θs for tide s is
calculated from the Doodson argument number, Eq. (5�60), and related
equations as described in Sections 5.2.6.3 and 5.2.6.4. The quantity χs is the
additional Schwiderski phase angle, which will be discussed below. The angles

    φ φ φs
r

s s,   S W,  (which are given in degrees) are the Greenwich phase lags for the
radial, south, and west displacements for tide s. The summations are over eleven
tide components: the M2, S2, N2, and K2 semi-diurnal tides; the K1, O1, P1, and Q1

diurnal tides; and the Mf, Mm, and Ssa long-period tides. The Doodson argument
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number and the corresponding values of the integers n1 through n6 for each of
these tides are shown in Table 5-1.

Table 5�1

Doodson Argument Numbers

Tide

Doodson
Argument
Number n1 n2 n3 n4 n5 n6

M2

S2

N2

K2

255.555
273.555
245.655
275.555

2
2
2
2

  0
  2
−1
  2

  0
−2
  0
  0

  0
  0
  1
  0

0
0
0
0

0
0
0
0

K1

O1

P1

Q1

165.555
145.555
163.555
135.655

1
1
1
1

  1
−1
  1
−2

  0
  0
−2
  0

  0
  0
  0
  1

0
0
0
0

0
0
0
0

Mf

Mm

Ssa

075.555
065.455
057.555

0
0
0

  2
  1
  0

  0
  0
  2

  0
−1
  0

0
0
0

0
0
0

From International Earth Rotation Service (1992), p. 63, Table 8.1, the additional
Schwiderski phase angle χs is a function of the tide period band (i.e., semi-
diurnal, diurnal, or long-period) and the sign of the amplitude Hs of the tide (see
Eq. 5�54):

    

χ
π
π

s

s

s

s

s

H M S N K

H M M S

H K

H O P Q

=

−



















0
0

2
2

2 2 2 2

1

1 1 1

   

Semi - Diurnal Tides with  >  0 (  ,  ,  )
Long - Period Tides with  <  0 ( ,  ,  
Diurnal Tides with  >  0 ( )
Diurnal Tides with  <  0 ( ,  ,  )

f m sa

,
)

(5�88)
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Calculation of the displacement of a tracking station due to ocean loading
requires the three amplitudes     A A As

r
s s,  ,  and S W  and the three phases

    φ φ φs
r

s s,   S W,  for each of the eleven tide components (a total of 66 numbers)
which apply for that tracking station location. Pages 70�109 of International
Earth Rotation Service (1992), contain tables of these 66 ocean-loading
coefficients which apply for a large number of locations on Earth. We use the
table labelled MOJAVE12 for each tracking station at the Goldstone complex, the
table labelled TIDBIN64 for each tracking station at the Canberra, Australia
complex, and the table labelled MADRID64 for each tracking station at the
Madrid, Spain complex.

The Earth-fixed displacement vector ∆rOL of a fixed tracking station on
Earth due to ocean loading is calculated by substituting the geocentric radial,
north, and east displacements calculated from Eqs. (5�85) to (5�87) into
Eq. (5�36). The unit vector     �r  to the tracking station is calculated by substituting
the first five terms of Eq. (5�1) into Eq. (5�25). The north N and east E vectors can
be calculated from Eqs. (5�37) and (5�38) using input 1903.0 station coordinates,
which are uncorrected for polar motion.

5.2.8 POLE TIDE

The eighth term of Eq. (5�1) is the displacement ∆rPT of a fixed tracking
station on Earth due to the so-called pole tide. This is a solid Earth tide caused by
polar motion. The equations for calculating the pole tide are derived in Section
5.2.8.1. It will be seen that the components of the pole tide are proportional to

    X X Y Y− − and , where X and Y are the Earth-fixed coordinates of the true pole
of date relative to the mean pole of 1903.0. The quantities     X Y and  are average
values of X and Y over some modern time span. Section 5.2.8.2 derives equations
for constant values of the Earth�s normalized harmonic coefficients     C S21 21 and 
as functions of     X Y and . These equations are inverted to give the required
values of     X Y and  as functions of     C S21 21 and . These are not the estimated
values of the Earth�s harmonic coefficients. They are constant values obtained
from the GIN file, which are only used in the pole tide model in program Regres.
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The deformation of the Earth due to the pole tide produces periodic
changes in the Earth�s normalized harmonic coefficients     C S21 21 and . The
equations for calculating these periodic terms are derived in Section 5.2.8.3. The
periodic variations in     C S21 21 and  are added to the estimated values of

    C S21 21 and  in program PV. Calculation of the periodic variations requires values
of     X Y and , which are calculated from the equations of Section 5.2.8.2 as
functions of the estimated harmonic coefficients     C S21 21 and  instead of the
constant values used in program Regres.

5.2.8.1 Derivation of Equations for the Pole Tide

This section derives the equations for calculating the displacement of the
tracking station due to the deformation of the Earth caused by polar motion. The
displacement of a tracking station due to this effect is less than 2 cm. The
derivation given here was taken from Wahr (1985).

From p. 4, Eq. (5) of Melbourne et al. (1968), the geoid (mean sea level) is
an equipotential surface, where the potential is the sum of the gravitational
potential and the centrifugal potential. Polar motion changes the centrifugal
potential and thus the geoid. The Earth-fixed rectangular coordinate system used
to derive the pole tide is aligned with the mean pole, prime meridian, and
equator of 1903.0. From Eq. (1) of Wahr (1985), the instantaneous angular
rotation vector of the Earth, with rectangular components in the Earth-fixed
1903.0 coordinate system, is given by:

    

Ω = −
















ωE

X

Y

1
rad/s (5�89)

where terms quadratic in X and Y and variations in the Earth�s rotation rate are
ignored. The mean inertial rotation rate of the Earth (ωE) is given in Section
4.3.1.2. The quantities X and Y are the angular coordinates (in radians) of the
Earth�s true pole of date (instantaneous axis of rotation) relative to the mean pole
of 1903.0. The angle X is measured south along the   0° meridian of 1903.0, and Y
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is measured south along the   90° W meridian of 1903.0. These angles are
interpolated from the EOP file or the TP array as described in Section 5.2.5.1.

From Eq. (2) of Wahr (1985), the centrifugal potential Uc at the location of
the tracking station is given by:

      
U rc = − ⋅( )[ ]1

2
2 2 2Ω Ωr km2/s2 (5�90)

where r is the geocentric position vector of the tracking station with rectangular
components along the Earth-fixed 1903.0 coordinate system:

      

r =
















=
















x

y

z

r

r

r

cos cos
cos sin

sin

φ λ
φ λ

φ
km (5�91)

where r, φ, and λ are the geocentric radius, latitude, and longitude of the tracking
station in the Earth-fixed 1903.0 coordinate system. Substituting Eq. (5�89) and
the first form of Eq. (5�91) into Eq. (5�90) gives a number of terms of Uc. The
first-order term is the nominal centrifugal potential, which produces the
ellipticity of the Earth. All terms quadratic in X and Y are ignored. The sum V of
the terms linear in X and Y is the perturbation to the centrifugal potential due to
polar motion:

    V z Xx Yy= − −( )ωE
2 km2/s2 (5�92)

Substituting x, y, and z from Eq. (5�91) as functions of r, φ, and λ gives:

    
V r X Y= − −( )1

2
22 2ω φ λ λE sin cos sin km2/s2 (5�93)

which is equivalent to Eq. (3) of Wahr (1985). The X and Y coordinates of the true
pole of date can be expressed as sums of the mean coordinates     X Y and  (which
are constant in program Regres) and the periodic variations of the coordinates

    X X Y Y− − and . The change V in the centrifugal potential due to the
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displacement of the mean pole     X Y,( )  from the 1903.0 pole produces constant
changes in the coordinates of the tracking stations, which can be absorbed into
the input 1903.0 coordinates. The displacement of the tracking station due to the
displacement of the true pole of date (X,Y) from the mean pole     X Y,( )  is
calculated from the potential:

    
V r X X Y Y= − −( ) − −( )[ ]1

2
22 2ω φ λ λE sin cos sin km2/s2 (5�94)

The displacements of the tracking station in the radial, north, and east
directions due to the change V in the centrifugal potential due to the periodic
terms of polar motion are obtained by substituting V given by Eq. (5�94) for W2

in Eqs. (5�32) to (5�34):

    
s

h r
g

X X Y Yr = − −( ) − −( )[ ]2
2 2

2
2

ω
φ λ λE sin cos sin km (5�95)

    
s l

r
g

X X Y Yφ
ω

φ λ λ= − −( ) − −( )[ ]2

2 2
2E cos cos sin km (5�96)

    
s l

r
g

X X Y Yλ
ω

φ λ λ= + −( ) + −( )[ ]2

2 2
E sin sin cos km (5�97)

where g is the acceleration of gravity at the tracking station. An approximate
value which can be used at all tracking stations will be given below. The Love
numbers h2 and l2 should be the long-period values given in Eq. (5�81).
However, the only available values are the input semi-diurnal values given by
Eq. (5�35). Use of these values in Eqs. (5�95) to (5�97) produces errors of 0.1 mm
or less. The displacement ∆rPT of the tracking station due to the pole tide is
obtained by substituting sr, sφ, and sλ calculated from Eqs. (5�95) to (5�97) into
Eq. (5�36). In this equation,     �r  is obtained by substituting the first five terms of
Eq. (5�1) into Eq. (5�25). The north N and east E vectors are calculated from
Eqs. (5�37) and (5�38). The spherical coordinates r, φ, and λ of the tracking station
used in Eqs. (5�95) to (5�97), Eq. (5�37), and Eq. (5�38) can be the input 1903.0
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coordinates, uncorrected for polar motion. The pole tide displacement should be
referred to the true pole, prime meridian, and equator of date. However, most
of the calculated quantities are referred to the mean pole, prime meridian, and
equator of 1903.0. The resulting errors are negligible because the displacement is
less than 2 cm.

Page 700 of Explanatory Supplement (1992) gives an expression for the
acceleration of gravity g as a function of the latitude φ. This expression is an even
function of φ. The three DSN complexes have absolute latitudes of 35°, 35°, and
40°. There are a number of other stations which have smaller absolute latitudes.
The acceleration of gravity g is approximately 9.78 m/s2 at φ = 0°, 9.80 m/s2 at
φ = 38°, 9.82 m/s2 at φ = 61°, and 9.832 m/s2 at φ = 90°. For the pole tide model,
we will set g equal to the constant value of 9.80 m/s2:

    g = 9.80 × 10−3  km / s2 (5�98)

For a tracking station at any latitude, the maximum error in g given by Eq. (5�98)
is 0.33%. The corresponding error in a 2 cm pole tide would be less than 0.1 mm.

5.2.8.2 Calculation of the Mean Position     X Y,( )  of the True Pole     X ,Y( )

This section develops equations that can be used to calculate the mean
values     X Y and  of the X and Y coordinates of the true pole of date. They are
used in Eqs. (5�95) to (5�97) to calculate the radial, north, and east displacements
of the tracking station due to the pole tide. They are also required in the
equations of the following section for the periodic variations in the Earth�s
normalized harmonic coefficients     C S21 21 and . These periodic terms are due to
the deformation of the Earth caused by the pole tide.

In the Earth-fixed coordinate system aligned with the mean pole, prime
meridian, and equator of 1903.0, the current mean pole is not aligned with the z
axis but is located   X  radians south along the Greenwich meridian and   Y  radians
south along the 90° W meridian. From p. 42 of International Earth Rotation
Service (1992), it is assumed that the Earth�s mean figure axis has the same
orientation as the mean rotation pole, when averaged over the same long time
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period. Hence, the Earth-fixed coordinates of the mean figure axis are     X Y,( ) . At
a fixed point in the 1903.0 Earth-fixed coordinate system with geocentric radius r,
latitude φ, and east longitude λ, the displacement     X Y,( )  of the current mean
pole and figure axis from the 1903.0 mean pole changes the latitude by (see
Moyer (1971), Eq. 220):

    ∆φ λ λ= −X Ycos sin rad (5�99)

In calculating the change in the Earth�s gravitational potential due to the change
∆φ in the latitude, the gravitational potential U can be approximated with the
potential due to the second zonal harmonic J2. From Moyer (1971), Eqs. (158) and
(175) to (177), it is given by:

    
U J

r
J

a
r2 2

2
23

2
1
2

( ) = − 





−





µ
φE e sin km2/s2 (5�100)

The change in this potential due to moving the mean figure axis from the z axis
to the point     X Y,( )  is obtained by differentiating Eq. (5�100) with respect to φ
and then multiplying the result by ∆φ given by Eq. (5�99):

    
∆U

r
J

a
r

X Y= − 









 −( )µ

φ λ λE e
2

2 3
2

2sin cos sin km2/s2 (5�101)

This potential has the same form as the potential due to the harmonic coefficients
C21 and S21 (see Moyer (1971), Eqs. 159 and 155):

    
U

r
a
r

C S= 









 +( )µ

φ λ λE e
2

21 21
3
2

2sin cos sin km2/s2 (5�102)

Equating (5�101) and (5�102) gives the following approximate additions to the
Earth�s harmonic coefficients due to the offset     X Y,( )  of the current mean pole
and figure axis from the 1903.0 mean pole:
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C J X

S J Y
21 2

21 2

= −

= +
(5�103)

From p. 54 of International Earth Rotation Service (1992), the unnormalized
harmonic coefficients in (5�103) are related to the corresponding normalized
coefficients by:

    

C N C

S N S

J C N C N J

21 21 21

21 21 21

2 20 20 20 20 2

=

=

= − = − =

(5�104)

where

    
N

n m n

n mnm
m=

−( ) +( ) −( )
+( )











!

!

2 1 2 0

1
2δ

(5�105)

Evaluating N21 and N20 gives:

    

N

N

21

20

5
3

5

=

=
(5�106)

Substituting (5�104) and (5�106) into (5�103) gives:

    

C J X

S J Y
21 2

21 2

3

3

= −

= +
(5�107)

Inverting these equations gives the required expressions for calculating the mean
values     X Y,( )  of the X and Y coordinates of the true pole of date:
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X
C

J

Y
S

J

= −

= +

21

2

21

2

3

3

(5�108)

From p. 43 of International Earth Rotation Service (1992), the recommended
values of     C S21 21 and  are:

    

C

S

21
9

21
9

0 17 10

1 19 10

= − ×

= + ×

−

−

.

.
(5�109)

These values are GIN file inputs, which are used in program Regres only to
calculate     X Y and  from Eqs. (5�108). Given the value of J2 from
Section 4.3.1.2, the required value of     J2 can be calculated from Eqs. (5�104) and
(5�106). The result is     J2

44 8417 10= × −. .

5.2.8.3 Periodic Variations in       C S21 21  and

The change V in the centrifugal potential at the location of a tracking
station on Earth due to the periodic part of the polar motion is given by
Eq. (5�94). The displacement of the Earth at this point due to V is given by
Eqs. (5�95) to (5�97). The induced gravitational potential at the tracking station
due to this displacement is the potential V multiplied by the second-degree Love
number k2. The induced potential k2V has very nearly the same form on the
Earth�s surface as the gravitational potential U due to the Earth�s harmonic
coefficients C21 and S21 (Eq. 5�102). Equating k2V to U at the Earth�s surface and
converting from unnormalized to normalized harmonic coefficients using Eqs.
(5�104) and (5�106) gives the following equations for the periodic variations in

    C S21 21 and :

    

δ

δ

C K X X

S K Y Y

21

21

= − −( )
= + −( )

(5�110)

where
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K

r k

a

a k
= ≈

ω
µ

ω
µ

E

E e

E e

E

2 5
2

2

2 3
2

15 15
(5�111)

For an accuracy of 9 x 10−12 in the Earth�s normalized harmonic coefficients, the
variation in K given by the first form of Eq. (5�111) due to the variation of the
geocentric radius r with latitude can be ignored and K can be computed from the
second form of (5�111). Substituting numerical values obtained from Section
4.3.1.2 gives:

    
K k= ×( )−8 9373 10 4

2. (5�112)

which should be evaluated with the input value of the second-degree Love
number k2. Using the nominal value of 0.30 for k2, K = 2.68 x 10−4.

Eqs. (5�110) and (5�112) should be used in program PV to calculate
periodic corrections to the input or estimated values of the Earth�s normalized
harmonic coefficients     C S21 21 and . The required values for     X Y and  can be
computed from the input or estimated values of     C S J21 21 2,  ,  and  using
Eqs. (5�108). In program PV, these harmonic coefficients can be linear functions
of time.

5.3 EARTH-FIXED TO SPACE-FIXED TRANSFORMATION
MATRIX TE AND ITS TIME DERIVATIVES

This section gives the formulation for the Earth-fixed to space-fixed
transformation matrix TE and its first and second time derivatives with respect to
coordinate time ET. Subsection 5.3.1 gives the high-level equations for TE, its
time derivatives, and partial derivatives with respect to solve-for parameters.
Calculation of the rotation matrix TE requires the nutation angles and their time
derivatives, Universal Time UT1, and (in program PV) the X and Y coordinates
of the pole. The procedures for obtaining these quantities are described in
Subsection 5.3.2. If the input values of UT1 are regularized (i.e., UT1R), then
periodic variations (∆UT1) in UT1 must be added to UT1R to convert it to UT1.
The formulation for calculating ∆UT1 is given in Subsection 5.3.3. Subsections
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5.3.4 through 5.3.6 give the formulations for calculating the various sub-matrices
of TE, their time derivatives, and partial derivatives with respect to solve-for
parameters. The final expressions for the partial derivatives of TE and the
geocentric space-fixed position vector of the tracking station with respect to
solve-for parameters will be given in Section 5.5.

5.3.1 HIGH-LEVEL EQUATIONS FOR TE, ITS TIME DERIVATIVES, AND

PARTIAL DERIVATIVES

The Earth-fixed to space-fixed transformation matrix TE is used to
transform the geocentric Earth-fixed position vector rb of a tracking station to
the corresponding space-fixed position vector     rTS

E  of the tracking station (TS)
relative to the Earth (E):

      r rTS
E

E b= T km (5�113)

The geocentric Earth-fixed position vector rb of the tracking station has
rectangular components referred to the true pole, prime meridian, and equator
of date. The geocentric space-fixed position vector     rTS

E  of the tracking station has
rectangular components that are represented in the celestial reference frame of
the particular planetary ephemeris used by the ODP (see Section 3.1.1). Each of
the various celestial reference frames is a rectangular coordinate system
nominally aligned with the mean Earth equator and equinox of J2000 (see Section
2.1). The celestial reference frame of the planetary ephemeris can have a slightly
different orientation for each planetary ephemeris. The celestial reference frame
maintained by the International Earth Rotation Service (IERS) is called the radio
frame. The right ascensions and declinations of quasars are referred to the radio
frame. The transformation matrix TE rotates from the Earth-fixed coordinate
system to the space-fixed radio frame and then to the space-fixed planetary
ephemeris frame (which for some ephemerides is the radio frame).

From Eq. (5�113), the transformation from space-fixed to Earth-fixed
coordinates of a tracking station is given by:
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      r rb E
T

TS
E= T km (5�114)

where the superscript T indicates the transpose of the matrix.

The Earth-fixed to space-fixed transformation matrix TE used in program
Regres of the ODP is the transpose of the product of six coordinate system
rotation matrices:

    
T BN A R R RE x y z

T
= ( ) (5�115)

The transpose of this matrix is the space-fixed to Earth-fixed transformation
matrix     TE

T :

    
T BN A R R RE

T
x y z= ( ) (5�116)

The definitions of the rotation matrices in Eqs. (5�115) and (5�116) are
easier to comprehend if we consider the rotation (5�116) from space-fixed to
Earth-fixed coordinates. Starting from the space-fixed coordinate system of the
planetary ephemeris, the rotation matrix Rz is a rotation of this coordinate
system about its z axis through the small angle rz:

    

R

r r

r rz

z z

z z

0
0

0 0 1
= −

















cos sin
sin cos (5�117)

Then, the resulting coordinate system is rotated about its y axis through the
small angle ry:

    

R

r r

r r
y

y y

y y

=
−















cos sin

sin cos

0
0 1 0

0
(5�118)
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The resulting coordinate system is rotated about its x axis through the small
angle rx:

    

R r r

r r
x x x

x x

=
−

















1 0 0
0
0

cos sin
sin cos

(5�119)

The rotation RxRyRz rotates space-fixed coordinates from the planetary
ephemeris frame to the radio frame. The constant rotation angles rz, ry, and rx

can be different for each planetary ephemeris. In order to estimate values of
these angles or to consider the effects of their uncertainties on the estimates of
other parameters, we will need partial derivatives of observed quantities with
respect to these angles. The derivatives of Rz, Ry, and Rx with respect to rz, ry,
and rx, respectively, are given by:

    

dR
dr

r r

r rz

z

z z

z z=
−
− −

















sin cos
cos sin

0
0

0 0 0
(5�120)

    

dR
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r r

r r

y
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y y

y y

=
− −

−
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sin cos

cos sin

0
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(5�121)

    

dR
dr

r r

r r

x

x
x x

x x

= −
− −


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
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




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0 0 0
0
0

sin cos
cos sin

(5�122)

In Eq. (5�116), the precession matrix A rotates from coordinates referred to the
mean Earth equator and equinox of J2000 (specifically, the radio frame) to
coordinates referred to the mean Earth equator and equinox of date. The
nutation matrix N rotates from coordinates referred to the mean Earth equator
and equinox of date to coordinates referred to the true Earth equator and
equinox of date. The matrix B rotates from space-fixed coordinates referred to
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the true Earth equator and equinox of date to Earth-fixed coordinates referred to
the true pole, prime meridian, and equator of date.

The Earth-fixed to space-fixed transformation matrix     TEPV
 used in

program PV rotates from Earth-fixed rectangular coordinates referred to the
mean pole, prime meridian, and equator of 1903.0 to space-fixed rectangular
coordinates of the planetary ephemeris frame. It is obtained from the rotation
matrix TE used in program Regres by adding an additional rotation matrix:

    
T PBN A R R RE x y z

T

PV
= ( ) (5�123)

    
T PBN A R R RE

T
x y zPV

= ( ) (5�124)

The polar motion rotation matrix P rotates from Earth-fixed coordinates referred
to the true pole, prime meridian, and equator of date to Earth-fixed coordinates
referred to the mean pole, prime meridian, and equator of 1903.0. From
Eq. (5�15), the polar motion rotation matrix P is defined to be:

    P R Y R XT
x y= ( ) ( ) (5�125)

where X and Y are the angular coordinates of the true pole of date relative to the
mean pole of 1903.0, and the two rotation matrices are defined by Eqs. (5�16)
and (5�17). Eq. (5�125) is evaluated using the first-order approximations:
cos X = cos Y = 1, sin X = X, and sin Y = Y. In the product of the two rotation
matrices, the second-order term XY is ignored. The resulting expression for the
polar motion rotation matrix P is given by:

    

P
X
Y

X Y
= −

−















1 0
0 1

1

(5�126)

The derivative of P with respect to coordinate time ET is given by:
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ú
ú
ú

ú ú
P

X

Y

X Y

= −
−

















0 0
0 0

0
(5�127)

where the dots denote time derivatives.

From Eq. (5�115), the derivative of TE with respect to coordinate time ET
is given by:

    
ú ú ú úT BN A BN A BN A R R RE x y z

T
= + +( )[ ] rad/s (5�128)

The second time derivative of TE can be evaluated from the approximation:

    
úú úúT BN A R R RE x y z

T
= ( ) rad/s2 (5�129)

The formulation for calculating the rotation matrix B and its time derivatives will
be given in Subsection 5.3.6. That section will give a simple algorithm for
evaluating     

úúTE .

The modified nutation-precession matrix   N A( )′ , which is a sub-matrix of
Eq. (5�116), is used throughout program Regres:

    N A N A R R R( )′ = x y z (5�130)

Its time derivative is given by:

    
N A N A N A R R R( )′





⋅
= +( )ú ú

x y z rad/s (5�131)

The partial derivatives of TE with respect to the so-called frame-tie
rotation angles rz, ry, and rx are given by:
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∂
∂

T
r

BN A R R
dR
dr

E

z
x y

z

z

T

=






(5�132)

    

∂
∂

T
r

BN A R
dR

dr
RE

y
x

y

y
z

T

=








 (5�133)

    

∂
∂

T
r

BN A
dR
dr

R RE

x

x

x
y z

T

=






(5�134)

which use Eqs. (5�120) to (5�122).

From Eqs. (5�115) and (5�130), the partial derivative of TE with respect to
Universal Time UT1 is given by:

    

∂
∂

∂
∂

T B
N AE

T

UT1 UT1
= ( )′







 rad/s (5�135)

The partial derivative of the rotation matrix B with respect to UT1 will be given
in Subsection 5.3.6. Eq. (5�135) will be used in Section 5.5 to calculate the partial
derivative of the space-fixed position vector of the tracking station with respect
to UT1.

5.3.2 OBTAINING NUTATION ANGLES, UNIVERSAL TIME UT1, AND

COORDINATES OF THE POLE

The time argument for calculating the Earth-fixed to space-fixed
transformation matrix TE is coordinate time ET of the Solar-System barycentric
or local geocentric space-time frame of reference. In addition to the time
argument ET, calculation of the rotation matrix TE also requires the nutation
angles and their time derivatives, Universal Time UT1, and (in program PV) the
X and Y coordinates of the pole. This section explains how these additional
quantities are obtained.
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1. Calculation of several of the auxiliary quantities requires that the
time argument ET be transformed to Coordinated Universal Time
UTC, which is the argument for the TP array or the EOP file (see
section 2.4). This time transformation can be performed using the
complete expression for the time difference ET − TAI in the Solar-
System barycentric frame or an approximate expression. The
expression used will be specified in each application below. In the
Solar-System barycentric frame of reference, the complete
expression for ET − TAI at a tracking station on Earth is given by Eq.
(2�23). However, the geocentric space-fixed position vector of the
tracking station     rA

E  can be evaluated with the approximate algorithm
given in Section 5.3.6.3. The approximate expression for ET − TAI at a
tracking station on Earth in the Solar-System barycentric frame of
reference is given by Eqs. (2�26) to (2�28). In the local geocentric
space-time frame of reference, ET − TAI at a tracking station on Earth
is given by Eq. (2�30). Subtract ET − TAI from the argument ET to
give TAI. Use it as the argument to interpolate the TP array or the
EOP file for TAI − UTC and subtract it from TAI to give the first
value of UTC. Use it as the argument to re-interpolate the TP array
or the EOP file for TAI − UTC and subtract it from TAI to give the
final value of UTC. At the time of a leap second, the two values of
UTC may differ by exactly one second.

2. Using ET as the argument, obtain the nutation in longitude (∆ψ) and
the nutation in obliquity (∆ε) in radians and their time derivatives in
radians per second:

  ∆ ∆ ∆ ∆ψ ε ψ ε,  ,  ,  and ( )⋅ ( )⋅ (5�136)

They can be interpolated from the planetary ephemeris, or they can
be evaluated directly from the theory of nutation in program GIN.
We currently use the 1980 IAU Theory of Nutation, which is given in
Seidelmann (1982).
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3. Transform the argument ET to UTC using the approximate
expression for ET − TAI in the Solar-System barycentric frame. Using
UTC as the argument, interpolate the EOP file for the corrections to
the nutation angles and their time derivatives:

  δψ δε δψ δε,  ,  ,  and ( )⋅ ( )⋅ (5�137)

Add the corrections (5�137) to the values (5�136) obtained from the
1980 IAU Theory of Nutation (Seidelmann 1982).

4. In program PV, transform the argument ET to UTC using the
approximate expression for ET − TAI in the Solar-System barycentric
frame. Using UTC as the argument, interpolate the EOP file or the TP
array for the X and Y coordinates of the true pole of date relative to
the mean pole of 1903.0 and their time derivatives     ú úX Y and .

5. In program Regres, transform the argument ET to UTC using the
complete expression for ET − TAI in the Solar-System barycentric
frame, as described above in item 1. In program PV, use the
approximate expression for ET − TAI in the Solar-System barycentric
frame. Using UTC as the argument, interpolate the TP array or the
EOP file for TAI − UT1 and its time derivative:

  TAI UT1,  and TAI UT1  − −( )⋅ (5�138)

Subtract TAI − UT1 from TAI to give Universal Time UT1. This will
be Universal Time UT1 or Regularized Universal Time UT1R. If it is
the latter, then the periodic terms (∆UT1) of UT1 must be calculated
from the algorithm given in Section 5.3.3 and added to UT1R to give
UT1. In either case, the value of UT1 will be used in Section 5.3.6 to
calculate sidereal time θ and the rotation matrix B. The time
derivative   TAI UT1−( )⋅ will be used in Section 5.3.6 to calculate   úθ , the
time derivative of θ with respect to coordinate time ET.
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5.3.3 ALGORITHM FOR PERIODIC TERMS OF UT1

5.3.3.1 Introduction

Periodic variations in Universal Time UT1 are derived by Yoder et al.

(1981). There are 41 short-period terms with periods between 5 and 35 days and
21 long-period terms with periods between 91 and 6791 days. The periodic
variations in UT1 are caused by long-period solid Earth tides (having periods
greater than those of the various semi-diurnal and diurnal tides) that produce
periodic variations in the Earth�s polar moment of inertia C and hence the
angular rotation rate of the Earth.

The time difference TAI − UT1 is obtained by interpolating the TP array or
the EOP file. Subtracting TAI − UT1 from TAI gives Universal Time UT1. If it is
Regularized Universal Time (UT1R), the sum ∆UT1 of the 41 short-period terms
of UT1 was subtracted from the observed values of UT1 before the data was
smoothed. For this case, the sum ∆UT1 of the 41 short-period terms of UT1 must
be computed from the formulation given in Subsection 5.3.3.2 and added to
UT1R to give UT1. If Universal Time obtained from the TP array or the EOP file
is not regularized, then no correction is necessary.

Table 5�2 (which will be described in Subsection 5.3.3.2) lists the 41 short-
period terms of UT1. The largest amplitude of a single term is about 0.8 ms,
which can affect the space-fixed position vector of a tracking station on Earth by
about 0.4 m. The maximum possible value of ∆UT1 is 2.72 ms, which can affect
the space-fixed position vector of a tracking station by about 1.3 m. These
indirect effects of solid Earth tides are the same order of magnitude as the direct
effects. From Eq. (5�42), the radial solid Earth tide varies from about +32 cm to
−16 cm.

From Yoder et al. (1981), short-period, semi-diurnal, and diurnal ocean
tides can cause changes in C which produce 0.02 to 0.07 ms semi-diurnal and
diurnal UT1 variations. The error in the space-fixed position vector of a tracking
station due to these neglected terms of UT1 is about 1 tο 3 cm. It will be seen in
Subsection 5.3.3.2 that the computed value of ∆UT1 is proportional to the
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coefficient k/C whose estimated value is 0.94 ±  0.04. The 4% uncertainty in this
coefficient can produce errors in the space-fixed position vector of a tracking
station of up to 2 cm due to a single term of ∆UT1 and up to 5 cm due to all of the
terms.

5.3.3.2 Algorithm for Computing the Short-Period Terms of UT1

Since angular momentum is conserved, the change in Universal Time UT1
due to a change δ C in the Earth�s polar moment of inertia C is given by the
second form of Eq. (2) of Yoder et al. (1981). The change δ C (normalized) due to
long-period lunar or solar solid Earth tides is given by Eq. (3). This equation is
consistent with Eq. (2.154) of Melchior (1966) for δ C/C. Eq. (3) of Yoder et al.

(1981) gives δ C as a function of the distance to and the declination of the Moon
or the Sun. Eq. (3) is converted to a function of the ecliptic longitude and latitude
of the tide-raising body (the Moon or the Sun) and the obliquity of the ecliptic.
They list a reference that presumably shows how this equation is expanded. The
final expression for the sum ∆UT1 of the 41 short-period terms of UT1 has the
form:

    
∆ ΩΩUT1 = − 



 + ′ + + +( )′

=
∑k

C
A c l c l c F c D ci l l F D

i
i i i i i

sin
1

41

s (5�139)

where the angles l,   ′l , F, D, and Ω are the fundamental arguments of the
nutation series. They are calculated from Eqs. (5�65) and (5�66) as a function of
coordinate time ET of the Solar-System barycentric or local geocentric space-time
frame of reference. The positive or negative integer multipliers   cli

,   cli′ ,   cFi
,   cDi

,
and   c iΩ  of these arguments for each term i of ∆UT1 along with the amplitude Ai

of each term are given in Table 5�2. This table is the first part of Table 1 of Yoder
et al. (1981), which applies for the 41 short-period terms of UT1, which have
periods between 5 and 35 days. The second part of Table 1 of Yoder et al. (1981)
applies for the 21 long-period terms of UT1, which have periods between 91 and
6791 days. Eq. (5�139) contains a minus sign because the data in Table 1 of Yoder
et al. (1981) applies for − ∆UT1. Their table lists the amplitude Ai for term 22 as
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50 x 10−7 s. However, according to J. G. Williams (personal communication), Ai

for term 22 should be −50 x 10−7 s, which is shown in Table 5�2.

Table 5�2

Short-Period Terms of UT1

Term
i

Period
days

Coefficients of Nutation
Angles in Argument

Amplitude
Ai

  cli   cli′   cFi   cDi   c iΩ 10�7 s

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41

5.64
6.85
6.86
7.09
7.10
9.11
9.12
9.13
9.18
9.54
9.56
9.61

12.81
13.17
13.61
13.63
13.66
13.75
13.78
13.81
14.19
14.73
14.77
14.80
15.39
23.86
23.94
25.62
26.88
26.98
27.09
27.44
27.56
27.67
29.53
29.80
31.66
31.81
31.96
32.61
34.85

1
2
2
0
0
1
1
1
3

−1
−1
1
2
0
0
0
0
2
2
2
0
0
0
0
0
1
1
1

−1
−1
−1
1
1
1
0
1

−1
−1
−1
1

−1

0
0
0
0
0
0
0
0
0
0
0
0
0
1
0
0
0
0
0
0

−1
0
0
0

−1
0
0
1
0
0
0
0
0
0
0

−1
0
0
0
0

−1

2
2
2
2
2
2
2
2
0
2
2
0
2
2
2
2
2
0
0
0
2
0
0
0
0
2
2
0
2
2
2
0
0
0
0
0
0
0
0

−2
0

2
0
0
2
2
0
0
0
0
2
2
2

−2
0
0
0
0
0
0
0
0
2
2
2
2

−2
−2
0
0
0
0
0
0
0
1
0
2
2
2
2
2

2
1
2
1
2
0
1
2
0
1
2
0
2
2
0
1
2

−1
0
1
2

−1
0
1
0
1
2
0
0
1
2

−1
0
1
0
0

−1
0
1

−1
0

25
43

105
54

131
41

437
1056

19
87

210
81

−23
−27
318

3413
8252
−23
360
−19
26

−50
781
56
54

−53
−107
−42
−50

−188
−463
−568
8788
−579
−50
59

−125
1940
−140
−19
91
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From Yoder et al. (1981), the variations in the rotation rate of the Earth�s
fluid core are decoupled from those of the mantle. Hence, in Eq. (5�139), k is the
effective value of the Love number that causes the tidal variation in the polar
moment of inertia of the coupled mantle and oceans, and C is the dimensionless
polar moment of inertia of these coupled units. The value of k is the Earth�s bulk
Love number k2 = 0.301 minus 0.064 due to decoupling of the fluid core plus
0.040 due to ocean tides. The estimate of the coefficient k/C, which is computed
from Eqs. (24) and (28) of Yoder et al. (1981), is:

    

k
C





 = ± 0.94 0.04 (5�140)

where the 4% uncertainty consists of approximately equal terms due to ocean
tide and fluid core uncertainties.

5.3.4 PRECESSION MATRIX

In Eq. (5�115) or (5�116), the precession matrix A rotates from coordinates
referred to the mean Earth equator and equinox of J2000 (specifically, the radio
frame) to coordinates referred to the mean Earth equator and equinox of date.
Note that the (mean or true) vernal equinox of date is the ascending node of the
ecliptic (the mean orbit plane of the Earth) of date on the (mean or true) Earth
equator of date. The definition of the autumnal equinox is obtained from the
definition of the vernal equinox by replacing the ascending node of the ecliptic
with the descending node. The precession matrix A is currently computed as the
following product of three coordinate system rotations:

    A R R R= +( ) −( ) +( )z x z∆ π δ απ π
2 2

(5�141)

where the coordinate system rotation matrices are given by Eqs. (5�16) to
(5�18). The angles α  and δ are the right ascension and declination of the Earth�s
mean north pole of date relative to the mean Earth equator and equinox of
J2000. The angle ∆ is the angle along the mean Earth equator of date from its
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ascending node on the mean Earth equator of J2000 to the autumnal equinox.
Adding π to ∆ takes you from the autumnal equinox to the vernal equinox. The
angles α, δ, and ∆ can be calculated from the equatorial precession angles ζA, zA,
and θA:

    

α ζ

δ θπ

π

= −

= −

= −

A

A

Az
2

2∆

rad (5�142)

The equatorial precession angles are given by equations in Table 5 of Lieske et al.
(1977) or by Eqs. (7) of Lieske (1979). We want these angles to be expressed as
polynomials in Julian centuries of coordinate time ET past J2000.0. This is the
variable T given by Eq. (5�65). The desired expressions are obtained by setting
T = 0 in the referenced equations of Lieske. The remaining variable t in these
equations is our variable T:

    

ζ

θ

A

A

A

T T T

z T T T

T T T

= ′′ + ′′ + ′′

= ′′ + ′′ + ′′

= ′′ − ′′ − ′′

2306 2181 0 30188 0 017998

2306 2181 1 09468 0 018203

2004 3109 0 42665 0 041833

2 3

2 3

2 3

. . .

. . .

. . .

(5�143)

These angles can be converted from arcseconds to radians by dividing by
206,264.806,247,096. The geometry used in Eqs. (5�141) and (5�142) is shown in
Fig. 1 of Lieske et al. (1977) and Lieske (1979).

The precession matrix given by Eq. (5�141) can be simplified. First,
substitute α, δ, and ∆ from Eqs. (5�142) into (5�141):

    A R z R RA A A= − −( ) ( ) −( )z x z
π πθ ζ2 2

(5�144)

which is the same as:

    A R z R R R RA A A= −( ) −( ) ( ) ( ) −( )z z x z z
π πθ ζ2 2

(5�145)



POSITION  VECTOR  OF  TRACKING  STATION

5�59

Using Eqs. (5�16) to (5�18),

    R R R RA Az x z y−( ) ( ) ( ) = ( )π πθ θ2 2
(5�146)

which is obvious from Fig. 1 of Lieske et al. (1977) and Lieske (1979). Substituting
Eq. (5�146) into (5�145) gives:

    A R z R RA A z A= −( ) ( ) −( )z y θ ζ (5�147)

which is also obvious from Fig. 1 of Lieske et al. (1977) and Lieske (1979).
Lieske (1979) gives two equivalent expressions for the precession matrix A in the
unnumbered equation after Eq. (5). The first expression is Eq. (5�144) and the
second expression is Eq. (5�147).

The precession matrix A is currently computed from Eq. (5�144) and
Eqs. (5�143). However, it would be simpler to calculate A from Eq. (5�147) and
Eqs. (5�143). Also, the use of these equations would reduce the roundoff errors
in the computed precession matrix.

From Eq. (5�144), the derivative of the precession matrix A with respect to
coordinate time ET is given by:

    

ú ú

ú

ú

A
dR z

d z
R R z

R z
dR

d
R

R z R
dR

d

A

A
A A A

A
A

A
A A

A A
A

A
A

= −
− −( )

− −( ) ( ) −( )

+ − −( ) ( )
( ) −( )

− − −( ) ( )
−( )

−( )

z
x z

z
x

z

z x
z

π

π
π

π π

π
π

π

θ ζ

θ
θ

ζ θ

θ
ζ

ζ
ζ

2

2
2

2 2

2
2

2

rad/s (5�148)

where the rotation matrices and their derivatives with respect to the rotation
angles are given by Eqs. (5�16) to (5�18). The equatorial precession angles are
computed from Eqs. (5�143). These equations and the equation for the mean
obliquity of the ecliptic (ε ) (which will be used in the next section) have the form:
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    ζ θ εA A Az a bT cT dT, , ,   = + + +2 3 arcseconds (5�149)

where T is given by Eq. (5�65) and a is zero for the three equatorial precession
angles. The time derivatives of these angles in radians per second of coordinate
time ET are:

    
ú , ú , ú , ú

, . , ,
ζ θ εA A Az

b cT dT
=

+ +
× ×

2 3
206 264 806 247 096 86400 36525

2

rad/s (5�150)

If the precession matrix A was computed from Eq. (5�147) instead of Eq. (5�144),
its time derivative     úA  would be computed from:

    

ú ú

ú

ú

A
dR z

d z
R R z

R z
dR

d
R

R z R
dR

d

A

A
A A A

A
A

A
A A

A A
A

A
A

= −
−( )

−( ) ( ) −( )

+ −( ) ( )
( ) −( )

− −( ) ( ) −( )
−( )

z
y z

z
y

z

z y
z

θ ζ

θ

θ
ζ θ

θ
ζ

ζ
ζ

rad/s (5�151)

5.3.5 NUTATION MATRIX

In Eq. (5�115) or (5�116), the nutation matrix N rotates from coordinates
referred to the mean Earth equator and equinox of date to coordinates referred
to the true Earth equator and equinox of date. The nutation matrix N is
computed from the following sequence of three coordinate system rotations:

    N R R R= − −( ) −( ) ( )x z xε ε ψ ε∆ ∆ (5�152)

where the coordinate system rotation matrices are given by Eqs. (5�16) to
(5�18). The mean obliquity of the ecliptic ε  is the inclination of the ecliptic (the
mean orbit plane of the Earth) of date to the mean Earth equator of date. It is
given by equations in Table 5 of Lieske et al. (1977). We want it to be expressed as
a polynomial in Julian centuries of coordinate time ET past J2000.0, which is the
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variable T given by Eq. (5�65). The desired expression is obtained by setting the
variable T = 0 in the equations for     ε εA A and  in Table 5 of Lieske et al. (1977) and
denoting their variable t as our variable T:

    ε = ′′ − ′′ − ′′ + ′′84 381 448 46 8150 0 00059 0 0018132 3, . . . .T T T (5�153)

This angle can be converted from arcseconds to radians by dividing by
206,264.806,247,096. The coordinate system rotations in Eq. (5�152) are based
upon the geometry in Fig. 3.222.1 on p. 115 of Explanatory Supplement (1992).
Eq. (3.222�3) of this reference is the same as Eq. (5�152). In the former equation,
the true obliquity of the ecliptic ε is the inclination of the ecliptic of date to the
true Earth equator of date. It is the sum of the mean obliquity ε  and the nutation
in obliquity ∆ε:

ε = ε + ∆ε rad (5�154)

From the referenced figure, the nutation in longitude ∆ψ is the celestial longitude
(measured in the ecliptic) of the mean equinox of date measured from the true
equinox of date. The nutation in longitude ∆ψ and the nutation in obliquity ∆ε in
radians and their time derivatives   ∆ ∆ψ ε( )⋅ ( )⋅ and  in radians per second are
obtained as described in Section 5.3.2. These quantities are the sum of the
quantities (5�136) obtained from the 1980 IAU Theory of Nutation (Seidelmann,
1982) plus the corrections (5�137) obtained from the EOP file. We use the
notation of the former quantities to denote the sum of (5�136) and (5�137), which
contains the corrected nutation angles and their time derivatives.

From Eq. (5�152), the derivative of the nutation matrix N with respect to
coordinate time ET is given by:
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ú ú

ú

N
dR
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z

= −
− −( )

− −( )
−( ) ( ) + ( )⋅[ ]
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−( ) ( ) ( )⋅
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ε ε
ε ε

ψ ε ε ε

ε ε
ψ

ψ
ε ψ

ε ε ψ
ε

ε
ε

∆
∆

∆ ∆

∆
∆

∆
∆

∆ ∆

rad/s (5�155)

where the rotation matrices and their derivatives with respect to the rotation
angles are given by Eqs. (5�16) to (5�18). The time derivative   úε  of the mean
obliquity of the ecliptic is calculated from Eqs. (5�153), (5�149), and (5�150).

5.3.6 ROTATION MATRIX THROUGH TRUE SIDEREAL TIME

In Eq. (5�115) or (5�116), the matrix B rotates from space-fixed coordinates
referred to the true Earth equator and equinox of date to Earth-fixed coordinates
referred to the true pole, prime meridian, and equator of date. Subsection 5.3.6.1
gives the formulas for B, its time derivative     úB , its second time derivative     úúB , and
the partial derivative of B with respect to Universal Time UT1. These quantities
are a function of true sidereal time θ, its time derivative   úθ , and the partial
derivative of θ with respect to UT1. The formulation for calculating these three
quantities is given in Subsection 5.3.6.2. The matrix     úúB  is used to calculate     

úúTE

given by Eq. (5�129). Subsection 5.3.6.1 gives a simple algorithm for calculating

    
úúTE . Calculation of true sidereal time θ requires that the time argument, which is

coordinate time ET, be transformed to Universal Time UT1 using the complete
expression for ET − TAI in the Solar-System barycentric frame. Evaluation of this
time difference requires the geocentric space-fixed position vector of the tracking
station, which can be calculated from the approximate algorithm given in
Subsection 5.3.6.3.

5.3.6.1 Rotation Matrix B, its Time Derivatives, and Partial Derivative With

Respect to Universal Time UT1

The matrix B rotates from space-fixed coordinates referred to the true
Earth equator and equinox of date to Earth-fixed coordinates referred to the true
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pole, prime meridian, and equator of date. It is a rotation about the z axis
through true sidereal time θ:

    B R= ( )z θ (5�156)

where the coordinate system rotation matrix is given by Eq. (5�18). True sidereal
time θ is the Greenwich hour angle of the Earth�s true vernal equinox of date. It
is measured westward from the true prime (i.e., 0°) meridian of date about the
true pole of date to the true vernal equinox of date.

The derivative of the rotation matrix B with respect to coordinate time ET
is given by:

    
ú úB

dR
d

=
( )z θ

θ
θ rad/s (5�157)

where the derivative of the coordinate system rotation matrix with respect to the
coordinate system rotation angle is given by Eq. (5�18). The sidereal rate   úθ  is the
derivative of true sidereal time θ with respect to coordinate time ET.

The second time derivative of the rotation matrix B with respect to
coordinate time ET is given to sufficient accuracy by:

    
úú úB R= − ( )[ ] ∗

z θ θ2 rad/s2 (5�158)

where the ∗  indicates that the (3,3) element of the rotation matrix given by
Eq. (5�18) is changed from 1 to 0. The desired expression for the second time
derivative of TE can be obtained by substituting Eq. (5�158) into Eq. (5�129).
However, this process will be accomplished in two steps. First, substitute
Eq. (5�158) without the superscript ∗ , Eq. (5�156), and Eq. (5�115) into
Eq. (5�129), which gives:

    
úú úT TE E= − θ 2 rad/s2 (5�159)
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The second step is to correct the calculation of TE from Eq. (5�115) by setting the
(3,3) element of B given by Eq. (5�156) and Eq. (5�18) to zero. In Eq. (5�115), this
change zeroes out row three inside of the parentheses and zeroes out column
three after taking the transpose. Hence,     

úúTE  can be calculated by evaluating
Eq. (5�159) and then setting column three of this 3 x 3 matrix to zero.

From Eq. (5�156), the partial derivative of the rotation matrix B with
respect to Universal Time UT1 is given by:

    

∂
∂

θ
θ

∂θ
∂

B dR
dUT1 UT1
z=
( )

rad/s (5�160)

where the derivative of the rotation matrix with respect to the rotation angle is
given by Eq. (5�18).

5.3.6.2 Sidereal Time, Its Time Derivative, and Partial Derivative With

Respect to Universal Time UT1

True sidereal time θ is calculated as the sum of mean sidereal time θM plus
the equation of the equinoxes ∆θ:

  θ θ θ= +M ∆ rad (5�161)

Mean sidereal time θM is the Greenwich hour angle of the Earth�s mean vernal
equinox of date. It is measured westward from the true prime meridian of date
about the true pole of date to the meridian that contains the mean vernal
equinox of date. Subsection 5.3.6.2.1 develops the equations for calculating mean
sidereal time θM, its time derivative   

úθM with respect to coordinate time ET, and
its approximate derivative with respect to Universal Time UT1. Subsection
5.3.6.2.2 gives the existing formulation for calculating the equation of the
equinoxes ∆θ and its time derivative ∆θ( )⋅ with respect to coordinate time ET.
Subsection 5.3.6.2.3 gives the proposed International Earth Rotation Service
(IERS) equation for ∆θ and its time derivative ∆θ( )⋅.
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True sidereal time θ is actually calculated from the following version of
Eq. (5�161):

  
θ θ θ π= +( )







M

r r
fractional
part

∆ 2 rad (5�162)

where the superscript r indicates that the quantity has the units of revolutions,
where one revolution of the quantity is 2π radians or   129600 ′′0 . The subscript
�fractional part� indicates that true sidereal time θ in revolutions is computed
modulo 1 revolution. That is, the integral number of revolutions of θ are
discarded leaving θ as a fraction of one revolution. Multiplying by 2π converts θ
to radians. If sidereal time θ is calculated one Julian century before of after J2000,
36625 revolutions of sidereal time will be discarded. Hence, five significant digits
of θ will be lost.

From Eq. (5�161), the derivative of true sidereal time θ with respect to
coordinate time ET is given by:

  
ú úθ θ θ= +( )⋅M ∆ rad/s (5�163)

In Eq. (5�161), mean sidereal time θM is a function of Universal Time UT1
and the equation of the equinoxes ∆θ is a function of coordinate time ET. Hence,

    

∂θ
∂

θ
UT1 UT1

M=
d
d

rad/s (5�164)

5.3.6.2.1 Mean Sidereal Time and Its Time Derivatives

From p. S13 of Supplement To The Astronomical Almanac 1984, the
expression for mean sidereal time θM at 0h UT1 is given by:

    

θM
h s

U

s
U

s
U

UT10 24 110 548 41 8 640 184 812 866

0 093 104 6 2 102 6 3

( ) = +

+ − × −

, . , , , . ,

. , .

s T

T T
(5�165)
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where

    

TU = Julian centuries of 36525 days of 86400 s of Universal Time UT1

elapsed since January 1,  2000,  12h  UT1 J2000.0;  JD 245,1545.0( )

= UT1
86400 × 36525

(5�166)

where

UT1 = seconds of Universal Time UT1 elapsed since
January 1, 2000, 12h UT1.

Note that UT1 is an elapsed interval of UT1 time. UT1 time, which is measured in
seconds past the start of the day, is equal to the interval UT1, defined above, plus
12h. The interval UT1 used in Eq. (5�166) is obtained by transforming coordinate
time ET (measured in seconds past January 1, 2000, 12h ET) as described in detail
in Section 5.3.2, item 5.

We need to convert Eq. (5�165) to a general expression for mean sidereal
time θM at the current value of UT1. This can be done by using the artifice of the
fictitious mean Sun which moves in the equatorial plane at a nearly constant rate.
Universal Time UT1 is equal to the hour angle of the fictitious mean Sun (HAMS)
plus 12 hours:

  UT1 HAMS 12h= + (5�167)

Also, mean sidereal time is equal to the hour angle of the fictitious mean Sun plus
the right ascension of the fictitious mean Sun:

  θM HAMS RAMS= + (5�168)

Substituting HAMS from (5�167) into (5�168) gives:

  
θM

hUT1 RAMS 12= + −( ) (5�169)
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At 0h UT1,

  
θM

h hUT1 RAMS 120( ) = −( ) (5�170)

Substituting the right-hand side of (5�170) into (5�169) gives the desired
expression for mean sidereal time θM:

  
θ θM M

hUT1 0 UT1= + ( ) (5�171)

where the second term on the right-hand side is Eq. (5�165) evaluated at the
current value of TU, not at 0h UT1 time. The first term on the right-hand side is
UT1 time, which is the interval UT1 in Eq. (5�166) plus 12h. From Eq. (5�166), the
interval UT1 can be expressed as:

    UT1 s
U= ×3 155 760 000, , , T (5�172)

Hence, from Eq. (5�171) and the explanation following it, the expression for
mean sidereal time θM is Eq. (5�165) plus 12h = 43200s plus the interval UT1 given
by Eq. (5�172):

    

θM
s s s

U

s
U

s
U

= + +( )
+ − × −

67 310 548 41 3 155 760 000 8 640 184 812 866

0 093 104 6 2 102 6 3

, . , , , , . , , . ,

. , .

T

T T

(5�173)

which is the equation for GMST at the bottom of p. S15 of Supplement To The

Astronomical Almanac 1984. Eq. (5�162) requires θM in revolutions, which is given
by:

    
θM

r U U U=
+ + +J K T L T M T2 3

86400
rev (5�174)

where
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J = 67,310s.548,41
K = 3,164,400,184s.812,866
L = 0s.093,104

M = − 6s.2 x 10−6

From Eq. (5�174) and (5�166), the derivative of mean sidereal time θM

with respect to Universal Time UT1 in radians per second is given by:

    

d
d

K LT MTθ
πM U U

UT1
=

+ +

( ) ×

2 3

86400 36525
2

2

2 rad/s (5�175)

An approximate value of this derivative, required for use in Eqs. (5�164), (5�160),
and (5�135) is given by:

    

d
d

Kθ πM

UT1
rad/s=

( ) ×
= × −2

86400 36525
0 729 211 59 102

4. , , (5�176)

The derivative of θM with respect to coordinate time ET is given by:

    
úθ

θ
M

M

UT1
UT1
ET

=
d
d

d
d

rad/s (5�177)

The transformation of coordinate time ET to Universal Time UT1, which is
described in Section 5.3.2, item 5, is given by:

  UT1 ET ET TAI TAI UT1 UT1= − −( ) − −( ) + ∆ s (5�178)

where I have assumed that the TP array or the EOP file contains regularized UT1.
The derivative of UT1 with respect to ET is given by:

    

d
d
UT1
ET

ET TAI TAI UT1 UT1= − −( )⋅ − −( )⋅ + ( )⋅1 ∆ s/s (5�179)
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Since the computed values of observed quantities are computed from position
coordinates or differenced position coordinates, accurate velocities are not
required in program Regres. Hence, on the right-hand side of (5�179), we only
need to keep the largest time derivative, which is   TAI UT1−( )⋅ . It can be as large
as 0.4 x 10−7 s/s. Substituting this approximation to Eq. (5�179) and Eq. (5�175)
into Eq. (5�177) gives:

    

úθ πM
U U TAI UT1=

+ +

( ) ×
− −( )⋅[ ]K LT MT2 3

86400 36525
1 2

2

2 rad/s (5�180)

This equation is used in Eq. (5�163).

5.3.6.2.2 Existing Formulation for the Equation of the Equinoxes

The existing expression for the equation of the equinoxes is:

  ∆ ∆ ∆θ ψ ε ε= +( )cos rad (5�181)

where the nutation in longitude ∆ψ and the nutation in obliquity ∆ε are obtained
as described in Section 5.3.2 and include the corrections obtained from the EOP
file. The mean obliquity of the ecliptic ε  is calculated from Eq. (5�153) and then
converted to radians. Eq. (5�181) is based upon the geometry shown in
Fig. 3.222.1 on p. 115 of the Explanatory Supplement (1992). Eq. (5�162) requires ∆θ
in revolutions, which is given by:

  
∆

∆ ∆
θ

ψ ε ε
π

r =
+( )cos

2
rev (5�182)

Eq. (5�163) uses the derivative of ∆θ  with respect to coordinate time ET in
radians per second. From (5�181), it is given by:

  

∆ ∆ ∆

∆ ∆ ∆

θ ψ ε ε

ψ ε ε ε ε

( )⋅ = ( )⋅ +( )
− ( ) +( ) + ( )⋅[ ]

cos

sin ú
rad/s (5�183)
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where   ∆ ∆ψ ε( )⋅ ( )⋅ and  are obtained as described in Section 5.3.2 and   úε  is
calculated from Eqs. (5�153), (5�149), and (5�150).

5.3.6.2.3 Proposed Formulation for the Equation of the Equinoxes

From page 30 of International Earth Rotation Service (1992) and pages 21�
22 of International Earth Rotation Service (1996), the proposed expression for the
equation of the equinoxes, which should be used starting on January 1, 1997, is:

  ∆ ∆ Ω Ωθ ψ ε= + ′′ + ′′cos . sin . sin0 00264 0 000063 2 (5�184)

where Ω is the longitude of the mean ascending node of the lunar orbit on the
ecliptic. It is defined by Eq. (5�64) and calculated from Eq. (5�66). Eq. (5�184) is
Eq. (A2�35) of Aoki and Kinoshita (1983).

The existing expression for the equation of the equinoxes is given by
Eq. (5�181). Expanding this equation and retaining all terms to the second order
in the nutations gives:

  ∆ ∆ ∆ ∆θ ψ ε ψ ε ε= − ( )cos sin (5�185)

The first term of this expression is the first term of Eq. (5�184). Differentiating the
second term with respect to time gives:

  − ( )⋅ ( ) − ( ) ( )⋅∆ ∆ ∆ ∆ψ ε ε ψ ε εsin sin (5�186)

where the derivative of   sinε  has been ignored. If the expression (5�186) were
integrated with respect to time, we would obtain the second term of
Eq. (5�185). Adding it to the first term of this equation would give the existing
expression (5�181) for the equation of the equinoxes. The first term of (5�186) is
integrated with respect to time to give a periodic term of the new expression for
the equation of the equinoxes. Integration of the second term of (5�186) with
respect to time would give another periodic term in the equation of the
equinoxes. This term represents a periodic movement of the true meridian
containing the mean equinox of date relative to the true equator of date. The
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periodic movement of this meridian also produces an equal and opposite
periodic term in the expression for mean sidereal time. These equal and opposite
terms cancel in calculating true sidereal time from Eq. (5�161). Hence, the second
term of (5�186) is discarded. Its time integral is not included in the new
expression for the equation of the equinoxes.

The accumulated luni-solar precession in right ascension along the true
equator of date is given by:

    
ú cosψ ε ε+( )∫ ∆ dt (5�187)

where planetary precession is ignored and   úψ  is the rate of luni-solar precession
along the ecliptic. Expanding gives the accumulated luni-solar precession in right
ascension, which is included in the precession matrix (5�147), and the following
term:

    
− ( )∫ ú sinψ ε ε∆ dt (5�188)

which is a periodic variation in the accumulated precession in right ascension due
to the nutation in obliquity ∆ε.

The new expression for the equation of the equinoxes is given by the first
term of Eq. (5�185) plus the time integral of the first term of (5�186) plus the
term (5�188):

    
∆ ∆ ∆ ∆ ∆θ ψ ε ψ ε ε ψ ε ε= − ( ) − ( )⋅ ( )



∫∫cos ú sin sindt dt

p
(5�189)

where the subscript p indicates that only the periodic terms are retained. This
equation is the same as the first three terms of Eq. (A2�33) of Aoki and Kinoshita
(1983). The authors state that the remaining terms of this equation are negligible.

Eq. (5�189) can be evaluated by evaluating the nutations in longitude and
obliquity from selected terms of the series expressions for these quantities. First,
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from Table 1 of Seidelmann (1982), evaluate the nutations in longitude and
obliquity from term 1 of the series expressions for these angles:

  

∆ Ω
∆ Ω

ψ
ε

= − ′′
= ′′

17 1996
9 2025

. sin

. cos
(5�190)

Substituting these equations, ε  obtained from Eq. (5�153) at J2000, and   úψ
obtained from Table 3.211.1 on p. 104 of the Explanatory Supplement (1992) into
terms 2 and 3 of Eq. (5�189) and using   úΩ  obtained from Eq. (5�66) gives:

  ′′0 .00265 sinΩ (5�191)

which is obtained from term 2 of (5�189), and

  ′′0 .000076 sin 2Ω (5�192)

which is obtained from term 3 of (5�189). Then, from Table 1 of Seidelmann
(1982), evaluate the nutation in obliquity from term 2 of the series expression for
this angle:

  ∆ε = − ′′0 .0895 cos2Ω (5�193)

Substituting this equation into term 2 of Eq. (5�189) gives:

  − ′′0 .000013 sin 2Ω (5�194)

Evaluating the second term of Eq. (5�189) as the sum of terms (5�191) and
(5�194), and the third term as (5�192) gives Eq. (5�184) for the new expression
for the equation of the equinoxes, except for a change of   ′′0 .00001 in the
coefficient of the   sinΩ  term.

Eq. (5�162) requires ∆θ in revolutions, which is given by:

  
∆

∆ Ω Ω
θ

ψ ε
π

r = +
′′ + ′′cos . sin . sin

, ,2
0 00264 0 000063 2

1 296 000
rev (5�195)
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Eq. (5�163) uses the derivative of ∆θ with respect to coordinate time ET in
radians per second. From Eq. (5�184), it is given by:

  

∆ ∆ ∆
Ω Ω

Ω

θ ψ ε ψ ε ε( )⋅ = ( )⋅ − ( ) ( )

+
′′ + × ′′

cos sin ú

. cos . cos
, . , ,

ú0 00264 2 0 000063 2
206 264 806 247 096

rad/s (5�196)

Since Ω given by Eq. (5�66) and ε  given by Eq. (5�153) have the same form, their
derivatives with respect to coordinate time ET can be calculated using
Eqs. (5�149) and (5�150).

From Eq. (A2�36) of Aoki and Kinoshita (1983), the sum of the secular
terms, which were discarded from the third term of Eq. (5�189), is given by:

    − ′′0 .00388 T (5�197)

where T is given by Eq. (5�65). In principle, (5�197) should be added to
Eq. (5�173) for mean sidereal time. In practice, this change will not be made, and
the neglected term will be absorbed into the �observed� value of Universal Time
UT1. After one century, UT1 will change by 2.6 x 10−4 s. This is quite negligible
compared to leap seconds, which occur on the order of once a year.

5.3.6.3 Algorithm for Approximate Geocentric Space-Fixed Position Vector

of Tracking Station

In Section 5.3.2, Item 5, the time argument in coordinate time ET is
transformed to Universal Time UT1 using the complete expression for the time
difference ET − TAI in the Solar-System barycentric frame of reference. This
expression is Eq. (2�23), which can be evaluated using the very approximate
algorithm for the geocentric space-fixed position vector of the tracking station

    rA
E , which is given in this section.

True sidereal time θ is approximated by mean sidereal time θM, given by
Eq. (5�174). In this equation, the L and M coefficients are ignored, and TU given
by Eq. (5�166) is approximated by T given by Eq. (5�65). Hence,
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θ π=
+



















J K T
86400

2
fractional
part

rad (5�198)

and the geocentric space-fixed position vector of the tracking station is given
approximately by:

      

rA
E =

+( )
+( )

















u

u

v

cos
sin

θ λ
θ λ km (5�199)

where u, v, and λ are the input Earth-fixed 1903.0 cylindrical coordinates of the
tracking station, uncorrected for polar motion.

The error in     rA
E  calculated from Eqs. (5�198) and (5�199) is less than

300 km. From the fourth term on the right-hand side of Eq. (2�23), the resulting
error in TAI and UT1 is less than 10−7 s. This will produce an error in the space-
fixed position vector of the tracking station, calculated from Eq. (5�113) of
0.004 cm, which is negligible.

5.4 GEOCENTRIC SPACE-FIXED POSITION, VELOCITY,
AND ACCELERATION VECTORS OF TRACKING
STATION

5.4.1 ROTATION FROM EARTH-FIXED TO SPACE-FIXED

COORDINATES

The transformation from the Earth-fixed position vector rb of a tracking
station on Earth to the corresponding space-fixed position vector     rTS

E  of the
tracking station relative to the Earth is given by Eq. (5�113). The variables in this
equation are described in the paragraph containing Eq. (5�113).

Calculation of the computed values of observed quantities (e.g., doppler
and range observables) requires accurate and precise values of position vectors
of the participants (e.g., the spacecraft and the tracking station). Since the
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computed values of doppler observables are calculated from differenced round-
trip light times divided by their time separation, high-accuracy velocity and
acceleration vectors are not required in program Regres. The maximum Earth-
fixed velocity of the tracking station is about 3 x 10−5 m/s due to solid Earth
tides. This affects the tenth significant digit of the velocity of the tracking station
relative to the Solar-System barycenter, which can be ignored. Hence, the
geocentric space-fixed velocity and acceleration vectors of the tracking station
can be computed from derivatives of Eq. (5�113) with respect to coordinate time
ET holding rb fixed:

      ú
úr rTS

E
E b= T km/s (5�200)

      úú
úúr rTS

E
E b= T km/s2 (5�201)

where     
úTE  is given by Eq. (5�128). The formulations for the time derivatives in

this equation are all available within Section 5.3. The second time derivative of TE

is obtained by evaluating Eq. (5�159) and then setting column three of this 3 x 3
matrix to zero.

5.4.2 TRANSFORMATION OF GEOCENTRIC SPACE-FIXED POSITION

VECTOR FROM LOCAL GEOCENTRIC TO SOLAR-SYSTEM

BARYCENTRIC RELATIVISTIC FRAME OF REFERENCE

The geocentric space-fixed position vector of the tracking station
calculated from Eq. (5�113) is in the local geocentric space-time frame of
reference. If Regres is operating in this frame of reference, no further calculations
are required. However, if Regres is operating in the Solar-System barycentric
relativistic frame of reference, then this vector must be transformed from the
local geocentric to the Solar-System barycentric relativistic frame of reference
using Eq. (4�10).

In Eq. (4�10), rGC is     r TS
E  calculated from Eq. (5�113). Calculation of the

remaining variables in (4�10) is described in the paragraph after Eq. (4�11). In
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evaluating the gravitational potential UE at the Earth, the only term that needs to
be included is the potential due to the Sun. The constant     �L  is given by (4�17).

5.5 PARTIAL DERIVATIVES OF GEOCENTRIC SPACE-
FIXED POSITION VECTOR OF TRACKING STATION

This section gives the formulation for calculating partial derivatives of the
geocentric space-fixed position vector     rTS

E  of the tracking station with respect to
solve-for or consider parameters. These partial derivatives can be used to
estimate the values of the parameters (i.e., solve-for parameters) or to consider
the uncertainty in the parameters when calculating the covariance matrix for the
estimated parameters (i.e., consider parameters). Subsection 5.5.1 gives the
partial derivatives for the parameters which affect the Earth-fixed position vector
rb of the tracking station. The next two Subsections give partials for parameters
which affect the Earth-fixed to space-fixed transformation matrix TE. Subsection
5.5.2 gives the partial derivatives for the frame-tie rotation angles rz, ry, and rx.
Subsection 5.5.3 gives the partial derivative with respect to Universal Time UT1,
which affects mean sidereal time θM.

5.5.1 PARAMETERS AFFECTING EARTH-FIXED POSITION VECTOR OF

TRACKING STATION

From Eq. (5�113), for those parameters q which affect rb and not TE,

      

∂
∂

∂
∂

r

q

r

q
TS
E

E
b= T (5�202)

From Eqs. (5�1) and (5�2), the partial derivatives of rb with respect to the
input 1903.0 cylindrical coordinates u, v, and λ of the tracking station are:

      

∂
∂

λ
λ α αrb

b

b

0

0u

x
y

u
=













=
















cos
sin

0 0

(5�203)
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where the components in the second matrix on the right-hand side are those of
Eq. (5�2).

      

∂
∂

α
rb

v
=













0
0
1

(5�204)

      

∂
∂λ

λ
λ α α
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
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




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
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






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u
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x

sin
cos
0

(5�205)

From Eqs. (5�1) and (5�3), the partial derivatives of rb with respect to the input
1903.0 spherical coordinates r, φ, and λ of the tracking station are:
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where     r b0
 is given by Eq. (5�3).
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where the components in the second matrix on the right-hand side are those of
Eq. (5�3). From Eq. (5�1), the partial derivative of rb with respect to the scale
factor α is given by:

    

∂
∂α

r
rb

b0
= (5�209)

where     rb0
 is given by Eq. (5�2) or (5�3).
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From Eqs. (5�1) and (5�12), the partial derivatives of rb with respect to the
north (vN), east (vE), and up (vU) components of the Earth-fixed velocity vector of
the tracking station (due to plate motion) are given by:
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where t and t0 are the time argument and the user input epoch in seconds of
coordinate time ET past J2000.

From Eqs. (5�1) and (5�13), the partial derivatives of rb with respect to the
rectangular components of the Earth-fixed vector from the center of mass of the
Earth to the origin for the input 1903.0 station coordinates are given by:
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From Eqs. (5�1) and (5�22), the partial derivatives of rb with respect to
constant corrections to the X and Y angular coordinates of the true pole of date
relative to the mean pole of 1903.0 are given by:
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where xb, yb, and zb are rectangular components of the sum of the first four
terms of Eq. (5�1). However, to sufficient accuracy, use the rectangular
components of the first term of Eq. (5�1).

5.5.2 FRAME-TIE ROTATION ANGLES

From Eq. (5�113), the partial derivatives of the geocentric space-fixed
position vector of the tracking station with respect to the frame-tie rotation
angles rz, ry, and rx are given by:
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where the partial derivatives of TE with respect to rz, ry, and rx are given by
Eqs. (5�132) to (5�134), which use Eqs. (5�120) to (5�122).

5.5.3 UNIVERSAL TIME UT1

The partial derivative of the geocentric space-fixed position vector of the
tracking station with respect to Universal Time UT1 is given by:
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(5�214)

where the partial derivative on the right-hand side is given by Eqs. (5�135),
(5�160), (5�18), (5�164), and (5�176). The vector rb can be approximated by the
first term of Eq. (5�1), which is evaluated using Eq. (5�2). Assembling all of these
pieces and simplifying gives:
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where   NA( )′  is given by Eq. (5�130), sidereal time θ is given by Eq. (5�162), and
u and λ are input 1903.0 cylindrical station coordinates.



6�1

SECTION  6

SPACE-FIXED POSITION, VELOCITY, AND
ACCELERATION VECTORS OF A LANDED
SPACECRAFT RELATIVE TO CENTER OF
MASS OF PLANET, PLANETARY SYSTEM,

OR THE MOON

Contents

6.1 Introduction .....................................................................................6�3

6.2 Body-Fixed Position Vector of Landed Spacecraft.....................6�4

6.3 Body-Fixed to Space-Fixed Transformation Matrix TB and
Its Time Derivatives........................................................................6�4

6.3.1 High-Level Equations for TB and Its Time
Derivatives ........................................................................6�5

6.3.2 Expressions for α, δ, and W and Their Time
Derivatives ........................................................................6�7

6.3.3 Expressions for ∆α, ∆δ, and ∆W and Their Time
Derivatives ........................................................................6�9

6.4 Space-Fixed Position, Velocity, and Acceleration Vectors
of Landed Spacecraft.......................................................................6�11

6.4.1 Space-Fixed Vectors Relative to Lander
Body B................................................................................6�11

6.4.1.1 Rotation From Body-Fixed to
Space-Fixed Coordinates..................................6�11



SECTION  6

6�2

6.4.1.2 Transformation of Space-Fixed Position
Vector of Lander Relative to Body B
From Local Space-Time Frame of
Reference of Body B to Solar-System
Barycentric Space-Time Frame of
Reference............................................................6�12

6.4.2 Offset From Center of Mass of Planetary System
to Center of the Lander Planet or Planetary
Satellite...............................................................................6�17

6.5 Partial Derivatives of Space-Fixed Position Vector of
Landed Spacecraft ...........................................................................6�18

6.5.1 Cylindrical or Spherical Coordinates of the
Lander................................................................................6�19

6.5.2 Parameters of the Body-Fixed to Space-Fixed
Transformation Matrix TB...............................................6�19

6.5.3 Satellite Ephemeris Parameters......................................6�21



POSITION  VECTOR  OF  LANDED  SPACECRAFT

6�3

6.1 INTRODUCTION

This section gives the formulation for the space-fixed position, velocity,
and acceleration vectors of a landed spacecraft. The landed spacecraft may be on
the surface of a planet, an asteroid, a comet, the Moon, or a satellite of an outer
planet. If the lander is on the surface of Mercury, Venus, an asteroid, a comet, or
the Moon, the space-fixed vectors will be with respect to the center of mass of
that body. If the lander is on the planet or planetary satellite of one of the outer
planet systems, the space-fixed vectors will be with respect to the center of mass
of the planetary system. The space-fixed position, velocity, and acceleration
vectors of the lander are referred to the celestial reference frame defined by the
planetary ephemeris (the planetary ephemeris frame, PEF) (see Section 3.1.1).

Section 6.2 gives the formulation for the body-fixed position vector r b of a
landed spacecraft on body B. The rectangular components of this vector are
referred to the true pole, prime meridian, and equator of date. Section 6.3 gives
the formulation for the body-fixed to space-fixed transformation matrix TB (for
body B) and its first and second time derivatives with respect to coordinate time
ET.

Section 6.4.1 uses r b and TB and its time derivatives to calculate the space-
fixed position, velocity, and acceleration vectors of the landed spacecraft relative
to the center of mass of body B. If body B is the planet or a planetary satellite of
one of the outer planet systems, the satellite ephemeris is interpolated for the
position, velocity, and acceleration vectors of body B relative to the center of
mass of the planetary system. Adding these two sets of vectors (Section 6.4.2)
gives the position, velocity, and acceleration vectors of the landed spacecraft
relative to the center of mass of the planetary system.

Section 6.5 gives the formulation for calculating the partial derivatives of
the space-fixed position vector of the landed spacecraft with respect to solve-for
parameters. There are three groups of these parameters. The first group consists
of the three body-fixed spherical or cylindrical coordinates of the landed
spacecraft. The second group consists of the six solve-for parameters of the
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body-fixed to space-fixed transformation matrix TB. If the lander is resting on the
planet or a planetary satellite of a planetary system, the third group consists of
the solve-for parameters of the satellite ephemeris for this planetary system.

The time argument for calculating the space-fixed position, velocity, and
acceleration vectors of the landed spacecraft is coordinate time ET of the Solar-
System barycentric space-time frame of reference. In the spacecraft light-time
solution, the time argument will be the reflection time or transmission time
t2(ET) in coordinate time ET at the landed spacecraft.

6.2 BODY-FIXED POSITION VECTOR OF LANDED
SPACECRAFT

The body-fixed position vector r b of the landed spacecraft with
rectangular components referred to the true pole, prime meridian, and equator
of date is given by the first term of Eq. (5�1) without the scale factor α. For
cylindrical body-fixed coordinates u, v, and λ, r b is given by Eq. (5�2). For
spherical body-fixed coordinates r, φ, and λ, r b is given by Eq. (5�3).

6.3 BODY-FIXED TO SPACE-FIXED TRANSFORMATION
MATRIX TB AND ITS TIME DERIVATIVES

This section gives the formulation for the body-fixed to space-fixed
transformation matrix TB and its first and second time derivatives with respect to
coordinate time ET. This rotation matrix is used for all bodies of the Solar System
except the Earth. Subsection 6.3.1 gives the high-level equations for calculating TB

and its time derivatives. These matrices are a function of three angles and their
time derivatives. The angles α + ∆α  and δ + ∆δ  are the right ascension and
declination of the body�s true north pole of date relative to the mean Earth
equator and equinox of J2000. The angle   W + ∆W  is measured along the body�s
true equator in the positive sense with respect to the body�s true north pole (i.e.,
in an easterly direction on the body�s surface) from the ascending node of the
body�s true equator on the mean Earth equator of J2000 to the body�s prime (i.e.,
0°) meridian. This geometry is shown in Fig. 1 of Davies et al. (1996). Subsection
6.3.2 gives the formulation for calculating the angles α, δ, and W. The linear
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terms in α and δ represent precession. The linear term in W is the body�s rotation
rate. Expressions are also given for the time derivatives of these three angles.
The effects of nutation on the angles α, δ, and W are contained in the separate
terms     ∆α ,  ∆δ ,  and ∆W . The formulation for calculating these angles and their
time derivatives is given in Subsection 6.3.3.

6.3.1 HIGH-LEVEL EQUATIONS FOR TB AND ITS TIME DERIVATIVES

The body-fixed to space-fixed transformation matrix TB is used to
transform the body-fixed position vector r b of a landed spacecraft to the
corresponding space-fixed position vector     rL

B  of the landed spacecraft (L) relative
to the center of mass of body B:

      r rL
B

B b= T km (6�1)

where

    T AB
T= (6�2)

The matrix A is computed as the product of three coordinate system rotations:

    A R W W R R= +( ) − −( ) + +( )z x z∆ ∆ ∆π πδ δ α α2 2
(6�3)

where the coordinate system rotation matrices are given by Eqs. (5�16) and
(5�18). The angles in Eq. (6�3) were defined in Section 6.3. The formulations for
computing them are given in Subsections 6.3.2 and 6.3.3. From the transpose of
Eq. (6�1), the transformation from space-fixed to body-fixed coordinates of a
landed spacecraft is given by:

      r r rb B
T

L
B

L
B= =T A km (6�4)

The space-fixed position, velocity, and acceleration vectors of the landed
spacecraft are referred to the celestial reference frame defined by the planetary
ephemeris (the planetary ephemeris frame). Since the planetary ephemeris
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frame can have a slightly different orientation for each planetary ephemeris, the
matrix A given by Eq. (6�3) should be post-multiplied by the product     RxRyRz  of
the three frame-tie rotation matrices as was done in Eq. (5�116) for the transpose
of the Earth-fixed to space-fixed transformation matrix. The frame-tie rotation
matrices have not been added to the transformation matrix TB used for all bodies
other than the Earth because these matrices are considerably less accurate than
the matrix TE used for the Earth. Furthermore, if the user desires to obtain
accurate fits to tracking data obtained from a landed spacecraft, he can use one of
the later DE400 series planetary ephemerides which are on the radio frame to
high accuracy. For these ephemerides, the frame-tie rotation angles are zero.

From Eqs. (6�2) and (6�3), the derivative of TB with respect to coordinate
time ET is given by:
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where the coordinate system rotation matrices and their derivatives with respect
to the rotation angles are given by Eqs. (5�16) and (5�18). The time derivatives

    ú , ú , úα δ  and W  of the angles     α δ, ,  and W  are computed from the formulation
given in Subsection 6.3.2. The time derivatives     ∆ ∆ ∆α δ( )⋅ ( )⋅ ( )⋅, ,  and W  of the
angles     ∆ ∆ ∆α δ, ,  and W  are computed from the formulation given in
Subsection 6.3.3.
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From Eqs. (6�2), (6�3), and (5�18), the second time derivative of TB can be
calculated to sufficient accurcy by calculating:

    
úú úT T W WB B= − +( )⋅[ ]∆

2
rad/s2 (6�7)

and then setting column three of this 3 x 3 matrix to zero.

6.3.2 EXPRESSIONS FOR α, δ, AND W AND THEIR TIME DERIVATIVES

The expressions for α α+ ∆ , δ δ+ ∆ , and   W W+ ∆  for the Sun and the
planets are given in Table I of Davies et al. (1996). The corresponding expressions
for the planetary satellites are given in Table II of this reference. The angles α, δ,
and W are polynomials in time. The angles     ∆ ∆ ∆α δ, ,  and W  contain periodic
terms only. The angles α, δ, and W are represented by the following linear or
quadratic functions of time in the ODP:

    α α α= + −( )[ ]o o o DEGRú /T T rad (6�8)

    
δ δ δ= + −( )[ ]o o o DEGRú /T T rad (6�9)

    
W W W d d Q T T= + −( ) + −( )[ ]o o o o DEGRú /2 rad (6�10)

where T is Julian centuries of coordinate time ET past J2000, calculated from Eq.
(5�65). The variable d is days of coordinate time ET past J2000, which is calculated
from:

    
d = ET

86400
(6�11)

where ET is seconds of coordinate time past J2000. The terms   ú
úα δo o and 

represent precession of the body�s true north pole, and     
úWo is the nominal

rotation rate of the body. The constant and linear coefficients in Eqs. (6�8) to
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(6�10) can be estimated at a user-input epoch, which is converted to To Julian
centuries past J2000 and do days past J2000. Numerical values of the coefficients
in Eqs. (6�8) to (6�10) at the epoch J2000 (i.e., To = do = 0) can be obtained from
Tables I and II of Davies et al. (1996). These coefficients are in the units of degrees,
degrees per Julian century or day, and degrees per Julian century squared. The
constant DEGR = 57.295,779,513,082,3209 degrees per radian.

From Tables I and II of Davies et al. (1996), the only bodies that have a
non-zero quadratic coefficient Q in Eq. (6�10) for W are the Moon and the
satellites of Mars. For Phobos and Deimos, Q is given in degrees per Julian
century squared as shown in Eq. (6�10). However, for the Moon, Q is given as
−1.4 x 10−12 degrees per day squared. It can be converted to degrees per Julian
century squared for use in Eq. (6�10) by multiplying by the square of 36525,
which gives −1.8677 x 10−3 degrees per Julian century squared.

If the user desires to estimate the constant and linear coefficients of
Eqs. (6�8) to (6�10) at a user-input epoch, the coefficients obtained from Tables I
and II of Davies et al. (1996), which apply at the epoch J2000, must be converted
to values at the user-input epoch. The constant coefficients in these equations
must be replaced with:

    

α α

δ δ
o o o

o o o

o o o o

+

+

+ +

ú
ú

ú

T

T

W W d QT 2

and     
úWo must be replaced with:

    
úW

QT
o

o+
2
36525

The coefficients     ú , ú ,α δo o  and Q  and are not changed because they are constant.

From Eqs. (6�8) to (6�10), the time derivatives of α, δ, and W in radians
per second of coordinate time ET are given by:
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6.3.3 EXPRESSIONS FOR ∆α, ∆δ, AND ∆W AND THEIR TIME

DERIVATIVES

The angles ∆α, ∆δ, and ∆W are represented by the following periodic
functions of time in the ODP:

    
∆ ∆ ∆α δ, ,

sin
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W
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rad (6�15)

The expressions for ∆α, ∆δ, and ∆W for the satellites of the Earth, Mars, Jupiter,
Saturn, Uranus, Neptune, and Pluto may be obtained from Table II of Davies et

al. (1996). The expressions used for the planet Neptune may be obtained from
Table I of this reference. Each satellite (or planet) has separate coefficients Ci (in
degrees) for each of the angles ∆α, ∆δ, and ∆W. Each planetary system has one
set of polynomials for calculating the arguments A1 to An. However, each
satellite (or the planet) of a planetary system can use some or all of the
arguments A1 to An for that system plus integer multiples of these arguments. In
the input program GIN of the ODP, the user must input the coefficients (specified
below) of each of the polynomials A1 to An used for each satellite (or planet) and
the corresponding coefficients C1 to Cn used for each of the three angles ∆α, ∆δ,
and ∆W. The angles ∆α and ∆W are computed from sines of Ai while ∆δ is
computed from cosines of Ai.

For the Moon and satellites of Mars, the arguments Ai in radians are
computed from:
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A A A d A Ti i i i= + +( )0 1 2

2 /DEGR rad (6�16)

where the coefficients on the right-hand side are in units of degrees. For the
satellites of Jupiter, Saturn, Uranus, Neptune, and Pluto,

    
A A A Ti i i= +( )0 1

/DEGR rad (6�17)

The coefficients for A1 to An for the planetary systems Earth through Pluto are
given in Table II of Davies et al. (1996).

The expression for ∆W for Deimos in Table II of Davies et al. (1996)
contains the term:

    0°.19 cos M3 (6�18)

where M3 is A3 for Mars which is given by:

    M d3 53 47 0 0181510= ° − °( ). . /DEGR rad (6�19)

Also, note that Mars uses the arguments Ai equal to M1, M2, and M3. In order to
make the term (6�18) consistent with Eq. (6�15), we must change the cosine in
this term to a sine. This can be accomplished by defining M4 to be equal to M3
plus π/2 radians:

    M4 = 143°.47 − 0°.0181510 d( )/ DEGR rad (6�20)

Then the term (6�18) can be replaced with the term:

    0°.19 sin M4 (6�21)

which is consistent with Eq. (6�15).

From Eq. (6�15), the time derivatives of ∆α, ∆δ, and ∆W in radians per
second of coordinate time ET are given by:
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where     ∆ ∆α( )⋅ ( )⋅ and W  are computed from cosines of Ai and ∆δ( )⋅ is computed
from the negative of sines of Ai. From Eq. (6�16), the time derivatives of the
arguments Ai for the Moon and satellites of Mars in radians per second are given
by:
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From Eq. (6�17), the time derivatives of the arguments Ai for the satellites of
Jupiter, Saturn, Uranus, Neptune, and Pluto in radians per second are given by:
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86400 36525 DEGR
rad/s (6�24)

6.4 SPACE-FIXED POSITION, VELOCITY, AND
ACCELERATION VECTORS OF LANDED SPACECRAFT

6.4.1 SPACE-FIXED VECTORS RELATIVE TO LANDER BODY B

6.4.1.1 Rotation From Body-Fixed to Space-Fixed Coordinates

The transformation of the body-fixed position vector r b of a landed
spacecraft on body B to the corresponding space-fixed position vector     rL

B  of the
landed spacecraft relative to the center of mass of body B is given by Eqs. (6�1)
through (6�3). Since r b is fixed, the space-fixed velocity and acceleration vectors
of the landed spacecraft relative to body B can be computed from the following
derivatives of Eq. (6�1) with respect to coordinate time ET:

      ú
úr rL

B
B b= T km/s (6�25)

      úú
úúr rL

B
B b= T km/s2 (6�26)
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where     
úTB  is given by Eqs. (6�5) and (6�6) and     

úúTB  is obtained by evaluating
Eq. (6�7) and then setting column three of this 3 x 3 matrix to zero. In these
equations, the angles α, δ, and W and     ∆α ,  ∆δ ,  and ∆W  and their time
derivatives are calculated from the formulations given in Sections 6.3.2 and 6.3.3
using coefficients obtained from Davies et al. (1996).

6.4.1.2 Transformation of Space-Fixed Position Vector of Lander Relative to

Body B From Local Space-Time Frame of Reference of Body B to

Solar-System Barycentric Space-Time Frame of Reference

The space-fixed position vector     rL
B  of the landed spacecraft L relative to

body B calculated from Eq. (6�1) is in the local space-time frame of reference of
body B. This vector must be transformed from the local space-time frame of
reference of body B to the Solar-System barycentric space-time frame of
reference. The equation used when body B is the Earth is Eq. (4�10). Applying
this equation to body B gives:

      
r r V r VL

B
BC B

B
L
B

B L
B

B( ) = − −



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− ⋅( )1
1

22 2
�L

U

c c

γ
km (6�27)

where 
    

rL
B

BC( )  is the space-fixed position vector of the landed spacecraft L relative

to body B in the Solar-System barycentric space-time frame of reference. The

gravitational potential     UB at body B is calculated from Eq. (2�17) where i = B

(body B). The quantity     VB  is the velocity vector of body B relative to the Solar-

System barycenter. The quantity     
�LB is analogous to     �L , which applies at the

Earth. From Eq. (4�7), the value of     
�LB at body B is the value of the constant L

defined by Eq. (2�22) at the landed spacecraft on body B in the Solar-System

barycentric space-time frame of reference minus the corresponding value LB

defined by Eq. (2�22) at the landed spacecraft in the local space-time frame of

reference of body B. The analytical expression and numerical value of     �L  for the

Earth are given by Eqs. (4�16) and (4�17). Eq. (4�16) is L given by Eq. (4�12)

minus LGC given by Eq. (4�14). We need expressions for     
�LB for each body B
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where we expect to have a landed spacecraft. The obvious first candidates are

Mars and the Moon.

Eq. (4�16) for     �L  at the Earth changes to the following expression for     
�LMa

at Mars:

    

�L
c AU a a a

a a a a

Ma
S Me V E M

Ma

J

J

Sa

Sa

U

U

N

N

Pl

Pl

S Ma

Ma

=
+ + + +


 + +

+ + + +
+ 




1

2

2

µ µ µ µ µ µ µ

µ µ µ µ µ
(6�28)

For an accuracy of 0.01 mm in 
    

rL
Ma

BC( )  computed from Eq. (6�27), all of the

�small body� terms in Eq. (6�28) can be deleted, which gives:

    

�L
c AU a

Ma
S

Ma
=

3

2 2

µ
(6�29)

Inserting numerical values from Section 4.3.1.2 gives:

    
� .LMa = × −0 9717 10 8 (6�30)

From Table 15.8 on p. 706 of the Explanatory Supplement (1992), the equatorial

radius of Mars is 3397 km. The effect of a change of 1 in the last digit of     
�LMa

given by Eq. (6�30) on 
    

rL
Ma

BC( )  computed from Eq. (6�27) is 0.003 mm. The

effect of     
�LMa on 

    
rL

Ma
BC( )  computed from Eq. (6�27) is about 3.3 cm. The first

term of Eq. (6�27) reduces the radius of Mars at the lander by about 5.5 cm in the

Solar-System barycentric space-time frame of reference.

Eq. (4�16) for     �L  at the Earth changes to the following approximate
expression for     

�LM at the Moon:
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�L
c AU a a a a a a a

a AU a a

M
S Me V

B

Ma

Ma

J

J

Sa

Sa

U

U

N

N

Pl

Pl

E

M

S E M

B

E

M2

=
+ +

+ + + + + +












+ +
+ +

+





1 1

2

2

µ µ µ µ µ µ µ µ µ

µ µ µ µ µ
(6�31)

where aB is the semi-major axis of the heliocentric orbit of the Earth-Moon

barycenter B in astronomical units. The largest of the �small body� terms in this

equation is the gravitational potential at the Moon due to the Earth multiplied by

3/2. It changes 
    

rL
M

BC( )  computed from Eq. (6�27) by about 0.03 mm, which can

be ignored. Hence, all of the �small body� terms in Eq. (6�31) can be ignored

which gives:

    

�L
c AU a

M
S

B
=

3

2 2

µ
(6�32)

Inserting numerical values from Section 4.3.1.2 gives:

    
� .LM = × −1 4806 10 8 (6�33)

From Table 15.8 on p. 706 of the Explanatory Supplement (1992), the equatorial

radius of the Moon is 1738 km. The effect of a change of 1 in the last digit of     
�LM

given by Eq. (6�33) on 
    

rL
M

BC( )  computed from Eq. (6�27) is 0.002 mm. The effect

of     
�LM on 

    
rL

M
BC( )  computed from Eq. (6�27) is about 2.6 cm. The first term of Eq.

(6�27) reduces the radius of the Moon at the lander by about 4.3 cm in the Solar-

System barycentric space-time frame of reference.

The general expression for     
�LB for a lander on any planet, asteroid, or

comet is the generalization of Eq. (6�29):

    

�L
c AU a

planet
S

planet
=

3

2 2

µ
(6�34)
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where aplanet is the semi-major axis of the heliocentric orbit of the planet,
asteroid, or comet in astronomical units. For a lander on a planetary satellite,

    

�L
c AU a c a

satellite
S

planet

planet

satellite
= +

3

2

3

22 2

µ µ
(6�35)

where aplanet is defined above, µplanet is the gravitational constant of the planet,
and asatellite is the semi-major axis of the orbit of the planetary satellite in
kilometers. For a lander on the Moon, the second term of this expression is
included in Eq. (6�31) but is ignored in Eq. (6�32).

In Eq. (6�27), the gravitational potential UB at the lander body B should
include the term due to the Sun plus the term due to a planet if the lander is
resting on a satellite of the planet. Note that the latter term is ignored for a lunar
lander. If the lander body B is Mercury, Venus, the Moon, an asteroid, or a
comet, interpolate the planetary ephemeris (plus the small-body ephemeris of
the asteroid or comet) for the position vector     rB

S  from the Sun to body B as
described in Section 3.1.2.1. If the lander body B is the planet or a satellite of one
of the outer planet systems, interpolate the planetary ephemeris for the position
vector     rP

S  from the Sun to the center of mass P of the planetary system and
interpolate the satellite ephemeris for the position vector     rB

P  of the lander body B
relative to the center of mass P of the planetary system as described in Section
3.2.2.1. The position vector from the Sun to the lander body B is given by:

    r r rB
S

P
S

B
P= + (6�36)

For a lander on any body B, the distance from body B to the Sun is given by the
magnitude of the position vector     rB

S :

      
rBS B

S= r (6�37)

If the lander body B is a satellite of one of the outer planet systems, interpolate
the satellite ephemeris as described in Section 3.2.2.1 for the position vectors of
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the lander body B and the planet 0 relative to the center of mass P of the
planetary system and calculate the position vector from the lander body B to the
planet 0:

    r0
B = r0

P − rB
P (6�38)

The distance from the satellite B that the lander is resting upon to the planet 0 is
the magnitude of the position vector     r0

B:

      
rB0 0

B= r (6�39)

If the landed spacecraft is on the Moon, any planet, an asteroid, or a comet, the
gravitational potential UB at the lander body B is given to sufficient accuracy by:

    
U

rB
S

BS
=
µ

(6�40)

where µS is the gravitational constant of the Sun obtained from the planetary
ephemeris and rBS is given by Eq. (6�37). If the landed spacecraft is on a satellite
of one of the outer planet systems, the gravitational potential UB at the lander
body B is given to sufficient accuracy by:

    
U

r rB
S

BS B0
= +
µ µ0 (6�41)

where µ0 is the gravitational constant of the planet obtained from the satellite
ephemeris as described in Section 3.2.2.1 and rB0 is given by Eq. (6�39).

In Eq. (6�27), VB is the velocity vector of the lander body B relative to the
Solar-System barycenter. For a landed spacecraft on Mercury, Venus, the Moon,
an asteroid, or a comet, interpolate the planetary ephemeris (plus the small-body
ephemeris of the asteroid or comet) for the velocity vector     úrB

C of the lander body
B relative to the Solar-System barycenter C. The velocity vector VB is given by:
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    V rB B
C= ú (6�42)

For a lander on the planet or planetary satellite of a planetary system, interpolate
the satellite ephemeris for that system for the velocity vector     úrB

P  of the lander
body B relative to the center of mass P of the planetary system. Also, interpolate
the planetary ephemeris for the velocity vector     úrP

C of the center of mass P of the
planetary system relative to the Solar-System barycenter C. For this case, the
velocity vector VB is given by:

    V r rB P
C

B
P= +ú ú (6�43)

It is not necessary to transform     úrL
B  and     úúrL

B  calculated from Eqs. (6�25) and
(6�26) from the local space-time frame of reference of body B to the Solar-
System barycentric space-time frame of reference using the first and second time
derivatives of Eq. (6�27) with respect to coordinate time in the barycentric frame
because the computed values of observed quantities require accurate values of
the position vectors of the participants, not accurate values of the velocity and
acceleration vectors.

6.4.2 OFFSET FROM CENTER OF MASS OF PLANETARY SYSTEM TO

CENTER OF THE LANDER PLANET OR PLANETARY SATELLITE

If the lander body B that the landed spacecraft is resting upon is the planet
or a planetary satellite of one of the outer planet systems, then the position,
velocity, and acceleration vectors of the lander body B relative to the center of
mass P of the planetary system must be interpolated from the satellite ephemeris
for that planetary system as described in Section 3.2.2.

If the landed spacecraft is resting upon a satellite or the planet of one of
the outer planet systems, the space-fixed position, velocity, and acceleration
vectors of the landed spacecraft relative to the center of mass P of the planetary
system are computed from the following equations:

    
r r rL

P
L
B

BC B
P= ( ) + (6�44)
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where 
    
rL

B( )BC
 is calculated from Eq. (6�27) using     rL

B  calculated from Eq. (6�1).

The position vector     rB
P  of the lander body B relative to the center of mass P of

the planetary system is obtained from the satellite ephemeris.

    ú ú úr r r L
P

 L
B

 B
P= + (6�45)

where     úrL
B  is calculated from Eq. (6�25) and     úrB

P  is obtained from the satellite
ephemeris.

    úú úú úúr r rL
P

L
B

B
P= + (6�46)

where     úúrL
B  is calculated from Eq. (6�26). In this equation,     

úúTB is obtained by
evaluating Eq. (6�7) and then setting column three of this 3 x 3 matrix to zero.
The acceleration vector of the lander body B relative to the center of mass P of
the planetary system is obtained from the satellite ephemeris.

6.5 PARTIAL DERIVATIVES OF SPACE-FIXED POSITION
VECTOR OF LANDED SPACECRAFT

This section gives the formulation for calculating the partial derivatives of
the space-fixed position vector of the landed spacecraft with respect to solve-for
or consider parameters q. Subsection 6.5.1 gives the partial derivatives of the
space-fixed position vector     rL

B  of the landed spacecraft L relative to the center of
mass of the lander body B with respect to the body-fixed cylindrical or spherical
coordinates of the lander. Subsection 6.5.2 gives the partial derivatives of     rL

B  with
respect to the six solve-for parameters of the body-fixed to space-fixed
transformation matrix TB for body B. If the lander is resting upon the planet or a
planetary satellite of one of the outer planet systems, the offset vector     rB

P  from
the center of mass P of the planetary system to the lander body B is a function of
the solve-for parameters of the satellite ephemeris for this planetary system. The
partial derivatives of     rB

P  with respect to the satellite ephemeris parameters are
given in Subsection 6.5.3.
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6.5.1 CYLINDRICAL OR SPHERICAL COORDINATES OF THE LANDER

From Eq. (6�1), the partial derivatives of the space-fixed position vector of
the lander L relative to the center of mass of the lander body B with respect to
those parameters q that affect the body-fixed position vector of the lander are
given by:

      

∂
∂

∂
∂

r

q

r

q
L
B

B
b= T (6�47)

where, from Section 6.2, the partial derivatives of the body-fixed position vector
rb of the landed spacecraft with respect to the cylindrical coordinates u, v, and λ
of the lander are given by Eqs. (5�203) to (5�205) with the parameter α  set to
unity. The partial derivatives of rb with respect to the spherical coordinates r, φ,
and λ of the lander are given by Eqs. (5�206) to (5�208) with α set to unity.

6.5.2 PARAMETERS OF THE BODY-FIXED TO SPACE-FIXED

TRANSFORMATION MATRIX TB

From Eq. (6�1), the partial derivatives of the space-fixed position vector of
the lander L relative to the lander body B with respect to the six solve-for
parameters q of the body-fixed to space-fixed transformation matrix TB for body
B are given by:

      

∂
∂

∂
∂

r

q q
rL

B
B

b=
T

(6�48)

The solve-for parameters are     α α δ δo o o o o o      and , ú , , ú , , úW W  of Eqs. (6�8) to
(6�10). From Eqs. (6�2), (6�3), and (6�8) to (6�10), the partial derivatives of TB

with respect to the six parameters are given by:

    

∂
∂α α

δ δ
α α

α α
∂α

∂α α
π

π

π
T

R W W R
dR

d
B

o 0
z x

z
T

o o, ú , ú
= +( ) − −( ) + +( )

+ +( )












∆ ∆
∆

∆2
2

2

(6�49)
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where

  

∂α
∂α o DEGR

= 1
(6�50)

    

∂α
∂αú o

o

DEGR
=

−T T
(6�51)

    

∂
∂δ δ

δ δ

δ δ
α α

∂δ
∂δ δ

π

π
πT

R W W
dR

d
RB

o o
z

x
z

T

o o, ú , ú
= − +( )

− −( )
− −( ) + +( )













∆
∆

∆
∆2

2
2

(6�52)

where

  

∂δ
∂δo DEGR

= 1
(6�53)

    

∂δ
∂δúo

o

DEGR
=

−T T
(6�54)

    

∂
∂

δ δ α α
∂

∂
π πT

W W

dR W W

d W W
R R

W

W W
B

o o

z
x z

T

o o, ú , ú
=

+( )
+( ) − −( ) + +( )











∆
∆

∆ ∆2 2 (6�55)

where

    

∂
∂

W
Wo DEGR

= 1
(6�56)

    

∂
∂

W

W

d d
ú

o

o

DEGR
=

−
(6�57)

In these equations, the coordinate system rotation matrices and their derivatives
with respect to the coordinate system rotation angles are given by Eqs. (5�16) to
(5�18). The quantities     T −To  and d − do are discussed after Eq. (6�10).
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6.5.3 SATELLITE EPHEMERIS PARAMETERS

If the landed spacecraft is resting upon the planet or a planetary satellite of
one of the outer planet systems, the offset position vector     rB

P  of the lander body
B relative to the center of mass P of the planetary system is a function of the
solve-for parameters of the satellite ephemeris for this planetary system. The
partial derivatives of     rB

P  with respect to the satellite ephemeris parameters are
obtained by interpolating the satellite partials file for this planetary system (as
described in Section 3.2.3) with coordinate time ET of the Solar-System
barycentric space-time frame of reference as the argument:

    

∂
∂
r

q
B
P

(6�58)

For a lander on the planet Mars, the magnitude of the offset vector     r Ma
P  is less

than 25 cm, and these partial derivatives can be ignored.
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7.1 INTRODUCTION

This section gives four algorithms that are used to compute the time
difference ET − TAI, where ET is coordinate time of the Solar-System barycentric
or local geocentric space-time frame of reference and TAI is International Atomic
Time. Section 7.3.1 gives the algorithm for computing ET − TAI at the reception
time t3(TAI) at a tracking station on Earth. The tracking station can be a DSN
station or a GPS receiving station. Section 7.3.2 gives the algorithm for
computing ET − TAI at the transmission time t1(ET) at a DSN tracking station on
Earth. The algorithm of Section 7.3.3 is used to calculate ET − TAI at the reception
time t3(TAI) at the TOPEX satellite. Finally, the algorithm of Section 7.3.4 is used
to compute ET − TAI at the transmission time t2(ET) at a GPS satellite. These
algorithms are evaluated in the spacecraft or quasar light-time solutions, which
are described in Section 8. The two algorithms that are evaluated at reception
times from the argument t3(TAI) are iterative and produce all of the position,
velocity, and acceleration vectors, which are required at the reception time
t3(ET).

For GPS/TOPEX data, a signal is transmitted from a GPS satellite (semi-
major axis a ≈  26,560 km) and received at the TOPEX satellite (a ≈  7712 km)
and/or at a GPS receiving station on Earth. In order to process this data, the
offset from the station location (at the receiving GPS tracking station on Earth,
the receiving TOPEX satellite, and the transmitting GPS satellite) to the phase
center (which is the effective point of reception or transmission) must be
calculated. These offsets contain a constant offset to the nominal phase center
and a variable offset from the nominal phase center to the actual phase center.
Section 7.2 introduces the calculation of these offsets and indicates where they
are calculated in Sections 1 through 13 of this document.

7.2 PHASE-CENTER OFFSETS FOR GPS/TOPEX DATA

The GPS/TOPEX observables are one-way travel times from a
transmitting GPS satellite to the receiving TOPEX satellite or a GPS receiving
station on Earth, converted from seconds to kilometers. The exact definitions of
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these observables are given in Section 13.6. Each of these observables can be a
pseudo-range observable or a carrier-phase observable. The pseudo-range signal
travels at the group velocity, which is less than the speed of light c. The carrier-
phase signal travels at the phase velocity, which is greater than c. Each GPS
satellite transmits signals at the L1-band and L2-band frequencies, which are
given by:

    

L

L

1 10 23 154 1575 42
2 10 23 120 1227 60

= × =
= × =

. .
. .

 MHz  MHz
 MHz  MHz

(7�1)

The pseudo-range and carrier-phase observables come in pairs. Each pair
consists of one observable obtained from the L1-band transmitter frequency and
a second observable obtained from the L2-band transmitter frequency. Each
observable pair is used to construct a weighted average observable, which is free
of the effects of charged particles. Let ρ1(L1) and ρ1(L2) refer to carrier-phase or
pseudo-range observables obtained with the L1-band and L2-band transmitter
frequencies. Then, the weighted average ρ1 of these two observables (which is
free from the effects of charged particles) is given by:

    ρ ρ ρ1 1 1= ( ) − ( )A BL1 L2 km (7�2)

where the weighting factors A and B are given by:

    
A

L

L L
=

−
=1

1 2
2 545 727 780 163 160

2

2 2 . , , , , (7�3)

    
B

L

L L
=

−
=2

1 2
1 545 727 780 163 160

2

2 2 . , , , , (7�4)

and A − B = 1 exactly. The numerators in Eqs. (7�3) and (7�4) cancel the same
terms in the denominators of the charged particle effect terms of ρ1(L1) and
ρ1(L2), respectively. Then, the minus sign in Eq. (7�2) eliminates the effects of
charged particles on the weighted average value ρ1 of the pseudo-range or
carrier-phase observable. Since the first-order term of ρ1(L1) and ρ1(L2) is the
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down-leg range r23 in kilometers, and A − B = 1, the first-order term of the
weighted average observable ρ1 will also be r23.

Since observed values of carrier-phase and pseudo-range observables are
calculated as a weighted average using Eqs. (7�2) to (7�4), these same equations
must be used in program Regres to calculate the computed values of these
observables. However, it is not necessary to calculate computed values of each
observable at the L1-band and L2-band frequencies and then compute a
weighted average using Eqs. (7�2) through (7�4). Each observable can be
computed once from the formulation that is given in Sections 11.5 and 13.6.
However, each frequency-dependent term of this formulation must be replaced
with a weighted average of the values of the term computed at the L1-band and
L2-band frequencies. The weighted average of each frequency-dependent term is
calculated from Eqs. (7�2) to (7�4). The frequency-dependent terms are the
constant and variable phase-center offsets for the transmitter and receiver and
the geometrical phase correction for carrier-phase observables. The formulation
for the geometrical phase correction is given in Section 11.5.3.

For a GPS receiving station on Earth, the constant phase-center offset can
be included in the calculation of the Earth-fixed position vector of the tracking
station. The procedure for doing this is given in Section 7.3.1. Calculation of the
constant phase-center offset at the receiving TOPEX satellite is described in
Section 7.3.3. Calculation of the constant phase-center offset at the transmitting
GPS satellite is described in the algorithm for the spacecraft light-time solution in
Section 8.3.6. Calculation of the variable phase-center offsets is described in
Section 11.5.4. Calculation of the weighted-average geometrical phase correction
for carrier-phase observables is described in Section 11.5.3.

7.3 ALGORITHMS FOR COMPUTING ET − TAI

7.3.1 AT RECEPTION TIME AT TRACKING STATION ON EARTH

The time argument for evaluating the time difference ET − TAI at the
reception time at a DSN tracking station or a GPS tracking station on Earth is the
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reception time t3(TAI) in International Atomic Time TAI. The algorithm consists
of the following steps:

1. Compute an approximate value of ET − TAI in the Solar-System
barycentric space-time frame of reference from Eqs. (2�26) to (2�28),
where t in Eq. (2�28) is t3(TAI) in seconds past J2000. From Eq. (2�30),
the final value of ET − TAI in the local geocentric space-time frame of
reference is 32.184 s. Add these values of ET − TAI to t3(TAI) to give
an approximate value of t3(ET) in the Solar-System barycentric frame
and the final value of t3(ET) in the geocentric frame. The error in the
approximate value of t3(ET) in the barycentric frame is less than
4 x 10−5 s.

2. At the value of t3(ET) obtained in Step 1, interpolate the planetary
ephemeris for the position, velocity, and acceleration vectors
specified in Section 3.1.2.3.1 in the barycentric frame or Section
3.1.2.3.2 in the geocentric frame.

3. Using t3(ET) from Step 1 as the argument, calculate the geocentric
space-fixed position, velocity, and acceleration vectors of the tracking
station on Earth from the formulation of Section 5.

3a. If the receiver is a GPS tracking station on Earth, the calculations in
Step 3 must be modified to include the constant phase-center offset at
the receiver. For a GPS receiving station, the spherical or cylindrical
station coordinates are those of a nearby survey benchmark (Section
5.2.1). The Earth-fixed vector offset     ∆r b0

 from the survey benchmark
to the tracking station is calculated from Eqs. (5�4) to (5�11) of
Section 5.2.2. From Eq. (5�4), the components of     ∆r b0

 are dN, dE, and
dU along the north N, east E, and zenith Z unit vectors at the
benchmark. The nominal values of dN, dE, and dU represent the
displacement from the survey benchmark to a fixed point on the GPS
receiving antenna. We must add ∆dN, ∆dE, and ∆dU to dN, dE, and dU,
where the increments ∆dN, ∆dE, and ∆dU represent the displacement
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from the fixed point on the GPS receiving antenna to the nominal
location of its phase center.

The offset vector     ∆r pc  from the fixed reference point on the GPS
receiving antenna to the nominal location of its phase center has
known components in the antenna X-Y-Z rectangular coordinate
system. For reception at the L1-band and L2-band frequencies, let
these offset vectors be denoted by:

      

∆r pc L

X

Y

Z
L

1

1

( ) =







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



(7�5)
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Let the weighted average of these two vectors be denoted by:

      

∆r pc

WA

WA( ) =



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
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
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Y
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(7�7)

where each component of Eq. (7�7) is obtained from the
corresponding components of Eqs. (7�5) and (7�6) using Eqs. (7�2) to
(7�4). Since the X axis of the GPS receiving antenna is directed north,
the components of the vector offset (7�7) along the north, east, and
up directions are given by:

    

∆dN = XWA

∆dE = − YWA

∆dU = ZWA

(7�8)
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These components must be added to the nominal values dN, dE, and
dU and input to program GIN of the ODP. The input values will be
used in Eq. (5�4) in program Regres to calculate the vector offset

    ∆r b0
 from the survey benchmark to the weighted average location

of the nominal phase center of the GPS receiving antenna.

If this algorithm is being evaluated in the local geocentric space-time
frame of reference, it is complete at this point. However, if it is being evaluated
in the Solar-System barycentric space-time frame of reference, the remaining
steps must be completed.

4. Using position and velocity vectors interpolated from the planetary
ephemeris in Step 2 and the geocentric space-fixed position vector of
the tracking station on Earth computed in Step 3, calculate ET − TAI
in the barycentric frame from Eq. (2�23).

5. Add the value of ET − TAI calculated in Step 4 to t3(TAI) to give the
final value of t3(ET) in the barycentric frame.

6. Map the position and velocity vectors obtained from the planetary
ephemeris in Step 2 and the geocentric space-fixed position and
velocity vectors of the tracking station on Earth obtained in Step 3
from the approximate value of t3(ET) obtained in Step 1 to the final
value of t3(ET) obtained in Step 5. Let

t3 = final value of t3(ET) from Step 5

    t3
∗ = approximate value of t3(ET) from Step 1

  δt = t3 −     t3
∗

Then, each position vector can be mapped with a quadratic Taylor
series:

      
r r r rt t t t t t3 3 3

1
2 3

2( ) = ( ) + ( ) + ( )( )∗ ∗ ∗ú úúδ δ (7�9)

and each velocity vector can be mapped with a linear Taylor series:
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ú ú úúr r rt t t t3 3 3( ) = ( ) + ( )∗ ∗ δ (7�10)

Also, map each component of the 3 x 3 body-fixed to space-fixed
transformation matrix TE for the Earth and true sidereal time θ,
which are calculated in Step 3, using quadratic and linear Taylor
series, respectively.

7. Using the mapped position and velocity vectors from Step 6,
recalculate ET − TAI in the barycentric frame from Eq. (2�23).

7.3.2 AT TRANSMISSION TIME AT TRACKING STATION ON EARTH

The time argument for calculating the time difference ET − TAI at the
transmission time at a DSN tracking station on Earth is the transmission time
t1(ET), which is available from the light-time solution. The algorithm contains
two steps:

1. Given position and velocity vectors obtained at the transmission time
t1(ET) in the spacecraft light-time solution, calculate ET − TAI at the
tracking station from Eq. (2�23) in the Solar-System barycentric
frame of reference. In the local geocentric frame of reference,
calculate ET − TAI at the tracking station from Eq. (2�30).

2. Subtract ET − TAI from t1(ET) to give t1(TAI).

7.3.3 AT RECEPTION TIME AT TOPEX SATELLITE

The time argument for evaluating the time difference ET − TAI at the
reception time at the TOPEX satellite is the reception time t3(TAI) in International
Atomic Time TAI. The algorithm consists of the following steps:

1. Compute an approximate value of ET − TAI in the Solar-System
barycentric frame from Eqs. (2�26) to (2�28), where t in Eq. (2�28) is
t3(TAI) in seconds past J2000. From Eq. (2�31), the approximate value
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of ET − TAI in the geocentric frame is 32.184 s. Add the approximate
value of ET − TAI to t3(TAI) to give an approximate value of t3(ET).

2. At the value of t3(ET) obtained in Step 1, interpolate the planetary
ephemeris for the position, velocity, and acceleration vectors
specified in Section 3.1.2.3.1 in the barycentric frame or Section
3.1.2.3.2 in the geocentric frame.

3. If the ODP is operating in the Solar-System barycentric frame of
reference or the local geocentric frame of reference, program PV
integrates the ephemeris of the TOPEX satellite in that frame of
reference. At the value of t3(ET) obtained in Step 1, interpolate the
TOPEX satellite ephemeris for the geocentric position, velocity, and
acceleration vectors of the TOPEX satellite. These vectors are for the
center of mass of the TOPEX satellite. Let X, Y, and Z be unit vectors
aligned with the x, y, and z axes of the spacecraft-fixed coordinate
system of the TOPEX satellite, directed outward from the origin of
the coordinate system. Interpolation of the PV file for the TOPEX
satellite at t3(ET) gives the space-fixed rectangular components of the
unit vectors X, Y, and Z referred to the mean Earth equator and
equinox of J2000. It also gives the x, y, and z rectangular components
referred to the TOPEX-fixed rectangular coordinate system of the
weighted-average location of the nominal phase center of the TOPEX
satellite relative to the center of mass of the TOPEX satellite. Given
this information, calculate the space-fixed vector from the center of
mass of the TOPEX satellite to the weighted-average location of the
nominal phase center of the TOPEX satellite from:

    ∆r = x X + y Y + zZ km (7�11)

Add this vector offset to the geocentric space-fixed position vector of
the center of mass of the TOPEX satellite to give the geocentric space-
fixed position vector of the weighted-average location of the nominal
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phase center of the TOPEX satellite.1 Save the unit vectors X, Y, and
Z.

The x, y, and z components in Eq. (7�11) must be calculated by the
user and input to program GIN of the ODP. Program PV will read
them from the GIN file and place them on the PV file for the TOPEX
satellite. The x, y, and z components are calculated as the sum of
three terms:

    x = xgeom + xpc − xcm x → y, z (7�12)

where xgeom is from the origin of the TOPEX satellite coordinate
system to a fixed point on or near the GPS antenna (which receives
the signal transmitted by a GPS satellite), xpc is the offset from this
point to the nominal phase center of the GPS antenna, and xcm is
from the origin of the TOPEX satellite coordinate system to the
center of mass of the TOPEX satellite. This coordinate is a slowly
varying function of time, but must be fixed during a given execution
of the ODP. The components xpc, ypc, and zpc of the phase center
offset are known at the L1-band frequency and at the L2-band
frequency. For each component, the weighted average of the
L1-band value and the L2-band value must be computed from
Eqs. (7�2) to (7�4) and used in that component of Eq. (7�12).

4. Using position and velocity vectors obtained in Steps 2 and 3,
calculate ET − TAI at the TOPEX satellite from Eqs. (2�23) to (2�25) in
the barycentric frame and from Eqs. (2�24) and (2�31) in the
geocentric frame.

                                                
1It is not necessary to calculate     ∆ úr  and add it to the satellite velocity vector (for the TOPEX or a
GPS satellite). The slight change in the satellite velocity vector would affect the computed down-
leg range through the effect of     ∆ úr  on the computed time transformations by less than 1 mm.
The change     ∆ úr  to the satellite velocity vector would affect mapped satellite position vectors at
the reception time t3 and at the transmission time t2 by less than 0.1 mm.
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5. Add the value of ET − TAI calculated in Step 4 to t3(TAI) to give the
final value of t3(ET).

6. Map the position and velocity vectors obtained in Steps 2 and 3 at the
approximate value of t3(ET) obtained in Step 1 to the final value of
t3(ET) obtained in Step 5 using Eqs. (7�9) and (7�10).

7. Using the mapped position and velocity vectors from Step 6,
recalculate ET − TAI from Eqs. (2�23) to (2�25) in the barycentric
frame and from Eqs. (2�24) and (2�31) in the geocentric frame.

7.3.4 AT TRANSMISSION TIME AT A GPS SATELLITE

The time argument for calculating the time difference ET − TAI at the
transmission time at a GPS satellite is the transmission time t2(ET), which is
available from the light-time solution. The algorithm contains two steps:

1. Given position and velocity vectors obtained from the spacecraft
light-time solution at the transmission time t2(ET) at the GPS satellite,
calculate ET − TAI at the GPS satellite from Eqs. (2�23) to (2�25) in the
barycentric frame and from Eqs. (2�24) and (2�31) in the geocentric
frame.

2. Subtract ET − TAI from t2(ET) to give t2(TAI).
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8.1 INTRODUCTION

The first step in obtaining the computed value of an observed quantity is
to obtain the light-time solution for that observable. This section describes the
spacecraft light-time solution used to obtain the computed values of all spacecraft
observables and the quasar light-time solution used to obtain the computed
values of narrowband and wideband quasar interferometry observables
(described in Section 13). The spacecraft light-time solution can be obtained in the
Solar-System barycentric space-time frame of reference or in the local geocentric
space-time frame of reference. The Solar-System barycentric frame of reference
can be used for a spacecraft located anywhere in the Solar System. The local
geocentric frame of reference can be used for a spacecraft that is very near the
Earth (e.g., a low Earth orbiter). Note that the Moon is not close enough to the
Earth to use this frame of reference, and its motion must be represented in the
Solar-System barycentric space-time frame of reference. The quasar light-time
solution is obtained in the Solar-System barycentric space-time frame of
reference.

Quantities from each spacecraft light-time solution are used to calculate a
precision one-way or round-trip light time between a tracking station on Earth
(or an Earth satellite) and the spacecraft. Quantities from each quasar light-time
solution are used to calculate a precision delay of the quasar wavefront from its
reception at receiver 1 to its reception at receiver 2. Either receiver can be a
tracking station on Earth or an Earth satellite. These precision light times are
calculated from the formulations given in Section 11. The computed value of each
observable is obtained from one, two, or four light-time solutions and the
corresponding computed precision light times as described in Section 13.

The spacecraft light-time solution produces position, velocity, and
acceleration vectors of the receiver at the reception time t3, the spacecraft at the
reflection time t2 (for round-trip data) or transmission time t2 (for one-way data),
and the transmitter (for round-trip data) at the transmission time t1. The receiver
or the transmitter can be a tracking station on Earth or an Earth satellite. The
spacecraft can be a free spacecraft or a landed spacecraft (resting on any celestial
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body in the Solar System). In the Solar-System barycentric frame of reference,
the position, velocity, and acceleration vectors at t3, t2, and t1 are referred to the
Solar-System barycenter. In the local geocentric frame of reference, the position,
velocity, and acceleration vectors are referred to the center of mass of the Earth.

The quasar light-time solution produces position, velocity, and
acceleration vectors of receiver 1 at the reception time t1 of the quasar wavefront
at receiver 1 and position, velocity, and acceleration vectors of receiver 2 at the
reception time t2 of the quasar wavefront at receiver 2. These vectors are
referred to the Solar-System barycenter. Either receiver can be a tracking station
on Earth or an Earth satellite.

Section 8.2 gives the equations for the position, velocity, and acceleration
vectors of the receiver, spacecraft, and transmitter for a spacecraft light-time
solution. It also gives the equations for the position, velocity, and acceleration
vectors of the two receivers for a quasar light-time solution.

Section 8.3 describes the spacecraft light-time solution. The light-time
equation is derived in Section 8.3.1. The differential corrector, which is used in the
iterative solution for the epochs t2 and t1, is given in Section 8.3.2. The down-leg
predictor, which gives the first estimate of the epoch t2, is given in Section 8.3.3.
The up-leg predictor, which gives the first estimate of the epoch t1, is given in
Section 8.3.4. Quantities that are calculated or interpolated at the penultimate
estimate for t2 or t1 are mapped to the final value of the epoch using the
equations given in Section 8.3.5. The algorithm for the spacecraft light-time
solution in the Solar-System barycentric or local geocentric frame of reference is
given in Section 8.3.6.

Section 8.4 describes the quasar light-time solution. The quasar light-time
equation is derived in Section 8.4.1. The differential corrector which is used in
determining the reception time t2 at receiver 2 is given in Section 8.4.2. The
algorithm for the quasar light-time solution in the Solar-System barycentric
frame of reference is given in Section 8.4.3.
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8.2 POSITION, VELOCITY, AND ACCELERATION
VECTORS OF PARTICIPANTS

This section gives the high-level equations for the position, velocity, and
acceleration vectors of the participants in the spacecraft and quasar light-time
solutions. The vectors for a participant are evaluated at the epoch of participation
of the participant. The epochs of participation used in this section are the
arguments for computing the position, velocity, and acceleration vectors of the
participants and are specified in coordinate time (ET) of the Solar-System
barycentric space-time frame of reference or the local geocentric space-time
frame of reference.

For a spacecraft light-time solution in the Solar-System barycentric space-
time frame of reference, the position, velocity, and acceleration vectors of the
receiver at the reception time t3, the spacecraft at the reflection time or
transmission time t2, and the transmitter at the transmission time t1, all of which
are referred to the Solar-System barycenter C, are given by:

      r r r3
C

3
E

E
Ct t t3 3 3( ) = ( ) + ( )     r r r→ ú , úú (8�1)

      r r r r2
C

2
B

B
P

B,P
Ct t t t2 2 2 2( ) = ( ) + ( ) + ( )     r r r→ ú , úú (8�2)

      r r r1
C

1
E

E
Ct t t1 1 1( ) = ( ) + ( )     r r r→ ú , úú (8�3)

In Eq. (8�1), if the receiver (point 3) is a tracking station on Earth, the first
term on the right-hand side is the geocentric space-fixed position vector of the
tracking station (in the Solar-System barycentric frame of reference) calculated
from the formulation of Section 5. If the receiver is an Earth satellite, the first
term is the geocentric space-fixed position vector of the satellite interpolated
from the satellite ephemeris (the PV file for the satellite generated by program
PV). When the ODP is operating in the Solar-System barycentric space-time
frame of reference, PV files are generated in that frame of reference. The second
term of Eq. (8�1) is the position vector of the Earth relative to the Solar-System
barycenter, obtained by interpolating the planetary ephemeris (Section 3).
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In Eq. (8�2), the spacecraft (point 2) can be a free spacecraft or a landed
spacecraft. If the spacecraft is landed, point B is the center of mass of the body
that the landed spacecraft is resting upon. If the spacecraft is free, point B is the
center of integration for the spacecraft ephemeris (PV file). The position vector of
a free spacecraft relative to the center of integration B is obtained by
interpolating the spacecraft ephemeris (Section 4). If the spacecraft is landed, the
space-fixed position vector of the lander relative to the center of mass of the
lander body B is calculated from the formulation of Section 6.

The second term on the right-hand side of Eq. (8�2) is non-zero only if the
center of integration B for the ephemeris of a free spacecraft or the body B that a
landed spacecraft is resting upon is a satellite or the planet of one of the outer
planet systems. For this case, the position, velocity, and acceleration vectors of
the satellite or planet B of an outer planet system relative to the center of mass P
of the planetary system are interpolated from the satellite ephemeris for the
planetary system.

If the spacecraft is free and the center of integration B is the Sun, Mercury,
Venus, Earth, the Moon, or an asteroid or comet, the third term of Eq. (8�2) is
the position vector of body B relative to the Solar-System barycenter, obtained
by interpolating the planetary ephemeris (and the small-body ephemeris which
contains the asteroid or comet). If the center of integration is the center of mass
of an outer planet system, or the planet or a satellite of that system, the third
term of Eq. (8�2) is the position vector of the center of mass P of the planetary
system relative to the Solar-System barycenter, obtained by interpolating the
planetary ephemeris.

If the spacecraft is landed and the lander body B is Mercury, Venus, the
Moon, or an asteroid or comet, the third term of Eq. (8�2) is the position vector
of body B relative to the Solar-System barycenter, obtained by interpolating the
planetary ephemeris (and the small-body ephemeris which contains the asteroid
or comet). If the landed spacecraft is resting upon the planet or a satellite of an
outer planet system, the third term of Eq. (8�2) is the position vector of the
center of mass P of the planetary system relative to the Solar-System barycenter,
obtained by interpolating the planetary ephemeris.



LIGHT-TIME  SOLUTION

8�7

In Eq. (8�3), if the transmitter is a tracking station on Earth, the first term
on the right-hand side is the geocentric space-fixed position vector of the
tracking station calculated from the formulation of Section 5. If the transmitter is
an Earth satellite, the first term is the geocentric space-fixed position vector of the
satellite interpolated from the satellite ephemeris. The second term is the position
vector of the Earth relative to the Solar-System barycenter, obtained by
interpolating the planetary ephemeris.

For a spacecraft light-time solution in the local geocentric space-time
frame of reference, the position, velocity, and acceleration vectors of the
participants are referred to the center of mass E of the Earth. Hence, Eqs. (8�1)
and (8�3) reduce to their first terms. The geocentric space-fixed position vector of
a receiving or transmitting tracking station on Earth is calculated from the
formulation of Section 5. The only difference from the calculations in the Solar-
System barycentric frame is that the relativistic transformation from the
geocentric frame to the Solar-System barycentric frame (see Section 5.4.2) is not
performed in the local geocentric frame of reference. If the receiver or
transmitter is an Earth satellite, the geocentric position vector of the satellite is
interpolated from the satellite ephemeris (the PV file for the satellite generated
by program PV). When the ODP is operating in the local geocentric space-time
frame of reference, PV files are generated in that frame of reference. In the local
geocentric frame of reference, Eq. (8�2) reduces to its first term which is the
geocentric position vector of the free spacecraft, obtained by interpolating its
geocentric ephemeris (PV file).

For a quasar light-time solution, the position, velocity, and acceleration
vectors of receiver 1 at the reception time t1 of the quasar wavefront at receiver
1 are given by Eq. (8�3). The position, velocity, and acceleration vectors of
receiver 2 at the reception time t2 of the quasar wavefront at receiver 2 are given
by Eq. (8�3) with each subscript 1 replaced by a 2.



SECTION  8

8�8

8.3 SPACECRAFT LIGHT-TIME SOLUTION

8.3.1 LIGHT-TIME EQUATION

The light-time equation in the Solar-System barycentric space-time frame
of reference is derived in Subsection 8.3.1.1. This equation is converted to the
light-time equation in the local geocentric space-time frame of reference in
Subsection 8.3.1.2. Each of these sections give the auxiliary equations, which are
used in the light-time solution to evaluate the light-time equation. Additional
equations are given for calculating auxiliary quantities (e.g., the range rate) on
the up and down legs of the light path.

8.3.1.1 Solar-System Barycentric Space-Time Frame of Reference

The equation for the light path and the corresponding light-time equation
can be derived from the approximate expression (2�16) for the interval ds. The
first-order term in the light-time equation is the straight line path length between
two points divided by the speed of light c. The next approximation accounts for
the reduction in the coordinate velocity of light vc below c due to the
gravitational potential of the celestial bodies of the Solar System. In terms of the
rectangular coordinates of the light path and coordinate time t in the Solar-
System barycentric space-time frame of reference, the coordinate velocity of
light is defined to be:

    
v

dx
dt

dy
dt

dz
dtc

2
2 2 2

=






+






+






(8�4)

In Eq. (2�16), the interval ds is zero along the light path, and the coordinate
velocity of light vc is given by:

    
v c

U

c
c = −

+( )


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


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1
2

γ
(8�5)
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where all terms have been retained to order 1/c2, and the gravitational potential
U is given by Eq. (2�17). The relativistic light-time delay due to each body of the
Solar System accounts for the increase in the light time due to the reduction in vc

below c due to the mass of the body. Since U is linear in the contributions due to
the Solar-System bodies and because the velocities of these bodies are small
relative to c, the relativistic light-time delay due to each Solar-System body is
calculated in its own space-time frame of reference from the one-body metric for
that body. Simplifying Eq. (2�16) to the case of one celestial body located at the
origin of coordinates, deleting the scale factor l which does not affect the motion
of light, and changing to spherical coordinates gives the following expression for
the one-body metric, which contains terms to order 1/c2 in the components of
the metric tensor:

    
ds

c r
c dt

c r
dr r d r d2

2
2 2

2
2 2 2 2 2 21

2
1

2
= −





− +





+ +( )µ γ µ
θ θ φsin (8�6)

where r is the radial coordinate, θ is the angle from the z axis, and the angle φ is
measured from the x axis toward the y axis. The quantity µ is the gravitational
constant of the celestial body located at the origin of coordinates. Note that if all
terms were retained to order 1/c2 in Eq. (8�6), the first parentheses in Eq. (8�6)
would contain the additional term     +2 2 4 2β µ c r .

Eq. (8�6) will be used to derive the relativistic light-time delay due to the
Sun. This relativistic correction to the Newtonian light time accounts for the
reduction in the coordinate velocity of light vc below c and approximately for the
bending of the light path. This same term without the bending effect will be used
for calculating the relativistic light-time delay for other Solar-System bodies. The
Newtonian light time is the straight-line path length between the transmitter and
receiver divided by the speed of light c. It is calculated in the Solar-System
barycentric space-time frame of reference in the Solar-System barycentric light-
time solution.
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The equations of motion for light are the equations of a geodesic curve
plus the additional condition that the interval ds is zero along the light path. A
geodesic curve extremizes the integral of ds between two points:

    
δ ds =∫ 0 (8�7)

We can express this integral as:

    
δ £ ds =∫ 0 (8�8)

where the Lagrangian £ is given by:

    
£ = =

ds
ds

1 (8�9)

The Euler-Lagrange equations which extremize the integral (8�8) are given by:
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where     q = r,  θ ,  φ,  or t . From Eqs. (8�6) and (8�9),
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Evaluating Eq. (8�10) for q = θ using Eqs. (8�11) and (8�9) gives:
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ds
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=sin cos (8�12)

If coordinates are chosen so that a particle moves initially in the plane   θ π= 2 ,

  d dsθ  will be zero and Eq. (8�12) gives the result that     d ds2 2 0θ = . Thus, in the
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1-body problem, the motion of particles and light is planar, and the equations
may be simplified by setting

    

θ π

θ

=

=

2

0
d
ds

(8�13)

Since Eq. (8�11) is explicitly independent of t and φ, first integrals of Eq. (8�10) for
q = t and φ are given by     ∂ ∂£ constantdt ds( ) =  and     ∂ ∂ φ£ constantd ds( ) = .
Differentiating Eq. (8�11) accordingly and using Eqs. (8�9) and (8�13) gives:
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and
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Dividing Eq. (8�14) by Eq. (8�15) and ignoring 1/c4 terms gives:
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Setting ds = 0 in Eq. (8�6) and substituting Eq. (8�13) gives:
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φ

c r
c dt

c r
dr r d (8�17)

Substituting dt from Eq. (8�16) into Eq. (8�17), setting     dr dφ = 0 when r = R (the
minimum value of r on the light path), and ignoring 1/c4 terms gives:
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d

R
c

dr

r r
c

r R
c

R

φ

γ µ

γ µ γ µ
= ±

+
+( )









+
+( ) − +

+( )















1

2 1 2 1

2

2
2

2
2

1
2

(8�18)

Integrating between limits of (r, φ) and (R, 0) and ignoring 1/c4 terms gives:

    

φ π
γ µ

γ µ

γ µ
γ µ

= ± −
+

+( )
−

+( )




































= ±
+

+( )
−

+( )


















−

−

2

1
1

1
1

1 2

2

1 2

2

sin

cos

R
c

r c R

R
c

r c R

(8�19)

where the plus sign applies for increasing r and the minus sign applies for
decreasing r. From the first form of Eq. (8�19), when r approaches ∞, the angle φ
will approach one of the two asymptotic values:

    
φ π γ µ

= ± +
+( )







2

1
2c R

(8�20)

The angle between the incoming and outgoing asymptotes is thus:

    
∆φ

γ µ
=

+( )2 1
2c R

(8�21)

For general relativity, γ = 1 and the bending of light ∆φ has a maximum
value of 8.48 µrad (1.75 arc seconds) when R is equal to the radius of the Sun,
696,000 km. Figure 8�1 shows the curved path of a photon passing the Sun S.
Light is moving in the positive y direction, and the point of closest approach
occurs at x = R, y = 0. The polar coordinates (r, φ) and rectangular coordinates (x,
y) of two points on the light path are shown along with the straight line path (of
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length r12) joining these two points. The y intercept, which is equal to about
1096 astronomical units, was obtained from Eq. (8�19) by setting cos φ equal to
zero. The x intercept of the asymptotes follows from the y intercept and the
angle of the asymptote.

Given Eq. (8�19) for the light path derived from the one-body metric, we
will now derive the corresponding light-time equation from the one-body
metric. Substituting dφ from Eq. (8�16) into Eq. (8�17), setting dr/dt = 0 when r

equals its minimum value R, and ignoring 1/c4 terms gives:

    

dt

r
c r

dr

c r
c

R
c

= ±
+

+( )









+
+( )







 − +

+( )





















1
1

1 1

2

2

2

2

2

2
1
2

γ µ

γ µ γ µ

(8�22)

Making the following change of variable:

    
ρ

γ µ
= +

+( )
r

c

1
2 (8�23)

    
ρ

γ µ
0 2

1
= +

+( )
R

c
(8�24)

gives, ignoring 1/c4 terms:

    

dt
c

d

c
= ±

+
+( )









−( )

ρ
γ µ

ρ

ρ ρ

1
2

2
0

2
1
2

(8�25)
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Figure 8�1 Light Path
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Expressing the right-hand side as the sum of two terms gives:

    

dt
c

d

c

d
= ±

−( )
±

+( )
−( )

1 1

2
0

2
3

2
0

2
1
2

1
2

ρ ρ

ρ ρ

γ µ ρ

ρ ρ
(8�26)

Integrating from point 1 (ρ1, t1) to point 2 (ρ2, t2) gives:

    

t t
c

c

2 1 2
2

0
2

1
2

0
2

3

2 2
2

0
2

1 1
2

0
2

1

1

1
2

1
2

1
2

1
2

− = ± −( ) − −( )









±
+( ) + −( )

+ −( )

















ρ ρ ρ ρ

γ µ ρ ρ ρ

ρ ρ ρ
ln

(8�27)

where the plus signs apply when r is strictly increasing from point 1 to point 2,

and the minus signs apply when r is strictly decreasing from point 1 to point 2.

At this point, we need a physical interpretation of the quantity

  
ρ ρ2

0
2 1 2

−( ) . First, let l denote the path length between the points (R, 0) and

(r, φ):

    
l dr r d

R

r
= +( )∫ 2 2 2

0

1
2

φ
φ

,

,
(8�28)

which can be expressed as:

    

l r
d
dr

dr
R

r
= +

















∫ 1 2

2
1
2φ

(8�29)

Substituting   d drφ  from Eq. (8�18), ignoring terms of order 1/c4, and

substituting Eqs. (8�23) and (8�24) gives:
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l
d

=
−( )∫ ρ ρ

ρ ρρ

ρ

2
0

2
1
20

(8�30)

which is equal to:

    
l = −( )ρ ρ2

0
2

1
2 (8�31)

Hence, the quantity 
  
ρ ρ2

0
2

1
2−( )  is the path length l between the points (R, 0) and

(r, φ). We will use the notation:

    
l2 2

2
0

2
1
2= −( )ρ ρ (8�32)

and

    
l1 1

2
0

2
1
2= −( )ρ ρ (8�33)

We will also denote the path length between any two points 1 and 2 as l12. The
next step will be to substitute Eqs. (8�32) and (8�33) into Eq. (8�27) and to
transform sums and differences of l2 and l1 into the path length l12.

First, we will consider the first term of Eq. (8�27). For r strictly increasing
from point 1 to point 2, the first term of Eq. (8�27) is equal to:

    
+

−
=

l l
c

l
c

2 1 12

For r strictly decreasing from point 1 to point 2, the first term of Eq. (8�27) is
equal to:

    
−

−
=

−
=

l l
c

l l
c

l
c

2 1 1 2 12
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where, in this case, l1 is greater than l2. For r decreasing from r1 to R and then
increasing to r2, the light time from point 1 to point 2 calculated from the first
term of Eq. (8�27) is the sum of the first term evaluated on the inbound leg of the
light path plus the first term evaluated on the outbound leg of the light path:

    
+

−
−

−
=

+
=

l
c

l
c

l l
c

l
c

2 1 2 1 120 0

Hence, the first term of Eq. (8�27) can be replaced with the term:

    

l
c
12 (8�34)

where l12 is the path length between points 1 and 2.

Now, we will consider the second term of Eq. (8�27). The argument of the
natural logarithm can be expressed as:

  

ρ ρ ρ

ρ ρ ρ

ρ ρ ρ

ρ ρ ρ

ρ ρ ρ ρ ρ ρ

ρ ρ ρ ρ ρ ρ
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0
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0
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1
2

0
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2

0
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1
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1
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1
2

1
2

1
2

1
2

1
2

1
2
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=
− −( )
− −( )

=
+ + −( ) − −( )









+ − −( ) − − 22
1
2( )









(8�35)

where the second form is obtained from the first by multiplying and dividing by:

  
ρ ρ ρ ρ ρ ρ1 1

2
0

2
2 2

2
0

2
1
2

1
2− −( )







 − −( )









The third form is obtained from the first two forms by adding the numerators
and denominators. For r strictly increasing from point 1 to point 2, the argument
of the natural logarithm given by Eq. (8�35) becomes:

    

ρ ρ
ρ ρ

ρ ρ
ρ ρ

1 2 2 1

1 2 2 1

1 2 12

1 2 12

+ + −( )
+ − −( ) =

+ +
+ −

l l

l l
l
l
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and the second term of Eq. (8�27) becomes:

    
+

+( ) + +
+ −











1
3

1 2 12

1 2 12

γ µ ρ ρ
ρ ρc

l
l

ln (8�36)

For r strictly decreasing from point 1 to point 2, the second term of Eq. (8�27) is
negative. Changing this sign to positive inverts the argument of the natural
logarithm, which becomes:

    

ρ ρ ρ ρ ρ ρ

ρ ρ ρ ρ ρ ρ

ρ ρ
ρ ρ

ρ ρ
ρ ρ

1 2 2
2

0
2

1
2

0
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1
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0
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1
2

1
2

1
2

1
2
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





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+ + −( ) − −( )









=
+ − −( )
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=
+ + −( )
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l l

l l

l l

ll l
l
l1 2

1 2 12

1 2 12−( ) =
+ +
+ −

ρ ρ
ρ ρ

and the second term of Eq. (8�27) becomes the term (8�36). Note that for this
case, l1 is greater than l2. For r decreasing from r1 to R and then increasing to r2,
the light-time correction from point 1 to point 2 calculated from the second term
of Eq. (8�27) is the sum of the second term evaluated on the inbound leg of the
light path plus the second term evaluated on the outbound leg of the light path.
Using the first form of (8�35) for the argument of the natural logarithm, the
correction to the light time on the outbound leg is given by:

    
+

+( )
+( ) −[ ]1

3 2 2 0
γ µ

ρ ρ
c

lln ln

Using the second form of (8�35) for the argument of the natural logarithm, the
correction to the light time on the inbound leg is given by:

    
−

+( )
−( ) −[ ]1

3 1 1 0
γ µ

ρ ρ
c

lln ln
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The sum of these two terms is:

    
+

+( ) +
−











1
3

2 2

1 1

γ µ ρ
ρc

l
l

ln

Using the same types of procedures used in (8�35), the argument of the natural
logarithm can be expressed as:

    

ρ
ρ

ρ
ρ

ρ ρ
ρ ρ

ρ ρ
ρ ρ

2 2

1 1

1 1

2 2

1 2 1 2

1 2 1 2

1 2 12
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+
−

=
+
−

=
+ + +( )
+ − +( ) =

+ +
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l
l

l
l

l l

l l
l
l

(8�37)

Hence, for r decreasing from r1 to R and then increasing to r2, the effect of the
second term of Eq. (8�27) on the light time is given by Eq. (8�36). Since we
obtained this same result for r strictly increasing from point 1 to point 2 and also
for r strictly decreasing from point 1 to point 2, the second term of
Eq. (8�27) can be replaced with the term (8�36).

Replacing the first and second terms of Eq. (8�27) with the terms (8�34)
and (8�36) gives the following expression for the one-body light-time equation
(where the body is located at the origin of coordinates):

    
t t

l
c c

l
l2 1

12
3

1 2 12

1 2 12

1
− = +

+( ) + +
+ −











γ µ ρ ρ
ρ ρ

ln (8�38)

Figure 8�1 shows the straight-line path (of length r12) between points 1 and 2
and the curved path (of length l12). In order to evaluate Eq. (8�38), we need an
approximate expression for l12 − r12. This expression needs to be reasonably
accurate only when the bending of the light path is significant. This only occurs
when the transmitter and receiver are on opposite sides of the Sun (the only
body for which we consider the bending of the light path). Furthermore, r1 and
r2 must be large relative to the radius of the Sun, and the minimum radius R

(which occurs between r1 and r2) must not be large relative to the radius of the
Sun. For this geometry, we will assume that light travels along the asymptotes
between points 1 and 2. This is a reasonable approximation since the curved light
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path is much closer to the asymptotes than to the straight-line path connecting
points 1 and 2.

In Figure (8�1), let the angle between the straight-line light path (between
points 1 and 2) and the inbound asymptote at point 1 (where we assume that the
inbound asymptote intersects point 1) be denoted as α  1. Similarly, let the angle
between the straight-line path and the outbound asymptote at point 2 (where we
assume that the outbound asymptote intersects point 2) be denoted as α  2. The
angle between the two asymptotes is ∆φ given by Eq. (8�21). Since the sum of the
three angles in the triangle formed by the straight-line light path and the two
asymptotes is 180 degrees,

  α α φ1 2+ = ∆ (8�39)

For the conditions stated above, the distance D from the straight-line path to the
intersection of the asymptotes is given approximately by:

    y y D2 2 1 1α α= = (8�40)

where we consider y1 and y2 to be positive. Solving for α  1 and α  2 gives:

    
α φ1

2

1 2
=

+






∆
y

y y
(8�41)

    
α φ2

1

1 2
=

+






∆
y

y y
(8�42)

and

    
D

y y
y y

=
+







∆φ 1 2

1 2
(8�43)

Given these angles, the approximate expression for l12 − r12 is given by:
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l r
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1 1
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1
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2 2

− = + − −

=
−

+
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− −

= +

cos cosα α

α α

α α

(8�44)

Substituting Eqs. (8�41) and (8�42) into Eq. (8�44) gives:

    
l r

y y
y y12 12

2
1 2

1 22
− =

( )
+











∆φ
(8�45)

From Eq. (8�21), this is of order 1/c4. If y1 and y2 are one astronomical unit, and
R is equal to the 696,000 km radius of the Sun, the curved path length l12

between points 1 and 2 is 2.7 m longer than the straight-line path length r12. If y2

approaches infinity, l12 − r12 approaches 5.4 m. For these same two cases, the
values of the distance D between the straight-line path and the intersection of the
two asymptotes are 635 km and 1270 km, respectively. From Figure 8�1, the
distance between the curved path and the intersection of the asymptotes is about
3 km. Hence, the assumption that the curved path is much closer to the
asymptotes than the straight-line path is correct.

Substituting Eq. (8�23) into the second term of Eq. (8�38) gives:

    

t t
l
c c

r r l

r r l

c

c

2 1
12
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1 2 12
2 1

1 2 12
2 1
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

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







+( )

+( )
γ µ

γ µ

γ µ
ln (8�46)

The second term of Eq. (8�46) is of order 1/c3. The effect of the 1/c2 terms in the
numerator and denominator of the argument of the natural logarithm is of
order 1/c5. From Eqs. (8�45) and (8�21), the curved path length l12 differs from
the straight-line path length r12 by terms of order 1/c4. In the second term of
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Eq. (8�46), this difference would produce terms of order 1/c7, which are
negligible. Hence, in the second term of Eq. (8�46), we can replace l12 with r12:

    

t t
l
c c

r r r

r r r

c

c

2 1
12

3

1 2 12
2 1

1 2 12
2 1

1 2

2

− = +
+( ) + + +

+ − +

















+( )

+( )
γ µ

γ µ

γ µ
ln (8�47)

The first term of Eq. (8�47) is the light time from point 1 to point 2 along the
curved path at speed c. The second term is the increase in the light time due to
traveling along this path at the coordinate velocity of light (see Eq. 8�5), which is
less than c. The effect of the bending of the light path on the second term of Eq.
(8�47) is due to the 1/c2 terms in the numerator and denominator of the
argument of the natural logarithm. However, virtually all of the effect comes
from the term in the denominator.

The following derivation will give an approximate expression for the
effect of the bending of light on the second term of Eq. (8�47). As stated above,
this effect is due to the 1/c2 term in the denominator of the argument of the
natural logarithm. The expression only needs to be reasonably accurate when
the effect of the bending is large. This occurs for the geometry stated after
Eq. (8�38). This is the same geometry used to derive Eq. (8�45), which gives the
effect of the bending of the light path on the first term of Eq. (8�47). In the
second term of Eq. (8�47), the natural logarithm can be expressed as the natural
logarithm of the numerator minus the natural logarithm of the denominator.
The effect of the latter term on Eq. (8�47) is:

    
−

+( )
+ − +





+( )1
3 1 2 12

2 1
2

γ µ γ µ

c
r r r

c
ln (8�48)

Differentiating this term gives the effect of the 1/c2 term in the argument of the
natural logarithm:
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−
+( )









+ −

1
2

2 1
2

2

1 2 12

c c
r r r

γ µ

(8�49)

Referring to Figure 8�1, for the conditions stated after Eq. (8�38), the
denominator of Eq. (8�49) is given to sufficient accuracy by Eq. (8�44) evaluated
with:

    
α 1

1
= R

y
(8�50)

    
α 2

2
= R

y
(8�51)

Substituting Eqs. (8�50) and (8�51) into Eq. (8�44) and replacing the denominator
of Eq. (8�49) with that result gives:

    
− ( )

+










1 2 1 2

1 2c
y y

y y
∆φ (8�52)

This is the effect of the bending of the light path on the second term of
Eq. (8�47). From Eq. (8�45), the effect of the bending of the light path on the first
term of Eq. (8�47) is given by:

    

1
2

2 1 2

1 2c
y y

y y
∆φ( )

+








 (8�53)

The net of these two effects is one-half of Eq. (8�52). Hence, we can replace l12 in

the first term of Eq. (8�47) with r12 and in the second term of Eq. (8�47) we must

change     2 1 2+( )γ µ/c  to     1
2+( )γ µ/c  in the denominator of the natural logarithm.

In order for the modified form of Eq. (8�47) to be consistent with Eq. (8�5) for

the coordinate velocity of light, we must make the same change in the
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numerator of the natural logarithm. The final version of the one-body light-time

equation is thus given by:

    

t t
r
c c

r r r

r r r

c
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1 2 12
1

1 2

2

− = +
+( ) + + +

+ − +

















+( )

+( )
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ln (8�54)

Eq. (8�54) was derived from the one-body metric given by Eq. (8�6).
Eq. (8�6) was obtained by simplifying Eq. (2�16) to the case of one celestial body
located at the origin of coordinates. Eq. (2�16) was obtained from Eq. (2�15) by
retaining terms in each component gij of the metric tensor to order 1/c2 only.
The neglected 1/c4 terms of g44 affect the light time by a maximum of about
1 cm/c. The neglected components g14, g24, and g34 of the metric tensor produce
terms in the coordinate velocity of light (see Eq. 8�5) that are of order 1/c3.
These neglected terms affect the light time by less than 1 cm/c.

Eq. (8�54) can be used to assemble the final form of the light-time
equation used in the light-time solution in the Solar-System barycentric space-
time frame of reference. The first term of Eq. (8�54) is evaluated in the Solar-
System barycentric frame of reference. It is the time for light to travel from point
1 to point 2 along a straight-line path at the speed of light c. This is the
Newtonian light time. The second term of Eq. (8�54) accounts for the reduction
in the coordinate velocity of light below c and the bending of the light path. The
bending increases the path length but also increases the coordinate velocity of
light because the curved light path is further away from the gravitating body
than the straight-line path. The net effect of the bending is to decrease the light
time by the increase in the path length divided by c. The effects of the bending of
the light path are due to the 1/c2 terms in the argument of the natural logarithm.
The second term of Eq. (8�54) including the bending terms is evaluated for the
Sun. This same term without the bending terms is evaluated for every other
celestial body of the Solar System (the nine planets and the Moon) that the user
�turns on�. The final form of the light-time equation in the Solar-System
barycentric space-time frame of reference is given by:
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(8�55)

where µS is the gravitational constant of the Sun and µB is the gravitational
constant of a planet, an outer planet system, or the Moon. In the spacecraft light-
time solution, t1 refers to the transmission time at a tracking station on Earth or
at an Earth satellite, and t2 refers to the reflection time at the spacecraft or, for
one-way data, the transmission time at the spacecraft. The reception time at a
tracking station on Earth or at an Earth satellite is denoted by t3. Hence,
Eq. (8�55) is the up-leg light-time equation. The corresponding down-leg light-
time equation is obtained by replacing 1 with 2 and 2 with 3 as indicated after the
equation.

The following equations will be used to evaluate Eq. (8�55) on the up and
down legs of the light path in the light-time solution in the Solar-System
barycentric space-time frame of reference. Equations are also given for
calculating certain auxiliary quantities used at various places in program Regres.
The light-time solution in the Solar-System barycentric frame of reference gives
the position, velocity, and acceleration vectors referred to the Solar-System
barycenter C of the receiver (point 3) at the reception time t3, the spacecraft
(point 2) at the reflection time or transmission time t2, and the transmitter
(point 1) at the transmission time t1. These vectors, which are calculated from
Eqs. (8�1) to (8�3), are denoted as:

      r r r3 3 2 2 1 1
C C C  t t t( ) ( ) ( ), ,     r r r→ ú , úú (8�56)

Using these vectors, calculate the following quantities on the up and down legs
of the light path:
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      r r r12 2
C

1
C= ( ) − ( )t t2 1

    

r r→
→
→

ú
1 2
2 3

(8�57)

      r12 = r12   
1 → 2
2 → 3

(8�58)

where the vertical bars indicate the magnitude of the vector. The range rate on
the up and down legs is calculated from:

      
ú úr

r12
12

12= ⋅
r

r12
  
1 → 2
2 → 3

(8�59)

The following quantities are the negative of the contribution to the range rate on
the up and down legs due to the velocity of the transmitter only:

      
ú úp

r
t12

12

12
1= ⋅ ( )r

r1
C

  
1 → 2
2 → 3

(8�60)

Note that r12 or r23 in the first term of Eq. (8�55) is calculated from Eqs. (8�57)
and (8�58). The second term of Eq. (8�55) contains the relativistic delay in the
light time due to the Sun S. The third term contains relativistic delays for body B
equal to Mercury, Venus, Earth, the Moon, and the planetary systems Mars
through Pluto. The delay due to each of these ten bodies can be turned on or off
by the user on the GIN file. The following equations can be used to calculate the
three variables in the third term of Eq. (8�55) and, when B = the Sun S, the three
variables in the second term. For each body B (up to eleven bodies, including the
Sun S), the light-time solution interpolates the planetary ephemeris for the
position, velocity, and acceleration vectors of body B relative to the Solar-System
barycenter C at the epochs of participation t3, t2, and t1:

      rB
C t3( ),  rB

C t2( ),  rB
C t1( )     r r r→ ú , úú (8�61)

Calculate the position vector of each participant relative to body B at its epoch of
participation:

      r r r1
B

1
C

B
Ct t t1 1 1( ) = ( ) − ( )   1 → 2, 3 (8�62)
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Using these vectors, calculate the up-leg and down-leg position vector
differences relative to body B from:

      r r r12 2 1
B

2
B

1
B= ( ) − ( )t t

  
1 2
2 3

→
→

(8�63)

Calculate the magnitudes of the three vectors in Eqs. (8�62):

      
r1

B = r1
B t1( )   1 → 2, 3 (8�64)

Calculate the magnitudes of the two vectors in Eqs. (8�63):

      
r12

B = r12
B

  
1 2
2 3

→
→

(8�65)

For light passing a celestial body, starting at radius r1, decreasing to a
minimum radius R, and then increasing to radius r2, the relativistic light-time
delay due to the mass of the body (one of the natural logarithm terms of
Eq. 8�55) is given approximately by:

    

1 2 2
3

1 2+( ) 
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γ µ
c

r
R

r
R

ln (8�66)

where µ is the gravitational constant of the body. This equation is quite accurate
when     r r R1 2,    >> . For light traveling from Jupiter, grazing the surface of the
Sun, and arriving at the Earth, r1 = 5 astronomical units (see Section 4, after Eq.
4�12, for the number of kilometers per astronomical unit), r2 = 1 astronomical
unit, and the radius of the Sun R is 696,000 km. For this case, the relativistic light-
time delay due to the mass of the Sun is about 40.6 km/c. For light traveling
from Saturn, grazing the surface of Jupiter, and arriving at the Earth, r1 = r2 =
5 astronomical units and the radius R of Jupiter is 71,500 km. For this case, the
relativistic light-time delay due to the mass of Jupiter is about 56 m/c. For light
traveling from Saturn, grazing the surface of the Earth, and then stopping, r1 =
10 astronomical units and the radius R of the Earth is 6378 km. For this one-way
case, the relativistic light-time delay due to the mass of the Earth is calculated
from Eq. (8�66) with the factor 2r2/R deleted. The result is a delay of 11.6 cm/c.
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In Eq. (8�55), the relativistic light-time delay due to each celestial body of
the Solar System is calculated in the space-time frame of reference of that body.
The error in the calculated delay due to ignoring the Solar-System barycentric
velocity of the gravitating body has an order of magnitude equal to the
calculated delay multiplied by the velocity of the body divided by the speed of
light c. In the examples given above for the relativistic light-time delays due to
the Sun, Jupiter, and the Earth, the errors in the calculated delays due to ignoring
the Solar-System barycentric velocities of these bodies are about 2 mm/c,
3 mm/c, and 0.01 mm/c, respectively.

In Eq. (8�55), the relativistic light-time delay due to the Sun accounts for
the bending of the light path due to the Sun. However, the relativistic light-time
delay due to each other body of the Solar System does not account for the
bending of the light path due to that body. The largest error occurs for Jupiter.
For a light path starting 5 astronomical units from Jupiter, grazing the surface of
Jupiter, and ending 5 astronomical units from Jupiter, the relativistic light-time
delay due to the mass of Jupiter is about 56 m/c. The error in this calculation due
to ignoring the bending of the light path due to the mass of Jupiter is about
1 mm/c.

Consider a light path between the Earth and a distant spacecraft, which
grazes the surfaces of the Sun and Jupiter. The bending of light due to the Sun
changes the closest approach radius R at Jupiter and hence the relativistic light-
time delay due to Jupiter. Similarly, the bending of light due to Jupiter changes
the closest approach radius at the Sun and hence the relativistic light-time delay
due to the Sun. Since neither of these effects are included in the light-time
equation, the sizes of these effects are errors in Eq. (8�55) for the light time.

First, consider that the transmitter is the Earth, and the light path grazes
the surfaces of the Sun and Jupiter on the way to an infinitely distant spacecraft.
For this case, r1 relative to the Sun is  1 astronomical unit, and r2 relative to the
Sun is infinite. The distance D from the straight-line light path to the intersection
of the incoming and outgoing asymptotes at the Sun is given by Eq. (8�43),
where ∆φ is the bending of light due to the Sun, given by Eq. (8�21). For this case,
D = 1270 km, and the outgoing asymptote is parallel to the straight-line light
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path. From Eqs. (8�66) and (8�21), the change in the relativistic light-time delay
due to a change ∆R in the closest approach radius R is given by the bending of
light ∆φ due to the body, calculated from Eq. (8�21), multiplied by ∆R/c. The
error in the relativistic light-time delay due to Jupiter due to calculating R from
the straight-line light path instead of from the curved path is ∆φ for Jupiter
(calculated for R = 71500 km) which is 7.887 x 10−8 radians multiplied by
∆R = 1270 km/c. The resulting error is 10 cm/c.

Next, consider that the transmitter is a distant spacecraft, and the light
path grazes the surfaces of Jupiter and the Sun on the way to the Earth. For this
case, r1 relative to Jupiter is infinite and r2 relative to Jupiter is 6 astronomical
units. The distance D from the straight-line light path to the intersection of the
incoming and outgoing asymptotes at Jupiter is given by Eq. (8�43), where ∆φ is
the bending of light due to Jupiter, given by Eq. (8�21). For this case, D = 71 km,
and the outgoing asymptote at Jupiter intersects the Earth. The change in the
closest approach radius R at the Sun is 71 km/6 = 11.8 km. The error in the
relativistic light-time delay due to the Sun due to calculating R from the straight-
line light path instead of from the curved path is ∆φ for the Sun (calculated for R

= 696000 km), which is 8.486 x 10−6 radians multiplied by ∆R = 11.8 km/c. The
resulting error is 10 cm/c.

8.3.1.2 Local Geocentric Space-Time Frame of Reference

From Sections 4.5.2 to 4.5.4 and Section 4.4.3, the geometry of space-time
near the Earth is described by the one-body point-mass isotropic metric for the
Earth in an inertial coordinate system that is rotating due to geodesic precession
and the Lense-Thirring precession. The rotation rate of the geocentric inertial
coordinate system is about 3 x 10−15 rad/s due to geodesic precession and about
2 x 10−14 rad/s near the Earth due to the Lense-Thirring precession.

The light-time solution in the local geocentric space-time frame of
reference is obtained in a non-inertial frame of reference, which is non-rotating
relative to the Solar-System barycentric space-time frame of reference. When
formulating the equations of motion in the non-inertial geocentric frame of
reference, it must be considered to be rotating with angular velocity − Ω (where
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Ω is the rotation rate of the inertial frame of reference). The down-leg light path
in the local geocentric frame of reference begins with the correct position of the
GPS satellite at the transmission time t2 and ends with the correct position of the
TOPEX satellite or a GPS receiving station on Earth at the reception time t3. In the
non-rotating and non-inertial geocentric frame of reference, the Coriolis and
centrifugal accelerations produce a slight curvature of the light path. However, in
the local geocentric frame of reference, the light-time solution uses a straight-line
light path. Neglect of the curvature of this path produces a negligible error in the
light time.

The one-body point-mass metric for the Earth is given by Eq. (4�60).
Converting from rectangular to spherical coordinates and retaining terms to
order 1/c2 in the components of the metric tensor gives Eq. (8�6), which was
used to derive the one-body light-time equation, given by Eq. (8�54). In the local
geocentric space-time frame of reference, the curvature of the light path due to
the mass of the Earth can be ignored and the down-leg light-time equation is
given by:
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(8�67)

The light-time solution in the local geocentric space-time frame of reference is
currently a down-leg light-time solution only, which is all that is required for
processing GPS/TOPEX data. If an up leg is ever added to the light-time solution
in the geocentric frame of reference, the up-leg light-time equation is obtained
from Eq. (8�67) by replacing 3 with 2 and 2 with 1.

The variables in Eq. (8�67) and in the corresponding up-leg light-time
equation and certain auxiliary quantities can be calculated from Eqs. (8�56) to
Eq. (8�60) and Eq. (8�64). In these equations, the superscripts C and B refer to the
Earth E. A round-trip light-time solution in the local geocentric space-time frame
of reference would produce the vectors given by Eq. (8�56), except that C refers
to the Earth E. These vectors are obtained from Eqs. (8�1) to (8�3) as described in
the penultimate paragraph of Section 8.2. The variables calculated from
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Eqs. (8�57) to (8�60) have a superscript E in the local geocentric frame of
reference.

For a signal transmitted from a GPS satellite to the TOPEX satellite or a
GPS receiving station on Earth, the second term of Eq. (8�67) is less than 2 cm
divided by the speed of light c. Because this term is so small, the gravitational
constant of the Earth used in computing it can be the value in the barycentric
frame obtained from the planetary ephemeris, or the value in the local
geocentric frame of reference calculated from the barycentric value using
Eq. (4�25).

8.3.2 LINEAR DIFFERENTIAL CORRECTOR FOR TRANSMISSION

TIME ON A LEG OF THE LIGHT PATH

In a spacecraft light-time solution, the reception time at a tracking station
on Earth or at an Earth satellite is denoted as t3. The down-leg light-time solution
obtains the transmission time t2 at the spacecraft (free or landed) by an iterative
procedure. Given the converged value of t2, the up-leg light-time solution
obtains the transmission time t1 at a tracking station on Earth or at an Earth
satellite by an iterative procedure.

Let tj and ti denote the reception and transmission times for a leg of the
light path. For the down leg of the light path, j is 3 and i is 2. For the up leg, j is 2
and i is 1. This section develops a linear differential corrector formula for
determining the transmission time ti. For each estimate of the transmission time
ti, the differential corrector produces a linear differential correction ∆ti to ti.

In terms of j and i, the light-time equation (8�55) in the barycentric frame
and the light-time equation (8�67) in the local geocentric frame can be expressed
as:

  
t t

r

c
RLTj i

i j
i j− = + (8�68)
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where   RLTi j  is the relativistic light-time delay on the   i j  leg. In the barycentric

frame, it is the sum of the natural logarithm terms on the right-hand side of

Eq. (8�55). In the local geocentric frame, it is the natural logarithm term on the

right-hand side of Eq. (8�67). In the local geocentric frame,   ri j  is actually     ri j
E . For

a given estimate of the transmission time ti, let the function f be the

corresponding value of the left-hand side of Eq. (8�68) minus the right-hand side

of this equation:

  
f = t j − ti −

ri j

c
− RLTi j (8�69)

Holding   RLTi j  fixed, the partial derivative of f with respect to ti is given by:
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which was obtained by differentiating Eq. (8�69) and Eqs. (8�56) to (8�58) and
then substituting Eq. (8�60). These last four equations are used to calculate the
variables in Eq. (8�70). In the local geocentric frame, C in these equations and in
Eq. (8�70) refers to the Earth E. The solution of Eq. (8�68) for the transmission
time ti is the value of ti for which the function f is zero. For a given estimate of ti,
and the corresponding values of f and   ∂ f ∂ ti , the differential correction to ti

which drives f to zero linearly is given by:

    
f +

∂ f
∂ ti

∆ti = 0 (8�71)

Solving for ∆ti and substituting Eqs. (8�69) and (8�70) gives the desired equation
for the linear differential correction ∆ti to ti:
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All of the variables in Eq. (8�72) are available from the light-time solution.

8.3.3 DOWN-LEG PREDICTOR FOR TRANSMISSION TIME t2

The down-leg predictor provides the first estimate of the down-leg light
time. Subtracting it from the known reception time t3 at a tracking station on
Earth or at an Earth satellite gives the first estimate of the transmission time t2 at
the spacecraft (a free spacecraft or a landed spacecraft).

Let ∆t3 equal the reception time t3(ET) in coordinate time ET for the
current light-time solution minus the value from the last light-time solution
computed for the same spacecraft. For deep space tracking, there is only one
spacecraft. However, when processing GPS/TOPEX data, there are multiple GPS
satellites. Note that the receiving station on Earth or receiving Earth satellite does
not have to be the same for the two light-time solutions. Also, let ∆t2 equal the
transmission time t2(ET) in coordinate time ET for the current light-time solution
minus the value from the last light-time solution computed for the same
spacecraft.

If the current and previous light-time solutions for the same transmitting
spacecraft have the same receiver at t3, the relation between ∆t2 and ∆t3 is given
approximately by:

    
∆ ∆t t

r

c2 3
23

1= −






ú

(8�73)

where     
úr23  is the down-leg range rate given by Eq. (8�59). If the current and

previous receivers are different, ∆t2 computed from Eq. (8�73) will be in error by
less than 0.03 seconds. For a typical range rate of 30 km/s, the effect of the     

úr23

term of Eq. (8�73) on ∆t2 is 0.1 s for a data spacing (∆t3) of 1000 s.
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Let     r 20
 and     

úr20
 equal the space-fixed position and velocity vectors of the

spacecraft at the transmission time t2 for the last light-time solution for the same
spacecraft. These vectors are relative to the Solar-System barycenter C when
computing in that frame of reference and are relative to the Earth E in the local
geocentric frame of reference. The predicted position vector of the spacecraft at
the transmission time t2 for the current light-time solution is given
approximately by:

      r r r2 2 2 20 0
= + ú ∆t (8�74)

Let r3 equal the space-fixed position vector of the receiver (tracking station on
Earth or Earth satellite) at the reception time t3 for the current light-time
solution. It is referred to the Solar-System barycenter in that frame and to the
Earth in the local geocentric frame of reference. Then, the predicted down-leg
light time is given by:

      
t3 − t2 =

r 3 − r 2

c
(8�75)

where the bars denote the magnitude of the vector and c is the speed of light.

From Eqs. (8�73) to (8�75) with typical range rates and velocities of
30 km/s, the effect of the     

úr23/c term of Eq. (8�73) on the predicted down-leg
light time is about 10−8 ∆t3. For a very large data spacing ∆t3 of 105 seconds
(1.16 days), which is extremely unlikely, this effect is 0.001 s which is negligible.
Hence, the     

úr23/c term of Eq. (8�73) can be discarded, which gives:

    ∆t2 = ∆t3 (8�76)

From Eqs. (8�74) to (8�76), the predicted down-leg light time can be computed
from:

      
t t

t

c3 2
3 2 2 30 0− =

− −r r rú ∆
(8�77)
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Subtracting the predicted down-leg light time from the reception time t3(ET)
gives the first estimate for the transmission time t2(ET) at the spacecraft in
coordinate time ET.

The error in the predicted light time is less than the magnitude of the first
neglected term in the Taylor series for r2 evaluated somewhere in the interval
∆t2, divided by c:

    
δ t3 − t2( ) <

a ∆t3( )2

2c
(8�78)

where a is the acceleration of the spacecraft. The maximum acceleration in the
Solar System occurs in a region near the Sun. At 3.3 solar radii from the center of
the Sun, the acceleration is 25 m/s2. This acceleration increases to 274 m/s2 at the
surface of the Sun. Except for this region, where it is unlikely that a spacecraft
would survive, the maximum acceleration in the rest of the Solar System is
25 m/s2 which occurs at the surface of Jupiter. With simultaneous tracking data
from several tracking stations, ∆t3 can be positive or negative, and its absolute
value can vary from zero to the doppler count time. I presume that when a =
25 m/s2, the count time and data spacing will not exceed 1000 s. Substituting
these values into Eq. (8�78) gives a down-leg predictor error of 0.042 s.
Furthermore, I presume that far larger count times will be used with much
smaller accelerations, but the product a(∆t3)2 will not exceed 25 x 106 m. This will
allow count times up to 3160 s when a = 2.5 m/s2, 10,000 s when a = 0.25 m/s2,
and 31,600 s when a = 0.025 m/s2. In cruise at one astronomical unit from the
Sun, the spacecraft acceleration due to the Sun is 5.9 x 10−3 m/s2, and count times
as high as 65,000 s can be used. All of these count times are considerably larger
than those currently used, especially the larger count times corresponding to the
smaller accelerations. Thus, since all of the above count times correspond to a
predictor error of 0.042 s, it is safe to say that the predicted down-leg light time
will almost always be accurate to better than 0.1 s. Of course, the predicted
down-leg light time for the first light-time solution after a large gap in the data
may be very inaccurate. The only consequence of this would be a few extra
iterations in the down-leg light-time solution for the transmission time t2.
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Eq. (8�77) for the predicted down-leg light time requires a previous light-
time solution for the same spacecraft. Hence, for the first light-time solution for
each spacecraft, use a predicted down-leg light time of zero. That is, the first
estimate of t2(ET) will be t3(ET). For GPS/TOPEX data, an estimated down-leg
light time of zero is quite accurate since the actual down-leg light time is less than
0.1 s. For a distant spacecraft, the use of an initial light time of zero will simply
result in a few extra iterations for determining t2 for the first light-time solution.

8.3.4 UP-LEG PREDICTOR FOR TRANSMISSION TIME t1

The up-leg light time differs from the down-leg light time because of the
motion of the Earth between the transmission time t1 at the transmitting station
on Earth or at an Earth satellite and the reception time t3 at the receiving station
on Earth or at an Earth satellite and because of the different geocentric positions
of the transmitter and receiver at these two times. The up-leg predictor does not
account for the geocentric motion of the transmitter between t1 and t3 or the
different geocentric positions of separate transmitters and receivers. The
resulting error in the predicted up-leg light time is up to the Earth�s radius
divided by the speed of light or 0.021 seconds. Note that the up-leg and down-
leg light times are both based upon the position of the spacecraft at the reflection
time t2.

Let     úrE  denote the contribution to the down-leg range rate due to the
velocity of the Earth:

      
ú úr

r
tE E

C= ⋅ ( )r
r23

23
3 (8�79)

where the down-leg unit vector is computed from Eqs. (8�56) to (8�58) and the
second vector in (8�79) is the velocity vector of the Earth relative to the Solar-
System barycenter at the reception time t3. Note that in the local geocentric
space-time frame of reference, this velocity vector is relative to the Earth E and

    úrE  is zero.
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Given the converged down-leg light time t3 − t2 in coordinate time ET and

    úrE  calculated from Eq. (8�79), the predicted up-leg light time is calculated from:

    
t t t t
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Subtracting the predicted up-leg light time from t2(ET) obtained from the down-
leg light-time solution gives the first estimate for the transmission time t1(ET) at
the transmitting station on Earth or an Earth satellite.

The up-leg predictor does not account for the acceleration of the Earth
acting from t1 to t3. The resulting error in the predicted up-leg light time can be
calculated from Eq. (8�78) where a refers to the acceleration of the Earth
(6 x 10−6 km/s2) and ∆t3 refers to the round-trip light time. For a spacecraft
range of 50 astronomical units, the round-trip light time is 50,000 s, and the error
in the predicted up-leg light time is up to 0.025 s. Considering the above-
mentioned error of 0.021 s, the total error in the predicted up-leg light time is less
than 0.05 seconds. Note that for a spacecraft range of 50 astronomical units, the

    úrE  term of Eq. (8�80) contributes about 5 s to the predicted up-leg light time.

If an up leg is ever added to the light-time solution in the local geocentric
space-time frame of reference, Eq. (8�80) applies with     úrE  = 0.

8.3.5 MAPPING EQUATIONS

The iterative solution for the transmission time ti for a given leg of the
light path continues until the linear differential correction ∆ti to ti calculated from
Eq. (8�72) is less than the value of the input variable LTCRIT. The nominal value
for LTCRIT is 0.1 s. Then, position and velocity vectors and related quantities
(which are calculated or are interpolated from planetary, small-body, satellite,
and spacecraft ephemerides) are mapped from the estimate ti of the transmission
time to the final value ti + ∆ti. The mapping equations, which are used at t2 and at
t1, are given in Subsection 8.3.5.1. The corresponding analysis, which led to the
nominal value of 0.1 s for LTCRIT, is given in Subsection 8.3.5.2.
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8.3.5.1 Mapping Equations

Space-fixed position and velocity vectors are mapped using quadratic and
linear Taylor series:

      r r r rt t t t t t ti i i i i i i+( ) = ( ) + ( )( ) + ( )( )∆ ∆ ∆ú úú1
2

2 (8�81)

      ú ú úúr r rt t t t ti i i i i+( ) = ( ) + ( )( )∆ ∆ (8�82)

These equations are used to map space-fixed position and velocity vectors
interpolated from the planetary ephemeris and small-body ephemeris at t2 and
t1 (Section 3.1.2.3), a satellite ephemeris at t2 (Section 3.2.2.2), a spacecraft
ephemeris at t2, calculated body-centered space-fixed position and velocity
vectors of a landed spacecraft at t2 and a tracking station on Earth at t1, and the
ephemeris of an Earth satellite at t1.

The 3 x 3 body-fixed to space-fixed transformation matrix TE for the Earth
at t1 and the matrix TB for the body B that a landed spacecraft is resting upon at
t2 are mapped using a quadratic Taylor series:

    T t t T t T t t T t ti i i i i i i+( ) = ( ) + ( )( ) + ( )( )∆ ∆ ∆ú úú1
2

2 (8�83)

True sidereal time θ at t1 is mapped linearly:

    θ θ θt t t t ti i i i i+( ) = ( ) + ( )∆ ∆ú (8�84)

Some mapping is also performed at the reception time t3 at a tracking
station on Earth or at an Earth satellite. In the algorithms for computing
ET − TAI at the reception time t3 at a tracking station on Earth (Section 7.3.1) and
at an Earth satellite (Section 7.3.3), position and velocity vectors are mapped
from a preliminary estimate of t3(ET) to the final value of t3(ET) (which differ by
less than 4 x 10−5 s) using Eqs. (7�9) and (7�10), which are equivalent to Eqs.
(8�81) and (8�82). In the algorithm in Section 7.3.1, the Earth-fixed to space-fixed
transformation matrix TE for the Earth and true sidereal time θ are also mapped
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from the preliminary estimate of t3(ET) to the final value using Eqs. (8�83) and
(8�84).

8.3.5.2 Nominal Value for Variable LTCRIT

The error in the linear differential correction ∆ti calculated from
Eq. (8�72) can be up to:

    

a ∆ti( )2

2c
(8�85)

where a is the acceleration of the transmitter for the leg of the light path (the
spacecraft at t2 for the down leg, or a tracking station on Earth or Earth satellite
at t1 for the up leg). The maximum acceleration is that of a free spacecraft. From
the paragraph containing Eq. (8�78), the highest acceleration that is likely to be
encountered is 25 m/s2. The mapping equations (8�81) to (8�84) use a differential
correction ∆ti up to the value of the variable LTCRIT, whose nominal value is
0.1 s. Hence, from (8�85), differential corrections ∆ti up to 0.1 s will be accurate to
at least 0.4 ns. Time in the ODP is measured in seconds past J2000. Time up to
30 years from J2000 will be represented to 10−8 s on a 17-decimal-digit computer
(the ODP is currently programmed on computers that have a word length
greater than 16 decimal digits but less than 17 decimal digits). Hence, the error in
∆ti up to 0.1 s calculated from Eq. (8�72) is less than the last bit of time measured
in seconds past J2000 on a 17-decimal-digit machine. So, if ∆ti is less than 0.1 s,
ti +∆ti is the final value of ti.

Of the four mapping equations, the accuracy of Eq. (8�81) for mapped
position vectors is the most critical. Computed values of observed quantities are
calculated from accurate and precise values of position vectors of the
participants. High-accuracy velocity vectors are not required. The error in
mapped position vectors calculated from Eq. (8�81) is up to:

    
1
6 J ∆ti( )3 (8�86)
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where J is the magnitude of the jerk vector for participant i. The jerk vector for a
free spacecraft can be much higher than the jerk vector for a tracking station or a
landed spacecraft. The highest value likely to be encountered anywhere in the
Solar System is 5 x 10−4 km/s3. Hence, from (8�86), position vectors mapped
through a time interval ∆ti of up to 0.1 s will have a Taylor series truncation error
of up to 10−4 m. From the preceding paragraph, the time truncation error on a
17-decimal-digit machine is 10−8 s. For a typical velocity of 30 km/s, the
corresponding error in position is 3 x 10−4 m. Hence, mapping quantities through
∆ti up to LTCRIT = 0.1 s is acceptable because the resulting Taylor series
truncation error for position vectors is less than the variation in position vectors
due to the time truncation error.

From Section 8.3.3, the first estimate for t2 will almost always be accurate
to better than 0.1 s. From Section 8.3.4, the first estimate for t1 will always be
accurate to better than 0.05 s. From Section 8.3.5.2, quantities which are
calculated or interpolated at an estimate for ti (where i = 2 or 1) can be mapped
through ∆ti up to LTCRIT = 0.1 s with negligible error. Hence, in almost all
circumstances, quantities need to be calculated or interpolated at only one
estimate for t2 and t1. However, if the user desires to reduce the Taylor series
truncation error in Eq. (8�81) by reducing LTCRIT to a smaller value such as
0.01 s, then quantities would have to be calculated or interpolated at two
estimates for t2 and t1.

It will be seen in Section 13 that computed values of doppler observables
are significantly affected by roundoff errors in time and position. One way to
eliminate these errors would be to recode programs PV and Regres in quadruple
precision (instead of the current double precision). If this is done, the appropriate
value for LTCRIT would be 0.4 x 10−3 s.

8.3.6 ALGORITHM FOR SPACECRAFT LIGHT-TIME SOLUTION

If the transmitter is a tracking station on Earth or an Earth satellite, the
spacecraft light-time solution contains an up leg and a down leg. However, if the
spacecraft is the transmitter, the light-time solution contains a down leg only.
The spacecraft can be a free spacecraft or a landed spacecraft on any body in the
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Solar System. The receiver or transmitter can be a tracking station on Earth or an
Earth satellite. The light-time solution can be obtained in the Solar-System
barycentric space-time frame of reference for a spacecraft anywhere in the Solar
System. If the spacecraft is very near the Earth (such as in a low Earth orbit), the
light-time solution can be obtained in the local geocentric space-time frame of
reference.

It will be seen in Section 10.2.3.1 and Section 13 that in order to obtain the
computed values of spacecraft data types, one, two, or four light-time solutions
are required. The starting point for each spacecraft light-time solution is the
reception time t3(ST) in station atomic time ST at a tracking station on Earth or at
an Earth satellite. For a DSN tracking station on Earth, the reception time t3(ST) is
at the station location. The antenna correction, which is calculated after the light-
time solution from the formulation of Section 10.5, changes the point of
reception from the station location (which is on the primary axis of the antenna)
to the secondary axis of the antenna. This is the tracking point of the antenna, to
which the actual observables are calibrated. For reception at a GPS tracking
station on Earth or at an Earth satellite, the reception time t3(ST) is at the nominal
phase center of the receiving antenna. These phase center locations are calculated
as described in Sections 7.3.1 and 7.3.3. For each data type, Sections 11.2.1 and
10.2.3.3.1 give the equations for transforming the data time tag and the count
time (if any) for the data point to the reception time t3(ST)R at the receiving
electronics for each of its light-time solutions. Subtracting the down-leg delay
(defined in Section 11.2) as described in Section 11.2.2 gives the reception time
t3(ST) at the station location or nominal phase center.

The spacecraft light-time solution is obtained by performing the following
steps:

1. Transform the reception time t3(ST) to t3(TAI) in International
Atomic Time TAI. Sections 2.5.1, 2.5.2, and 2.5.3 describe these time
transformations for a DSN tracking station on Earth, a GPS receiving
station on Earth, and a TOPEX satellite, respectively.
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2. Transform the reception time t3(TAI) to t3(ET) in coordinate time ET.
The algorithm that applies for a tracking station on Earth is given in
Section 7.3.1. The algorithm in Section 7.3.3 applies for reception at
the TOPEX satellite. Steps 1 and 2 produce the reception time t3 in all
of the time scales along the path from t3(ST) to t3(ET) and precision
values of the time differences of adjacent epochs (see Figures 2�1 and
2�2). Step 2 also produces all of the space-fixed position (P), velocity
(V), and acceleration (A) vectors required at t3. The P, V, and A
vectors interpolated from the planetary ephemeris are described in
Section 3.1.2.3.1 in the Solar-System barycentric frame and in Section
3.1.2.3.2 in the local geocentric frame of reference. If the receiver is a
tracking station on Earth, geocentric space-fixed P, V, and A vectors
of the tracking station are calculated from the formulation of Section
5. If the receiver is an Earth satellite, geocentric space-fixed P, V, and
A vectors of the satellite are interpolated from the satellite
ephemeris. All quantities obtained in Step 2 are in the Solar-System
barycentric or local geocentric space-time frame of reference.

3. (Barycentric Frame Only). Add the geocentric space-fixed P, V, and A
vectors of the Earth satellite or the tracking station on Earth to the
Solar-System barycentric P, V, and A vectors of the Earth to give the
Solar-System barycentric P, V, and A vectors of the receiver at the
reception time t3(ET) (see Eq. 8�1).

4. (Barycentric Frame Only). In Eq. (8�55), for each body B and the Sun
S for which we calculate a relativistic light-time delay, calculate the
vector and scalar distance from the body to the receiver (point 3) at
the reception time t3(ET) from Eqs. (8�62) and (8�64) with each
subscript 1 changed to a 3.

5. (Geocentric Frame Only). For use in Eq. (8�67), calculate the
magnitude of the geocentric space-fixed position vector of the
receiver (point 3) at the reception time t3(ET).
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6. For the first light-time solution for each spacecraft, use zero for the
predicted down-leg light time. For all light-time solutions after the
first one for each spacecraft, calculate the predicted down-leg light
time from Eq. (8�77). Note that the vectors in this equation are
geocentric in the local geocentric frame of reference. Subtract the
predicted down-leg light time from the reception time t3(ET) to give
the first estimate of the transmission time t2(ET) at the spacecraft.

7. At the estimate for the transmission time t2(ET), interpolate the
planetary ephemeris and small-body ephemeris for the P, V, and A
vectors specified in Section 3.1.2.3.1 in the Solar-System barycentric
frame of reference and in Section 3.1.2.3.2 in the local geocentric
frame of reference.

8. If the data type is one-way doppler (F1) or a one-way narrowband
(INS) or wideband (IWS) spacecraft interferometry observable and
the spacecraft is within the sphere of influence of one of the outer
planet systems, or if the center of integration for the ephemeris of a
free spacecraft or the body upon which a landed spacecraft is resting
is a satellite or the planet of one of the outer planet systems,
interpolate the satellite ephemeris for this planetary system at the
estimate for the transmission time t2(ET) for the P, V, and A vectors
specified in Section 3.2.2.2.

9. If the spacecraft is free, interpolate the spacecraft ephemeris for the
P, V, and A vectors of the spacecraft relative to its center of
integration at the estimate for the transmission time t2(ET). If the
spacecraft is a GPS satellite, interpolate its geocentric ephemeris
exactly as specified for the TOPEX satellite in Section 7.3.3. The
resulting geocentric position vector of the GPS satellite will be the
position vector of its nominal phase center.

10. If the spacecraft is landed, calculate the space-fixed P, V, and A
vectors of the landed spacecraft relative to the lander body B at the
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estimate for the transmission time t2(ET) from the formulation of
Section 6.

11. (Barycentric Frame Only). Using Eq. (8�2), add the P, V, and A
vectors obtained in Steps 7 to 10 to give the Solar-System barycentric
P, V, and A vectors of the spacecraft at the estimate for the
transmission time t2(ET).

12. (Barycentric Frame Only). In Eq. (8�55), for each body B and the Sun
S for which we calculate a relativistic light-time delay, calculate the
vector and scalar distance from the body to the spacecraft (point 2) at
the transmission time t2(ET) from Eqs. (8�62) and (8�64) with each
subscript 1 changed to a 2.

13. (Geocentric Frame Only). For use in Eq. (8�67), calculate the
magnitide of the geocentric space-fixed position vector of the
transmitter (point 2) at the transmission time t2(ET).

14. Calculate vectors, scalars, and the relativistic light time along the
down leg from the spacecraft to the receiver. Calculate     r r23 23, ú ,      r23

(which is     r23
E  in the local geocentric frame),     ú , úr p23 23 and  from Eqs.

(8�57) to (8�60). In the Solar-System barycentric frame, these
quantities are computed from the Solar-System barycentric vectors
given by (8�56). In the local geocentric frame, these quantities are
computed from the corresponding geocentric vectors (i.e., replace
the superscript C with E in 8�56). In the Solar-System barycentric
frame of reference, for each body B and the Sun S for which a
relativistic light-time delay is computed in Eq. (8�55), calculate     r 23

B

and     r23
B  from Eqs. (8�63) and (8�65). Note that the vectors in

Eq. (8�63) are calculated in Steps 4 and 12. Given all of these
quantities, calculate the down-leg relativistic light-time delay RLT23.
In the Solar-System barycentric frame, it is the sum of the natural
logarithm terms on the right-hand side of Eq. (8�55). In the local
geocentric frame, it is the natural logarithm term on the right-hand
side of Eq. (8�67).
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15. Given t3(ET) from Step 2, the current estimate for the transmission
time t2(ET) at the spacecraft, and the quantities computed on the
down leg of the light path in Step 14, calculate the linear differential
correction ∆t2 to t2(ET) from Eq. (8�72). Add ∆t2 to t2(ET) to give the
next estimate for the transmission time t2(ET) at the spacecraft.

16. If the absolute value of ∆t2 is less than the value of the input variable
LTCRIT, whose nominal value is 0.1 s, proceed to Step 17. Otherwise,
go to Step 7. A second parameter which controls the light-time
solution is the input variable NOLT (number of light times), whose
nominal value is 4. If convergence (i.e., the absolute value of ∆t2 is
less than LTCRIT) is not obtained after NOLT passes through Steps 7
to 15, halt the execution of program Regres.

17. Map everything calculated or interpolated at the last estimate of
t2(ET) in Steps 7 to 10 to the final estimate t2(ET) + ∆t2 using
Eqs. (8�81) to (8�84).

18. Using the mapped quantities from Step 17, repeat Steps 11 to 14.

19. For round-trip light-time solutions, time differences are not
computed at the reflection time t2(ET). However, for one-way
doppler, time differences are computed at the transmission time
t2(ET). These calculations are performed after the light-time solution
using the formulation given in Section 11.4. For GPS/TOPEX
observables, time differences are calculated at the transmission time
t2(ET) at the GPS satellite. Transform the transmission time t2(ET) at
the GPS satellite to the other time scales shown in Fig. 2�2 as
described in Section 2.5.5. The algorithm for computing the time
difference ET � TAI at the GPS satellite is given in Section 7.3.4.

The remainder of this algorithm for the spacecraft light-time solution
applies for the up-leg light-time solution. As currently coded, the up-leg light-
time solution applies only in the Solar-System barycentric space-time frame of
reference. The light-time solution in the local geocentric frame of reference has a
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down leg only. Also, the transmitter at the transmission time t1(ET) must be a
tracking station on Earth. The following algorithm applies for the up-leg light-
time solution in the Solar-System barycentric frame of reference and also in the
local geocentric frame of reference. Also, the transmitter may be an Earth
satellite.

20. Calculate the predicted up-leg light time from Eqs. (8�79) and (8�80).
In Eq. (8�79), the vectors are available from Steps 2 and 14. In the
local geocentric frame of reference, replace     úrE calculated from
Eq. (8�79) with zero. In Eq. (8�80),     t3 − t2( ) is the converged down-
leg light time given by the right-hand side of Eq. (8�55) in the
barycentric frame and Eq. (8�67) in the local geocentric frame. It is
available from Step 14. Subtract the predicted up-leg light time from
the converged estimate of t2(ET) obtained in Step 15 to give the first
estimate of the transmission time t1(ET) at the transmitter (a tracking
station on Earth or an Earth satellite).

21. At the estimate for the transmission time t1(ET), interpolate the
planetary ephemeris for the P, V, and A vectors specified in Section
3.1.2.3.1 in the Solar-System barycentric frame of reference and in
Section 3.1.2.3.2 in the local geocentric frame of reference.

22. If the transmitter is an Earth satellite, interpolate the satellite
ephemeris for the geocentric space-fixed P, V, and A vectors of the
satellite at t1(ET). This may require calculating the offset from the
center of mass of the satellite to the nominal location of its phase
center as described in Section 7.3.3.

23. If the transmitter is a tracking station on Earth, calculate its
geocentric space-fixed P, V, and A vectors at t1(ET) from the
formulation of Section 5.

24. (Barycentric Frame Only). Using Eq. (8�3), add the P, V, and A
vectors obtained in Steps 21 to 23 to give the Solar-System
barycentric P, V, and A vectors of the transmitter (a tracking station
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on Earth or an Earth satellite) at the estimate for the transmission
time t1(ET).

25. (Barycentric Frame Only). In Eq. (8�55), for each body B and the Sun
S for which we calculate a relativistic light-time delay, calculate the
vector and scalar distance from the body to the transmitter (point 1)
at the transmission time t1(ET) from Eqs. (8�62) and (8�64).

26. (Geocentric Frame Only). For use in Eq. (8�67), calculate the
magnitude of the geocentric space-fixed position vector of the
transmitter (point 1) at the transmission time t1(ET).

27. Calculate vectors, scalars, and the relativistic light time along the up
leg from the transmitter to the spacecraft. Calculate     r r12 12, ú ,      r12

(which is     r12
E  in the local geocentric frame),     ú , úr p12 12 and  from

Eqs. (8�57) to (8�60). In the Solar-System barycentric frame, these
quantities are computed from the Solar-System barycentric vectors
given by (8�56). In the local geocentric frame, these quantities are
computed from the corresponding geocentric vectors (i.e., replace
the superscript C with E in 8�56). In the Solar-System barycentric
frame of reference, for each body B and the Sun S for which a
relativistic light-time delay is computed in Eq. (8�55), calculate     r12

B

and     r12
B  from Eqs. (8�63) and (8�65). Note that the vectors in

Eq. (8�63) are calculated in Steps 12 and 25. Given all of these
quantities, calculate the up-leg relativistic light-time delay RLT12. In
the Solar-System barycentric frame, it is the sum of the natural
logarithm terms on the right-hand side of Eq. (8�55). In the local
geocentric frame, it is the natural logarithm term on the right-hand
side of Eq. (8�67).

28. Given t2(ET) from Step 15, the current estimate for the transmission
time t1(ET) at the transmitter (a tracking station on Earth or an Earth
satellite), and the quantities computed on the up leg of the light path
in Step 27, calculate the linear differential correction ∆t1 to t1(ET)
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from Eq. (8�72). Add ∆t1 to t1(ET) to give the next estimate for the
transmission time t1(ET) at the transmitter.

29. If the absolute value of ∆t1 is less than the value of the input variable
LTCRIT, whose nominal value is 0.1 s, proceed to Step 30. Otherwise,
go to Step 21. If convergence (i.e., the absolute value of ∆t1 is less
than LTCRIT) is not obtained after NOLT passes through Steps 21 to
28, halt the execution of program Regres.

30. Map everything calculated or interpolated at the last estimate of
t1(ET) in Steps 21 to 23 to the final estimate t1(ET) + ∆t1 using
Eqs. (8�81) to (8�84).

31. Using the mapped quantities from Step 30, repeat Steps 24 to 27.

32. If the transmitter is a DSN tracking station on Earth, transform the
transmission time t1(ET) to the other time scales shown in Figure 2�1
as described in Section 2.5.4. The algorithm for computing the time
difference ET − TAI at the tracking station on Earth is given in Section
7.3.2. If the transmitter is an Earth satellite, transform t1(ET) to t1(ST)
as described in Section 2.5.5 with t2 replaced with t1 (see Figure 2�2).
The algorithm for computing the time difference ET − TAI at the
Earth satellite is given in Section 7.3.4 (with t2 replaced with t1).

8.4 QUASAR LIGHT-TIME SOLUTION

8.4.1 LIGHT-TIME EQUATION

The spacecraft light-time equation (8�55) in the Solar-System barycentric
space-time frame of reference will be modified to apply for light traveling from a
distant quasar to a tracking station on Earth or an Earth satellite. Applying this
equation to two different receivers (where either receiver can be a tracking
station on Earth or an Earth satellite) and then subtracting analytically gives the
time for the quasar wavefront to travel from receiver 1 at the reception time
t1(ET) in coordinate time ET to receiver 2 at the reception time t2(ET).
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In the following, consider that the index 1 in Eq. (8�55) is replaced by i,
which refers to the quasar, and the index 2 in this equation is replaced by j, which
refers to a tracking station on Earth or an Earth satellite. Let r denote the
enormous distance from the Solar-System barycenter to the quasar. Then, the
distance rij from the quasar at time ti to the tracking station on Earth or Earth
satellite at time tj is given by:

      
ri j = r − r j

C t j( ) ⋅LQ (8�87)

where 
      
r j

C t j( ) is the position vector of tracking station or Earth satellite j at the
reception time tj relative to the Solar-System barycenter C and LQ is the unit
vector from the Solar-System barycenter to the quasar. In Eq. (8�55), consider
the relativistic light-time delay due to a specific body B (or the Sun S) and
consider the triangle which involves the receiving station on Earth or Earth
satellite j , body B, and the distant quasar i. Considering the enormous distance r
to the quasar, the numerator of the argument of the natural logarithm in the
relativistic light-time delay can be approximated by:

    ri
B + r j

B + ri j
B = 2r (8�88)

Considering the above-mentioned subtraction which is to follow, this is an
excellent approximation. In the j−B−i triangle, the B−i and j−i sides can be
considered to be parallel due to the enormous distance r to the quasar. Then, the
denominator of the argument of the natural logarithm in the relativistic light-
time delay can be approximated by:

      
ri

B + r j
B − ri j

B = r j
B + r j

B t j( ) ⋅LQ (8�89)

Substituting Eqs. (8�87) to (8�89) into Eq. (8�55) (with 1 and 2 replaced with i and
j) gives the light time from the quasar (point i at time ti) to a tracking station on
Earth or Earth satellite (point j at time tj):
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Consider that two photons leave the quasar at time ti. One photon arrives
at receiver 1 (a tracking station on Earth or an Earth satellite) at coordinate time
t1(ET); the second photon arrives at receiver 2 (a tracking station on Earth or an
Earth satellite) at coordinate time t2(ET). The travel times t2 − ti and t1 − ti are
given by Eq. (8�90) with j = 2 and 1, respectively. Subtracting t1 − ti from t2 − ti

gives the following expression for the time for the quasar wavefront to travel
from receiver 1 to receiver 2:
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In the first term, the Solar-System barycentric position vectors of the two
receivers are calculated from Eq. (8�3) as described in the last paragraph of
Section 8.2. The position vectors of receiver 1 at the reception time t1 and
receiver 2 at the reception time t2 relative to each body B and the Sun S are
calculated from Eq. (8�62). The magnitudes of these vectors are given by
Eq. (8�64).
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The unit vector to the quasar, with rectangular components referred to
the radio frame (see Section 3.1.1) is given by:

    

LQRF
=















cos cos
cos sin

sin

δ α
δ α

δ
(8�92)

where α and δ are the right ascension and declination of the quasar in the radio
frame, which are obtained from the GIN file. The unit vector to the quasar, with
rectangular components referred to the planetary ephemeris frame, is given by:

      
LQ = Rx Ry Rz( )T

LQ RF
(8�93)

where the frame-tie rotation matrices Rz, Ry, and Rx are given by Eqs. (5�117) to
(5�119).

Given the Solar-System barycentric P, V, and A vectors of receiver 1 at the
reception time t1 and receiver 2 at the reception time t2:

      r1
C t1( ),  r 2

C t2( )     r r r→ ú , úú (8�94)

which are obtained as described after Eq. (8�91), calculate     r r12 12 and ú  from
Eq. (8�57). In Eq. (8�91), we want to denote the first term as     r12 c . Hence, from
Eq. (8�57), r12 is given by:

      r12 = − r12 ⋅LQ (8�95)

and its time derivative is given by:

      ú úr12 12= − ⋅r LQ (8�96)

Also, calculate the auxiliary quantity:

      ú úp t12 2 2= ( ) ⋅r LC
Q (8�97)
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The first term of Eq. (8�91) represents the travel time of the quasar
wavefront from receiver 1 to receiver 2 at speed c when the quasar wavefront is
perpendicular to the unit vector to the quasar. The natural logarithm term due to
body B or the Sun S represents the change in this light time due to the bending of
the quasar wavefront due to body B or the Sun S. The maximum effect occurs
when the quasar wavefront grazes the surface of the body and then intersects
the Earth a large distance past the body. For this geometry, it is easy to show
that a natural logarithm term in Eq. (8�91) is equal to the total bending of light
due to the body calculated from Eq. (8�21) multiplied by the component of the
distance between receivers 1 and 2 which is normal to LQ, divided by c.

The maximum effects of the masses of the Sun, Jupiter, and Saturn on the
travel time of the quasar wavefront between the two receivers, calculated from
Eq. (8�91), are about 108 m/c, 100 cm/c, and 36 cm/c, respectively, where c is the
speed of light. The maximum effect of the mass of the Earth is about 0.6 cm/c. In
the argument of the natural logarithm in the Sun term, the µS terms in the
numerator and denominator represent the effects of the bending of the light
path on the arrival times at receivers 1 and 2. The maximum effect of these
bending terms is about 20 cm/c. These bending terms are ignored for the other
bodies in the Solar System. For Jupiter and Saturn, the resulting errors are a
maximum of about 0.10 cm/c and 0.03 cm/c, respectively. Ignoring the indirect
effect of the solar bending on the Jupiter and Saturn effects produces maximum
errors of 1.8 cm/c and 0.8 cm/c when the raypath grazes the Sun and Jupiter or
Saturn. Similarly, ignoring the indirect effect of the Jupiter and Saturn bending
on the solar effect produces maximum errors of 0.18 cm/c and 0.07 cm/c for the
same geometry.

8.4.2 LINEAR DIFFERENTIAL CORRECTOR FOR RECEPTION TIME AT

RECEIVER 2

In a quasar light-time solution, the reception time of the quasar wavefront
at receiver 1 is denoted as t1. The light-time solution obtains the reception time t2

of the quasar wavefront at receiver 2 by an iterative procedure. This section
develops a linear differential corrector formula for determining the reception
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time t2. For each estimate of the reception time t2, the differential corrector
produces a linear differential correction ∆t2 to t2.

Using Eq. (8�95), the quasar light-time equation (8�91) can be expressed
as:

    
t2 − t1 =

r12

c
+ RLT12 (8�98)

where     RLT12  is the relativistic correction to the light time given by the sum of
term 2 plus term 3 of Eq. (8�91). For a given estimate of the reception time

    t2 = t2 ET( ) at receiver 2, let the function f  be the corresponding value of the left-
hand side of Eq. (8�98) minus the right-hand side of this equation:

    
f = t2 − t1 −

r12

c
− RLT12 (8�99)

Holding     RLT12  fixed, the partial derivative of f with respect to t2 is given by:

      

∂
∂

f
t c

t
2

2 21
1= + ( ) ⋅úr LC

Q (8�100)

Substituting Eq. (8�97) gives:

    

∂
∂

f
t

p
c2

121= +
ú

(8�101)

The solution of Eq. (8�98) for the reception time t2 is the value of t2 for which the
function f is zero. For a given estimate of t2, and the corresponding values of

    f and ∂ f ∂ t2 , the differential correction to t2 which drives f to zero linearly is
given by:

    
f +

∂ f
∂ t2

∆t2 = 0 (8�102)
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Solving for     ∆t2  and substituting Eqs. (8�99) and (8�101) gives the desired
equation for the linear differential correction     ∆t2  to t2:

    

∆t
t t

r
c

RLT

p
c

2

2 1
12

12

121
= −

− − −

+
ú (8�103)

All of the variables in Eq. (8�103) are available from the quasar light-time
solution.

8.4.3 ALGORITHM FOR QUASAR LIGHT-TIME SOLUTION

Given the reception time t1(ST) of the quasar wavefront in station atomic
time ST at receiver 1, the quasar light-time solution gives the reception time
t2(ST) of the quasar wavefront in station time ST at receiver 2. It will be seen in
Section 10.2.3.1 and Section 13 that wideband quasar (IWQ) data points have one
light-time solution and narrowband quasar (INQ) data points have two light-
time solutions. The starting point for each quasar light-time solution is the
reception time t1(ST) at a DSN tracking station on Earth or at an Earth satellite.
For a DSN tracking station on Earth, the reception time t1(ST) is at the station
location. The antenna correction, which is calculated after the light-time solution
from the formulation of Section 10.5, changes the point of reception from the
station location (which is on the primary axis of the antenna) to the secondary
axis of the antenna (the tracking point). For reception at an Earth satellite, the
reception time t1(ST) is at the nominal phase center of the satellite�s receiving
antenna (Section 7.3.3) or at the satellite�s center of mass. For each quasar data
type, Sections 11.2.1 and 10.2.3.3.1 give the equations for transforming the data
time tag and the count time (if any) for the data point to the reception time
t1(ST)R at the receiving electronics for each of its light-time solutions. Subtracting
the down-leg delay at receiver 1 (defined in Section 11.2) as described in Section
11.2.2 gives the reception time t1(ST) at the station location on Earth or at the
nominal phase center or center of mass of the Earth satellite. The quasar light-
time solution can only be performed in the Solar-System barycentric space-time
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frame of reference. Quasar data types cannot be processed in the local geocentric
space-time frame of reference.

The quasar light-time solution is obtained by performing the
following steps:

1. The starting point for the quasar light-time solution is the reception
time t1(ST) at receiver 1. If receiver 1 is a DSN tracking station on
Earth, transform t1(ST) to t1(TAI) in International Atomic Time using
the algorithm given in Section 2.5.1 (with t3 replaced with t1). If
receiver 1 is an Earth satellite, transform t1(ST) to t1(TAI) using the
algorithm given in Section 2.5.3 (with t3 replaced with t1).

2. Transform the reception time t1(TAI) to t1(ET) in coordinate time ET.
The algorithm that applies for a tracking station on Earth is given in
Section 7.3.1. The algorithm in Section 7.3.3 applies for reception at an
Earth satellite. In these algorithms, replace t3 with t1. Steps 1 and 2
produce the reception time t1 in all of the time scales along the path
from t1(ST) to t1(ET) and precision values of the time differences of
adjacent epochs (see Figures 2�1 and 2�2). Step 2 also produces all of
the space-fixed position (P), velocity (V), and acceleration (A) vectors
required at t1. The P, V, and A vectors interpolated from the
planetary ephemeris are described in Section 3.1.2.3.1. If the receiver
is a tracking station on Earth, geocentric space-fixed P, V, and A
vectors of the tracking station are calculated from the formulation of
Section 5. If the receiver is an Earth satellite, geocentric space-fixed P,
V, and A vectors of the satellite are interpolated from the satellite
ephemeris. All quantities obtained in Step 2 are in the Solar-System
barycentric space-time frame of reference.

3. Add the geocentric space-fixed P, V, and A vectors of the Earth
satellite or the tracking station on Earth to the Solar-System
barycentric P, V, and A vectors of the Earth to give the Solar-System
barycentric P, V, and A vectors of receiver 1 at the reception time
t1(ET) (see Eq. 8�3).
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4. In Eq. (8�91), for each body B and the Sun S for which we calculate a
relativistic light-time correction, calculate the vector and scalar
distance from the body to receiver 1 at the reception time t1(ET)
from Eqs. (8�62) and (8�64).

5. Set the first estimate of the reception time t2(ET) of the quasar
wavefront at receiver 2 equal to t1(ET).

6. At the current estimate of the reception time t2(ET) of the quasar
wavefront at receiver 2, interpolate the planetary ephemeris for the
P, V, and A vectors specified in Section 3.1.2.3.1. Note that for the
first estimate of t2(ET), which is equal to t1(ET), these quantities are
available from Step 2.

7. At the current estimate of t2(ET), calculate the geocentric space-fixed
P, V, and A vectors of receiver 2. If receiver 2 is a tracking station on
Earth, use the formulation of Section 5. If receiver 2 is an Earth
satellite, obtain these quantities by interpolating the geocentric
satellite ephemeris for receiver 2.

8. Using Eq. (8�3) (with each 1 replaced by a 2), add the P, V, and A
vectors obtained in Steps 6 and 7 to give the Solar-System
barycentric P, V, and A vectors of receiver 2 at the current estimate
of t2(ET).

9. In Eq. (8�91), for each body B and the Sun S for which we calculate a
relativistic light-time correction, calculate the vector and scalar
distance from the body to receiver 2 at the reception time t2(ET)
from Eqs. (8�62) and (8�64) with each 1 changed to a 2.

10. At the current estimate of t2(ET), calculate     r r12 12 and ú  from
Eq. (8�57),     r r12 12 and ú  from Eqs. (8�95) and (8�96), and     úp12 from
Eq. (8�97). Calculate the unit vector LQ to the quasar from
Eqs. (8�92), (8�93), and (5�117) to (5�119). Calculate the relativistic
light-time correction RLT12, which is the sum of term 2 and term 3 of
Eq. (8�91).
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11. Given t1(ET) from Step 2, the current estimate for the reception time
t2(ET) at receiver 2, and the quantities     r RLT p12 12 12, , ú  and   calculated
in Step 10, calculate the linear differential correction ∆t2 to t2(ET)
from Eq. (8�103). Add ∆t2 to t2(ET) to give the next estimate for the
reception time t2(ET) at receiver 2.

12. If the absolute value of ∆t2 is less than the value of the input variable
LTCRIT, whose nominal value is 0.1 s, proceed to Step 13. Otherwise,
go to Step 6. A second parameter which controls the light-time
solution is the input variable NOLT (number of light times), whose
nominal value is 4. If convergence (i.e., the absolute value of ∆t2 is
less than LTCRIT) is not obtained after NOLT passes through Steps 6
to 11, halt the execution of program Regres.

13. Map everything calculated or interpolated at the last estimate of
t2(ET) in Steps 6 and 7 to the final estimate t2(ET) + ∆t2 using
Eqs. (8�81) to (8�84) with i equal to 2.

14. Using the mapped quantities from Step 13, repeat Steps 8 to 10.

15. If receiver 2 is a DSN tracking station on Earth, transform t2(ET) to
t2(ST) as described in Section 2.5.4, with t1 replaced with t2 (see
Figure 2�1). The algorithm for computing the time difference
ET − TAI at the tracking station on Earth is given in Section 7.3.2
(with t1 replaced with t2). If receiver 2 is an Earth satellite, transform
t2(ET) to t2(ST) as described in Section 2.5.5 (see Figure 2�2). The
algorithm for computing the time difference ET − TAI at the Earth
satellite is given in Section 7.3.4.
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9.1 INTRODUCTION

This section gives the formulation used to calculate auxiliary angles and
the computed values of angular observables. Auxiliary angles are used in
calculating the computed values of observables. They are used to calculate the
antenna corrections described in Section 10. The auxiliary elevation angle is used
to calculate the delay of the radio signal due to the troposphere. Auxiliary angles
are used for data editing and data weighting and can also be used for antenna
pointing predictions.

Section 9.2 describes antenna angles of the spacecraft (a free spacecraft or
a landed spacecraft on a celestial body) or a quasar measured at a tracking
station on Earth. Computed values of angular observables are measured at the
reception time t3 at the receiving station on Earth. For all data types, auxiliary
angles are calculated at the reception time t3 (denoted as t1 and t2 at receiving
stations 1 and 2 on Earth for quasar interferometry data types) and also at the
transmission time t1 (for round-trip data types) at a tracking station on Earth.
For each angle pair (e.g., azimuth and elevation angles), a figure is given which
shows the two angles, the coordinate system to which they are referred, and unit
vectors in the directions of increases in the two angles. The unit vector in the
direction of increasing elevation angle is used in calculating the refraction
correction (the increase in the elevation angle due to atmospheric refraction). All
of the unit vectors are used in calculating partial derivatives of the computed
values of angular observables with respect to solve-for parameters. The
formulation for these partial derivatives is given in Section 13.

Section 9.3 gives the formulation for computing angles (auxiliary angles or
computed values of angular observables) of the spacecraft or a quasar at a
tracking station on Earth. Angles can be computed on the down leg of the light
path at the reception time t3 or on the up leg of the light path at the transmission
time t1. The formulation for the unit vector L from the tracking station to the
spacecraft or a quasar is given in Section 9.3.1. Section 9.3.2 gives the current and
proposed formulation for calculating the refraction correction. Given the unit
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vector L, Section 9.3.3 gives the formulation for calculating angles at the
reception time t3 and at the transmission time t1 at a tracking station on Earth.

Section 9.4 gives formulas for corrections to computed values of angular
observables (measured at a tracking station on Earth) due to solve-for rotations
of the reference coordinate system (to which the angle pair is referred) about
each of its three axes.

Section 9.5 gives formulations for calculating auxiliary angles at an Earth
satellite. Section 9.5.1 gives the formulation for calculating auxiliary angles at the
reception time t3 at the TOPEX satellite. Section 9.5.2 gives the formulation for
calculating auxiliary angles at the transmission time t2 at a GPS satellite.

9.2 COORDINATE SYSTEMS, ANGLES, AND UNIT
VECTORS AT A TRACKING STATION ON EARTH

This section defines the angle pairs: hour angle (HA) and declination δ( )
(Section 9.2.1), azimuth σ( )  and elevation γ( ) (Section 9.2.3), X and Y (Section
9.2.4), and   ′X  and   ′Y  (Section 9.2.5). Each angle pair is referred to an Earth-fixed
rectangular coordinate system whose origin is located at the tracking station. The
first of these angle pairs is referred to a coordinate system aligned with the true
pole, prime meridian, and equator of date. The latter three angle pairs are
referred to the north-east-zenith coordinate system, which is described in Section
9.2.2. For each angle pair, equations are given for the Earth-fixed components of
unit vectors in the directions of increases in the two angles. Section 9.2.6 converts
these unit vectors from Earth-fixed components to space-fixed components. The
space-fixed unit vectors are used in Section 13 to calculate partial derivatives of
computed values of angular observables with respect to solve-for parameters.

The antennas at the various tracking stations were not aligned very
accurately when placed into the ground. However, they are calibrated
occasionally (possibly a few times a year) so that the observed angles are
referred to the true pole or true north direction of date (actually, the average
direction during the calibration interval). The calibrated observed angles are
accurate to about 0.001 degree at best. The estimated spherical or cylindrical
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coordinates of the tracking stations are referred to the mean pole, prime
meridian, and equator of 1903.0. The station coordinates used to compute angles
(auxiliary angles or computed values of angular observables) should be
converted to values referred to the true pole, prime meridian, and equator of
date using Eqs. (220), (228), and (231) to (233) of Moyer (1971). These equations
are functions of the X and Y angular coordinates of the true pole of date relative
to the mean pole of 1903.0 (see Section 5.2.5). Since X and Y are less than 0.0002
degrees, the station coordinates used to compute angles are not corrected for
polar motion. Computed values of angular observables are corrected for
atmospheric refraction. It will be seen in Section 9.3.2 that calculated refraction
corrections are accurate to about 0.001 degree. From all of the above, it is seen
that observed and computed values of angular observables and computed
auxiliary angles have an accuracy on the order of 0.001 degree.

9.2.1 HOUR ANGLE AND DECLINATION

Figure 9�1 shows an Earth-fixed rectangular coordinate system whose
origin is located at a tracking station on Earth. This x-y-z coordinate system is
aligned with the Earth�s true pole, prime (i.e.,   0°) meridian, and true equator of
date. The z axis is parallel to the Earth�s true axis of rotation, and the x axis is in
the prime meridian.

The unit vector L is directed from the tracking station at the reception
time t3 or the transmission time t1 to the spacecraft (a free spacecraft or a landed
spacecraft on a celestial body) or a quasar. The angles   λ S/C  and δ are the east
longitude and declination of the spacecraft or a quasar. The quantity λ is the east
longitude of the tracking station. The observer�s meridian contains the unit
vectors P and Q. The unit vector E completes the observer�s QEP rectangular
coordinate system. The angle HA is the hour angle of the spacecraft or quasar.

Nominal computed values of observed hour angle HA and declination δ
are based upon the geometry of Figure 9�1. However, the reference coordinate
system QEP can be rotated through the small solve-for angles ′ζ  about Q, ε
about E, and ′η  about P, thus changing the angle HA in the QE plane and the
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angle δ normal to it. Corrections to the computed values of HA and δ due to
these small rotations are given in Section 9.4.

P

Q

E

λ

HA
λ S/C

δ

L A

D

ε

z

y

x

ζ'

η'

Figure 9�1 Hour Angle and Declination

The unit vectors D and A in the directions of increasing δ and   λ S/C  are
used in computing the partial derivatives of δ and HA with respect to the solve-
for parameters. The vector A is normal to L and D. The vectors D and A with
rectangular components along the x, y, and z axes are given by:
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9.2.2 THE NORTH-EAST-ZENITH COORDINATE SYSTEM

Figure 9�2 shows an Earth-fixed rectangular coordinate system whose
origin is located at the center of the Earth. This x-y-z coordinate system is aligned
with the Earth�s true pole, prime (i.e.,   0°) meridian, and true equator of date. The
z axis is the Earth�s true axis of rotation and the x axis is in the prime meridian.
The unit north N, east E, and zenith Z vectors originate at the tracking station S,
which has an east longitude of λ. The unit vectors N and Z are in the tracking
station�s meridian plane, and E is normal to it. The zenith vector Z makes an
angle φg with the true equator of date, where φg is the geodetic latitude of the
tracking station. The zenith vector Z is normal to the reference ellipsoid for the
Earth.
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Figure 9�2 The North-East-Zenith Coordinate System

The angle pairs σ -γ, X-Y, and   ′X -  ′Y  are referred to the rectangular NEZ

coordinate system at the tracking station. The rectangular components of these
unit vectors along the x, y, and z axes are:
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The geodetic latitude φg of the tracking station is computed from:

  
φg = φ + φg − φ( ) rad (9�6)

The spherical coordinates of the tracking station, which are referred to the true
pole, prime meridian, and true equator of date are:

r = geocentric radius
φ = geocentric latitude
λ = east longitude

To sufficient accuracy, as discussed in Section 9.2, all of the equations in Section 9
are evaluated with the solve-for spherical coordinates r, φ, and λ of the tracking
station, which are referred to the mean pole, prime meridian, and mean equator
of 1903.0. In Eq. (9�6), the geodetic latitude φg minus the geocentric latitude φ can
be calculated from:

    
sin sin cos sinφ φ φ φ φg
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where

e = eccentricity of reference ellipsoid for the Earth
ae = mean equatorial radius of the Earth

The eccentricity e can be computed from the flattening f using:

    e
2 = 2 f − f 2 (9�8)
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From Chapter 1 of International Earth Rotation Service (1992) or Table 15.4 on
page 700 of the Explanatory Supplement (1992),

ae = 6378.136 km
f = 1/298.257

9.2.3 AZIMUTH AND ELEVATION

Figure 9�3 shows the unit vector L directed from the tracking station S to
the spacecraft or a quasar in the NEZ coordinate system centered at the tracking
station. The angles σ and γ are the azimuth and elevation angles of the spacecraft
or quasar. The NEZ reference coordinate system can be rotated through the
small solve-for angles η about N, ε about E, and ζ about Z. Corrections to the
computed values of σ and γ due to these small rotations are given in Section 9.4.

The unit vectors     �D  and     �A  (which are normal to L) in the directions of
increasing γ and σ, respectively, with components along the axes of the Earth-
fixed x-y-z rectangular coordinate system of Figure 9�2, which is aligned with the
Earth�s true pole, prime meridian, and true equator of date, are given by:
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where N, E, and Z are given by Eqs. (9�3) to (9�5).
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Figure 9�3 Azimuth and Elevation

9.2.4 X AND Y ANGLES

Figure 9�4 shows the unit vector L directed from the tracking station S to
the spacecraft or a quasar in the NEZ coordinate system centered at the tracking
station. The X and Y angles of the spacecraft or a quasar are shown. The NEZ

reference coordinate system can be rotated through the small solve-for angles η
about N, ε about E, and ζ about Z. Corrections to the computed values of X and
Y due to these small rotations are given in Section 9.4.
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Figure 9�4 X and Y Angles

The unit vectors   ′D  and   ′A  (which are normal to L) in the directions of
increasing Y and X, respectively, with components along the axes of the Earth-
fixed x-y-z rectangular coordinate system of Figure 9�2, which is aligned with the
Earth�s true pole, prime meridian, and true equator of date, are given by:
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where N, E, and Z are given by Eqs. (9�3) to (9�5).

9.2.5   ′X  AND   ′Y  ANGLES

Figure 9�5 shows the unit vector L directed from the tracking station S to
the spacecraft or a quasar in the NEZ coordinate system centered at the tracking
station. Note that Figure 9�5 shows the unit south S vector instead of the unit
north N vector, where S = � N. The   ′X  and   ′Y  angles of the spacecraft or a
quasar are shown. The NEZ reference coordinate system can be rotated through
the small solve-for angles η about N (shown as � η about S), ε about E, and ζ
about Z. Corrections to the computed values of   ′X  and   ′Y  due to these small
rotations are given in Section 9.4.

The unit vectors   ′′D  and   ′′A  (which are normal to L) in the directions of
increasing   ′Y  and   ′X , respectively, with components along the axes of the Earth-
fixed x-y-z rectangular coordinate system of Figure 9�2, which is aligned with the
Earth�s true pole, prime meridian, and true equator of date, are given by:

      

′′ =
′′
′′
′′

















= ′ ′ + ′ − ′ ′D N E Z
D
D
D

Y X Y Y X
x

y

z

sin sin cos sin cos (9�13)

      

′′ =
′′
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′′






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









= − ′ − ′A N Z
A
A
A

X X
x

y

z

cos sin (9�14)

where N, E, and Z are given by Eqs. (9�3) to (9�5).
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Figure 9�5   ′X  and   ′Y  Angles

9.2.6 CONVERSION OF EARTH-FIXED UNIT VECTORS

TO SPACE-FIXED UNIT VECTORS

In order to calculate partial derivatives of computed values of angular
observables with respect to the solve-for parameter vector q in Section 13, the
unit vectors     D A D A D A D A, , � , � , , , ,       and ′ ′ ′′ ′′  calculated at the reception time t3

at the tracking station on Earth must be transformed from Earth-fixed
rectangular components to the space-fixed rectangular components (subscript
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SF) of the celestial reference frame of the planetary ephemeris (see Section 3.1.1).
From Eq. (5�113),

      D DSF E= ( )T t3     D A D A D A D A→ ′ ′ ′′ ′′, � , � , , , ,      (9�15)

where the Earth-fixed to space-fixed transformation matrix TE(t3) at the
reception time t3 at the tracking station on Earth is calculated from the
formulation of Section 5.3. It is available from Step 2 of the spacecraft light-time
solution (Section 8.3.6).

The unit vectors     D A D A D A D A, , � , � , , , ,       and ′ ′ ′′ ′′ , with Earth-fixed
rectangular components referred to the Earth�s true pole, prime meridian, and
true equator of date, are calculated from Eqs. (9�1), (9�2), and (9�9) to (9�14). In
these equations, the N, E, and Z vectors are evaluated using Eqs. (9�3) to (9�8).
Calculation of the unit vectors     D A D A D A D A, , � , � , , , ,       and ′ ′ ′′ ′′  requires
computed values of the east longitude λ  S/C and declination δ of the spacecraft,
the azimuth σ and elevation γ of the spacecraft, the X and Y angles of the
spacecraft, and the   ′X  and   ′Y  angles of the spacecraft, respectively, at the
reception time t3 at the tracking station on Earth. These angles are calculated
from the formulation given in Section 9.3.

9.3 COMPUTATION OF ANGLES AT RECEPTION AND
TRANSMISSION TIMES AT A TRACKING STATION
ON EARTH

9.3.1 UNIT VECTOR L

The unit vector L is directed from a receiving or transmitting station on
Earth toward the spacecraft (a free spacecraft or a landed spacecraft on a celestial
body) or from a receiving station on Earth toward a quasar.

The unit vector LSF directed from the receiving station on Earth at the
reception time t3 toward the spacecraft at the reflection time or transmission
time t2, with rectangular components referred to the space-fixed (SF) coordinate
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system (mean Earth equator and equinox of J2000) of the planetary ephemeris
(see Section 3.1.1) is given by:

      
LSF = −

r 23

r23
(9�16)

The down-leg unit vector       r 23 r23  is calculated from Eqs. (8�56) to (8�58) in the
Solar-System barycentric frame of reference. In the local geocentric frame of
reference, the superscript C in these equations for the Solar-System barycenter
becomes E for the Earth. The space-fixed unit vector LSF directed from the
transmitting station on Earth at the transmission time t1 toward the spacecraft at
t2 is given by:

      
LSF =

r12

r12
(9�17)

where the up-leg unit vector       r12 r12  is also calculated from Eqs. (8�56) to (8�58).
For narrowband or wideband quasar interferometric data types, the space-fixed
unit vector LSF directed from receiving station 1 or 2 on Earth toward a quasar is
given by:

    LSF = LQ (9�18)

where the unit vector LQ toward the quasar is calculated from Eqs. (8�92) and
(8�93).

The velocity vector of light on the up leg of the light path in the Solar-
System barycentric or local geocentric frame of reference is cLSF, where c is the
speed of light and LSF is given by Eq. (9�17). On the down leg of the light path,
the velocity vector of light is �cLSF, where LSF is given by Eq. (9�16) or (9�18).
The velocity vector relative to the transmitting station on the up leg is given by
cLSF �       úr1

C t1( ), where       úr1
C t1( ) is the velocity vector of the transmitting station on

Earth at the transmission time t1 relative to the Solar-System barycenter C (the
Earth E in the local geocentric frame of reference). The velocity vector relative to
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the receiving station on the down leg is given by �cLSF  �       úr 3
C t3( ), where       úr 3

C t3( ) is
the velocity vector of the receiving station on Earth at the reception time t3. For
narrowband or wideband quasar interferometric data types, the velocity vectors
of receiving stations 1 and 2 on Earth at their corresponding reception times t1

and t2 are denoted as       úr1
C t1( ) and       úr 2

C t2( ), respectively. Let LSF + ∆L denote the
unit vector from the tracking station on Earth to the spacecraft or a quasar which
is aligned with the velocity vector of light relative to the transmitting station on
the up leg or the negative of the velocity vector of light relative to the receiving
station on the down leg. The correction vector ∆L is the stellar aberration of light
due to the velocity of the transmitter or the receiver. From the above equations,
the aberration correction ∆L for the down leg of the light path is given by:

      
∆L

r
=

( )ú 3
C t

c
3 (9�19)

where, as noted above, the subscripts 3 become 1 and 2 for reception at receiving
stations 1 and 2 on Earth for quasar interferometric data types. When calculating
in the local geocentric space-time frame of reference, the numerator of Eq. (9�19)
changes from the Solar-System barycentric velocity vector of the receiver to the
geocentric velocity vector of the receiver. The aberration correction ∆L for the up
leg of the light path is given by:

      
∆L

r
= −

( )ú 1
C t

c
1 (9�20)

Given LSF for the down leg of the light path calculated from Eq. (9�16) or
Eq. (9�18) and the aberration correction ∆L calculated from Eq. (9�19), the space-
fixed unit vector from the receiving station on Earth at the reception time to the
spacecraft or a quasar, which is corrected for stellar aberration, is given by:

    
L

L L

L LSFA
SF

SF
=

+
+

∆
∆

(9�21)
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where the denominator is the magnitude of the vector in the numerator. Given
LSF for the up leg of the light path calculated from Eq. (9�17) and the aberration
correction ∆L calculated from Eq. (9�20), the space-fixed unit vector from the
transmitting station on Earth at t1 to the spacecraft at t2, which is corrected for
stellar aberration, is given by Eq. (9�21).

Equations (9�19) and (9�20) for the stellar aberration of light were derived
from Newtonian theory. More accurate expressions can be derived from the
Lorentz transformation of special relativity. The first-order terms  from special
relativity and Newtonian theory are the same. The second-order term from
special relativity differs from the corresponding term of Newtonian theory by
less than 2 x 10�7 degree, which is negligible compared to the previously stated
accuracy of 0.001 degree for observed and computed angles.

The unit vector LSFA from the transmitting or receiving station on Earth to
the spacecraft or a quasar, calculated from Eqs. (9�16) to (9�21), can be
transformed from space-fixed to Earth-fixed components by using the transpose
of Eq. (5�113):

      LEF = TE t3( )T LSFA   3 → 1, 2 (9�22)

where the Earth-fixed rectangular components of LEF are referred to the Earth�s
true pole, prime meridian, and true equator of date. For the down leg of the light
path, the Earth-fixed to space-fixed transformation matrix TE is calculated at the
reception time t3 at the receiving station on Earth. For quasar interferometric
data types, the reception times at receiving stations 1 and 2 on Earth are denoted
as t1 and t2, respectively. For the up leg of the light path, TE is calculated at the
transmission time t1 at the transmitting station on Earth.

The unit vector LEF does not account for the bending of the raypath due
to atmospheric refraction, which increases the elevation angle γ of the raypath by

  ∆ rγ . The existing formulation and the proposed formulation for calculating the
refraction correction   ∆ rγ  are given in Section 9.3.2. The refraction correction is a
function of the elevation angle γ and atmospheric parameters. Computed values
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of angular observables are corrected for refraction. If program Regres calculates
partial derivatives (i.e., it is a fit case), the calculated auxiliary angles are not
corrected for refraction. However, if partial derivatives are not being calculated
(i.e., tracking data is not being fit to), the user may request that refraction
corrections be added to auxiliary angles. This is done if auxiliary angles are used
as antenna pointing predictions.

The argument for the tropospheric correction, which is the delay of the
radio signal due to the troposphere, is the unrefracted elevation angle γ. Antenna
corrections, which are non-zero if the two axes of the antenna at the tracking
station do not intersect, are described in Section 10. They account for the light
time from the �station location�, which is on the primary axis of the antenna, to
the tracking point, which is on the secondary axis of the antenna. The antenna
corrections are calculated from the antenna angles shown in Figure 9�1 and
Figures 9�3 to 9�5. The errors due to calculating antenna corrections from
unrefracted auxiliary angles instead of refracted angles are negligible.

Referring to Figure 9�3, the change in LEF due to atmospheric refraction is

    tan �∆ rγ D. Hence, the unit vector     LEFR , which is the unit vector LEF corrected for
atmospheric refraction, is given by:

    

L
L D

L D
EFR

EF r

EF r

=
+

+

tan �

tan �
∆

∆

γ

γ
(9�23)

where     �D  is calculated from Eq. (9�9). Calculation of   ∆ rγ  and     �D  requires the
azimuth σ and elevation γ  angles of the spacecraft or quasar. Approximate
values are obtained from Eqs. (9�42) to (9�44) of Section 9.3.3.2, evaluated with
LEF given by Eq. (9�22) instead of     LEFR .

All quantities required to evaluate Eqs. (9�16) to (9�22) are available from
the spacecraft light-time solution (Section 8.3.6) or the quasar light-time solution
(Section 8.4.3).
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9.3.2 REFRACTION CORRECTION   ∆ rγ

The refraction correction   ∆ rγ  is the increase in the elevation angle due to
atmospheric refraction. Subsections 9.3.2.1 and 9.3.2.2 give the existing model
and the proposed model for calculating the refraction correction   ∆ rγ . The
existing model is a modified form of the Berman-Rockwell model. The proposed
model is due to Lanyi.

9.3.2.1 Modified Berman-Rockwell Model

The unmodified Berman-Rockwell model for the refraction correction

  ∆ rγ  is given in Section III.D on page 12 of Berman and Rockwell (1975) and in
Berman (1977). This model is an empirical fit to atmospheric data. The model
contains pressure, temperature, and relative humidity factors. One of the
modifications to the original Berman-Rockwell model was to delete the relative
humidity factor, which means that the modified model applies for a dry
atmosphere. In the temperature factor, the surface temperature was set to
284.5 K. In the pressure factor, the surface pressure was replaced with 2.75 times
the surface refractivity. Note that the index of refraction of the atmosphere is
unity plus one millionth of the refractivity. In the modified model, each tracking
station has its own yearly average value of the surface refractivity. Also, the
pressure and temperature factors each contain the same coding error. This error
is probably negligible except at very low elevation angles.

The sources of the modifications to the original Berman-Rockwell model
are currently unknown. Also, the surface refractivity versus tracking station
table needs to be greatly expanded since a large number of tracking stations
have been created since the model was implemented. The Berman-Rockwell
model for the atmospheric refraction correction   ∆ rγ  is a function of the
unrefracted elevation angle γ  and atmospheric parameters, which are included in
the model and the accompanying table of surface refractivities versus tracking
station number.

I suggest that we replace the Berman-Rockwell model for atmospheric
refraction with the more-accurate Lanyi model. The only significant error in the
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refraction correction   ∆ rγ  calculated from the Lanyi model is due to errors in the
input atmospheric parameters. I suggest that we evaluate the Lanyi model with
monthly average values of atmospheric parameters at each DSN complex. The
ODP user will have the option of overstoring the average atmospheric
parameters for the current month with near-real-time measured values.

9.3.2.2 Lanyi Model

The Lanyi model for the refraction correction   ∆ rγ  is given in Lanyi (1989).
The model consists of Eqs. (2) to (18), which are in Section III. Since there are
some units which must be added to these equations, I have included the whole
set of equations in Subsection 9.3.2.2.1. Subsection 9.3.2.2.2 discusses how the
atmospheric parameters can be obtained and used in evaluating the Lanyi
model.

9.3.2.2.1 Equations

The inputs to the Lanyi model for the refraction correction   ∆ rγ  are the
unrefracted elevation angle γ of the spacecraft or a quasar and the following
three atmospheric parameters:

p0 = total surface pressure, mbar. The nominal value is
1013.25 mbar (101,325 Pa) at mean sea level.

T0 = surface temperature, Kelvins. The mean DSN value is
292 K.

RH0 = surface relative humidity, expressed as a fraction
between 0 and 1.

The third atmospheric parameter in the Lanyi model can be the dew point
temperature T0C dew or the surface relative humidity RH0, which are related by
formula. Since the existing tables which contain monthly average values of
atmospheric parameters contain the relative humidity, I have used it as the third
atmospheric parameter in the Lanyi model.
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The following algorithm can be used to calculate the refraction correction

  ∆ rγ  from the model of Lanyi:

1. Calculate the mean height of dry air hd and the mean height of water
vapor hw:

    hd = 0.86 × 8.567 T0 292( ) × 103 m (9�24)

    hw = 2.4 × 103 m (9�25)

2. Calculate the water vapor surface pressure p0w and the dry surface
pressure p0d:

    p RH e

T
T

C

C
0w = +





6 11 0

17 27
237 3

0

0.

.
. mbar (9�26)

where

    T0C = T0 − 273.16 (9�27)

    p0d = p0 − p0w mbar (9�28)

3. Calculate the dry surface refractivity χ0d, the water vapor surface
refractivity χ0w, and the total surface refractivity χ0:

    
χ 0d = 77.6 × 10−6( ) p0d /T0 (9�29)

    
χ 0w = 377.6 × 103 /T0 + 64.8( ) × 10−6 p0w /T0 (9�30)

  χ 0 = χ 0d + χ 0w (9�31)

4. Calculate the dry zenith delay Zdry and the wet zenith delay Zwet:

    Zdry = 0.22768 p0d × 10−2 m (9�32)
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    Zwet = χ 0w hw m (9�33)

5. Calculate the function   a γ( ) , where γ is the unrefracted elevation
angle of the spacecraft or a quasar:
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γ γ
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sin (9�34)

where R is the mean radius of curvature of the Earth in meters =
6.378 x 106 m.

6. The function F(x) is defined to be:

    
F x

x
( ) =

+ + −( )
1

1 1 2 11
2

(9�35)

7. Calculate the refraction correction   ∆ rγ :

    
∆ rγ

χ γ
γ

χ γ
γ

=
− ( )


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
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
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
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0 0
2

a
F

a

tan tan
rad (9�36)

where F(x) is evaluated from Eq. (9�35).

9.3.2.2.2 Atmospheric Parameters

The following changes to the ODP will provide the surface atmospheric
parameters needed to calculate the refraction correction   ∆ rγ  from the model of
Lanyi. For each of the three DSN complexes (Goldstone, Madrid, and Canberra),
add a table to the GIN file which contains monthly average values of the total
surface pressure p0 in mbar, the surface temperature T0 in Kelvins, and the
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surface relative humidity RH0, which is a fraction that varies from 0 to 1. Also,
we need separate constant inputs for each of these three variables, which will be
used for stations that are not at one of the three major complexes.

Angular observables are �fit to� mainly during the first half hour or so of
the spacecraft trajectory after booster burnout, when the spacecraft is very near
the Earth. If it is desired to calculate refraction corrections from near-current
values of surface atmospheric parameters instead of the monthly average values
obtained from the above-mentioned tables, the data in the tables for the time
period of the tracking data can be overstored with near-current values, which
are available.

The DSN has been measuring the surface atmospheric parameters every
minute at one location at each of the three major complexes for many years. The
VLBI group obtains 30-minute averages of these atmospheric parameters, which
can be obtained from readily-available files. This data can be used to overstore
the monthly average values on the GIN file when more accurate refraction
corrections are desired.

Tables 7, 8, and 10 of Chao (1974) give monthly average values of surface
pressure p0, surface temperature T0, and relative humidity RH0 at the Goldstone,
Madrid, and Canberra complexes. The data in these tables can be used as the
nominal values in the corresponding tables on the GIN file. However, the surface
temperature data will have to be converted from   °C to K by adding 273.16, and
the relative humidity data will have to be converted from a percentage to a
fraction by moving the decimal point two places to the left. The data in these
three tables was measured in 1967 and 1968. It should be replaced with averages
from DSN data obtained during the last few years.

Each of the three atmospheric tables will be used for all of the tracking
stations at the corresponding complex. Ignoring the variations in the pressure
and temperature between the stations in a complex can result in errors in the
calculated refraction correction   ∆ rγ  of up to about 2%. The errors in   ∆ rγ  can be
up to about 0.003 degrees at an elevation angle γ of 6 degrees and 0.005 degrees
at 3 degrees.
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9.3.3 COMPUTED ANGLES

Computed angles are calculated from the unrefracted Earth-fixed unit
vector LEF from a tracking station on Earth to the spacecraft or a quasar given by
Eq. (9�22) or the corresponding refracted unit vector LEFR given by
Eq. (9�23). In this section, we will denote either of these unit vectors as L:

    

L =
















L
L
L

x

y

z

(9�37)

where the Earth-fixed rectangular components of L are referred to the Earth�s
true pole, prime meridian, and true equator of date. Computed values of angular
observables are calculated from LEFR. For all fit cases, computed auxiliary angles
are calculated from LEF. For non-fit cases, computed auxiliary angles can be
calculated from the unrefracted or the refracted unit vector, as specified by the
ODP user. The computed values of angular observables are in units of degrees.
The computed auxiliary angles are in units of radians.

Calculation of all angles except hour angle HA and declination δ requires
the unit north N, east E, and zenith Z vectors with rectangular components
referred to the true pole, prime meridian, and equator of date. They are
computed from Eqs. (9�3) to (9�5).

9.3.3.1 Hour Angle and Declination

From Figure 9�1, the declination δ of the spacecraft or a quasar, which
varies from −  90° to   90°, can be calculated from:

    sinδ = Lz (9�38)

The east longitude   λ S/C  of the spacecraft or a quasar, which varies from   0° to

  360°, can be calculated from:
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sinλ S/C =

Ly

cosδ
(9�39)

    
cosλ S/C =

Lx

cosδ
(9�40)

Calculate the hour angle HA of the spacecraft or a quasar from:

    HA = λ − λ S/C (9�41)

where λ is the east longitude of the tracking station, referred to the true pole,
prime meridian, and equator of date. When HA is the computed value of an
angular observable and is negative, add   360° to HA so it will be between   0° and

  360°.

9.3.3.2 Azimuth and Elevation

From Figure 9�3, the elevation angle γ  of the spacecraft or a quasar,
which varies from   0° to   90°, can be calculated from:

    sin γ = L ⋅ Z (9�42)

The azimuth angle σ of the spacecraft or a quasar, which varies from   0° to   360°,
can be calculated from:

    
sinσ = L ⋅ E

cosγ
(9�43)

    
cosσ = L ⋅N

cosγ
(9�44)

Note that σ is indeterminate for γ  =   90°.
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9.3.3.3 X and Y Angles

From Figure 9�4, the angle Y, which varies from −  90° to   90°, can be
calculated from:

      sinY = L ⋅N (9�45)

The angle X, which varies from −  90° to   90°, can be calculated from:

      
sin X = L ⋅ E

cosY
(9�46)

Note that X is indeterminate when Y = ±   90°, which can only occur when the
spacecraft or a quasar is on the horizon.

9.3.3.4   ′X  and   ′Y  Angles

From Figure 9�5, the angle   ′Y , which varies from −  90° to   90°, can be
calculated from:

      sin ′ = ⋅Y L E (9�47)

The angle   ′X , which varies from −  90° to   90°, can be calculated from:

      
sin

cos
′ = − ⋅

′
X

Y
L N

(9�48)

where S in Figure 9�5 is equal to −N. Note that   ′X  is indeterminate when

  ′Y  = ±   90°, which can only occur when the spacecraft or a quasar is on the
horizon.
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9.4 CORRECTIONS DUE TO SMALL ROTATIONS OF
REFERENCE COORDINATE SYSTEM AT TRACKING
STATION ON EARTH

This section gives equations for differential corrections to the computed
values of angular observables due to the small solve-for rotations of the
reference coordinate system at the tracking station about each of its three
mutually perpendicular axes.

From Figure 9�1, the hour angle HA and declination δ of the spacecraft or
a quasar are referred to the QEP rectangular coordinate system at the tracking
station. Eqs. (9�38) to (9�41) for calculating the computed values of HA and δ
observables are not explicit functions of the Q, E, and P unit vectors. The desired
equations, which are needed in this section, are:

    sinδ = L ⋅ P (9�49)

      cosδ sin HA = − L ⋅ E (9�50)

      cosδ cos HA = L ⋅Q (9�51)

The variations in Q, E, and P due to rotating the reference coordinate system
QEP through the small solve-for angles ′ζ  about Q, ε about E, and ′η  about P

are given by:

  ∆Q E P= ′ −η ε (9�52)

  ∆E P Q= ′ − ′ζ η (9�53)

  ∆P Q E= − ′ε ζ (9�54)

Differentiating Eqs. (9�49) to (9�51) and substituting Eqs. (9�52) to (9�54) gives
the following equations for the differential corrections to the computed values of
HA and δ observables due to the small solve-for rotations ′ζ , ε, and ′η :
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    ∆δ ζ ε= ′ +sin cosHA HA deg (9�55)

    ∆HA HA HA= ′ + − ′( )η δ ε ζtan sin cos deg (9�56)

Eqs. (9�42) to (9�48) for the computed values of azimuth σ, elevation γ, X,
Y,   ′X , and   ′Y  observables are explicit functions of the unit north N, east E, and
zenith Z vectors. From Figure 9�3, the variations in N, E, and Z due to rotating
the reference coordinate system NEZ through the small solve-for rotations η
about N, ε about E, and ζ about Z are given by:

  ∆N = ε Z − ζ E (9�57)

  ∆E = ζ N − η Z (9�58)

  ∆Z = η E − ε N (9�59)

Differentiating Eqs. (9�42) to (9�48) and substituting Eqs. (9�57) to (9�59) gives
the following equations for the differential corrections to the computed values of
azimuth σ, elevation γ, X, Y,   ′X , and   ′Y  observables due to the small solve-for
rotations η, ε, and ζ. For azimuth σ and elevation γ :

  ∆γ = η sinσ − ε cosσ deg (9�60)

  ∆σ = ζ − tan γ η cosσ + ε sinσ( ) deg (9�61)

For the angles X and Y :

    ∆Y = − ζ sin X + ε cosX deg (9�62)

    ∆X = − η + tanY ε sin X + ζ cosX( ) deg (9�63)

For the angles   ′X  and   ′Y :

    ∆ ′ = − ′ − ′Y X Xζ ηsin cos deg (9�64)
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    ∆ ′ = − + ′ ′ − ′( )X Y X Xε ζ ηtan cos sin deg (9�65)

9.5 COMPUTATION OF AUXILIARY ANGLES AT EARTH
SATELLITES

9.5.1 AUXILIARY ANGLES AT RECEPTION TIME AT TOPEX SATELLITE

Let X, Y, and Z be unit vectors aligned with the x, y, and z axes of the
spacecraft-fixed right-handed rectangular coordinate system of the TOPEX
satellite, directed outward from the origin of the coordinate system.
Interpolation of the PV file for the TOPEX satellite at the reception time t3(ET) at
the TOPEX satellite gives the space-fixed rectangular components of the unit
vectors X, Y, and Z referred to the mean Earth equator and equinox of J2000
(specifically, the space-fixed rectangular coordinate system of the planetary
ephemeris). This interpolation is performed in Step 2 of the spacecraft light-time
solution (see Section 8.3.6, Step 2 and Section 7.3.3, Step 3). The unit vector Z for
the TOPEX satellite is perpendicular to the reference ellipsoid for the Earth,
directed down. Normally, the X axis is aligned with the velocity vector of the
TOPEX satellite.

The space-fixed unit vector L directed from the TOPEX satellite at the
reception time t3 to the transmitting GPS satellite at the transmission time t2 can
be calculated from Eqs. (9�16), (9�19), and (9�21). In Eq. (9�19) for the correction
due to stellar aberration,       úr 3 3

C t( ) is the space-fixed velocity vector of the TOPEX
satellite relative to the Solar-System barycenter C in that frame of reference and
relative to the Earth E in the local geocentric space-time frame of reference.

The auxiliary angles computed at the TOPEX satellite are the azimuth σ
and elevation γ angles. The azimuth angle σ is measured in the x-y plane from
the x-axis toward the y-axis. The elevation angle γ  is measured from the x-y
plane toward the z-axis. The elevation angle γ, which varies from −  π 2 to   π 2,
can be calculated from:

    γ = sin−1 L ⋅ Z( ) (9�66)
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The azimuth angle σ, which varies from 0 to   2π, can be computed from:

    
σ = ⋅

⋅






−tan 1 L Y
L X

(9�67)

where the required signs of   sinσ  and cosσ  are those of the dot products in the
numerator and denominator, respectively.

9.5.2 AUXILIARY ANGLES AT TRANSMISSION TIME AT A GPS

SATELLITE

The X, Y, and Z unit vectors for the transmitting GPS satellite are
interpolated from the PV file for the GPS satellite at the transmission time t2(ET)
at the GPS satellite. This interpolation is performed in Step 9 of the spacecraft
light-time solution (see Section 8.3.6, Step 9 and Section 7.3.3, Step 3). The unit
vector Z for a GPS satellite is perpendicular to the reference ellipsoid for the
Earth, directed down.

The space-fixed unit vector L directed from the transmitting GPS satellite
at the transmission time t2 to the TOPEX satellite or a GPS receiving station on
Earth at the reception time t3 can be calculated from Eq. (9�21), where:

      
LSF =

r 23

r23
(9�68)

and

      
∆L

r
= −

( )ú 2
C t

c
2 (9�69)

where       úr 2 2
C t( ) is the space-fixed velocity vector of the transmitting GPS satellite

relative to the Solar-System barycenter C in that frame of reference and relative
to the Earth E in the local geocentric space-time frame of reference.
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The auxiliary angles computed at the transmitting GPS satellite are the
azimuth σ and elevation γ angles, which are defined the same as for the TOPEX
satellite. They can be computed from Eqs. (9�66) and (9�67).
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10.1 INTRODUCTION

This section describes how media corrections to the computed values of
observables are calculated in the Regres editor.1 Media corrections consist of
corrections due to the Earth�s troposphere and corrections due to charged
particles. The charged particles can be in the Earth�s ionosphere, in space (space
plasma), or in the solar corona. This section also gives the formulation for
calculating antenna corrections for the computed values of observables in
program Regres. These corrections are non-zero if the axes of the antenna at a
DSN tracking station on Earth do not intersect. Partial derivatives are given for
two parameters of the troposphere, two parameters of the ionosphere, and
three parameters of the solar corona.

Troposphere corrections and all charged-particle corrections except those
calculated from the solar corona model are calculated in the Regres editor. These
calculations are described in Section 10.2. Sections 10.2.1 and 10.2.2 describe the
troposphere and charged-particle corrections, respectively. The contributions of
the individual-leg troposphere and charged-particle corrections to the calculated
precision round-trip light time ρ, the one-way light time ρ1, and the quasar delay
τ are given in Section 10.2.3. These light-time corrections are used in equations
given in Section 13 to calculate additive corrections to the computed values of
observables due to the troposphere and charged particles.

The ionosphere partials model is given in Section 10.3. This model is used
to derive equations for partial derivatives with respect to two solve-for
parameters of the ionosphere. Solved-for corrections to these two parameters
should be considered to be corrections to the charged-particle corrections
calculated in the Regres editor. Since the formulation for calculating computed
values of observables does not include an ionosphere model, computed
observables cannot be corrected for the changes in the solved-for ionosphere

                                                
1The Regres editor is the Editor Library, which is included in programs Regres and Edit.
Hence, the user has the option of performing data editing and calculating media corrections in
program Regres or in program Edit, which is executed after program Regres.
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parameters. That is, you cannot do an iterative solution for the two ionosphere
parameters.

The solar corona model, which is contained in program Regres, is
described in Section 10.4. This model is included in the formulation for the
computed values of observables, and iterative solutions for the three solve-for
parameters of this model can be obtained.

Section 10.5 gives the formulation for calculating antenna corrections for
the computed values of observables.

10.2 MEDIA CORRECTIONS IN THE REGRES EDITOR

The Regres editor calculates media (i.e., troposphere and charged particle)
corrections to the computed values of observables, miscellaneous user-specified
corrections to the computed values of observables, weights for the observables,
and performs data editing (e.g., deleting specified data points). It can also add
noise to the computed values of observables. The inputs to the Regres editor for
performing these functions are the so-called CSP (command statement
processor) commands, which are contained in the CSP file. The �English� version
of the CSP file is converted to the computer language version by program
Translate.

The (O − C) residual is the observed value of an observable minus the
computed value. The computed value C is the value calculated in program
Regres and does not include any corrections calculated in the Regres editor. The
(O − C) residual is placed in the variable RESID on the Regres file. The sum of the
corrections δ C to the computed value C of the observable calculated in the
Regres editor is placed in the variable CRESID on the Regres file. Programs
downstream of Regres and Edit (if the Regres editor is executed in program Edit
instead of in program Regres) can calculate the corrected residual   O C C− +( )[ ]δ
as RESID − CRESID.

Individual-leg corrections due to the troposphere and charged particles
are calculated as described in Subsections 10.2.1 and 10.2.2, respectively.
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Corrections to the round-trip and one-way light times and the quasar delay are
calculated from sums and differences of individual-leg corrections in Subsection
10.2.3. These light-time corrections are used in Section 13 to calculate corrections
to the computed values of observables. These equations are evaluated in the
Regres editor.

10.2.1 INDIVIDUAL-LEG TROPOSPHERE CORRECTIONS

10.2.1.1 Introduction

For the up-leg light path from a tracking station on Earth to a spacecraft
or the down-leg light path from a spacecraft or a quasar to a tracking station on
Earth, the increase in the light time due to the Earth�s troposphere is the
tropospheric range correction ∆Tρ (evaluated at the reception or transmission
time at the tracking station on Earth) in meters divided by 103c, where c is the
speed of light in kilometers per second. The tropospheric range correction ∆Tρ is
calculated from:

    
∆Tρ = ρzdry

Rdry γ( ) + ρz wet
Rwet γ( ) m (10�1)

where 
  
ρzdry

 and   ρz wet
 are tropospheric zenith range corrections in meters due

to the dry and wet components of the troposphere. The functions     Rdry γ( ) and

    Rwet γ( ) map the zenith range corrections to the elevation angle γ of the light
path at the transmission time or reception time at the tracking station on Earth.
The elevation angle γ is specifically the unrefracted auxiliary elevation angle
calculated as described in Section 9.3.

Section 10.2.1.2 describes the calculation of the tropospheric zenith dry
and wet range corrections. Each of these corrections is the sum of a correction
calculated from a seasonal model in the Regres editor plus a constant solve-for
correction obtained using partial derivatives given in Section 10.2.1.4. Calculation
of the mapping functions is described in Section 10.2.1.3



MEDIA  AND  ANTENNA  CORRECTIONS

10�7

10.2.1.2 Tropospheric Zenith Dry and Wet Range Corrections

The seasonal model for the tropospheric zenith dry and wet range
corrections represents these quantities as normalized power series or Fourier
series. The current model is based upon the original work of Chao (1971). The
current model was obtained as described on pages 3 to 9 of Estefan and Sovers
(1994). At each of the three DSN complexes, measured values of the following
quantities were obtained: the surface pressure, the surface temperature, the
surface relative humidity, and the temperature lapse rate (the altitude
temperature gradient). Monthly averages of these four parameters were
calculated over a two-calendar-year period. This data was used to calculate the
tropospheric zenith dry and wet range corrections from Eqs. (1) and (2) of
Estefan and Sovers (1994), where these equations were obtained from Berman
(1970). The calculated tropospheric zenith dry and wet range corrections were fit
with normalized power series and also with Fourier series. The tropospheric
zenith dry and wet range corrections can be calculated from normalized power
series using Eq. (3) of Estefan and Sovers (1994). The coefficients in this equation
are contained in the CSP commands given in Figure 3a on page 8 of this
reference. The data in these commands can be applied to any two-calendar-year
timespan by changing the two-digit year in the FROM and TO times. The
tropospheric zenith dry and wet range corrections can be calculated from
Fourier series using Eq. (4) of Estefan and Sovers (1994). The coefficients in this
equation are contained in the CSP commands given in Figure 3b on page 9 of
this reference. The data in these commands applies for any time. According to
Estefan and Sovers (1994), better fits to tracking data are obtained when
representing the zenith tropospheric corrections as Fourier series. The time
arguments needed to evaluate the normalized power series or the Fourier series
are specified in Section 10.2.3.3.

Each of the two sets of CSP commands referred to above contain
coefficients for calculating tropospheric zenith dry and wet range corrections at
the DSN complexes at Goldstone, Canberra, and Madrid. The dry and wet
corrections calculated at each complex apply for each tracking station at the
complex. Additional CSP commands would be required to calculate corrections
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at an isolated tracking station. In addition to the modelled tropospheric zenith
range corrections calculated in the Regres editor, the user can estimate constant
corrections to the tropospheric zenith dry and wet range corrections at each DSN
complex or isolated tracking station. These solve-for corrections are obtained
using the partial derivatives given in Section 10.2.1.4. The total tropospheric
zenith dry and wet range corrections used in Eq. (10�1) for all tracking stations at
a DSN complex or at an isolated tracking station are thus given by:

  
ρzdry

= ρzdry( )
model

+ ∆ρzdry
m (10�2)

  
ρz wet

= ρz wet( )model
+ ∆ρz wet

m (10�3)

where the first terms are the modelled corrections calculated in the Regres editor
and the second terms are the solved-for constant corrections obtained using the
partial derivatives given in Section 10.2.1.4.

The DSN has the capability of calculating corrections to the seasonal
model for the tropospheric zenith dry and wet range corrections, where the
corrections are obtained from real-time measurements of atmospheric
parameters. These corrections can be represented as normalized power series or
Fourier series and can be included in the CSP file. The Regres editor will evaluate
these corrections and add them to the seasonal model. Calculation of the
corrections is described in Section 3.1 of Estefan and Sovers (1994).

10.2.1.3 Mapping Functions

This section describes the calculation of the mapping functions     Rdry γ( )
and     Rwet γ( ), which are used in Eq. (10�1). The user can calculate the mapping
functions from the original Chao model, which is described in Subsection
10.2.1.3.1 or from the newer Niell model, which is described in Subsection
10.2.1.3.2.
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10.2.1.3.1 Chao Model

The mapping functions     Rdry γ( ) and     Rwet γ( ) are evaluated by
interpolating Chao�s dry (TABDRY) and wet (TABWET) mapping tables with the
unrefracted elevation angle γ . These tables contain the values of the mapping
function every 0.1° from 0° to 10° and every 0.5° from 10° to 90°. These tables
are given in the Appendix to Estefan and Sovers (1994). Eq. (6) of this reference is
the interpolation formula.

The development of Chao�s mapping tables is discussed in Section 2.2 of
Estefan and Sovers (1994) and in Mottinger (1984).

10.2.1.3.2 Niell Model

The mapping functions     Rdry γ( ) and     Rwet γ( ) are calculated from Eqs. (50)
to (56) and Tables 4a and 4b in Section 4.5 of Estefan and Sovers (1994). This
section will give a few corrections and additions to this formulation and will
describe how the required inputs to this model are calculated. The corrections
and additions were obtained by comparing Section 4.5 of the reference to the
actual code obtained from Arthur Niell and from a discussion with Arthur Niell.

In Eq. (52) of Estefan and Sovers (1994), the sign of the second term must
be changed from positive to negative. The second term contains the cosine of an
argument. If the geodetic latitude φ g of the tracking station on Earth is positive,
the cosine function should be:

    
cos

.
2

28
365 25

π t −





(10�4)

In Eq. (52) of the reference, the 2π factor was omitted. If the geodetic latitude φ g

of the tracking station is negative, the cosine function (10�4) must be replaced
with:

    
cos

.
2

28
365 25

1
2

π t − +











(10�5)
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Eq. (10�5) was omitted in the reference. In Eqs. (10�4) and (10�5), t is time past
the last January 0, 0h in days of Coordinated Universal Time UTC or station time
ST.

The coefficients in Eqs. (52) and (56) of Estefan and Sovers (1994) are
obtained from Tables 4a and 4b of that reference as a function of the absolute
value of the geodetic latitude. The tables contain the values of the coefficients at
geodetic latitudes of 15°, 30°, 45°, 60°, and 75°. For geodetic latitudes between 15°
and 75°, the coefficients are obtained by linear interpolation. For absolute
geodetic latitudes less than 15°, the values of the coefficients at 15° are used. For
absolute geodetic latitudes greater than 75°, the values of the coefficients at 75°
are used.

The Niell mapping function was obtained from Niell (1996). The mapping
function is given by Eq. (4). However, the numerator of this equation is one
divided by the correct numerator, and the denominator of this equation is one
divided by the correct denominator. Hence, in order to obtain the correct
mapping function from Eq. (4), the �one divided by� in the numerator and the
�one divided by� in the denominator must be removed. In Eq. (5) of Niell (1996),
the sign of the second term must be changed from positive to negative.

One of the inputs to this model is the geodetic latitude φ g of the tracking
station. Given the geocentric latitude φ and the geocentric radius r of the tracking
station referred to the mean pole, prime meridian, and equator of 1903.0, the
geodetic latitude φ g can be calculated to sufficient accuracy from Eqs. (9�6) to
(9�8).

Another input to this model is the height of the tracking station above
mean sea level (the geoid), which according to Arthur Niell can be approximated
with the height above the reference ellipsoid. Given the spin radius u of the
tracking station (measured from the 1903.0 pole to the tracking station), the
geodetic latitude φ g calculated as described above, and the ellipsoid parameters
listed after Eq. (9�7), the height h above the reference ellipsoid can be calculated
from:
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h
u a

e
= −

−cos sinφ φg

e

g1 2 2
km (10�6)

This is the same as Eqs. (5.53) and (5.54) of Sovers and Jacobs (1996).

The time t (in the UTC or ST time scales) in days past the last January 0, 0h

can be obtained as follows. Time in the ODP (in the ET, TAI, UTC, UT1, and ST
time scales) is represented as seconds past J2000. The reception time or
transmission time at a tracking station on Earth (in UTC or ST) is converted to a
calendar date. The calendar date is then converted to days past January 0, 0h.

In addition to these inputs, the primary input required to compute the dry
and wet mapping functions is the unrefracted auxiliary elevation angle γ, which is
calculated as described in Section 9.3.

10.2.1.4 Partial Derivatives

From Eqs. (10�1) to (10�3), the partial derivatives of the tropospheric
range correction with respect to the solve-for constant corrections to the
modelled tropospheric zenith dry and wet range corrections at each DSN
complex or isolated tracking station are given by the corresponding dry and wet
mapping functions:

    

∂ ρ
∂ ρ

γ
∆

∆
T

zdry
dry= ( )R   dry → wet (10�7)

If the user has selected the Chao mapping functions, these partial
derivatives are evaluated from the following approximations to Chao�s mapping
tables, which were obtained from Eq. (19) on page 75 of Chao (1974):

    

R
A

B

dry
dry

dry

γ
γ

γ

( ) =
+

+

1

sin
tan

  dry → wet (10�8)

where
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Adry = 0.00143

Bdry = 0.0445
(10�9)

and

    

Awet = 0.00035

Bwet = 0.017
(10�10)

From Chao (1974), these approximate mapping functions are in error by less
than 1% for elevation angles greater than 1 degree.

If the user has selected the Niell mapping functions, the dry and wet
mapping functions in Eqs. (10�7) are calculated from the formulation specified in
Section 10.2.1.3.2.

10.2.2 INDIVIDUAL-LEG CHARGED-PARTICLE CORRECTIONS

For the up-leg light path from a tracking station on Earth to a spacecraft
or the down-leg light path from a spacecraft or a quasar to a tracking station on
Earth, the change in the light time due to charged particles along the light path is
the charged-particle range correction ∆CPρ (evaluated at the reception time or
transmission time at the tracking station on Earth) in meters divided by 103c,
where c is the speed of light in kilometers per second. The charged-particle range
correction ∆CPρ is calculated from:

    
∆CP CP

Hzρ δ ρ= ± ×





2295 106 2

f
m (10�11)

where   δCPρ is the charged-particle range correction in meters at the standard
frequency of 2295 x 106 Hz, and f is the transmitter frequency in Hz for the
specific leg of the light path.

The charged-particle range correction   δCPρ along the light path between
any tracking station at a specific DSN complex or a specific tracking station on
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Earth and a specific spacecraft or a specific quasar is calculated in the Regres
editor as a normalized power series, a Fourier series, or a constant. These
corrections are calculated the same way as tropospheric zenith dry and wet
range corrections, as described in Section 10.2.1.2. Also, the input CSP commands
for calculating charged-particle range corrections have the same general format
as those used for tropospheric zenith dry and wet range corrections.

The algorithm for calculating the transmitter frequency f for each leg of
each light path is given in Section 13.2.8.

The sign of the charged-particle range correction ∆ CPρ given by
Eq. (10�11) is negative for doppler and narrowband spacecraft or quasar
interferometry data types and positive for range and wideband spacecraft or
quasar interferometry data types.

Most of the input CSP commands for calculating the charged-particle
range corrections represent the effects of the charged particles of the Earth�s
ionosphere and are derived by processing dual-frequency GPS data (transmitted
from a GPS satellite to a GPS receiving station on Earth). The charged-particle
range corrections along the directions to several GPS satellites can be
interpolated to give the charged-particle range corrections along the light path to
a specific spacecraft or quasar.

10.2.3 LIGHT-TIME CORRECTIONS

Computed values of doppler, range, and spacecraft or quasar
interferometry data types are calculated from one, two, or four computed
precision values of the one-way light time ρ1, the round-trip light time ρ, or the
quasar delay τ  . The round-trip light time is two-way if the transmitting station
on Earth is also the receiving station. If the receiving station on Earth is not the
transmitting station, the round-trip light time is three-way. Subsection 10.2.3.1
gives the definitions of the three precision light times: ρ1, ρ, and τ  . The
formulations for calculating these precision light times are given in Section 11.
Subsection 10.2.3.2 gives equations for calculating media corrections to the three
precision light times. These corrections are calculated from sums and differences
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of individual-leg tropospheric and charged-particle corrections in the Regres
editor. They are used to calculate media corrections to the computed values of
observables in the Regres editor. The equations for calculating media corrections
to the computed observables from media corrections to the computed precision
light times are given in Section 13. The media corrections and other user-
specified corrections to the computed observables are placed on the Regres file in
the variable CRESID, as discussed in Section 10.2.

In order to calculate media corrections to the three precision light times,
the Regres editor needs a variety of reception times and transmission times.
These epochs must be calculated in the Regres editor from quantities on the
Regres file. The equations for performing these calculations are given in
Subsection 10.2.3.3.

In Section 10, the receiving station can be a receiving station on Earth or a
receiving Earth satellite. Similarly, the transmitting station can be a transmitting
station on Earth or a transmitting Earth satellite.

10.2.3.1 Definitions of Precision Light Times

10.2.3.1.1 One-Way Spacecraft Data Types

The precision one-way light time, used to calculate the computed values of
one-way doppler (F1) observables and one-way wideband (IWS) and
narrowband (INS) spacecraft interferometry observables, is defined to be:

    ρ1 = t3 ST( ) − t2 ET( ) s (10�12)

where t3(ST) is the reception time in station time ST at the receiving station and
t2(ET) is the transmission time in coordinate time ET at the spacecraft.

Computed values of F1 observables are calculated from the precision one-
way light time   ρ1e

 at the end of the doppler count interval Tc minus the
precision one-way light time   ρ1s

 at the start of the count interval:
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    ρ1e
= t3e

ST( ) − t2e
ET( ) s (10�13)

    ρ1s
= t3s

ST( ) − t2s
ET( ) s (10�14)

where     t3e
ST( )  and     t3s

ST( ) are reception times at the receiving station at the end
and start of the doppler count interval Tc . The epochs     t2e

ET( )  and     t2s
ET( ) are

the corresponding transmission times at the spacecraft. Note that the count
interval Tc is equal to:

    Tc = t3e
ST( ) − t3s

ST( ) s (10�15)

The count interval Tc is an integer (e.g., 60 s or 600 s).

The computed value of a one-way wideband spacecraft interferometry
(IWS) observable is calculated from ρ1 defined by Eq. (10�12) at receiving station
2 minus ρ1 at receiving station 1 at the common reception time t3(ST).

The computed value of a one-way narrowband spacecraft interferometry
(INS) observable is calculated from F1 at receiving station 2 minus F1 at receiving
station 1, where the two computed F1 observables have the same values of

    t3e
ST( ) ,     t3s

ST( ), and Tc . Each of the two computed F1 observables is calculated
from the difference of the two precision one-way light times defined by
Eqs. (10�13) and (10�14).

The precision one-way light time, used to calculate the computed values of
GPS/TOPEX pseudo-range and carrier-phase observables, is defined to be:

    ρ1 = t3 ST( ) − t2 ST( ) s (10�16)

where t3(ST) is the reception time in station time ST at the receiving TOPEX
satellite or GPS receiving station on Earth and t2(ST) is the transmission time at
the GPS satellite in station time ST.
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10.2.3.1.2 Round-Trip Spacecraft Data Types

The precision round-trip light time, used to calculate the computed values
of two-way and three-way range (ρ2 and ρ3) observables, two-way and three-
way doppler (F2 and F3) observables, and round-trip wideband (IWS) and
narrowband (INS) spacecraft interferometry observables, is defined to be:

    ρ = t3 ST( ) − t1 ST( ) s (10�17)

where t3(ST) is the reception time in station time ST at the receiving station and
t1(ST) is the transmission time in station time ST at the transmitting station. If the
transmitting station is the receiving station, the precision round-trip light time is
two-way. Otherwise, it is three-way.

Computed values of two-way range (ρ2) and three-way range (ρ3)
observables are calculated from the precision round-trip light time ρ defined by
Eq. (10�17).

Computed values of two-way doppler (F2) and three-way doppler (F3)
observables are calculated from the precision round-trip light time ρe at the end
of the doppler count interval Tc and the precision round-trip light time ρs at the
start of the count interval:

    ρe = t3e
ST( ) − t1e

ST( ) s (10�18)

    ρs = t3s
ST( ) − t1s

ST( ) s (10�19)

where     t3e
ST( )  and     t3s

ST( ) are reception times at the receiving station at the end
and start of the doppler count interval Tc . The epochs     t1e

ST( )  and     t1s
ST( ) are

the corresponding transmission times at the transmitting station.

The computed value of a round-trip wideband spacecraft interferometry
(IWS) observable is calculated from ρ defined by Eq. (10�17) at receiving station 2
minus ρ at receiving station 1 at the common reception time t3(ST).
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The computed value of a round-trip narrowband spacecraft
interferometry (INS) observable is calculated from F2 or F3 at receiving station 2
minus F2 or F3 at receiving station 1, where the two computed doppler
observables have the same values of     t3e

ST( ) ,     t3s
ST( ), and Tc. Each of the two

computed doppler observables is calculated from the two precision round-trip
light times defined by Eqs. (10�18) and (10�19).

10.2.3.1.3 Quasar Interferometry Data Types

The precision quasar delay τ, used to calculate the computed values of
wideband (IWQ) and narrowband (INQ) quasar interferometry observables, is
defined to be:

    τ = t2 ST( ) − t1 ST( ) s (10�20)

where t2(ST) and t1(ST) are the reception times of the quasar wavefront at
receiving stations 2 and 1, respectively, in station time ST.

The computed value of a wideband quasar interferometry (IWQ)
observable is calculated from the precision quasar delay τ defined by Eq. (10�20).

The computed value of a narrowband quasar interferometry (INQ)
observable is calculated from the precision quasar delay τ  e at the end of the
count interval Tc minus the precision quasar delay τ  s at the start of the count
interval:

    τ e = t2e
ST( ) − t1e ST( ) s (10�21)

    τ s = t2s ST( ) − t1s ST( ) s (10�22)

where     t1e
ST( )  and     t1s

ST( ) are reception times at receiving station 1 at the end
and start of the count interval Tc. The epochs     t2e

ST( )  and     t2s
ST( ) are the

corresponding reception times at receiving station 2. Note that the count interval
Tc is equal to:
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    Tc = t1e
ST( ) − t1s

ST( ) s (10�23)

10.2.3.2 Corrections to Precision Light Times

Section 10.2.3.1 defined the three types of precision light times that are
computed in program Regres and identified which of these precision light times
are computed in calculating the computed value of each data type. This section
will give equations for corrections to each of these computed precision light
times due to the troposphere and charged particles. These corrections are input
to equations given in Section 13 to give the media corrections to computed
values of observables. These equations are evaluated in the Regres editor.

In the equations given in the following three subsections, the tropospheric
range correction     ∆Tρ ti( )  in meters at the reception time or transmission time ti

is calculated from Eqs. (10�1) to (10�3) as described in Section 10.2.1. The
corresponding charged-particle range correction     ∆CPρ ti( )  is calculated from Eq.
(10�11) as described in Section 10.2.2. If a transmitting station or a receiving
station is an Earth satellite, the indicated tropospheric range correction is zero
and the charged-particle correction does not include the effects of the Earth�s
ionosphere. Unless inputs are available for space plasma or charged particles of
the solar corona, the charged-particle range correction will be zero.

10.2.3.2.1 One-Way Spacecraft Data Types

For the computed values of one-way doppler (F1) observables, the media
corrections to the precision one-way light times calculated at the end and start of
the doppler count interval are given by:

    
∆ρ1e

= 1

103 c
∆Tρ t3e( ) + ∆CPρ t3e( )[ ] s (10�24)

    
∆ρ1s

= 1

103 c
∆Tρ t3s( ) + ∆CPρ t3s( )[ ] s (10�25)
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where c is the speed of light in kilometers per second, and     t3e
 and     t3s

 are
reception times in station time ST at the receiving station at the end and start of
the doppler count interval.

For the computed value of a one-way wideband spacecraft interferometry
(IWS) observable, the media correction to the precision one-way light time at
receiving station 2 is calculated from:

    
∆ρ1 = 1

103 c
∆Tρ t3( ) + ∆CPρ t3( )[ ] s (10�26)

The media correction to the precision one-way light time at receiving station 1 is
calculated from the same equation. The reception time t3 in station time ST is the
same at the two stations. However, the troposphere and charged-particle
corrections on the paths to the two stations are different.

For the computed value of a one-way narrowband spacecraft
interferometry (INS) observable, the media corrections to the precision one-way
light times at the end and start of the one-way doppler count interval at
receiving station 2 are calculated from Eqs. (10�24) and (10�25). The media
corrections to the precision one-way light times at the end and start of the one-
way doppler count interval at receiving station 1 are calculated from the same
equations. The reception times at the end and start of the count intervals at the
two stations are the same, but the media corrections are different.

The observed values of GPS/TOPEX pseudo-range and carrier-phase
observables are calculated as a weighted average of values at two different
transmitter frequencies, which eliminates the effects of charged particles. Hence,
in calculating media corrections for the computed values of these observables,
the charged-particle corrections are set to zero. For pseudo-range or carrier-
phase observables received at a GPS receiving station on Earth, the media
correction to the precision one-way light time is calculated from the first term of
Eq. (10�26). For these same observables received at the TOPEX satellite, the
media correction is zero.
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10.2.3.2.2 Round-Trip Spacecraft Data Types

For the computed value of a two-way range (ρ2) or three-way range (ρ3)
observable, the media correction to the precision round-trip light time ρ is
calculated from:

    
∆ρ = 1

103 c
∆Tρ t3( ) + ∆CPρ t3( ) + ∆Tρ t1( ) + ∆CPρ t1( )[ ] s (10�27)

where t3 and t1 are the reception and transmission times in station time ST at the
receiving and transmitting stations.

For the computed value of a two-way doppler (F2) or a three-way
doppler (F3) observable, the media corrections to the precision round-trip light
times calculated at the end and start of the doppler count interval are calculated
from:

    
∆ρe = 1

103 c
∆Tρ t3e( ) + ∆CPρ t3e( ) + ∆Tρ t1e( ) + ∆CPρ t1e( )[ ] s (10�28)

    
∆ρs = 1

103 c
∆Tρ t3s( ) + ∆CPρ t3s( ) + ∆Tρ t1s( ) + ∆CPρ t1s( )[ ] s (10�29)

where     t3e
 and     t3s

 are reception times in station time ST at the receiving station
at the end and start of the doppler count interval Tc . The epochs     t1e

 and     t1s
 are

the corresponding transmission times in station time ST at the transmitting
station.

For the computed value of a round-trip wideband spacecraft
interferometry (IWS) observable, the media corrections to the precision round-
trip light times at receiving stations 2 and 1 should be computed from
Eq. (10�27), where the reception time t3 in station time ST is the same at both
stations. However, the two values of the transmission time t1 differ by a
maximum of about 0.02 s and the up-leg media corrections cancel to sufficient
accuracy in calculating the media correction to the computed observable. Hence,
the up-leg media corrections are not calculated, and the media corrections to the
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precision round-trip light times at receiving stations 2 and 1 are calculated from
Eq. (10�26) instead of Eq. (10�27). Note that if the up-leg charged-particle
corrections were calculated, the sign of this correction would be negative. This
occurs because the up leg is a single frequency, and the carrier wave travels at
the phase velocity, while the down leg is dual frequency, and the ranging signal
travels at the group velocity.

For the computed value of a round-trip narrowband spacecraft
interferometry (INS) observable, the media corrections to the precision round-
trip light times at the end and start of the doppler count interval at receiving
stations 2 and 1 should be computed from Eqs. (10�28) and (10�29), where the
reception times at the end and start of the count intervals at the two stations are
the same. However, for the reasons stated in the preceding paragraph, the up-
leg media corrections are not calculated. Hence, the media corrections to the
precision round-trip light times at the end and start of the doppler count interval
at receiving stations 2 and 1 are calculated from Eqs. (10�24) and (10�25) instead
of Eqs. (10�28) and (10�29).

10.2.3.2.3 Quasar Interferometry Data Types

For the computed value of a wideband quasar interferometry (IWQ)
observable, the media correction to the precision quasar delay τ is calculated
from:

    
∆τ = 1

103 c
∆Tρ t2( ) + ∆CPρ t2( ) − ∆Tρ t1( ) − ∆CPρ t1( )[ ] s (10�30)

where t2 and t1 are the reception times of the quasar wavefront in station time
ST at receiving stations 2 and 1, respectively.

For the computed value of a narrowband quasar interferometry (INQ)
observable, the media corrections to the precision quasar delays at the end and
start of the count interval are calculated from:
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∆τ e = 1

103 c
∆Tρ t2e( ) + ∆CPρ t2e( ) − ∆Tρ t1e( ) − ∆CPρ t1e( )[ ] s (10�31)

    
∆τ s = 1

103 c
∆Tρ t2s( ) + ∆CPρ t2s( ) − ∆Tρ t1s( ) − ∆CPρ t1s( )[ ] s (10�32)

where     t1e
 and     t1s

 are reception times of the quasar wavefront in station time ST
at receiving station 1 at the end and start of the count interval Tc . The epochs     t2e

and     t2s
 are the corresponding reception times of the quasar wavefront in station

time ST at receiving station 2. Note that the count interval Tc is given by
Eq. (10�23).

10.2.3.3 Time Arguments for Media Corrections

This section gives approximate expressions for time arguments that are
used to calculate tropospheric range corrections and charged-particle range
corrections. All parameters in these equations are available from the Regres file.
Subsection 10.2.3.3.1 gives equations for the reception time t3 at the receiving
station for spacecraft data types and the reception time t1 at receiving station 1
for quasar interferometry data types. Subsection 10.2.3.3.2 gives equations for
the transmission time t1 at the transmitting station for spacecraft data types and
the reception time t2 at receiving station 2 for quasar interferometry data types.
All calculated reception and transmission times are in station time ST.

10.2.3.3.1 Spacecraft Reception Times, and Quasar Reception Times at
Receiving Station 1

For two-way (ρ2) and three-way (ρ3) range observables, GPS/TOPEX
pseudo-range and carrier-phase observables received at a GPS receiving station
on Earth or at the TOPEX satellite, and one-way or round-trip wideband
spacecraft interferometry (IWS) observables, the reception time at the receiving
station (at each of the two receiving stations for IWS) is the data time tag T T:

    t3 ST( ) = TT (10�33)
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For one-way (F1), two-way (F2), and three-way (F3) doppler observables, the
reception times at the receiving station at the end and start of the doppler count
interval Tc are given by:

    

t3e
ST( ) = TT + 1

2 Tc

t3s
ST( ) = TT − 1

2 Tc

(10�34)

For one-way and round-trip narrowband spacecraft interferometry (INS)
observables, the reception times at the end and start of the doppler count
interval at each of the two receiving stations are given by Eq. (10�34).

In addition to doppler observables, Regres also calculates the computed
values of total-count phase observables. These are doppler observables
multiplied by the doppler count interval Tc. Doppler observables are in units of
hertz and total-count phase observables are in units of cycles. In addition to the
difference in the units of the observables, doppler and total-count phase
observables differ in the configuration of the count intervals during a pass of
data. Doppler observables have contiguous count intervals of a constant length,
such as 60 s, 600 s, or 6000 s. If doppler observables have a count interval of Tc,
then the corresponding count intervals for total-count phase observables would
be Tc, 2Tc, 3Tc, 4Tc, etc., where all of these count intervals have a common start
time near the start of the pass. The last count interval would be almost as long as
the pass of data. The time tags for doppler observables are the midpoint of the
count interval. For total-count phase observables, the time tag is the end of the
count interval. Hence, for total-count phase observables, the reception times at
the receiving station at the end and start of the count interval are given by:

    

t3e
ST( ) = TT

t3s
ST( ) = TT − Tc

(10�35)

For wideband quasar interferometry (IWQ) observables, the reception
time at receiving station 1 is the data time tag:



SECTION  10

10�24

    t1 ST( ) = TT (10�36)

For narrowband quasar interferometry (INQ) observables, the reception times at
the end and start of the count interval Tc at receiving station 1 are given by:

    

t1e
ST( ) = TT + 1

2 Tc

t1s
ST( ) = TT − 1

2 Tc

(10�37)

10.2.3.3.2 Spacecraft Transmission Times, and Quasar Reception Times at
Receiving Station 2

For two-way (ρ2) and three-way (ρ3) range observables, the transmission
time at the transmitting station is given by:

    t1 ST( ) = TT − ρ (10�38)

where ρ is the precision round-trip light time defined by Eq. (10�17). For
two-way (F2) and three-way (F3) doppler observables, the transmission times at
the transmitting station at the end and start of the transmission interval are
given by:

    

t1e
ST( ) = TT + 1

2 Tc − ρe

t1s
ST( ) = TT − 1

2 Tc − ρs

(10�39)

where ρe and ρs are precision round-trip light times at the end and start of the
doppler count interval, which are defined by Eqs. (10�18) and (10�19).

For two-way (P2) and three-way (P3) total-count phase observables, the
transmission times at the transmitting station at the end and start of the
transmission interval are given by:
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t1e
ST( ) = TT − ρe

t1s
ST( ) = TT − Tc − ρs

(10�40)

For wideband quasar interferometry (IWQ) observables, the reception
time at receiving station 2 is given by:

    t2 ST( ) = TT + τ (10�41)

where τ is the precision quasar delay defined by Eq. (10�20). For narrowband
quasar interferometry (INQ) observables, the reception times at the end and
start of the reception interval at receiving station 2 are given by:

    

t2e
ST( ) = TT + 1

2 Tc + τ e

t2s
ST( ) = TT − 1

2 Tc + τ s

(10�42)

where τ  e and τ  s are precision quasar delays at the end and start of the count
interval, which are defined by Eqs. (10�21) and (10�22).

10.3 IONOSPHERE PARTIALS MODEL

This section gives the ionosphere partials model, which was obtained by
differentiating the ionosphere model of Klobuchar (1975) with respect to two
parameters of the model. Estimated corrections to these two parameters
represent corrections to the charged-particle corrections calculated in the Regres
editor (Section 10.2.2). The user can estimate corrections to the two solve-for
parameters of the ionosphere which apply at all tracking stations of a specific
DSN complex or for a single isolated tracking station. The ionosphere model of
Klobuchar is not included in the model for the computed values of observables.
Hence, the estimated ionosphere parameters cannot be fed back into the model
for computed observables.

Subsection 10.3.1 gives the algorithm for the ionosphere model of
Klobuchar and the corresponding partial derivatives with respect to two
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parameters of this model. These individual-leg partials are used in Subsection
10.3.2 to calculate partial derivatives of the three precision light times (ρ1, ρ, and
τ   ) with respect to the ionosphere parameters. These same equations are used to
calculate partials of the precision light times with respect to the solve-for
troposphere parameters (Section 10.2.1.4) and the parameters of the solar corona
model (Section 10.4).

10.3.1 IONOSPHERE MODEL AND INDIVIDUAL-LEG PARTIAL

DERIVATIVES

Given the unrefracted auxiliary elevation angle γ at the transmitting or
receiving station on Earth (Section 9.3), compute the zenith angle Z at the mean
ionospheric height of 350 km from:

    Z = sin−1 0.94798 cosγ( ) (10�43)

where the numerical coefficient is ae/(ae + 350), where ae is the mean equatorial
radius of the Earth (6378.136 km).

Given the auxiliary azimuth angle σ at the transmitting or receiving
station on Earth (Section 9.3), calculate the geodetic latitude φ I of the sub-
ionospheric point from:

    φI = sin−1 sinφ0 sin γ + Z( ) + cosφ0 cos γ + Z( ) cosσ[ ] (10�44)

where   φ0  is the geodetic latitude of the transmitting or receiving station on Earth
calculated from Eqs. (9�6) to (9�8).

Calculate the east longitude   λ I  of the sub-ionospheric point from:

    
λ λ

γ σ
φI

I
= +

+( )









−
0

1sin
cos sin

cos
Z

(10�45)

where λ0 is the east longitude of the transmitting or receiving station on Earth.
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Given the transmission or reception time at the tracking station on Earth
in Universal Time UT1 expressed as seconds past January 1, 2000, 12h UT1,
calculate UT1 in hours past the start of the current day from:1

  
UT1 hours( ) = UT1 seconds( ) + 43200,  modulo 86400[ ] 1

3600
(10�46)

Then calculate the local mean solar time t at the sub-ionospheric point from:

    
t = UT1 hours( ) +

λ I °
15

hours (10�47)

where λ  I° is λ  I measured in degrees. Add or subtract 24h to place t in the range
of 0 to 24 hours.

The Klobuchar model for the ionospheric range correction in meters is
given by:

    
∆ I

Hzρ = ± +( ) ×





1 2295 106 2

cos
cos

Z
N D x

f
m (10�48)

where f is the transmitter frequency in Hz for the up leg or the down leg of the
light path through the ionosphere. The algorithm for calculating f is given in
Section 13.2.8. The sign of the ionospheric range correction ∆I ρ given by
Eq. (10�48) is negative for doppler and narrowband spacecraft or quasar
interferometry data types and positive for range and wideband spacecraft or
quasar interferometry data types. The argument x in radians is given by:

                                                
1If Universal Time UT1 is not available, it can be obtained by transforming coordinate time ET
as described in Section 5.3.2, steps 1 and 5. However, in the Solar-System barycentric space-time
frame of reference, use the approximate expression for ET − TAI. Also, if the resulting UT1 is
regularized (i.e., UT1R), it is not necessary to calculate and add the periodic terms ∆UT1 to
UT1R to give UT1.
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x =

2π t − φ( )
P

rad (10�49)

where φ = 14 hours and P = 32 hours. The coefficient N is the nighttime zenith
range correction in meters for a frequency of 2295 MHz. The additional daytime
zenith range correction is the positive half of a cosine wave with an amplitude of
D meters. This additional term has a peak effect at a local time t of 14 hours. For

  x  = π/2,   t − φ  = 8 hours and the upper half of the cosine wave begins at 6 a.m.
and ends at 10 p.m. local time. The term     Dcosx  is only included if:

    x ≤ π
2 (10�50)

The ionospheric range correction at a zenith angle Z is the zenith range
correction divided by     cosZ .

The parameters of ∆I ρ given by Eq. (10�48), which the ODP user can
estimate or consider, are the coefficients N and D in meters. The partial
derivatives of ∆I ρ  with respect to these parameters are given by:

    

∂ ρ
∂
∆ I Hz
N Z f

= ± ×





1 2295 106 2

cos
(10�51)

    

∂ ρ
∂
∆ I Hz
D

x
Z f

= ± ×





cos
cos

2295 106 2

if     x ≤ π
2

(10�52)
  = 0 if     x > π

2

The user can estimate corrections to N and D that apply to all tracking stations of
a specific DSN complex or to an isolated tracking station. These parameters can
be estimated independently at each DSN complex and at each isolated tracking
station.
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10.3.2 PARTIAL DERIVATIVES OF PRECISION LIGHT TIMES

From Eqs. (10�26), (10�27), and (10�30), the partial derivatives of the
precision one-way light time ρ1, the precision round-trip light time ρ, and the
precision quasar delay τ with respect to the N and D coefficients of Klobuchar�s
ionosphere model can be calculated from:

      

∂ ρ
∂

∂ ρ
∂

1
3

31

10q q
=

( )









c

t∆M (10�53)

      

∂ ρ
∂

∂ ρ
∂

∂ ρ
∂q q q

=
( )

+
( )









1

103
3 1

c

t t∆ ∆M M (10�54)

      

∂τ
∂

∂ ρ
∂

∂ ρ
∂q q q

=
( )

−
( )









1

103
2 1

c

t t∆ ∆M M (10�55)

where M refers to a particular model and q is the parameter vector which
contains the parameters of that model. For the Klobuchar ionosphere model,
M = I which refers to the ionosphere, and the parameter vector q contains the
solve-for coefficients N and D of this model. For spacecraft data types, t3 is the
reception time at the receiving station, and t1 is the transmission time at the
transmitting station. For quasar interferometry data types, t1 and t2 are the
reception times of the quasar wavefront at receiving stations 1 and 2. For the
Klobuchar ionosphere model, the partial derivatives of the five ionospheric
range corrections in Eqs. (10�53) to (10�55) with respect to the N and D

coefficients of this model are calculated from the formulation given in Section
10.3.1.

Eqs. (10�53) to (10�55) are also used to calculate the partial derivatives of
ρ1, ρ, and τ with respect to the tropospheric zenith dry and wet range corrections

  
∆ρzdry

 and   ∆ρz wet
. For this case, M = T which refers to the troposphere. The

individual-leg partials are calculated from the formulation of Section 10.2.1.4.
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The model for solar corona range corrections is given in Section 10.4.
Eqs. (10�53) to (10�55) will be used to calculate the partial derivatives of ρ1, ρ,
and τ with respect to the solve-for parameters A, B, and C of the solar corona
model. For this case, M = SC which refers to the solar corona. The formulation
for the individual-leg partials is given in Section 10.4.4.

The partial derivatives of ρ1, ρ, and τ with respect to the solve-for
parameters of the troposphere, ionosphere, and solar corona models are used in
Section 12 to calculate the partial derivatives of ρ1, ρ, and τ with respect to the
solve-for parameter vector q. These partials, in turn, are used in Section 13 to
calculate the partial derivatives of the computed values of each data type with
respect to the solve-for parameter vector q.

10.4 SOLAR CORONA MODEL

This section gives the solar corona model, which was obtained from
Anderson (1997) and Muhleman and Anderson (1981). Subsection 10.4.1 gives
the formulas for calculating the arguments of the solar corona corrections. The
equations for calculating the individual-leg solar corona corrections from these
arguments are given in Subsection 10.4.2. The solar corona corrections are
calculated within the spacecraft and quasar light-time solutions. Since this was
not mentioned in Section 8 (Light-Time Solution), Subsection 10.4.3 indicates how
the solar corona range corrections are added to the spacecraft and quasar light-
time solutions. Subsection 10.4.4 describes the calculation of the partial
derivatives of the individual-leg solar corona range corrections with respect to
the A, B, and C coefficients of this model. The equations for calculating the partial
derivatives of the precision light times ρ1, ρ, and τ with respect to the A, B, and C
coefficients of the solar corona model are given in Subsection 10.4.5.

The solar corona corrections and partial derivatives are calculated when
program Regres is operating in the Solar-System barycentric space-time frame of
reference. They do not apply when calculations are performed in the local
geocentric space-time frame of reference.
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10.4.1 CALCULATION OF ARGUMENTS FOR SOLAR CORONA

CORRECTIONS

Section 10.4.2 gives the formulation for calculating the up-leg or down-leg
range correction due to the solar corona. The light-time correction due to the
solar corona is the solar corona range correction   ∆SCρ  in meters divided by

    103 c , where c is the speed of light in kilometers per second. The solar corona
range corrections are a function of the closest approach radius p from the Sun to
the light path, the distances from the Sun to the transmitting and receiving
stations and the spacecraft, and the latitude φ relative to the Sun�s equator of the
closest approach point to the Sun on the light path. This section gives the
formulation for calculating p, the distances to the participants, and φ.

A round-trip spacecraft light-time solution in the Solar-System barycentric
space-time frame of reference always calculates the Sun-centered space-fixed
position vectors of the transmitting station (point 1) at the transmission time t1,
the spacecraft (point 2) at the reflection time t2, and the receiving station (point 3)
at the reception time t3:

      r 3
S t3( ),  r 2

S t2( ),  r1
S t1( ) (10�56)

A quasar light-time solution always calculates the Sun-centered space-fixed
position vectors of receiving stations 1 and 2 at the reception times t1 and t2 of
the quasar wavefront at these stations:

      r 2
S t2( ),  r1

S t1( ) (10�57)

Note that transmitting and receiving stations can be tracking stations on Earth or
Earth satellites.

In a spacecraft light-time solution, the unit vector L directed along the
Sun-centered light path from the transmitting station at the transmission time t1

or the receiving station at the reception time t3 to the spacecraft at the reflection
time or transmission time t2 can be calculated from:
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L =
r 2

S t2( ) − r1
S t1( )

r 2
S t2( ) − r1

S t1( )   1 → 3 (10�58)

where the bars in the denominator indicate the magnitude of the vector. In a
quasar light-time solution, the unit vector LQ to the quasar is calculated from
Eqs. (8�92) and (8�93).

For the up leg of the light path from a transmitting station to the
spacecraft or the down leg of the light path from the spacecraft or a quasar to a
receiving station, the position vector p from the Sun S to the point of closest
approach to the Sun on the light path can be calculated from:

      
p = r1

S t1( ) − r1
S t1( ) ⋅L[ ] L   1 → 2, 3 (10�59)

For the up leg of a spacecraft light-time solution, p is calculated from
Eqs. (10�58) and (10�59). For the down leg of a spacecraft light-time solution, p is
calculated from Eqs. (10�58) and (10�59) with subscript 1 changed to 3. For
reception of the quasar wavefront at receiving station 1 at the reception time t1,
calculate p from Eq. (10�59) with L replaced with LQ. For reception of the quasar
wavefront at receiving station 2 at the reception time t2, calculate p from
Eq. (10�59) with L replaced with LQ and with subscript 1 changed to 2.

The minimum distance or closest approach radius p from the Sun to the
up-leg or down-leg light path is the magnitude of the position vector p:

    p = p (10�60)

For a spacecraft light-time solution, calculate the distances from the Sun to
the transmitting station at t1, the spacecraft at t2, and the receiving station at t3 as
the magnitudes of the position vectors given in (10�56):

      
r1 = r1

S t1( )   1 → 2, 3 (10�61)
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For a quasar light-time solution, use this equation to calculate the distances from
the Sun to receiving station 1 at t1 and receiving station 2 at t2 as the magnitudes
of the position vectors given in (10�57).

The unit vector P directed toward the Sun�s mean north pole (axis of
rotation) of date is calculated from:

    

P =














cos cos
cos sin

sin

δ α
δ α

δ
(10�62)

where the right ascension α  and declination δ of the Sun�s mean north pole of
date relative to the mean Earth equator and equinox of J2000 are calculated from
Eqs. (6�8) and (6�9) using inputs obtained from the GIN file. These angles are
currently constants. However, when rate terms are added, these angles can be
calculated to sufficient accuracy from the transmission time t1 and reception time
t3 for the up and down legs of the spacecraft light path and the reception times t1

and t2 for the down legs of the quasar light path, where all epochs are in
coordinate time ET. Using p and p from Eqs. (10�59) and (10�60) and P from
Eq. (10�62), the latitude φ relative to the Sun�s mean equator of date of the closest
approach point to the Sun on the up-leg or down-leg light path can be calculated
from:

      
φ = ⋅











−sin 1 P
p
p

(10�63)

and converted to degrees.

10.4.2 INDIVIDUAL-LEG SOLAR CORONA CORRECTIONS

The up-leg and down-leg solar corona range corrections are calculated
from Eq. (1) of Anderson (1997), which is supported by the theory of Muhleman
and Anderson (1981):
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where

A, B, C = solve-for parameters, m
RS = radius of Sun = 696,000 km
φ 0 = reference latitude = 10°

f = up-leg or down-leg carrier frequency, Hz

The closest approach radius p from the Sun and the latitude φ relative to the Sun�s
mean equator of date of the closest approach point to the Sun are calculated
from equations given in Section 10.4.1. For a spacecraft light-time solution, the
factor F in Eq. (10�64) is calculated from Eq. (8) of Anderson (1997):

    
F = 1

π
tan−1 r2

2 − p2

p
+ 1

π
tan−1 r1

2 − p2

p
  1 → 3 (10�65)

which applies for the up leg of the light path. For the down leg, change the
subscript 1 to 3. The radii r1, r2, and r3 from the Sun to the transmitting station,
spacecraft, and receiving station are calculated from Eq. (10�61). For a quasar
light-time solution, on the down-leg light path to receiving station 1, F is
calculated from:

    
F = 1

2
+ 1

π
tan−1 r1

2 − p2

p
  1 → 2 (10�66)

For the down-leg light path to receiving station 2, change the subscript 1 to 2.
The radii r1 and r2 from the Sun to receiving stations 1 and 2 are calculated from
Eq. (10�61).
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The algorithm for calculating the transmitter frequency f for each leg of
each light path is given in Section 13.2.8.

The sign of the solar corona range correction ∆ SCρ given by Eq. (10�64) is
negative for doppler and narrowband spacecraft or quasar interferometry data
types and positive for range and wideband spacecraft or quasar interferometry
data types. GPS/TOPEX carrier-phase and pseudo-range observables are
calculated as a weighted average, which eliminates the effects of charged
particles (see Section 11.5). Hence, solar corona range corrections are not
calculated for these data types.

The individual-leg solar corona range corrections calculated from
Eqs. (10�64) to (10�66) are only valid when the transmitting and receiving
stations (on Earth or in Earth orbit) are on one side of the Sun and the spacecraft
or the quasar is on the opposite side of the Sun. The following equations can be
used to determine when this geometry occurs.

For the up leg of the light path from the transmitting station to the
spacecraft or the down leg of the light path from the spacecraft to the receiving
station, compute the solar corona range correction if the following two
inequalities are satisfied:

      r1
S t1( ) ⋅L < 0   1 → 3 (10�67)

      r 2
S t2( ) ⋅L > 0 (10�68)

where L is given by Eq. (10�58).

For the down-leg light path from the quasar to the receiving station,
calculate the solar corona range correction if the following inequality is satisfied:

      r1
S t1( ) ⋅LQ < 0   1 → 2 (10�69)

where LQ is calculated from Eqs. (8�92) and (8�93).
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In calculating the computed value of an observable, one, two, or four
light-time solutions are obtained, each of which has one or two legs. For each
computed observable, calculate solar corona range corrections for all legs of all
light-time solutions or for none of them. The easiest way to accomplish this is to
apply the above inequalities to the first leg of the first light-time solution
calculated. If a solar corona range correction is calculated for the first leg, then
calculate solar corona range corrections for all remaining legs for that data point.
Conversely, if a solar corona range correction is not calculated for the first leg,
then do not calculate solar corona range corrections for any of the remaining
legs for that data point.

10.4.3 ADDING SOLAR CORONA CORRECTIONS TO THE LIGHT-TIME

SOLUTIONS

The solar corona range corrections are calculated from the formulas given
in Sections 10.4.1 and 10.4.2.

For a spacecraft light-time solution, the down-leg solar corona range
correction must be calculated in Step 14 of the spacecraft light-time solution
(Section 8.3.6), along with all of the other quantities computed on the down-leg
light path. The up-leg solar corona range correction must be calculated along
with the other quantities computed on the up-leg light path in Step 27. Note that
the solar corona range corrections are only calculated in the Solar-System
barycentric space-time frame of reference.

Eq. (8�72) is used to differentially correct the transmission time t2(ET) for
the down leg of the spacecraft light-time solution, and the transmission time
t1(ET) for the up leg. The negative of the light-time correction due to the solar
corona must be added to the numerator of this equation. That is, add the
following term to the numerator of Eq. (8�72):

    
−

∆SCρi j

103 c
(10�70)
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When Eq. (8�72) is applied to the down leg of the spacecraft light-time solution, i
= 2 and j = 3, and ∆ SCρ23 is the down-leg solar corona range correction in meters.
When Eq. (8�72) is applied to the up leg of the spacecraft light-time solution, i = 1
and j = 2, and ∆ SCρ12 is the up-leg solar corona range correction. Use the
modified form of Eq. (8�72) to differentially correct the transmission time t2(ET)
for the down leg of the light path in Step 15 of the spacecraft light-time solution
and to differentially correct the transmission time t1(ET) for the up leg of the
light path in Step 28.

For a quasar light-time solution, the down-leg solar corona range
correction ∆ SCρ2 for receiving station 2 with reception time t2(ET) and the down-
leg solar corona range correction ∆ SCρ1 for receiving station 1 with reception
time t1(ET) must be calculated in Step 10 of the quasar light-time solution (Section
8.4.3) along with all of the other quantities which are associated with the travel
time of the quasar wavefront from receiving station 1 to receiving station 2.

In a quasar light-time solution, Eq. (8�103) is used to differentially correct
the reception time t2(ET) of the quasar wavefront at receiving station 2. The
negative of the correction to the light time t2(ET) − t1(ET) due to the solar corona
must be added to the numerator of this equation. That is, add the following term
to the numerator of Eq. (8�103):

    
−

∆SCρ2 − ∆SCρ1[ ]
103 c

(10�71)

Use the modified form of Eq. (8�103) to differentially correct the reception time
t2(ET) of the quasar wavefront at receiving station 2 in Step 11 of the quasar
light-time solution.

10.4.4 INDIVIDUAL-LEG SOLAR CORONA PARTIAL DERIVATIVES

From Eq. (10�64), the partial derivatives of the solar corona range
correction ∆ SCρ with respect to the solve-for parameters A, B, and C of the solar
corona model are given by:
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where all quantities in these equations are calculated from the formulas in
Sections 10.4.1 and 10.4.2.

10.4.5 PARTIAL DERIVATIVES OF PRECISION LIGHT TIMES

The partial derivatives of the precision one-way light time ρ1, the
precision round-trip light time ρ, and the precision quasar delay τ with respect to
the solve-for A, B, and C coefficients of the solar corona model are given by
Eqs. (10�53) to (10�55), which are rewritten here with a slight change of notation:
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where the subscripts on the solar corona range corrections are defined in Section
10.4.3. The parameter vector q contains the solve-for parameters A, B, and C of
the solar corona model. The partial derivatives of the five solar corona range
corrections in Eqs. (10�75) to (10�77) with respect to the A, B, and C coefficients
are calculated from Eqs. (10�72) to (10�74).
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The partial derivatives of ρ1, ρ, and τ with respect to the solve-for
parameters of the solar corona model are used in Section 12 to calculate the
partial derivatives of ρ1, ρ, and τ with respect to the solve-for parameter vector
q. These partials, in turn, are used in Section 13 to calculate the partial derivatives
of the computed values of each data type with respect to the solve-for parameter
vector q.

10.5 ANTENNA CORRECTIONS

10.5.1 INTRODUCTION

Antenna corrections are calculated at the reception time at a receiving
station on Earth and at the transmission time at a transmitting station on Earth.
These calculated corrections are non-zero if the primary and secondary axes of
the antenna do not intersect. The axis-offset b is the perpendicular distance in
meters between the centerlines of the primary and secondary axes of the
antenna. As the antenna rotates to track a spacecraft or a quasar, the primary
axis rotates and the secondary axis moves relative to the Earth if the axis-offset b
is non-zero. If the axis-offset b is non-zero for an antenna, the antenna correction
for that antenna is non zero.

The light time (calculated in the light-time solution) from the transmitting
station on Earth to the spacecraft and from the spacecraft to the receiving station
on Earth is based upon transmission and reception at the station location, which
is on the primary axis of the antenna, where the secondary axis would intersect it
if the axis-offset b were reduced to zero. On the other hand, range observables,
which measure the round-trip light time to the spacecraft, are calibrated for
transmission and reception at the secondary axis of the antenna. The antenna
corrections change the calculated light times from transmission and reception on
the primary axis of the antenna (two antennas if the transmitting station is not
the receiving station) to transmission and reception on the secondary axis of the
antenna (or antennas).

For the up leg of the light path from a transmitting station on Earth to the
spacecraft, the antenna correction in seconds is the negative of the travel time of
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the transmitted wavefront from its intersection with the primary axis of the
antenna to its intersection with the secondary axis of the antenna. Similarly, for
the down leg of the light path from the spacecraft or a quasar to a receiving
station on Earth, the antenna correction in seconds is the negative of the travel
time of the received wavefront from its intersection with the secondary axis of
the antenna to its intersection with the primary axis of the antenna. The antenna
correction in seconds is the antenna correction ∆ Aρ in meters divided by 103c,
where c is the speed of light in kilometers per second. The antenna correction in
meters has the general form:

    ∆Aρ ti( ) = − b cosθ ti( )     i = 1, 2, 3 m (10�78)

where b is the axis-offset in meters and θ is the secondary angle of the antenna at
the transmission time or reception time t i. Antenna corrections are calculated at
the transmission time t1 and reception time t3 for round-trip spacecraft light-time
solutions and at the reception times t1 and t2 at receiving stations 1 and 2 for
quasar light-time solutions. Referring to Figures 9�1, 9�3, 9�4, and 9�5, the
secondary angles for HA�DEC (angle pair HA�δ ), AZ�EL (angle pair σ�γ ), X�Y,
and   ′X �  ′Y  antennas are the angles declination δ, elevation γ , Y, and   ′Y ,
respectively. Antenna corrections calculated at the transmission or reception time
t i are calculated from unrefracted auxilary angles (Section 9), which are
calculated at that time. The antenna corrections should be calculated from
refracted angles. However, the errors in the computed values of observables due
to calculating antenna corrections from unrefracted auxiliary angles are
negligible.

Figure 10�1 shows the antenna geometry for any antenna at the
transmission time or reception time at a tracking station on Earth. The primary
axis of the antenna is in the plane of the paper and the secondary axis, which is
offset from the primary axis by the axis-offset b, is perpendicular to the plane of
the paper. The angle θ is the secondary angle of the antenna (e.g., the elevation
angle γ for an AZ�EL mount antenna). The paths from the antenna to the
spacecraft (or quasar) and from the station location on the primary axis to the
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Figure 10�1  Antenna Correction

spacecraft (or quasar) become parallel as the spacecraft recedes to infinity. It is
clear that the distance from the station location to the spacecraft is larger than the
distance from the secondary axis (the tracking point) to the spacecraft by b cos θ.
Since the calculated light time between the station location and the spacecraft or
quasar (in the spacecraft or quasar light-time solution) is corrected with the
additive antenna correction so that it will be equal to the observed light time
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between the secondary axis (the observed light time is calibrated to this point)
and the spacecraft or quasar, the antenna correction ∆Aρ in meters is the
negative of b cosθ, and the corresponding light-time correction is ∆Aρ in meters
given by Eq. (10�78) divided by 103c, where c is the speed of light in kilometers
per second.

The calculated antenna corrections given by Eq. (10�78) divided by 103c

are included in the expressions given in Section 11 for calculating the precision
one-way light time ρ1, the precision round-trip light time ρ, and the precision
quasar delay τ. The expression for ρ1 includes the antenna correction in seconds
at the reception time t3. The expression for ρ includes antenna corrections at the
reception time t3 and at the transmission time t1. The expression for τ includes
the antenna correction at the reception time t2 at receiving station 2 and the
negative of the antenna correction at the reception time t1 at receiving station 1.

10.5.2 ANTENNA TYPES AND CORRECTIONS

This section describes the types of antennas that exist at the tracking
stations of the Deep Space Network (DSN), the axis-offsets b, and the equations
used to calculate the antenna corrections ∆Aρ in meters. It also gives a six-digit
antenna identifier that describes each size and type of antenna. If the antenna
identifier for a specific tracking station matches one of the five identifiers for
which antenna corrections are computed, then that type of antenna correction is
calculated for that tracking station. Otherwise, the antenna correction for that
station is zero.

Table 10�1 summarizes the types of antennas which exist at the tracking
stations of the Deep Space Network (DSN). Column 1 gives the antenna
diameter in meters. Column 2 lists the angle pair measured by the antenna. The
antenna identifier is listed in column 3. The axis-offset b in meters is given in
column 4. The secondary angle of the antenna in the notation of the computed
auxiliary angles is given in column 5.
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Table 10�1

Antenna Types

Antenna
Diameter

m

Angle
Pair

Antenna
Identifier

Axis-Offset
b

m

Secondary
Angle

26 or 34 HA-DEC 26-H-D
34-H-D

6.706 δ

26 AZ-EL 26-A-E 0.9144 γ

26   ′X -  ′Y 26-X-Y 6.706   ′Y

9 X-Y 9-X-Y 2.438 Y

34 AZ-EL 34-HSB 1.8288 γ

34 AZ-EL 34-HEF 0 γ

34 AZ-EL 34-BWG 0 γ

64 or 70 AZ-EL 64-A-E
70-A-E

0 γ

11 AZ-EL 11VLBI 0 γ

For 26-m or 34-m hour angle-declination (HA-DEC) antennas, the antenna
type is specified as 26-H-D or 34-H-D and program Regres calculates the antenna
correction in meters from:

    ∆Aρ = − b cosδ m (10�79)

where δ is the declination angle of the spacecraft or quasar. The axis-offset b is
6.706 m.
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For the 26-m azimuth-elevation (AZ-EL) antenna, the antenna type is
specified as 26-A-E and the antenna correction is calculated from:

    ∆Aρ = − b cosγ m (10�80)

where γ is the elevation angle of the spacecraft or quasar. The axis-offset b is
0.9144 m.

For 26-m X-Y mount antennas, the antenna type is specified as 26-X-Y and
the antenna correction is calculated from:

    ∆Aρ = − ′b Ycos m (10�81)

where the secondary angle of the antenna is the auxiliary angle   ′Y . Note that the
26-m X-Y mount antennas actually measure the angles   ′X  and   ′Y  as shown in
Figure 9�5. The axis-offset b is 6.706 m.

For 9-m X-Y mount antennas, the antenna type is specified as 9-X-Y, and
the antenna correction is calculated from:

    ∆Aρ = − b cosY m (10�82)

where the secondary angle of the antenna is the auxiliary angle Y. The 9-m X-Y
mount antennas measure the angles X and Y as shown in Figure 9�4. The axis
offset b is 2.438 m.

For 34-m AZ-EL mount high-speed beam wave guide antennas, the
antenna type is specified as 34-HSB, the axis-offset b is 6 feet or 1.8288 m, and the
antenna correction can be calculated from Eq. (10�80).

For 34-m AZ-EL mount high efficiency antennas, the azimuth and
elevation axes intersect and the antenna correction is zero. This antenna type is
specified as 34-HEF.

For 34-m AZ-EL mount beam wave guide antennas, the axes intersect and
the antenna correction is zero. This antenna type is specified as 34-BWG .
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For 64-m or 70-m AZ-EL mount antennas, the axes intersect and the
antenna correction is zero. These antennas can be specified as 64-A-E or 70-A-E.

For 11-m AZ-EL mount orbiting VLBI antennas, the azimuth and
elevation axes intersect and the antenna correction is zero. These antennas are
specified as 11VLBI. The upper part of the azimuth axis of the antenna is
mounted on a wedge which tips the azimuth axis away from the vertical by 7°.
The lower surface of the wedge is horizontal, and the upper surface is tipped 7°
from the horizontal. The wedge can be rotated about a vertical axis. Let

σ = azimuth angle in degrees east of north of the high point
of the wedge

The azimuth axis is tipped away from the vertical by 7° in the direction σ + 180°
east of north. The azimuth of the wedge σ (the so-called train angle) is held fixed
during a pass of the spacecraft over the antenna. The station location is the
intersection of the tipped azimuth axis and the elevation axis. It is located on the
circumference of a horizontal circle of radius r. The current estimate of this radius
is:

    r = 39.838 cm = 0.39838 × 10−3 km (10�83)

The solve-for station location is the center of the horizontal circle. The Earth-fixed
vector from the solve-for station location to the actual station location is given
by:

      ∆r b = − r cosσ N − r sinσ E km (10�84)

where the components of the vectors are referred to the Earth-fixed coordinate
system aligned with the true pole, prime meridian, and equator of date. The
north and east vectors are calculated from Eqs. (9�3) to (9�8). For 11-m AZ-EL
mount orbiting VLBI antennas, the station location offset vector ∆rb given by
Eq. (10�84) is added to the Earth-fixed position vector rb of the tracking station
given by Eq. (5�1).
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11.1 INTRODUCTION

This section gives the formulation for calculating precision values of the
one-way light time ρ1, the round-trip light time ρ, and the quasar delay τ. There
are two versions of the precision one-way light time. One is used to calculate
computed values of one-way doppler (F1) observables and one-way wideband
(IWS) and narrowband (INS) spacecraft interferometry observables. The other
precision one-way light time is used to calculate computed values of GPS/TOPEX
pseudo-range and carrier-phase observables. The round-trip light time ρ is two-
way if the transmitter (a tracking station on Earth or an Earth satellite) is also the
receiver. If the receiver is not the transmitter, the round-trip light time is three-
way. The precision light times ρ1, ρ, and τ are used in the formulation of Section
13 to calculate computed values of the observables.

Prior to discussing the calculation of the precision light times, a model
which has been ignored so far in the formulation must be introduced. This is the
model for the down-leg delay τD at the receiving station on Earth and the up-leg
delay τU at the transmitting station on Earth. This model is necessary to process
tracking data obtained at the new 34-m beam wave guide (BWG) antennas at the
Goldstone complex. For these tracking stations, the transmitting and receiving
electronics are located at a central site which is tens of kilometers away from the
individual antennas. The model for representing τD and τU is given in Section
11.2.

The formulation for calculating the precision round-trip light time ρ is
given in Section 11.3. The definition of ρ is given in Section 11.3.1. The
formulation for computing ρ is given in Section 11.3.2.

Section 11.4 gives the formulation for calculating the precision one-way
light time ρ1 used to calculate the computed values of one-way doppler (F1)
observables and one-way wideband (IWS) and narrowband (INS) spacecraft
interferometry observables. The computed values of each of these observables
(each of the two computed F1 observables which are differenced to obtain the
computed INS observable) should be calculated from the differenced one-way
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light time   �ρ1 defined to be the reception time t3(ST) in station time ST at the
receiver (a tracking station on Earth or an Earth satellite) minus the transmission
time t2(TAI) in atomic time TAI at the spacecraft. However, in order to calculate

  �ρ1, an expression for calculating ET − TAI at the spacecraft is required. Since such
a general expression is not available, we calculate the precision one-way light
time ρ1, which is defined to be t3(ST) minus t2(ET) instead of   �ρ1. Then, the
differenced one-way light time   �ρ1 is calculated as the differenced one-way light
time ρ1 plus the correction term ∆. The term ∆ is defined to be the change in
ET − TAI which occurs during the spacecraft transmission interval. The preceding
discussion for calculating the differenced one-way light time is given in detail in
Section 11.4.1. The tedious formulation for calculating ∆ is given in Sections 11.4.2
and 11.4.3. The formulation for calculating the precision one-way light time ρ1 is
given in Section 11.4.4.

The formulation for calculating the precision one-way light time ρ1 used
to calculate the computed values of GPS/TOPEX pseudo-range and carrier-phase
observables is given in Section 11.5. This version of ρ1 is defined in Section 11.5.1.
The formulation for computing ρ1 is given in Section 11.5.2. The expression for
ρ1 includes the geometrical phase correction ∆Φ, which is the lag in the measured
phase at the receiver due to the rotation of the receiver relative to the
transmitter. The formulation for calculating ∆Φ is given in Section 11.5.3. The
formulation for calculating the variable part of the phase-center offset at the
transmitting GPS satellite, the receiving TOPEX satellite, and the GPS receiving
station on Earth is given in Section 11.5.4.

The formulation for calculating the precision quasar delay τ is given in
Section 11.6. The definition of τ is given in Section 11.6.1. The formulation for
computing τ is given in Section 11.6.2.

11.2 DELAYS

For round-trip spacecraft data types, the downlink delay τD at the
receiving station on Earth and the uplink delay τU at the transmitting station on
Earth are placed on the record of the OD file for the data point. For one-way
spacecraft data types, only τD is given. For narrowband and wideband spacecraft
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and quasar interferometry data types, τD is given for each of the two receiving
stations on Earth. For quasar interferometry data types, there is no τU. For
round-trip spacecraft interferometry data types, the effect of τU at the
transmitting station on Earth cancels to sufficient accuracy in calculating these
differenced data types. Hence, for this case, τU is set to zero.

If the received signal at a tracking station on Earth is a carrier-arrayed
signal obtained by combining signals from several antennas, it will contain a
fixed delay on the order of 1 ms. This delay will be added to the down-leg station
delay τD.

If a tracking station on Earth has its own transmitting and receiving
electronics located close to the antenna, the values of τD and τU for that tracking
station are very small. Small values of τD and τU are subtracted from the
observed values of range observables and the values placed on each record of
the OD file for that tracking station are set to zero.

If a transmitting station or a receiving station is an Earth satellite, the
values of τD and τU for that station are currently set to zero.

In the following, a receiver or a transmitter can be a tracking station on
Earth or an Earth satellite. Reference will be made to the reception time or the
transmission time at the tracking point of the antenna at the receiver or the
transmitter. At a DSN tracking station on Earth, the tracking point is the
secondary axis of the antenna (see Section 10.5.1). If the receiver or the
transmitter is an Earth satellite, the tracking point is the center of mass of the
satellite or the nominal phase center of the receiving or transmitting antenna of
the satellite. When the satellite ephemeris is interpolated for the position vector
of the satellite, the position vector obtained can refer to either of these points
(See Section 7.3.3, Step 3 and Section 8.3.6, Steps 2, 9, and 22). If a receiving
station on Earth is a GPS receiving station, the tracking point of the antenna is
the nominal phase center of the receiving antenna. The position vector of the
nominal phase center is calculated as described in Section 7.3.1, Step 3a.
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Section 11.2.1 gives the equations for calculating the reception time t3(ST)R

at the receiving electronics (subscript R) at the receiver for each light-time
solution for each spacecraft data type. It also gives the equations for calculating
the reception time t1(ST)R at the receiving electronics at receiver 1 for each light-
time solution for quasar interferometry data types. These are the equations of
Section 10.2.3.3.1 with a subscript R added to the reception times. These
equations are functions of the data time tag (TT) and the count time (if any) for
the data point.

Section 11.2.2 gives the equations for transforming reception times at the
receiving electronics (subscript R) to reception times (τD seconds earlier) at the
tracking point of the receiver. These equations apply at the reception time t3 for
spacecraft light-time solutions and at the reception time t1 at receiver 1 for
quasar light-time solutions.

Section 11.2.3 gives the equation for transforming the transmission time at
the tracking point of the transmitter for a spacecraft light-time solution to the
transmission time at the transmitting electronics (subscript T) (τU seconds
earlier). It also gives the equation for transforming the reception time at the
tracking point at receiver 2 for a quasar light-time solution to the reception time
at the receiving electronics (subscript R) (τD seconds later).

The equations in Sections 11.2.1 and 11.2.2 are used to calculate the
reception time t3(ST) at the tracking point of the receiver for each spacecraft
light-time solution. This epoch is used in Section 8.3.6, Step 1, to start each
spacecraft light solution. The equations in Sections 11.2.1 and 11.2.2 are also used
to calculate the reception time t1(ST) at the tracking point of receiver 1 for each
quasar light-time solution. This epoch is used in Section 8.4.3, Step 1, to start each
quasar light solution.

From the preceding paragraphs, it is seen that the down-leg delay τD at
each receiver for spacecraft data types and the down-leg delay τD at receiver 1
for quasar data types affect the spacecraft and quasar light-time solutions. It will
be seen in Sections 11.3 to 11.6 that the down-leg delay τD at each receiver and
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the up-leg delay τU at each transmitter affect the calculated precision values of
the one-way light time ρ1, the round-trip light time ρ, and the quasar delay τ.

It will be seen in Section 13 that computed values of many of the data
types are explicit functions of reception times at the receiver and transmission
times at the transmitter. In each case, the reception times are at the receiving
electronics (subscript R), and the transmission times are at the transmitting
electronics (subscript T).

The spacecraft transponder delay is normally subtracted from range
observables in the ODE. It is not modelled in program Regres. Sometimes, it is
not subtracted in the ODE and is added to the computed values of range
observables using CSP commands in the Regres editor (see Section 10.2). If a
spacecraft has multiple transponders, each transponder will, in general, have a
different delay.

11.2.1 TRANSFORMING DATA TIME TAG TO RECEPTION TIME(S) AT

RECEIVING ELECTRONICS

Equations (10�33) to (10�35) of Section 10.2.3.3.1 give the reception time
t3(ST) of the spacecraft signal at the receiver for each calculated light-time
solution for each spacecraft data type. Equations (10�36) and (10�37) give the
reception time t1(ST) of the quasar wavefront at receiver 1 for the quasar light-
time solution for an IWQ observable and for each of the two light-time solutions
for an INQ observable. Each reception time calculated from Eqs. (10�33) to
(10�37) should have a subscript R, indicating that the reception time is specifically
at the receiving electronics.

11.2.2 CALCULATING DELAYS AT THE BEGINNING OF SPACECRAFT

AND QUASAR LIGHT-TIME SOLUTIONS

For a spacecraft light-time solution, given the reception time t3(ST)R in
station time ST at the receiving electronics, calculated from one of Eqs. (10�33) to
(10�35), and the down-leg delay τD at the receiver, the reception time t3(ST) at
the tracking point of the receiver is given by:
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    t3 ST( ) = t3 ST( )R − τ D s (11�1)

The spacecraft light-time solution (Section 8.3.6) starts with this epoch.

For a quasar light-time solution, given the reception time t1(ST)R in station
time ST at the receiving electronics at receiver 1, calculated from Eq. (10�36) or
(10�37), and the down-leg delay   τ D1

 at receiver 1, the reception time t1(ST) at the
tracking point of receiver 1 is given by:

    t1 ST( ) = t1 ST( )R − τ D1
s (11�2)

The quasar light-time solution (Section 8.4.3) starts with this epoch.

11.2.3 CALCULATING DELAYS AT THE END OF SPACECRAFT AND

QUASAR LIGHT-TIME SOLUTIONS

For a spacecraft light-time solution, given the transmission time t1(ST) in
station time ST at the tracking point of the transmitter, calculated in
Step 32 of the spacecraft light-time solution (Section 8.3.6), and the uplink delay
τU at the transmitter, the transmission time t1(ST)T at the transmitting electronics
is given by:

    t1 ST( )T = t1 ST( ) − τ U s (11�3)

For a quasar light-time solution, given the reception time t2(ST) in station
time ST at the tracking point of receiver 2, calculated in Step 15 of the quasar
light-time solution (Section 8.4.3), and the downlink delay   τ D 2

 at receiver 2, the
reception time t2(ST)R at the receiving electronics at receiver 2 is given by:

    t2 ST( )R = t2 ST( ) + τ D 2
s (11�4)
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11.3 PRECISION ROUND-TRIP LIGHT TIME ρ

Section 11.3.1 gives the definition of the precision round-trip light time ρ
and Section 11.3.2 gives the equation for calculating ρ as a sum of terms. Most of
the terms in this equation are calculated in the spacecraft light-time solution and
in related calculations. Calculating ρ as a sum of terms instead of the difference of
two epochs reduces the roundoff errors in this calculation by approximately four
orders of magnitude.

11.3.1 DEFINITION OF ρ

The definition of the precision round-trip light time ρ is given by:

    ρ = t3 ST( )R − t1 ST( )T s (11�5)

where     t3 ST( )R is the reception time in station time ST of the spacecraft signal at
the receiving electronics at the receiver and     t1 ST( )T  is the corresponding
transmission time in station time ST at the transmitting electronics at the
transmitter. The receiver and the transmitter can each be a tracking station on
Earth or an Earth satellite. If the transmitter is the receiver, the round-trip light
time ρ is called two-way. Otherwise, it is called three-way.

Substituting Eqs. (11�1) and (11�3) into Eq. (11�5) gives:

    ρ = t3 ST( ) − t1 ST( )[ ] + τ D + τ U s (11�6)

where     t3 ST( ) is the reception time in station time ST at the tracking point of the
antenna at the receiver and     t1 ST( ) is the transmission time in station time ST at
the tracking point of the antenna at the transmitter. The various tracking points
are defined in the fifth paragraph of Section 11.2. The quantity   τ D  is the
downlink delay at the receiver and   τ U  is the uplink delay at the transmitter. The
previously given definition of ρ is Eq. (10�17), which is the first term of
Eq. (11�6). This previous definition was given prior to the introduction of delays
in Section 11.2. The first term of Eq. (11�6) is the round-trip light time in station
time ST calculated in the spacecraft light-time solution.
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11.3.2 CALCULATION OF ρ

The precision round-trip light time ρ defined by Eq. (11�5) or (11�6) is
calculated as the following sum of terms:

    

ρ =
r23

c
+ RLT23 +

r12

c
+ RLT12

− ET − TAI( )t3
+ ET − TAI( )t1

− TAI − UTC( )t3
+ TAI − UTC( )t1

− UTC − ST( )t3
+ UTC − ST( )t1

+ 1

103 c
Rc + ∆Aρ t3( ) + ∆SCρ23 + ∆Aρ t1( ) + ∆SCρ12[ ]

+ τ D + τ U

s (11�7)

where c is the speed of light in kilometers per second.

The down-leg range r23, up-leg range r12, down-leg relativistic light-time
delay RLT23, up-leg relativistic light-time delay RLT12, the three time differences
at the reception time t3, and the three time differences at the transmission time t1

are all calculated in the round-trip spacecraft light-time solution as specified in
Section 8.3.6.

In Eq. (11�7), the intermediate time UTC (Coordinated Universal Time) is
only used when the receiver or the transmitter is a DSN tracking station on
Earth. If the receiver is an Earth satellite, the intermediate time UTC is replaced
with TOPEX master time (denoted as TPX). If the transmitter is an Earth satellite,
the intermediate time UTC is replaced with GPS master time (denoted as GPS).
Note that the constant values of TAI − TPX and TAI − GPS are obtained from the
GIN file. The use of different inputs for the receiving and transmitting satellites
allows for different constant offsets from satellite TAI (see Section 2.2.2) to the
nominal values of station time ST at the two satellites.
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The parameter Rc is a solve-for round-trip range bias in meters. It is
specified by the receiving DSN tracking station number and time block for that
station.

The terms     ∆Aρ t3( ) and     ∆Aρ t1( ) are antenna corrections at receiving and
transmitting DSN tracking stations on Earth, calculated from the formulation of
Section 10.5. They are a function of the antenna type at the DSN tracking station,
the axis offset b, and the secondary angle of the antenna. The value of this angle
used to evaluate each antenna correction is one of the unrefracted auxiliary
angles calculated at t3 or t1 from the formulation of Section 9. If the receiver or
the transmitter is an Earth satellite, the analogous correction is the offset from
the center of mass of the satellite to the nominal phase center of the satellite. This
offset is calculated as described in Section 7.3.3 when interpolating the ephemeris
of the satellite.

The down-leg solar corona range correction   ∆SCρ23  and the up-leg solar
corona range correction   ∆SCρ12 are calculated in the spacecraft light-time
solution from the formulation of Section 10.4.

The down-leg delay τD at the receiver and the up-leg delay τU at the
transmitter are obtained from the record of the OD file for the data point.

Equation (11�7) does not include corrections due to the troposphere or
due to charged particles. These corrections are calculated in the Regres editor and
are included in Eqs. (10�27) to (10�29) for the corrections ∆ρ, ∆ρe, and ∆ρs to ρ
given by Eq. (11�7). These corrections to ρ are handled separately as described in
Sections 10.1 and 10.2.

In order to minimize roundoff errors in the precision round-trip light time
ρ calculated from the sum of terms (11�7), add the terms     r23 c and     r12 c  to the
sum last.

11.4 PRECISION ONE-WAY LIGHT TIME   ρ1

This section gives the formulation for calculating the differenced one-way
light time   �ρ1 which is used to calculate the computed values of one-way doppler
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(F1) observables and one-way narrowband (INS) and wideband (IWS) spacecraft
interferometry observables. The high-level equations for calculating the
differenced one-way light time are given in Section 11.4.1. Calculation of the
differenced one-way light time requires the calculation of the quantity ∆, which is
the change in the time difference ET − TAI which occurs during the transmission
interval at the spacecraft. The high-level equations for calculating ∆ are given in
Section 11.4.2. The detailed algorithm for calculating the arguments of the
quantity ∆ is given in Section 11.4.3. The expression for the precision one-way
light time   ρ1, which does not include the time difference ET − TAI at the
transmission time t2 at the spacecraft, is given in Section 11.4.4.

11.4.1 HIGH-LEVEL EQUATIONS FOR CALCULATING DIFFERENCED

ONE-WAY LIGHT TIMES

It will be seen in Section 13 that the precision one-way light time   �ρ1 which
is differenced and then used to calculate the computed values of F1 and one-way
INS and IWS observables is defined to be:

    �ρ1 3 2= ( ) − ( )t tST TAIR s (11�8)

where t3(ST)R is the reception time in station time ST at the receiving electronics
at the receiver (a receiving station on Earth or an Earth satellite) and t2(TAI) is
the transmission time in International Atomic Time TAI at the spacecraft. Note
that the atomic clock that reads TAI on board the spacecraft agreed with TAI on
Earth prior to launching the spacecraft. This is discussed further in Section 11.4.2.
In order to calculate   �ρ1, an expression is required for the time difference

    
ET − TAI( )t2

 at the transmission time t2 at the spacecraft. Section 2 gives
expressions for calculating ET − TAI at a tracking station on Earth and at an Earth
satellite. However, we do not have an expression for calculating ET − TAI at a
spacecraft on an arbitrary trajectory through the Solar System. Hence, instead of
calculating the precision one-way light time   �ρ1, we will calculate the precision
one-way light time   ρ1 which is defined to be:

    ρ1 = t3 ST( )R − t2 ET( ) s (11�9)
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where t2(ET) is the transmission time in coordinate time ET at the spacecraft. The
relation between   �ρ1 and   ρ1 is:

    
�ρ ρ1 1 2

= + −( )ET TAI t s (11�10)

Section 10.2.3.1.1 describes the differenced one-way light times which are
used to calculate the computed values of F1 and one-way INS and IWS

observables. However, the light-time differences are differences of   �ρ1 defined by
Eq. (11�8) instead of   ρ1 defined by Eq. (11�9) as stated in Section 10.2.3.1.1.

From Eq. (11�10), the differenced one-way light time used to calculate the
computed value of an F1 observable and each F1 observable differenced to give
the computed value of a one-way INS observable are given by:

  
� �ρ ρ ρ ρ1 1 1 1e s e s

− = − + ∆ s (11�11)

where

    
∆ = ET − TAI( )t2e

− ET − TAI( )t2s
s (11�12)

In Eq. (11�11), the one-way light times with subscripts e and s have reception
times t3(ST)R equal to the end and start of the doppler count interval Tc at the
receiver. In Eq. (11�12), the time differences (ET − TAI) at the spacecraft are
evaluated at the end and start of the transmission interval     Tc

′ , which
corresponds to the reception interval     Tc  at the receiver.

In order to calculate the computed value of a one-way IWS observable,
Eqs. (11�11) and (11�12) can be used with subscripts e and s changed to
Receiver 2 and Receiver 1, respectively. In these modified equations, the
precision one-way light times for receivers 2 and 1 have a common reception
time t3(ST)R, which is equal to the data time tag. The transmission times at the
spacecraft for each of the two receivers will differ by less than the Earth�s radius
divided by the speed of light, or 0.02 s.
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The high-level equations for calculating ∆ defined by Eq. (11�12) are given
in the next section.

11.4.2 HIGH-LEVEL EQUATIONS FOR CALCULATING ∆

The quantity ∆, defined by Eq. (11�12), can be expressed as:

    

∆ =
( )

( )

∫ I d
t

t

ET

s

e

ET

ET

2

2

s (11�13)

where     t2e
ET( )  and     t2s

ET( ) are epochs at the end and start of the transmission
interval at the spacecraft, and:

    
I = 1 −

dTAI
dET

(11�14)

The quantity     dTAI is an interval of atomic time recorded on the TAI clock
carried by the spacecraft. The corresponding interval of coordinate time ET is

    dET. From Eq. (2�20), the quantity I is given by:

    
I = 1

c 2 U + 1
2 v2( ) − L (11�15)

where U is the gravitational potential at the spacecraft and v is the Solar-System
barycentric velocity of the spacecraft. The constant L is defined by Eq. (2�22),
evaluated at mean sea level on Earth. This initial condition is used because if the
spacecraft atomic clock were placed on the surface of the Earth at mean sea level,
it would agree with International Atomic Time TAI on Earth (see Eqs. (2�20) and
(2�22)). The constant L is obtained by evaluating Eq. (4�12); the resulting
numerical value is given by Eq. (4�13). The derivative of I with respect to
coordinate time ET is given by:

    
ú úI U v

c
= + ( )⋅





1 1
2

2
2 1/s (11�16)
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where     úU  and 
    

v2( )⋅ are time derivatives of U and v2, respectively.

In the local geocentric space-time frame of reference, the gravitational
potential U in Eq. (11�15) is due to the Earth, and v is the geocentric space-fixed
velocity of the spacecraft. The constant L in the geocentric frame of reference is
obtained by evaluating Eq. (4�14); the resulting numerical value is given by Eq.
(4�15).

If we represent I as a cubic function of coordinate time ET in Eq. (11�13), it
can be shown that the function ∆ is given by:

    ∆ = +( ) − −( )1
2

1
12

2I I T I I Te s e s
ú ú s (11�17)

where

    T = t2e
ET( ) − t2s

ET( ) s (11�18)

In Eq. (11�17), Ie and     
úIe  are I and     úI  given by Eqs. (11�15) and (11�16), evaluated

at the epoch     t2e
ET( ) . Similarly, Is and     

úIs  are evaluated at the epoch     t2s
ET( ).

The next section gives the algorithm for calculating 
    
U U v v, ú , ,   and 2 2( )⋅.

Evaluating this algorithm at     t2e
ET( )  and     t2s

ET( ) and substituting the calculated

quantities into Eqs. (11�15) and (11�16) gives the required values of

    I I I Ie s e s   and , , ú , ú , which are used to calculate ∆ from Eqs. (11�17) and (11�18).

Eqs. (11�13) to (11�18) can be used in calculating the computed values of
F1 and one-way INS observables. However, for one-way IWS observables, the
notation must be changed. The epoch     t2e

ET( )  must be changed to

    t2 ET( )Receiver 2 , the transmission time at the spacecraft for receiver 2. The epoch

    t2s
ET( ) must be changed to     t2 ET( )Receiver 1, the transmission time at the

spacecraft for receiver 1. In Eq. (11�17), the subscripts e and s refer to the epochs

    t2 ET( )Receiver 2  and     t2 ET( )Receiver 1, respectively.



PRECISION  LIGHT  TIMES

11�17

11.4.3 ALGORITHM FOR CALCULATING THE ARGUMENTS     U U,  ú ,  ,υ 2

AND 
  
υ 2( )⋅OF I AND     úI

The gravitational potential U at the spacecraft and its time derivative     úU
are calculated from:

    U = Upm + Uobl km2/s2 (11�19)

    
ú ú úU U U= +pm obl km2/s3 (11�20)

where Upm is the potential at the spacecraft due to bodies treated as point masses.
The term Uobl is the additional potential at the spacecraft due to the oblateness of
a nearby body. The algorithms for calculating Upm and Uobl and their time
derivatives are given in Subsections 11.4.3.1 and 11.4.3.2.

The equations for calculating the terms v2 and 
    

v2( )⋅ of Eqs. (11�15) and

(11�16) are given in Subsection 11.4.3.3.

All quantities calculated in Subsections 11.4.3.1 to 11.4.3.3 are evaluated at
the transmission time t2 of the one-way spacecraft light-time solution.

The algorithms for calculating 
    
U U v v, ú , ,   and 2 2( )⋅ apply in general in the

Solar-System barycentric space-time frame of reference. The simplifications that

apply when calculating these quantities in the local geocentric space-time frame

of reference are noted.

11.4.3.1 Gravitational Potential at the Spacecraft Due to Point-Mass Bodies

1. Obtain the Solar-System barycentric (C) space-fixed position and
velocity vectors of bodies k consisting of the Sun, Mercury, Venus,
the Earth, the Moon, the barycenters of the planetary systems Mars
through Pluto, and possibly one or more asteroids or comets. These
vectors are available from Steps 7 and 17 of the spacecraft light-time
solution (Section 8.3.6).
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    r rk
C

k
C , ú (11�21)

2. If the spacecraft is free and is within the sphere of influence of one of
the outer planet systems Mars through Pluto, or if the spacecraft is
landed and the lander body is the planet or one of the satellites of
one of these outer planet systems, obtain the space-fixed position
and velocity vectors of bodies k consisting of the planet and each
satellite on the satellite ephemeris relative to the barycenter P of the
planetary system:

    r rk
P

k
P , ú (11�22)

These vectors are available from Steps 8 and 17 of the spacecraft
light-time solution.

3. Add the vectors (11�21) for k = the planetary system P to the vectors
(11�22) to give the Solar-System barycentric position and velocity
vectors of the planet and each satellite on the satellite ephemeris.

4. Obtain the space-fixed Solar-System barycentric position, velocity,
and acceleration vectors of the free or landed spacecraft p:

    r rp
C

p
C

p
C  , ú , úúr (11�23)

These vectors are calculated in Steps 7 to 11, 17, and 18 of the
spacecraft light-time solution.

5. Given the Solar-System barycentric position and velocity vectors of
the Sun, the Moon, the planets, the planetary satellites, and possibly
one or more asteroids or comets calculated in Steps 1 to 3 (bodies k)
and the spacecraft (p) in Step 4, calculate the space-fixed position and
velocity vectors of the spacecraft relative to each body k:

    r p
k = r p

C − r k
C km (11�24)
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ú ú úr r rp

k
p
C

k
C= − km/s (11�25)

6. Calculate the range and the range rate from each body k to the
spacecraft p:

      
rkp = r p

k km (11�26)

      
ú úr

rkp
p
k

kp
p
k= ⋅

r
r km/s (11�27)

7. The gravitational constants   µk for the bodies k in units of km3/s2 are
obtained from the planetary, small-body, and satellite ephemerides
as described in Sections 3.1.2.2 and 3.2.2.1.

8. Calculate the point-mass gravitational potential     Upm and its time
derivative     

úUpm from:

    

Upm =
µk

rkp
k

∑ km2/s2 (11�28)

    

ú úU
r

rpm
k

kp
k

kp= −∑ µ
2 km2/s3 (11�29)

In the local geocentric space-time frame of reference, the
summations over bodies k include one body only, namely, the Earth.
The space-fixed position, velocity, and acceleration vectors of the
spacecraft relative to the Earth are obtained by interpolating the
spacecraft ephemeris in Steps 9 and 17 of the spacecraft light-time
solution. Substituting these vectors into Eqs. (11�26) and (11�27)
gives     rkp  and     

úrkp .
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11.4.3.2 Gravitational Potential at the Spacecraft Due to a Nearby Oblate

Body

The term Uobl of Eq. (11�19) is the gravitational potential at the spacecraft
due to the oblateness of a nearby planet. If the spacecraft is within the sphere of
influence of Mercury, Venus, or the Earth, Uobl is calculated for that planet. If the
spacecraft is within the sphere of influence of one of the outer planet systems
Mars through Pluto, Uobl is calculated for the planet of that system. The
oblateness potential is not calculated for the Sun, the Moon, satellites of the outer
planet systems, asteroids, or comets. Note that if the spacecraft is landed on a
planet or a planetary satellite, it will be within the sphere of influence of the
planet and hence Uobl due to the planet will be calculated.

1. Step 5 of Section 11.4.3.1 gives the space-fixed position and velocity
vectors of the spacecraft (p) relative to the nearby oblate planet (k):

    r rp
k

p
k , ú (11�30)

2. Substituting these vectors into Eqs. (11�26) and (11�27) gives the
range and range-rate from the oblate planet to the spacecraft:

    r rkp kp , ú (11�31)

3. The space-fixed unit vector P directed toward the oblate planet�s
north pole (axis of rotation) of date is calculated from:

    

P =














cos cos
cos sin

sin

δ α
δ α

δ
(11�32)

where α and δ are the right ascension and declination of the planet�s
north pole of date relative to the mean Earth equator and equinox of
J2000. For each planet except the Earth, α  and δ are calculated from
Eqs. (6�8), (6�9), and (5�65). The coefficients in these linear equations
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are obtained from Table I of Davies et al. (1996). For the planet
Neptune, α  and δ should be supplemented with the nutation terms
∆α and ∆δ, which are calculated from Eqs. (6�15), (6�17), and (5�65).
The coefficients in these equations are obtained from Table I of
Davies et al. (1996). For the Earth, α  and δ are calculated from
Eqs. (5�142), (5�143), and (5�65).

4. The gravitational potential at the spacecraft due to the oblateness of a
nearby planet is a function of the latitude φ of the spacecraft relative
to the planet�s equator. Given the quantities (11�30) to (11�32), the
sine of the latitude φ and its time derivative are calculated from:

      
sinφ = ⋅P

r p
k

kpr
(11�33)

      
sin ú

ú
φ( )⋅ = ⋅ −




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r r
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r

rkp
p
k kp

kp
p
k (11�34)

5. Given     r = rkp and     
ú úr r= kp from Step 2, and the gravitational constant

of the planet   µ = µk  from Step 7 of Section 11.4.3.1, the gravitational
potential at the spacecraft due to the zonal harmonic coefficients of a
nearby planet and the time derivative of the gravitational potential
are calculated from:

    

U
r

J
a
r

Pn

n

n

n

N

obl = − 





=
∑µ

2

(11�35)
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
 +( ) − ′( ) ( )⋅
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=
∑µ φ1

2

(11�36)

where
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Jn = zonal harmonic coefficient of degree n

N = highest degree n of zonal harmonics (obtained from GIN
file) or 8, whichever is smaller

a = mean equatorial radius of planet

Pn = Legendre polynomial of degree n in sin φ

  Pn
′ = derivative of Pn with respect to sin φ

The Legendre polynomial Pn is computed recursively from Eqs. (175)
to (177) of Moyer (1971). The quantity   Pn

′  is computed recursively
from Eqs. (178) and (179) of Moyer (1971).

11.4.3.3 Square of Spacecraft Velocity

1. Step 4 of Section 11.4.3.1 gives the space-fixed velocity and
acceleration vectors of the free or landed spacecraft (p) relative to the
Solar-System barycenter (C):

    
ú , úúr rp

C
p
C (11�37)

In the local geocentric space-time frame of reference, these vectors
are referred to the Earth (superscript E instead of C). They are
obtained as described in Step 8 of Section 11.4.3.1.

2. In the Solar-System barycentric space-time frame of reference, the
square of the Solar-System barycentric velocity v of the spacecraft is
calculated from:

      v
2 = ⋅ú úr rp

C
p
C (11�38)

The time derivative of v2 is calculated from:

      
v2 2( )⋅ = ⋅ú úúr rp

C
p
C (11�39)
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In the local geocentric space-time frame of reference, the square of
the geocentric space-fixed velocity v of the spacecraft and its time
derivative are calculated from these same equations with the
superscript C changed to E.

11.4.4 CALCULATION OF PRECISION ONE-WAY LIGHT TIME   ρ1

The computed values of one-way doppler (F1) observables, one-way
narrowband spacecraft interferometry (INS) observables, and one-way
wideband spacecraft interferometry (IWS) observables are calculated from
differenced one-way range   �ρ1 calculated from Eq. (11�11). The right-hand side of
this equation contains differenced one-way range   ρ1, where each of the two one-
way ranges   ρ1 is defined by Eq. (11�9). Substituting Eq. (11�1) into Eq. (11�9)
gives:

    ρ1 = t3 ST( ) − t2 ET( ) + τ D s (11�40)

where t3(ST) is the reception time at the tracking point of the receiver (defined in
the fifth paragraph of Section 11.2) and   τ D  is the down-leg delay at the receiver.

The precision one-way light time ρ1 defined by Eq. (11�9) or (11�40) is
calculated as the following sum of terms:

    

ρ1 =
r23

c
+ RLT23

− ET − TAI( )t3

− TAI − UTC( )t3

− UTC − ST( )t3

+ 1

103 c
∆Aρ t3( ) + ∆SCρ23[ ]

+ τ D

s (11�41)
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where c is the speed of light in kilometers per second. This equation was
obtained from Eq. (11�7) for the precision round-trip light time ρ by deleting all
up-leg terms, the time differences at t1, the up-leg delay   τ U  at the transmitter,
and the round-trip range bias Rc.

The surviving terms in Eq. (11�41) are obtained from the spacecraft light-
time solution or are calculated as described in Section 11.3.2. In this case,
however, the spacecraft light-time solution is one-way, not round-trip.

Equation (11�41) does not include corrections due to the troposphere or
due to charged particles. These corrections are calculated in the Regres editor and
are included in Eqs. (10�24) to (10�26) for the corrections   ∆ρ1e

,  ∆ρ1s
,  and ∆ρ1 to

ρ1 given by Eq. (11�41). These corrections to ρ1 are handled separately as
described in Sections 10.1 and 10.2.

Eq. (11�41) accounts for the location of the tracking point of the receiver
(see Section 11.3.2). However, unless the spacecraft is a GPS satellite, the phase
center of the spacecraft is currently assumed to be located at the center of mass
of the spacecraft (see the spacecraft light-time solution, Section 8.3.6, Step 9). This
affects ρ1 calculated from Eq. (11�41) and ρ calculated from Eq. (11�7).

11.5 PRECISION ONE-WAY LIGHT TIME 
  
ρ1 FOR GPS/TOPEX

OBSERVABLES

This section gives the formulation for calculating the precision one-way
light time ρ1 (in units of kilometers), which is the computed value of a
GPS/TOPEX pseudo-range or carrier-phase observable. For these observables,
the transmitter is a GPS Earth satellite, and the receiver is either a TOPEX Earth
satellite (or equivalent) or a GPS receiving station on Earth.

The definition of the precision one-way light time ρ1 (in units of
kilometers) is given in Section 11.5.1. Section 11.5.2 gives the equation for
calculating ρ1 as a sum of terms. One of the terms of the equation for ρ1 contains
the geometrical phase correction ∆Φ, which is only calculated for carrier-phase
observables. The formulation for calculating ∆Φ is given in Section 11.5.3. The
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equation for ρ1 contains terms for the variable parts of the phase center offsets at
the transmitting GPS satellite and the receiving TOPEX satellite or the GPS
receiving station on Earth. These variable phase-center offsets are calculated for
carrier-phase observables only as described in Section 11.5.4.

11.5.1 DEFINITION OF   ρ1

The definition of the precision one-way light time ρ1 (in units of
kilometers), which is the computed value of a GPS/TOPEX pseudo-range or
carrier-phase observable, is given by:

    ρ1 = c t3 ST( )R − t2 ST( )[ ] km (11�42)

where c is the speed of light in kilometers per second. Substituting Eq. (11�1) into
Eq. (11�42) gives the following alternate definition of ρ1:

    ρ1 = c t3 ST( ) − t2 ST( ) + τ D[ ] km (11�43)

In these equations, t2(ST) is the transmission time in station time ST at the
tracking point of the GPS satellite. The reception time in station time ST at the
tracking point of the receiving TOPEX satellite or the GPS receiving station on
Earth is t3(ST). Adding the down-leg delay τD to t3(ST) gives the reception time
t3(ST)R at the receiving electronics. If the receiver is the TOPEX satellite, τD is set
to zero.

Observed values of GPS/TOPEX pseudo-range and carrier-phase
observables are obtained with an L1-band transmitter frequency and also with
an L2-band transmitter frequency. The values of these two transmitter
frequencies are given in Eq. (7�1). Each observable pair is used to construct a
weighted average observable, which is free of the effects of charged particles.
The weighting equations are Eqs. (7�2) to (7�4). In principal, each computed
observable should be computed using an L1-band transmitter frequency and
also using an L2-band transmitter frequency. A weighted average computed
observable is then computed using Eqs. (7�2) to (7�4). The following section
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gives the equation for the computed value of a GPS/TOPEX pseudo-range or
carrier-phase observable. Each frequency-dependent term must be computed as
a weighted average using Eqs. (7�2) to (7�4). The remaining terms are computed
once. The frequency-dependent terms are the constant and variable phase-center
offsets at the transmitter and the receiver and the geometrical phase correction
for carrier-phase observables.

11.5.2 CALCULATION OF   ρ1

The precision one-way light time ρ1 defined by Eq. (11�42) or (11�43) is
calculated as the following sum of terms:

    

ρ

π
ρ ρ
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3 2
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km (11�44)

The down-leg range r23, the down-leg relativistic light-time delay RLT23,
the three time differences at the reception time t3, and the three time differences
at the transmission time t2 are all calculated in the down-leg spacecraft light-time
solution as specified in Section 8.3.6.

In Eq. (11�44), the parameter MT in the time differences at the reception
time t3 is master time at the receiver. If the receiver is a GPS receiving station on
Earth, MT is GPS master time (denoted as GPS). If the receiver is the TOPEX
satellite, MT is TOPEX master time (denoted as TPX). Note that GPS master time
is also used in the time differences at the transmission time t2 at a GPS satellite.
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The parameter Bias is a solve-for bias in seconds. One estimate of the
parameter Bias is obtained by fitting to pseudo-range observables, and a second
independent estimate of the parameter Bias is obtained by fitting to carrier-phase
observables.

The initial value of a carrier-phase observable will be determined modulo
one cycle (it will be continuous thereafter), which will differ drastically from the
computed value of the carrier-phase observable. Hence, it is necessary to include
an estimable bias in the computed value of carrier-phase observables. This bias
must be different for each receiver/transmitter pair. In practice, the bias for
carrier-phase observables and the independent bias for pseudo-range
observables are specified by receiving station (a GPS receiving station on Earth
or the TOPEX satellite) in time blocks. For each receiver, a new time block is used
for each separate pass of data and each time the transmitter changes.

The initial value of a carrier-phase observable will be adjusted in the data
editor so that it is approximately equal to the corresponding pseudo-range
observable. This will result in much smaller estimated biases for carrier-phase
observables.

The geometrical phase correction ∆Φ is the lag in the measured phase at
the receiver (in radians) due to the rotation of the receiver relative to the
transmitter. It is calculated for carrier-phase observables only from the
formulation given in Section 11.5.3.

The down-leg range r23 is the distance from the nominal phase center of
the transmitting GPS satellite at the transmission time t2 to the nominal phase
center of the receiving TOPEX satellite or a GPS receiving station on Earth at the
reception time t3. The terms     ∆Aρ t3( ) and     ∆Aρ t2( ) in cycles divided by the
down-leg carrier frequency f in cycles per second are changes in the down-leg
light time     r23 / c  due to transmission and reception at the actual phase centers
instead of the nominal phase centers. Positive and negative values of the variable
phase-center offsets     ∆Aρ t3( ) and     ∆Aρ t2( ) correspond to increases and
decreases in the down-leg range and light time. The variable phase-center offsets
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are calculated from the formulation of Section 11.5.4. They are calculated for
carrier-phase observables only.

The down-leg delay τD at the receiver is obtained from the record of the
OD file for the data point. However, if the receiver is the TOPEX satellite, it will
probably be set to zero.

Eq. (11�44) does not include corrections for the troposphere or for
charged particles. Pseudo-range and carrier-phase observables are calculated as a
weighted average, which eliminates the effects of charged particles. Troposphere
corrections are not calculated if the receiver is the TOPEX satellite. If the receiver
is a GPS receiving station on Earth, troposphere corrections are calculated in the
Regres editor and are placed in the first term of Eq. (10�26) multiplied by the
speed of light c, which gives the correction ∆  ρ1 in kilometers to   ρ1 given by Eq.
(11�44). This correction to   ρ1 is handled separately as described in Sections 10.1
and 10.2.

11.5.3 FORMULATION FOR CALCULATING THE GEOMETRICAL PHASE

CORRECTION ∆Φ

The geometrical phase correction ∆Φ (in radians) in Eq. (11�44) is only
calculated for GPS/TOPEX carrier-phase observables. It is the lag in the
measured phase of the received signal at the receiver due to the rotation of the
receiver relative to the transmitter. It will be seen in Section 13 that carrier-phase
observables are proportional to the phase of a reference signal minus the phase
of the received signal at the TOPEX satellite or at a GPS receiving station on
Earth. Since the phase of the received signal is the phase of the transmitted signal
minus the phase lag ∆Φ, the sign of the term in Eq. (11�44) which contains the
phase lag ∆Φ is positive.

The formulation for calculating the geometrical phase correction was
obtained from Wu et al. (1990). It applies for a right-circularly-polarized wave
propagated from the transmitter to the receiver. Section 11.5.3.1 gives the
algorithm for calculating the geometrical phase correction ∆Φ in radians. Section
11.5.3.2 describes the calculation of the space-fixed unit vectors along the axes of
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the transmitting GPS satellite and the receiving TOPEX satellite. Section 11.5.3.3
describes the calculation of the space-fixed unit vectors along the north, east, and
zenith vectors at a GPS receiving station on Earth. Calculation of the unit vector
k from the transmitter to the receiver is described in Section 11.5.3.4. Section
11.5.3.5 describes how the frequency-dependent geometrical phase correction

    ∆Φ 2πf  in Eq. (11�44) is calculated as a weighted average, as discussed in Section
11.5.1.

11.5.3.1 Algorithm for Computing the Geometrical Phase Correction

From Eq. (20) of Wu et al. (1990), the effective dipole D for the receiving
antenna at the TOPEX satellite or at a GPS receiving station on Earth is given by:

  D = x − k k ⋅ x( ) + k × y (11�45)

where x and y are space-fixed unit vectors along the x and y axes of the receiving
antenna (see Wu et al. (1990), Figure 1) at the reception time t3 and k is a space-
fixed unit vector directed from the transmitting GPS satellite at the transmission
time t2 to the receiver at the reception time t3. The effective dipole   ′D  for the
transmitting antenna at the GPS satellite is given by Eq. (28) of Wu et al. (1990):

  ′D = ′x − k k ⋅ ′x( ) − k × ′y (11�46)

where   ′x  and   ′y  are space-fixed unit vectors along the   ′x  and   ′y  axes of the
transmitting antenna (see Wu et al. (1990), Figure 1) at the transmission time t2.
Calculation of the unit vectors in Eqs. (11�45) and (11�46) is described in the
following three sections.

Unit vectors along the effective dipoles D and   ′D  are calculated from:

      
�D

D=
D

(11�47)

and



SECTION  11

11�30

      
� ′ = ′

′
D

D
D

(11�48)

where D is the magnitude of D and   ′D  is the magnitude of   ′D . The unit vectors

    �D  and     � ′D  are normal to k.

The phase lag ∆φ is a discontinuous function of time, which will be
converted below to the continuous function of time ∆Φ. The discontinuous phase
lag ∆φ is plus or minus the angle between     �D  and     � ′D . It is calculated from
Eqs. (30) and (31) of Wu et al. (1990):

    
∆φ ζ= ( ) ′ ⋅( )−sign cos � �1 D D rad (11�49)

where

    
ζ = ⋅ ′ ×( )k D D� � (11�50)

In Eq. (11�49), the arccosine function gives an angle in the range of 0 to π
radians. Adding the sign function to this equation gives ∆φ calculated from Eqs.
(11�49) and (11�50) which has a range of −π to π radians. As ∆φ increases slowly
through π radians, it drops by 2π. Similarly, when ∆φ decreases through −π
radians, it jumps by 2π. The discontinuous phase lag ∆φ calculated from
Eqs. (11�49) and (11�50) is converted to the continuous phase lag ∆Φ using
Eqs. (29) and (32) of Wu et al. (1990):

    ∆Φ = 2πN + ∆φ rad (11�51)

where

    
N =

−







nint

prev∆Φ ∆φ

π2
(11�52)

where nint is the nearest integer function and   ∆Φprev  is the previously computed
value of the continuous phase lag ∆Φ. The phase lag ∆Φ must be computed
separately for each pass of each transmitter/receiver pair. The value of N should
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be set to zero at the beginning of each pass. Each time ∆φ suffers a discontinuity
of   ± 2π, the integer N will change by minus or plus 1. Note that the nearest
integer function nint will only give the correct value of N if the change in the
continuous angle ∆Φ is less than 180°. It is assumed that the data spacing for
carrier-phase observables will be small enough so that this will be the case.

11.5.3.2 Unit Vectors   ′x  and   ′y  at the Transmitting GPS Satellite and Unit

Vectors x and y at the Receiving TOPEX Satellite

The space-fixed unit vectors X, Y, and Z are aligned with the x, y, and z

axes of the spacecraft-fixed coordinate system for the TOPEX satellite at the
reception time t3 and for a GPS satellite at the transmission time t2. The X, Y, and
Z vectors for the TOPEX satellite are obtained when interpolating the PV file for
the TOPEX satellite in Step 3 of the algorithm given in Section 7.3.3, which is
evaluated in Step 2 of the spacecraft light-time solution (Section 8.3.6). The X, Y,
and Z vectors for the GPS satellite are obtained when interpolating the PV file for
the GPS satellite in Step 3 of the algorithm given in Section 7.3.3, which is
evaluated in Step 9 of the spacecraft light-time solution.

The relation between the unit vectors X, Y, and Z interpolated from the
PV files for the GPS and TOPEX satellites and the unit vectors     ′x ,  ′y ,  and ′z  for
the transmitting GPS satellite and     x,  y,  and z for the receiving TOPEX satellite,
which are required to compute the effective dipoles D and   ′D  from Eqs. (11�45)
and (11�46), must be determined.

The X-Y and x-y planes at the TOPEX satellite are the same plane. It is the
antenna plane which is perpendicular to the boresight vector z. However,

  x × y = z which is nominally directed up and   X × Y = Z = − z  which is nominally
directed down. Given X, Y, and Z for the TOPEX satellite, an x-y-z system can be
constructed as follows:

    

x = Y

y = X

z = − Z (not used)

(11�53)
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The alignment of x with the Y spacecraft axis is arbitrary. The actual orientation
of x in the X-Y plane is unknown. The use of x computed from Eq. (11�53) will
produce a constant error in the phase lag computed from Eqs. (11�45) to (11�52).

The X-Y and   ′x -  ′y  planes at the transmitting GPS satellite are the same
plane. It is the antenna plane which is perpendicular to the boresight vector   ′z .
Also,   ′x × ′y = ′z  and   X × Y = Z  where   Z = ′z   is nominally directed down. Given
X, Y, and Z for the transmitting GPS satellite, an   ′x -  ′y -  ′z  system can be
constructed as follows:

    

′x = X

′y = Y

′z = Z (not used)

(11�54)

The alignment of   ′x  with the X spacecraft axis is arbitrary. The actual orientation
of   ′x  in the X-Y plane is unknown. The use of   ′x  computed from Eq. (11�54) will
produce a constant error in the phase lag computed from Eqs. (11�45) to
(11�52).

The constant error in the computed phase lag ∆Φ will be absorbed into the
estimated value of the carrier-phase bias Bias in Eq. (11�44).

11.5.3.3 Unit Vectors x and y at a GPS Receiving Station on Earth

The north N, east E, and zenith Z unit vectors at the reception time t3 at a
GPS receiving station on Earth are calculated during the calculation of the Earth-
fixed position vector of the tracking station (using the formulation of Section 5)
and during the calculation of auxiliary angles at the tracking station (using the
formulation of Section 9). These unit vectors are calculated in the Earth-fixed
coordinate system and have rectangular components referred to the true pole,
prime meridian, and equator of date. The N, E, and Z unit vectors can be
transformed from the Earth-fixed coordinate system to the space-fixed
coordinate system (rectangular components referred to the mean Earth equator
and equinox of J2000) using:
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      NSF = TE t3( ) N     N → E,Z (11�55)

where the subscript SF refers to space-fixed components of the vector. The
Earth-fixed to space-fixed transformation matrix     TE t3( ) at the reception time t3

at the GPS receiving station on Earth is calculated from the formulation of
Section 5.3. It is available from Step 2 of the spacecraft light-time solution (Section
8.3.6).

The N and E vectors are in the antenna plane (normal to the boresight
vector Z) of the GPS receiving station on Earth. Given the NSF, ESF, and ZSF unit
vectors computed from Eq. (11�55), with rectangular components referred to the
mean Earth equator and equinox of J2000, the required unit vectors x, y, and z of
the receiving antenna (which are used to calculate the effective dipole D from
Eq. (11�45)) can be constructed from:

    

x = NSF

y = − ESF

z = ZSF (not used)

(11�56)

Note that   x × y = z which is directed up. The alignment of x with N is arbitrary.
The actual orientation of x in the N-E plane is unknown. The use of x calculated
from Eq. (11�56) will produce a constant error in the computed phase lag ∆Φ,
which will be absorbed into the estimated carrier-phase bias Bias.

11.5.3.4 Unit Vector k Along Light Path From Transmitter to Receiver

Since relativistic effects are not included in the computed phase lag ∆Φ ,
the unit vector k used in Eqs. (11�45), (11�46), and (11�50) can be computed
from:

      
k =

r 23

r23
(11�57)
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where       r 23 r23  is the down-leg unit vector calculated in Step 14 of the spacecraft
light-time solution (Section 8.3.6).

11.5.3.5 Calculating the Geometrical Phase Correction     ∆Φ 2πf  as a Weighted

Average

The geometrical phase correction     ∆Φ 2πf  in Eq. (11�44) must be
computed as a weighted average of the value at the L1-band transmitter
frequency and the value at the L2-band transmitter frequency, as discussed in
Section 11.5.1. The weighting equations are Eqs. (7�2) to (7�4). Substituting

    ∆Φ 2πL1 into the first term of Eq. (7�2) and     ∆Φ 2πL2 into the second term
gives the following expression for the weighted average (WA) value of the
geometrical phase correction     ∆Φ 2πf :

    

∆Φ ∆Φ
2 2π πf L L









 =

( )WA 1+ 2
s (11�58)

where L1 and L2 are given by Eq. (7�1). This value of     ∆Φ 2πf  should be used in
Eq. (11�44).

11.5.4 CALCULATION OF VARIABLE PHASE-CENTER OFFSETS

Two tables can be used to obtain the variable phase-center offset     ∆Aρ t3( )
at the reception time t3 at the TOPEX satellite. One table gives the variable phase-
center offset     ∆Aρ t3( ) in cycles for an L1-band carrier frequency and the second
table gives     ∆Aρ t3( ) in cycles for an L2-band carrier frequency. Two similar
tables are used for reception at a GPS receiving station on Earth. Variable phase-
center offsets at the transmitting GPS satellite have not been measured, and
hence the term     ∆Aρ t2( ) f  in Eq. (11�44) is zero.

Each of the above-mentioned tables gives the variable phase-center offset
for a particular receiver and band. The arguments for these tables are the
antenna zenith angle and the antenna azimuth angle. Section 11.5.4.1 gives the
equations for converting the auxiliary azimuth and elevation angles calculated at
the reception time at the TOPEX satellite and at a GPS receiving station on Earth
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to the required antenna angles. The equations for interpolating the tables with
these angles are given in Section 11.5.4.2. Section 11.5.4.3 gives the equation for
calculating the term     ∆Aρ t3( ) f  of Eq. (11�44) as a weighted average of the
L1-band and L2�band values. This term is only calculated for GPS/TOPEX
carrier-phase observables.

11.5.4.1 Calculation of Angular Arguments

The arguments for the tables (which give the variable phase-center offset

    ∆Aρ t3( ) in cycles at the TOPEX satellite and at a GPS receiving station on Earth)
are the antenna zenith angle zA and the antenna azimuth angle σA. The antenna
zenith angle is measured from the antenna boresight direction, which is directed
up for both receivers. The antenna azimuth angle is measured counter clockwise
(when viewed from above the antenna) from the x axis of the antenna. Regres
calculates auxiliary elevation   γGPS and azimuth   σGPS angles at the reception time
t3 at a GPS receiving station on Earth (Section 9.3.3.2). It also calculates differently
defined auxiliary elevation   γTPX and azimuth   σTPX angles at the reception time
t3 at the TOPEX satellite (Section 9.5.1). The following equations transform the
auxiliary angles to the angular arguments of the variable phase-center offset
tables. For a GPS receiving station on Earth,

    

zA = π
2

− γGPS

σA = 2π − σGPS     

0 ≤ zA ≤ π
2

0 ≤ σA ≤ 2π
(11�59)

For the TOPEX satellite,

    

zA = π
2

+ γTPX

σA = 2π − σTPX     

0 ≤ zA ≤ π

0 ≤ σA ≤ 2π
(11�60)

These four angles must be converted from radians to degrees.
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11.5.4.2 Interpolation of Variable Phase-Center Offset Tables

The variable phase-center offset tables give values of the variable phase-
center offset   ∆Aρ in cycles every   5° in the antenna zenith angle zA and in the
antenna azimuth angle σA. The arguments zA and σA will be between the tabular
values z1 and z2 and σ1 and σ2, respectively. The value of   ∆Aρ at the
interpolation point     zA ,σA( ), which will be denoted as     ∆Aρ zA ,σA( ) , can be
obtained by using bilinear interpolation. This requires three linear interpolations.
First interpolate at σ1 to zA. Then interpolate at σ2 to zA. Finally, interpolate at zA

to σA. The result of these calculations is given by:

    

∆Aρ zA ,σA( ) = ∆Aρ z1 ,σ1( ) 1 − f z( ) 1 − f σ( )
+ ∆Aρ z2 ,σ1( ) f z 1 − f σ( )
+ ∆Aρ z1 ,σ2( ) 1 − f z( ) f σ

+ ∆Aρ z2 ,σ2( ) f z f σ

cycles (11�61)

where

    
f z =

zA − z1

z2 − z1
(11�62)

    
f σ =

σA − σ1

σ2 − σ1
(11�63)

11.5.4.3 Calculation of Variable Phase-Center Offset as a Weighted Average

Let the variable phase-center offset   ∆Aρ in cycles interpolated from the
L1-band variable phase-center offset table for the receiver (the TOPEX satellite or
a GPS receiving station on Earth) using Eqs. (11�61) to (11�63) be denoted by

  ∆Aρ L1. Similarly, let the L2-band variable phase-center offset interpolated from
the L2-band table be denoted by   ∆Aρ L2. Substituting the L1-band variable
phase-center offset     ∆Aρ L1 L1 in seconds and the L2-band variable phase-center
offset     ∆Aρ L2 L2 in seconds into Eqs. (7�2) to (7�4) gives the following
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expression for the weighted average (WA) value of the variable phase-center
offset     ∆Aρ t3( ) f  in Eq. (11�44):

    

∆ ∆ ∆A

WA

A L1 A L2ρ ρ ρt

f

L t L t

L L
3 3 3

2 2

1 2

1 2

( )







 =

( ) − ( )
−

s (11�64)

where L1 and L2 are given by Eq. (7�1). This value of     ∆Aρ t3( ) f  should be used
in Eq. (11�44).

11.6 PRECISION QUASAR DELAY τ

Section 11.6.1 gives the definition of the precision quasar delay τ, and
Section 11.6.2 gives the equation for calculating τ as a sum of terms. Most of the
terms in this equation are calculated in the quasar light-time solution and in
related calculations. Calculating τ as a sum of terms instead of the difference of
two epochs reduces the roundoff errors in this calculation by approximately four
orders of magnitude.

11.6.1 DEFINITION OF τ

The definition of the precision quasar delay τ is given by:

    τ = t2 ST( )R − t1 ST( )R s (11�65)

where     t2 ST( )R and     t1 ST( )R are reception times in station time ST of the quasar
wavefront at the receiving electronics of receiver 2 and receiver 1, respectively.
Each of these two receivers can be a tracking station on Earth or an Earth
satellite. Substituting Eqs. (11�2) and (11�4) into Eq. (11�65) gives:

    τ = t2 ST( ) − t1 ST( )[ ] + τ D2
− τ D1

s (11�66)

where     t2 ST( ) and     t1 ST( ) are reception times in station time ST of the quasar
wavefront at the tracking points of receivers 2 and 1, respectively. The various
tracking points are defined in the fifth paragraph of Section 11.2. The quantities
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  τ D2
 and   τ D1

 are the downlink delays for receivers 2 and 1, respectively. If either
receiver is an Earth satellite, its delay is currently set to zero.

11.6.2 CALCULATION OF τ

The precision quasar delay τ defined by Eq. (11�65) or (11�66) is calculated
as the following sum of terms:

    

τ =
r12

c
+ RLT12

− ET − TAI( )t2
+ ET − TAI( )t1

− TAI − UTC( )t2
+ TAI − UTC( )t1

− UTC − ST( )t2
+ UTC − ST( )t1

+ 1

103 c
∆Aρ t2( ) + ∆SCρ2 − ∆Aρ t1( ) − ∆SCρ1[ ]

+ τ D2
− τ D1

s (11�67)

where c is the speed of light in kilometers per second.

The distance r12 that the quasar wavefront travels from receiver 1 to
receiver 2, the relativistic light-time delay RLT12, the three time differences at the
reception time t2 at receiver 2, and the three time differences at the reception
time t1 at receiver 1 are all calculated in the quasar light-time solution as specified
in Section 8.4.3.

In Eq. (11�67), the intermediate time UTC at receiver 2 or at receiver 1 is
only used if that receiver is a DSN tracking station on Earth. If receiver 2 is an
Earth satellite, UTC is replaced with TOPEX master time (TPX) and the constant
offset (TAI − TPX) is obtained from the GIN file. Similarly, if receiver 1 is an Earth
satellite, UTC is replaced with GPS master time (GPS) and the constant offset
(TAI − GPS) is obtained from the GIN file.
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The terms     ∆Aρ t2( ) and     ∆Aρ t1( ) are antenna corrections at receivers 2
and 1, respectively, if they are DSN tracking stations on Earth. They are
calculated after the light-time solution from the formulation of Section 10.5. They
are a function of the antenna type at the DSN tracking station, the axis offset b,
and the secondary angle of the antenna. The value of this angle used to evaluate
each antenna correction is one of the unrefracted auxiliary angles calculated at t2

or t1 from the formulation of Section 9. If either receiver is an Earth satellite, the
analogous correction is the offset from the center of mass of the satellite to the
nominal phase center of the satellite. This offset can be calculated as described in
Section 7.3.3 when interpolating the ephemeris of the satellite, or it can be zero.

The down-leg solar corona range correction   ∆SCρ 2 at receiver 2 and the
down-leg solar corona range correction   ∆SCρ1 at receiver 1 are calculated in the
quasar light-time solution from the formulation of Section 10.4.

The down-leg delay   τ D2
 at receiver 2 and the down-leg delay   τ D1

 at
receiver 1 are obtained from the record of the OD file for the data point.

Equation (11�67) does not include corrections due to the troposphere and
due to charged particles. These corrections are calculated in the Regres editor and
are included in Eqs. (10�30) to (10�32) for the corrections ∆τ, ∆τe, and ∆τs to τ
given by Eq. (11�67). These corrections to τ are handled separately as described
in Sections 10.1 and 10.2. If either receiver is an Earth satellite, the troposphere
and charged-particle corrections for that receiver are set to zero.
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12.1 INTRODUCTION

Section 11 gave the formulation for calculating the precision round-trip
light time ρ, two versions of the precision one-way light time ρ1, and the
precision quasar delay τ. This section gives the formulation for calculating the
partial derivatives of these precision light times and quasar delays with respect to
the parameter vector q. The parameter vector q consists of solve-for parameters
and consider parameters. The consider parameters do not affect the parameter
solution, but the uncertainties in these parameters contribute to the calculated
standard deviations of the solve-for parameters. The partial derivatives of the
precision light times ρ and ρ1 and the precision quasar delay τ with respect to the
parameter vector q are used in Section 13 to calculate the partial derivatives of
the computed values of the observables with respect to q.

Section 12.2 gives the high-level equations for calculating the partial
derivatives of the position vectors of the participants with respect to the
parameter vector q. These are Eqs. (8�1) to (8�3) for the position vectors of the
participants with each term (a position vector) replaced with the partial
derivative of the term with respect to q. The partial derivatives of the various
terms of the position vectors of the participants with respect to q are calculated
as specified in the subsections of Section 12.3.

Given the reception time t3(ET) at the receiver for a spacecraft light-time
solution, and the partial derivatives of the position vectors of the participants at
their epochs of participation with respect to the parameter vector q, Section 12.4
gives equations for the partial derivatives of the transmission time (for a one-
way light-time solution) or reflection time t2(ET) and the transmission time t1(ET)
(for a round-trip light-time solution) with respect to the parameter vector q.
Similarly, given the reception time t1(ET) of the quasar wavefront at receiver 1
for a quasar light-time solution, and the partial derivatives of the position vectors
of the two receivers at their epochs of participation with respect to q, Section 12.4
gives the equation for the partial derivative of the reception time t2(ET) at
receiver 2 with respect to q.
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The four subsections of Section 12.5 give the formulas for calculating the
partial derivatives of the precision round-trip light time ρ, each of the two
versions of the precision one-way light time ρ1, and the precision quasar delay τ
with respect to the parameter vector q. Each of these four subsections contains
two subsections. The first subsection gives the partial derivative of the precision
light time or quasar delay with respect to q due to the variations of the position
vectors of the participants at their epochs of participation with variations in the
parameter vector q. These partial derivatives are those derived in Section 12.4.
The second subsection gives the partial derivatives of the precision light time or
quasar delay with respect to q due to variations in the observational parameters.
These are the parameters that affect the precision light time or quasar delay
directly instead of or in addition to changing the position vectors of the
participants.

12.2 PARTIAL DERIVATIVES OF POSITION VECTORS OF
PARTICIPANTS

For a round-trip spacecraft light-time solution in the Solar-System
barycentric space-time frame of reference, the Solar-System barycentric
(superscript C) position vectors of the receiver at the reception time t3, the
spacecraft at the reflection time t2, and the transmitter at the transmission time t1

are given by Eqs. (8�1) to (8�3). Differentiating these equations with respect to
the parameter vector q gives:

      

∂ r 3
C t3( )
∂q

=
∂ r 3

E t3( )
∂q

+
∂ rE

C t3( )
∂q

(12�1)

      

∂ r 2
C t2( )
∂q

=
∂ r 2

B t2( )
∂q

+
∂ rB

P t2( )
∂q

+
∂ rB,P

C t2( )
∂q

(12�2)

      

∂ r1
C t1( )
∂q

=
∂ r1

E t1( )
∂q

+
∂ rE

C t1( )
∂q

(12�3)
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For a one-way spacecraft light-time solution, Eq. (12�3) is not used. For a
spacecraft light-time solution in the local geocentric space-time frame of
reference, Eqs. (12�1) to (12�3) reduce to their first terms and the superscript B in
Eq. (12�2) is replaced with E for the Earth.

For a quasar light-time solution in the Solar-System barycentric space-
time frame of reference, the partial derivative of the Solar-System barycentric
position vector of receiver 1 at the reception time t1 with respect to the
parameter vector q is given by Eq. (12�3). The partial derivative of the Solar-
System barycentric position vector of receiver 2 at the reception time t2 with
respect to q is given by Eq. (12�3) with each subscript 1 changed to a 2.

The subsections in Section 12.3 describe how the various terms of
Eqs. (12�1) to (12�3) are evaluated.

12.3 PARTIAL DERIVATIVES OF SUB-POSITION VECTORS
OF PARTICIPANTS

The six subsections of this section describe how the various terms of
Eqs. (12�1) to (12�3) are calculated. Each subsection specifies which terms of
Eqs. (12�1) to (12�3) it is evaluating and describes how these terms are calculated.

12.3.1 PLANETARY EPHEMERIS PARTIALS

For a spacecraft light-time solution in the Solar-System barycentric space-
time frame of reference, evaluation of the partial derivatives (12�1) and (12�3)
requires the calculation of the sub-partial derivatives:

      

∂ rE
C t3( )
∂q

,  
∂ rE

C t1( )
∂q

(12�4)

Also, if the Solar-System barycentric position vector of the intermediate body B
or P at t2 in Eq. (8�2) is obtained from the planetary ephemeris, the following
partial derivative is required to evaluate Eq. (12�2):
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∂ rB,P
C t2( )
∂q

(12�5)

For a quasar light-time solution, evaluation of Eq. (12�3) for receiver 1 and this
same equation with each subscript 1 changed to a 2 for receiver 2 requires the
calculation of the partial derivatives:

      

∂ rE
C t1( )
∂q

,  
∂ rE

C t2( )
∂q

(12�6)

The partial derivatives (12�4) through (12�6) are calculated as described in
Section 3.1.3.

12.3.2 SMALL-BODY EPHEMERIS PARTIALS

For a spacecraft light-time solution in the Solar-System barycentric space-
time frame of reference, if the Solar-System barycentric position vector of the
intermediate body B in Eq. (8�2) is obtained from the small-body ephemeris
instead of from the planetary ephemeris, the last term of Eq. (12�2) (evaluated
for small body B, not the center of mass P of a planetary system)

      

∂ rB
C t2( )
∂q

(12�7)

is evaluated by interpolating the small-body partials file for body B at t2 as
described in Sections 3.1.3.1 and 3.1.3.3. In addition to the partial derivatives on
this file, calculate the partial derivative with respect to the scaling factor AU (the
number of kilometers per astronomical unit) from Eq. (3�8) where b = B.

12.3.3 SATELLITE EPHEMERIS PARTIALS

For a spacecraft light-time solution in the Solar-System barycentric space-
time frame of reference where the center of integration B for the spacecraft
ephemeris or the lander body B is the planet or a satellite of one of the outer
planet systems, the second term of Eq. (12�2) is evaluated by interpolating the
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satellite partials file for the planetary system containing the body B at t2, as
described in Sections 6.5.3 and 3.2.3.

12.3.4 SPACECRAFT EPHEMERIS PARTIALS

For a free spacecraft, the partial derivatives of the space-fixed position
vector of the spacecraft (point 2) relative to its center of integration B with
respect to the dynamic parameters of the spacecraft ephemeris (term 1 of
Eq. 12�2) are obtained by interpolating the PV file for the spacecraft at t2(ET).

For a spacecraft light-time solution, if the transmitter or the receiver is an
Earth satellite instead of a tracking station on Earth, the partial derivative of the
geocentric space-fixed position vector of the transmitter or the receiver with
respect to the parameter vector q (term 1 of Eq. 12�3 or 12�1) is obtained by
interpolating the geocentric PV file for the transmitter or the receiver.

For a quasar light-time solution, if receiver 1 or receiver 2 is an Earth
satellite instead of a tracking station on Earth, the partial derivative of the
geocentric space-fixed position vector of receiver 1 or 2 with respect to q (term 1
of Eq. 12�3 or this same equation with each subscript 1 changed to a 2) is
obtained by interpolating the geocentric PV file for receiver 1 or 2.

12.3.5 TRACKING STATION PARTIALS

The partial derivatives of the geocentric space-fixed position vector of a
tracking station on Earth with respect to the parameter vector q are calculated
from the formulation given in Section 5.5. For a spacecraft light-time solution,
these partial derivatives are calculated at the transmission time t1 if the
transmitter is a tracking station on Earth (term 1 of Eq. 12�3). They are calculated
at the reception time t3 (term 1 of Eq. 12�1) if the receiver is a tracking station on
Earth. For a quasar light-time solution, these partial derivatives are calculated at
the reception time t1 at receiver 1 (term 1 of Eq. 12�3) if receiver 1 is a tracking
station on Earth. They are calculated at the reception time t2 at receiver 2 (term 1
of Eq. 12�3 with each subscript 1 changed to a 2) if receiver 2 is a tracking station
on Earth.
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12.3.6 LANDER PARTIALS

In the spacecraft light-time solution in the Solar-System barycentric space-
time frame of reference, if the spacecraft is landed on body B, the partial
derivative of the space-fixed position vector of the landed spacecraft (point 2)
relative to body B with respect to the parameter vector q (term 1 of Eq. 12�2) is
calculated from the formulation of Section 6.5.

12.4 TRANSFORMING PARTIAL DERIVATIVES OF
POSITION VECTORS OF PARTICIPANTS TO PARTIAL
DERIVATIVES OF TRANSMISSION OR RECEPTION
TIMES

This section derives partial derivatives of the transmission time or
reflection time     t2 ET( ) and the transmission time     t1 ET( ) in a spacecraft light-time
solution with respect to the parameter vector q and the reception time     t2 ET( ) at
receiver 2 in a quasar light-time solution with respect to q. These partial
derivatives are used in Section 12.5 to calculate partial derivatives of the precision
round-trip light time ρ, the precision one-way light time ρ1, and the quasar delay
τ with respect to the parameter vector q.

12.4.1 SPACECRAFT LIGHT-TIME SOLUTION

The partial derivatives of the transmission time or reflection time     t2 ET( )
and the transmission time     t1 ET( ) with respect to the parameter vector q are
derived in the Solar-System barycentric space-time frame of reference. Then, the
simplifications that apply in the local geocentric space-time frame of reference
are noted.

In the Solar-System barycentric space-time frame of reference, the down-
leg light-time equation is given by Eq. (8�55). Ignoring the relativistic light-time
delay terms gives:

    
t3 ET( ) − t2 ET( ) =

r23

c
(12�8)
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From Eqs. (8�57) and (8�58), the down-leg range     r23 can be calculated from:

      
r23

2 = r 3
C t3( ) − r 2

C t2( )[ ] T
r 3

C t3( ) − r 2
C t2( )[ ] (12�9)

where the superscript T indicates the transpose of the vector. In these equations,
the reception time     t3 ET( ) in coordinate time ET is fixed. The Solar-System
barycentric (superscript C) position vectors of the receiver (point 3) and the
spacecraft (point 2) are functions of the parameter vector q (see Eqs. 12�1 and
12�2), and the latter vector is also a function of the transmission or reflection
time     t2 ET( ) at the spacecraft. Differentiating Eqs. (12�8) and (12�9) with respect
to q gives:

      
−

∂ t2 ET( )
∂q

= 1
c

∂ r23

∂q
(12�10)
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∂

∂
∂

∂
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




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− ( ) ( )











T C C

2
C ET
ú (12�11)

where     r 23 is given by Eq. (8�57). Substituting the right-hand side of Eq. (12�10)
into Eq. (12�11), solving for       ∂ t2 ET( ) ∂q , and using the definition (8�60) of     úp23

gives:

      

∂
∂

∂
∂

∂
∂t c r

t t

p
c

2

23

23

2 3

23

1

1

ET

T
2
C

3
C

( )
=







( )
−

( )











−q

r r

q

r

q

ú (12�12)

The up-leg light-time equation is also given by Eq. (8�55). Ignoring the
relativistic light-time delays gives:

    
t2 ET( ) − t1 ET( ) =

r12

c
(12�13)

From Eqs. (8�57) and (8�58), the up-leg range     r12  can be calculated from:
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r12

2 = r 2
C t2( ) − r1

C t1( )[ ] T
r 2

C t2( ) − r1
C t1( )[ ] (12�14)

In these equations, the Solar-System barycentric position vectors of the
spacecraft (point 2) and the transmitter (point 1) are functions of the parameter
vector q (see Eqs. 12�2 and 12�3). Also, the former vector is a function of the
reflection time     t2 ET( ) at the spacecraft, and the latter vector is a function of the
transmission time     t1 ET( ). Differentiating Eqs. (12�13) and (12�14) with respect to
q gives:

      

∂ t2 ET( )
∂q

−
∂ t1 ET( )

∂q
= 1

c
∂ r12

∂q
(12�15)
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(12�16)

where     r12  is given by Eq. (8�57). Substituting the right-hand side of Eq. (12�15)

into Eq. (12�16), replacing       úr2
C t2( ) with 

      
ú ú úr r r2 2 1 1 1

C C
1
Ct t t( ) − ( )[ ] + ( ), using the

definitions (8�59) for     úr12 and (8�60) for     úp12, and solving for       ∂ t1 ET( ) ∂q  gives:

      

∂
∂

∂
∂

∂
∂

∂
∂t

t r p
c c r

t t

p
c

1
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12
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12

1
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
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(12�17)

Eqs. (12�12) and (12�17) also apply in the local geocentric space-time
frame of reference. However, the up-leg and down-leg unit vectors,     úr12,     úp12, and

    úp23  are all calculated from geocentric vectors obtained from the geocentric light-
time solution instead of from barycentric vectors obtained from the Solar-
System barycentric light-time solution. Also, the partial derivatives of the
position vectors of the three participants with respect to q are the first terms of
Eqs. (12�1) to (12�3), which are referred to the Earth (E).
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12.4.2 QUASAR LIGHT-TIME SOLUTION

The partial derivative of the reception time     t2 ET( ) at receiver 2 (a tracking
station on Earth or an Earth satellite) with respect to the parameter vector q is
derived in the Solar-System barycentric space-time frame of reference. Note that
the quasar light-time solution is only obtained in this frame of reference.

The quasar light-time equation is given by Eqs. (8�91), (8�57), and (8�95).
Ignoring the relativistic light-time delay terms gives:

    
t2 ET( ) − t1 ET( ) =

r12

c
(12�18)

From Eqs. (8�57) and (8�95), the range     r12  is given by:

      
r12 = r1

C t1( ) − r 2
C t2( )[ ] ⋅LQ (12�19)

where the unit vector     LQ from the Solar System barycenter to the quasar is
given by Eqs. (8�92) and (8�93). In Eqs. (12�18) and (12�19), the reception time

    t1 ET( ) in coordinate time ET at receiver 1 is fixed. The Solar-System barycentric
(superscript C) position vectors of receiver 1 (point 1) and receiver 2 (point 2) are
functions of the parameter vector q (see Eqs. 12�3 and 12�3 with each subscript 1
changed to a 2), and the latter vector is also a function of the reception time

    t2 ET( ) at receiver 2. Differentiating Eqs. (12�18) and (12�19) with respect to q

gives:

      

∂ t2 ET( )
∂q

= 1
c

∂ r12

∂q
(12�20)
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Substituting the right-hand side of Eq. (12�20) into Eq. (12�21), solving for

      ∂ t2 ET( ) ∂q , and using the definition (8�97) for     úp12 gives:
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12.5 PARTIAL DERIVATIVES OF PRECISION LIGHT TIMES
AND QUASAR DELAYS WITH RESPECT TO THE
PARAMETER VECTOR q

The four subsections of this section give the partial derivatives of the
precision round-trip light time ρ, each of the two versions of the precision one-
way light light time ρ1, and the precision quasar delay τ with respect to the
parameter vector q. Each of the four subsections contains two subsections. The
first subsection gives the partial derivative of the precision light time or quasar
delay with respect to q due to variations in the position vectors of the
participants with variations in the parameter vector q. These partial derivatives
are obtained by differentiating the terms     r23 c( ) + r12 c( ) ,     r23 c , and     r12 c  of ρ,
ρ1, and τ, respectively. They are calculated using equations derived in Section
12.4. The second subsection gives the observational partial derivatives, which
represent direct variations in the precision light time or quasar delay with
variations in q, holding the position vectors of the participants fixed.

12.5.1 PARTIAL DERIVATIVES OF PRECISION ROUND-TRIP

LIGHT TIME ρ

12.5.1.1 Direct Partial Derivatives

The precision round-trip light time ρ is calculated from Eq. (11�7). The
position vectors of the participants at their epochs of participation are calculated
from Eqs. (8�1) to (8�3). These position vectors are used to calculate the down-
leg range     r23 and the up-leg range     r12  from Eqs. (12�9) and (12�14). From Eqs.
(12�8) and (12�13), the sum of terms one and three of Eq. (11�7), namely

    r23 c + r12 c , is equal to     t3 ET( ) − t1 ET( ). Hence, the partial derivative of the
precision round-trip light time ρ with respect to the parameter vector q due to
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the direct variations in the position vectors of the participants with variations in q
and due to the indirect variations in the position vectors of the spacecraft at     t2

and the transmitter at     t1 due to variations in     t2  and     t1 with variations in q is
given by:

      

∂ρ
∂q

= −
∂ t1 ET( )

∂q
(12�23)

where       ∂ t1 ET( ) ∂q  is calculated from Eqs. (12�12) and (12�17). In these
equations, the partial derivatives of the position vectors of the participants are
calculated from Eqs. (12�1) to (12�3).

12.5.1.2 Observational Partial Derivatives

In Eq. (11�7), the down-leg relativistic light-time delay RLT23 and the up-
leg relativistic light-time delay RLT12 contain the factor   1 + γ( ). Hence, the partial
derivative of the precision round-trip light time ρ with respect to the relativity
parameter γ is given approximately by:

    

∂ρ
∂ γ

=
RLT23 + RLT12

1 + γ
(12�24)

In the Solar-System barycentric space-time frame of reference, RLT23 and RLT12

are each calculated as the sum of terms two and three on the right-hand side of
Eq. (8�55). In the local geocentric space-time frame of reference, they are
calculated from the second term on the right-hand side of Eq. (8�67).

If the receiver is a tracking station on Earth, Eq. (11�7) contains the time
difference 

    
UTC − ST( )t3

 at the reception time t3 at the tracking station. If the
receiver is an Earth satellite, this time difference is replaced by 

    
TPX − ST( )t3

,
where TPX is TOPEX master time at the Earth satellite. Similarly, if the
transmitter is a tracking station on Earth, Eq. (11�7) contains the time difference

    
UTC − ST( )t1

 at the transmission time t1 at the tracking station. If the transmitter
is an Earth satellite, this time difference is replaced by 

    
GPS − ST( )t1

, where GPS is
GPS master time at the Earth satellite. Each of these time differences is calculated
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from the quadratic expression (2�32), as explained after that equation. Changes
in either of the time differences at t3 change     t3 ET( ) by an equal amount. This
change produces a change in t1 in all of the time scales. Differentiating the sum of
Eqs. (12�8) and (12�13) with respect to     t3 ET( ) gives approximately:

    

dt
dt c

r r1

3
12 231

1ET
ET

( )
( )

= − +( )ú ú (12�25)

where     úr12 and     úr23  are given by Eq. (8�59). From Eqs. (11�7), (2�32), and (12�25),
the partial derivatives of the precision round-trip light time ρ with respect to the
a, b, and c quadratic coefficients of the time difference UTC or TPX minus station
time ST at the receiver at the reception time t3 are given by:

    

∂ ρ
∂ a c

r r= − − +( )





1
1

12 23ú ú (12�26)
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12 231

1 ú ú (12�28)

where t3 is the reception time at the receiver in station time ST. From Eqs. (11�7)
and (2�32), the partial derivatives of ρ with respect to the a, b, and c quadratic
coefficients of the time difference UTC or GPS minus station time ST at the
transmitter at the transmission time t1 are given by:

    

∂ρ
∂ a

= 1 (12�29)

    

∂ρ
∂b

= t1 − t0( ) (12�30)

    

∂ρ
∂ c

= t1 − t0( )2 (12�31)
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where t1 is the transmission time at the transmitter in station time ST. For three-
way data, the a, b, and c coefficients in Eqs. (12�26) to (12�28) are not the same
coefficients as those in Eqs. (12�29) to (12�31). For two-way data, the a, b, and c
coefficients in Eqs. (12�26) to (12�28) will be the same coefficients as those in Eqs.
(12�29) to (12�31) if t3 and t1 are in the same time block for a, b, and c for the
tracking station or Earth satellite.

From Eq. (11�7), the partial derivative of the precision round-trip light
time ρ with respect to the round-trip range bias Rc in meters (for the receiver
and time block containing t3) is given by:

    

∂ρ
∂ Rc

= 1

103 c
(12�32)

In Eq. (11�7), the down-leg and up-leg solar corona corrections are
calculated from Eq. (10�64) and related equations of Section 10.4. The partial
derivatives of the precision round-trip light time ρ with respect to the solve-for
A, B, and C coefficients of the solar corona model are given by Eq. (10�76). In this
equation, the partial derivatives of the down-leg and up-leg solar corona
corrections with respect to the A, B, and C coefficients are given by
Eqs. (10�72) to (10�74).

Eq. (11�7) for the precision round-trip light time ρ does not contain
tropospheric or charged-particle corrections. These corrections are calculated in
the Regres editor and appear in Eq. (10�27) for the media correction ∆ρ to ρ
given by Eq. (11�7). The partial derivatives of ρ with respect to solve-for
tropospheric and charged-particle parameters are the partial derivatives of ∆ρ
with respect to these parameters. These partial derivatives are calculated in
program Regres, not in the Regres editor.

The partial derivatives of the precision round-trip light time ρ with respect
to solve-for constant corrections to the tropospheric zenith dry and wet range
corrections 

  
∆ρzdry

 and   ∆ρzwet
 are calculated from Eq. (10�54) with M changed to

T (for troposphere). In this equation, the partial derivatives of the down-leg and
up-leg tropospheric range corrections with respect to 

  
∆ρzdry

 and   ∆ρzwet
 for all
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tracking stations at a DSN complex or at an isolated tracking station are given by
Eq. (10�7). These partial derivatives are the corresponding mapping functions. If
the user has selected the Chao mapping functions, they are calculated from Eqs.
(10�8) to (10�10). If the user has selected the Niell mapping functions, the dry and
wet mapping functions in Eqs. (10�7) are calculated from the formulation
specified in Section 10.2.1.3.2.

The ODP user can estimate corrections to the N and D coefficients of the
ionosphere model of Klobuchar (1975). Estimated corrections to N and D

represent corrections to the charged-particle corrections calculated in the Regres
editor. The partial derivatives of the precision round-trip light time ρ with
respect to corrections to N and D are calculated from Eq. (10�54) with M changed
to I (for ionosphere). In this equation, the partial derivatives of the down-leg and
up-leg ionospheric range corrections with respect to the corrections to N and D
that apply for all tracking stations of a DSN complex or for a single isolated
tracking station are calculated from Eqs. (10�51) and (10�52) and related
equations of Section 10.3.1.

If the receiver or the transmitter is an Earth satellite, the partial derivatives
of the down-leg or up-leg tropospheric and ionospheric range corrections with
respect to solve-for tropospheric and ionospheric parameters (in Eq. 10�54)
should be set to zero.

12.5.2 PARTIAL DERIVATIVES OF PRECISION ONE-WAY

LIGHT TIME   ρ1

The precision one-way light time ρ1 that is used to calculate computed
values of one-way doppler (F1) observables, one-way narrowband spacecraft
interferometry (INS) observables, and one-way wideband spacecraft
interferometry (IWS) observables is calculated from Eq. (11�41). It will be seen in
the following two subsections that the partial derivatives of this precision one-
way light time ρ1 with respect to the various solve-for parameters are, in
general, equal to the down-leg terms of the round-trip partial derivatives given
in Section 12.5.1. If detailed descriptions of the calculation of various down-leg
terms are omitted in this section, they are the same as given in Section 12.5.1.
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12.5.2.1 Direct Partial Derivatives

The partial derivative of the precision one-way light time ρ1 with respect
to the parameter vector q due to the direct variations in the position vectors of
the participants with variations in q and due to the indirect variation in the
position vector of the spacecraft at t2 due to the variation in t2 with variations in
q is given by:

      

∂ρ1

∂q
= −

∂ t2 ET( )
∂q

(12�33)

where       ∂ t2 ET( ) ∂q  is calculated from Eq. (12�12). In this equation, the partial
derivatives of the position vectors of the participants are calculated from
Eqs. (12�1) and (12�2).

12.5.2.2 Observational Partial Derivatives

The partial derivative of the precision one-way light time ρ1 with respect
to the relativity parameter γ  is given approximately by:

    

∂ρ1

∂ γ
=

RLT23

1 + γ
(12�34)

which is the down-leg term of Eq. (12�24).

The partial derivatives of the precision one-way light time ρ1 with respect
to the a, b, and c quadratic coefficients of the time difference UTC or TPX minus
station time ST at the receiver at the reception time t3 are given by:

    

∂ ρ
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1 231
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These equations are the same as Eqs. (12�26) to (12�28), except that the up-leg
range rate     úr12 is deleted.

The partial derivatives of the precision one-way light time ρ1 with respect
to the solve-for A, B, and C coefficients of the solar corona model are calculated
from Eqs. (10�72) to (10�75).

Eq. (11�41) for the precision one-way light time ρ1 does not contain
tropospheric or charged-particle corrections. These corrections are calculated in
the Regres editor and appear in Eq. (10�26) for the media correction ∆ρ1 to ρ1

given by Eq. (11�41). The partial derivatives of ρ1 with respect to solve-for
tropospheric and charged-particle parameters are the partial derivatives of ∆ρ1

with respect to these parameters. These partial derivatives are calculated in
program Regres, not in the Regres editor.

The partial derivatives of the precision one-way light time ρ1 with respect
to solve-for constant corrections to the tropospheric zenith dry and wet range
corrections 

  
∆ρzdry

 and   ∆ρzwet
 are calculated as described in Section 12.5.1.2

except that Eq. (10�53) is used instead of Eq. (10�54). The parameters 
  
∆ρzdry

 and

  ∆ρzwet
 are for the isolated receiving station on Earth or the DSN complex that

the receiving station is located in. If the receiver is an Earth satellite, set these
partial derivatives to zero.

The partial derivatives of the precision one-way light time ρ1 with respect
to corrections to the N and D coefficients of the ionosphere model of Klobuchar
(1975) are calculated as described in Section 12.5.1.2 except that
Eq. (10�53) is used instead of Eq. (10�54). The corrections to N and D are for the
isolated receiving station on Earth or the DSN complex that the receiving station
is located in. If the receiver is an Earth satellite, set these partial derivatives to
zero.
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12.5.3 PARTIAL DERIVATIVES OF PRECISION ONE-WAY

LIGHT TIME   ρ1 FOR GPS/TOPEX OBSERVABLES

The precision one-way light time ρ1 (in units of kilometers) that is used to
calculate computed values of GPS/TOPEX pseudo-range and carrier-phase
observables is calculated from Eq. (11�44).

12.5.3.1 Direct Partial Derivatives

The partial derivative of the precision one-way light time ρ1 with respect
to the parameter vector q due to the direct variations in the position vectors of
the participants with variations in q and due to the indirect variation in the
position vector of the spacecraft at t2 due to the variation in t2 with variations in
q is given by Eq. (12�33) multiplied by the speed of light c.

12.5.3.2 Observational Partial Derivatives

The partial derivative of the precision one-way light time ρ1 with respect
to the relativity parameter γ is given approximately by Eq. (12�34) multiplied by
the speed of light c.

The partial derivatives of the precision one-way light time ρ1 with respect
to the a, b, and c quadratic coefficients of the time difference GPS (at a GPS
receiving station on Earth) or TPX (at the receiving TOPEX satellite) minus
station time ST at the receiver at the reception time t3 are given by Eqs. (12�35)
to (12�37) multiplied by the speed of light c.

The partial derivatives of ρ1 with respect to the a, b, and c quadratic
coefficients of the time difference GPS (at the transmitting GPS satellite) minus ST
at the transmitter at the transmission time t2 are given by Eqs. (12�29) to (12�31)
with ρ changed to ρ1, t1 changed to t2, and the resulting equations multiplied by
the speed of light c.

From Eq. (11�44), the partial derivative of the precision one-way light
time ρ1 with respect to the pseudo-range bias Bias or the carrier-phase bias Bias



SECTION  12

12�20

(they are separate parameters) in seconds for the receiver and time block
containing the reception time t3 is given by:

    

∂ρ1

∂Bias
= c (12�38)

The observed values of GPS/TOPEX pseudo-range and carrier-phase
observables are calculated as a weighted average of values at two different
transmitter frequencies, which eliminates the effects of charged particles. Hence,
Eq. (11�44) for ρ1 does not include solar corona corrections and Eq. (10�26)
(multiplied by the speed of light c) for the media correction ∆ρ1 to ρ1 given by
Eq. (11�44) does not contain charged-particle corrections. Hence, for GPS/TOPEX
observables, the partial derivatives of ρ1 with respect to the A, B, and C

coefficients of the solar corona model and the N and D coefficients of the
ionosphere model are set to zero.

If the receiver is the TOPEX satellite, the partial derivatives of ρ1 with
respect to solve-for constant corrections to the tropospheric zenith dry and wet
range corrections 

  
∆ρzdry

 and   ∆ρzwet
 are set to zero. If the receiver is a GPS

receiving station on Earth, the partial derivatives of ρ1 with respect to 
  
∆ρzdry

and   ∆ρzwet
 for the isolated receiving station on Earth or the DSN complex that

the receiving station is located in are calculated as described in Section 12.5.1.2
except that Eq. (10�53) is used instead of Eq. (10�54). Also, the resulting partial
derivatives must be multiplied by the speed of light c.

12.5.4 PARTIAL DERIVATIVES OF PRECISION QUASAR DELAY τ

The precision quasar delay τ which is used to calculate the computed
values of wideband (IWQ) and narrowband (INQ) quasar interferometry
observables is calculated from Eq. (11�67).

12.5.4.1 Direct Partial Derivatives

The partial derivative of the precision quasar delay τ  with respect to the
parameter vector q due to the direct variations in the position vectors of
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receivers 1 and 2 with variations in q and due to the indirect variation in the
position vector of receiver 2 at t2 due to the variation in t2 with variations in q is
given by:

      

∂ τ
∂q

=
∂ t2 ET( )

∂q
(12�39)

where       ∂ t2 ET( ) ∂q  is calculated from Eq. (12�22).

12.5.4.2 Observational Partial Derivatives

The first term on the right-hand side of Eq. (11�67), namely     r12 c , is
calculated from Eqs. (12�18) and (12�19). In the latter equation, the unit vector LQ

to the quasar is calculated from Eqs. (8�92) and (8�93). Variations in the right
ascension α  and declination δ of the quasar in the radio frame (see Eq. 8�92)
affect LQ. This has a direct effect on the first term on the right-hand side of
Eq. (11�67) and an indirect effect due to the change in the reception time t2 at
receiver 2. Accounting for both of these effects, the partial derivatives of the
precision quasar delay τ with respect to α and δ of the quasar are given by:

      

∂τ
∂α δ

∂
∂α δ

,
,

ú= −
⋅

+

1
12

121

c

p
c

r
LQ

(12�40)

where     r12  is given by Eq. (8�57) and     úp12 is given by Eq. (8�97). From Eq. (8�93),

      

∂LQ

∂α ,δ
= RxRyRz( )T ∂LQRF

∂α ,δ
(12�41)

where the frame-tie rotation matrices Rz, Ry, and Rx are given by Eqs. (5�117) to
(5�119). From Eq. (8�92),
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In Eq. (8�93), the frame-tie rotation matrices Rz, Ry, and Rx are functions
of the frame-tie rotation angles rz, ry, and rx, respectively. The partial derivatives
of the precision quasar delay τ  with respect to the frame-tie rotation angles rz, ry,
and rx can be calculated from Eq. (12�40) with α,δ replaced with rz, ry, and rx.
From Eq. (8�93),

      

∂LQ

∂ rz
= RxRy
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drz
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(12�44)
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(12�46)

where the derivatives of the frame-tie rotation matrices with respect to the
frame-tie rotation angles are calculated from Eqs. (5�120) to (5�122).

From Eq. (11�67), the partial derivative of the precision quasar delay τ
with respect to the relativity parameter γ is given approximately by:

    

∂ τ
∂ γ

=
RLT12

1 + γ
(12�47)
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where the relativistic light-time delay RLT12 is calculated as the sum of terms 2
and 3 on the right-hand side of Eq. (8�91).

In Eq. (11�67) for the precision quasar delay τ, the intermediate time UTC
at receiver 2 or at receiver 1 is only used if that receiver is a DSN tracking station
on Earth. If receiver 2 is an Earth satellite, UTC is replaced with TOPEX master
time (TPX) and the constant offset (TAI − TPX) is obtained from the GIN file.
Similarly, if receiver 1 is an Earth satellite, UTC is replaced with GPS master time
(GPS) and the constant offset (TAI − GPS) is obtained from the GIN file. The time
differences UTC or TPX minus station time ST at the reception time t2 of the
quasar wavefront at receiver 2 and the time differences UTC or GPS minus ST at
the reception time t1 of the quasar wavefront at receiver 1 are calculated from
the quadratic expression (2�32), as explained after that equation. The change in
either of these time differences at t1 changes     t1 ET( ) by an equal amount. This
change produces a change in t2 in all of the time scales. Differentiating Eq. (12�18)
with respect to     t1 ET( ) gives approximately:

    

dt
dt
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ET
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ú

(12�48)

where     úr12 is given by Eqs. (8�96) and (8�57). From Eqs. (11�67), (2�32), and
(12�48), the partial derivatives of the precision quasar delay τ with respect to the
a, b, and c quadratic coefficients of the time difference UTC or GPS minus station
time ST at receiver 1 at the reception time t1 are given by:
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where t1 is the reception time of the quasar wavefront at receiver 1 in station
time ST. From Eqs. (11�67) and (2�32), the partial derivatives of τ with respect to
the a, b, and c quadratic coefficients of the time difference UTC or TPX minus
station time ST at receiver 2 at the reception time t2 are given by:

    

∂ τ
∂ a

= − 1 (12�52)

    

∂ τ
∂b

= − t2 − t0( ) (12�53)

    

∂ τ
∂ c

= − t2 − t0( )2 (12�54)

where t2 is the reception time of the quasar wavefront at receiver 2 in station
time ST.

From Eq. (11�67), the partial derivatives of the precision quasar delay τ
with respect to the A, B, and C coefficients of the solar corona model are
calculated from Eq. (10�77). In this equation, the partial derivatives of the down-
leg solar corona range corrections for receivers 2 and 1 with respect to the A, B,
and C coefficients are given by Eqs. (10�72) to (10�74).

Eq. (11�67) for the precision quasar delay τ does not contain tropospheric
or charged-particle corrections. These corrections are calculated in the Regres
editor and appear in Eq. (10�30) for the media correction ∆τ to τ given by
Eq. (11�67). The partial derivatives of τ with respect to solve-for tropospheric and
charged-particle parameters are the partial derivatives of ∆τ with respect to these
parameters. These partial derivatives are calculated in program Regres, not in
the Regres editor.

The partial derivatives of the precision quasar delay τ with respect to the
solve-for constant corrections to the tropospheric zenith dry and wet range
corrections 

  
∆ρzdry

 and   ∆ρzwet
 and the N and D coefficients of the ionosphere

model of Klobuchar (1975) are calculated from Eq. (10�55). In this equation, the
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down-leg tropospheric and ionospheric partial derivatives at receivers 2 and 1
are calculated as described in Section 12.5.1.2. If either receiver is an Earth
satellite, the tropospheric and ionospheric partials for that receiver should be set
to zero.
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13.1 INTRODUCTION

This section gives the formulation for the observed values and the

computed values of spacecraft and quasar observables obtained by the Deep

Space Network (DSN). The types of observables are doppler observables (which

are described in Section 13.3), total-count phase observables (Section 13.4), range

observables (Section 13.5), GPS/TOPEX observables (Section 13.6), spacecraft

interferometry observables (Section 13.7), quasar interferometry observables

(Section 13.8), and angular observables (Section 13.9). Each of these sections

contains two parts. The first part contains the formulation for calculating the

observed value of the observable from measured quantities obtained from the

DSN. The second part contains the formulation for calculating the computed

value of the observable. The definition of each observable applies for the

observed and computed values of the observable.

Given spacecraft and quasar measurements obtained by the DSN, the

observed values of the observables are calculated in the Orbit Data Editor (ODE).

This is a generic name for whichever program is currently being used to perform

the ODE function. The ODE writes the OD file, which is read by program Regres.

The data record for each data point contains ID information which is necessary to

unambiguously identify the data point (e.g., the time tag, the data type, the

transmitter, the spacecraft, the receiver, the doppler count time, band indicators,

and constant frequencies), the observed value of the observable, and ancillary

data needed by Regres to calculate the computed value of the observable (e.g.,

down-leg and up-leg delays). Ramp records contain ramp tables (defined in

Section 13.2) that specify the ramped transmitted frequency as a function of time

at the various transmitting stations, and the ramped transmitter frequency (not

transmitted) as a function of time, which is used as a doppler reference frequency

(defined in Section 13.2) at various receiving stations. Phase records contain

phase tables (defined in Section 13.2) that contain phase-time points which
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specify the phase of the transmitted signal as a function of time at the various

transmitting stations.

Program Regres reads the OD file written by the ODE, calculates the

computed values of the observables, and writes these quantities and related

quantities which it calculates onto the Regres file. Each data record on the Regres

file contains the OD file record for the data point, the computed value of the

observable, the observed minus computed residual (RESID), the correction to the

computed observable due to media corrections calculated in the Regres editor

(CRESID) (see Section 10), the calculated weight for the data point (which is the

inverse of the square of the calculated standard deviation for the data point),

calculated auxiliary angles (see Section 9), the calculated partial derivatives of the

computed observable with respect to the solve-for and consider parameters, and

other quantities.

Calculation of the observed values of the observables (in the ODE) and/or

the computed values of the observables (in program Regres) requires the time

history of the transmitted frequency at the transmitter and related frequencies.

The forms and sources of these frequencies are described in Section 13.2. Section

13.2.1 describes the transmitted frequency at a tracking station on Earth. This

frequency can be constant or ramped. The ramped frequencies can be obtained

from ramp tables or phase tables. Spacecraft turnaround ratios (the ratio of the

transmitted to the received frequency at the spacecraft) are described in Section

13.2.2. If the transmitter is the spacecraft, the constant frequency transmitted at

the spacecraft is described in Section 13.2.3. The doppler reference frequency,

which is the transmitter frequency at the receiving station multiplied by a

spacecraft turnaround ratio built into the electronics at the receiving station, is

described in Section 13.2.4. Quasar frequencies are described in Section 13.2.5.

Ramp tables and phase tables and the interpolation of them are described in

Sections 13.2.6 and 13.2.7. The algorithm for the transmitted frequency on each
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leg of each light path is given in Section 13.2.8. This algorithm is used in

calculating charged-particle corrections and other frequency-dependent terms.

As stated above, the formulations for calculating the observed and

computed values of the various data types are given in Sections 13.3 to 13.9.

13.2 TRANSMITTER FREQUENCIES AND SPACECRAFT
TURNAROUND RATIOS

13.2.1 TRANSMITTER FREQUENCY AT TRACKING STATION ON

EARTH

The transmitter frequency     f T t( ) at a tracking station on Earth can be

constant or ramped. If it is a constant frequency, it is obtained from the record of

the OD file for the data point. If the transmitter frequency is ramped, it is

specified as a series of contiguous ramps. Each ramp has a start time, an end

time, the frequency f at the start time, and the constant derivative     
úf  of f (the

ramp rate) which applies between the start time and the end time for the ramp.

Section 13.2.6 describes the content of ramp tables and gives the equations for

interpolating them for the transmitter frequency f and its time derivative     
úf  at the

interpolation time t. The start and end times for each ramp are in station time ST

at the transmitting station on Earth. The interpolation time is the transmission

time in station time ST at the transmitting electronics at the tracking station on

Earth. In the near future, ramp tables will be supplemented with phase tables,

which will eventually replace ramp tables. Phase tables contain a sequence of

phase-time points. Each point gives the phase of the transmitted signal at the

corresponding value of station time ST at the tracking station on Earth. Section

13.2.7 describes the content of phase tables and gives the equations for

interpolating them for the phase φ, frequency f, and ramp rate     
úf  of the

transmitted signal at the transmission time t in station time ST at the transmitting

electronics at the tracking station on Earth.
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An S-band or X-band transmitter frequency can be calculated from the

corresponding reference oscillator frequency     f tq ( ). This frequency has an

approximate value of 22 MHz and can be constant or ramped. In the past, OD file

records contained constant values of     f tq ( ) and ramp tables gave the ramped

values of     f tq ( ). Constant values of     f tq ( ) on the OD file are converted to     f tT ( )  in

program Regres using the following equations:

For an S-band transmitted signal,

    f t f tT q( ) = ( )96 (13�1)

For an X-band uplink,

    f t f tT q Hz( ) = ( ) + ×32 6 5 109. (13�2)

For 34-m AZ-EL mount high efficiency X-band uplink antennas at DSS 15, 45, and

65 (prior to being converted to Block 5 receivers), the constant reference

oscillator frequency reported was     fq
′  instead of     fq , and

    
f fT q Hz= ′ + ×( )749

5
26 106 (13�3)

Equating Eqs. (13�2) and (13�3) gives     fq  as the following exact function of     fq
′ :

    f fq q Hz= ′ − ×4 68125 81 4125 106. . (13�4)

The ODE uses Eq. (13�4) to convert the constant value of     fq
′  to     fq , which is

placed on the OD file. Regres converts this value of     fq  to     f tT ( )  using

Eq. (13�2).

When the OD file contains ramp tables for     f tq ( ), Regres converts them to

ramp tables for     f tT ( )  using the following procedure. The value of     f tq ( ) at the

beginning of each ramp is converted to     f tT ( )  using Eq. (13�1) or (13�2). The
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ramp rates for each ramp are converted from     fq  rates to     fT rates using the time

derivatives of Eq. (13�1) or (13�2). For an S-band uplink,

    
ú úf fT q= 96 (13�5)

For an X-band uplink,

    
ú úf fT q= 32 (13�6)

Note that when     f tT ( )  was ramped, the ramp tables gave ramped values of     f tq ( ),
not ramped values of     f tq

′ ( ).

The uplink band at the transmitting station on Earth is obtained from the

data record of the OD file for the data point.

13.2.2 SPACECRAFT TURNAROUND RATIOS

The parameter M2 is the spacecraft transponder turnaround ratio, which is

the ratio of the transmitted down-leg frequency at the spacecraft to the received

up-leg frequency at the spacecraft. Note that these two frequencies are phase

coherent. The turnaround ratio M2 is a function of the uplink band at the

transmitting station on Earth and the downlink band for the data point. Both of

these bands are obtained from the data record for the data point on the OD file.

The following table (13-1) contains standard DSN spacecraft turnaround ratios

for S, X, and Ka uplink and downlink bands.
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Table 13�1

Spacecraft Turnaround Ratio M2

Uplink Downlink Band

Band S X Ka

S
  

240
221   

880
221   

3344
221

X
  

240
749   

880
749   

3344
749

Ka
  

240
3599   

880
3599   

3344
3599

The spacecraft turnaround ratios used in program Regres are input in the

7 x 7 GIN file array BNDRAT (i,j), where the integers i and j refer to the uplink

and downlink bands:

1 = S
2 = X
3 = L
4 = C
5 = Ka
6 = Ku
7 = unused

The ODP user must make sure that the spacecraft turnaround ratios for

the spacecraft whose tracking data he is processing are in the BNDRAT (i,j) array

on the GIN file. Many spacecraft use non-standard turnaround ratios. For

instance, the Cassini spacecraft uses an Italian transponder for a Ka-band uplink

and downlink. The turnaround ratio which must be input in BNDRAT (5,5) is

14/15, not the standard ratio of 3344/3599 shown above in Table 13�1.
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13.2.3 TRANSMITTER FREQUENCY AT SPACECRAFT

For round-trip data types, the transmitter is a tracking station on Earth. In

the future, the transmitter may be an Earth satellite. For one-way data types, the

transmitter is the spacecraft. When the spacecraft is the transmitter, the

frequency of the transmitted signal (for all one-way data types except

GPS/TOPEX observables) is:

    f t C fT S/C( ) = 2 (13�7)

where     fS/C is the S-band value of the spacecraft transmitter frequency and C2

converts it to the transmitted frequency for the downlink band for the data point

(obtained from the data record for the data point on the OD file). The definition

of     fS/C is:

    fS/C = the modelled S-band value of the spacecraft transmitter
frequency in cycles per TAI second (9192631770 cycles of
an imaginary cesium atomic clock carried by the
spacecraft), nominally 2300 MHz.

The S-band value of the spacecraft transmitter frequency is calculated from:

    f f f f t t f t tS/C T T T T0 0 1 2
= + + −( ) + −( )∆ 0 0

2 (13�8)

where

    fT0
= nominal value of     fS/C, obtained from the data record for

the data point on the OD file.

    ∆ f f fT T T0 1 2
  , , = solve-for quadratic coefficients used to represent the

departure of     fS/C from     fT0
. The quadratic coefficients are

specified by time block with start time t0. The current
time t and t0 are measured in seconds of coordinate time
ET past J2000.
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The following table (13-2) contains standard DSN values of the down-leg

frequency multiplier C2 for S, X, and Ka downlink bands for the data point.

Table 13�2

Downlink Frequency Multiplier C2

Downlink
Band

Frequency
Multiplier

S   1

X
  

880
240

Ka
  

3344
240

The downlink frequency multipliers C2 used in program Regres are input in the

7-dimensional vector SCBAND(  j) on the GIN file, where j is the downlink band

specified after Table 13�1. The ODP user must make sure that the downlink

frequency multipliers for the spacecraft that he is tracking are in the SCBAND (  j)

array on the GIN file.

13.2.4 DOPPLER REFERENCE FREQUENCY

The doppler reference frequency     f REF t3( )  is generated at the receiving

station on Earth for one-way doppler (F1), two-way doppler (F2), and three-way

doppler (F3). It can be a constant frequency or a ramped frequency. It is used in

the ODE to produce the observed values of F1, F2, and F3 observables. The

doppler reference frequency is also used in program Regres to calculate the

computed values of F2 and F3 observables. It is not used in Regres in calculating

the computed values of F1 observables.
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Prior to the introduction of Block 5 receivers, the doppler reference

frequency was a real frequency. Block 5 receivers do not have a doppler

reference frequency. However, at the current time, a fictitious constant doppler

reference frequency is used at Block 5 receivers in calculating the observed and

computed values of F1, F2, and F3 observables. This fictitious frequency cancels

completely in forming the observed minus computed residual. The purpose of

the fictitious doppler reference frequency is to make Block 5 receiver doppler

data look like the previous doppler observables. As soon as the Network

Simplification Program (NSP) is implemented, the fictitious doppler reference

frequency for Block 5 receivers will be set to zero. This will change and simplify

the equations for calculating the observed and computed values of F1, F2, and F3

observables in the ODE and in program Regres.

The doppler reference frequency directly affects the observed and

computed values of doppler observables (Section 13.3). It indirectly affects total-

count phase observables (Section 13.4), which are doppler observables multiplied

by the doppler count interval Tc. It also indirectly affects narrowband spacecraft

interferometry (INS) observables (Section 13.7.1), which are differenced doppler

observables.

The doppler reference frequency at the reception time t3 in station time ST

at the receiving electronics at the receiving station on Earth is given by:

    f REF t3( ) = M2R
f T t3( ) (13�9)

The transmitter frequency     f T t3( )  at the reception time t3 at the receiving

electronics at the receiving station on Earth is a function of the uplink band at the

receiving station on Earth. It can be constant or ramped and is calculated or

obtained as described in Section 13.2.1. The quantity     M2R
 is a spacecraft

turnaround ratio built into the electronics at the receiving station on Earth. It is

obtained from the GIN file as a function of the uplink band at the receiving
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station on Earth and the downlink band for the data point (see Section 13.2.2).

The data record for the data point on the OD file contains the uplink band at the

transmitting station on Earth, the uplink band at the receiving station on Earth,

and the downlink band for the data point. It also contains a level indicator flag,

which indicates whether     f REF t3( )  is calculated from constant or ramped values

of the reference oscillator frequency     f q t3( ) (level 0), constant or ramped values

of the transmitter frequency     f T t3( )  (level 1), or a constant value of     f REF t3( )
(level 2). The data record for the data point on the OD file contains the constant

value of     f REF t3( ) , specified at level 0, 1, or 2. If     f REF t3( )  is ramped, the ramp

records of the OD file contain ramp tables for     f q t3( ) or     f T t3( )  at the receiving

station on Earth. The data record for the data point on the OD file contains the

simulation synthesizer flag, which specifies whether     f REF t3( )  is constant or

ramped.

13.2.5 QUASAR FREQUENCIES

Narrowband quasar interferometry (INQ) observables are derived from

the signal from a quasar received on a single channel at two receivers. Each of

the two receivers can be a tracking station on Earth or an Earth satellite. The

effective frequency of the quasar for a specific channel and pass is denoted as ω .

For INQ observables, the quasar frequency ω  is placed on the data record of the

OD file for the data point.

Wideband quasar interferometry (IWQ) observables are derived from the

signal from a quasar received on two channels at two receivers. The effective

frequencies of the quasar for channels B and A are denoted as   ωB  and   ωA,

respectively. For IWQ observables, the average quasar frequency   ωB + ωA( ) 2  is

placed on the data record of the OD file for the data point.
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13.2.6 RAMP TABLES

The ramp table for a given tracking station gives the value of the ramped

transmitter frequency     f T t( ) and its time derivative     
úf  at the interpolation time t.

The interpolation time t is the transmission time in station time ST at the

transmitting electronics at the tracking station on Earth. Each ramp in the ramp

table is specified by four numbers. They are the start time to and end time tf of

the ramp in station time ST at the tracking station (integer seconds), the value of

the ramped transmitter frequency fo at the start time to of the ramp, and the

constant time derivative (the ramp rate)     
úf  of     f T t( ) which applies from to to tf.

The value of     f T t( ) at the interpolation time t is given by:

    f t f f t tT o o( ) = + −( )ú (13�10)

The ramp table for the transmitting station gives the ramped transmitted

frequency     f T t( ) as a function of time. For doppler observables, the ramp table

for the receiving station gives the ramped transmitter frequency     f T t( ) at the

receiving station as a function of time. This ramped frequency or an alternate

constant value of     f T t( ) at the receiving station can be used to calculate the

doppler reference frequency     f REF t3( )  from Eq. (13�9).

Ramp tables can be specified at the reference oscillator frequency     f q t( )
level or at the transmitter frequency     f T t( ) level. The former type of ramp table

can be converted to the latter type of ramp table as described in Section 13.2.1.

In the future, tracking stations on Earth will be transmitting

simultaneously at two different frequency bands (e.g., X-band and Ka-band).

When this occurs, ramp tables will have to be labelled with the transmitting

station and the uplink band. Currently, the uplink band is not included in ramp

tables.
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13.2.7 PHASE TABLES

In the near future, ramp tables will be replaced with phase tables. Phase

tables contain a sequence of phase-time points. Each point gives the (quadruple

precision) phase of the transmitted signal at the corresponding value of station

time ST (integer seconds) at a particular tracking station on Earth. The uplink

band at the tracking station should be added to the phase table, since tracking

stations will be transmitting simultaneously at two different frequency bands in

the not too distant future.

Interpolation of the phase table for a particular tracking station on Earth

and uplink band gives the phase φ and frequency f of the transmitted signal and

the constant time derivative     
úf  (the ramp rate) of the transmitted frequency at

the interpolation time t, which is the transmission time in station time ST at the

transmitting electronics at the tracking station on Earth. Interpolation of the

phase table requires three phase-time pairs on the same ramp: φ1 at t1, φ2 at t2,

and φ3 at t3. The interpolation time t will be between t1 and t3, and it may be

before or after t2. The phase differences φ2 � φ1 and φ3 � φ2 can be expressed as a

function of the frequency f2 at t2, the ramp rate     
úf  (which is constant from t1 to

t3), and the time differences:

    TA = t2 − t1 s (13�11)

and

    TB = t3 − t2 s (13�12)

Solving these two equations for f2 and     
úf  gives:

    
f

T T
T
T

T
T2 2 1 3 2

1=
+( ) −( ) 





+ −( ) 















A B

B

A

A

B
φ φ φ φ Hz (13�13)

and
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úf
T T T T

=
+( )

−( )
−

−( )













2 3 2 2 1

A B B A

φ φ φ φ
Hz/s (13�14)

The phase differences in these two equations should be calculated in quadruple

precision and then rounded to double precision.

Define ∆t to be the interpolation time t minus the time argument t2 for the

phase φ2 obtained from the phase table:

    ∆t = t − t2 s (13�15)

Also, define   ∆φ ∆t( )  to be the phase   φ t( ) of the transmitted signal at the

interpolation time t minus the phase obtained from the phase table at t2:

    ∆φ ∆t( ) = φ t( ) − φ2 cycles (13�16)

Given f2 and     
úf , the phase difference that accumulates from the tabular

time t2 to the interpolation time t is given by:

    ∆ ∆ ∆ ∆φ t f t f t( ) = + ( )2
1
2

2ú cycles (13�17)

Adding this phase difference to the tabular phase φ2 obtained from the phase

table at t2 gives the phase of the transmitted signal at the interpolation time t.

The transmitted frequency at the interpolation time t is given by:

    f t f f tT( ) = +2
ú ∆ Hz (13�18)

13.2.8 ALGORITHM FOR TRANSMITTED FREQUENCY ON EACH LEG

OF LIGHT PATH

This section gives the algorithm for calculating the transmitter frequency f

on the up leg and down leg of the spacecraft light-time solution and on the down
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legs from a quasar to each of the two receivers. The frequency f is used to

calculate charged-particle corrections (Section 10.2.2) and partial derivatives with

respect to the N and D coefficients of the ionosphere model of Klobuchar (1975)

(Section 10.3). It is also used to calculate solar corona corrections and partial

derivatives with respect to the A, B, and C coefficients of the solar corona model

(Section 10.4).

This algorithm does not apply for the down-leg spacecraft light-time

solution used for GPS/TOPEX pseudo-range and carrier-phase observables.

These observables are calculated as a weighted average of observables with

L1-band and L2-band transmitter frequencies (see Eq. 7�1). The weighted

average (Eqs. 7�2 to 7�4) was selected to eliminate the charged-particle effect

from these data types. However, there are three remaining frequency-

dependent corrections to these observables, namely, the geometrical phase

correction for carrier-phase observables, constant phase-center offsets, and

variable phase-center offsets for carrier-phase observables. These frequency-

dependent corrections are computed as weighted averages of the L1-band and

L2-band values of the corrections as described in Sections 7.3.1, 7.3.3,

8.3.6 (Step 9), 11.5.3, and 11.5.4.

The frequency f on the down legs to the two receivers for narrowband

(INQ) and wideband (IWQ) quasar interferometry observables is described in

Section 13.2.5. This frequency is obtained from the data record of the OD file for

the data point.

The frequency f for the up leg of the spacecraft light-time solution is the

transmitter frequency     f T t1( )  at the transmission time t1 at the transmitter

(a tracking station on Earth or an Earth satellite):

    f = f T t1( ) Hz (13�19)



SECTION  13

13�22

If the transmitter is a tracking station on Earth, the transmitter frequency     f T t1( )
at the transmission time t1 is calculated as described in Sections 13.2.1, 13.2.6, and

13.2.7.

The frequency f for the down leg of the spacecraft light-time solution is

the transmitter frequency     f T t1( )  multiplied by the spacecraft transponder

turnaround ratio M2, which is obtained as described in Section 13.2.2:

    f = M2 f T t1( ) Hz (13�20)

The down-leg frequency f given by Eq. (13�20) is required when performing the

down leg of the spacecraft light-time solution. For each estimate of the

transmission time t2(ET) for the down leg of the light path, calculate the

predicted up-leg light time t2 � t1 from Eqs. (8�79) and (8�80). Subtract t2 � t1

from t2(ET) to give an estimate for the transmission time t1(ET) for the up leg of

the light path. Use t1(ET) to calculate f for the down leg from Eq. (13�20). The up-

leg frequency f given by Eq. (13�19) is required when performing the up leg of

the spacecraft light-time solution. Eq. (13�19) is evaluated using the estimate of

t1(ET) which is available for each iteration of the up-leg light-time solution.

When the spacecraft is the transmitter, the frequency f for the down leg of

the spacecraft light-time solution (for all one-way data types except GPS/TOPEX

observables) is a simplified version of the transmitted frequency given by

Eqs. (13�7) and (13�8):

    f = C2 f T0
Hz (13�21)

The right-hand side of this equation is calculated as described in Section 13.2.3.
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13.3 DOPPLER OBSERVABLES

Section 13.3.1 gives the formulas used to calculate the observed values of
one-way (F1), two-way (F2), and three-way (F3) doppler observables in the ODE
from measured quantities (frequencies and phases) obtained from the Deep
Space Network (DSN). Observed and computed values of F2 and F3 doppler
observables are calculated from the ramped doppler formulation or the
unramped doppler formulation. F1 doppler is always unramped. Section 13.3.1.1
applies for observables obtained from receivers older than Block 5 receivers
(BVR). Section 13.3.1.2 applies for observables obtained from BVRs prior to
implementation of the Network Simplification Program (NSP). Section 13.3.1.3
applies for observables obtained from BVRs after implementation of the NSP.

Section 13.3.2 gives the formulas used to calculate the computed values of
F1, F2, and F3 doppler observables in program Regres. Subsections 13.3.2.1,
13.3.2.2, and 13.3.2.3 apply for unramped F2 and F3 observables, ramped F2 and
F3 observables, and F1 observables, respectively. Each section gives the
formulation for the computed value of the observable, the correction to the
computed value of the observable due to media corrections (calculated in the
Regres editor), and partial derivatives of the computed observable with respect
to solve-for and consider parameters. Variations in these formulations which
apply for receivers older than BVRs, BVRs prior to the NSP, and BVRs after
implementation of the NSP are given.

13.3.1 OBSERVED VALUES OF DOPPLER OBSERVABLES

13.3.1.1 Observables Obtained From Receivers Older Than Block 5 Receivers

The signal input to the doppler counter at the receiving station on Earth
has the frequency f (t3) in cycles per second of station time ST. The time
argument t3 is the reception time in station time ST at the receiving electronics.

    f t3( ) = f REF t3( ) − f R t3( ) + C4 Hz (13�22)
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where

    f REF t3( ) = doppler reference frequency at reception time t3 at
receiving station on Earth. See Section 13.2.4.

    f R t3( ) = frequency of received signal at reception time t3 at
receiving station on Earth.

C4 = constant bias frequency (normally   ± 1 MHz) generated
at receiving station on Earth.

The doppler counter measures cycles of f (t3) that accumulate from an epoch     t30

near the start of the pass to the current time t3:

    
N t f t dt

t

t

3 3 3
3( ) = ( )∫

30

cycles (13�23)

The accumulated doppler cycle count N(t3) is available every 0.1 second of station
time ST at the receiving electronics at the receiving station on Earth.

Doppler observables are derived from the change in the doppler cycle
count N(t3), which accumulates during the count interval or count time Tc at the
receiving station on Earth. Successive doppler observables at a given tracking
station on Earth have contiguous count intervals. Count intervals can be as short
as 0.1 s (very rare) or as long as a pass of data (about half a day or 43,200 s) (also
very rare). Typical count times have durations of tens of seconds to a few
thousand seconds. Shorter count times are used at encounters with celestial
bodies and longer count times are used in interplanetary cruise. Count intervals
of 1 s or longer are integer seconds and begin and end on seconds pulses. Count
intervals less than 1 s are integer tenths of a second and begin and end on tenths
of a second pulses. The time tag T T of a doppler observable is the midpoint of
the count interval Tc. The time tag ends in integer seconds, tenths of a second, or
hundredths of a second. Given the time tag T T and count interval Tc for a
doppler observable, the epochs at the start and end of the count interval are
given by:
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    t3e
ST( )R = TT + 1

2 Tc s (13�24)

    t3s
ST( )R = TT − 1

2 Tc s (13�25)

where these epochs, the time tag T T, and the count time Tc are measured in
seconds of station time ST at the receiving electronics (subscript R) at the
receiving station on Earth.

Observed values of all doppler observables are calculated in the ODE
from:

    
F =

∆N
Tc

− f bias Hz (13�26)

where F can be one-way doppler (F1), unramped two-way (F2) or three-way (F3)
doppler, or ramped F2 or F3. The quantity ∆N is the change in the doppler cycle
count N(t3) given by Eq. (13�23), which accumulates during the count interval

    Tc :

    
∆N = N t3e( ) − N t3s( ) cycles (13�27)

where 
    
N t3e( ) and 

    
N t3s( )  are values of N(t3) given by Eq. (13�23) at the epochs

given by Eqs. (13�24) and (13�25), respectively. Since values of N(t3) are given
every 0.1 s, no interpolation of this data is required. The equation for calculating
the bias frequency f bias depends upon the data type.

For one-way doppler (F1), the bias frequency fbias is calculated from:

    f bias = f REF t3( ) − C2 f T0
+ C4 Hz (13�28)

where the downlink frequency multiplier C2 and the nominal value     f T0
 of the

spacecraft transmitter frequency at S-band are described in Section 13.2.3.
Eq. (13�28) removes the effect of the departure of the constant     f REF t3( )  from

    C2 f T0
 and the effect of C4 from the one-way doppler observable calculated
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from Eqs. (13�22) to (13�28) in the ODE. From these equations, the definition of
the one-way doppler observable calculated in the ODE is given by:

    

F1 = 1
Tc

C2 f T0
− f R t3( )[ ] dt3

t3s ST( )R

t3e ST( )R

∫ Hz (13�29)

Since     C2 f T0
 is the transmitter frequency at the spacecraft, the one-way doppler

observable calculated in the ODE is the negative of the average doppler
frequency shift which occurs over the count interval Tc.

For unramped two-way (F2) or three-way (F3) doppler, the bias
frequency fbias is calculated from:

    f bias = f REF t3( ) − M2 f T t1( ) + C4 Hz (13�30)

where the spacecraft transponder turnaround ratio M2 and the constant
transmitter frequency     f T t1( )  at the transmitting station on Earth are described in
Sections 13.2.2 and 13.2.1, respectively. Eq. (13�30) removes the effect of the
departure of the constant     f REF t3( )  from the effective transmitter frequency

    M2 f T t1( ) and the effect of C4 from the unramped two-way (F2) or three-way
(F3) doppler observable calculated from Eqs. (13�22) to (13�27) and Eq. (13�30) in
the ODE. From these equations, the definition of the unramped two-way (F2) or
three-way (F3) doppler observable calculated in the ODE is given by:

    

unramped F2,3 = 1
Tc

M2 f T t1( ) − f R t3( )[ ] dt3

t3s ST( )R

t3e ST( )R

∫ Hz (13�31)

Since     M2 f T t1( ) is the effective transmitter frequency at the tracking station on
Earth, the unramped two-way (F2) or three-way (F3) doppler observable
calculated in the ODE is the negative of the average doppler frequency shift
which occurs over the count interval Tc.
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For ramped two-way (F2) or three-way (F3) doppler, the transmitter
frequency     f T t1( )  at the transmitting station on Earth is ramped, and the doppler
reference frequency     f REF t3( )  at the receiving station may be ramped or
constant. The difference of these two frequencies is not constant and its effect on
computed ramped two-way (F2) or three-way (F3) doppler observables
calculated in the ODE cannot be removed. Hence, for these observables, the bias
frequency f bias is given by:

    f bias = C4 Hz (13�32)

From Eqs. (13�22) to (13�27) and Eq. (13�32), the definition of the ramped two-
way (F2) or three-way (F3) doppler observable calculated in the ODE is given by:

    

ramped F2,3 = 1
Tc

f REF t3( ) − f R t3( )[ ] dt3

t3s ST( )R

t3e ST( )R

∫ Hz (13�33)

Because the doppler reference frequency     f REF t3( )  is not the same as the effective
transmitter frequency     M2 f T t1( ), the ramped two-way (F2) or three-way (F3)
doppler observable calculated in the ODE is not equal to the negative of the
average doppler frequency shift which occurs over the count interval Tc.

13.3.1.2 Observables Obtained From Block 5 Receivers Before

Implementation of Network Simplification Program (NSP)

Block 5 receivers do not produce the doppler cycle count N(t3) given by
Eqs. (13�22) and (13�23). Instead, they count cycles of the received frequency

    f R t3( ), which accumulate from an epoch     t30
 near the start of the pass to the

current time t3:

    

φ t3( ) = f R t3( ) dt3

t30

t3

∫ cycles (13�34)
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The accumulated phase φ (t3) of the received signal is measured every 0.1 s of
station time ST at the receiving electronics at the receiving station on Earth. Also,
Block 5 receivers do not have a doppler reference signal. As an interim
procedure which will be used until the NSP is completed, the Metric Data
Assembly (MDA) obtains the accumulated phase φ (t3) of the received signal at
the reception time t3 at the receiving electronics and creates the following
doppler cycle count N(t3) using Eqs. (13�22), (13�23), and (13�34):

    
N t3( ) = f REF t3( ) t3 − t30( ) − φ t3( ) + C4 t3 − t30( ) cycles (13�35)

The doppler reference frequency     f REF t3( )  is a constant fictitious frequency
created in the MDA. It is specified at level 0, 1, or 2 as described in
Section 13.2.4.

Given N(t3) calculated from Eq. (13�35) in the MDA for every 0.1 s of
station time ST at the receiving electronics at the receiving station on Earth,
observed values of doppler observables are calculated in the ODE from
Eqs. (13�24) to (13�27). The bias frequency fbias is calculated from Eq. (13�28) for
one-way doppler (F1) and from Eq. (13�32) for ramped two-way (F2) or three-
way (F3) doppler observables. Note that Block 5 receivers do not produce
unramped two-way (F2) or three-way (F3) doppler observables.

13.3.1.3 Observables Obtained From Block 5 Receivers After Implementation

of Network Simplification Program (NSP)

After the Network Simplification Program (NSP) is implemented, the
doppler reference frequency     f REF t3( )  and the bias frequency C4 will be set to
zero. With these changes, the doppler cycle count N(t3) given by Eqs. (13�22),
(13�23), and (13�34) or Eqs. (13�34) and (13�35) reduces to:

    N t3( ) = − φ t3( ) cycles (13�36)

For ramped two-way (F2) or three-way (F3) doppler observables, the bias
frequency f bias given by Eq. (13�32) reduces to:
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    f bias = 0 Hz (13�37)

Substituting Eqs. (13�36) and (13�37) into Eqs. (13�24) to (13�27) gives the
following equation for calculating the observed values (F) of ramped two-way
(F2) or three-way (F3) doppler observables in the ODE:

    
F = −

φ t3e( ) − φ t3s( )[ ]
Tc

Hz (13�38)

Setting     f REF t3( )  and     C4  equal to zero in Eq. (13�28) for     f bias  for one-way
doppler (    F1) observables gives:

    f bias = − C2 f T0
Hz (13�39)

Substituting Eqs. (13�36) and (13�39) into Eqs. (13�24) to (13�27) gives the
following equation for calculating the observed values of one-way (F1) doppler
observables in the ODE:

    
F1 = C2 f T0

−
φ t3e( ) − φ t3s( )[ ]

Tc
Hz (13�40)

which is not the equation that we want. The mechanical derivation of this
equation substituted     C2 f T0

 for the doppler reference frequency     f REF t3( ) .
Eq. (13�40) is equivalent to the definition (13�29) for one-way doppler (F1)
observables calculated prior to implementation of the NSP. After the NSP is
implemented, we want the doppler reference frequency for F1 observables to be
zero. The desired equation for calculating the observed values of one-way
doppler (F1) observables in the ODE after the NSP is implemented is Eq. (13�40)
minus the term     C2 f T0

. The resulting equation is Eq. (13�38).

Hence, after the NSP is implemented, observed values of one-way
doppler (F1) observables and ramped two-way (F2) or three-way (F3) doppler
observables can be calculated in the ODE from Eq. (13�38). These observables are
the negative of the average received frequency during the count interval Tc.
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From Eq. (13�38), the definition of these observables calculated in the ODE is
given by:

    

F1 ,  ramped F2,3 = − 1
Tc

f R t3( ) dt3

t3s ST( )R

t3e ST( )R

∫ Hz (13�41)

This equation is the same as the definition (13�29) with     C2 f T0
 set to zero and the

definition (13�33) with     f REF t3( )  set to zero.

13.3.2 COMPUTED VALUES OF DOPPLER OBSERVABLES, MEDIA

CORRECTIONS, AND PARTIAL DERIVATIVES

13.3.2.1 Unramped Two-Way (F2) and Three-Way (F3) Doppler Observables

These data types are obtained from receivers older than Block 5 receivers.
For Block 5 receivers, these round-trip observables have been replaced with
ramped two-way (F2) and three-way (F3) doppler observables (see Section
13.3.2.2). The Network Simplification Program will not be applied to unramped
F2 and F3 observables.

The definition of unramped two-way (F2) and three-way (F3) doppler
observables is given by Eq. (13�31). During an interval dt1 of station time ST at
the transmitting electronics at the transmitting station on Earth, dn cycles of the
constant transmitter frequency     f T t1( )  are transmitted. During the corresponding
reception interval dt3 in station time ST at the receiving electronics at the
receiving station on Earth, M2 dn cycles are received, where M2 is the spacecraft
transponder turnaround ratio. The ratio of the received frequency in cycles per
second of station time ST at the receiving electronics to the transmitted
frequency in cycles per second of station time ST at the transmitting electronics is
given by:

    

f R

f T
=

M2 dn
dt3

dt1

dn
= M2

dt1

dt3
(13�42)
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and the received frequency in cycles per second of station time ST at the
receiving electronics at the receiving station on Earth is given by:

    
f R t3( ) = M2 f T t1( ) dt1

dt3
Hz (13�43)

Substituting Eq. (13�43) into Eq. (13�31) gives:

    

unramped T

c
ST

ST

ST

ST

s R

e R

s T

e T

F
M f t

T
dt dt

t

t

t

t

2 3
2 1

3 1

3

3

1

1

, =
( )

−

















( )

( )

( )

( )

∫ ∫ Hz (13�44)

The reception interval Tc at the receiving station on Earth starts at the epoch

    t3s
ST( )R in station time ST at the receiving electronics and ends at the epoch

    t3e
ST( )R . These epochs are calculated from Eqs. (13�24) and (13�25) as functions

of the data time tag T T and the count interval Tc. The corresponding
transmission interval     Tc

′  at the transmitting station on Earth starts at the epoch

    t1s
ST( )T  in station time ST at the transmitting electronics and ends at the epoch

    t1e
ST( )T. Signals transmitted at the epochs     t1s

ST( )T  and     t1e
ST( )T at the

transmitting electronics at the transmitting station on Earth are received at the
epochs     t3s

ST( )R and     t3e
ST( )R  at the receiving electronics at the receiving station

on Earth, respectively. Evaluating Eq. (13�44) gives:

    
unramped F2,3 =

M2 f T t1( )
Tc

t3e ST( )R − t3s ST( )R[ ] − t1e ST( )T − t1s ST( )T[ ]{ }
Hz (13�45)

Reordering terms gives:

    
unramped F2,3 =

M2 f T t1( )
Tc

t3e ST( )R − t1e ST( )T[ ] − t3s ST( )R − t1s ST( )T[ ]{ }
Hz (13�46)
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The definition of the precision round-trip light time ρ is given by Eq. (11�5).
Using this definition, Eq. (13�46) can be expressed as:

    
unramped F2,3 =

M2 f T t1( )
Tc

ρe − ρs( ) Hz (13�47)

where ρe and ρs are precision round-trip light times with reception times at the
receiving electronics at the receiving station on Earth equal to     t3e

ST( )R  and

    t3s
ST( )R, respectively. Eq. (13�47) is used to calculate the computed values of

unramped two-way (F2) and three-way (F3) doppler observables. Each
computed observable requires two round-trip spacecraft light-time solutions
with reception times equal to     t3e

ST( )R  and     t3s
ST( )R, respectively, at the

receiving electronics at the receiving station on Earth. These light-time solutions
are calculated as described in Section 8.3.6. Given these light-time solutions, the
precision round-trip light times ρe and ρs are calculated from Eq. (11�7) as
described in Section 11.3.2. The spacecraft transponder turnaround ratio M2 and
the constant transmitter frequency     f T t1( )  at the transmitting station on Earth are
obtained as described in Sections 13.2.2 and 13.2.1.

The precision round-trip light times ρe and ρs do not include corrections
due to the troposphere or due to charged particles. These corrections are
included in the media corrections ∆ρe and ∆ρs to ρe and ρs, respectively. These
media corrections are calculated in the Regres editor from Eqs. (10�28) and
(10�29) as described in Section 10.2. Given the media corrections ∆ρe and ∆ρs, the
corresponding media correction to the computed unramped two-way (F2) or
three-way (F3) doppler observable is calculated in the Regres editor from the
following differential of Eq. (13�47):

    
∆ unramped F2,3( ) =

M2 f T t1( )
Tc

∆ρe − ∆ρs( ) Hz (13�48)

This media correction to the computed observable is placed on the Regres file in
the variable CRESID as discussed in Sections 10.1 and 10.2.
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The partial derivatives of computed values of unramped two-way (F2)
and three-way (F3) doppler observables with respect to solve-for and consider
parameters q are calculated from the following partial derivative of Eq. (13�47):

      

∂
∂

∂ ρ
∂

∂ ρ
∂

unramped T

c

e sF M f t

T
2 3 2 1,( )

=
( )

−




q q q

(13�49)

The partial derivatives of the precision round-trip light times ρe and ρs at the end
and start of the doppler count interval Tc with respect to the solve-for and
consider parameter vector q are calculated from the formulation given in Section
12.5.1 as described in that section.

13.3.2.2 Ramped Two-Way (F2) and Three-Way (F3) Doppler Observables

The formulation for calculating the computed value of a ramped two-way
(F2) or three-way (F3) doppler observable, the correction to the computed value
of the observable due to media corrections, and the partial derivatives of the
computed observable with respect to solve-for and consider parameters is given
in Subsection 13.3.2.2.1. The equation for the computed value of a ramped F2 or
F3 doppler observable contains the integral of the transmitted frequency over
the transmission interval     Tc

′  and the integral of the doppler reference frequency
over the reception interval Tc. If this latter integral is ramped, it can only be
evaluated using ramp tables, as described in Subsection 13.3.2.2.2. The former
integral can be evaluated using ramp tables as described in Subsection 13.3.2.2.2,
or it can be evaluated using phase tables as described in Subsection 13.3.2.2.3.

13.3.2.2.1 Formulation

Ramped two-way (F2) and three-way (F3) doppler observables have been
and are obtained at receivers older than Block 5 receivers, are obtained from
Block 5 receivers prior to implementation of the Network Simplification
Program (NSP), and will be obtained from Block 5 receivers after the NSP is
implemented. All three cases are discussed in this section.
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The definition of ramped two-way (F2) and three-way (F3) doppler
observables is given by Eq. (13�33). For receivers older than Block 5 receivers,
the doppler reference frequency     f REF t3( )  can be constant or ramped. For Block 5
receivers prior to implementation of the NSP,     f REF t3( )  is a fictitious constant
frequency. For Block 5 receivers after the NSP is implemented,     f REF t3( )  will be
zero. The simulation synthesizer flag on the data record of the OD file specifies
whether     f REF t3( )  is constant or ramped. Constant values specified at level 0, 1,
or 2 are obtained from the data record of the OD file. If     f REF t3( )  is ramped, the
ramp records of the OD file contain ramp tables for the transmitter frequency

    f T t3( )  or the reference oscillator frequency     f q t3( ) at the receiving station on
Earth. Constant or ramped values of     f REF t3( )  are calculated as described in
Section 13.2.4.

In Eq. (13�33), the doppler reference frequency     f REF t3( )  is given by
Eq. (13�9), and the received frequency is given by Eq. (13�43). Substituting these
equations into Eq. (13�33) gives:

    

ramped F2,3 =
M2R

Tc
f T t3( ) dt3

t3s ST( )R

t3e ST( )R

∫ −
M2

Tc
f T t1( ) dt1

t1s ST( )T

t1e ST( )T

∫ Hz (13�50)

where the epochs at the start and end of the reception interval Tc and the
corresponding transmission interval     Tc

′  are described after Eq. (13�44). The
transmitter frequency     f T t1( )  at the transmitting station on Earth is ramped. Its
value can be obtained from the ramp table for the transmitting station. The
frequency and the accumulated phase of the transmitted signal can be obtained
by interpolating the phase table for the transmitting station. These tables are
obtained from the OD file. The spacecraft transponder turnaround ratio M2 is
calculated as described in Section 13.2.2. The spacecraft turnaround ratio     M2R

built into the electronics at the receiving station on Earth is calculated as
described in Section 13.2.4.

Eq. (13�50) is used to calculate the computed values of ramped two-way
(F2) and three-way (F3) doppler observables. Each computed observable
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requires two round-trip spacecraft light-time solutions with reception times
equal to     t3e

ST( )R  and     t3s
ST( )R, respectively, at the receiving electronics at the

receiving station on Earth. These light-time solutions are calculated as described
in Section 8.3.6. Given these light-time solutions, the precision round-trip light
times ρe and ρs are calculated from Eq. (11�7) as described in Section 11.3.2. The
integrals in Eq. (13�50) are evaluated from ramp tables or phase tables as
described in Sections 13.3.2.2.2 and 13.3.2.2.3, respectively. Evaluation of each of
these integrals requires the precision width of the interval of integration. The
precision width of the reception interval at the receiving electronics at the
receiving station on Earth is the count interval Tc. The precision width of the
transmission interval at the transmitting electronics at the transmitting station on
Earth is calculated from:

    Tc
′ = Tc − ρe − ρs( ) s (13�51)

Evaluation of the integrals in Eq. (13�50) also requires the epochs     t3s
ST( )R and

    t3e
ST( )R  at the start and end of the reception interval and the epochs     t1s

ST( )T
and     t1e

ST( )T at the start and end of the transmission interval. The former epochs
are calculated from Eqs. (13�25) and (13�24). The latter epochs can be calculated
two different ways. The least accurate way is to start with the transmission times

    t1s
ST( ) and     t1e

ST( ) at the tracking station location from the light-time solutions
at the start and end of the count interval. They are converted to the
corresponding transmission times     t1s

ST( )T  and     t1e
ST( )T at the transmitting

electronics using Eq. (11�3) and the up-leg delay τ  U at the transmitting station on
Earth. However, a more accurate way is to calculate     t1s

ST( )T  and     t1e
ST( )T from:

    t1s
ST( )T = t3s

ST( )R − ρs s (13�52)

    t1e
ST( )T = t3e

ST( )R − ρe s (13�53)

This method is more accurate because ρs and ρe contain some small terms which
are not calculated in the spacecraft light-time solution.



SECTION  13

13�36

The following two sections give the algorithms for evaluating the
integrals in Eq. (13�50).

If the doppler reference frequency     f REF t3( )  at the receiving station on
Earth is constant, Eq. (13�50) reduces to:

    

ramped F2,3 = f REF t3( ) −
M2

Tc
f T t1( ) dt1

t1s ST( )T

t1e ST( )T

∫ Hz (13�54)

The constant value of     f REF t3( )  is calculated as described in Section 13.2.4. For
Block 5 receivers after the NSP is implemented,     f REF t3( )  will be zero. For this
case, Eq. (13�54) is equal to Eq. (13�38) since the number of cycles received
during the reception interval is equal to the number of cycles transmitted during
the transmission interval multiplied by the spacecraft turnaround ratio M2.

The precision round-trip light times ρe and ρs do not include corrections
due to the troposphere or due to charged particles. These corrections are
included in the media corrections ∆ρe and ∆ρs to ρe and ρs, respectively. These
media corrections are calculated in the Regres editor from Eqs. (10�28) and
(10�29) as described in Section 10.2. Since the reception times at the end and start
of the reception interval Tc are fixed, the media corrections ∆ρe and ∆ρs are the
negatives of the corresponding changes in the transmission times at the
transmitting station on Earth:

    ∆ρe = − ∆t1e
ST( )T s (13�55)

    ∆ρs = − ∆t1s
ST( )T s (13�56)

From Eq. (13�50), the media correction to a computed ramped two-way (F2) or
three-way (F3) doppler observable is given by:
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∆ ramped F2,3( ) = −

M2

Tc
f T t1e( ) ∆t1e

ST( )T − f T t1s( ) ∆t1s
ST( )T[ ]

Hz (13�57)

Substituting Eqs. (13�55) and (13�56) into Eq. (13�57) gives:

    
∆ ramped F2,3( ) =

M2

Tc
f T t1e( ) ∆ρe − f T t1s( ) ∆ρs[ ] Hz (13�58)

This equation is used to calculate media corrections for computed ramped two-
way (F2) and three-way (F3) doppler observables in the Regres editor. The
transmitter frequencies 

    
f T t1s( ) at the start and 

    
f T t1e( ) at the end of the

transmission interval at the transmitting station on Earth are obtained in
evaluating the second integral in Eq. (13�50) using the algorithm of Section
13.3.2.2.2 or 13.3.2.2.3. Program Regres writes these frequencies onto the Regres
file, which is read by the Regres editor. These transmitter frequencies are used
directly in Eq. (13�58) and indirectly in evaluating the media corrections ∆ρe and
∆ρs using Eqs. (13�19) and (13�20). The Regres editor evaluates the media
correction (13�58) to the computed observable and places it on the Regres file in
the variable CRESID as discussed in Sections 10.1 and 10.2.

Replacing corrections (∆) in Eqs. (13�55) to (13�58) with partial derivatives
with respect to the solve-for and consider parameter vector q, the partial
derivatives of the computed values of ramped two-way (F2) and three-way (F3)
doppler observables with respect to solve-for and consider parameters q are
calculated from:

      

∂
∂

∂ ρ
∂

∂ ρ
∂

ramped 

c
T

e
T

s
e s

F M
T

f t f t
2 3 2

1 1
,( )

= ( ) − ( )







q q q

(13�59)

The partial derivatives of the precision round-trip light times ρe and ρs at the end
and start of the doppler count interval Tc with respect to the solve-for and
consider parameter vector q are calculated from the formulation given in Section
12.5.1 as described in that section.
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13.3.2.2.2 Evaluating Integrals Using Ramp Tables

If the doppler reference frequency (given by Eq. 13�9) at the receiving
station on Earth is ramped, the integral of the ramped transmitter frequency
over the count interval Tc at the receiving station (the first term of Eq. 13�50) is
calculated using the ramp table for the receiving station. The integral of the
ramped transmitter frequency over the transmission interval     Tc

′  at the
transmitting station (the second term of Eq. 13�50) can be calculated from the
ramp table or the phase table for the transmitting station. This section describes
how the two integrals in Eq. (13�50) are evaluated using the ramp tables for the
receiving and transmitting stations.

The following algorithm can be used to evaluate either integral in
Eq. (13�50). Let ts denote the start time of the interval of integration. It is

    t3s
ST( )R for the first integral and     t1s

ST( )T  for the second integral of Eq. (13�50).
Let te denote the end time of the interval of integration. It is     t3e

ST( )R  for the first
integral and     t1e

ST( )T for the second integral of Eq. (13�50). These four epochs
are calculated from Eqs. (13�24), (13�25), (13�52), and (13�53) as discussed after
Eq. (13�51). Let W denote the precision width of the interval of integration. It is
Tc for the reception interval and     Tc

′  given by Eq. (13�51) for the transmission
interval. The interval of integration is covered by n ramps, where n can be as few
as one. Each ramp is specified by the start time to and end time tf of the ramp in
station time ST at the tracking station (integer seconds), the value fo of the
ramped transmitter frequency     f T t( ) at the start time to of the ramp, and the
constant time derivative (the ramp rate)     

úf  of     f T t( ) which applies from to to tf.
The start time to for the first ramp is before the start time ts of the interval of
integration. The end time tf of the last ramp is after the end time te of the interval
of integration. The following steps produce the value of either integral in
Eq. (13�50):

1. Change the start time of the first ramp from to to the start time ts of
the interval of integration.

2. Change the transmitter frequency at the start of the first ramp to:
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    f t f t f t to s o o s oat at ( ) = ( ) + −( )ú Hz (13�60)

3. If the interval of integration W contains two or more ramps, calculate
the width of each ramp i except the last ramp from:

    W i = tf − to s (13�61)

where the recalculated value of to for the first ramp is obtained from
Step 1.

4. If W contains two or more ramps, calculate the precision width of the
last ramp from:

    

W n = W − W i

i=1

n−1

∑ s (13�62)

where W is the precision width of the interval of integration,
obtained as described above. If W contains one ramp only, its
precision width is:

    W n n = 1( ) = W1 = W s (13�63)

5. Calculate the average transmitter frequency   f i  for each ramp:

    f f f Wi i= +o
1
2
ú Hz (13�64)

6. Evaluate the integral of the transmitter frequency over the reception
or transmission interval W from:

    

f T t( ) dt =
ts

te

∫ f i W i

i=1

n

∑ cycles (13�65)
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7. In addition to the integral (13�65), program Regres and the Regres
editor need the values of the transmitter frequency at the start ts and
end te of the interval of integration. The value of     f T t( ) at ts is
obtained from Step 2 using Eq. (13�60). The value of     f T t( ) at te is
calculated from:

    f f f Wne o= + ú Hz (13�66)

where fo and     
úf  are the values for the last ramp and Wn is the width

of the last ramp calculated from Eq. (13�62) or (13�63).

13.3.2.2.3 Evaluating Integrals Using Phase Tables

The integral of the ramped transmitter frequency over the transmission
interval     Tc

′  at the transmitting station (in the second term of Eq. 13�50 or 13�54)
can be calculated from the ramp table or the phase table for the transmitting
station. This section describes how this integral is evaluated using the phase table
for the transmitting station on Earth.

The integral in the second term of Eq. (13�50) or (13�54) can be expressed
as:

    

f T t1( ) dt1

t1s ST( )T

t1e ST( )T

∫ = φ t1e
ST( )T[ ] − φ t1s

ST( )T[ ] cycles (13�67)

The epochs     t1e
ST( )T and     t1s

ST( )T  are the end and start, respectively, of the
transmission interval at the transmitting electronics at the transmitting station on
Earth, measured in station time ST at the transmitting station. The terms on the
right-hand side of Eq. (13�67) are the corresponding phases of the transmitted
signal at the transmitting electronics at these epochs. The remainder of this
section describes how the right-hand side of Eq. (13�67) is evaluated using the
phase table for the transmitting station on Earth.
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The epochs     t1e
ST( )T and     t1s

ST( )T  are calculated from Eqs. (13�24),
(13�25), (13�52), and (13�53). The phase table for the transmitting station on
Earth is interpolated at these two epochs (the end and start of the transmission
interval) as described in Section 13.2.7. Each interpolation produces three phase-
time pairs on the same ramp: φ1 at t1, φ2 at t2, and φ3 at t3. The interpolation time
t is between t1 and t3. Substituting the three phases and the corresponding
tabular times into Eqs. (13�11) to (13�14) gives the frequency f 2 of the
transmitted signal at the tabular time t2 and the ramp rate     

úf  (which is constant
between t1 and t3). The epoch t2 obtained during the interpolation at the end of
the transmission interval will be denoted as Te. The epoch t2 obtained during the
interpolation at the start of the transmission interval will be denoted as Ts.

The variable ∆t is defined by Eq. (13�15). It is the interpolation time t

minus the corresponding tabular time t2. The value of ∆t at the start of the
transmission interval is calculated from:

    ∆ ts = t1s
ST( )T − Ts s (13�68)

The variable ∆t at the end of the transmission interval is defined by Eq. (13�68)
with each subscript s replaced with the subscript e. However, it is calculated
from:

    ∆ te = Tc
′ − ∆T + ∆ts s (13�69)

where the precision width     Tc
′ of the transmission interval is calculated from

Eq. (13�51), the variable ∆T is calculated from:

    ∆T = Te − Ts s (13�70)

and ∆ts is given by Eq. (13�68). Eq. (13�69) places the roundoff error in ∆ts into
∆te. If Eq. (13�69) is solved for     Tc

′ , the roundoff errors in ∆te and ∆ts cancel and
the precision width of the transmission interval is preserved.
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The parameter ∆φ (∆t) is defined by Eq. (13�16). It is the phase of the
transmitted signal at the interpolation time t minus the tabular phase φ 2 at the
tabular time t2. Given f 2 and     

úf  obtained from the interpolation at the end of the
transmission interval, and ∆te calculated from Eq. (13�69), the phase difference

    ∆ φ ∆ te( ) cycles (13�71)

is calculated from Eq. (13�17). This is the phase of the transmitted signal at the
end     t1e

ST( )T of the transmission interval minus the tabular phase φ 2 at the
tabular time t2. Similarly, given f 2 and     

úf  obtained from the interpolation at the
start of the transmission interval, and ∆ts calculated from Eq. (13�68), the phase
difference

    ∆ φ ∆ ts( ) cycles (13�72)

is calculated from Eq. (13�17). This is the phase of the transmitted signal at the
start     t1s

ST( )T  of the transmission interval minus the tabular phase φ 2 at the
tabular time t2. The variables f 2,     

úf , and   ∆ t  at the end and start of the
transmission interval are also used in Eq. (13�18) to calculate values of the
transmitted frequency     f T t( ) at the end and start of the transmission interval:

    
f T t1e

ST( )T[ ] ,   f T t1s
ST( )T[ ] Hz (13�73)

Given the phase differences ∆φ (∆te), ∆φ (∆ts), and the tabular phases φ (Te)
and φ  (Ts) at the tabular times t2 at the end and start of the transmission interval,
the phase difference on the right-hand side of Eq. (13�67) is calculated from:

    
φ t1e

ST( )T[ ] − φ t1s
ST( )T[ ] = ∆φ ∆ te( ) − ∆φ ∆ ts( ) + φ Te( ) − φ Ts( )[ ]

cycles (13�74)

The difference of the tabular phases should be calculated in quadruple precision
and then rounded to double precision.
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13.3.2.3 One-Way (F1) Doppler Observables

There are two versions of the formulation used to calculate the computed
values of one-way (F1) doppler observables. The original version of the F1

formulation is used for receivers older than Block 5 receivers and also for Block 5
receivers prior to implementation of the Network Simplification Program (NSP).
The newer version of the F1 formulation is used for Block 5 receivers after
implementation of the NSP. A flag on the OD file indicates whether the observed
values of the observables were generated before or after implementation of the
NSP.

The definition of one-way (F1) doppler observables obtained before
implementation of the NSP is given by Eq. (13�29). After implementation of the
NSP, the definition of F1 observables changes to Eq. (13�41), which is the second
term of Eq. (13�29). Note that the computed value of an F1 observable calculated
from the newer formulation (after NSP) is equal to the value computed from the
original formulation (prior to NSP) minus the constant frequency     C2 f T0

, which
is the nominal value of the transmitted frequency at the spacecraft. The newer
formulation (after NSP) for the computed values of one-way (F1) doppler
observables will be developed first. Then,     C2 f T0

 will be added to give the older
(prior to NSP) formulation.

As stated above, the definition of one-way (F1) doppler observables
obtained after implementation of the NSP is given by Eq. (13�41). The ratio of
the received frequency at the receiving electronics at the receiving station on
Earth in cycles per second of station time ST at the receiving station to the
transmitted frequency at the spacecraft in cycles per second of International
Atomic Time TAI at the spacecraft is given by:

    

f R

f T
=

dn
dt3 ST( )R

dt2 TAI( )
dn

=
dt2 TAI( )
dt3 ST( )R

(13�75)

where dn is an infinitesimal number of cycles transmitted and received. If the
spacecraft were placed at mean sea level on Earth, the spacecraft atomic clock
would run at the same rate as International Atomic Time on Earth (see Sections
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11.4, 11.4.1, and 11.4.2). The transmitted frequency at the spacecraft in cycles per
second of atomic time TAI at the spacecraft is given by Eqs. (13�7) and (13�8) as
explained in Section 13.2.3. Substituting Eqs. (13�75), (13�7), and (13�8) into
Eq. (13�41) gives:

    

F1 after NSP( ) = −
C2

Tc
f T0

+ ∆ f T0
+ f T1

t2 − t0( ) + f T2
t2 − t0( )2[ ]

t2s TAI( )

t2e TAI( )

∫ dt2 TAI( )

Hz (13�76)

The reception interval at the receiving station on Earth is the count interval Tc.
The epoch     t3s

ST( )R at the start of the count interval and the epoch     t3e
ST( )R  at

the end of the count interval are calculated from Eqs. (13�25) and (13�24),
respectively. The transmission interval     Tc

′  at the spacecraft in seconds of
International Atomic Time TAI at the spacecraft is calculated from:

    
T Tc c e s

′ = − −( )� �ρ ρ1 1 s (13�77)

The precision one-way light times   
�ρ1e

 and   
�ρ1s

 are defined by Eq. (11�8). They
have reception times equal to the end     t3e

ST( )R  and start     t3s
ST( )R of the

reception interval at the receiving electronics at the receiving station on Earth
and transmission times equal to the end     t2e

TAI( )  and start     t2s
TAI( ) of the

transmission interval at the spacecraft.

The precision one-way light times   
�ρ1e

 and   
�ρ1s

 defined by Eq. (11�8)
cannot be computed directly because we do not have a model for the time
difference 

    
ET − TAI( )t2

 at the spacecraft. The differenced one-way light time

  
� �ρ ρ1 1e s

−  in Eq. (13�77) is calculated from Eq. (11�11), where the precision one-
way light times   ρ1e

 and   ρ1s
 are defined by Eq. (11�9) and ∆, which is defined by

Eq. (11�12), is the change in the time difference 
    
ET − TAI( )t2

 that occurs during
the transmission interval     Tc

′  at the spacecraft. The precision one-way light times

  ρ1e
 and   ρ1s

 are calculated from Eq. (11�41) using quantities calculated in and
after the one-way light-time solutions at the end and start of the count interval.
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The parameter ∆ is calculated from Eqs. (11�15) to (11�39) in Sections 11.4.2 and
11.4.3. This algorithm uses quantities calculated at the transmission time t2 in the
light-time solutions at the end and start of the count interval.

In Eq. (13�76), the parameters     ∆ f T0
,     f T1

, and     f T2
 are the coefficients of

the quadratic offset of the S-band value of the spacecraft transmitter frequency

    f S/C  from its nominal value     f T0
 (see Eq. 13�8). The upper and lower limits of the

interval of integration in Eq. (13�76) are only required to evaluate the terms
containing the coefficients     f T1

 and     f T2
. Since these terms are small, the limits of

integration can be replaced with the corresponding values in coordinate time ET:

    t2e
ET( ),  t2s

ET( ) s (13�78)

These epochs can be calculated from:

    t2e
ET( ) = t3e

ST( )R − ρ1e
s (13�79)

    t2s
ET( ) = t3s

ST( )R − ρ1s
s (13�80)

where     t3e
ST( )R  and     t3s

ST( )R are given by Eqs. (13�24) and (13�25). We will
need the average of the ET values of the epochs at the start and end of the
transmission interval at the spacecraft:

    
t2m

=
t2e

ET( ) + t2s
ET( )

2
s (13�81)

Evaluating the integral in Eq. (13�76) using the above approximation
gives:

    

F

C f f f t t f t t T
T
T

1

2 2 0 2 0
2 21

12

after NSP

T T T T c
c

c
0 0 1 m 2 m

( ) =

− + + −( ) + −( ) + ′( )













′
∆

Hz (13�82)
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where     t2m
 is given by Eqs. (13�79) to (13�81). The quadratic coefficients     ∆ f T0

,

    f T1
, and     f T2

 are specified by time block with start time t0. The coefficients
selected are those for the time block that contains     t2m

. The transmission interval

    Tc
′  at the spacecraft is calculated from Eq. (13�77). From this equation,     Tc

′ Tc

in Eq. (13�82) is given by:

    

T
T T

c

c c

e s
′

= −
−

1
1 1� �ρ ρ

(13�83)

The differenced one-way light time   
� �ρ ρ1 1e s

−  in Eqs. (13�77) and (13�83) is
calculated from the formulation of Section 11.4 as described above.

As discussed in the second paragraph of this section, the computed value
of a one-way doppler (F1) observable prior to implementation of the NSP is
given by Eq. (13�82) plus the constant frequency     C2 f T0

. Using Eq. (13�83), the
resulting equation is given by:

    

F C f
T

C f f t t f t t T
T
T

1 2
1 1

2 2 0 2 0
2 21

12

before NSP T
c

T T T c
c

c

0
e s

0 1 m 2 m

( ) =
−( )

− + −( ) + −( ) + ′( )













′

� �ρ ρ

∆

Hz (13�84)

Eqs. (13�82) and (13�84) contain     Tc
′  calculated from Eq. (13�77) and

    Tc
′ Tc  calculated from Eq. (13�83). These equations contain the differenced

one-way light time   
� �ρ ρ1 1e s

− , which is calculated from Eq. (11�11). In this
equation, the precision one-way light times   ρ1e

 and   ρ1s
, which are calculated

from Eq. (11�41), do not contain corrections due to the troposphere and charged
particles. These corrections are included in the media corrections   ∆ρ1e

 and   ∆ρ1s

to   ρ1e
 and   ρ1s

, respectively. These media corrections are calculated in the Regres
editor from Eqs. (10�24) and (10�25) as described in Section 10.2. Given the media
corrections   ∆ρ1e

 and   ∆ρ1s
, the corresponding media correction to the computed
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one-way (F1) doppler observable is calculated in the Regres editor from the
following differential of Eq. (13�82) or (13�84):

    
∆ F1 = C2 f S/C

∗
∆ρ1e

− ∆ρ1s( )
Tc

Hz (13�85)

where

    
f f f f t t f t t TS/C T T T T c0 0 1 m 2 m

∗ = + + −( ) + −( ) + ′( )





∆ 2 0 2 0
2 21

4

Hz (13�86)

In deriving Eqs. (13�85) and (13�86), the media correction 
  
− ∆ρ1e

+ ∆ρ1s( ) 2 to

    t2m
, which produces a negligible change to F1, has been ignored.

The partial derivatives of computed values of one-way (F1) doppler
observables with respect to solve-for and consider parameters q are calculated
from the following partial derivative of Eq. (13�82) or (13�84):

      

∂
∂

∂ ρ
∂

∂ ρ
∂

F C f

T
1 2

q q q
= −







∗

S/C

c

1 1e s (13�87)

where     f S/C
∗  is given by Eq. (13�86). The partial derivatives of the precision one-

way light times   ρ1e
 and   ρ1s

 at the end and start of the doppler count interval     Tc

with respect to the solve-for and consider parameter vector q are calculated from
the formulation given in Section 12.5.2 as described in that section. Eq. (13�87)
ignores the effect of the parameter vector q on   ρ1e

,   ρ1s
, and     t2m

 obtained using
Eqs. (13�79) to (13�81).

In addition to the partial derivatives given by Eq. (13�87), the partial
derivatives of F1 with respect to the quadratic coefficients of the offset of     f S/C

from     f T0
 are obtained by differentiating Eq. (13�82) or (13�84):
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∂ F1

∂ ∆ f T0

= − C2
Tc

′

Tc
(13�88)

    

∂ F1

∂ f T1

= − C2 t2m
− t0( ) Tc

′

Tc
(13�89)

    

∂
∂

F
f

C t t T
T
T

1
2 2 0

2 21
12T

c
c

c2
m

= − −( ) + ′( )



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′
(13�90)
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13.4 TOTAL-COUNT PHASE OBSERVABLES

13.4.1 INTRODUCTION

A total-count phase observable can be obtained from the corresponding
doppler observable (with the same count interval Tc) by multiplying it by Tc. This
relationship applies for the observed and computed values of these data types,
the correction to the computed observable due to media effects, and the partial
derivative of the computed observable with respect to the parameter vector q. It
applies for one-way doppler (F1) and phase (P1) and two-way and three-way
doppler (F2 and F3) and phase (P2 and P3).

Total-count phase observables will be available after the Network
Simplification Program (NSP) is completed for data points which have a Block 5
receiver at the receiving station on Earth and (if the transmitter is a tracking
station on Earth) a Block 5 exciter at the transmitting station on Earth. The ODE
will be modified to process these data types after the NSP is completed. Program
Regres can already process these data types. After the NSP is implemented,
round-trip F2 and F3 observables obtained at a station with a Block 5 receiver will
be ramped, and the doppler reference frequency will be zero. One-way F1

observables obtained at a station with a Block 5 receiver will correspond to the
slightly-modified definition given in Section 13.3. The observed and computed
values of these doppler observables, the correction to the computed doppler
observables due to media effects, and the partial derivatives of the computed
doppler observables with respect to the parameter vector q all include a divide
by the count interval Tc. Hence, the corresponding quantities for total-count
phase observables can be calculated from the corresponding doppler
formulation, except that the divide by Tc must be suppressed.

Doppler observables have units of cycles per second or Hz. Since total-
count phase observables are doppler observables multiplied by the count
interval Tc, they have units of cycles. In addition to the difference in units, total-
count phase observables have a different configuration of the count intervals
than that used for doppler observables. Figure 13�1 shows the contiguous count
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intervals of width Tc used for six doppler observables received during a pass of
data at a tracking station on Earth:

Data Point 1 Tc

Data Point 2 Tc

Data Point 3 Tc

Data Point 4 Tc

Data Point 5 Tc

Data Point 6 Tc

  Time →

Figure 13�1  Count Intervals For Doppler Observables

Note that the end of each count interval (reception interval) is the beginning of
the next interval. Figure 13�2 shows the count intervals used for six total-count
phase observables received during a pass of data at a tracking station on Earth:

Data Point 1 Tc

Data Point 2 2 Tc

Data Point 3 3 Tc

Data Point 4 4 Tc

Data Point 5 5 Tc

Data Point 6 6 Tc

  Time →

Figure 13�2  Count Intervals For Total-Count Phase Observables
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Note that the start time for each count interval (reception interval) is the same
epoch, which is near the start of the pass of data at the tracking station. Also note
that the count intervals for data points 1 through 6 have widths of Tc, 2 Tc, 3 Tc,
4 Tc, 5 Tc, and 6 Tc, respectively, where Tc is the doppler count interval. As long
as the accumulated counted phase of the received signal at the receiving station
on Earth is continuous (i.e., there are no cycle slips), the count intervals for
successive total-count phase observables can approach the full length of the pass
of data. If the spacecraft does not set at a given tracking station on Earth, then
the pass of data may be several days long. If the counted phase of the received
signal is discontinuous, then the start time for all count intervals after the
discontinuity will have to be changed to an epoch after the discontinuity. Each
discontinuity reduces the power of total-count phase data. This is discussed
further in Section 13.4.2.

The weight for each data point is one divided by the square of the
calculated standard deviation for the data point. Doppler data points have an
input nominal standard deviation, which is modified according to the width of
the count interval and the elevation angle of the spacecraft. Consider a total-
count phase observable with a count interval of nTc, where Tc is the doppler
count interval. If the standard deviation for the total-count phase observable
were taken to be the calculated standard deviation for the doppler data point
multiplied by nTc, it would be proportional to n and the power of the total-count
phase observable would be lost. Instead, the standard deviation for total-count
phase observables will be an input constant, regardless of how long the count
interval grows during the pass of data at a tracking station. The standard
deviation will probably be a fraction of a cycle to a few cycles of the received
signal at the tracking station on Earth. The number used will vary with the band
of the received signal.

13.4.2 OBSERVED VALUES OF TOTAL-COUNT PHASE OBSERVABLES

For each receiving station on Earth, the ODE must determine the intervals
of time during which the accumulated phase φ (t3) of the received signal (defined
by Eq. 13�34) is continuous. Then, given the user�s desired doppler count interval
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Tc, the ODE can determine the number of total-count phase count intervals of
duration Tc, 2 Tc, 3 Tc, 4 Tc, etc. that will fit into each continuous reception
interval, as shown in Figure 13�2. For the remainder of Section 13.4, Tc will refer
to the count interval for a total-count phase observable.

After the NSP is implemented, observed values of one-way doppler (F1)
observables and ramped two-way (F2) or three-way (F3) doppler observables
obtained at a tracking station on Earth which has a Block 5 receiver can be
calculated from Eq. (13�38). Multiplying this equation by the count interval Tc for
total-count phase observables gives the following equation for calculating the
observed values of one-way total-count phase (P1) observables and ramped two-
way (P2) or three-way (P3) total-count phase observables obtained at a tracking
station on Earth which has a Block 5 receiver:

    
P1 ,  ramped P2,3 = − φ t3e( ) − φ t3s( )[ ] cycles (13�91)

where 
    
φ t3e( ) and 

    
φ t3s( ) are values of the accumulated phase φ (t3) of the

received signal (defined by Eq. 13�34) at the end and start of the count interval Tc

for the total-count phase observable. For total-count phase observables, the time
tag is the end of the count interval. Hence, given the time tag T T and count
interval Tc for a total-count phase observable, the epochs at the end and start of
the count interval are calculated from:

    t3e
ST( )R = TT s (13�92)

    t3s
ST( )R = TT − Tc s (13�93)

where these epochs, the time tag T T, and the count interval Tc are measured in
seconds of station time ST at the receiving electronics (subscript R) at the
receiving station on Earth. The epochs (13�92) and (13�93) at the end and start of
the count interval Tc for the total-count phase observable could be integer tenths
of a second, but in all probability will be integer seconds. Since the accumulated
phase φ (t3) of the received signal (defined by Eq. 13�34) is measured (in
quadruple precision) every tenth of a second, no interpolation of this data is
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required to evaluate Eq. (13�91). This equation should be calculated in quadruple
precision.

13.4.3 COMPUTED VALUES OF TOTAL-COUNT PHASE OBSERVABLES

13.4.3.1 Ramped Two-Way (P2) and Three-Way (P3) Total-Count Phase

Observables

After the Network Simplification Program (NSP) is implemented, the
doppler reference frequency     f REF t3( )  given by Eq. (13�9) will be zero. Hence,
computed values of ramped two-way (F2) or three-way (F3) doppler observables
can be calculated from the second term of Eq. (13�50) or Eq. (13�54). Multiplying
this equation by the count interval Tc for total-count phase observables gives the
following equation for calculating the computed values of ramped two-way (P2)
or three-way (P3) total-count phase observables obtained at a tracking station on
Earth that has a Block 5 receiver:

    

ramped P2,3 = − M2 f T t1( ) dt1

t1s ST( )T

t1e ST( )T

∫ cycles (13�94)

The reception times at the receiving station on Earth at the end and start of the
count interval Tc for the total-count phase observable are calculated from Eqs.
(13�92) and (13�93). The corresponding epochs at the end and start of the
transmission interval     Tc

′  at the transmitting station on Earth, which appear in
Eq. (13�94), are calculated from Eqs. (13�53) and (13�52), respectively. These
epochs are in station time ST at the transmitting electronics at the transmitting
station on Earth. In Eqs. (13�53) and (13�52), ρe and ρs are the precision round-
trip light times (calculated from Eq. 11�7) for the round-trip light-time solutions
at the end and start of the count interval for the total-count phase observable.
The precision width of the transmission interval in station time ST at the
transmitting electronics at the transmitting station on Earth is calculated from
Eq. (13�51). For total-count phase observables, this equation is evaluated in
quadruple precision.
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The integral in Eq. (13�94) can be evaluated using ramp tables as described
in Section 13.3.2.2.2 or phase tables as described in Section 13.3.2.2.3. To prevent a
loss of precision for the extremely long count intervals that are possible with
total-count phase observables, this integral should be evaluated in quadruple
precision. Eqs. (13�92) and (13�93) for the end and start of the reception interval
Tc are exact in double precision. However, Eq. (13�51) for the precision width of
the transmission interval     Tc

′  and Eqs. (13�52) and (13�53) for the start and end
of the transmission interval should be evaluated in quadruple precision. If the
integral in Eq. (13�94) is evaluated using ramp tables, the algorithm given in
Section 13.3.2.2.2 (except Eq. 13�66) should be evaluated in quadruple precision.
If the integral in Eq. (13�94) is evaluated using phase tables, the precision used
for evaluating the algorithm given in Section 13.3.2.2.3 (which refers to Section
13.2.7) must be changed somewhat from that used in calculating the computed
values of doppler observables. For doppler observables, the algorithm is
evaluated in double precision, except that differences of interpolated phases in
Eqs. (13�13), (13�14), and the last term of Eq. (13�74) are calculated in quadruple
precision and then rounded to double precision. For total-count phase
observables, Eqs. (13�68) and (13�69) should be evaluated in quadruple precision.
The resulting values of ∆ts and ∆te can then be rounded to double precision.
Eq. (13�74), which is the right-hand side of Eq. (13�67) for the integral in
Eq. (13�94) should be evaluated in quadruple precision using double precision
values of the phase differences ∆φ (∆te) and ∆φ (∆ts). Multiplication of this integral
by the spacecraft turnaround ratio M2 in Eq. (13�94) should be performed in
quadruple precision. This gives the computed value of a ramped two-way (P2) or
three-way (P3) total-count phase observable in quadruple precision.

The media corrections for the computed values of ramped two-way (P2)
and three-way (P3) total-count phase observables are calculated in the Regres
editor from Eq. (13�58) multiplied by the count interval Tc:

    
∆ ramped P2,3( ) = M2 f T t1e( ) ∆ρe − f T t1s( ) ∆ρs[ ] cycles (13�95)

The transmitter frequencies 
    
f T t1s( ) at the start and 

    
f T t1e( ) at the end of the

transmission interval at the transmitting station on Earth are obtained in
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evaluating the integral in Eq. (13�94) as described above using the algorithm of
Section 13.3.2.2.2 or 13.3.2.2.3. The media corrections ∆ρe and ∆ρs to ρe and ρs,
respectively, are calculated in the Regres editor from Eqs. (10�28) and (10�29) as
described in Section 10.2. The transmitter frequencies 

    
f T t1s( ) and 

    
f T t1e( ) are also

used in Eqs. (13�19) and (13�20), which are used in calculating the charged
particle contributions to ∆ρe and ∆ρs.

The partial derivatives of the computed values of ramped two-way (P2)
and three-way (P3) total-count phase observables with respect to the solve-for
and consider parameter vector q are calculated from Eq. (13�59) multiplied by
the count interval Tc:

      

∂
∂

∂ ρ
∂

∂ ρ
∂

ramped 
T

e
T

s
e s

P
M f t f t

2 3
2 1 1

,( )
= ( ) − ( )







q q q

(13�96)

The partial derivatives of the precision round-trip light times ρe and ρs at the end
and start of the count interval Tc with respect to the solve-for and consider
parameter vector q are calculated from the formulation given in Section 12.5.1 as
described in that section.

In order to calculate the computed value of a total-count phase
observable, two light-time solutions are required. The light-time solutions at the
end and start of the reception interval Tc at the receiving station on Earth have
reception times given by Eqs. (13�92) and (13�93), respectively. Figure 13�2
shows the configuration of count intervals for total-count phase observables
during a pass of data at a tracking station on Earth (or for that part of a pass of
data for which the accumulated phase of the received signal is continuous). Each
new observable requires a new light-time solution at the end of its count interval
Tc. However, the light-time solution at the start of the count interval is the same
for all data points in the pass (or continuous part of the pass). The common light-
time solution at the start of all of the count intervals should be computed for the
first data point only. For ramped two-way (P2) and three-way (P3) total-count
phase observables, the following quantities, computed from this round-trip light-
time solution and related calculations should be saved and used in obtaining the
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computed values, media corrections, and partial derivatives for the remaining
data points of the pass (or continuous part of the pass):

    ρs ,  t1s
ST( )T

    ∆ts ,  ∆φ ∆ts( ),  Ts ,  φ Ts( )

    
 f T t1s

ST( )T[ ] (13�97)

  ∆ρs

    

∂ρs

∂ q

and the auxiliary angles computed on the up and down legs of this light-time
solution. The variables     t1s

ST( )T , ∆ts, and φ (Ts) are quadruple precision. The
remaining variables are double precision.

From Eq. (13�91), the standard deviation of the observed value of a one-
way (P1) total-count phase observable or a ramped two-way (P2) or three-way
(P3) total-count phase observable is given by:

    
σ P1 ,  σ ramped P2,3( ) = σ φ t3e( ) cycles (13�98)

where 
    
σ φ t3e( ) is the standard deviation of the accumulated phase φ (t3) of the

received signal at the tracking station on Earth. In fitting computed values of
total-count phase observables to observed values, true values of 

    
φ t3e( ) are fit to

observed values in a least squares sense.

From Eq. (13�91), the observed values of all total-count phase observables
obtained during a pass of data (or that part of the pass for which the
accumulated phase of the received signal is continuous) at a tracking station on
Earth contain the bias:
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∆ P1 ,  ∆ ramped P2,3( ) = ∆φ t3s( ) cycles (13�99)

where 
    
∆ φ t3s( )  is the error in the accumulated phase of the received signal at the

common start time for the group of observables. This error can be accounted for
by adding it as a solve-for bias parameter to the corresponding computed values
of these observables. Then, the partial derivatives of computed values of one-
way (P1) total-count phase observables or ramped two-way (P2) or three-way
(P3) total-count phase observables with respect to the error in the accumulated
phase of the received signal at the common start time for the count intervals are
given by:

    

∂ P1 or ramped P2,3( )
∂ ∆φ t3s( )[ ] = +1 (13�100)

Since an estimate of 
    
∆ φ t3s( )  is obtained for each group of observables having a

common start time for their count intervals, the solve-for parameter in the
denominator of Eq. (13�100) must contain the group number. The estimated
value of the bias 

    
∆ φ t3s( )  will not be added to the computed observable. Hence,

when iterating, the estimate of 
    
∆ φ t3s( )  obtained on each iteration will be the

total correction.

For each P2 or P3 total-count phase observable, the partial derivative
(13�100) must be added to the element of the vector (13�96) reserved for

    
∆ φ t3s( )  for the group of total-count phase observables which contains the P2 or
P3 data point.

Since the bias 
    
∆ φ t3s( )  in the observed values of total-count phase

observables is treated as a solve-for bias parameter, it does not contribute to the
standard deviation of these observables given by Eq. (13�98). Hence, the
weighting matrix for total-count phase observables is diagonal.
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13.4.3.2 One-Way (P1) Total-Count Phase Observables

After the Network Simplification Program (NSP) is implemented,
computed values of one-way (F1) doppler observables obtained at a tracking
station on Earth which has a Block 5 receiver are calculated from Eq. (13�82).
Multiplying this equation by the count interval Tc for total-count phase
observables gives the following equation for calculating the computed values of
one-way (P1) total-count phase observables obtained at a tracking station on
Earth which has a Block 5 receiver:

    
P C f f f t t f t t T T1 2 2 0 2 0

2 21
12

= − + + −( ) + −( ) + ′( )













′
T T T T c c0 0 1 m 2 m

∆

cycles (13�101)

The epochs at the end and start of the reception interval Tc at the receiving
station on Earth are calculated from Eqs. (13�92) and (13�93). The corresponding
transmission times at the spacecraft in coordinate time ET are calculated from
Eqs. (13�79) and (13�80). In these equations,   ρ1e

 and   ρ1s
 are precision one-way

light times calculated from the light-time solutions at the end and start of the
count interval Tc. These precision light times are defined by Eq. (11�9) and
calculated from Eq. (11�41). The average of the two transmission times at the
spacecraft,     t2m

, is calculated from Eq. (13�81). The quadratic coefficients     ∆ f T0
,

    f T1
, and     f T2

 are assumed to be constant for each group of total-count phase
observables. They are selected as the coefficients for the time block containing

    t2m
 for the last data point of the group. The transmission interval     Tc

′  at the
spacecraft in seconds of International Atomic Time TAI at the spacecraft is
calculated from Eq. (13�77). This equation contains the precision one-way light
times   

�ρ1e
 and   

�ρ1s
, which are defined by Eq. (11�8). The difference of these light

times is calculated from Eq. (11�11) using   ρ1e
,   ρ1s

, and the parameter ∆ , which is
defined by Eq. (11�12). The parameter ∆ is calculated from Eqs. (11�15) to (11�39)
of Section 11.4 using quantities calculated at the transmission times of the light-
time solutions at the end and start of the count time Tc.
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If the preceding formulation for calculating the parameter ∆ were applied
independently to each one-way total-count phase observable (P1) in a pass of
data (or the continuous part of a pass) (see Figure 13�2), the calculation of ∆
would become increasingly inaccurate as the count interval Tc approached the
length of the pass. Hence, the calculation of ∆ for each P1 observable in a pass of
data should be modified as follows. For the first data point in a pass of data, the
parameter ∆ can be computed from the existing formulation. For each data point
of the pass, save the parameters     Ie ,     

úIe , and     t2e
ET( ) , which are computed at the

end of the count interval Tc for the data point. Then, for each data point of the
pass except the first, the values of     Ie ,     

úIe , and     t2e
ET( )  for the data point and the

corresponding values saved from the preceding data point (with each subscript e
changed to s) can be substituted into Eqs. (11�17) and (11�18) to give the
increment to ∆ which has accumulated from the end of the count interval for the
preceding data point to the end of the count interval for the current data point.
Add this increment for ∆ to the value of ∆ for the preceding data point to obtain
the value of ∆  for the current data point.

Eq. (13�77) for the transmission interval     Tc
′  at the spacecraft is evaluated

in quadruple precision using a double precision value of the change in the
precision one-way light time   

� �ρ ρ1 1e s
− , which is calculated from Eq. (11�11) and

related equations of Section 11.4. Eq. (13�101) is evaluated in quadruple precision
using a double precision value of the quadratic offset of the average spacecraft
transmitter frequency from its nominal value     f T0

.

The media corrections for the computed values of one-way (P1) total-
count phase observables are calculated in the Regres editor from Eq. (13�85)
multiplied by the count interval Tc:

    
∆ P1 = C2 f S/C

∗ ∆ρ1e
− ∆ρ1s( ) cycles (13�102)

where     f S/C
∗  is given by Eq. (13�86). The media corrections   ∆ρ1e

 and   ∆ρ1s
 to the

precision one-way light times   ρ1e
 and   ρ1s

, respectively, are calculated in the
Regres editor from Eqs. (10�24) and (10�25) as described in Section 10.2. The
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approximate down-leg transmitter frequency given by Eq. (13�21) is used in
calculating the charged-particle contributions to   ∆ρ1e

 and   ∆ρ1s
.

The partial derivatives of the computed values of one-way (    P1) total-
count phase observables with respect to the solve-for and consider parameter
vector q are calculated from Eq. (13�87) multiplied by the count interval Tc:

      

∂
∂

∂ ρ
∂

∂ ρ
∂

P
C f1

2q q q
= −







∗

S/C
1 1e s (13�103)

The partial derivatives of the precision one-way light times   ρ1e
 and   ρ1s

 at the
end and start of the count interval Tc with respect to the solve-for and consider
parameter vector q are calculated from the formulation given in Section 12.5.2 as
described in that section.

Referring to Figure 13�2, the light-time solution at the start of the count
interval is the same for all data points in the pass (or continuous part of the pass).
The common light-time solution at the start of all of the count intervals should be
computed for the first data point only. For one-way (P1) total-count phase
observables, the following quantities, computed from this one-way light-time
solution and related calculations should be saved and used in obtaining the
computed values, media corrections, and partial derivatives for the remaining
data points of the pass (or continuous part of the pass):

  ρ1s
,     t2s

ET( )

    C2 f T0
(13�104)

  ∆ρ1s
, 
    

∂ρ1s

∂ q

and the auxiliary angles computed on this down-leg light-time solution. All of
these variables are double precision.
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The partial derivatives of the computed values of one-way (P1) total-count
phase observables with respect to the error in the accumulated phase of the
received signal at the common start time for the count intervals are given by
Eq. (13�100). Since an estimate of 

    
∆ φ t3s( )  is obtained for each group of

observables having a common start time for their count intervals, the solve-for
parameter in the denominator of Eq. (13�100) must contain the group number.
For each P1 total-count phase observable, the partial derivative (13�100) must be
added to the element of the vector (13�103) reserved for 

    
∆ φ t3s( )  for the group

of total-count phase observables which contains the P1 data point.

The partial derivatives of the computed values of one-way (P1) total-count
phase observables with respect to the quadratic coefficients of the offset of     f S/C

from     f T0
 are given by Eqs. (13�88) to (13�90) multiplied by the count interval Tc:

    

∂ P1

∂ ∆ f T0

= − C2 Tc
′ (13�105)

    

∂ P1

∂ f T1

= − C2 t2m
− t0( ) Tc

′ (13�106)

    

∂
∂

P
f

C t t T T1
2 2 0

2 21
12T

c c
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= − −( ) + ′( )
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

′ (13�107)

These partial derivatives must be added to the elements of Eq. (13�103) which
are reserved for these parameters.

13.4.4 OBSERVED MINUS COMPUTED RESIDUALS FOR TOTAL-COUNT

PHASE OBSERVABLES

Observed values of one-way (P1) and ramped two-way (P2) and three-
way (P3) total-count phase observables are calculated from Eq. (13�91) in
quadruple precision. Computed values of ramped two-way (P2) and three-way
(P3) total-count phase observables are calculated from Eq. (13�94) in quadruple
precision as described in the second paragraph of Section 13.4.3.1. Computed
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values of one-way (P1) total-count phase observables are calculated from
Eq. (13�101) in quadruple precision as described in the third paragraph of Section
13.4.3.2.

For one-way (P1) and ramped two-way (P2) and three-way (P3) total-
count phase observables, calculate the observed minus computed residuals in
quadruple precision. The resulting residuals can then be rounded to double
precision and written on the Regres file. After these calculations are completed,
the observed and computed values of these observables can be rounded to
double precision and written on the Regres file.
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13.5 RANGE OBSERVABLES

13.5.1 INTRODUCTION

This section gives the formulation for calculating the observed and
computed values of round-trip range observables for three different ranging
systems. The Sequential Ranging Assembly (SRA) is the currently operational
ranging system. The Planetary Ranging Assembly (PRA) is the previously
operational ranging system. The Next-Generation Ranging Assembly (RANG)
should be operational by the time the Network Simplification Program (NSP)
becomes operational. These observables are measured in range units, which are
defined in Section 13.5.2. That section gives the equations for calculating the
conversion factor F from seconds to range units at the transmitting and receiving
stations.

The observed values of the range observables for the three different
ranging systems are defined in Section 13.5.3.1. For each system, the observable
can be two-way (same transmitting and receiving stations on Earth) or three-
way (different transmitting and receiving stations on Earth). Section 13.5.3.2
gives the equations for calculating the calibrations for these range observables.
These calibrations remove small effects contained in the actual observables that
are not modelled in the computed observables, which are calculated in program
Regres.

Section 13.5.4.1 gives the formulations for calculating the computed values
of two-way and three-way SRA, PRA, and RANG range observables. For SRA
and PRA, two-way range can be ramped or unramped, and three-way range is
ramped. Two-way and three-way RANG range observables are ramped.
Calculation of the computed values of these range observables requires the
integral of Fdt over an interval of time at the transmitting station and, for three-
way SRA or PRA data, the integral of Fdt over an interval of time at the receiving
station. The procedure for evaluating these integrals is described in Section
13.5.4.2. The equations for calculating media corrections for these computed
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observables and partial derivatives of the computed observables with respect to
the solve-for and consider parameter vector q are given in Section 13.5.4.3.

13.5.2 CONVERSION FACTOR F FROM SECONDS TO RANGE UNITS

In order to calculate computed values of range observables, media
corrections, partial derivatives, and calibrations for observed values of range
observables, the equations for calculating the conversion factor F from seconds
to range units at the transmitting and receiving stations are required. The
integral of Fdt at the transmitting station gives the change in the phase of the
transmitted ranging code (measured in range units) that occurs during an
interval of station time ST at the transmitting electronics at the transmitting
station on Earth. For three-way SRA or PRA range, the integral of Fdt at the
receiving station gives the change in the phase of the transmitter ranging code
(measured in range units) which occurs during an interval of station time ST at
the receiving electronics at the receiving station on Earth.

The equation for calculating the conversion factor F at the transmitting or
receiving station on Earth is a function of the uplink band at the station. For an
S-band transmitter frequency fT(S),

    
F = 1

2
f T S( ) range units/second (13�108)

Note that one range unit is 2 cycles of the S-band transmitted frequency. For an
X-band uplink at a 34-m AZ-EL mount high efficiency (HEF) antenna prior to its
conversion to a block 5 exciter (BVE),

    
F = 11

75
f T X,HEF( ) range units/second (13�109)

Note that one range unit is   75 11 cycles of the X-band transmitted frequency at
a HEF station prior to its conversion to a block 5 exciter. For an X-band uplink at
any tracking station that has a BVE,
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F = 221

749 × 2
f T X,BVE( ) range units/second (13�110)

Note that one range unit is   749 × 2( ) 221 cycles of the X-band transmitted
frequency at any tracking station that has a BVE.

The ranging formulation given in this section applies for S-band or X-band
uplinks at the transmitting and receiving stations on Earth and an S-band or
X-band downlink for the data point. The DSN has no current requirements for
ranging at other bands (e.g., Ka-band or Ku-band). However, we may be
ranging at Ka-band in a few years.

13.5.3 OBSERVED VALUES OF RANGE OBSERVABLES

13.5.3.1 Observed Values

SRA and PRA range observables are obtained from the ranging machine
at the receiving station on Earth. These range observables are equal to the phase
of the transmitter ranging code at the receiving station minus the phase of the
received ranging code. This phase difference is measured in range units at the
reception time t3(ST)R in station time ST at the receiving electronics at the
receiving station on Earth. The phase difference is measured modulo M range
units, where M is the length of the ranging code in range units. It is the period in
range units of the lowest frequency ranging component modulated onto the
uplink carrier at the transmitting station on Earth. Two-way ranging is obtained
using one ranging machine. Three-way ranging requires two ranging machines,
one at the transmitting station and one at the receiving station.

Observed and computed values of SRA and PRA range observables are a
function of the uplink band at the transmitting station and the uplink band at the
receiving station. For three-way data, they can be different. All two-way and
three-way PRA range observables were obtained using an S-band uplink at the
transmitting station and at the receiving station (the same station for two-way
data). Referring to Eqs. (13�108) to (13�110), the X-band exciters at HEF stations
(prior to their conversion to Block 5 exciters) are incompatible with Block 3 and
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Block 4 S-band exciters and Block 5 S-band and X-band exciters. Hence,
Eq. (13�109) can only be used to calculate two-way X-band SRA range obtained
from one HEF station (prior to its conversion to a Block 5 exciter) or three-way
X-band SRA range obtained from two such stations. On the other hand, three-
way SRA range can be obtained using an S-band exciter (Eq. 13�108) or an
X-band Block 5 exciter (Eq. 13�110) at the transmitting station and at the
receiving station. All four band combinations are possible (i.e., S-band uplink
bands at both stations, X-band uplink bands at both stations, an S-band uplink at
the transmitting station and an X-band uplink at the receiving station, and an
X-band uplink at the transmitting station and an S-band uplink at the receiving
station).

The ranging code is modulated onto the uplink carrier at the transmitting
station on Earth. The spacecraft multiplies the frequency of the received signal by
the spacecraft transponder turnaround ratio M2 and then remodulates the
ranging code onto the downlink carrier. The uplink and downlink carriers and
range codes are phase coherent. Hence, it will be seen in Section 13.5.4 that the
spacecraft transponder turnaround ratio M2 is not used in calculating the
computed values of range observables. However, in calculating media
corrections for computed range observables, the down-leg charged-particle
correction requires the transmitter frequency for the down leg which is
calculated from Eq. (13�20). This equation does contain the spacecraft turnaround
ratio M2. This is the only place where M2 is used in processing round-trip range
observables.

The Next-Generation Ranging Assembly (RANG) measures the phase of
the transmitted ranging code at the transmitting station on Earth and the phase
of the received ranging code at the receiving station on Earth. The phases of the
transmitted and received ranging codes are measured independently in range
units (modulo M range units) approximately every ten seconds. The time tags
for the transmitted phases are seconds of station time ST at the transmitting
electronics at the transmitting station on Earth. The time tags for the received
phases are seconds of station time ST at the receiving electronics at the receiving
station on Earth. The transmitter signal at the receiving station on Earth is not
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used for this data type. To be consistent with the definition of SRA and PRA
range observables, RANG range observables are defined to be the negative of
the phase of the received ranging code at the receiving station on Earth. The
phase of the transmitted ranging code at the transmitting station on Earth is used
in program Regres to calculate the computed values of these observables.

RANG range observables are a function of the uplink band at the
transmitting station.

13.5.3.2 Calibrations

The information content in range observables is in the phase of the
received ranging code at the receiving electronics at the receiving station on
Earth. The phase of the received ranging code is the same as the phase of the
transmitted ranging code at the transmitting electronics at the transmitting
station on Earth one round-trip light time earlier. The actual round-trip light time
contains delays in the transmitting and receiving electronics and in the spacecraft
transponder. These delays affect the range observables. However, they are not
modelled in program Regres and hence their effects are not included in the
computed values of the range observables. Hence, in this section we develop
equations for corrections to range observables which remove the effects of the
unmodelled delays from the range observables.

The delays at the transmitter, spacecraft, and receiver change the

transmission time at the transmitting electronics at the transmitting station on

Earth by ∆t1(ST)T seconds. This changes the phase of the transmitted signal at the

transmitting electronics by     F t1 ST( )T[ ] ∆t1 ST( )T range units, where the

conversion factor F from seconds to range units is given by Eq. (13�108),

(13�109), or (13�110). The equation selected depends upon the uplink band at the

transmitting station and the type of the exciter. The change in the transmission

time is the negative of the change in the round-trip light time ∆ρ, which is the

sum of the delays. Hence, the change in the phase of the transmitted signal is

    − F t1 ST( )T[ ] ∆ρ . The change in the phase of the received signal at the receiving
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electronics at the receiving station on Earth is the same. But, all round-trip range

observables contain the negative of the phase of the received signal. Hence, the

effect of the delays at the transmitter, spacecraft, and receiver on the observed

values ρ(RU) of SRA, PRA, and RANG range observables in range units is given

by:

    ∆ρ RU( ) = F t1 ST( )T[ ] ∆ρ range units (13�111)

This effect must be subtracted from the observed values of all SRA, PRA, and
RANG range observables.

The sum ∆ρ of the delays at the transmitting station, spacecraft, and
receiving station in seconds is calculated from:

    

∆ρ = CalRCVR / 2 − ZcorrRCVR / 2

+ S / Cdelay

+ CalXMTR / 2 − ZcorrXMTR / 2

s (13�112)

The term     CalRCVR  is the measured round-trip delay at the receiving station on
Earth from the receiving electronics to the Test Translator. The term     ZcorrRCVR is
the round-trip delay to the Test Translator minus the round-trip delay from the
receiving electronics to the tracking point. Hence,     CalRCVR  minus     ZcorrRCVR is
the round-trip delay from the receiving electronics to the tracking point at the
receiving station on Earth. It is divided by two to approximate the down-leg
delay at the receiver. Line three of Eq. (13�112) contains the corresponding
terms, which approximate the up-leg delay at the transmitting station on Earth.
The term on the second line of Eq. (13�112) is the delay in the spacecraft
transponder. The tracking points of the transmitting and receiving antennas are
the secondary axes of these antennas.

For a tracking station that has its electronics located close to the antenna,
the measured round-trip delay     CalRCVR  or     CalXMTR  is used directly in
Eq. (13�112). However, some stations have the transmitting and receiving
electronics located tens of kilometers away from the antenna. If the receiving
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station has remote electronics, the nominal value τ  D of the downlink delay is
passed to Regres on the OD file and     CalRCVR / 2 in Eq. (13�112) is replaced by

    CalRCVR / 2 minus τ  D. Similarly, if the transmitting station has remote
electronics, the nominal value τ  U of the uplink delay is passed to Regres on the
OD file, and     CalXMTR / 2 in Eq. (13�112) is replaced by     CalXMTR / 2 minus τ  U.
Program Regres uses the nominal value τ  D of the downlink delay and the
nominal value τ  U of the uplink delay to perform the round-trip spacecraft light-
time solution and calculate the precision round-trip light time from Eq. (11�7).

If the received signal at a tracking station on Earth is a carrier-arrayed
signal obtained by combining signals from several antennas, it will contain a
fixed delay on the order of 1 ms. This delay does not affect the calculation of the
range calibration from Eqs. (13�111) and (13�112) as described above. However,
the downlink delay passed to program Regres on the OD file is the nominal
value τ  D described above plus the carrier-arrayed delay (see Section 11.2).

Eq. (13�111) is evaluated in the ODE using the ODE�s approximation for

the round-trip light time. Evaluation of the transmitter frequency in Eq. (13�108),

(13�109), or (13�110) is accomplished by interpolating the ramp table or the

phase table for the transmitting station on Earth as described in Sections 13.2.6

and 13.2.7. If a delay in Eq. (13�112) is available in range units instead of seconds,

then that term should not be multiplied by     F t1 ST( )T[ ]  in Eq. (13�111).

After subtracting the range calibration given by Eq. (13�111) from the
observed values of SRA, PRA, and RANG range observables, the resulting
observed values of SRA and PRA range observables should be greater than or
equal to zero and less than M range units. The resulting observed values of
RANG range observables should be greater than �M range units and less than or
equal to zero. Add or subtract as necessary M range units until the corrected
observables are within these ranges. The equations for calculating the length M
of the ranging code in range units are given in Section 13.5.4.1.
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13.5.4 COMPUTED VALUES OF RANGE OBSERVABLES, MEDIA

CORRECTIONS, AND PARTIAL DERIVATIVES

13.5.4.1 Computed Values of Range Observables

The equations for calculating the computed values of three-way ramped,
two-way ramped, and two-way unramped SRA and PRA range observables
follow from the definition of the observed values of these data types given in
Section 13.5.3.1. The computed values of three-way ramped SRA and PRA range
observables are calculated from:
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The reception time t3(ST)R in station time ST at the receiving electronics at the
receiving station on Earth is equal to the data time tag TT:

    t3 ST( )R = TT s (13�114)

The corresponding transmission time t1(ST)T in station time ST at the
transmitting electronics at the transmitting station on Earth is calculated from:

    t1 ST( )T = t3 ST( )R − ρ s (13�115)

where ρ is the precision round-trip light time defined by Eq. (11�5). It is
calculated from the round-trip light-time solution using Eq. (11�7). The quantities
TB and TA are zero-phase times at the receiving and transmitting stations,
respectively. At TB, the phase of the transmitter ranging code at the receiving
station is zero. The phase of the transmitted ranging code at the transmitting
station is zero at TA. The conversion factor F(t3) at the receiving station and F(t1)
at the transmitting station are calculated from Eq. (13�108), (13�109), or (13�110),
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depending upon the uplink band and exciter type at the station. The precision
width W of the interval of integration at the receiving station is given by:

    W = t3 ST( )R − TB s (13�116)

The precision width W of the interval of integration at the transmitting station is
given by:

    W = t3 ST( )R − TA[ ] − ρ s (13�117)

The first integral in Eq. (13�113) is the phase of the transmitter ranging
code at the reception time t3(ST)R at the receiving electronics at the receiving
station on Earth. The second integral in Eq. (13�113) is the phase of the
transmitted ranging code at the transmission time t1(ST)T at the transmitting
electronics at the transmitting station on Earth. It is equal to the phase of the
received ranging code at t3(ST)R. The phases of the transmitter ranging code and
the received ranging code at the reception time t3(ST)R at the receiving
electronics at the receiving station on Earth are measured in range units. The
difference of these two phases is calculated modulo M range units, where M is
the length of the ranging code in range units. For SRA range, the modulo
number M is calculated from:

    M = 2n+6 range units (13�118)

where n is the component number of the lowest frequency ranging component,
which is the highest component number. For PRA range, M is calculated from:

    M = 29 + minimum 1,HICOMP( ) + LOWCOMP range units (13�119)

The component number n for SRA range data and HICOMP and LOCOMP for
PRA range data are non-negative integers obtained from the record of the OD
file for the data point.
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Eq. (13�113) for the computed values of three-way ramped SRA and PRA
range observables also applies for two-way ramped SRA and PRA range
observables. However, for this case, there is only one tracking station and
TB = TA. Hence, for calculating the computed values of two-way ramped SRA
and PRA range observables, Eq. (13�113) reduces to:
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The reception time t3(ST)R in station time ST at the receiving electronics at the
tracking station on Earth and the transmission time t1(ST)T in station time ST at
the transmitting electronics at the same tracking station are calculated from
Eqs. (13�114) and (13�115). The conversion factor F(t) at the tracking station is
calculated from Eq. (13�108), (13�109), or (13�110), depending upon the uplink
band and exciter type at the tracking station. The precision width W of the
interval of integration at the tracking station is given by:

  W = ρ s (13�121)

Eq. (13�120) for the computed values of two-way ramped SRA and PRA
range observables also applies for two-way unramped SRA and PRA range
observables. If the transmitter frequency is constant during the round-trip light
time, the conversion factor F(t) will have a constant value F, and Eq. (13�120)
reduces to:

    ρ2 unramped( ) = F × ρ ,   modulo M range units (13�122)

The conversion factor F is calculated from Eq. (13�108), (13�109), or (13�110),
depending upon the uplink band and exciter type at the tracking station. In these
equations, the constant value of the transmitter frequency f T at the tracking
station is obtained from the record of the OD file for the data point (see Section
13.2.1).
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From Section 13.5.3.1, the observed values of Next-Generation Ranging
Assembly (RANG) range observables are equal to the negative of the phase of
the received range code at the receiving electronics at the receiving station on
Earth, measured in range units, modulo M range units. The computed values of
RANG range observables are equal to the negative of the phase of the
transmitted range code at the transmitting electronics at the transmitting station
on Earth. The observed received phase and the calculated transmitted phase
should be equal. The data time tag T T is the reception time t3(ST)R at the
receiving electronics (Eq. 13�114). Given this reception time, the round-trip
spacecraft light-time solution is performed, and the precision round-trip light
time ρ defined by Eq. (11�5) is calculated from Eq. (11�7). Given t3(ST)R and ρ,
the transmission time t1(ST)T at the transmitting electronics at the transmitting
station on Earth is calculated from Eq. (13�115).

The OD file will contain range phase records, which will contain range
phase tables. Each range phase table contains a sequence of (range phase)-time
points. Each point gives the double-precision phase of the transmitted range
code in range units (modulo M range units) and the corresponding value of the
transmission time in station time ST at the transmitting electronics at a particular
tracking station on Earth. Given the transmission time t1(ST)T for a RANG range
observable, program Regres will read the range phase table for the transmitting
station and select the phase-time point whose transmission time TE is closest to
t1(ST)T. The phase of the transmitted range code at TE is denoted as ψE (TE).

Given the above quantities, the computed value of a two-way or three-
way ramped RANG range observable is calculated from:
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The conversion factor F(t1) at the transmitting station is calculated from
Eq. (13�108), (13�109), or (13�110), depending upon the uplink band and exciter
type at the transmitting station. For RANG range observables, the modulo
number M is calculated from Eq. (13�118) if the ranging code is generated
sequentially (i.e., sequential ranging). However, if a pseudo noise (PN) ranging
code is used (i.e., pseudo noise ranging), the modulo number M (which will be an
integer) will be obtained from the data record for the data point on the OD file.
The precision width W of the interval of integration is calculated from:

    W = t3 ST( )R − TE[ ] − ρ s (13�124)

The integral in Eq. (13�123) is evaluated using the ramp table or the (carrier)
phase table for the transmitting station as described in Section 13.5.4.2.

13.5.4.2 Evaluation of Integrals

The two integrals in Eq. (13�113), the integral in Eq. (13�120), and the
integral in Eq. (13�123) can be evaluated using ramp tables as described in
Section 13.3.2.2.2 or phase tables as described in Section 13.3.2.2.3. In each of the
four integrals, the lower limit and the upper limit of the interval of integration
are denoted as ts and te, respectively, in the ramp table algorithm. In the phase
table algorithm, they are denoted as     t1s

ST( )T  and     t1e
ST( )T, respectively. Each

algorithm requires the precision width W of the interval of integration. For the
four integrals listed above, the corresponding precision widths W are given by
Eqs. (13�116), (13�117), (13�121), and (13�124), respectively. In the phase table
algorithm, the precision width W is denoted as     Tc

′ .

The algorithms in Sections 13.3.2.2.2 and 13.3.2.2.3 give the time integral of
the ramped transmitter frequency     f T , whereas we want the time integral of the
conversion factor F. Hence, after evaluating the integral of fT dt, the resulting
integral must be multiplied by 1/2  if F is given by Eq. (13�108), 11/75 if F is
given by Eq. (13�109), and 221/(749 × 2) if F is given by Eq. (13�110).
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13.5.4.3 Media Corrections and Partial Derivatives

From Eq. (13�113) for three-way ramped SRA and PRA range
observables, Eq. (13�120) for two-way ramped SRA and PRA range observables,
and Eq. (13�123) for two-way and three-way ramped RANG range observables,
the change ∆ρ(RU) in the computed value of the range observable due to the
change ∆t1(ST)T in the transmission time at the transmitting electronics due to
media corrections is given by:

    ∆ρ RU( ) = − F t1 ST( )T[ ] ∆t1 ST( )T range units (13�125)

The round-trip light time ρ is defined by Eq. (11�5). Hence, the media correction
∆ρ to the round-trip light time is the negative of the change in the transmission
time due to media corrections:

    ∆ρ = − ∆t1 ST( )T s (13�126)

Substituting Eq. (13�126) into Eq. (13�125) gives:

    ∆ρ RU( ) = F t1 ST( )T[ ] ∆ρ range units (13�127)

From Eq. (13�122), Eq. (13�127) also applies for two-way unramped SRA and
PRA range observables. However, for this case, the conversion factor F is
constant. Hence, Eq. (13�127) gives media corrections for computed values of
ramped and unramped two-way and three-way SRA and PRA range
observables and ramped two-way and three-way RANG range observables. The
media correction ∆ρ to the round-trip light time ρ is calculated from Eq. (10�27)
as described in Section 10.2.

Evaluation of the integrals in Eqs. (13�113), (13�120), and (13�123) using

the algorithm in Section 13.3.2.2.2 or Section 13.3.2.2.3 gives the transmitted

frequency     f T t1 ST( )T[ ]  at the transmission time t1(ST)T in station time ST at the

transmitting electronics at the transmitting station on Earth. For unramped two-
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way range (Eq. 13�122), the constant value of the transmitted frequency is

obtained from the record of the OD file for the data point. The transmitted

frequency     f T t1 ST( )T[ ]  is used to calculate the conversion factor     F t1 ST( )T[ ]  in

Eq. (13�127) from Eq. (13�108), (13�109), or (13�110). The transmitted frequency

    f T t1 ST( )T[ ]  is also used to calculate the up-leg and down-leg transmitted

frequencies from Eqs. (13�19) and (13�20). These frequencies are used in

calculating the charged-particle contributions to the media correction ∆ρ.

By replacing corrections with partial derivatives in the first paragraph of
this section, partial derivatives of computed values of two-way and three-way
ramped and unramped SRA, PRA, and RANG range observables with respect to
the solve-for and consider parameter vector q are given by:

      

∂ρ RU( )
∂q

= F t1 ST( )T[ ] ∂ρ
∂q

(13�128)

The partial derivatives of the round-trip light time ρ with respect to the
parameter vector q are calculated from the formulation of Section 12.5.1.
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13.6 GPS/TOPEX PSEUDO-RANGE AND CARRIER-PHASE
OBSERVABLES

This section gives the formulation for calculating the observed and
computed values of GPS/TOPEX pseudo-range and carrier-phase observables.
These are one-way data types. The transmitter is a GPS Earth satellite (semi-
major axis a ≈ 26,560 km), and the receiver is either the TOPEX (or equivalent)
Earth satellite (a ≈ 7712 km) or a GPS receiving station on Earth.

Pseudo-range observables are one-way range observables, measured in
kilometers. They are equal to the one-way light time multiplied by the speed of
light c. Carrier-phase observables are a precise measure of the one-way range in
kilometers (light time multiplied by c) plus an unknown bias. The formulation
for the computed values of pseudo-range and carrier-phase observables is the
same. It contains a bias parameter, which is estimated independently for these
two data types. In general, the pseudo-range bias is a small number, and the
carrier-phase bias is a large number. Fitting to pseudo-range and carrier-phase
observables gives a precise measure of the one-way range throughout a pass of
tracking data.

Section 13.6.1 defines the observed values of pseudo-range and carrier-
phase observables. The formulation for the computed values of these
observables is specified (mainly by reference to Section 11.5) in Section 13.6.2.1.
Section 13.6.2.2 gives the formulation for calculating media corrections and
partial derivatives for the computed values of these observables.

13.6.1 OBSERVED VALUES

The observed values of GPS/TOPEX pseudo-range and carrier-phase
observables are defined in Section 3 of Sovers and Border (1990).

The transmitting GPS satellite modulates a pseudo-random noise ranging
code onto the transmitted carrier. A local copy of this ranging code is generated
at the receiver. Correlation of the received ranging code with the local copy of
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the ranging code gives the phase difference of the two ranging codes in cycles of
the ranging code. This phase difference is converted to seconds and multiplied by
the speed of light c to give the observed pseudo range in kilometers. The
mathematical definition of this observable is given by Eq. (11�42) or (11�43).

The carrier frequency transmitted at the GPS satellite is constant. A
reference signal with this same constant frequency is generated at the receiver.
From Eq. (3.13) of Sovers and Border (1990), the observed value of the carrier-
phase observable is the measured phase of the reference signal minus the
measured phase of the received signal. This phase difference in cycles of the
carrier frequency is then divided by the carrier frequency and multiplied by the
speed of light c to give the carrier-phase observable in kilometers. The
mathematical definition of this observable is given by Eq. (11�42) or (11�43).

In Eq. (11�42) and (11�43), the light time from the GPS satellite to the
receiver (the TOPEX satellite or a GPS receiving station on Earth) should be
supplemented with the estimable range bias (in seconds) discussed above. The
estimated value of this bias will be a large negative number for carrier-phase
observables because the value of the first carrier-phase observable at the start of
a pass of data is determined modulo one cycle of the carrier phase. That is,
carrier-phase observables, which are continuous throughout each pass of data,
start with a value of approximately zero at the start of each pass of data, instead
of the actual range at the start of the pass. The time tag for each pseudo-range
and carrier-phase observable is the reception time t3(ST)R in station time ST at
the receiving electronics at the TOPEX satellite or the GPS receiving station on
Earth (Eq. 13�114).

The pseudo-range and carrier-phase observables come in pairs. Each pair
consists of one observable obtained from the L1-band transmitter frequency and
a second observable obtained from the L2-band transmitter frequency. The two
observables of each pair have the same time tag. Each observable pair is used to
construct a weighted average observable which is free of the effects of charged
particles. What this means is that when the media correction for the computed
value of a pseudo-range or carrier-phase observable is calculated, the down-leg
charged-particle correction will be zero. The L1-band and L2-band transmitter
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frequencies are given by Eq. (7�1). The weighting equations are Eqs. (7�2) to
(7�4).

13.6.2 COMPUTED VALUES, MEDIA CORRECTIONS, AND PARTIAL

DERIVATIVES

13.6.2.1 Computed Values

The first step in calculating the computed value of a GPS/TOPEX pseudo-
range or carrier-phase observable is to obtain the down-leg spacecraft light-time
solution with the reception time t3(ST)R (the time tag for the data point) in station
time ST at the receiving electronics at the TOPEX satellite or the GPS receiving
station on Earth. The algorithm for the spacecraft light-time solution is given in
Section 8.3.6. The spacecraft light-time solution can be performed in the Solar-
System barycentric space-time frame of reference or in the local geocentric
space-time frame of reference. This latter frame of reference was added to the
ODP specifically for processing GPS/TOPEX data. It can be used when all of the
participants are very near to the Earth.

The definitions of GPS/TOPEX pseudo-range and carrier-phase
observables are given in Section 13.6.1. From these definitions, the mathematical
definition for either of these observables is given by Eq. (11�42) or (11�43).
However, as discussed in Section 13.6.1, the down-leg light time in these
equations must be supplemented with the estimable range bias (in seconds)
discussed in that section. Given the down-leg spacecraft light-time solution, the
computed value ρ1 of a GPS/TOPEX pseudo-range or carrier-phase observable
in kilometers, which is defined by Eq. (11�42) or (11�43), is calculated from
Eq. (11�44) and related equations as described in Section 11.5.

The estimable bias Bias in Eq. (11�44) is estimated independently for
pseudo-range and carrier-phase observables as described in Section 11.5.2.

The observed values of pseudo-range and carrier-phase observables are
computed as a weighted average, which eliminates the effects of charged
particles on the down-leg light time. However, the computed values of pseudo-
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range and carrier-phase observables still contain three frequency-dependent
terms. These terms are computed as a weighted average of the L1-band and
L2-band values of these terms using Eqs. (7�2) to (7�4).

The constant phase-center offsets at the GPS receiving station on Earth
and at the receiving TOPEX satellite are calculated in Step 2 of the spacecraft
light-time solution (Section 8.3.6) using the algorithms given in Sections 7.3.1 and
7.3.3, respectively. The constant phase-center offset at the transmitting GPS
satellite is calculated in Step 9 of the spacecraft light-time solution.

Eq. (11�44) for the computed value ρ1 of a GPS/TOPEX pseudo-range or
carrier-phase observable contains a variable phase-center offset     ∆Aρ t3( ) at the
receiver (the TOPEX satellite or a GPS receiving station on Earth) and     ∆Aρ t2( ) at
the transmitting GPS satellite. These variable phase-center offsets are calculated
for carrier-phase observables only using the algorithm given in Section 11.5.4.

Eq. (11�44) for ρ1 also contains a geometrical phase correction ∆Φ, which
is described in Section 11.5.2. It is calculated for carrier-phase observables only
using the algorithm given in Section 11.5.3.

The remaining terms of Eq. (11�44) are not frequency dependent and
hence do not need to be computed as a weighted average. That is, they are only
computed once.

13.6.2.2 Media Corrections and Partial Derivatives

The media correction ∆ρ1(km) in kilometers to the computed value ρ1 of a
GPS/TOPEX pseudo-range or carrier-phase observable in kilometers is
calculated in the Regres editor from:

    ∆ρ1 km( ) = ∆ρ1 s( ) × c km (13�129)

where c is the speed of light and ∆ρ1(s) is the media correction to the down-leg
light time calculated from Eq. (10�26) as described in the last paragraph of
Section 10.2.3.2.1 and in Section 10.2.
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The partial derivative of the computed value ρ1 of a GPS/TOPEX pseudo-
range or carrier-phase observable with respect to the solve-for and consider
parameter vector q is calculated as described in Section 12.5.3.
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13.7 SPACECRAFT INTERFEROMETRY OBSERVABLES

Subsection 13.7.1 gives the formulation for the observed and computed
values of narrowband spacecraft interferometry (INS) observables, media
corrections for the computed observables, and partial derivatives of the
computed values of the observables with respect to the solve-for and consider
parameter vector q. It will be seen that a narrowband spacecraft interferometry
observable is equivalent to the difference of two doppler observables received
simultaneously at two different tracking stations on Earth.

Subsection 13.7.2 gives the formulation for the observed and computed
values of wideband spacecraft interferometry (IWS) observables, media
corrections for the computed observables, and partial derivatives of the
computed values of the observables with respect to the solve-for and consider
parameter vector q. It will be seen that a wideband spacecraft interferometry
observable is equivalent to the difference of two range observables (actually the
corresponding light times) received simultaneously at two different tracking
stations on Earth.

In the above two paragraphs, the differenced doppler and range
observables are actually received at the same value of station time ST at the
receiving electronics at two different tracking stations on Earth. Since the ST
clocks at the two different tracking stations are not exactly synchronized, the
differenced doppler and differenced range observables are not exactly
simultaneous.

A deep-space probe can be navigated by using ∆VLBI, which is a
narrowband or wideband spacecraft interferometry observable minus a
narrowband or wideband quasar interferometry observable, and other data
types. This section gives the formulation for spacecraft interferometry
observables and Section 13.8 gives the formulation for quasar interferometry
observables. The data records for the spacecraft and the quasar interferometry
data points are placed onto the Regres file. The differencing of these data types
to form ∆VLBI observables is done in a Regres post processor. Spacecraft and
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quasar interferometry observables and their difference, ∆VLBI observables, are
only processed in the Solar-System barycentric space-time frame of reference.

13.7.1 NARROWBAND SPACECRAFT INTERFEROMETRY (INS)

OBSERVABLES

Section 13.7.1.1 describes the actual observed quantities and shows how
these quantities are assembled to form the observed values of narrowband
spacecraft interferometry observables. It is also shown that a narrowband
spacecraft interferometry observable is equivalent to the difference of two
doppler observables received at the same value of station time ST at the
receiving electronics at two different tracking stations on Earth. If the spacecraft
is the transmitter, the doppler observables are one-way. If a tracking station on
Earth is the transmitter, the doppler observables are round-trip (i.e., two-way or
three-way doppler).

The formulation for the computed values of narrowband spacecraft
interferometry observables is given in Section 13.7.1.2.1. The formulations for
the media corrections for the computed values of these observables and the
partial derivatives of the computed values of these observables with respect to
the solve-for and consider parameter vector q are given in Sections 13.7.1.2.2 and
13.7.1.2.3, respectively.

13.7.1.1 Observed Values of Narrowband Spacecraft Interferometry (INS)

Observables

Correlation of a spacecraft signal received on a VLBI (Very Long Baseline
Interferometry) receiver with a local model gives the continuous phase of the
received signal plus several additional terms, which are functions of station time
ST or are constant. When these augmented phases obtained at two different
tracking stations on Earth at the same value of station time ST (the ST clocks at
the two tracking stations may be synchronized to about the microsecond level)
are subtracted, the additional terms cancel. The resulting �observed quantity� is
the phase of the received signal at one tracking station at a given value of station
time ST minus the phase of the received signal at a second tracking station at the
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same value (clock reading) of station time ST at that station. This observed phase
difference will be in error by an integer number of cycles, which will be constant
during a pass of data.

Let

  
φ φ2 1−( ) = phase of received spacecraft carrier signal at receiving

electronics at tracking station 2 on Earth at station time
ST at station 2 minus phase of received spacecraft carrier
signal at receiving electronics at tracking station 1 on
Earth at the same value of ST at station 1 (cycles). This
phase difference is continuous over a pass of data and is
in error by a constant integer number of cycles.

A narrowband spacecraft interferometry (INS) observable is calculated from the
following two observed phase differences:

  
φ φ2 1−( )e = observed value of 

  
φ φ2 1−( ) at station time ST equal to

the data time tag TT plus one-half of the count interval
Tc.

  
φ φ2 1−( )s = observed value of 

  
φ φ2 1−( ) at station time ST equal to

the data time tag T T minus one-half of the count interval
Tc.

Given the reception times in station time ST for 
  
φ φ2 1−( )e and 

  
φ φ2 1−( )s , the

time tag T T for the corresponding INS observable is the average of these
reception times, and the count interval Tc for the INS observable is the difference
of these reception times. For a pass of INS data, the configuration of the count
intervals can be in the doppler mode as shown in Figure 13�1 or in the phase
mode as shown in Figure 13�2.

A narrowband spacecraft interferometry (INS) observable is calculated
from the phase difference 

  
φ φ2 1−( )e at the end of the count interval minus the

phase difference 
  
φ φ2 1−( )s  at the start of the count interval. In order to be

equivalent to differenced doppler, we must divide the change in this phase
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difference by the count interval Tc. Also, it will be seen that we must change the
sign of the resulting quantity. The observed value of a narrowband spacecraft
interferometry (INS) observable is calculated in the ODE from:

    
INS

T
= − −( ) − −( )[ ]1

2 1 2 1
c e s

φ φ φ φ Hz (13�130)

The following discussion will show that this equation is equivalent to a
doppler observable received at tracking station 2 on Earth minus the
corresponding doppler observable received at tracking station 1 on Earth. The
time tag T T and count interval Tc for each of these doppler observables is the
same as the time tag and count interval for the INS observable. Let

    
F12

,  F2 2
,  and F3 2

 denote one-way, two-way, and three-way doppler
observables received at tracking station 2 on Earth. Also, let 

    
F11

,  F2 1
,  and F3 1

denote one-way, two-way, and three-way doppler observables received at
tracking station 1 on Earth. Using these variables, the proposed definition (which
remains to be proven correct) of an INS observable calculated in the ODE is
given by:

    

INS = F12
− F11

  if the spacecraft is the transmitter

= F2 2
− F3 1

  if station 2  is the transmitter

= F3 2
− F2 1

  if station 1 is the transmitter

= F3 2
− F3 1

  if a third station is the transmitter

Hz (13�131)

If the transmitter is a tracking station on Earth and the transmitter
frequency fT(t1) is constant, two-way doppler (F2) and three-way doppler (F3) in
Eq. (13�131) are unramped doppler, which is defined by Eq. (13�31). If
Eq. (13�31) is substituted into Eq. (13�131), the first term of Eq. (13�31), which is
the same for each of the two round-trip unramped doppler observables, cancels
in Eq. (13�131), and the second term of Eq. (13�31) produces Eq. (13�130).
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If the transmitter is a tracking station on Earth and the transmitter
frequency fT(t1) is ramped, two-way doppler (F2) and three-way doppler (F3) in
Eq. (13�131) are ramped doppler. After the Network Simplification Program is
implemented, the definition of one-way (F1) doppler and ramped two-way (F2)
and three-way (F3) doppler observables is given by Eq. (13�41). Substituting this
equation into Eq. (13�131) gives Eq. (13�130).

Hence, the proposed definition (13�131) of narrowband spacecraft
interferometry (INS) observables calculated in the ODE from Eq. (13�130) is
correct if unramped two-way (F2) and three-way (F3) doppler observables in
Eq. (13�131) are defined by Eq. (13�31), and one-way (    F1) doppler observables
and ramped two-way (F2) and three-way (    F3) doppler observables in
Eq. (13�131) are defined by Eq. (13�41). In calculating the computed values of INS

observables from Eq. (13�131) in program Regres (as described in Section
13.7.1.2), the computed values of F1, F2, and F3 doppler observables will
correspond to the just-given definitions of these observables.

13.7.1.2 Computed Values, Media Corrections, and Partial Derivatives of

Narrowband Spacecraft Interferometry (INS) Observables

13.7.1.2.1 Computed Values of Narrowband Spacecraft Interferometry (INS)
Observables

Computed values of narrowband spacecraft interferometry (INS)
observables are calculated from differenced computed doppler observables
according to Eq. (13�131). Each computed doppler observable in this equation
has the same time tag (T T) and count interval (Tc) as the observed value of the
INS observable.

If the transmitter is the spacecraft, the definition of one-way doppler (F1)
observables in Eq. (13�131) is given by Eq. (13�41). Computed values of one-way
doppler (F1) observables defined by Eq. (13�41) are calculated from Eq. (13�82)
as described in Section 13.3.2.3.
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If the transmitter is a tracking station on Earth and the transmitter
frequency fT(t1) is constant, two-way doppler (F2) and three-way doppler (F3) in
Eq. (13�131) are unramped doppler, which is defined by Eq. (13�31). Computed
values of unramped two-way (F2) and three-way (F3) doppler observables
defined by Eq. (13�31) are calculated from Eq. (13�47) as described in Section
13.3.2.1.

If the transmitter is a tracking station on Earth and the transmitter
frequency fT(t1) is ramped, two-way doppler (F2) and three-way doppler (F3) in
Eq. (13�131) are ramped doppler, which is defined by Eq. (13�41). Computed
values of ramped two-way (    F2) and three-way (    F3) doppler observables defined
by Eq. (13�41) are calculated from Eq. (13�50) or Eq. (13�54) with the first term
set equal to zero, as described in Section 13.3.2.2.1. The integral in the second
term of either of these equations can be evaluated using ramp tables as described
in Section 13.3.2.2.2 or phase tables as described in Section 13.3.2.2.3.

13.7.1.2.2 Media Corrections for Computed Values of Narrowband Spacecraft
Interferometry (INS) Observables

From Eq. (13�131), the media correction ∆INS to the computed value INS

of a narrowband spacecraft interferometry observable is the media correction

    
∆Fi 2

 to the doppler observable 
    
Fi 2

 received at tracking  station 2 on Earth
minus the media correction 

    
∆Fi1

 to the doppler observable 
    
Fi1

 received at
tracking  station 1 on Earth. The subscript i is 1 for one-way doppler, 2 for two-
way doppler, or 3 for three-way doppler. Also, round-trip doppler is unramped
or ramped if the transmitter frequency is constant or ramped, respectively.

The media correction ∆F1 to the computed value of a one-way doppler
(F1) observable is calculated in the Regres editor from Eqs. (13�85) and (13�86),
as described in Section 13.3.2.3. In Eq. (13�85), 

  
∆ρ1e

 and 
  
∆ρ1s

 are media
corrections to the precision one-way light times 

  
ρ1e

 and 
  
ρ1s

 calculated from the
light-time solutions at the end and start of the doppler count interval Tc. These
media corrections are calculated from Eqs. (10�24) and (10�25), as described in
Section 10.2.
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The media corrections ∆F2 and ∆F3 to the computed values of two-way
(F2) and three-way (F3) doppler observables are calculated in the Regres editor
from Eq. (13�48) for unramped doppler and Eq. (13�58) for ramped doppler. In
these equations, ∆ρe and ∆ρs are media corrections to the precision round-trip
light times ρe and ρs calculated from the light-time solutions at the end and start
of the doppler count interval Tc. For doppler observables, these round-trip
media corrections are calculated from Eqs. (10�28) and (10�29). However, in
calculating media corrections for the computed values of INS observables from
differenced doppler corrections, the up-leg corrections for the two doppler
observables are almost identical, and their difference can be ignored. Hence, in
Eqs. (13�48) and (13�58), the round-trip media corrections ∆ρe and ∆ρs are
replaced with the down-leg corrections 

  
∆ρ1e

 and 
  
∆ρ1s

, which are calculated
from Eqs. (10�24) and (10�25).

13.7.1.2.3 Partial Derivatives of Computed Values of Narrowband Spacecraft
Interferometry (INS) Observables

From Eq. (13�131), the partial derivative     ∂ INS ∂q of the computed value
INS of a narrowband spacecraft interferometry observable with respect to the
solve-for and consider parameter vector q is the partial derivative 

      
∂Fi 2

∂q  of
the doppler observable 

    
Fi 2

 received at tracking station 2 on Earth with respect
to q minus the partial derivative 

      
∂Fi1

∂q of the doppler observable 
    
Fi1

received at tracking station 1 on Earth with respect to q. The subscript i is 1 for
one-way doppler, 2 for two-way doppler, or 3 for three-way doppler. Also,
round-trip doppler is unramped or ramped if the transmitter frequency is
constant or ramped, respectively.

The partial derivative ∂ F1 /∂ q of the computed value of a one-way
doppler (F1) observable with respect to the parameter vector q is calculated from
Eqs. (13�87) to (13�90) as described in the accompanying text. In Eq. (13�87), the
one-way light time partials are calculated from the formulation of Section 12.5.2.

The partial derivatives ∂ F2 /∂ q and ∂ F3 /∂ q of the computed values of
two-way (F2) and three-way (F3) doppler observables with respect to the
parameter vector q are calculated from Eq. (13�49) for unramped doppler and
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Eq. (13�59) for ramped doppler, as described in the text accompanying these
equations. In these equations, the round-trip light time partials are calculated
from the formulation of Section 12.5.1.

13.7.2 WIDEBAND SPACECRAFT INTERFEROMETRY (IWS)

OBSERVABLES

Section 13.7.2.1 describes the actual observed quantities and shows how
these quantities are assembled to form the observed values of wideband
spacecraft interferometry observables. It is also shown that a wideband
spacecraft interferometry observable is equivalent to the difference of two
spacecraft light times, which have the same reception time in station time ST at
two different tracking stations on Earth. Wideband spacecraft interferometry
observables are derived from two signals transmitted by the spacecraft. If these
two signals are a fixed frequency apart at the spacecraft, the spacecraft light
times are one-way light times. However, if the two signals transmitted at the
spacecraft were derived from signals transmitted at a tracking station on Earth,
which are a fixed frequency apart, then the spacecraft light times are round-trip
(two-way or three-way) light times.

The formulation for the computed values of wideband spacecraft
interferometry observables is given in Section 13.7.2.2.1. The formulations for
the media corrections for the computed values of these observables and the
partial derivatives of the computed values of these observables with respect to
the solve-for and consider parameter vector q are given in Sections 13.7.2.2.2 and
13.7.2.2.3, respectively.

13.7.2.1 Observed Values of Wideband Spacecraft Interferometry (IWS)

Observables

Subsection 13.7.2.1.1 gives the formulation used in the ODE to calculate
the observed values of wideband spacecraft interferometry (IWS) observables.
The corresponding definitions of one-way and round-trip IWS observables are
developed in Subsections 13.7.2.1.2 and 13.7.2.1.3, respectively. These definitions
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are used in calculating the computed values of these observables in Section
13.7.2.2.1.

13.7.2.1.1 Formulation for Observed Values of IWS Observables

The phase difference 
  
φ φ2 1−( ) is defined near the beginning of Section

13.7.1.1. The observed quantities, which are used to construct the �observed�
value of a wideband spacecraft interferometry observable, are measured values
of 

  
φ φ2 1−( ) for each of two signals transmitted by the spacecraft. The

frequencies of the two signals transmitted by the spacecraft are denoted as ω B
and ω A, where   ωB > ωA. Wideband spacecraft interferometry (IWS)
observables are one-way if   ωB − ωA , the difference in the frequencies of the
two signals transmitted by the spacecraft, is constant at the spacecraft. This can
occur if the spacecraft is the transmitter. However, if a tracking station on Earth
is the transmitter and a single frequency is transmitted from the tracking station
on Earth to the spacecraft, and ω B and ω A are functions of time, but   ωB − ωA  at
the spacecraft is constant, then the IWS observable is also one-way. If a tracking
station on Earth transmits a single constant frequency to the spacecraft and

  ωB − ωA  at the spacecraft is not constant, the two signals transmitted at the
spacecraft can be considered to be transmitted at the transmitting station on
Earth and reflected off of the spacecraft. The difference in the frequencies of the
two imaginary signals transmitted at the tracking station on Earth is a constant
frequency, which is also denoted as   ωB − ωA . For this case, where   ωB − ωA  is
constant at the transmitting station on Earth, the IWS observables are round-trip.
If the transmitter is a tracking station on Earth and the transmitted frequency is
ramped, then round-trip IWS observables cannot be taken.

Let the measured values of 
  
φ φ2 1−( ) for the transmitted frequencies ω B

and ω A at the spacecraft or at a tracking station on Earth be denoted as

  
φ φ2 1−( )B

 and 
  
φ φ2 1−( )A

, respectively. Given these measured quantities and the
frequency difference   ωB − ωA  at the spacecraft (one-way IWS) or at the
transmitting station on Earth (round-trip IWS), the observed value of a one-way
or round-trip IWS observable is calculated in the ODE from:
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IWS = −

φ2 − φ1( )B
− φ2 − φ1( )A[ ] fractional part

ωB − ωA
× 109

ns (13�132)

The �fractional part� of the numerator means that the integral part of the
numerator is discarded. This is necessary to eliminate the constant errors of an
integer number of cycles in each of the two measured phase differences. Since
the numerator is in cycles and the denominator is in Hz, the quotient is in
seconds. Multiplying by 109 gives the IWS observable in nanoseconds (ns).
Calculating the fractional part of the numerator is equivalent to evaluating
Eq. (13�132) without the fractional part calculation and then calculating the result
modulo M, where M is given by:

    
M = 109

ωB − ωA
ns (13�133)

The value of the modulo number M will be passed to program Regres on the OD
file along with the observed value of the IWS observable, given by Eq. (13�132).
If Eq. (13�132) is evaluated in the ODE without the fractional part calculation,
then the value of M passed to Regres will be zero. The time tag (T T) for the IWS

observable is the common reception time t3(ST)R in station time ST at the
receiving electronics at tracking stations 2 and 1 on Earth at which the phases in
the numerator of Eq. (13�132) are measured.

13.7.2.1.2 Definition of One-Way IWS Observables

This section applies for the case where the frequency ω B transmitted by
the spacecraft minus the frequency ω A transmitted by the spacecraft is a
constant.
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The phase difference in the numerator of Eq. (13�132) can be expressed as:

  
φ φ φ φ φ φ φ φ2 1 2 1−( ) − −( ) = −( ) − −( )B A B A 2 B A 1

cycles (13�134)

where

    φ φB A−( )i = difference in phase of the two signals received at the
receiving electronics at tracking station i on Earth at the
reception time t3(ST)R in station time ST. The two signals
were transmitted at the spacecraft at frequencies ω B and
ω A, respectively.

In the absence of charged particles (which will be considered separately in
Section 13.7.2.2.2), the received phase difference     φ φB A−( )i  at tracking station i

on Earth is equal to the difference in phase of the two signals transmitted at the
spacecraft at the transmission time t2(TAI) in International Atomic Time TAI at
the spacecraft:

    
φ φ φ φB A B A−( ) = −( )i t2

cycles (13�135)

The phase difference at the spacecraft is a function of     t2 TAI( ):

    
φ φ ω ωB A B A TAI TAI−( ) = −( ) ( ) − ( )[ ]t t t

2 02 2 cycles (13�136)

where 
    
t2 0

TAI( )  is the value of t2(TAI) at which the two signals transmitted at
the spacecraft are in phase.

The definition of the precision one-way light time   �ρ1 from the spacecraft
to a tracking station on Earth is given by Eq. (11�8). Substituting t2(TAI) from
Eqs. (13�135) and (13�136) into Eq. (11�8) gives the following expression for the
one-way light time     �ρ1 i( ) received at tracking station i on Earth at t3(ST)R in
station time ST at the receiving electronics:



OBSERVABLES

13�93

    
�ρ

φ φ
ω ω1 3 2 0

i t t i( ) = ( ) − ( ) −
−( )
−

ST TAIR
B A

B A
s (13�137)

Let the differenced one-way light time   ∆ �ρ1 with the same reception time t3(ST)R

in station time ST at the receiving electronics at tracking stations 2 and 1 on Earth
be defined by:

  ∆ � � �ρ ρ ρ1 1 12 1= ( ) − ( ) s (13�138)

Substituting Eq. (13�137) with i = 2 and 1 into Eq. (13�138) and using Eq. (13�134)
gives:

  
∆ �ρ

φ φ φ φ

ω ω1
2 1 2 1

= −
−( ) − −( )[ ]

−
B A

B A
s (13�139)

Comparing this equation to Eq. (13�132), we see that the definition of a one-way
wideband spacecraft interferometry (IWS) observable is given by:

one-way     IWS M= ×∆ � ,ρ1
910  modulo ns (13�140)

where the modulo number M is given by Eq. (13�133). In Eq. (13�140),   ∆ �ρ1 is
given by Eq. (13�138), and the one-way light times at receiving stations 2 and 1
on Earth are each defined by Eq. (11�8). The definition (13�140) of a one-way
wideband spacecraft interferometry (IWS) observable will be used in
Section 13.7.2.2.1 to calculate the computed value of this observable.

13.7.2.1.3 Definition of Round-Trip IWS Observables

This section applies for the case where a constant frequency fT is
transmitted from a tracking station on Earth to the spacecraft. The spacecraft
multiplies the received frequency fR(t2) by the spacecraft transponder
turnaround ratio M2 to give the downlink carrier frequency fT(t2). The spacecraft
transponder produces harmonics by multiplying the downlink carrier frequency
by a constant factor β and phase modulating the resulting signal onto the
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downlink carrier. The downlink signal contains the carrier of frequency fT(t2) and
harmonics that have frequencies equal to the downlink carrier frequency plus or
minus integer multiples of the modulation frequency fT(t2) β. The two signals
transmitted by the spacecraft that produce the observed phase differences

  
φ φ2 1−( )B

 and 
  
φ φ2 1−( )A

 discussed in Section 13.7.2.1.1 are usually the upper
and lower first harmonics.

Let φ B(t2) and φ A(t2) denote the phases of the upper and lower first
harmonics transmitted by the spacecraft at the transmission time t2 at the
spacecraft. The corresponding frequencies of these two signals are fT(t2) (1 + β)
and fT(t2) (1 � β), respectively. They are in phase at the time 

    
t2 0

. The phases
φ B(t2) and φ A(t2) are given by:

    

φB,A t2( ) = f T t2( ) 1 ± β( ) dt2

t2 0

t2

∫ cycles (13�141)

Replacing the downlink carrier frequency fT(t2) with the uplink received
frequency at the spacecraft multiplied by the spacecraft transponder turnaround
ratio M2 gives:

    

φB,A t2( ) = M2 1 ± β( ) f R t2( ) dt2

t2 0

t2

∫ cycles (13�142)

Since the up-leg signal travels at constant phase, this can be expressed as:

    

φB,A t2( ) = M2 1 ± β( ) f T dt1

t10 ST( )T

t1 ST( )T

∫ cycles (13�143)
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where     t1 ST( )T  and 
    
t10

ST( )T are transmission times in station time ST at the
transmitting electronics at the transmitting station on Earth. These times
correspond to the reception times t2 and 

    
t2 0

 at the spacecraft. Since the
transmitter frequency fT at the transmitting station on Earth is constant,
Eq. (13�143) reduces to:

    
φB,A t2( ) = M2 f T 1 ± β( ) t1 ST( )T − t10

ST( )T[ ] cycles (13�144)

In the absence of charged particles, whose effects are considered separately in
Section 13.7.2.2.2, the difference in the phase of the two signals transmitted at the
spacecraft at the transmission time t2 is given by:

    
φB − φA( )t2

= ωB − ωA( ) t1 ST( )T − t10
ST( )T[ ] cycles (13�145)

where

    ωB − ωA = 2 M2 f T β cycles (13�146)

In the absence of charged particles, the received phase difference     φB − φA( )i  at
tracking station i on Earth is equal to the difference in phase 

    
φB − φA( )t2

 of the
two signals transmitted at the spacecraft at the transmission time t2 at the
spacecraft, as shown in Eq. (13�135).

The definition of the precision round-trip light time ρ from a tracking
station on Earth to the spacecraft and then to the same or a different tracking
station on Earth is given by Eq. (11�5). Substituting t1(ST)T from Eqs. (13�135)
and (13�145) into Eq. (11�5) gives the following expression for the round-trip
light time ρ(i) received at tracking station i on Earth at t3(ST)R in station time ST
at the receiving electronics:

    
ρ i( ) = t3 ST( )R − t10

ST( )T −
φB − φA( )i
ωB − ωA

s (13�147)
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where   ωB − ωA  is given by Eq. (13�146). Let the differenced round-trip light
time ∆ρ with the same reception time t3(ST)R in station time ST at the receiving
electronics at tracking stations 2 and 1 on Earth be defined by:

  ∆ρ = ρ 2( ) − ρ 1( ) s (13�148)

Substituting Eq. (13�147) with i = 2 and 1 into Eq. (13�148) and using Eq. (13�134)
gives:

  
∆ρ = −

φ2 − φ1( )B
− φ2 − φ1( )A[ ]

ωB − ωA
s (13�149)

Comparing this equation to Eq. (13�132), we see that the definition of a round-
trip wideband spacecraft interferometry (IWS) observable is given by:

round-trip     IWS = ∆ρ × 109 ,  modulo M ns (13�150)

where the modulo number M is given by Eq. (13�133). In Eq. (13�150), ∆ρ is
given by Eq. (13�148), and the round-trip light times at receiving stations 2 and 1
on Earth are each defined by Eq. (11�5). The definition (13�150) of a round-trip
wideband spacecraft interferometry (IWS) observable will be used in
Section 13.7.2.2.1 to calculate the computed value of this observable.

13.7.2.2 Computed Values, Media Corrections, and Partial Derivatives of

Wideband Spacecraft Interferometry (IWS) Observables

13.7.2.2.1 Computed Values of Wideband Spacecraft Interferometry (IWS)
Observables

If the frequency difference   ωB − ωA  of the two signals transmitted by the
spacecraft is constant at the spacecraft, wideband spacecraft interferometry (IWS)
observables are one-way. However, if   ωB − ωA  is constant at the transmitting
station on Earth (as defined in Section 13.7.2.1.1), IWS observables are round-trip.
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Computed values of one-way wideband spacecraft interferometry (IWS)
observables are calculated from the definition equation (13�140). In this equation,
the differenced one-way light time   ∆ �ρ1 is given by Eq. (13�138). In this equation,
the one-way light times   �ρ1 2( )  and   �ρ1 1( ) with the same reception time t3(ST)R in
station time ST at the receiving electronics at tracking stations 2 and 1 on Earth
are defined by Eq. (11�8). The common reception time t3(ST)R is the time tag
(  TT ) for the IWS observable.

The differenced one-way light time   � �ρ ρ1 12 1( ) − ( ) is calculated as the
differenced one-way light time ρ1(2) � ρ1(1) plus the variable ∆, as indicated in
Eq. (11�11). The one-way light times ρ1(2) and ρ1(1)  at receiving stations 2 and 1
on Earth are defined by Eq. (11�9). Given the one-way light-time solutions from
the spacecraft to receiving stations 2 and 1 on Earth with the common reception
time t3(ST)R at the receiving electronics at these two stations, the one-way light
times ρ1(2) and ρ1(1) are calculated from Eq. (11�41). The parameter ∆, which is
defined by Eq. (11�12), is calculated from Eqs. (11�15) to (11�39). These equations
are evaluated with quantities obtained at the transmission times (t2) of the two
one-way spacecraft light-time solutions.

The differenced one-way light time   � �ρ ρ1 12 1( ) − ( ) is actually calculated in
the code used to calculate the computed value of a one-way doppler observable.
However, instead of calculating the differenced one-way light time at two
different times (separated by the doppler count interval) at one tracking station
on Earth, the differenced one-way light time is calculated at the same reception
time t3(ST)R at two different tracking stations on Earth.

Computed values of round-trip wideband spacecraft interferometry (IWS)
observables are calculated from the definition equation (13�150). In this equation,
the differenced round-trip light time ∆ρ is given by Eq. (13�148). In this equation,
the round-trip light times ρ (2) and ρ (1) with the same reception time t3(ST)R in
station time ST at the receiving electronics at tracking stations 2 and 1 on Earth
are defined by Eq. (11�5). The common reception time t3(ST)R is the time tag
(T T) for the IWS observable.
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Given the round-trip light-time solutions from the transmitting station on
Earth to the spacecraft and from there to receiving stations 2 and 1 on Earth with
the common reception time t3(ST)R at the receiving electronics at these two
stations, the round-trip light times ρ (2) and ρ (1)  at receiving stations 2 and 1 on
Earth, which are defined by Eq. (11�5), are calculated from Eq. (11�7).

13.7.2.2.2 Media Corrections for Computed Values of Wideband Spacecraft
Interferometry (IWS) Observables

One-way and round-trip wideband spacecraft interferometry (IWS)
observables are defined by Eqs. (13�140) and (13�150), respectively. In these
equations, the differenced one-way and round-trip light times are given by
Eqs. (13�138) and (13�148), respectively. In terms of the observed phases at
receiving station i, the one-way light time and the round-trip light time are given
by Eqs. (13�137) and (13�147), respectively. Charged particles along the one-way
or round-trip path to receiving station i affect the received phases φ B and φ A,
which correspond to the transmitter frequencies ω B and ω A, respectively. From
Eq. (13�135), the changes in the phases of the received signals at tracking station i
on Earth are equal to the changes in the phases of the corresponding transmitted
signals at the transmission time t2 at the spacecraft. From Eq. (13�136), the
changes in the phases of the two transmitted signals at the spacecraft for one-
way IWS observables are given by:

    ∆φB t2( ) = ωB ∆t2B
cycles (13�151)

    ∆φA t2( ) = ωA ∆t2A
cycles (13�152)

From Eq. (13�145), the changes in the phases of the two transmitted signals at
the spacecraft for round-trip IWS observables are given by:

    ∆φB t2( ) = ωB ∆t1B
cycles (13�153)

    ∆φA t2( ) = ωA ∆t1A
cycles (13�154)
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For one-way IWS observables, the changes in the transmission times at the
spacecraft for the signals transmitted at the frequencies ω B and ω A, respectively,
are:

    
∆t2B

=
C2

ωB
2 s (13�155)

    
∆t2A

=
C2

ωA
2 s (13�156)

where the constant     C2  is a function of the electron content along the down-leg
light path. For round-trip IWS observables, the changes in the transmission times
at the transmitting station on Earth for the signals transmitted at the spacecraft at
the frequencies ω B and ω A, respectively, are:

    
∆t1B

=
C2

ωB
2 +

C1

f T
2 s (13�157)

    
∆t1A

=
C2

ωA
2 +

C1

f T
2 s (13�158)

where the constant C1 is a function of the electron content along the up-leg light
path and f T is the up-leg transmitter frequency. The change in the one-way light
time from the spacecraft to receiving station i on Earth due to charged particles is
obtained by substituting Eqs. (13�151), (13�152), (13�155), and (13�156) into the
differentials of Eqs. (13�137) and (13�135):

    

∆ �ρ
ω ω ω ω

1
2 2

2

2

i
C C( ) = ≈

+





A B A B

s (13�159)

where the approximate form is the increase in the light time due to propagation
at the group velocity (less than the speed of light c) for the average frequency

  ωA + ωB( ) 2 . The change in the round-trip light time from the transmitting
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station on Earth to the spacecraft and then to receiving station i on Earth due to
charged particles is obtained by substituting Eqs. (13�153), (13�154), (13�157), and
(13�158) into the differentials of Eqs. (13�147) and (13�135):

    
∆ρ i( ) = C2

ωAωB
−

C1

f T
2 s (13�160)

The first term is the same as Eq. (13�159). The second term is the decrease in the
light time due to propagation on the up leg at the phase velocity (greater than
the speed of light c) for the transmitter frequency f T. The up-leg correction is a
phase velocity correction instead of the usual group velocity correction for a
range observable because only one signal is transmitted on the up leg. From
Eqs. (13�150) and (13�148), the media correction to the computed value of a
round-trip wideband spacecraft interferometry observable is proportional to the
media correction to the round-trip light time ρ (2) received at tracking station 2
on Earth minus the media correction to the round-trip light time ρ (1) received at
tracking station 1 on Earth, where both light times have the same reception time
t3(ST)R at the receiving electronics at stations 2 and 1. In Eq. (13�160) for the
charged-particle correction for the round-trip light time, the down-leg
corrections to receiving stations 2 and 1 on Earth are different. However, the up-
leg charged-particle corrections (and the up-leg tropospheric corrections) are
nearly the same. They differ only because the transmission times t2 at the
spacecraft for the two different receiving stations on Earth differ by the
difference in the two down-leg light times. The difference in the up-leg media
corrections for receiving stations 2 and 1 can be ignored and Eq. (13�160) reduces
to its first term, which is the same as Eq. (13�159).

From the above, the media correction for the computed value of a one-
way or round-trip wideband spacecraft interferometry (IWS) observable is
calculated in the Regres editor from:

    ∆IWS = ∆ρ1 2( ) − ∆ρ1 1( )[ ] × 109 ns (13�161)
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where ∆ρ1(2) and ∆ρ1(1) are down-leg media corrections in seconds for the
down-leg light times ρ1(2) and ρ1(1), which have reception times t3(ST)R at the
receiving electronics at receiving stations 2 and 1 on Earth, respectively. The
down-leg light times ρ1(2) and ρ1(1) are the down-leg light times on the right-
hand side of Eq. (11�11), which are defined by Eq. (11�9) or the down-leg terms
of the round-trip light times defined by Eq. (11�5). The one-way media
corrections ∆ρ1(2) and ∆ρ1(1) (tropospheric plus charged-particle corrections) are
calculated in the Regres editor from Eq. (10�26) as described in
Section 10.2. The charged-particle corrections are positive and based upon the
average spacecraft transmitter frequency   ωA + ωB( ) 2 . To sufficient accuracy,
this frequency is given by     C2 f T0

 (see Eq. 13�21) if the spacecraft is the
transmitter and by M2 f T (see Eq. 13�20) if a tracking station on Earth is the
transmitter.

13.7.2.2.3 Partial Derivatives of Computed Values of Wideband Spacecraft
Interferometry (IWS) Observables

From Eqs. (13�140), (13�138), and (11�11), the partial derivative of the
computed value of a one-way wideband spacecraft interferometry observable
with respect to the solve-for and consider parameter vector q is given by:

      

∂
∂

∂ρ
∂

∂ρ
∂

one - way IWS( )
=

( )
−

( )







 ×q q q

1 1 92 1
10 (13�162)

where the one-way light times ρ1(2) and ρ1(1), which have the common
reception time t3(ST)R at the receiving electronics at receiving stations 2 and 1 on
Earth, are defined by Eq. (11�9). The partial derivatives of these one-way light
times with respect to the parameter vector q are calculated from the formulation
of Section 12.5.2.

The differenced one-way light time partial derivatives in Eq. (13�162) are
calculated in the code used to calculate the computed values of one-way doppler
observables and partial derivatives, as described in Section 13.7.2.2.1.



SECTION  13

13�102

From Eqs. (13�150) and (13�148), the partial derivative of the computed
value of a round-trip wideband spacecraft interferometry observable with
respect to the parameter vector q is given by:

      

∂
∂

∂ρ
∂

∂ρ
∂

round - trip IWS( )
=

( )
−

( )







 ×q q q

2 1
109 (13�163)

where the round-trip light times ρ(2) and ρ(1), which have the common
reception time t3(ST)R at the receiving electronics at receiving stations 2 and 1 on
Earth, are defined by Eq. (11�5). The partial derivatives of these round-trip light
times with respect to the parameter vector q are calculated from the formulation
of Section 12.5.1.
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13.8 QUASAR INTERFEROMETRY OBSERVABLES

This section gives the formulation for the observed and computed values
of narrowband (INQ) and wideband (IWQ) quasar interferometry observables,
media corrections for the computed observables, and partial derivatives of the
computed values of the observables with respect to the solve-for and consider
parameter vector q. These data types are only processed in the Solar-System
barycentric space-time frame of reference.

Section 13.8.1.1 describes the actual observed quantities. Sections 13.8.1.2
and 13.8.1.3 show how these observed quantities are assembled to form the
observed values of narrowband and wideband quasar interferometry
observables, respectively. These two sections also give the definitions of
narrowband and wideband quasar interferometry observables. These definitions
are used in calculating the computed values of these observables in Sections
13.8.2.1 and 13.8.2.2. The formulations for the media corrections for the
computed values of these observables and the partial derivatives of the
computed values of these observables with respect to the solve-for and consider
parameter vector q are given in Sections 13.8.2.3 and 13.8.2.4, respectively.

13.8.1 OBSERVED VALUES OF QUASAR INTERFEROMETRY

OBSERVABLES

13.8.1.1 Observed Quantities

The signal from a quasar is received on a given channel at receiver 1 and
at receiver 2. Each of these two receivers can be a tracking station on Earth or an
Earth satellite. Correlation of the quasar signals received on a given channel at
these two receivers gives a continuous phase φ vs station time ST at the receiving
electronics at receiver 1. The phase φ is defined by:

  n + =φ ω τ cycles (13�164)

    τ = t2 ST( )R − t1 ST( )R s (13�165)
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where

ω = effective frequency of quasar for a specific channel and
pass (Hz).

    t2 ST( )R = reception time of quasar wavefront at receiver 2 in
station time ST at receiving electronics at receiver 2.

    t1 ST( )R = reception time of quasar wavefront at receiver 1 in
station time ST at receiving electronics at receiver 1.

n = an unknown integer, whose value is typically a few tens
of cycles (constant during a pass).

Note that Eq. (13�165) is the same as Eq. (11�65). Except for the error n, the
phase φ is the phase of the received quasar signal at t1(ST)R in station time ST at
the receiving electronics at receiver 1 minus the phase of the received quasar
signal at the same value of station time ST at the receiving electronics at receiver
2. Note that the phase of the received quasar signal at t2(ST)R in station time ST at
the receiving electronics at receiver 2 is equal to the phase of the received quasar
signal at t1(ST)R in station time ST at the receiving electronics at receiver 1. Except
for the error n, the phase φ is the number of cycles (or φ ω seconds of station
time ST) that the received waveform vs station time at station 2 must be moved
backward in time to line up with the received waveform vs station time at
station 1.

For narrowband quasar interferometry (INQ), the phase φ vs station time
ST at the receiving electronics at receiver 1 is available from one channel only.
For wideband quasar interferometry (IWQ), the phase φ vs station time ST at the
receiving electronics at receiver 1 is available from two channels.

The equations and definitions given above are valid for a positive delay τ
and phase φ (the quasar wavefront arrives at receiver 1 first) and also for a
negative delay τ and phase φ (the quasar wavefront arrives at receiver 2 first).

If receiver 1 or receiver 2 is an Earth satellite, the orbit of that satellite can
be determined by fitting to quasar interferometry data and other tracking data.
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For a deep space probe, the trajectory of the spacecraft can be determined by
fitting to ∆VLBI as described in the last paragraph of Section 13.7.

13.8.1.2 Formulation for Observed Values and Definition of INQ

Observables

The observed value of a narrowband quasar interferometry (INQ)
observable is calculated in the ODE from:

    
INQ =

φe − φs

Tc
Hz (13�166)

where

φe = value of the phase φ defined by Eqs. (13�164) and
(13�165) and the accompanying text with a reception
time t1(ST)R in station time ST at the receiving electronics
at receiver 1 equal to the data time tag T T plus one-half
of the count interval Tc.

φs = value of the phase φ defined by Eqs. (13�164) and
(13�165) and the accompanying text with a reception
time t1(ST)R in station time ST at the receiving electronics
at receiver 1 equal to the data time tag T T minus one-half
of the count interval Tc.

Tc = count interval in seconds of station time ST at the
receiving electronics at receiver 1. It is equal to the
reception time t1(ST)R at receiver 1 for φe minus the
reception time t1(ST)R at receiver 1 for φs. For a pass of
INQ data, the configuration of the count intervals can be
in the doppler mode as shown in Figure 13�1 or in the
phase mode as shown in Figure 13�2.

From the definition of the phase φ given in this section and the definition
of the phase difference 

  
φ φ2 1−( ) given in Section 13.7.1.1, it is obvious that the

latter is the negative of the former. Hence, Eq. (13�166) for the observed value of
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a narrowband quasar interferometry observable is equal to Eq. (13�130) for the
observed value of a narrowband spacecraft interferometry observable. The
quasar and spacecraft observables are calculated from the equivalent measured
phases using the same equation. The only difference is the source of the signals
that produce the measured phase differences.

From Eqs. (13�166) and (13�164), the definition of a narrowband quasar
interferometry observable is given by:

    
INQ

T
=

−( )ω τ τe s

c
Hz (13�167)

where

  τ e , τ s = quasar delays defined by Eq. (11�65) or Eq. (13�165) with
reception times in station time ST at the receiving
electronics at receiver 1 equal to the data time tag T T

plus Tc/2 and T T minus Tc/2, respectively.

13.8.1.3 Formulation for Observed Values and Definition of IWQ

Observables

The observed value of a wideband quasar interferometry (IWQ)
observable can be calculated modulo M nanoseconds, or the observable can be
unmodded. If the observed value of an IWQ observable is modded, it is
calculated in the ODE from:

    
IWQ =

−( )
−

×
φ φ

ω ω
B A fractional part

B A
109 ns (13�168)

where

  φB , φA = values of the phase φ defined by Eqs. (13�164) and
(13�165) and the accompanying text for channels B and
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A. Each of these phases has the same reception time
t1(ST)R in station time ST at the receiving electronics at
receiver 1. This reception time is the time tag (T T) for the
data point.

  ω ωB A, = values of ω  for channels B and A, where   ω ωB A> .

The �fractional part� of the numerator means that the integral part of the
numerator is discarded. This is necessary to eliminate the constant errors of an
integer number of cycles in each of the two measured phases. Since the
numerator is in cycles and the denominator is in Hz, the quotient is in seconds.
Multiplying by 109 gives the IWQ observable in nanoseconds (ns). Calculating
the fractional part of the numerator is equivalent to evaluating Eq. (13�168)
without the fractional part calculation and then calculating the result modulo M,
where M is given by:

    
M =

−
109

ω ωB A
ns (13�169)

The value of the modulo number M is passed to program Regres on the OD file
along with the observed value of the IWQ observable. If the IWQ observable is
not modded (as discussed below), then the value of M passed to Regres is zero.

From Eqs. (13�168) and (13�164), the definition of a wideband quasar
interferometry observable which is calculated modulo M is given by:

    IWQ = τ × 109 , modulo M ns (13�170)

where the quasar delay τ is defined by Eq. (11�65) or Eq. (13�165). It has a
reception time t1(ST)R in station time ST at the receiving electronics at receiver 1
equal to the time tag T T for the data point.

If the observed value of an IWQ observable is unmodded, it is calculated
in the ODE from the following variation of Eq. (13�168):
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IWQ

N
=

−( ) +

−
×

φ φ

ω ω
B A fractional part

B A
109 ns (13�171)

where the integer N is calculated from:

    
N = −( )[ ]ω ω τB A m integral part

cycles (13�172)

where τm is the modelled delay in seconds used in the correlation process for
either channel. The value of the integer N will occasionally be in error by plus or
minus one cycle. In order to check the value of N, we need an observed value of
the quasar delay τ in seconds. It is given by Eq. (13�171) without the factor 109. If
the value of τ in seconds satisfies the inequality:

  
τ τ

ω ω
− <<

−m
B A

 cycle1
s (13�173)

N is presumed to be correct. If the inequality is not satisfied, calculate two new
values of τ from Eq. (13�171) divided by 109 using     N + 1 cycles and     N − 1
cycles. If either of these values of N satisfies the inequality, that value of N should
be used to calculate the IWQ observable from Eq. (13�171). Otherwise, delete the
data point.

From Eqs. (13�171), (13�172), and (13�164), the definition of a wideband
quasar interferometry observable which is not calculated modulo M is given by:

    IWQ = τ × 109 ns (13�174)

where the quasar delay τ is defined by Eq. (11�65) or Eq. (13�165). It has a
reception time t1(ST)R in station time ST at the receiving electronics at receiver 1
equal to the time tag T T for the data point.



OBSERVABLES

13�109

13.8.2 COMPUTED VALUES, MEDIA CORRECTIONS, AND PARTIAL

DERIVATIVES OF QUASAR INTERFEROMETRY OBSERVABLES

13.8.2.1 Computed Values of Narrowband Quasar Interferometry INQ

Observables

The quasar light-time solution (Section 8.4.3) starts with the reception time
t1(ST)R of the quasar wavefront in station time ST at the receiving electronics at
receiver 1 and produces the reception time t2(ST)R of the quasar wavefront in
station time ST at the receiving electronics at receiver 2. Given the quasar light-
time solution, the precision quasar delay τ, which is defined by Eq. (11�65), is
calculated from Eq. (11�67).

In order to calculate the computed value of a narrowband quasar
interferometry (INQ) observable, quasar light-time solutions are performed at
the end and at the start of the count interval Tc. The reception times of the quasar
wavefront in station time ST at the receiving electronics at receiver 1 at the end
and start of the count interval are given by the data time tag T T plus and minus
one-half the count interval Tc, respectively (see Eqs. 10�37 with a subscript R
added to each reception time). Given the two quasar light-time solutions, the
precision quasar delay τe at the end of the count interval and the precision quasar
delay τs at the start of the count interval are calculated from Eq. (11�67). Given
these two quasar delays, the computed value of an INQ observable is calculated
from Eq. (13�167), where the effective frequency ω  of the quasar and the count
interval Tc are obtained from the data record for the data point on the OD file.

13.8.2.2 Computed Values of Wideband Quasar Interferometry IWQ

Observables

In order to calculate the computed value of a wideband quasar
interferometry (IWQ) observable, one quasar light-time solution is performed.
The reception time of the quasar wavefront in station time ST at the receiving
electronics at receiver 1 is given by the data time tag T T (see Eq. 10�36 with a
subscript R added to the reception time). Given the quasar light-time solution,
the precision quasar delay τ is calculated from Eq. (11�67). The modulo number
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M for the data point, which is given by Eq. (13�169), is obtained from the data
record for the data point on the OD file. If     M > 0, the computed value of the
IWQ observable is calculated from Eq. (13�170). However, if     M = 0 , the
computed value of the IWQ observable is calculated from Eq. (13�174).

13.8.2.3 Media Corrections for Computed Values of Quasar Interferometry

Observables

From Eq. (13�167), the media correction for the computed value of a
narrowband quasar interferometry (INQ) observable is calculated in the Regres
editor from:

    
∆

∆ ∆
INQ

T
=

−( )ω τ τe s

c
Hz (13�175)

where ∆τe and ∆τs are media corrections to the quasar delays τe and τs at the end
and start of the count interval Tc. The media corrections ∆τe and ∆τs are calculated
from Eqs. (10�31) and (10�32) as described in Section 10.2. In these equations, the
charged-particle corrections at receiver 2 and at receiver 1 are negative, which
corresponds to propagation at the phase velocity for the effective quasar
frequency ω . If a receiver is an Earth satellite, the troposphere and charged
particle corrections for that receiver are zero.

From Eq. (13�168) or (13�171), the media correction for the computed
value of a wideband quasar interferometry (IWQ) observable is given by:

    
∆

∆ ∆
IWQ =

−
−

×
φ φ
ω ω

B A

B A
109 ns (13�176)

where ∆φ B and ∆φ A are media corrections to the measured phases φ B and φ A,
which are defined after Eq. (13�168). From Eq. (13�164), these phase corrections
are given by:

  ∆ ∆φ ω τB B B= cycles (13�177)
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  ∆ ∆φ ω τA A A= cycles (13�178)

where ∆τ  B and ∆τ  A are media corrections to the quasar delay τ for effective
quasar frequencies   ωB and   ωA, respectively. The troposphere corrections are
not frequency dependent and produce troposphere corrections for τ in
Eq. (13�170) or (13�174). We only need to consider the charged-particle
corrections here. The charged-particle corrections for ∆τ  B and ∆τ  A are given by:

    
∆τ

ω ωB
B B

= − −






C C2

2
1
2 s (13�179)

    
∆τ

ω ωA
A A

= − −






C C2

2
1
2 s (13�180)

where the constants     C2  and C1 are functions of the electron content along the
down-leg light paths to receivers 2 and 1, respectively. The first and second
terms in these equations are the charged-particle corrections along the down-leg
light paths to receivers 2 and 1, respectively. The lead negative sign appears
because the signals to each station propagate at the phase velocity, which is
greater than the speed of light c. Substituting Eqs. (13�177) to (13�180) into
Eq. (13�176) gives the charged-particle contribution to the media correction for a
wideband quasar interferometry (IWQ) observable:

    

∆IWQ
C C C C

 (charged particles)
A B A B

=
−

× ≈
−

+





×2 1 9 2 1
2

910

2

10
ω ω ω ω

ns (13�181)

The approximate form of this equation is the charged-particle correction on the
down leg to receiver 2 minus the corresponding correction for receiver 1, where
each correction is the increase in the light time due to propagation at the group
velocity (less than the speed of light c) for the average frequency   ω ωA B+( ) 2.
This correction is the same as the group-velocity charged-particle correction for
Eq. (13�170) or (13�174).
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From the above, the media correction for the computed value of a
wideband quasar interferometry (IWQ) observable given by Eq. (13�170) or
(13�174) is calculated in the Regres editor from:

    ∆IWQ = ∆τ × 109 ns (13�182)

where the media correction for the quasar delay τ  is calculated from
Eq. (10�30) as described in Section 10.2. The charged-particle corrections along
the light paths to receivers 2 and 1 are positive, and correspond to propagation
at the group velocity for the average frequency   ω ωA B+( ) 2, which is obtained
from the data record for the data point on the OD file. If a receiver is an Earth
satellite, the troposphere and charged-particle corrections for that receiver are
zero.

13.8.2.4 Partial Derivatives of Computed Values of Quasar Interferometry

Observables

From Eq. (13�167), the partial derivative of the computed value of a
narrowband quasar interferometry (INQ) observable with respect to the
solve-for and consider parameter vector q is given by:
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From Eq. (13�170) or (13�174), the partial derivative of the computed value of a
wideband quasar interferometry (IWQ) observable with respect to the
solve-for and consider parameter vector q is given by:

      

∂ IWQ
∂q

=
∂τ
∂q

× 109 (13�184)

The partial derivatives of the quasar delay τ in Eq. (13�184) and the delays
τe and τs at the end and start of the count interval in Eq. (13�183) with respect to
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the solve-for and consider parameter vector q are calculated from the
formulation of Section 12.5.4 as described in that section.
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13.9 ANGULAR OBSERVABLES

This section specifies the formulation for the computed values of angular
observables and the partial derivatives of the computed values of angular
observables with respect to the solve-for and consider parameter vector q.
Angular observables are measured on the down-leg light path from a free or a
landed spacecraft to a tracking station on Earth at the reception time t3 at the
tracking station. Observed angles are measured in pairs (e.g., azimuth and
elevation angles). The formulation for the computed values of angular
observables is given in Section 9. This formulation is also used to calculate
auxiliary angles. Auxiliary angles are calculated at the reception time at the
receiving station on Earth and for round-trip light-time solutions at the
corresponding transmission time t1 at the transmitting station on Earth.
Auxiliary angles are also calculated at the transmitting GPS satellite and at the
receiving TOPEX satellite. For quasar data types, the auxiliary angles are the
angular coordinates of the transmitting quasar. Computed values of angular
observables are corrected for atmospheric refraction. In general, auxiliary angles
are not corrected for refraction (see Section 9.3.1 for details).

Section 13.9.1 refers to Section 9 and summarizes how the various parts of
this formulation are used to calculate the computed values of angular
observables. The formulation for the partial derivatives of computed values of
angular observables with respect to the parameter vector q is given in Section
13.9.2.

13.9.1 COMPUTED VALUES OF ANGULAR OBSERVABLES

The formulation for the computed values of angular observables is given
in Sections 9.1 through 9.4. Figures 9�1, and 9�3 to 9�5 show the angle pairs:
hour angle   HA( ) and declination (δ ), azimuth (σ ) and elevation (γ ), X and Y,
and   ′X  and   ′Y , respectively. Each of these figures shows the coordinate system
to which the angle pair is referred and unit vectors in the directions of increases
in these angles. The HA-δ angle pair plus the east longitude λ of the tracking
station on Earth are referred to the Earth-fixed rectangular coordinate system
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aligned with the Earth�s true pole, prime meridian, and true equator of date. The
remaining three angle pairs are referred to the north-east-zenith coordinate
system at the tracking station, which is shown in Figure 9�2. The unit vectors N,
E, and Z, with rectangular components referred to the above-referenced Earth-
fixed rectangular coordinate system are calculated from Eqs. (9�3) to (9�8). The
unit vectors shown in Fig 9�1 are calculated from the computed values of the
angular observables and the tracking station longitude shown in that figure. The
unit vectors shown in Figs. 9�3 to 9�5 are calculated from the computed values of
the angular observables and the unit vectors N, E, and Z. All of the unit vectors
in the directions of increases in the angular observables are referred to the Earth-
fixed true rectangular coordinate system. Eq. (9�15) is used to transform these
Earth-fixed unit vectors to the corresponding space-fixed unit vectors referred to
the celestial reference frame of the planetary ephemeris (see Section 3.1.1). The
unit vector     �D  in the direction of increasing elevation angle γ is used in
calculating the refraction correction. All of the unit vectors are used in calculating
the partial derivatives of the computed values of the angular observables with
respect to the parameter vector q.

Calculation of the computed values of a pair of angular observables
requires the unit vector L directed outward along the incoming raypath at the
receiving station on Earth. Given the spacecraft light-time solution, the space-
fixed unit vector L, which has rectangular components referred to the space-fixed
coordinate system of the planetary ephemeris (nominally aligned with the mean
Earth equator and equinox of J2000) is calculated from Eqs. (9�16), (9�19), and
(9�21). The vector L includes the aberration correction calculated from Eq. (9�19).
Eq. (9�22) transforms L from space-fixed to Earth-fixed components, which are
referred to the Earth�s true pole, prime meridian, and true equator of date. Eq.
(9�23) corrects L for atmospheric refraction. The refraction correction  ∆ rγ , which
is the increase in the elevation angle γ due to atmospheric refraction, is calculated
from the modified Berman-Rockwell model as specified in Section 9.3.2.1 or the
Lanyi model as specified in Section 9.3.2.2. Given the Earth-fixed refracted unit
vector L, computed values of hour angle   HA( ) and declination (δ ) are calculated
from Eqs. (9�38) to (9�41). Given this L and the Earth-fixed unit vectors N, E, and
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Z, computed values of azimuth (σ ) and elevation (γ ), X and Y, and   ′X  and   ′Y

are calculated from Eqs. (9�42) to (9�48).

Section 9.4 gives equations for differential corrections to the computed
values of angular observables due to small solve-for rotations of the reference
coordinate system at the tracking station about each of its three mutually
perpendicular axes. Figure 9�1 shows rotations of the reference coordinate
system PEQ for hour angle   HA( ) and declination (δ ) angles through the small
angles ′η  about P, ε  about E, and ′ζ  about Q. Figures 9�3 to 9�5 show rotations
of the reference coordinate system NEZ for azimuth (σ ) and elevation (γ ), X and
Y, and   ′X  and   ′Y  angles through the small angles η about N, ε about E, and ζ
about Z. The differential corrections for the computed values of the angular
observables are functions of the computed values of the angular observables and
the solve-for rotations.

The tracking station coordinates used to calculate the computed values of
angular observables should be corrected for polar motion. The maximum effect
of polar motion on the computed values of angular observables is less than
0.0002 degree. From Section 9.2, the accuracy of angular observables is about
0.001 degree. Hence, the geocentric latitude φ and east longitude λ of a tracking
station on Earth, which are used to calculate computed values of angular
observables at that station, are not corrected for polar motion.

13.9.2 PARTIAL DERIVATIVES OF COMPUTED VALUES OF ANGULAR

OBSERVABLES

Subsection 13.9.2.1 gives the high-level equations for the partial
derivatives of computed values of angular observables with respect to the solve-
for and consider parameter vector q. The required sub partial derivatives of the
computed values of angular observables with respect to the position vectors of
the receiver and transmitter are developed in Subsection 13.9.2.2.
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13.9.2.1 High-Level Equations

For most parameters, the partial derivative of the computed value z of an
angular observable with respect to the parameter vector q is calculated from:
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If the spacecraft light-time solution is performed in the Solar-System barycentric
space-time frame of reference, C is the Solar-System barycenter. If the spacecraft
light-time solution is performed in the local geocentric space-time frame of
reference, C refers to the Earth E. The partial derivatives of the computed value z
of an angular observable with respect to the space-fixed position vector       r 3 3

C t( )
of the receiving station on Earth at the reception time t3 and the space-fixed
position vector       r 2 2

C t( ) of the spacecraft at the transmission time t2 are derived in
Subsection 13.9.2.2. The partial derivatives of these space-fixed position vectors
with respect to the parameter vector q are calculated as described in Sections 12.2
and 12.3. These partial derivatives are used in Eq. (12�12) to calculate the partial
derivative of the transmission time t2(ET) at the spacecraft with respect to the
parameter vector q.

The partial derivatives of the computed value z of an angular observable
with respect to the a, b, and c quadratic coefficients of the time difference

    
UTC � ST( )t3

 at the reception time t3 at the receiving station on Earth are given
by:
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SECTION  13

13�118

    

∂ z
∂ c

=
∂ z
∂ a

t3 − t0( )2 (13�188)

where t0 is the start time of the time block for the quadratic coefficients which
contains the reception time t3. These epochs can be in station time ST or
Coordinated Universal Time UTC. The down-leg range rate     úr23  is calculated in
the light-time solution using Eqs. (8�56) to (8�59).

The partial derivatives of the computed values of angular observables
with respect to the solve-for rotations of the reference coordinate system (to
which the angular observables are referred) are given by the coefficients of these
rotations in Eqs. (9�55), (9�56) and (9�60) to (9�65).

The computed values of angular observables are referred to the unit
vectors P, Q, and E in Figure 9�1 and N, E, and Z in Figures 9�3 to 9�5. These unit
vectors are functions of the coordinates of the tracking station on Earth. A one
meter change in the station location will change the angular orientation of these
unit vectors and hence the computed values of angular observables by about
0.00001 degree, which is negligible in relation to the accuracy of about
0.001 degree for angular observables. Hence, the partial derivatives of the
computed values of angular observables with respect to this particular effect of
changes in the station coordinates are ignored.

13.9.2.2 Partial Derivatives of Angular Observables With Respect to Position

Vectors of Receiving Station and Spacecraft

From Figures 9�1, and 9�3 to 9�5, the partial derivatives of computed
values of angular observables with respect to the space-fixed position vector

      r 2 2
C t( ) of the spacecraft at the transmission time t2 are given by:
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From Figure 9�1 and Eq. (9�41),
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where the superscript T indicates the transpose of the column unit vector.
Changing the signs of these partial derivatives gives the corresponding partial
derivatives of computed values of angular observables with respect to the space-
fixed position vector       r 3 3

C t( ) of the receiving station on Earth at the reception
time t3:
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In these equations, the unit vectors     A D A D A D A D, , � , � , , , ,       and ′ ′ ′′ ′′  are
calculated as described in Section 9.2.6 and transformed from Earth-fixed
rectangular components to space-fixed (subscript SF) rectangular components
referred to the celestial reference frame of the planetary ephemeris using
Eq. (9�15). The angles in these equations are the computed values of the angular
observables and the auxiliary angle   λ S/C . The down-leg range     r23 is calculated
in the spacecraft light-time solution using Eqs. (8�56) to (8�58).
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ACRONYMS

AU astronomical unit; the scaling factor AU is the number of
kilometers per astronomical unit ≈149,600,000

AZ azimuth

BC barycentric
BVE Block 5 exciter
BVR Block 5 receiver
BWG beam wave guide

COI center of integration
CRESID correction to the computed observable due to media corrections,

calculated in the Regres editor and written on the Regres file
CSP command statement processor (commands)

DEC declination
DSN Deep Space Network
DSS Deep Space Station

EF Earth-fixed components of a vector
EL elevation
EOP Earth Orientation Parameter (file)
EPHCOR ephemeris correction program
ET ephemeris time; this means coordinate time, the time coordinate of

general relativity

GC geocentric
GIN general input program of the Orbit Determination Program set; the

GIN file written by program GIN
GPS Global Positioning System; also, GPS master time

HA hour angle
HAMS hour angle of the (fictitious) mean Sun
HEF high efficiency (antenna)
HRTW Huang, Ries, Tapley, and Watkins (1990)

IERS International Earth Rotation Service
INS narrowband spacecraft interferometry
IWS wideband spacecraft interferometry

JD Julian date
JPL Jet Propulsion Laboratory
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LLR Lunar Laser Ranging
LTCRIT light-time solution criterion

MDA Metric Data Assembly

NOLT (maximum) number of light-time (solution iterations)
NSP Network Simplification Program

ODE Orbit Data Editor
ODP Orbit Determination Program

PCB participant central body
PEF planetary ephemeris frame
PERB input array that determines which acceleration terms due to each

body in the array are calculated
PN pseudonoise
PPN Parameterized Post�Newtonian (n-body point-mass metric tensor)
PRA Planetary Ranging Assembly
PV program of the Orbit Determination Program set that generates

the spacecraft trajectory and the corresponding partial derivatives
with respect to the estimable parameters

P,V, and A position, velocity, and acceleration (vectors)

RAMS right ascension of (fictitious) mean Sun
RANG Next-Generation Ranging Assembly
Regres program of the Orbit Determination Program set that calculates the

computed values of the observables and the corresponding partial
derivatives with respect to the estimable parameters

RESID the observed minus computed residual written on the Regres file
RF radio frame
RSS root-sum-square

SF space-fixed components of a vector
SI International System of Units
SRA Sequential Ranging Assembly
ST station time
STOIC file containing the TP (timing and polar motion) array

TAI International Atomic Time
TDB Barycentric Dynamical Time
TDT Terrestrial Dynamical Time (also called Terrestrial Time)
TOPEX (Ocean) Topography Experiment (Satellite)
TP timing and polar (motion array)
TPX TOPEX Master Time
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UT Universal Time
UT1 observed Universal Time
UTC Coordinated Universal Time

VLBI very long baseline interferometry

XBNAM names of extra bodies (input array)
XBNUM numbers of extra bodies (input array)
XBPERB same as PERB array for extra bodies (asteroids and comets)
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