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1 Introduction

Different formalisms for solving problems of inference under uncertainty have
been developed so far. The most popular numerical approach is the theory of
Bayesian inference [42]. More general approaches are the Dempster-Shafer
theory of evidence [51], and possibility theory [16], which is closely related
to fuzzy systems. For these systems computer implementations are available.
In competition with these numerical methods are different symbolic approaches.
Many of them are based on different types of non-monotonic logic.

From a practical point of view, De Kleer’s idea of assumption-based truth
maintenance systems (ATMS) gives a general architecture for problem solvers
in the domain of reasoning under uncertainty [14, 15]. One of its advantages
is that it is based on classical propositional logic. In contrast, most systems
∗Research supported by grants No. 21-42927.95 and 21-342927.95 of the Swiss National

Foundation for Research.
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based on non-monotonic logic abandon the framework of classical logic. As a
consequence, ATMS (easier than non-classical logical systems) can be combined
with probability theory, which gives both probability theory as well as ATMS
an interesting additional dimension. This has formerly been noted in [40] and
[49].

The idea of combining classical logic with probability theory leads to a more
general theory of probabilistic argumentation systems [3, 22]. This the-
ory is an alternative approach for non-monotonic reasoning under uncertainty.
It allows to judge open questions (hypotheses) about the unknown or future
world in the light of the given knowledge. From a qualitative point of view,
the problem is to derive arguments in favor and against the hypothesis of in-
terest. An argument can be seen as a chain of possible events that makes the
hypothesis true. Finally, a quantitative judgement of the situation is obtained
by considering probabilities that the arguments are valid. The credibility of a
hypothesis can then be measured by the total probability that it is supported
by arguments. The resulting degree of support corresponds to (normalized)
belief in the theory of evidence [35, 51, 55, 58]. A quantitative judgement is
often more useful and can help to decide whether a hypothesis can be accepted,
rejected, or whether the available knowledge does not permit to decide.

A fundamental property of the theory is that additional knowledge may cause
the judgement of the situation to change non-monotonically. Clearly, the prop-
erty of non-monotonicity is required in any mathematical formalism for rea-
soning under uncertainty. It reflects a natural property of how a human’s con-
viction or belief can change when new information is added. The theory of prob-
abilistic argumentation systems shows that non-monotonicity can be achieved
without leaving the field of classical logic.

A particular system called ABEL [4, 5] is an example of a probabilistic argu-
mentation systems. Examples from a broad spectrum of application domains
show that ABEL is a general and powerful tool for reasoning under uncertainty
[3]. It includes an appropriate modeling and query language, as well as corre-
sponding inference mechanisms. The system has on an open architecture, that
permits the later inclusion of further deduction techniques.

The purpose of this chapter is to present the main theoretical and computa-
tional concepts of probabilistic argumentation systems. The text is organized
as follows: Subsection 1.1 explains the general idea and the motivation of the
theory; Subsection 1.2 discusses from a practical point of view the problem of
representing uncertainty by propositional logic; Subsection 1.3 uses an introduc-
tory example to illustrate the main terms and concepts; Section 2 introduces
formally the theoretical model of probabilistic argumentation systems on the
basis of propositional logic; Section 3 presents appropriate techniques for com-
puting sets of arguments efficiently; Section 4 describes an alternative approach
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for computing numerical degrees of support by generating families of indepen-
dent belief functions; Section 5 sketches the generalization of the theoretical
model and the computational techniques to systems with non-binary variables;
Section 6, finally, contains some concluding remarks and an outlook.

1.1 The General Idea

The basic idea of the theory is very simple. It is supposed that the part of
the knowledge needed to solve a given problem can be described by a number
of variables. Usually, every piece of information concerns only a restricted
number of variables. The knowledge can then be encoded by constraints,
restrictions, or, more generally, by relations on these variables. Relations
are commonly described by logical expressions or mathematical equations or
inequalities. For centuries, this way of encoding knowledge has been proved
to be a convenient and efficient method for describing and solving problems in
many conceivable fields.

The same idea of encoding knowledge is still applicable if parts of the available
knowledge are uncertain. For example, it can happen that a given information
is only valid if some additional conditions or circumstances are satisfied. Such
a situation can be described by introducing a special type of so-called envi-
ronmental variables. They are used to represent unpredictable conditions or
circumstances, possible interpretations, unknown risks, interference factors, er-
rors of measurement, and so on. The true value of an environmental variable is
supposed to be determined by independent external circumstances or influences
which are not further specified.

A collection of relations on “normal” and environmental variables can be useful
for answering or judging open questions or hypotheses in the light of the
given uncertain knowledge. Intuitively, judging a hypothesis means weighing
the pros and cons. More precisely, the problem is to find arguments support-
ing the hypothesis, respectively counter-arguments refuting the hypothesis.
An argument is like a chain of possible events or a particular combination of
circumstances that allows to deduce the truth or the falsity of the hypothesis
from the given knowledge. The basic elements for building arguments are the
environmental variables. Restrictions on environmental variables are called as-
sumptions. Finally, arguments are combinations of assumptions supposed to
hold.

Example 1.1 Suppose that John’s birthday party only takes place if his fever
has disappeared and if it is not raining. This piece of information can be mod-
eled, for example, on the basis of three variables f ∈ {yes,no}, r ∈ {yes,no}, and
p ∈ {yes,no} (f stands for “fever”, r stands for “rain”, p stands for “party”).
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f and w are designated to be environmental variables. The relation between
the variables can be expressed by a logical expression 〈f = no〉 ∧ 〈r = no〉 ↔
〈p = yes〉. Because only binary variables are used in the model, it is possible to
consider f , r, and p as propositions and to express the given knowledge more
conveniently as ¬f ∧ ¬r ↔ p. From this point of view, f and r are assump-
tions which are the basic elements for building arguments. The hypothesis to
be judged, that is the question whether the party takes place or not, can be ex-
pressed by p. Clearly, ¬f ∧ ¬r is a supporting argument for p, whereas f and r
are counter-arguments.

A more seizable judgement of the hypothesis can be obtained, if every envi-
ronmental variable is an independent random variable with a corresponding
probability distribution. An argument can then be weighed quantitatively by
computing the probability that the argument is valid. Clearly, every argument
or counter-argument provides an additional reason to believe or disbelieve the
hypothesis. Therefore, the credibility of a hypothesis can be measured by the
total probability that it is supported or refuted by arguments. More precisely,
the degree of support of a hypothesis is the probability that at least one
supporting argument is valid. Similarly, the degree of possibility of a hy-
pothesis is the probability that no argument against the hypothesis is valid.
Such a quantitative judgement of hypotheses is often more useful and can help
to decide whether a hypothesis can be accepted, rejected, or whether the avail-
able knowledge does not permit to decide.

Example 1.2 Consider the story of John’s birthday party in Example 1.1.
Suppose that the environmental variables f and r are random variables with
the following estimated probabilities: p(f = yes) = 0.2, p(f = no) = 0.8,
p(r = yes) = 0.4 and p(r = no) = 0.6. Clearly, the probability of the sup-
porting argument is p(¬f ∧¬r) = 0.8 · 0.6 = 0.48. Note that ¬f ∧¬r is the only
supporting argument for p. The degree of support of p is therefore 0.48.

The realization of these general ideas presupposes the specification of a formal
system that allows to encode the given knowledge. The system must permit to
define variables with corresponding sets of possible values. Somehow, a clear dis-
tinction between “normal” and environmental variables must be supported, and
it should be possible to indicate corresponding probability distributions for the
environmental variables. Furthermore, the systems must provide an adequate
language for expressing all sorts of relations between the variables and also for
the formulation of the hypotheses. Finally, an appropriate inference mechanism
must allow to evaluate hypotheses qualitatively and quantitatively. A system
that satisfies all these requirements is called a probabilistic argumentation
system. ABEL is an example of a probabilistic argumentation system. The de-
scriptive power of ABEL has been demonstrated by a rich collection of examples
from different fields [3].
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Often, it is convenient to restrict probabilistic argumentation systems to the
case of binary variables. The reason for this is that the theoretical model
becomes more compact and the computational effort remains relatively small.
Moreover, there is still a number of interesting applications which are covered
by this restricted case. Obviously, propositional logic is an expressive lan-
guage for describing systems with binary variables. The main topic of this
chapter is to develop a theory of argumentation systems on the basis of propo-
sitional logic. More general argumentation systems are based on the notion of
set constraints [6, 23, 24]. This way of generalizing the theory is sketched
in Section 5. Other systems are possible, for example those based on linear
equations and inequalities, but they will not be discussed here (see [21]).

1.2 Representing Uncertainty by Propositional Logic

Propositional logic is one of the simplest and most convenient ways of encoding
knowledge. The problem is that pure propositional logic, at first sight, seems
to be unsuitable for representing uncertainty. However, uncertainty can be cap-
tured very easily by considering particular propositions called assumptions. In
this subsection, representing uncertainty by assumptions will be discussed from
a general point of view. Later on, in Subsection 1.3, the use of this technique
will be illustrated by an introductory example.

The simplest cases of propositional knowledge are facts and simple rules. For
example, if the proposition p1 stands for an arbitrary statement, then p1 repre-
sents the fact that the statement p1 is true. Similarly, ¬p1 represents that fact
that the statement p1 is false. Furthermore, if p2 is a second proposition, then
p1 → p2 represent a simple rule of the form “if p1 is true, then p2 is also true”.
Similarly, p1 → ¬p2, ¬p1 → p2, and ¬p1 → ¬p2 are other simple rules for p1 and
p2. Thus, facts and simple rules can easily be handled by propositional logic .
However, facts and rules depend often on unknown conditions or circumstances
and are therefore not fully reliable. For example, if p1 represents a testimony in
court, then the truth of p1 depends on the credibility of the witness. Such cases
of uncertain facts and uncertain simple rules can be handled as shown in
Table 1.1:

The additional proposition a1 is an assumption. It represents the unknown
conditions or circumstances on which the facts and rules depend on. Note that
a1 ∧ p1 → p2 is an equivalent expression for uncertain simple rules.

More general cases of uncertain knowledge are handled similarly. Let γ be an
arbitrary propositional formula that expresses somehow the relation between
different propositions. The corresponding case where γ is not fully reliable can
then be represented by a1 → γ. Furthermore, it may be possible to distinguish
between independent circumstances. For example, a1 ∧ a2 → γ represents a
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Type of Logical Natural
Knowledge Representation Language

fact p1 p1 is true
uncertain p1 is true under

fact
a1 → p1 some circumstances a1

simple rule p1 → p2 p1 implies p2

uncertain p1 implies p2 under
simple rule

a1 → (p1 → p2)
some circumstances a1

Table 1.1: Representing uncertain facts and rules.

situation where γ depends simultaneously on different circumstances a1 and a2.
From a general point of view, uncertainty is therefore captured by arbitrary
propositional formulas containing assumptions.

1.3 Introductory Example

The general idea of probabilistic argumentation systems will now be illustrated
more extensively by discussing the problem of detecting faulty components of
a broken technical system. Suppose that the technical system to be considered
is a logical circuit with four components C1 (logical or-gate), C2 (inverter),
C3 (first logical and-gate), and C4 (second logical and-gate). Clearly, it is
possible that any of the four components behaves abnormally with a certain
prior probability. Such an abnormal behavior of the i-th component can be
modeled by a proposition abi. A = {ab1, ab2, ab3, ab4} is the set of all such
propositions. The elements of A are also called assumptions. Furthermore,
if a truth value xi ∈ {0, 1} is associated with each assumption abi, indicating
whether the component behaves abnormally (xi = 1) or correctly (xi = 0),
then every Boolean vector s = (x1, . . . , x4) represents a possible state of the
system. In a more general framework, system states are also called scenarios.
NA = {0, 1}4 = {s0, . . . , s15} denotes the set of all possible scenarios:

s0 = (0, 0, 0, 0), s4 = (0, 1, 0, 0), s8 = (1, 0, 0, 0), s12 = (1, 1, 0, 0),
s1 = (0, 0, 0, 1), s5 = (0, 1, 0, 1), s9 = (1, 0, 0, 1), s13 = (1, 1, 0, 1),
s2 = (0, 0, 1, 0), s6 = (0, 1, 1, 0), s10 = (1, 0, 1, 0), s14 = (1, 1, 1, 0),
s3 = (0, 0, 1, 1), s7 = (0, 1, 1, 1), s11 = (1, 0, 1, 1), s15 = (1, 1, 1, 1).

A particular scenario ŝ ∈ NA is supposed to represent the true but unknown state
of the system. Furthermore, if failure probabilities πi = p(xi=1) are known for
the four components, then the prior probability of a particular scenario s to be

6



C1

C3

C2

C4

0  =  a

0  =  b

1  =  c

1  =  d

x  =  1

y  =  1
v

w

the true scenario is given by

p(s) =
4∏
i=1

πi
xi · (1− πi)(1−xi).

For example, suppose that π1 = 0.1, π2 = 0.2, π3 = 0.3, and π4 = 0.3 are the
failure probabilities of the components. The prior probabilities of the individual
scenarios are then

p(s0) = 0.3528, p(s4) = 0.0648, p(s8) = 0.0392, p(s12) = 0.0098,
p(s1) = 0.1512, p(s5) = 0.0378, p(s9) = 0.0168, p(s13) = 0.0042,
p(s2) = 0.1512, p(s6) = 0.0378, p(s10) = 0.0168, p(s14) = 0.0042,
p(s3) = 0.0882, p(s7) = 0.0162, p(s11) = 0.0072, p(s15) = 0.0018.

The situation becomes more interesting, if additional knowledge about the sys-
tem is considered. Suppose that this additional knowledge can be expressed
by propositional sentences. For example, if the four components C1 to C4 are
connected as shown in Figure 1.1, then the system can be described by

ξ1 = ¬ab1 → (a ∨ v ↔ x), ξ3 = ¬ab3 → (c ∧ d↔ w),
ξ2 = ¬ab2 → (¬x↔ v), ξ4 = ¬ab4 → (v ∧ w ↔ y),

where P = {a, b, c, u, v, x, y} is a second set of propositions involved in the
system description.

Figure 1.1: A faulty digital circuit with four components.

Additional information about the system comes from observing actual input
and output values. In Figure 1.1, input and output values are observed for a,
b, c, d, x, and y. This additional information can be encoded by the following
propositional sentences:

ξ5 = ¬a, ξ6 = ¬b, ξ7 = c, ξ8 = x, ξ9 = y.
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The description of the system is now complete. The conjunction ξ = ξ1∧· · ·∧ξ9 is
called knowledge base, and the tuple PASP = (ξ, P,A,Π), Π = {π1, . . . , π4},
is a probabilistic argumentation system. Note that for the given knowledge
base, some inconsistent scenarios can be excluded. For example, the scenario
s0 = (0, 0, 0, 0) is no longer allowed because it represents the case where all
components are intact. This is clearly not possible in the situation of Figure 1.1,
where the observed values for x and y are not compatible with the correct
behavior of the system. For the same reason, it is possible to exclude the
scenarios s1 to s8, s10, s13, and s14. Finally, a set CA(ξ) = {s9, s11, s12, s15} of
consistent scenarios remains, and the true scenario ŝ is either

s9 = (1, 0, 0, 1), s11 = (1, 0, 1, 1), s12 = (1, 1, 0, 0), or s15 = (1, 1, 1, 1).

Clearly, excluding inconsistent scenarios must also influence the quantitative
judgement of the situation. In accordance with probability theory, this means
that the prior probability measure on the set of scenariosNA must be conditioned
on the fact that the true scenario ŝ is in CA(ξ). This leads to the new probability
measure p′ given by

p′(s) = p(s|CA(ξ)) =
{
k−1 · p(s), if s ∈ CA(ξ),
0, otherwise.

The prior probabilities of the consistent scenarios s9, s11, s12, and s15 are there-
fore divided by the normalization factor

k =
∑

s∈CA(ξ)

p(s) = p(s9) + p(s11) + p(s12) + p(s15) = 0.0356.

This leads to the following posterior probabilities:

p′(s9) = 0.0168
0.0356 = 0.472, p′(s12) = 0.0098

0.0356 = 0.275,

p′(s11) = 0.0072
0.0356 = 0.202, p′(s15) = 0.0018

0.0356 = 0.051.

The posterior failure probabilities of the components Ci can now be computed
by considering the corresponding assumptions abi as hypotheses to be judged
in the light of the given situation. More generally, hypotheses are arbitrary
propositional sentences with symbols in A and P .

Scenarios for which a given hypothesis h certainly becomes true are called sup-
porting scenarios for h. For example, s9 is a supporting scenario for ab1
because s9 is consistent and it implies that C1 is working abnormally. The
complete sets of supporting scenarios are

SPA(ab1, ξ) = {s9, s11, s12, s15}, SPA(ab3, ξ) = {s11, s15},
SPA(ab2, ξ) = {s12, s15}, SPA(ab4, ξ) = {s9, s11, s15}.
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Sets of scenarios can be represented more efficiently by minimal conjunctions of
literals of assumptions. For example, {s9, s11, s15} can be represented by two
conjunctions ab1 ∧¬ab2 ∧ ab4 and ab1 ∧ ab3 ∧ ab4. Such conjunctions are called
supporting arguments for h. A minimal supporting argument represents
a sufficient condition or a minimal chain of possible events that makes the
hypothesis true.

Finally, degrees of support for the hypotheses ab1 to ab4 are obtained by
adding the corresponding posterior probabilities of the supporting scenarios:

dsp(ab1, ξ) = p′(s9) + p′(s11) + p′(s12) + p′(s15) = 1,
dsp(ab2, ξ) = p′(s12) + p′(s15) = 0.326,
dsp(ab3, ξ) = p′(s11) + p′(s15) = 0.253,
dsp(ab4, ξ) = p′(s9) + p′(s11) + p′(s15) = 0.725.

The above results can be interpreted as posterior failure probabilities of the
individual components given the system description and the observed input and
output values. Component C1 is certainly broken. Furthermore, dsp(ab2 ∨
ab3 ∨ ab4, ξ) = 1 implies that one of the components C2, C3, or C4 is broken
simultaneously with C1. Most probably, C2 is the second broken component.
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2 Propositional Argumentation Systems

This section introduces formally the fundamental concepts of probabilistic argu-
mentation systems. The model will be based on propositional logic. Therefore,
only binary variables will be allowed at the beginning. The reason for this re-
striction is to make the theory more compact. Later, in Section 5, it will be
shown that the complete theoretical model and also the computational tech-
niques of Section 3 can be generalized to systems with non-binary variables.

2.1 Propositional Logic

Propositional logic deals with declarative statements that can be either true
or false. Such statements are called propositions. Let P = {p1, . . . , pn} be
a finite set of propositions. The symbols pi ∈ P are called atoms or atomic
formulas. The impossible statement (contradiction or falsity) is denoted by
⊥, and > represents the statement that is always true (tautology). Compound
formulas are built by the following syntactic rules:

(1) atoms, ⊥, and > are formulas;

(2) if γ is a formula, then ¬γ is a formula;

(3) if γ and δ are formulas, then (γ ∧ δ), (γ ∨ δ), (γ → δ), and
(γ ↔ δ) are formulas.

Often, unnecessary parentheses can be omitted, e.g. γ ∧ δ instead of (γ ∧ δ).
Furthermore, by assigning priority in decreasing ordering ¬, ∧, ∨,→, some other
parentheses can be eliminated, e.g. γ → δ∧λ instead of γ → (δ∧λ). The set LP
of all formulas generated by the above recursive rules is called propositional
language over P . A formula γ ∈ LP is also called propositional sentence.

2.1.1 Semantics

The meaning of a propositional sentence is obtained by assigning truth values 0
(false) or 1 (true) to the propositions. The truth value of a compound formula
can then be obtained according to Table 2.2:

An assignment of truth values to the elements of a set P = {p1, . . . , pn} is
called interpretation relative to P . NP = {0, 1}n denotes the set of all 2n

different interpretations. Every interpretation x ∈ NP can be seen as a point or
a vector x = (x1, . . . , xn) in the n-dimensional binary product space NP . Each
xi ∈ {0, 1} denotes a binary variable that is associated with the corresponding
proposition pi.
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γ δ ⊥ > ¬γ γ ∧ δ γ ∨ δ γ → δ γ ↔ δ
0 0 0 1 1 0 0 1 1
0 1 0 1 1 0 1 1 0
1 0 0 1 0 0 1 0 0
1 1 0 1 0 1 1 1 1

Table 2.2: Truth values of compound formulas.

Let x be an arbitrary interpretation relative to P . If (according to Table 2.2)
γ ∈ LP evaluates to 1, then x is called a model of γ. Otherwise, x is a counter-
model of γ. The set of all models of γ is denoted by NP (γ) ⊆ NP . If NP (γ) = Ø,
then γ is called unsatisfiable. Otherwise, it is called satisfiable.

The notions of models and counter-models links propositional logic to the al-
gebra of subsets of interpretations:

(1) NP (⊥) = Ø,

(2) NP (>) = NP ,

(3) NP (¬γ) = NP −NP (γ),

(4) NP (γ ∧ δ) = NP (γ) ∩NP (δ),

(5) NP (γ ∨ δ) = NP (γ) ∪NP (δ).

A propositional sentence γ entails another sentence δ (denoted by γ |= δ) if and
only if NP (γ) ⊆ NP (δ). In that case, δ is also called a logical consequence of
γ. For example, γ∧δ |= γ∨δ. Sometimes, it is convenient to write x |= γ instead
of x ∈ NP (γ). Furthermore, two sentences γ and δ are logically equivalent
(denoted by γ ≡ δ), if and only if NP (γ) = NP (δ). For example, γ → δ ≡ ¬γ∨δ.
Note that logically equivalent sentences represent exactly the same information.
The set of all logically equivalent sentences of γ can therefore be considered as
an equivalence class [γ]. Logical connectives applied on equivalence classes
have the following meanings:

(1) ¬[γ] = [¬γ],

(2) [γ] ∧ [δ] = [γ ∧ δ],
(3) [γ] ∨ [δ] = [γ ∨ δ],
(4) [γ]→ [δ] = [γ → δ].

Note that 22n different equivalence classes exist for a set P = {p1, . . . , pn}. Let
[LP ] represent the set of all equivalence classes of LP . Obviously, [LP ] forms a
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finite Boolean algebra [27, 54] with ∧ as meet, ∨ as join, ¬ as complement,
[⊥] as zero, and [>] as unit. [LP ] is also isomorph to the set algebra 2NP and is
therefore a Lindenbaum algebra [46].

2.1.2 Normal Forms

Propositional logic can be simplified by using equivalent special forms into
which any propositional sentence can be transformed. Examples of such forms
are the conjunctive and the disjunctive normal form. These particular forms
are based on the notions of literals, clauses, and terms.

A positive literal is simply an element of P = {p1, . . . , pn}, while the elements
of ¬P = {¬p1, . . . ,¬pn} are negative literals. P± = P ∪ ¬P denotes the set
of all (positive and negative) literals. A clause is a finite disjunction `1∨· · ·∨`s
of literals `i ∈ P±. The empty disjunction ⊥ is called empty clause. Similarly,
a term is a finite conjunction `1 ∧ · · · ∧ `s of literals `i ∈ P±, and the empty
conjunction > is called empty term. A clause or a term is called proper,
if every propositional symbol appears at most once. DP and CP represent

the sets of all proper clauses (disjunctions) and proper terms (conjunctions),
respectively.

A Conjunctive normal form (CNF for short) is a finite conjunction ϕ1 ∧
· · · ∧ ϕr of proper clauses ϕi. Similarly, a disjunctive normal form (DNF
for short) is a finite disjunction ψ1 ∨ · · · ∨ ψr of proper terms ψi. Note that
any propositional sentence can be transformed into an equivalent conjunctive
or disjunctive normal form [11].

CNF and DNF formulas are often considered as sets of clauses and terms, respec-
tively. For example, if ϕ = ϕ1∧· · ·∧ϕr is a CNF formula, then Φ = {ϕ1, . . . , ϕr}
is the corresponding set of clauses. CNF and DNF formulas can therefore be
seen as subsets of DP and CP , respectively. If Γ and ∆ are two sets of clauses or
terms for γ and δ (it will always be clear from the context whether γ and δ are
CNF or DNF formulas), then it is often convenient to write Γ |= ∆, γ |= ∆, or
Γ |= δ instead of γ |= δ. Similarly, Γ ≡ ∆, γ ≡ ∆, or Γ ≡ δ is sometimes used
instead of γ ≡ δ. Furthermore, ¬Γ denotes the corresponding set of negated
terms or clauses of ¬γ. Note that the the negation of a clause is a term and,
similarly, the negation of a term is a clause.

Particular CNF and DNF formulas are connected to the notion of prime impli-
cates and prime implicants. A clause ϕ ∈ DP is called implicate of γ ∈ LP ,
if γ |= ϕ. An implicate ϕ of γ is called prime implicate of γ, if no proper
sub-clause of ϕ is also an implicate of γ. The set of all prime implicates of γ
defines a CNF denoted by Φ(γ). Similarly, a term ψ ∈ CP is called implicant
of γ, if ψ |= γ, and an implicant ψ of γ is called prime implicant of γ, if no
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sub-term of ψ is also an implicant of γ. The set of all prime implicants of γ
defines a DNF denoted by Ψ(γ).1 Note that γ ≡ Φ(γ) ≡ Ψ(γ). If γ is a CNF
(or a DNF) and Γ the corresponding set of clauses (or terms), then it is often
more convenient to write Φ(Γ) and Ψ(Γ) instead of Φ(γ) and Ψ(γ).

The notions of prime implicates and prime implicants are closely connected. In
fact, if ϕ is a (prime) implicate of γ, then ¬ϕ is a (prime) implicant of ¬γ.
Similarly, if ψ is a (prime) implicant of γ, then ¬ψ is a (prime) implicate of ¬γ.
Therefore, ¬Φ(γ) = Ψ(¬γ) and ¬Ψ(γ) = Φ(¬γ). The problems of computing
prime implicates and prime implicants are therefore equivalent. A resolution-
based approach for this is discussed in Section 3.

2.1.3 Sub-Languages

Sometimes, particular subsets of propositions Q ⊆ {p1, . . . , pn} with |Q| = m
are of interest. Clearly, any such Q defines a propositional language LQ called
sub-language of LP . Such a sub-language LQ defines a corresponding m-
dimensional space NQ = {0, 1}m of possible interpretations x = (x1, . . . , xm)
relative to Q.

The link between a sub-language LQ with LP is obtained by considering pro-
jection and extension of interpretations. If x ∈ NP is an interpretation relative
to P , then x↓Q ∈ NQ denotes the projection of x to Q, obtained by remov-
ing the corresponding rows in x for all propositions in P −Q. More generally,
N↓Q = {x↓Q : x ∈ N} denotes the projection of an arbitrary set N ⊆ NP to
Q. If γ is formula in LP , then NP (γ)↓Q is often abbreviated by NQ(γ).

Conversely, if x ∈ NQ is an interpretation relative to Q, then the set of in-
terpretations x↑P = {y ∈ NP : y↓Q = x} is called extension of x to P .
Furthermore, the extension of an arbitrary set N ⊆ NQ to P is defined by
N↑P =

⋃
{x↑P : x ∈ N}. Again, if γ ∈ LQ, then NP (γ) is an abbreviation for

NQ(γ)↑P .

Let γ be a propositional sentence in LP and x ∈ NQ an interpretation relative
to Q = {q1, . . . , qm}. For such a case, γQ←x denotes the formula obtained from
γ by replacing each occurrence of qi by ⊥ if xi = 0 or by > if xi = 1. Note that
NP (γQ←x) = NP (γ) ∩ x↑P . Furthermore, if δ is another propositional sentence
in LP , then x |=γ δ means that γQ←x |= δ. In such a case, x is called model of
δ relative to γ.

1In the literature, the sets of prime implicates or prime implicants are often denoted equally
by PI(γ). Here, Φ(γ) and Ψ(γ) are preferred to distinguish properly between prime implicates
and prime implicants.
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2.2 Argumentation Systems

Argumentation systems are obtained from propositional logic by considering
two disjoint sets A = {a1, . . . , am} and P = {p1, . . . , pn} of propositions. The
elements of A are called assumptions. LA∪P denotes the corresponding propo-
sitional language.

Definition 2.1 Let A and P be two disjoint sets of propositions. If ξ is a
propositional sentence in LA∪P , then a triple ASP = (ξ, P,A) is called propo-
sitional argumentation system. ξ is called the knowledge base of ASP .

The knowledge base ξ is often assumed to be satisfiable. Furthermore, ξ is
sometimes given as a conjunctive set Σ = {ξ1, . . . , ξr} of sentences ξi ∈ LA∪P
or, more specifically, clauses ξi ∈ DA∪P . In such cases, it is always possible
to use the corresponding conjunction ξ = ξ1 ∧ · · · ∧ ξr instead. If ξ ≡ > (for
example, if Σ = Ø), then ξ is called vacuous knowledge base. Similarly, ξ is
called contradictory, if ξ ≡ ⊥ (for example, if Σ = {⊥}).

The assumptions are essential for expressing uncertain information. They are
used to represent uncertain events, unknown circumstances, or possible risks
and outcomes. The set NA of possible interpretations relative to A is there-
fore of particular interest. Such interpretations s ∈ NA are called scenarios.
They represent possible states of the unknown or future world. This is the
fundamental notion in this theory.

2.2.1 Inconsistent and Consistent Scenarios

Evidently, some scenarios may become impossible with respect to the given
knowledge base ξ. It is therefore necessary to distinguish two different types of
scenarios.

Definition 2.2 Let ξ be a propositional sentence in LA∪P . A scenario s ∈ NA
is called

(1) inconsistent (or contradictory) relative to ξ, if and only if s |=ξ ⊥;

(2) consistent relative to ξ, otherwise.

Suppose that s ∈ NA is an inconsistent scenario relative to ξ. This means that ξ
becomes unsatisfiable when all the assumptions are set according to s. The set
of all inconsistent scenarios is denoted by IA(ξ) = {s ∈ NA : s |=ξ ⊥}. Similarly,
if s is supposed to be consistent relative to ξ, then ξ remains satisfiable when
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all the assumptions are set according to s. The set CA(ξ) = {s ∈ NA : s 6|=ξ ⊥}
denotes the collection of all consistent scenarios relative to ξ. Evidently, IA(ξ)
and CA(ξ) are complementary set, that is

CA(ξ) = NA − IA(ξ). (2.1)

Example 2.1 Let A = {a1, a2} and P = {p, q} be two sets of propositions. If
ξ = (a1 → p)∧ (a2 → q)∧ (p→ ¬q) is a sentence in LA∪P , then IA(ξ) = {(1, 1)}
is the set of inconsistent scenarios, and CA(ξ) = {(0, 0), (0, 1), (1, 0)} is the set of
consistent scenarios. The scenario (1, 1) is inconsistent because ξ is unsatisfiable
when a1 and a2 are simultaneously true.

The distinction between inconsistent and consistent scenarios can be seen as
the main essence of argumentation systems. It introduces in a natural and
convenient way non-monotonicity into propositional logic, while the richness of
computational techniques for propositional logic is preserved. Non-monotonicity
is the fundamental property of any formalism for dealing with uncertainty. The
question, why and how the distinction between inconsistent and consistent sce-
narios leads to non-monotonicity, is discussed an the bottom of the following
subsection and in Subsection 2.4.

2.2.2 Supporting Scenarios

The situation becomes more interesting when a second propositional sentence
h ∈ LA∪P called hypothesis is given. Hypotheses represent open questions or
uncertain statements about some of the propositions in A ∪ P . What can be
inferred from ξ about the possible truth of h with respect to the given set of
unknown assumptions? Possibly, if the assumptions are set according to some
scenarios s ∈ NA, then h may be a logical consequence of ξ. In other words, h
is supported by certain scenarios.

Definition 2.3 Let h and ξ be propositional sentences in LA∪P . A scenario
s ∈ NA is called a

(1) quasi-supporting scenario for h relative to ξ, if and only if s |=ξ h;

(2) supporting scenario for h relative to ξ, if and only if s |=ξ h and s 6|=ξ ⊥;

(3) possibly supporting scenario for h relative to ξ, if and only if s 6|=ξ ¬h.

The set QSA(h, ξ) = {s ∈ NA : s |=ξ h} denotes the collection of all quasi-
supporting scenarios for h relative to ξ. Similarly, SPA(h, ξ) = {s ∈ NA : s |=ξ
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h, s 6|=ξ ⊥} denotes the set of all supporting scenarios and PSA(h, ξ) = {s ∈
NA : s 6|=ξ ¬h} the set of all possibly supporting scenarios for h relative to ξ.

The difference between quasi-supporting and supporting scenarios is that quasi-
supporting scenarios are allowed to be inconsistent. This will be only convenient
for technical reasons. However, inconsistency is usually excluded, and support-
ing scenarios are therefore more interesting.

Figure 2.2 illustrates the relation between different subsets ofNA with IA(ξ) = A,
QSA(h, ξ) = A + B, SPA(h, ξ) = B, PSA(h, ξ) = B + C, and CA(ξ) = B + C + D.

Figure 2.2: Different subsets of scenarios.

Note that IA(ξ) ⊆ QSA(h, ξ), SPA(h, ξ) ⊆ CA(ξ), and PSA(h, ξ) ⊆ CA(ξ) for
all hypotheses h ∈ LA∪P . Furthermore, SPA(h, ξ) ⊆ QSA(h, ξ), SPA(h, ξ) ⊆
PSA(h, ξ).

Example 2.2 Again, let A = {a1, a2} and P = {p, q}. If ξ = (a1 → p)∧ (a2 →
q) ∧ (p → ¬q) is a sentence in LA∪P , then QSA(p, ξ) = {(1, 0), (1, 1)} is the
set of quasi-supporting scenarios, SPA(p, ξ) = {(1, 0)} is the set of supporting
scenarios, and PSA(p, ξ) = {(0, 0), (0, 1), (1, 0)} is the set of possibly supporting
scenarios for p. Similarly, QSA(q, ξ) = {(0, 1), (1, 1)}, SPA(q, ξ) = {(0, 1)}, and
PSA(q, ξ) = {(0, 0), (0, 1)} are the corresponding sets for q. Note that (1, 1) is
inconsistent and therefore never a supporting or a possibly supporting scenario
(see Example 2.1).

The sets of inconsistent and consistent scenarios can be expressed in terms of
quasi-supporting scenarios for ⊥:

IA(ξ) = QSA(⊥, ξ), (2.2)
CA(ξ) = NA −QSA(⊥, ξ). (2.3)

Similarly, the sets of supporting and possibly supporting scenarios for h can be
determined via sets of quasi-supporting scenarios:

SPA(h, ξ) = QSA(h, ξ)−QSA(⊥, ξ), (2.4)
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PSA(h, ξ) = NA −QSA(¬h, ξ). (2.5)

The problem of computing sets of inconsistent, consistent, supporting, and pos-
sibly supporting scenarios can therefore be solved by computing solely sets of
quasi-supporting scenarios. Hence, the importance of quasi-supporting scenar-
ios relies mainly on technical reasons, and also on the fact that QSA(h, ξ) can
be determined more easily than SPA(h, ξ) (see Section 3).

For a fixed knowledge base ξ, the notion of quasi-supporting scenarios defines a
mapping [LA∪P ]−→2NA . Note that both sets [LA∪P ] ∼= 2NA∪P and 2NA are finite
Boolean algebras. In a more general theory [31, 33], such a mapping between
two Boolean algebras is also called allocation of support. An allocation of
support must satisfy some basic properties that are also valid in the case of
quasi-supporting scenarios:

Theorem 2.1 If h1, h2, and ξ are propositional sentences in LA∪P , then

(1) QSA(⊥, ξ) = IA(ξ),

(2) QSA(>, ξ) = NA,

(3) QSA(h1 ∧ h2, ξ) = QSA(h1, ξ) ∩QSA(h2, ξ),

(4) QSA(h1 ∨ h2, ξ) ⊇ QSA(h1, ξ) ∪QSA(h2, ξ),

(5) h1 |= h2 implies QSA(h1, ξ) ⊆ QSA(h2, ξ),

(6) h1 ≡ h2 implies QSA(h1, ξ) = QSA(h2, ξ).

Similar considerations are possible for the case of supporting scenarios, for which
corresponding basic properties exist:

Theorem 2.2 If h1, h2, and ξ are propositional sentences in LA∪P , then

(1) SPA(⊥, ξ) = Ø,

(2) SPA(>, ξ) = CA(ξ),

(3) SPA(h1 ∧ h2, ξ) = SPA(h1, ξ) ∩ SPA(h2, ξ),

(4) SPA(h1 ∨ h2, ξ) ⊇ SPA(h1, ξ) ∪ SPA(h2, ξ),

(5) h1 |= h2 implies SPA(h1, ξ) ⊆ SPA(h2, ξ),

(6) h1 ≡ h2 implies SPA(h1, ξ) = SPA(h2, ξ).

Finally, corresponding properties exist also for sets of possibly supporting sce-
narios:

Theorem 2.3 If h1, h2, and ξ are propositional sentences in LA∪P , then
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(1) PSA(⊥, ξ) = Ø,

(2) PSA(>, ξ) = CA(ξ),

(3) PSA(h1 ∧ h2, ξ) ⊆ PSA(h1, ξ) ∩ PSA(h2, ξ),

(4) PSA(h1 ∨ h2, ξ) = PSA(h1, ξ) ∪ PSA(h2, ξ),

(5) h1 |= h2 implies PSA(h1, ξ) ⊆ PSA(h2, ξ),

(6) h1 ≡ h2 implies PSA(h1, ξ) = PSA(h2, ξ).

An important special case arises when the hypothesis consists only of assump-
tions, that is when h is a propositional sentence in LA instead of LA∪P . Such
cases can be treated according to the following theorem:

Theorem 2.4 If hA ∈ LA and ξ ∈ LA∪P , then

(1) QSA(hA, ξ) = NA(hA) ∪ IA(ξ),

(2) SPA(hA, ξ) = NA(hA) ∩ CA(ξ),

(3) PSA(hA, ξ) = NA(hA) ∩ CA(ξ).

Note that in such a case, the sets SPA(hA, ξ) and PSA(hA, ξ) are identical. An-
other interesting situation to be considered is the case where the knowledge base
ξ changes to ξ′ = ξ ∧ ξ̃ by adding new information. Then, the number of in-
consistent and quasi-supporting scenarios is monotonically increasing, whereas
the number of consistent and possibly supporting scenarios is monotonically
decreasing.

Theorem 2.5 If h ∈ LA∪P and ξ′ = ξ ∧ ξ̃ ∈ LA∪P , then

(1) IA(ξ′) ⊇ IA(ξ),

(2) CA(ξ′) ⊆ CA(ξ),

(3) QSA(h, ξ′) ⊇ QSA(h, ξ),

(4) PSA(h, ξ′) ⊆ PSA(h, ξ).

In contrast, nothing can be said about the number of supporting scenarios. If
new information is added, then the set of supporting scenarios behaves non-
monotonically, that is it may either grow or shrink, both cases are possible.
The reason for this is that according to (2.4), SPA(h, ξ) is a set difference of
two monotonically growing sets QSA(h, ξ) and QSA(⊥, ξ). The size of the set
SPA(h, ξ) has only two restrictions: SPA(h,>) = NA(h) and SPA(h,⊥) = Ø.
Between these two extreme cases, everything is possible.
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The non-monotonicity of the set SPA(h, ξ) is an important property of argumen-
tation systems. It reflects a natural property of how a human’s conviction or
belief can change when new information is given. Non-monotonicity is therefore
a fundamental property for any mathematical formalism for reasoning under un-
certainty. However, using propositional argumentation systems shows that non-
monotonicity can be achieved without leaving the field of classical logic. Non-
monotonicity will also be an important in Subsection 2.4, when probabilities are
assigned to the assumptions and conditional probabilities p(SPA(h, ξ)|CA(ξ)) are
considered.

2.2.3 Refuting Scenarios

Instead of considering scenarios in favor of the hypothesis, it is also reasonable
to look at scenarios speaking against the hypothesis. In other words, such
refuting scenarios are supporting the negated hypothesis ¬h.

Definition 2.4 Let h and ξ be propositional sentences in LA∪P . A scenario
s ∈ NA is called a

(1) quasi-refuting scenario for h relative to ξ, if and only if s is a quasi-
supporting scenario for ¬h;

(2) refuting scenario for h relative to ξ, if and only if s is a supporting
scenario for ¬h;

(3) possibly refuting scenario for h relative to ξ, if and only if s is a possibly
supporting scenario for ¬h.

The sets of all quasi-refuting, refuting, and possibly refuting scenarios are de-
noted by QRA(h, ξ) = QSA(¬h, ξ), RFA(h, ξ) = SPA(¬h, ξ), and PRA(h, ξ) =
PSA(¬h, ξ), respectively. In Figure 2.2, these sets are composed as follows:
QRA(h, ξ) = A + D, RFA(h, ξ) = D, PRA(h, ξ) = C + D.

Example 2.3 Again, let A = {a1, a2} and P = {p, q}. If ξ = (a1 → p) ∧
(a2 → q) ∧ (p → ¬q) is a sentence in LA∪P , then QRA(q, ξ) = {(1, 0), (1, 1)},
RFA(q, ξ) = {(1, 0)}, and PRA(q, ξ) = {(0, 0), (1, 0)}.

Evidently, there is a strong duality between the notions of refuting and support-
ing scenarios. The theoretical results of the previous subsection can therefore
be adapted to the case of refuting scenarios, simply by replacing h with ¬h. In
the sequel, only the notion of support will be further investigated. However,
refuting a hypothesis means always supporting its negation and vice versa.
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2.3 Representing Sets of Scenarios

Sets of scenarios S ⊆ NA (such as IA(ξ), CA(ξ), QSA(h, ξ), SPA(h, ξ), etc.) tend
to grow exponentially with the size of A. An explicit representation as a list of
elements s ∈ S may therefore not be feasible. Thus, alternative representations
are needed. An efficient representation is obtained by considering terms α ∈ CA
for which NA(α) ⊆ S holds. Let T (S) = {α ∈ CA : NA(α) ⊆ S} be the set
of all terms for which this conditions holds. Such a set T (S) is called term
representation of S. Note that the terms α ∈ T (S) are implicants for any
propositional sentence γ with NA(γ) = S. Such propositional sentences γ are
called logical representations of S.

Term representations are upward-closed sets. This means that α ∈ T (S) im-
plies that every (longer) term α′ |= α is also in T (S). It is sometimes convenient
to consider terms as sets of literals and to write α′ ⊇ α instead of α′ |= α. A
property of upward-closed sets is that they can be represented by their minimal
elements. A term α ∈ T (S) is called minimal in T (S), if there is no other
(shorter) term α′ ⊆ α in T (S). The corresponding set µT (S) of minimal terms
is called minimal term representation of S. Clearly, the terms α ∈ T (S) are
prime implicants for any logical representation γ of S, that is µT (S) = Ψ(γ).
Furthermore, note that

S =
⋃

α∈T (S)

NA(α) =
⋃

α∈µT (S)

NA(α). (2.6)

Example 2.4 If S = {(0, 0), (1, 0), (1, 1)} is a subset of NA for A = {a1, a2},
then T (S) = {a1,¬a2, a1∧a2, a1∧¬a2,¬a1∧¬a2} is the term representation of
S, and µT (S) = {a1,¬a2} is the corresponding minimal term representation of
S. The propositional sentences a1 ∨ ¬a2 and a2 → a1, for example, are logical
representations of S.

The main operations for sets of scenarios can now be replaced by corresponding
operations for minimal term representations:

• Inclusion: if S1 and S2 are two sets of scenarios, then S1 ⊆ S2 is true if
and only if for each term α1 ∈ µT (S1) there is a term α2 ∈ µT (S2) such
that α1 ⊇ α2.

• Intersection: if S1 and S2 are two sets of scenarios, then the minimal
term representation of S1 ∩ S2 is obtained from µT (S1) and µT (S2) by

µT (S1 ∩ S2) = µ{α1 ∧ α2 ∈ CA : α1 ∈ µT (S1), α2 ∈ µT (S2)}
= µ({α1 ∧ α2 : α1 ∈ µT (S1), α2 ∈ µT (S2)} ∩ CA). (2.7)
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• Complement: if S is a set of scenarios, then the minimal term repre-
sentation of the complementary set NA − S is obtained from µT (S) as
follows:

NA − S = NA −
⋃

α∈µT (S)

NA(α) =
⋂

α∈µT (S)

(NA −NA(α)) =
⋂

α∈µT (S)

NA(¬α). (2.8)

Note that ¬α = ¬`1 ∨ · · · ∨ ¬`s is a clause, and the minimal term rep-
resentation of NA(¬α) results when ¬α is considered as a set of literals,
that is µT (NA(¬α)) = {¬`1, . . . ,¬`s}. The final result µT (NA−S) is then
obtained by repeatedly applying (2.7) for the intersection.

• Difference: if S1 and S2 are two sets of scenarios, then S1−S2 is clearly
the same as S1−(NA−S2). Therefore, the the minimal term representation
of S1 − S2 can be obtained in two steps: (1) compute the complement
NA − S2 as described above; (2) use (2.7) to compute the intersection of
S1 and NA − S2.

Unfortunately, there is no corresponding simple operation for S1∪S2. This is not
too disturbing as set union is only of minor importance for dealing with sets of
scenarios. For example, deriving the sets CA(ξ), IA(ξ), SPA(h, ξ), and PSA(h, ξ)
from QSA(h, ξ) and QSA(⊥, ξ) does not require set union (see Subsection 2.2).
If necessary, however, the minimal term representation of S1 ∪ S2 is obtained
by computing prime implicants:

µT (S1 ∪ S2) = Ψ(µT (S1) ∪ µT (S2)). (2.9)

From now on, sets S of scenarios will be represented by corresponding minimal
term representations µT (S), and the necessary set operations will be treated
as described above. Note that |µT (S)| ≤ |S|. Furthermore, if α ∈ µT (S) is a
minimal term for S, then |α| ≤ |A| whereas |s| = |A| for all s ∈ S. Therefore,
the total length of the representation µT (s) is in general shorter than the total
length of S, that is ∑

α∈µT (S)

|α| ≤ |S| · |A|. (2.10)

Another advantage is that the same set µT (S) is also the minimal term repre-
sentation of S↑A

′
for A′ ⊇ A. Thus, the size of µT (S) remains constant while

|S↑A′ | is growing exponentially with the size of A′.

Representing sets of scenarios by sets of minimal terms has also an important
semantical meaning. Let α ∈ µS be a minimal term and Lit(α) ⊆ A± the
corresponding set of literals. An assumption a ∈ A is called positive relative
to α, if a ∈ Lit(α), it is called negative relative to α, if ¬a ∈ Lit(α), and it is
called irrelevant relative to α, if a /∈ Lit(α) and ¬a /∈ Lit(α). Therefore, every
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assumption a ∈ A is either positive, negative, or irrelevant relative to α, and A
can be decomposed into three sets Lit+(α), Lit−(α), and Lit±(α) of positive,
negative, and irrelevant assumptions relative to α, respectively. If α is a minimal
term in µT (QSA(h, ξ)), for example, then α∧ ξ |= h (see Subsection 2.3.2). The
term α can then be considered as a possible proof of h. Proving h by such a term
α implies that the assumptions in Lit+(α) are true, the assumptions in Lit−(α)
are false, and the assumptions in Lit±(α) are either true or false (i.e. they are
irrelevant for the proof). This point of view is of particular importance when
arguments are considered as explanations (e.g. diagnostics of faulty technical
systems).

2.3.1 Inconsistent and Consistent Terms

The above discussion about representing sets of scenarios can now be applied
to the cases of inconsistent and consistent scenarios.

Definition 2.5 Let ξ be a propositional sentence in LA∪P . A term α ∈ CA is
called

(1) inconsistent (or contradictory) relative to ξ, if NA(α) ⊆ IA(ξ);

(2) consistent relative to ξ, if NA(α) ⊆ CA(ξ).

Note that according to this definition there are possibly terms α ∈ CA that are
neither inconsistent nor consistent relative to ξ. The term representations of
IA(ξ) and CA(ξ) are denoted by

I(ξ) = T (IA(ξ)) = {α ∈ CA : NA(α) ⊆ IA(ξ)}, (2.11)
C(ξ) = T (CA(ξ)) = {α ∈ CA : NA(α) ⊆ CA(ξ)}, (2.12)

respectively. The sets µI(ξ) and µC(ξ) are the corresponding minimal term
representations. Sometimes, I(ξ) is called contradiction of ξ. Similarly, µI(ξ)
is called minimal contradiction of ξ.

The term representations of I(ξ) and CA(ξ) can also be characterized without
using the notions of inconsistent and consistent scenarios.

Theorem 2.6 If ξ ∈ LA∪P is a propositional sentence, then

(1) I(ξ) = {α ∈ CA : α ∧ ξ |= ⊥},
(2) C(ξ) = {α ∈ CA : ∀α′ ⊇ α, α′ ∈ CA, α′ ∧ ξ 6|= ⊥}.
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This way of characterizing the set I(ξ) may appear more obvious than the above
definition in terms the set IA(ξ). However, in the authors opinion the notion
of a scenario is the fundamental concept of this formalism. The terms α ∈ CA
are mainly important for representing sets of scenarios efficiently. Furthermore,
defining I(ξ) according to Theorem 2.6 is somehow misleading as it may result
in defining terms α ∈ CA with α ∧ ξ 6|= ⊥ to be consistent. This may appear
reasonable, but it does not guarantee that NA(α) ∩ IA(ξ) = Ø. This leads then
to a different set C ′(ξ) ⊇ C(ξ) that is no longer upward-closed. The problem
then is that the set CA(ξ) of consistent scenarios is not determined by C ′(ξ) in
an unequivocal way. The importance of an unequivocal set CA(ξ) will become
clear in Subsection 2.4 when probabilities are assigned to the assumptions and
conditional probabilities p(S|CA(ξ)) are considered.

2.3.2 Supporting Arguments

The problem of representing sets of scenarios also appears in the case of quasi-
supporting, supporting, and possibly supporting scenarios for a given hypothesis
h. Here, the notion of arguments enters into the formalism.

Definition 2.6 Let h and ξ be two propositional sentences in LA∪P . A term
α ∈ CA is called a

(1) quasi-supporting argument for h relative to ξ, if NA(α) ⊆ QSA(h, ξ);

(2) supporting argument for h relative to ξ, if NA(α) ⊆ SPA(h, ξ);

(3) possibly supporting argument for h relative to ξ, if NA(α) ⊆ PSA(h, ξ).

The term representations of the sets QSA(h, ξ), SPA(h, ξ), and PSA(h, ξ), that
is

QS(h, ξ) = T (QSA(h, ξ)) = {α ∈ CA : NA(α) ⊆ QSA(h, ξ)},
SP (h, ξ) = T (SPA(h, ξ)) = {α ∈ CA : NA(α) ⊆ SPA(h, ξ)},
PS(h, ξ) = T (PSA(h, ξ)) = {α ∈ CA : NA(α) ⊆ PSA(h, ξ)},

are called quasi-support, support, and possibility for h relative to ξ, respec-
tively. Furthermore, the minimal term representations µQS(h, ξ), µSP (h, ξ),
and µPS(h, ξ) are called minimal quasi-support, minimal support, and
minimal possibility for h relative to ξ, respectively. As above, QS(h, ξ),
SP (h, ξ), and PS(h, ξ) can be characterized without the notion of scenarios.

Theorem 2.7 If h and ξ are two propositional sentences in LA∪P , then
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(1) QS(h, ξ) = {α ∈ CA : α ∧ ξ |= h},

(2) SP (h, ξ) = {α ∈ CA : α ∧ ξ |= h, ∀α′ ⊇ α, α′ ∈ CA, α′ ∧ ξ 6|= ⊥},

(3) PS(h, ξ) = {α ∈ CA : ∀α′ ⊇ α, α′ ∈ CA, α′ ∧ ξ 6|= ¬h}.

This way of characterizing the set SP (h, ξ) may appear unusual. Often, support
has been defined as the set of arguments α for which two conditions α ∧ ξ |= h
and α ∧ ξ 6|= ⊥ hold [30, 34]. As argued before, the problem with excluding
inconsistency by α ∧ ξ 6|= h is that, in fact, inconsistency is not completely
excluded (there may be terms α with NA(α) ∩ IA(ξ) 6= Ø). Therefore, the
resulting set SP ′(h, ξ) ⊇ SP (h, ξ) is no longer upward-closed, and the relation
to the corresponding set of scenarios SPA(h, ξ) becomes ambiguous.

2.4 Probabilistic Argumentation Systems

So far, the problem of judging hypotheses has only been considered from a
qualitative point of view. A more seizable judgement of the hypothesis can be
obtained if every assumption ai ∈ A is linked to a corresponding prior probabil-
ity πi. Sometimes, πi is understood as a probability in the sense of a proportion
between “good” and possible events. However, in other cases πi is simply an
estimated value that expresses on a scale between 0 and 1 the subjective belief of
ai being true. In any case, the probabilities πi are supposed to be stochastically
independent.

Assigning probabilities to the assumption induces a probabilistic structure upon
the symbolic argumentation system. A quadruple PASP = (ξ, P,A,Π), where
Π = {π1, . . . , πm} denotes the set of probabilities assigned to the assumptions
ai, is therefore called probabilistic argumentation system.

2.4.1 Degree of Support and Possibility

Let s = (x1, . . . , xm) be a scenario in NA, then the prior probability of s is
determined by

p(s) =
m∏
i=1

πi
xi · (1− πi)(1−xi). (2.13)

If S ⊆ NA is an arbitrary set of scenarios, then the probability of S is simply
the sum of the probabilities of its elements:

p(S) =
∑
s∈S

p(s). (2.14)
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If h ∈ LA∪P is a hypothesis to be judged, then

dqs(h, ξ) = p(QSA(h, ξ)) (2.15)

is called degree of quasi-support of h relative to ξ. This measure corresponds
to unnormalized belief in the Dempster-Shafer theory of evidence [51].

Supposing that inconsistent scenarios are not allowed means that the prior prob-
ability distribution on NA must be conditioned on the fact that the true scenario
is in CA(ξ). This leads to the new probability measure p′ given by

p′(s) = p(s|CA(ξ)) =

{
p(s)/p(CA(ξ)), if s ∈ CA(ξ),

0, otherwise.
(2.16)

Therefore, the prior probabilities p(s) of consistent scenarios are multiplied by
a normalization factor k = p(CA(ξ))−1. Note that p(CA(ξ)) is the same as
1 − dqs(⊥, ξ). The new probability measure p′ defines posterior probabilities
for the scenarios given then the knowledge base ξ. If h ∈ LA∪P is a hypothesis,
then

dsp(h, ξ) = p′(SPA(h, ξ)) =
∑

s∈SPA(h,ξ)

p′(s) =
1

p(CA(ξ))
·
∑

s∈SPA(h,ξ)

p(s)

=
p(SPA(h, ξ))
p(CA(ξ))

=
p(QSA(h, ξ))− p(QSA(⊥, ξ))

1− p(QSA(⊥, ξ))

=
dqs(h, ξ)− dqs(⊥, ξ)

1− dqs(⊥, ξ) (2.17)

is called degree of support of h relative to ξ. It corresponds to normal-
ized belief in the Dempster-Shafer theory of evidence. Note that dsp(h, ξ) =
p(SPA(h, ξ)|CA(ξ)). Degree of support can therefore be considered as the con-
ditional probability of SPA(h, ξ) given CA(ξ). Note that dsp(h,⊥) is undefined.
Therefore, the knowledge base ξ is often supposed to be satisfiable. An im-
portant property of dsp(h, ξ) is that it behaves non-monotonically when new
knowledge is added. Further properties follow from Theorem 2.2 in Subsec-
tion 2.2.2:

(1) dsp(⊥, ξ) = 0,

(2) dsp(>, ξ) = 1,

(3) h1 |= h2 implies dsp(h1, ξ) ≤ dsp(h2, ξ),

(4) h1 ≡ h2 implies dsp(h1, ξ) = dsp(h2, ξ),

whenever ξ 6≡ ⊥. A second posterior measure for hypotheses is obtained by
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considering the corresponding conditional probability on the set of possibly sup-
porting scenarios PSA(h, ξ). Therefore,

dps(h, ξ) = p′(PSA(h, ξ)) =
∑

s∈PSA(h,ξ)

p′(s) =
1

p(CA(ξ))
·
∑

s∈PSA(h,ξ)

p(s)

=
p(PSA(h, ξ))
p(CA(ξ))

=
1− p(QSA(¬h, ξ))
1− p(QSA(⊥, ξ))

=
1− dqs(¬h, ξ)
1− dqs(⊥, ξ) = 1− dsp(¬h, ξ) (2.18)

is called degree of possibility. Again, dps(h,⊥) is undefined. The corre-
sponding notion in the context of the Dempster-Shafer theory is plausibility.
Note that non-monotonicity is observed when new knowledge is added. Further
properties can be derived from Theorem 2.3 in Subsection 2.2.2:

(1) dps(⊥, ξ) = 0,

(2) dps(>, ξ) = 1,

(3) h1 |= h2 implies dps(h1, ξ) ≤ dps(h2, ξ),

(4) h1 ≡ h2 implies dps(h1, ξ) = dps(h2, ξ),

whenever ξ 6≡ ⊥. Finally, an important property follows from the fact that
SPA(h, ξ) is always a subset of PSA(h, ξ) (see Subsection 2.2.2):

dsp(h, ξ) ≤ dps(h, ξ). (2.19)

All this indicates that the framework of probabilistic argumentation systems
constructed on propositional logic is a special case of Shafer’s original evidence
theory [51].

2.4.2 Computing Degree of Quasi-Support

According to (2.17) and (2.18), the problem of computing degree of support and
degree of possibility involves the following three steps:

(1) determine dqs(h, ξ), respectively dqs(¬h, ξ);
(2) determine dqs(h,⊥);

(3) apply (2.17), respectively (2.18).

The problem to be solved is therefore the computation of dqs(h, ξ) for arbi-
trary hypotheses h ∈ LA∪P . Suppose that QSA(h, ξ) is represented by the
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set µQS(h, ξ) of minimal quasi-supporting arguments. A method for com-
puting minimal quasi-supports will be presented in Section 3. Clearly, a set
µQS(h, ξ) = {α1, . . . , αq} defines a DNF α1 ∨ · · · ∨ αq with

QSA(h, ξ) = NA(α1 ∨ · · · ∨ αq) = NA(α1) ∪ · · · ∪NA(αq). (2.20)

The probability p(QSA(h, ξ)) can therefore be seen as a probability of a union
of events. This is a classical problem of probability theory. A first and simple
approach is given by the so-called inclusion-exclusion formula [18]:

p(NA(α1) ∪ · · · ∪NA(αq)) =
∑

Ø6=I⊆{1,...,q}
(−1)|I|+1 · p(

⋂
i∈I

NA(αi)). (2.21)

Since the number of terms in the sum of Equation (2.21) grows exponentially
with the number of elements in µQS(h, ξ), the computational effort needed can
quickly become prohibitive.

An alternative method consists in transforming the DNF α1 ∨ · · · ∨ αq into an
equivalent disjunction γ1∨ . . .∨γr with mutually disjoint formulas γi ∈ LA, that
is NA(γi) ∩ NA(γj) = Ø, whenever i 6= j. The probability of QSA(h, ξ) is then
simply the sum of the probabilities of the individual formulas γi:

p(QSA(h, ξ)) = p(NA(γ1) ∪ · · · ∪NA(γr)) =
r∑
i=1

p(NA(γi)). (2.22)

The number of terms in such a sum is often much smaller than the number of
terms in (2.21). However, the problem of computing such a disjoint represen-
tation of QSA(h, ξ) remains. In addition, the disjoint form must be such that
p(NA(γi)) can be computed easily.

Several methods for this problem have been developed especially in reliability
theory. A simple method is due to Abraham [1]. The idea is that the new dis-
junction γ1∨ . . .∨γr consists of disjoint conjunctions γ ∈ CA. The corresponding
probabilities p(NA(γi)) are therefore easily computed by

p(NA(γi)) =
∏

ai∈Lit(γi)
πi ·

∏
¬ai∈Lit(γi)

(1− πi), (2.23)

where Lit(γi) ⊆ A± denotes the corresponding set of literals. Unfortunately,
this method still tends to a relatively large number of terms. Therefore, Heidt-
mann [28] proposed a much better but more complex method. In Heidtmann’s
method, every γi is a conjunction of one conjunction of literals and a number
of negations of conjunctions of literals. Moreover, the factors in γi are inde-
pendent. The probabilities p(NA(γi)) are therefore still easy to compute. The
weakness of Heidtmann’s method is its restriction to monotone formulas. For a
generalization of Heidtmann’s method to non-monotone formulas see [9].
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3 Computing Minimal Arguments

The main problem of dealing with probabilistic argumentation systems is com-
puting minimal quasi-supports µQS(h, ξ) for arbitrary hypotheses h ∈ LA∪P .
Other symbolic representations like µSP (h, ξ) or µPS(h, ξ) can then be derived
according to Subsection 2.2 and by the methods of Subsection 2.3. Further-
more, numerical results can be derived from quasi-supports by the methods
of Subsection 2.4. This section addresses therefore the problem of computing
quasi-supports.

First of all, suppose that the hypothesis h ∈ LA∪P is given as CNF of the form
h = h1 ∧ · · · ∧ hn with clauses hi ∈ DA∪P . The problem can then be solved
by computing independently the quasi-supports µQS(hi, ξ) for all clauses hi.
Finally, µQS(h, ξ) is obtained by combining the individual results according to
(2.8). This is possible because of property (3) in Theorem 2.1. From now on,
hypotheses are therefore restricted to clauses of the form h = `1 ∨ · · · ∨ `m ∈
DA∪P .

In the following subsections, the negated hypothesis ¬h will play an impor-
tant role. Evidently, if h is a clause, then ¬h = ¬`1 ∧ · · · ∧ ¬`m is a term.
The corresponding sets of literals are denoted by H = {`1, . . . , `m} and ¬H =
{¬`1, . . . ,¬`m}, respectively.

Furthermore, suppose that the knowledge base ξ ∈ LA∪P is given as CNF of
the form ξ = ξ1 ∧ · · · ∧ ξr with clauses ξi ∈ DA∪P . The corresponding set of
clauses Σ = {ξ1, . . . , ξr} is called clause representation of ξ. Finally, let
ΣH = µ(Σ ∪ ¬H) be the clause representation of ξ ∧ ¬h.

3.1 Computing Minimal Quasi-Supports

The problem of computing minimal quasi-supports is closely related to the prob-
lem of computing prime implicants or prime implicates. According to Theo-
rem 2.7, quasi-supporting arguments for h are terms α ∈ CA for which α∧ξ |= h
holds. This condition can be rewritten as α |= ¬ξ∨h or α |= ¬ΣH , respectively.
Quasi-supporting arguments are therefore implicants of ¬ΣH which are in CA.
In other words, if α ∈ DA is an implicate of ΣH , then ¬α is a quasi-supporting
argument for h. This reflection leads to the following theorem [45]:

Theorem 3.1 If h and ξ are two propositional sentences in LA∪P , then

µQS(h, ξ) = ¬(Φ(ΣH) ∩ DA).

Clearly, computing quasi-supports according to Theorem 3.1 is only feasible
when ΣH is relatively small. The problem is that the computation of Φ(ΣH)
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is known to be NP-hard. However, when A is relatively small, many prime
implicates of ΣH are not in DA and are therefore irrelevant for the minimal
quasi-support. The following subsections present a method for computing min-
imal quasi-supports with the aim of avoiding generating such irrelevant prime
implicates.

3.1.1 Computing Prime Implicates

The problem of computing the set Φ(Σ) for an arbitrary clause representation
Σ ⊆ DP is addressed first. Prime implicates can be obtained by an ordered
procedure based on the resolution principle. Given a total ordering over P , at
each step, all the possible resolvents (implicates) for the current proposition are
generated and added to the set of clauses. Thus, all the possible resolvents for
the first proposition are computed during the first step, then all the resolvents
for the second proposition are computed during the second step, and so on.
Non-minimal clauses are eliminated consecutively. The resulting set of clauses
at the end of this procedure is the set Φ(Σ). The crucial point is that when
all the resolvents for a proposition have been computed at a given step, it will
never be necessary to compute resolvents for that proposition again [45, 57].

More formally, let Σ ⊆ DP be a clause representation of ξ and x ∈ P a propo-
sition. The set Σ can then be decomposed into three sets Σx (the clauses
containing x as a positive literal), Σx̄ (the clauses containing x as a negative lit-
eral), and Σẋ (the clauses not containing x). If Lit(ξ) denotes the set of literals
of the clause ξ, then

Σx = {ξ ∈ Σ : x ∈ Lit(ξ)},
Σx̄ = {ξ ∈ Σ : ¬x ∈ Lit(ξ)},
Σẋ = {ξ ∈ Σ : x /∈ Lit(ξ) and ¬x /∈ Lit(ξ)}.

If ξ1 = x ∨ ϑ1 and ξ2 = ¬x ∨ ϑ2 are two clauses in Σx and Σx̄, respectively,
then the clause ρx(ξ1, ξ2) = ϑ1 ∨ ϑ2 is called resolvent of ξ1 and ξ2. Note that
Σ |= ρx(ξ1, ξ2). Resolvents of two clauses of Σ are therefore implicates of Σ.
The set of all resolvents for Σx and Σx̄ is defined as

Rx(Σx,Σx̄) = {ρx(ξ1, ξ2) : ξ1 ∈ Σx and ξ2 ∈ Σx̄}. (3.24)

Now, a single step of the procedure for computing prime implicates consists of
adding Rx(Σx,Σx̄) to Σ and removing the non-minimal clauses. The resulting
set of clauses

Consx(Σ) = µ(Σ ∪Rx(Σx,Σx̄)) (3.25)

is called minimal consequence of Σ relative to x.
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Example 3.1 Let Σ = {x∨ y,¬x∨ y,¬x∨ z, y ∨¬z} be a set of clauses. Σ can
then be decomposed into Σx = {x∨y}, Σx̄ = {¬x∨y,¬x∨z}, and Σẋ = {y∨¬z}.
For that situation, two resolvents can be generated, that is Rx(Σx,Σx̄) = {y, y∨
z}, and therefore Consx(Σ) = {y,¬x ∨ z}.

Theorem 3.2 Let Σ ⊆ DP be a set of clauses. If x and y are propositions in
P , then

(1) Consx(Consx(Σ)) = Consx(Σ),
(2) Consx(Consy(Σ)) = Consy(Consx(Σ)).

Let Q = {x1, . . . , xq} be a subset of P . According to Theorem 3.2, it is possi-
ble to compute the minimal consequences relative to the propositions xi ∈ Q
according to an arbitrary ordering. If x1x2 . . . xq, for example, is an arbitrary
sequence of the proposition in Q, then it is possible to define

ConsQ(Σ) = Consx1 ◦ · · · ◦ Consxq (Σ) (3.26)

as the minimal consequence of Σ relative to Q. However, although the se-
quence of the propositions does not influence the resulting set ConsQ(Σ), it
determines critically the computational efficiency of the procedure. Heuristics
for good sequences are discussed in Subsection 3.5.

The problem of finding prime implicates of Σ can now be solved by computing
the minimal consequence of Σ relative to the complete set P of propositions
[57]:

Φ(Σ) = ConsP (Σ). (3.27)

The expression Φ(ΣH) in Theorem 3.1 can therefore be replaced by ConsA∪P (ΣH)
or, for example, by ConsP (ConsA(ΣH)):

µQS(h, ξ) = ¬(ConsA∪P (ΣH) ∩ DA)
= ¬(ConsP (ConsA(ΣH)) ∩ DA). (3.28)

3.1.2 Deletion

The second problem of Theorem 3.1 is the intersection of the sets Φ(ΣH) and DA.
Obviously, this is the same as deleting from Φ(ΣH) all the clauses containing
propositions from P . More formally, consider a clause representation Σ ⊆ DP
and a single proposition x ∈ P . The deletion of the clauses containing x can
then be defined as

Delx(Σ) = Σ ∩ DP−{x} = Σ− (Σx ∪ Σx̄) = Σẋ. (3.29)

This simple operation is also called deletion of the proposition x.
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Example 3.2 If Σ = {x ∨ y,¬x ∨ y,¬x ∨ z, y ∨ ¬z} is the same set of clauses
as in Example 3.1, then Delx(Σ) = Σẋ = {y ∨ ¬z}.

Theorem 3.3 Let Σ ⊆ DP be a set of clauses. If x and y are distinct proposi-
tions in P , then

Dely(Consx(Σ)) = Consx(Dely(Σ)).

Clearly, if Q ⊆ P is a set of propositions to be deleted, then it is possible to
delete them in an arbitrary sequence. Therefore,

DelQ(Σ) = Delx1 ◦ · · · ◦Delxq (Σ) (3.30)

denotes the deletion of all the propositions xi ∈ Q. The expression Φ(ΣH)∩DA
in Theorem 3.1 can then be replaced by DelP (Φ(ΣH)). Together with the result
of the previous subsection, it is possible to specify the minimal quasi-support
by

µQS(h, ξ) = ¬DelP (ConsP (ConsA(ΣH))). (3.31)

3.1.3 Elimination

The last expression of the previous subsection can be further developed. Observe
that the same set of propositions P appears twice. Thus, the idea is to merge
the operations ConsP and DelP . For that purpose, consider a single proposition
x ∈ P and a clause representation Σ ⊆ DP . The combined operation

Elimx(Σ) = Delx(Consx(Σ)) = µ(Σẋ ∪Rx(Σx,Σx̄)) (3.32)

is called the elimination of the proposition x. It is also known as the Davis-
Putnam procedure [12, 13].

Example 3.3 Again, let Σ = {x ∨ y,¬x ∨ y,¬x ∨ z, y ∨ ¬z} be the same set of
clauses as in Example 3.1, that is Σẋ = {y ∨ ¬z} and Rx(Σx,Σx̄) = {y, y ∨ z},
and therefore Elimx(Σ) = {y}.

Theorem 3.4 Let Σ ⊆ DP be a set of clauses. If x and y are propositions in
P , then

(1) Elimx(Elimx(Σ)) = Elimx(Σ),

(2) Elimx(Elimy(Σ)) = Elimy(Elimx(Σ)).
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Again, if Q ⊆ P is a subset of propositions, then the propositions in Q can be
eliminated in an arbitrary sequence. It is therefore convenient to write

ElimQ(Σ) = Elimx1 ◦ · · · ◦Elimxq (Σ) (3.33)

for the elimination of all propositions xi ∈ Q.

Theorem 3.5 Let Σ ⊆ DP be a set of clauses. If Q ⊆ P is a subset of propo-
sitions, then

DelQ(ConsQ(Σ)) = ElimQ(Σ).

Now, by Theorem 3.5 and the result of the previous subsection, it is possible to
compute the minimal quasi-support by

µQS(h, ξ) = ¬ElimP (ConsA(ΣH)). (3.34)

This expression describes a concrete method for the computation of minimal
quasi-supports. It consists of three successive steps:

(1) compute the minimal consequence of ΣH relative to A;

(2) eliminate all propositions in P from the result of step (1);

(3) generate minimal terms by negating the clauses obtained from
step (2).

This way of computing quasi-support will be the starting point of the approx-
imation techniques of Subsection 3.3. However, by exchanging step (1) and
step (2), an alternative method for computing exact solutions is obtained. The
justification for exchanging the first two steps comes from the following theorem:

Theorem 3.6 Let Σ ⊆ DP be a set of clauses. If Q and R are disjoint subsets
of P , that is Q ∩R = Ø, then

ElimQ(ConsR(Σ)) = ConsR(ElimQ(Σ)).

Clearly, A and P are disjoint sets of propositions, and Theorem 3.6 can thus be
applied to (3.34), that is

µQS(h, ξ) = ¬ConsA(ElimP (ΣH)). (3.35)

An alternative method for computing quasi-supports can therefore be described
as follows:
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(1’) eliminate all propositions in P from ΣH ;

(2’) compute the minimal consequence relative to A for the result
of step (1’).

(3’) generate minimal terms by negating the clauses obtained from
step (2’).

Note that ElimP (ΣH) and ConsA(ElimP (ΣH)) are logically equivalent sets of
clauses. Thus, the set of possible scenarios is already determined by the result
of step (1’), that is

QSA(h, ξ) = NA(¬ElimP (ΣH)). (3.36)

This remark is of particular importance in Subsection 2.4 for the computation
of numerical results. The point is that the probability p(QSA(h, ξ)) is already
determined by ¬ElimP (ΣH), that is step (2’) of the above procedure will not
be necessary.

3.2 Example

In this subsection, a small exemplary argumentation system will be used to
illustrate the idea of the procedure described in the previous subsection. Con-
sider two sets P = {x, y, z} of propositions and A = {a, b, c} of assumptions.
Furthermore, let ξ = γ1 ∧ γ2 ∧ γ3 ∧ γ4 ∧ γ5 be the knowledge base with

γ1 = a ∧ x→ y, γ2 = b→ z, γ3 = ¬(y ∧ z),
γ4 = ¬c→ x, γ5 = c→ ¬z.

The knowledge base ξ can be transformed into a corresponding clause represen-
tation Σ = {ξ1, . . . , ξ5} with

ξ1 = ¬a ∨ ¬x ∨ y, ξ2 = ¬b ∨ z, ξ3 = ¬y ∨ ¬z,
ξ4 = c ∨ x, ξ5 = ¬c ∨ ¬z.

3.2.1 Minimal Quasi-Support

Let y be the hypothesis to be judged in the light of the given knowledge base.
The negated hypothesis ¬y can then be represented by ¬H = {¬y}, and

ΣH = µ(Σ ∪ ¬H)
= µ{¬a ∨ ¬x ∨ y, ¬b ∨ z, ¬y ∨ ¬z, c ∨ x, ¬c ∨ ¬z, ¬y}
= {¬a ∨ ¬x ∨ y, ¬b ∨ z, c ∨ x, ¬c ∨ ¬z, ¬y}
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is the clause representation of ξ ∧ ¬y. In the following, the expression in (3.35)
will be used for the computation of the minimal quasi-support of y. The se-
quence of eliminations and minimal consequences is defined by:

Σ(0) = ΣH ,
Σ(1) = Elimx(Σ(0)) = Elim{x}(ΣH),

Σ(2) = Elimy(Σ(1)) = Elim{x,y}(ΣH),

Σ(3) = Elimz(Σ(2)) = Elim{x,y,z}(ΣH),

Σ(4) = Consa(Σ(3)) = Cons{a}(Elim{x,y,z}(ΣH)),

Σ(5) = Consb(Σ(4)) = Cons{a,b}(Elim{x,y,z}(ΣH)),

Σ(6) = Consc(Σ(5)) = Cons{a,b,c}(Elim{x,y,z}(ΣH)).

The first step is eliminating x from the initial set Σ(0). For that purpose, Σ(0)

must be decomposed into three sets Σ(0)
x , Σ(0)

x̄ , and Σ(0)
ẋ :

Σ(0) = {¬a ∨ ¬x ∨ y, ¬b ∨ z, c ∨ x, ¬c ∨ ¬z, ¬y},
→ Σ(0)

x = {c ∨ x},
→ Σ(0)

x̄ = {¬a ∨ ¬x ∨ y},
→ Σ(0)

ẋ = {¬b ∨ z, ¬c ∨ ¬z, ¬y}.

Evidently, only one resolvent exists for that case, that is the set Rx(Σ(0)
x ,Σ(0)

x̄ ) =
{¬a ∨ c ∨ y} must be added to Σ(0)

ẋ . The resulting set Σ(1) can then be used
for the second step of the procedure, the elimination of the proposition y from
Σ(1):

Σ(1) = {¬a ∨ c ∨ y, ¬b ∨ z, ¬c ∨ ¬z, ¬y},
→ Σ(1)

y = {¬a ∨ c ∨ y},
→ Σ(1)

ȳ = {¬y},
→ Σ(1)

ẏ = {¬b ∨ z, ¬c ∨ ¬z}.

Again, there is only one resolvent, and Σ(2) (the result of the second step) is
obtained by addingRy(Σ(1)

y ,Σ(1)
ȳ ) = {¬a∨c} to Σ(1)

ẏ . Next, z must be eliminated
from Σ(2):

Σ(2) = {¬a ∨ c, ¬b ∨ z, ¬c ∨ ¬z},
→ Σ(2)

z = {¬b ∨ z},
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→ Σ(2)
z̄ = {¬c ∨ ¬z},

→ Σ(2)
ż = {¬a ∨ c}.

Again, only one resolvent exists for the actual situation, that is Rz(Σ
(2)
z ,Σ(2)

z̄ ) =
{¬a∨ c} must be added to Σ(2)

ż . The result of this is the set Σ(3). Clearly, Σ(3)

contains only assumptions, because the entire set of propositions P = {x, y, z}
has been eliminated. The remaining problem then is to compute Φ(Σ(3)). The
first step for this is the computation of the minimal consequence of Σ(3) relative
to a:

Σ(3) = {¬a ∨ c, ¬b ∨ ¬c},
→ Σ(3)

a = {},
→ Σ(3)

ā = {¬a ∨ c}.

In this situation, no resolutions are possible. Therefore, nothing is added to
Σ(3), that is Σ(4) = Σ(3). Next, the minimal consequence of Σ(4) relative to b
must be computed:

Σ(4) = {¬a ∨ c, ¬b ∨ ¬c},
→ Σ(4)

b = {},
→ Σ(4)

b̄
= {¬b ∨ ¬c}.

Again, no resolutions are possible and therefore Σ(5) = Σ(4). Finally, the mini-
mal consequence of Σ(5) relative to c must be computed:

Σ(5) = {¬a ∨ c, ¬b ∨ ¬c},
→ Σ(5)

c = {¬a ∨ c},
→ Σ(5)

c̄ = {¬b ∨ ¬c}.

Clearly, one more resolvent exists for that case, and the final set Σ(6) is obtained
by adding Rc(Σ

(5)
c ,Σ(5)

c̄ ) = {¬a ∨ ¬b} to Σ(5):

Σ(6) = {¬a ∨ c, ¬b ∨ ¬c, ¬a ∨ ¬b}.

To complete the procedure, the minimal quasi-support for y relative to ξ can
be obtained by negating the clauses of Σ(6). There are three minimal quasi-
supporting arguments:

µQS(y, ξ) = {a ∧ ¬c, b ∧ c, a ∧ b}.
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3.2.2 Minimal Contradiction

Consider the same knowledge base Σ = {ξ1, . . . , ξ5} as before and let ⊥ be
the hypothesis of interest. Note that ⊥ is equivalent with the empty clause.
The negated hypothesis > is therefore the empty term, and ¬H = {} is the
corresponding representation. The knowledge base Σ and the initial set for the
procedure ΣH are therefore identical:

ΣH = Σ = {¬a ∨ ¬x ∨ y, ¬b ∨ z, ¬y ∨ ¬z, c ∨ x, ¬c ∨ ¬z}.

Furthermore, suppose that the same procedure is used as in the previous sub-
section. The sequence of sets Σ(0) to Σ(6) is then as follows:

Σ(0) = {¬a ∨ ¬x ∨ y, ¬b ∨ z, ¬y ∨ ¬z, c ∨ x, ¬c ∨ ¬z},
Σ(1) = {¬a ∨ c ∨ y, ¬b ∨ z, ¬y ∨ ¬z, ¬c ∨ ¬z},
Σ(2) = {¬a ∨ c ∨ ¬z, ¬b ∨ z, ¬c ∨ ¬z},
Σ(3) = {¬a ∨ ¬b ∨ c, ¬b ∨ ¬c},
Σ(4) = {¬a ∨ ¬b ∨ c, ¬b ∨ ¬c},
Σ(5) = {¬a ∨ ¬b ∨ c, ¬b ∨ ¬c},
Σ(6) = {¬b ∨ ¬c, ¬a ∨ ¬b}.

Note that the clause ¬a∨¬b∨ c ∈ Σ(5) is not minimal in Σ(6) and has therefore
been removed. Finally, the minimal contradiction of ξ is obtained by negating
the clauses of Σ(6):

µQS(⊥, ξ) = µI(ξ) = {b ∧ c, a ∧ b}.

3.2.3 Minimal Support

Again, consider the same knowledge base Σ = {ξ1, . . . , ξ5} as before. The
minimal support of the hypothesis y can then be derived from the results of
the previous subsections. The relation between support, quasi-support, and
contradiction is determined by (2.4) in Subsection 2.2.2. Therefore, the problem
is to compute the set difference QSA(y, ξ)− IA(ξ) in terms of the sets µQS(y, ξ)
and µI(ξ). As described in Subsection 2.3, this problem can be solved in two
steps. First, the minimal term representation of the complement CA(ξ) = NA−
IA(ξ) must be computed according to (2.8):

µC(ξ) = µ{¬a ∧ ¬b, ¬b, ¬a ∧ ¬c, ¬b ∧ ¬c}
= {¬b, ¬a ∧ ¬c}.
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Finally, the minimal support is obtained by computing the minimal term rep-
resentation of the intersection QSA(y, ξ) ∩ CA(ξ) according to (2.7):

µSP (y, ξ) = µ({α1 ∧ α2 : α1 ∈ µQS(y, ξ), α2 ∈ µC(ξ)} ∩ CA)
= µ({a ∧ ¬b ∧ ¬c, a ∧ ¬a ∧ ¬c, b ∧ ¬b ∧ c, ¬a ∧ b ∧ c ∧ ¬c,

a ∧ b ∧ ¬b, a ∧ ¬a ∧ b ∧ ¬c} ∩ CA)
= {a ∧ ¬b ∧ ¬c}.

Note that the process of computing support in two steps, first by computing
the corresponding quasi-support and second by computing the contradiction, is
not optimal because certain parts of the computation are repeated unnecessarily.
The clause ¬a∨c∨y, for example, has been computed twice in the above example.
It appears in the set Σ(1) in Subsection 3.2.1 as well as in Subsection 3.2.2. Such
redundant computations can be avoided by so-called updating techniques (see
Subsection 3.4).

3.3 Cost-Bounded Focusing

Representing sets of scenarios by sets of minimal terms (see Subsection 2.3) is
important for improving the efficiency of propositional argumentation systems.
However, computing and representing sets of minimal terms like µQS(h, ξ),
µSP (h, ξ), or µPS(h, ξ) is only feasible for relatively small knowledge bases and
small sets of assumptions. For achieving reasonable time and space complexity,
strategies for computing approximated solutions are needed.

3.3.1 Cost Functions

A promising approach is to concentrate on important terms only. A general
approach for capturing the importance or the relevance of terms is to consider
a cost function c : CA −→ IR+ that expresses somehow the price to pay for
obtaining a term α ∈ CA. Terms α with low values c(α) are preferred and
therefore more relevant. It is assumed that α ⊆ α′ implies c(α) ≤ c(α′). This
condition is called the monotonicity criterion. Examples of common cost
functions for terms α ∈ CA are

• the length of the term (number of literals): c(α) = |Lit(α)|,

• the probability of the negated term: c(α) = 1− p(NA(α)).

The idea of using the length of the terms as cost function is that short terms are
supposed to be more weighty arguments. Clearly, if α is a term in CA, then an
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additional literal ` ∈ A± is a supplementary condition to be satisfied, and α∧ `
is therefore less probable than α. From this point of view, the length of a term
correlates somehow with its probability. However, if probabilities are assigned
to the assumptions, then it is possible to specify the probability of a term more
precisely. This is the idea behind the second cost function suggested above.

Alternatively, instead of working with cost functions, it is also possible to con-
sider utility functions. However, there is a strong duality between cost and
utility functions: the negation of a cost function is an utility function and vice
versa. Therefore, the probability p(NA(α)) of a term α ∈ CA, for example, is
a possible utility function. If represents the idea that a higher probability in-
creases the utility and therefore the relevance of an argument. In the sequel,
only cost functions will be used.

Definition 3.1 Let β ∈ IR+ be a fixed bound for a monotone cost function c(α),
then a term α ∈ CA is called

(1) β-relevant, if and only if c(α) ≤ β;

(2) β-irrelevant, if and only if c(α) > β.

The set of all β-relevant terms for a fixed cost bound β is denoted by

CβA = {α ∈ CA : c(α) ≤ β}. (3.37)

Such a set is called stable production field [53]. Note that CβA is a downward-
closed set. This means that α ∈ CβA implies that every (shorter) term α′ ⊆ α

is also in CβA . Clearly, C0
A = Ø and C∞A = CA.

3.3.2 Cost-Bounded Quasi-Support

The problem now is to compute sets of β-relevant terms. Again, sets of mini-
mal quasi-supporting arguments play an important role and the approximated
computation of µQS(h, ξ) is therefore considered first. For that purpose, let

µQS(h, ξ, β) = µ(QS(h, ξ) ∩ CβA ) = µQS(h, ξ) ∩ CβA (3.38)

denote the β-relevant subset of µQS(h, ξ) for a given cost bound β. The set
µQS(h, ξ, β) is called β-relevant minimal quasi-support for h relative to ξ.
Compared to the complete set µQS(h, ξ), it represents a possibly much smaller
set of quasi-supporting scenarios. In fact, if

QSA(h, ξ, β) = NA(µQS(h, ξ, β)) (3.39)
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denotes the set of quasi-supporting scenarios represented by µQS(h, ξ, β), then
QSA(h, ξ, β) ⊆ QSA(h, ξ) for any cost bound β. Further properties of the sets
QSA(h, ξ, β) are described by the following theorem.

Theorem 3.7 Let h and ξ propositional sentences in LA∪P . If β1 and β2 are
cost bounds for a monotone cost function c(α), then

(1) QSA(h, ξ, 0) = Ø,
(2) QSA(h, ξ,∞) = QSA(h, ξ),
(3) β ≤ β′ implies QSA(h, ξ, β) ⊆ QSA(h, ξ, β′).

The hope of computing β-relevant minimal quasi-supports instead of exact so-
lutions is that p(QSA(h, ξ, β)) ≈ p(QSA(h, ξ)) for a reasonably small β (see
Subsection 3.3.5).

3.3.3 Cost-Bounded Elimination

The computation of β-relevant minimal quasi-support can be developed on the
basis of the expression in (3.34). The point is that the resolvents generated
during the elimination of the propositions in P always contain more assumptions
than the clauses used for the resolution. More formally, let ξ = `1 ∨ · · · ∨ `m be
an arbitrary clause in DA∪P . Then ξ can always be decomposed into sub-clauses
ξA and ξP , say

ξ = `1 ∨ · · · ∨ `k︸ ︷︷ ︸
∈A±

∨ `k+1 ∨ · · · ∨ `m︸ ︷︷ ︸
∈P±

= ξA ∨ ξP . (3.40)

Note that such a clause can also be written as an implication ¬ξA → ξP where
¬ξA is a term in CA. The set of clauses ξ for which ¬ξA is in CβA can then be
defined as

DβA∪P = {ξ ∈ DA∪P : c(¬ξA) ≤ β}. (3.41)

If Σ is an arbitrary set of clauses in DA∪P , then the intersection of the sets Σ
and DβA∪P ,

Cutβ(Σ) = Σ ∩ DβA∪P , (3.42)

is called the β-cut of Σ. The expression in (3.38) for the β-relevant minimal
quasi-support can then be rewritten with the help of (3.34) and (3.42):

µQS(h, ξ, β) = µQS(h, ξ) ∩ CβA
= ¬ElimP (ConsA(ΣH)) ∩ CβA
= ¬(ElimP (ConsA(ΣH)) ∩ DβA∪P )
= ¬(Cutβ(ElimP (ConsA(ΣH)))). (3.43)

39



Furthermore, consider an arbitrary proposition x ∈ P . If Σ is a set of clauses,
then the combined operation

Elimβ
x(Σ) = Cutβ(Elimx(Σ)) (3.44)

is called β-elimination of x. Two basic properties of this operation are de-
scribed by the following theorem:

Theorem 3.8 Let Σ ⊆ DA∪P be a set of clauses and β a cost bound for a
monotone cost function c(α). If x and y are propositions in P , then

(1) Elimβ
x(Elimβ

x(Σ)) = Elimβ
x(Σ),

(2) Elimβ
x(Elimβ

y (Σ)) = Elimβ
y (Elimβ

x(Σ)).

Therefore, β-elimination can be performed with an arbitrary sequence of propo-
sitions. Again, it is convenient to write

Elimβ
Q(Σ) = Elimβ

x1
◦ · · · ◦Elimβ

xq (Σ) (3.45)

for the β-elimination of all propositions xi ∈ Q ⊆ P .

Theorem 3.9 Let Σ ⊆ DA∪P be a set of clauses and β a cost bound for a
monotone cost function c(α). If Q ⊆ P is a subset of propositions, then

Cutβ(ElimQ(Σ)) = Elimβ
Q(Σ).

This theorem states that instead of removing clauses which are not in DβA∪P
(i.e. clauses leading to β-irrelevant terms) at the end of the elimination process,
it is also possible to remove them consecutively during the elimination process.
This is the crucial point that keeps the process under control. It can be applied
to (3.43) for the computation of the β-relevant minimal quasi-support:

µQS(h, ξ, β) = ¬Elimβ
P (ConsA(ΣH)). (3.46)

The method described by (3.46) can be optimized because the result of ConsA(ΣH)
may already contain clauses which are not in DβA∪P . Such clauses can be elimi-
nated immediately. The above expression can therefore be rewritten as

µQS(h, ξ, β) = ¬Elimβ
P (Cutβ(ConsA(ΣH))). (3.47)

It describes now a method with four successive steps:

(1) compute the minimal consequence of ΣH relative to A;
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(2) remove from the result of step (1) clauses which are not in
DβA∪P ;

(3) with the result of step (2), perform β-elimination for all propo-
sitions in P ;

(4) generate minimal terms by negating the clauses obtained from
step (3).

If the cost bound increases from β to β′, then only step (2), step (3), and step (4)
of the above procedure must be repeated. However, instead of completely re-
peating step (3), it is also possible to exploit intermediate results of foregoing
computations. This will be is described in Subsection 3.4.2.

3.3.4 Cost-Bounded Support and Possibility

As shown by Theorem 3.7, the approximated set QSA(h, ξ, β) behaves mono-
tonically when the cost bound β changes to β′ ≥ β. This is a desirable property
since it allows to improve the approximation of the exact set QSA(h, ξ) by in-
creasing the cost bound step by step. Altering the cost bound is therefore a
tool to control both the level of approximation as well as the time and space
complexity of the computation.

A similar problem is the approximation of the set SPA(h, ξ). Intuitively, the
approach is the same as in Subsection 3.3.2. Therefore, let

µSP (h, ξ, β) = µ(SP (h, ξ) ∩ CβA ) = µSP (h, ξ) ∩ CβA

be the β-relevant subset of µSP (h, ξ) for a given cost bound β. The corre-
sponding set of supporting scenarios SPA(h, ξ, β) = NA(µSP (h, ξ, β)) is then
an approximation of SPA(h, ξ) with the same desirable property of monotonicity
relative to an increasing cost bound β.

The problem is the computation of the set µSP (h, ξ). So far, support has al-
ways been derived from quasi-support. As shown by (2.4) in Subsection 2.2.2,
SPA(h, ξ) is determined by the set difference QSA(h, ξ) − QSA(⊥, ξ). Unfortu-
nately, the corresponding set difference of two approximated sets QSA(h, ξ, β)
and QSA(⊥, ξ, β) does not coincide with the set SPA(h, ξ, β) as proposed above.
It is therefore not possible to derive approximated support from approximated
quasi-support as it is possible with exact sets. Note that a solution for comput-
ing µSP (h, ξ) as defined above is not known at the moment.

Alternatively, it is possible to define SP ∗A (h, ξ, β) as the set differenceQSA(h, ξ, β)−
QSA(⊥, ξ, β). Note that SP ∗A (h, ξ, β) ⊆ SPA(h, ξ) for any cost bound β. Further-
more, SP ∗A (h, ξ, 0) = Ø and SP ∗A (h, ξ,∞) = SPA(h, ξ) (compare with (1) and (2)
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in Theorem 3.7). The problem is the monotonicity property of Theorem 3.7.
Unfortunately, β ≤ β′ does not necessarily imply SP ∗A (h, ξ, β) ⊆ SP ∗A (h, ξ, β′).
A set SP ∗A (h, ξ, β) can therefore be seen as an approximation of SPA(h, ξ), but it
is not possible to control the level of approximation monotonically by altering
the cost bound β.

Another problem is the approximation of the possibly supporting scenarios
PSA(h, ξ). Again, it is intuitive to define

µPS(h, ξ, β) = µ(PS(h, ξ) ∩ CβA ) = µPS(h, ξ) ∩ CβA
as the β-relevant subset of µPS(h, ξ). The corresponding set of possibly sup-
porting scenarios PSA(h, ξ, β) = NA(µPS(h, ξ, β)) is then an approximation
of PSA(h, ξ) with the same desirable property of monotonicity. The problem is
again the computation of the set µPS(h, ξ, β), for which no solution is known
at the moment.

However, by defining PS∗A(h, ξ, β) = NA −QSA(¬h, ξ, β) (compare with (2.5) in
Subsection 2.2.2), it is possible to approximate the exact set PSA(h, ξ) monoton-
ically from the other side, since PS∗A(h, ξ, β) ⊇ PSA(h, ξ) for any cost bound β.
Furthermore, note that PS∗A(h, ξ, 0) = NA and PS∗A(h, ξ,∞) = PSA(h, ξ) (com-
pare with (1) and (2) in Theorem 3.7). Finally, β ≤ β′ implies PS∗A(h, ξ, β) ⊇
PS∗A(h, ξ, β′).

3.3.5 Cost-Bounded Degrees of Support and Possibility

In Subsection 2.4.1, degree of support has been defined in terms of degree of
quasi-support. If quasi-support is approximated by QSA(h, ξ, β), then it is evi-
dent to approximate degree of quasi-support by

dqs(h, ξ, β) = p(QSA(h, ξ, β)). (3.48)

Note that dqs(h, ξ, β) ≤ dqs(h, ξ). In other words, dqs(h, ξ, β) is a lower bound
for the exact value dqs(h, ξ). Furthermore, increasing the cost bound from β
to β′ implies that dqs(h, ξ, β) ≤ dqs(h, ξ, β′). The requirement of monotonic-
ity relative to β is therefore satisfied for degree of quasi-support. However,
by defining degree of support and degree of possibility in the same way as in
Subsection 2.4.1, that is by

dsp(h, ξ, β) =
dqs(h, ξ, β)− dqs(⊥, ξ, β)

1− dqs(⊥, ξ, β)
, (3.49)

dps(h, ξ, β) = 1− dsp(¬h, ξ, β), (3.50)

then monotonicity relative to β is no longer observed. At the moment, no
solution is known for this problem. Another problem is that dsp(h, ξ, β) is only
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a lower bound for the exact value dsp(h, ξ). Similarly, dps(h, ξ, β) is only an
upper bound for the exact value dps(h, ξ). It is therefore not possible to judge
the level of approximation for a given cost bound β.

3.4 Updating

The request of computing a set of minimal arguments for a given hypothesis
(e.g. µQS(h, ξ), µQS(h, ξ, β), µSP (h, ξ), etc.) is called a query. If several
queries for the same or a similar knowledge base are of interest, then the results
of foregoing queries may be helpful to reduce computational costs. The process
of exploiting intermediate results of previous computations is called updating.
The discussion of updating techniques can be focused on (β-relevant) quasi-
support. Note that processing a query µQS(h, ξ, β) can be seen as computing
a function with three parameters h, ξ, and β. Therefore, there are three cases
where updating techniques are useful:

(1) the knowledge base ξ changes to ξ′ = ξ ∧ ξ̃ by adding new
information (respectively Σ changes to Σ′ = Σ ∪ Σ̃);

(2) the hypothesis h changes to h′ = h∨ h̃ (respectively H changes
to H ′ = H ∪ H̃);

(3) the cost bound β increases to β′ ≥ β in order to improve the
approximation.

The second case, apparently of minor significance, is in fact crucial for com-
puting support or degree of support for a given hypothesis h, that is when two
queries µQS(⊥, ξ) and µQS(h, ξ) are required (respectively µQS(⊥, ξ, β) and
µQS(h, ξ, β)). The point is that µQS(h, ξ) can be obtained from µQS(⊥, ξ)
through updating from ⊥ to h (respectively from Ø to H). Therefore, com-
puting µQS(⊥, ξ) is only necessary once at the beginning. Queries for different
hypothesis can then treated through updating.

Another important remark is that quasi-support mainly depends on the set
ΣH = µ(Σ∪¬H) (see Subsections 3.1 and 3.3). The first two cases of the above
list can therefore be considered as a single case where ΣH changes to Σ′H =
ΣH ∪ Σ̃H . From this point of view, Σ̃H = Σ̃ ∪ ¬H̃ represents simultaneously
new knowledge ξ̃ and an extension h̃ of the hypothesis. This case is discussed
in the following subsection. Finally, case (3) is treated in Subsection 3.4.2.

3.4.1 Adding New Knowledge

The idea for the updating procedure is that every (minimal) quasi-supporting
argument for h relative to ξ is also a quasi-supporting argument for h′ = h ∨ h̃
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relative to ξ′ = ξ ∧ ξ̃, that is

µQS(h, ξ) ⊆ QS(h′, ξ′), (3.51)
µQS(h, ξ, β) ⊆ QS(h′, ξ′, β). (3.52)

Therefore, it is always possible to derive the new set of quasi-supporting argu-
ments µQS(h′, ξ′) from the old set µQS(h, ξ) by

µQS(h′, ξ′) = µ(µQS(h, ξ) ∪New), (3.53)

where New is a set of new (minimal) quasi-supporting arguments for h′. Simi-
larly, µQS(h′, ξ′, β) can be obtained from µQS(h, ξ, β) by

µQS(h′, ξ′, β) = µ(µQS(h, ξ, β) ∪New). (3.54)

From this point of view, the problem to be solved is to find such a set New of
new (minimal) quasi-supporting arguments.

According to (3.34) and (3.35) in Subsection 3.1.3, the computation of minimal
quasi-support is based on two interchangeable operations ConsA and ElimP .
Similarly, computing β-relevant minimal quasi-support involves mainly ConsA,
Cutβ , and Elimβ

P (see (3.47) in Subsection 3.3.3). Therefore, updating will be
investigated independently for the operations ConsQ(Σ′), ElimQ(Σ′), Cutβ(Σ′),
and Elimβ

Q(Σ′), where Q is an arbitrary subset of propositions and Σ′ = Σ∪ Σ̃
the updated set of of clauses.

Consequence: The same idea of updating quasi-support by (3.53) or (3.54)
can also be applied for updating from ConsQ(Σ) to ConsQ(Σ ∪ Σ̃), that is

ConsQ(Σ ∪ Σ̃) = µ(ConsQ(Σ) ∪New), (3.55)

where New is the new set of clauses to be computed. This problem is most
easily understood if the case of a single propositions x ∈ Q is considered first.
Suppose that Consx(Σ) has already been computed, then Consx(Σ∪ Σ̃) can be
obtained from (3.25) by

Consx(Σ ∪ Σ̃) = µ(Σ ∪ Σ̃ ∪Rx(Σx ∪ Σ̃x,Σx̄ ∪ Σ̃x̄))
= µ(Σ ∪ Σ̃ ∪Rx(Σx,Σx̄) ∪Rx(Σx, Σ̃x̄) ∪Rx(Σ̃x,Σx̄) ∪Rx(Σ̃x, Σ̃x̄))
= µ(µ(Σ ∪Rx(Σx,Σx̄))︸ ︷︷ ︸

Consx(Σ)

∪µ(Σ̃ ∪Rx(Σx, Σ̃x̄) ∪Rx(Σ̃x,Σx̄) ∪Rx(Σ̃x, Σ̃x̄))︸ ︷︷ ︸
Newx

),

where Newx is the set of new consequences relative to x. Clearly, Newx depends
on Σ̃, Σx, and Σx̄. It is therefore convenient to define

Newconsx(Σ̃,Σx,Σx̄) = µ(Σ̃ ∪Rx(Σx, Σ̃x̄) ∪Rx(Σ̃x,Σx̄) ∪Rx(Σ̃x, Σ̃x̄))
(3.56)
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as the set of new minimal consequences relative to x. Note that the sets Σx and
Σx̄ have been used in the foregoing computation of Consx(Σ).

The same idea for updating a single proposition can now be applied repeatedly
to all the propositions of the set Q. If, for example, x1 and x2 are the first
two propositions of the same sequence of propositions as used for the foregoing
computation, then Newconsx1(Σ̃,Σx1 ,Σx1) can be considered as the new set of
clauses for the second step, Newconsx2(Newconsx1(Σ̃,Σx1 ,Σx1),Σx2 ,Σx2)) as
the new set of clauses for the third step, and so on. Finally, after computing the
new consequences for the entire sequence of propositions, the set New of new
clauses is obtained for (3.55). Note that the sets Σxi and Σxi must have been
stored for all xi ∈ Q.

Elimination: The idea here is the same as above. The new result ElimQ(Σ∪
Σ̃) can again be derived from the old result ElimQ(Σ) by

ElimQ(Σ ∪ Σ̃) = µ(ElimQ(Σ) ∪New), (3.57)

where New is a new set of clauses to be determined. In this situation, the case
of a single proposition x ∈ Q can be derived from (3.32) by

Elimx(Σ ∪ Σ̃) = µ(Σẋ ∪ Σ̃ẋ ∪Rx(Σx ∪ Σ̃x,Σx̄ ∪ Σ̃x̄))
= µ(Σẋ ∪ Σ̃ẋ ∪Rx(Σx,Σx̄) ∪Rx(Σx, Σ̃x̄) ∪Rx(Σ̃x,Σx̄) ∪Rx(Σ̃x, Σ̃x̄))
= µ(µ(Σẋ ∪Rx(Σx,Σx̄))︸ ︷︷ ︸

Elimx(Σ)

∪µ(Σ̃ẋ ∪Rx(Σx, Σ̃x̄) ∪Rx(Σ̃x,Σx̄) ∪Rx(Σ̃x, Σ̃x̄))︸ ︷︷ ︸
Newx

),

where Newx is the new set of clauses obtained after eliminating x from Σ ∪ Σ̃.
Again, the set Newx depends on the sets Σ̃, Σx, and Σx̄, and it can therefore
be defined as

Newelimx(Σ̃,Σx,Σx̄) = µ(Σ̃ẋ ∪Rx(Σx, Σ̃x̄) ∪Rx(Σ̃x,Σx̄) ∪Rx(Σ̃x, Σ̃x̄)).
(3.58)

As above, the final result New is obtained by repeatedly applying (3.58) for
every proposition xi ∈ Q and by following the sequence of propositions of the
foregoing computation.

β-Cut: Updating from Cutβ(Σ) to Cutβ(Σ∪ Σ̃) is simple. The procedure can
be derived from (3.42) by replacing Σ with Σ ∪ Σ̃:

Cutβ(Σ ∪ Σ̃) = (Σ ∪ Σ̃) ∩ DβA∪P = (Σ ∩ DβA∪P ) ∪ (Σ̃ ∩ DβA∪P )

= Cutβ(Σ) ∪ Cutβ(Σ̃).

Therefore, the only thing to do is to compute Cutβ(Σ̃) for the new set of clauses
Σ̃ and to add the result to the previously computed set Cutβ(Σ).
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β-Elimination: The idea here again is that the new result Elimβ
Q(Σ∪ Σ̃) can

be derived from the old result Elimβ
Q(Σ) by

Elimβ
Q(Σ ∪ Σ̃) = µ(Elimβ

Q(Σ) ∪New), (3.59)

where New is a new set of clauses to be determined. If x ∈ Q is a single
proposition to be eliminated, then (3.44) can be developed as follows:

Elimβ
x(Σ ∪ Σ̃) = Cutβ(Elimx(Σ ∪ Σ̃))

= Cutβ(µ(Elimx(Σ) ∪Newelimx(Σ̃,Σx,Σx̄)))

= µ(Cutβ(Elimx(Σ) ∪Newelimx(Σ̃,Σx,Σx̄)))

= µ(Cutβ(Elimx(Σ))︸ ︷︷ ︸
Elimβx(Σ)

∪Cutβ(Newelimx(Σ̃,Σx,Σx̄))︸ ︷︷ ︸
Newx

).

Clearly, the new set of clauses Newx depends on Σ̃, Σx, and Σx̄. It can therefore
be defined as

Newelimβ
x(Σ̃,Σx,Σx̄) = Cutβ(Newelimx(Σ̃,Σx,Σx̄))

= µ(Σ̃ẋ ∪Rx(Σx, Σ̃x̄) ∪Rx(Σ̃x,Σx̄) ∪Rx(Σ̃x, Σ̃x̄)) ∩ DβA∪P . (3.60)

Finally, the resulting set New in (3.59) is obtained by repeatedly applying (3.60)
for every proposition xi ∈ Q. Again, it is important to respect the sequence of
propositions of the foregoing computation.

3.4.2 Increasing the Cost Bound

Computing β-relevant minimal quasi-support is described by (3.47) in Subsec-
tion 3.3.3. It involves mainly ConsA, Cutβ , and Elimβ

P . Clearly, increasing the
cost bound from β to β′ does not affect ConsA. Therefore, updating from β to
β′ will only be investigated for the operations Cutβ′(Σ) and Elimβ′

Q (Σ), where
Σ is an arbitrary set of clauses and Q a subset of propositions in Σ.

β-Cut: Depending on the actual cost bound, Cutβ(Σ) selects a particular sub-
set of Σ. The set of remaining clauses, that is clauses not selected by Cutβ(Σ),
is defined as

Cutβ(Σ) = Σ− Cutβ(Σ) = Σ−DβA∪P . (3.61)

Evidently, Cutβ(Σ) and Cutβ(Σ) are disjoint and complementary sets with re-
spect to Σ. The new situation, after the cost bound β has increased to β′, can
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now be described as

Cutβ′(Σ) = Cutβ′(Cutβ(Σ) ∪ Cutβ(Σ))
= Cutβ′(Cutβ(Σ)) ∪ Cutβ′(Cutβ(Σ))
= Cutβ(Σ) ∪ Cutβ′(Cutβ(Σ)). (3.62)

The problem of updating from Cutβ(Σ) to Cutβ′(Σ) can therefore be solved by
retrieving the set Cutβ(Σ) of previously irrelevant clauses.

β-Elimination: The problem here is similar as in Subsection 3.4.1. Note that
according (3.47), β-elimination is required after Cutβ(ConsA(ΣH))). If the cost
bound has increased from β to β′, then by (3.62)

Cutβ′(ConsA(ΣH))) = Cutβ(ConsA(ΣH)) ∪ Cutβ′(Cutβ(ConsA(ΣH))).

Clearly, the second part of this expression, that is Cutβ′(Cutβ(ConsA(ΣH))),
can be viewed as an additional set of clauses Σ̃. Therefore, the problem to be
considered is a problem of updating from Elimβ

Q(Σ) to Elimβ′

Q (Σ ∪ Σ̃), where
Σ is an arbitrary set of clauses, Q a subset of propositions, β′ the new cost
bound, and Σ̃ a new set of clauses obtained from updating Cutβ(ConsA(ΣH)))
to Cutβ′(ConsA(ΣH))). As in the previous subsection, the idea is that the new
result Elimβ′

Q (Σ ∪ Σ̃) can be derived from the old result Elimβ
Q(Σ) by

Elimβ′

Q (Σ ∪ Σ̃) = µ(Elimβ
Q(Σ) ∪New), (3.63)

where New is an additional set of clauses to be determined. The case of elimi-
nating a single proposition x ∈ Q can be derived from (3.44) as follows:

Elimβ′

x (Σ ∪ Σ̃) = Cutβ′(Elimx(Σ ∪ Σ̃))

= Cutβ′(µ(Elimx(Σ) ∪Newelimx(Σ̃,Σx,Σx̄)))

= µ(Cutβ′(Elimx(Σ) ∪Newelimx(Σ̃,Σx,Σx̄)))

= µ(Cutβ′(Elimx(Σ)) ∪ Cutβ′(Newelimx(Σ̃,Σx,Σx̄)))

= µ(Cutβ′(Elimx(Σ)) ∪Newelimβ′

x (Σ̃,Σx,Σx̄))

= µ(Elimβ′

x (Σ) ∪Newelimβ′

x (Σ̃,Σx,Σx̄)). (3.64)

Furthermore, if Elimβ
x(Σ)) = Cutβ(Elimx(Σ)) denotes the complementary set

of clauses relative to Elimβ
x(Σ) and with respect to Elimx(Σ), then it is possible

to rewrite Elimβ′
x (Σ) of the above expression as follows:

Elimβ′
x (Σ) = Elimβ

x(Σ) ∪ Cutβ′(Elimβ
x(Σ)). (3.65)
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Finally, updating from Elimβ
x(Σ) to Elimβ′

x (Σ∪Σ̃) is described by the following
expression:

Elimβ′

x (Σ ∪ Σ̃) = µ(Elimβ
x(Σ) ∪ Cutβ′(Elimβ

x(Σ)) ∪Newelimβ′

x (Σ̃,Σx,Σx̄)︸ ︷︷ ︸
Newx

).

The new set of clauses Newx depends on four sets of clauses Σ̃, Σx, Σx̄, and
Elimβ

x(Σ). Note that Σx, Σx̄, and Elimβ
x(Σ) are intermediate results to be

stored during the computation of Elimβ
x(Σ). Finally, the idea for computing

the resulting set New of (3.59) is the same as in the previous subsection: it
is obtained by repeatedly applying the above expression for every proposition
xi ∈ Q and by respecting the same elimination sequence.

3.5 Elimination Sequences

The efficiency of the procedures for computing (β-relevant) minimal quasi-
support depends strongly on the sequence of how the propositions x ∈ P are
eliminated. More generally, if Σ is an arbitrary set of clauses and Q a subset
of propositions, then the choice of a good sequence of propositions is crucial for
computing ElimQ(Σ) and Elimβ

Q(Σ) efficiently. Note that a good sequence of
propositions is also important for computing minimal consequences ConsQ(Σ).
However, only the case of finding good elimination sequences will be considered
below.

The problem with some elimination sequences is that too many superfluous
clauses are produced during the elimination process. A clause is superfluous
if it is detected to be non-minimal later in the elimination process. Finding
a good elimination sequence means to keep the number of superfluous clauses
as small as possible. A class of simple heuristics for finding good elimination
sequences is given by the following rule: if Σ(i) is the actual set of clauses at the
i-th step of the elimination process, then select a proposition x ∈ Q such that
(alternatively)

(1) the number |Σ(i)
x |+ |Σ(i)

x̄ | of clauses containing x or ¬x,

(2) the number |Rx(Σ(i)
x ,Σ(i)

x̄ )| = |Σ(i)
x | · |Σ(i)

x̄ | of resolvents,

(3) or the balance |Σ(i)
x | · |Σ(i)

x̄ | − (|Σ(i)
x |+ |Σ(i)

x̄ |) between added and removed
clauses

is minimal. The idea behind these heuristics is to eliminate those propositions
first for which the size of the actual set of clauses either decreases or remains
more or less constant.
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The problem with these heuristics is that the above numbers have to be recal-
culated after every step of the elimination process and for each of the remaining
propositions. This additional computation at each step can become too expen-
sive. An alternative approach is to fix the complete elimination sequence at
the beginning of the elimination process, that is to compute the above numbers
only once for the initial set of clauses Σ = Σ(0). Clearly, computing such a fixed
elimination sequence is less expensive, but the results are correspondingly worse.
However, in combination with the approximation techniques of Subsection 3.3,
this method turns out to be satisfactory for most practical cases.

Another class of heuristics for finding elimination sequences is based on the
following rule: at each step of the elimination process select the shortest clause
ξs ∈ Σ(i) and choose arbitrarily a proposition appearing in ξs. The idea here is
that resolutions on short clauses are also producing short resolvents for which
the chance of being superfluous is rather small. Again, instead of looking for
the shortest clause at each step of the process, it is possible to apply the above
rule to the initial set of clauses Σ = Σ(0) and to fix the complete elimination
sequence at the beginning of the process.

A third class of heuristics comes from the fact that a set of clauses can always
be considered as a hypergraph structure. This point of view will be discussed
in the following subsection.

3.6 Hypergraph and Hypertree Structures

Hypergraphs and hypertrees are suitable underlying structures for computing
marginals of probability distributions and belief functions . An abstract theory
of local computation in valuation networks based on two basic operations
of combination and marginalization can be developed for computations on
hypertrees [41, 52]. This general framework can be applied to any mathematical
formalism satisfying a certain set of basic axioms. The same idea also leads to
a more general theory of information systems [32, 37, 38].

Propositional logic satisfies the requirements of the theory of valuation net-
works. If two sets of propositional clauses Σ and Σ′ are considered as valuations
ϑ and ϑ′, respectively, then Σ ∪ Σ′ or µ(Σ ∪ Σ′) are possible representatives of
the combined valuation ϑ ⊗ ϑ′. Furthermore, if P is the set of propositions
appearing in Σ and Q ⊆ P , then ElimP−Q(Σ) represents the marginalized
valuation ϑ↓Q. It can then be shown that the basic axioms for the local com-
putation in valuation networks are satisfied [36]:

(1) Commutativity and associativity of combination: if ϑ, ϑ′, and ϑ′′

are valuations, then ϑ⊗ ϑ′ = ϑ′ ⊗ ϑ and ϑ⊗ (ϑ′ ⊗ ϑ′′) = (ϑ⊗ ϑ′)⊗ ϑ′′.
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(2) Consonance of marginalization: if ϑ is a valuation on P and R ⊆ Q ⊆
P , then (ϑ↓Q)↓R = ϑ↓R.

(3) Distributivity of marginalization over combination: if ϑ and ϑ′ are
valuations on P and P ′, respectively, then (ϑ⊗ ϑ′)↓P = ϑ⊗ (ϑ′↓P ).

In the case of propositional logic, an additional basic axiom is satisfied:

(4) Idempotency of combination: if ϑ is a valuation on P and Q ⊆ P ,
then ϑ⊗ (ϑ↓Q) = ϑ.

The idempotency axiom is the main difference between the theory of informa-
tion systems and the framework of valuation networks. Thus, propositional logic
leads to information systems with variables [36], for which hypergraphs and
hypertrees are known to be appropriate underlying structures. Therefore, it
is possible to apply the computational theory of information systems for the
elimination problem in propositional logic. In this way, the knowledge base is
first distributed on a corresponding propagation network, and the elimination
process is then replaced by a corresponding propagation process from the leaves
of the network to the root. Note that such a propagation process on a corre-
sponding network is also generated during the elimination process as described
in Subsection 3.1.3, but the nodes of the network and the messages of the propa-
gation process are not stored explicitly. However, it is important to realize that
the computational structure behind an elimination process in propositional logic
is always a hypertree with a corresponding propagation network.

Hypergraphs which are not hypertrees are not directly applicable for the local
computation scheme. However, it is always possible to construct corresponding
covering hypertrees. Several heuristics for finding good covering hypertrees
have been developed for that purpose [2, 8, 29, 39, 50, 56, 59]. A comparison of
different heuristics can be found in [10], and an efficient algorithm is discussed in
[20]. The heuristics are all based on the selection of an appropriate construct-
ing sequence, which is similar to the problem of finding efficient elimination
sequences as discussed in the previous subsection.

More formally, a hypergraph on a finite set N is defined as a collection of
non-empty subsets of N [7]. Therefore, if clauses are considered as sets of
literals, then a set of clauses Σ ⊆ DP can be regarded as a hypergraph on P±.
Alternatively, it is possible to focus on a subset of propositions Q ⊆ P . If
the set of literals of each clause of Σ is intersected with Q±, then Σ defines a
corresponding hypergraph on Q±. A reversed constructing sequence for such a
hypergraph can then be used as elimination sequence for ElimQ(Σ). In fact,
the heuristics for constructing good covering hypertrees turn out to be useful
alternatives for finding efficient elimination sequences.
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4 Numerical Computation

The topic of this section is to show how exact numerical degrees of support
and possibility can be obtained more efficiently. The method presented so far
includes two computational phases. First, the sets µQS(h, ξ), µQS(¬h, ξ), and
µQS(⊥, ξ) are computed as presented in Section 3 by an ordered elimination
procedure. Second, according to the methods of Subsection 2.4.2, correspond-
ing numerical values dqs(h, ξ), dqs(¬h, ξ), and dqs(⊥, ξ) are derived from the
given prior probabilities. The resulting values dsp(h, ξ) and dps(h, ξ) are then
determined by (2.17) and (2.18), respectively. Clearly, this approach is not
very efficient, if only numerical results are required. In such a case, the sets
of quasi-supporting arguments are only used as intermediate results. Note that
computing exact sets of quasi-supporting arguments is often very expensive.

A more efficient approach is based on the fact that degree of quasi-support
corresponds to the notion of unnormalized belief in the Dempster-Shafer
theory of evidence [35, 51, 55, 58].Therefore, the idea of the method presented
in this section is to transform the given probabilistic argumentation system
(ξ, P,A,Π) into a family of independent belief functions b1, . . . , bq. The final
result can then be derived from the combined belief function b1 ⊗ · · · ⊗ bq.
The following picture illustrates the different ways of computing dsp(h, ξ) and
dps(h, ξ).

(ξ, P,A,Π) Elimination //
µQS(h, ξ)
µQS(¬h, ξ)
µQS(⊥, ξ)

b1, . . . , bq
Combination ⊗ // dsp(h, ξ)

dps(h, ξ)

Usually, belief functions are represented more conveniently by so-called mass
functions. If Θ = {θ1, . . . , θk} is an arbitrary finite set, then a mass function
over Θ is a function m : 2Θ → [0, 1] such that

∑
G⊆Θm(G) = 1. A set G ⊆ Θ

with m(G) 6= 0 is called focal set. Θ is called frame of discernment. The
combination m1 ⊗m2 of two mass functions is obtained by Dempster’s rule
of combination:

(m1 ⊗m2)(H) =
∑

G1,G2⊆Θ

G1∩G2=H

m1(G1) ·m2(G2). (4.66)
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Furthermore, unnormalized belief functions b : 2Θ → [0, 1] are constructed
from mass functions by

b(H) =
∑
G⊆H

m(G). (4.67)

Finally, normalized belief functions Bel : 2Θ → [0, 1] and plausibility
functions Pl : 2Θ → [0, 1] are obtained from b by:

Bel(H) =
b(H)− b(Ø)

1− b(Ø)
, (4.68)

Pl(H) = 1− b(Θ−H). (4.69)

Note the the above above expressions are similar to (2.17) and (2.18) in Sub-
section 2.4.1. Therefore, if unnormalized belief and degree of quasi-support are
equivalent measures, then normalized belief and degree of support are the same,
as well as plausibility and degree of possibility. The equivalence between un-
normalized belief and degree of quasi-support is demonstrated in the following
subsection.

4.1 Constructing Independent Belief Functions

Let (ξ, P,A,Π) be a probabilistic argumentation system. The problem then is
to find a belief function b such that dqs(h, ξ) = b(NA∪P (h)) for all h ∈ LA∪P .
Suppose that the knowledge base ξ is given as a set of clauses Σ. The problem
can then be solved in two consecutive steps. First, by imposing certain condi-
tions, Σ is transformed into an equivalent set of implications ~Σ′. An algorithm
for this will be discussed in the following subsection. Second, a corresponding
mass function m is derived from ~Σ′. It determines b according to (4.67).

4.1.1 The Partition Algorithm

The partition algorithm transforms a set of clauses Σ = {ξ1, . . . , ξr} into
a logically equivalent set of implications ~Σ′. The idea of the algorithm is to
partition the set of scenarios NA into disjoint subsets. Every individual piece
of the partition is then automatically linked to a corresponding focal set. The
masses of the focal sets are determined by the probabilities πi. First of all, note
that every clause ξi ∈ Σ can also be written as an implication

ξi = l1 ∨ · · · ∨ lk︸ ︷︷ ︸
∈A±

∨ lk+1 ∨ · · · ∨ lm︸ ︷︷ ︸
∈P±

≡ ¬α ∨ β ≡ α→ β, (4.70)
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where α ∈ DA is a term and β ∈ CP a clause. Therefore, let ~Σ = {α1 →
β1, . . . , αr → βr} denote the corresponding set of implications obtained from
Σ. Clearly, Σ and ~Σ are logically equivalent. Two distinct implications of
~Σ can always be replaced by three other implications such that the new set
of implications is logically equivalent to ~Σ. The following production rule
describes the procedure:

αi → βi
αj → βj

}
=⇒

 (αi ∧ ¬αj)→ βi
(αi ∧ αj)→ (βi ∧ βj)
(¬αi ∧ αj)→ βj

. (4.71)

Clearly, the application of the production rule makes only sense if NA(αi) ∩
NA(αj) 6= Ø. Furthermore, note that NA(αi ∧¬αj), NA(αi ∧αj), and NA(¬αi ∧
αj) are mutually disjoint.

Possibly, two types of simplification rules can help to reduce the number
of implications of ~Σ. First, implications of the form ⊥ → β can always be
eliminated from ~Σ. Second, two implications with the same conclusion can be
simplified as follows:

αi → β
αj → β

}
=⇒ (αi ∨ αj)→ β. (4.72)

The repeated application of the production and simplification rules produces a
new set of implications {α′1 → β′1, . . . , α

′
s → β′s}. If an additional implication

α′0 → β′0 of the form ¬(∨si=1αi) → > is adjoined, then the resulting set of
implications ~Σ = {α′0 → β′0, . . . , α

′
s → β′s} satisfies the following four conditions:

(1) NA(α′i) ∩NA(α′j) = Ø for all i 6= j,

(2)
⋃s
i=0NA(α′i) = NA,

(3) NA(α′i) 6= Ø,

(4) NP (β′i) 6= NP (β′j) for all i 6= j.

From (1) and (2) follows that the implications form a partition on NA, whereas
(3) and (4) reveal that it is not possible to perform further simplifications.

The pseudo code of the partition algorithm is given below. It starts with ~Σ′ =
{> → >} and adjoins successively every implication of ~Σ. The resulting set ~Σ′

is logically equivalent to ~Σ and satisfies the conditions (1) to (4):

Input: ~Σ = {α1 → β1, . . . , αr → βr}
~Σ′ = {> → >}
For each αi → βi in ~Σ do
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Ψ = Ø
For each αj → βj in ~Σ′ do

Ψ = Ψ ∪ {(αj ∧ ¬αi)→ βj , (αj ∧ αi)→ (βj ∧ βi)}
Next
~Σ′ = Simplify(Ψ)

Next
Output: ~Σ′ = {α′0 → β′0, . . . , α

′
s → β′s}.

The purpose of Simplify(Ψ) is to perform all possible simplifications. In the
worst case, that is if no simplifications are possible, then ~Σ′ contains 2r im-
plications. The partition algorithm is therefore only applicable for a relatively
small initial set ~Σ. However, as it will be shown in Subsection 4.2, ~Σ can often
be decomposed into smaller sets and the computation can be distributed on a
corresponding propagation network.

4.1.2 Constructing the Mass Function

The set of implications produced by the partition algorithm is a preparation
for constructing a corresponding mass function m. Clearly, the construction
depends on the choice of the frame of discernment Θ. In the most general case,
Θ is given by NA∪P . However, it is often useful to restrict Θ to NP , that is to
allow only hypotheses h ∈ LP . The benefit of this restriction is a smaller frame
of discernment Θ. This can be advantageous for the problem of representing
mass functions efficiently. In the following, Θ will always be restricted to NP .

Let ~Σ′ = {α′0 → β′0, . . . , α
′
s → β′s} be a set of implications derived from Σ by

the partition algorithm. A corresponding mass function m : 2NP → [0, 1] for ~Σ′

can then be constructed as follows:

m(H) =
{
p(NA(α′i)), if ∃α′i → β′i ∈ ~Σ′ such that H = NP (β′i),
0, otherwise.

Note that the mass function is unequivocally determined for a given set of clauses
Σ. Conversely, several sets of clauses may lead to the same mass function.

4.1.3 Computing Degrees of Quasi-Support

Let h be an arbitrary hypothesis in LP . Since Σ, ~Σ, and ~Σ′ are logically equiv-
alent, it is possible to define the set QSA(h, ξ) of quasi-supporting scenarios for
h in terms of the implications in ~Σ′:

QSA(h, ξ) = {s ∈ NA : s |=ξ h}
=

⋃
{NA(α′i) : α′i → β′i ∈ ~Σ′, β′i |= h}. (4.73)
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As mentioned before, the sets NA(α′i) are mutually disjoint. The degree of
quasi-support can therefore be written as a corresponding sum of probabilities
of sets NA(α′i). Furthermore, if H = NA(h) represent the hypothesis h in Θ,
then the equivalence between degree of quasi-support and unnormalized belief
can be demonstrated as follows:

dqs(h, ξ) = p(QSA(h, ξ))

=
∑
{p(NA(α′i)) : α′i → β′i ∈ Σ′, βi |= h}

=
∑
G⊆H

m(G) = b(H).

As a consequence, normalized belief and degree of support are the same, as well
as plausibility and degree of possibility.

4.2 Decomposition and Local Computations

As mentioned in the previous section, the partition algorithm is only applicable
for relatively small sets Σ. If the size of Σ exceeds a certain range, it may be
preferable to decompose Σ into several smaller sets Σ1, . . . ,Σq. The decompo-
sition must be such that every assumption ai ∈ A occurs in at most one of
these smaller sets. This requirement is needed because it allows to compute in-
dependent mass functions for each of the smaller sets. Independency is a basic
requirement for Dempster’s rule of combination. Therefore, if Ai denotes the
set of assumptions appearing in Σi, then Ai ∩Aj = Ø whenever i 6= j.

The simple case where Σ = {ξ1, . . . , ξr} is decomposed only into two parts
Σ1 and Σ2 will be studied first. This is not really a restriction since every
decomposition Σ1, . . . ,Σq can be obtained by repeatedly decomposing Σ into
two parts. Let A1 and A2 be the disjoint sets of assumptions for Σ1 and Σ2,
respectively. Furthermore, let ~Σ′1 = {α′0 → β′0, . . . , α

′
s → β′s} and ~Σ′2 = {γ′0 →

δ′0, . . . , γ
′
t → δ′t} be the corresponding sets of implications obtained from the

partition algorithm. A consequence of A1 ∩A2 = Ø is that

~Σ′ = {(α′i ∧ γ′j)→ (β′i ∧ δ′j) : αi → βi ∈ ~Σ′1, γj → δj ∈ ~Σ′2}

is the resulting set of implications obtained from applying the partition algo-
rithm to the initial set Σ. The set of quasi-supporting scenarios can therefore
be written as

QSA(h, ξ) =
⋃
{NA(α′i ∧ γ′j) : (α′i ∧ γ′j)→ (β′i ∧ δ′j) ∈ ~Σ′, β′i ∧ δ′j |= h}.

Again, the sets NA(α′i ∧ γ′j) are mutually disjoint. The degree of quasi-support
is therefore a corresponding sum of probabilities p(NA(α′i ∧ γ′j)). Note that
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A1 ∩A2 = Ø implies that

p(NA(α′i ∧ γ′j)) = p(NA(α′i)) · p(NA(γ′j)).

As a consequence, dqs(h, ξ) can be expressed in terms of the individual mass
functions m1 and m2:

dqs(h, ξ) = p(QSA(h, ξ))

=
∑
{p(NA(α′i ∧ γ′j)) : (α′i ∧ γ′j)→ (β′i ∧ δ′j) ∈ ~Σ′, β′i ∧ δ′j |= h}

=
∑
{p(NA(α′i)) · p(NA(γ′j)) : (α′i ∧ γ′j)→ (β′i ∧ δ′j) ∈ ~Σ′, β′i ∧ δ′j |= h}

=
∑

G1∩G2⊆H
m1(G1) ·m2(G2). (4.74)

Furthermore, if m = m1 ⊗m2 denotes the combined mass functions, then it is
also possible to express b(H) in terms of m1 and m2:

b(H) =
∑
G⊆H

m(G) =
∑
G⊆H

(m1 ⊗m2)(G)

=
∑
G⊆H

(
∑

G1∩G2=G

m1(G1) ·m2(G2))

=
∑

G1∩G2⊆H
m1(G1) ·m2(G2). (4.75)

Clearly, the expression obtained in (4.74) and (4.75) are the same. Therefore,
dqs(h, ξ) can be obtained by (1) decomposing Σ into Σ1 and Σ2, (2) applying the
partition algorithm to Σ1 and Σ2, (3) constructing corresponding mass functions
m1 and m2, (4) combining m1 and m2 by Dempster’s rule, and (5) computing
b(H) according to (4.67).

The same procedure is also applicable if Σ is decomposed into several smaller sets
Σ1, . . . ,Σq. However, the problem is the computation of m = m1 ⊗ · · · ⊗mq,
because the number of focal sets grows exponentially with q. This problem
can be avoided, if every mass function is considered as a valuation in the
sense of [41, 52]. The result can then be computed locally on a corresponding
propagation network. The connection to the valuation framework has already
been mentioned in Subsection 3.6.
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5 Building Argumentation Systems on Set Con-
straint Logic

So far, the theory of argumentation systems and the corresponding computa-
tional techniques have been developed on the basis of propositional logic. The
problem is that propositional logic is a formal language for describing state-
ments about binary variables. This is sufficient for expressing a certain class
of problems. However, describing the world on the basis of binary variables
is sometimes not very convenient. For that reason, propositional logic can be
generalized to set constraint logic (SCL) [6, 24]. The idea is that arbitrary
variables are allowed, each of them having an individual set of possible values.
Constraints about the possible true value of a variable are then the atoms of the
language. They replace somehow the notion of a literal in propositional logic.

The SCL-framework is closely related to the the domain of many-valued logic
(MVL) [25, 43, 44, 48]. The idea behind the MVL approach is that the set of
possible truth values is extended from {0, 1} (classical propositional logic) to an
arbitrary set Θ. Depending on properties of the set Θ (finite, infinite, unordered,
partially ordered, totally ordered, etc.), various classes of many-valued logics can
be defined [26]. The case of a finite and unordered set Θ leads to the concept of
signed logic, for which the resolution principle corresponds to SCL-resolution.
The main difference between signed logic and the SCL-framework is that for
signed logic the same number of possible values is used for all variables. From
this point of view, SCL is a more general approach, since different sets of values
are possible for different variables.

5.1 Set Constraint Logic

The alphabet of set constraint logic is a finite set V = {v1, . . . , vn} of variables.
The true value of a variable v ∈ V is supposed to be exactly one value of a
given set of values Θv. Θv is called frame of v. An expression 〈v ∈ X〉, where
X is a subset of Θv, is called a set constraint. It can be seen as a predicate
that becomes true if and only if the true value of the variable v is in X. A set
constraint 〈v ∈ {θi}〉, θi ∈ Θv, is called assignment and is often abbreviated
by 〈v = θi〉. Set constraints together with the symbols ⊥ and > can then be
used to build compound SCL-formulas:

(1) set constraints, ⊥ and > are SCL-formulas;

(2) if γ is a SCL-formula, then ¬γ is a SCL-formula;

(3) if γ and δ are SCL-formulas, then (γ ∧ δ), (γ ∨ δ), (γ → δ), and
(γ ↔ δ) are SCL-formulas.
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Note that a fixed precedence relation on {¬,∧,∨,→,↔} allows to omit unnec-
essary parentheses. If V is a given set of variables, then LV denotes the set of
SCL-formulas over V .

The assignment of a specific value to every variable vi ∈ V is called an in-
terpretation. The set of all possible interpretations is denoted by NV =
Θv1 × · · · × Θvn . Every interpretation x ∈ NV can be seen as a point or a
vector x = (x1, . . . , xn) in the n-dimensional product space NV . For a given in-
terpretation x, the truth value of a set constraint 〈vi ∈ X〉 is 1 (true) whenever
xi ∈ X and 0 (false) otherwise. Given the truth values of the set constraints
contained in a formula, the truth value of the formula itself can be determined
in the same way as in propositional logic (see Subsection 2.1.1).

N(γ) ⊆ NV denotes the set of all interpretations for which a formula γ is true.
A SCL-formula γ entails a SCL-formula δ (denoted by γ |= δ), if and only if
δ is true under all interpretations for which γ is true, that is if N(γ) ⊆ N(δ).
Furthermore, γ and δ are equivalent (denoted by γ ≡ δ), if and only if the
truth values of γ and δ are the same under all possible interpretations, that is
if N(γ) = N(δ). Note that equivalent SCL-formulas represent exactly the same
information or knowledge.

Let γ be a SCL-formula in LV and x ∈ NQ an interpretation relative to Q ⊆ V .
For such a case, γQ←x denotes the formula obtained from γ by replacing each
set constraint 〈v ∈ X〉 by > if xi ∈ X or by ⊥ if xi 6∈ X. If δ is another
SCL-formula in LV , then x |=γ δ means that γQ←x |= δ.

Some basic properties of SCL-formulas are given by the axioms of set theory
[19]. They are important for simplifying SCL-formulas:

(1) 〈v ∈ Ø〉 ≡ ⊥,

(2) 〈v ∈ Θs〉 ≡ >,

(3) ¬〈v ∈ X〉 ≡ 〈v ∈ Θv −X〉,
(4) 〈v ∈ X1〉 ∨ 〈v ∈ X2〉 ≡ 〈v ∈ X1 ∪X2〉,
(5) 〈v ∈ X1〉 ∧ 〈v ∈ X2〉 ≡ 〈v ∈ X1 ∩X2〉.

For example, property (3) can be used to eliminate negations. A set constraint
〈v ∈ X〉 is called proper, if X 6= Ø and X 6= Θs. A disjunction of proper
set constraints 〈v1 ∈ X1〉 ∨ · · · ∨ 〈vq ∈ Xq〉 where every variable occurs at
most once is called a SCL-clause. Similarly, a conjunction of proper set
constraints 〈v1 ∈ X1〉∧ · · ·∧ 〈vq ∈ Xq〉 where every variable occurs at most once
is called a SCL-term. Arbitrary disjunctions or conjunctions of set constraints
can be transformed into corresponding SCL-clauses or SCL-terms by applying
properties (1) to (5).
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Let ϕ1 and ϕ2 be SCL-clauses. ϕ1 absorbs ϕ2 whenever N(ϕ1) ⊆ N(ϕ2).
Absorption of SCL-clauses can be tested as follows: ϕ1 absorbs ϕ2 if and only if
for every 〈v ∈ X1〉 in ϕ1 there is a 〈v ∈ X2〉 in ϕ2 such that X1 ⊆ X2. Similarly,
a SCL-term ψ1 absorbs another SCL-term ψ2 whenever N(ψ1) ⊇ N(ψ1). This
is the case if and only if for every 〈v ∈ X1〉 in ψ1 there is a 〈v ∈ X2〉 in ψ2

such that X1 ⊇ X2. If Γ is a set of SCL-clauses or SCL-term, then the result of
removing all absorbed SCL-clauses or SCL-term from Γ is denoted by µ(Γ).

A conjunctive normal form (CNF for short) is a finite conjunction ϕ1 ∧
· · · ∧ϕr of SCL-clauses ϕi. Note that any SCL-formula can be transformed into
an equivalent conjunctive CNF. Particular CNF formulas are connected to the
notion of prime implicates. A SCL-clause ϕ is called implicate of γ ∈ LS , if
γ |= ϕ. An implicate ϕ of γ is called prime implicate of γ, if it is not absorbed
by another implicate of γ. Clearly, the set of all prime implicates Φ(γ) defines
a corresponding CNF. Note that γ ≡ Φ(γ). If Γ is the corresponding set of
clauses for a CNF γ, then it is often more convenient to write Φ(Γ) instead of
Φ(γ).

5.2 Constraint-Based Argumentation Systems

The concept of propositional argumentation systems can now be generalized
to the SCL-framework. Let V = {v1, . . . , vn} and E = {e1, . . . , em} be two
sets of variables with corresponding frames Θvi and Θei . The elements of E
are called environmental variables. LE∪V denotes the corresponding set
constraint language. If ξ is a propositional sentence in LE∪V , then a triple
ASC = (ξ, V, E) is called constraint-based argumentation system. Again,
the knowledge base ξ is often given as a conjunctive set Σ = {ξ1, . . . , ξr} of
SCL-formulas ξi ∈ LE∪V , or, more specifically, SCL-clauses ξi ∈ DE∪V , where
DE∪V denotes the set of all possible SCL-clauses over E ∪ V .

In the propositional case, the uncertainty is captured by a special set of propo-
sitions called assumptions. The same role is now played by the environmental
variables. Clearly, an assumption ai in the propositional case can also be seen
as an assignment 〈ei = 1〉, where ei is a binary environmental variable with a set
Θei = {0, 1} of possible values. Similarly, the negated literal ¬ai corresponds
to 〈ei = 0〉. Propositional argumentation systems are therefore special cases of
constraint-based argumentation systems. The following subsections show how
the basic notions of propositional argumentation systems can be generalized.

5.2.1 Scenarios

As mentioned above, uncertainty is now captured by the environmental vari-
ables. Therefore, the possible interpretations s ∈ NE relative to E are the
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scenarios to be considered. In the same way as in the propositional case, it
is possible to distinguish between consistent and inconsistent scenarios. For
example, CE(ξ) = {s ∈ NE : s 6|=ξ ⊥} denotes the set of all consistent scenarios
relative to ξ (see Subsection 2.2).

Furthermore, when a hypothesis h ∈ LE∪V is given, particular scenarios of s ∈
NE can be defined as quasi-supporting, supporting, possibly supporting,
quasi-refuting, refuting, and possibly refuting scenarios for h relative to
ξ. For example, QSE(h, ξ) = {s ∈ NE : s |=ξ h} denotes the set of all quasi-
supporting scenarios for h.

5.2.2 Arguments

The idea of representing sets of scenarios by corresponding (minimal) sets of
terms remains the same. Let CE denote the set of all SCL-terms on E. If
S ⊆ NE is a set of scenarios, then T (S) = {α ∈ CE : NE(α) ⊆ S} is the
term representation and µT (S) the minimal term representation of S
(see Subsection 2.3). The notions of consistent and inconsistent terms are
therefore defined in the same way as in the propositional case. For example,
C(ξ) = T (CE(ξ)) is the set of consistent terms relative to ξ. Similarly, it is
possible to generalize the concept of arguments. For example, QS(h, ξ) =
T (QSE(h, ξ)) defines the set of quasi-supporting arguments for a hypothesis h.
Arguments are therefore SCL-terms containing set constraints on environmental
variables.

5.2.3 Probabilistic Argumentation Systems

Suppose that the set of possible values Θei is finite for every environmental vari-
able ei ∈ E. Furthermore, let πij = p(ei = θij) denote the probability that the
value of ei is θij with θij ∈ Θei and

∑
j πij = 1. The probability distribution

associated to ei is then represented by πi. Finally, a tuple PASC = (ξ, V, E,Π),
where Π = {π1, . . . , πm} denotes the set of probability distributions on the en-
vironmental variables, is a probabilistic constraint-based argumentation
system.

Let s = (θ1j , . . . , θmj), θij ∈ Θei , be a particular scenario in NE . The probability
of s is then given by

p(s) =
m∏
i=1

p(ei = θij) =
m∏
i=1

πij . (5.76)

Furthermore, if S ⊆ NE is an arbitrary set of scenarios, then the probability of
S is obtained in the same way as in Subsection 2.4.1, that is by summing the
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probabilities of the elements of S:

p(S) =
∑
s∈S

p(s). (5.77)

Finally, degree of quasi-support, degree of support, and degree of possi-
bility are defined as before in (2.15), (2.17), and (2.18). The remaining problem
then is to compute the probability p(QSE(h, ξ)). The idea of computing a dis-
joint form of µQS(h, ξ) remains the same as in the propositional case. The
general case of this problem has been studied in [47].

5.3 Computing Quasi-Support

The technique for computing minimal quasi-supporting arguments is based on
the same idea as before. If ConsQ(Σ) represents the set of SCL-clauses obtained
after computing all minimal consequences relative to Q and ElimQ(Σ) the result
of eliminating from Σ the variables in Q, then µQS(h, ξ) can be computed by

µQS(h, ξ) = ¬(Φ(ΣH) ∩ DE)
= ¬ElimV (ConsE(ΣH)), (5.78)

where ΣH is a set of SCL-clauses representing ξ∧¬h. The following subsections
show how ConsQ(Σ) and ElimQ(Σ) can be generalized from propositional logic
to set constraint logic.

5.3.1 Computing Consequences by SCL-Resolution

As before, the problem of computing ConsQ(Σ) for a set Q = {x1, . . . , xq}
can be decomposed into a sequence Consx1 ◦ · · · ◦ Consxq (Σ), where at each
step only a single variable is considered. Therefore, if x ∈ Q is the variable to
be considered, then Σ can then be decomposed into two sets Σx (the clauses
containing x) and Σẋ (the clauses not containing x),

Σx = {ξ ∈ Σ : x ∈ V ar(ξ)},
Σẋ = {ξ ∈ Σ : x /∈ V ar(ξ)},

where V ar(ξ) denotes the set of variables of the clause ξ. If ξ1 = 〈x ∈ X1〉 ∨ ϑ1

and ξ2 = 〈x ∈ X1〉 ∨ ϑ2 are two SCL-clauses in Σx, then the clause

ρx(ξ1, ξ2) = 〈x ∈ X1 ∩X2〉 ∨ ϑ1 ∨ ϑ2 (5.79)

is called resolvent of ξ1 and ξ2. The idea is the same as in [17] where resolution
is defined for a general logic. The set constraint 〈x ∈ X1∩X2〉 is called residue.
SCL-resolution is illustrated in Figure 5.3.
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〈x ∈ X1〉 ϑ1

〈x ∈ X2〉 ϑ2

〈x ∈ X1 ∩X2〉 ϑ1 ϑ2

Figure 5.3: The resolution principle for two SCL-clauses.

If the two sets X1 and X2 in (5.79) are disjoint, then the residue 〈x ∈ Ø〉 ≡ ⊥
can be eliminated, and ϑ1 ∨ ϑ2 is therefore the remaining resolvent. Note that
this special case corresponds to the resolution principle in propositional logic.
However, the situation now is more complicated. Clearly, if X1 ∩ X2 6= Ø,
then ρx(ξ1, ξ2) can be used for other resolutions with other SCL-clauses in Σx.
Therefore, a more general resolution rule ρ̂x(Υ) for subsets Υ ⊆ Σx, |Υ| ≥ 2,
must be considered. If ξi = 〈x ∈ Xi〉 ∨ ϑi represents a SCL-clause in Υ, then
ρ̂x(Υ) can be defined as

ρ̂x(Υ) = 〈x ∈
⋂
ξi∈Υ

Xi〉 ∨
( ∨
ξi∈Υ

ϑi

)
. (5.80)

Such a general resolution rule is possible, because ρx(ξ1, ξ2) for a fixed variable
x is commutative, associative and idempotent. Figure 5.4 illustrates SCL-
resolution for a set Υ = {ξ1, . . . , ξr} of SCL-clauses.

〈x ∈ X1〉 ϑ1

〈x ∈ X2〉 ϑ2qqqq
qqqq

〈x ∈ Xr〉 ϑr

〈x ∈ X1 ∩ · · · ∩Xr〉 ϑ1 ϑ2 · · · ϑr

Figure 5.4: The resolution principle for a set of SCL-clauses.

Clearly, every resolvent ρ̂x(Υ) is an implicate of Υ and therefore also an impli-

62



cate of Σ. The set of all resolvents for Σx is defined as

Rx(Σx) = µ{ρ̂x(Υ) : Υ ⊆ Σx, |Υ| ≥ 2}. (5.81)

There are efficient algorithms for computing Rx(Σx). They are based on the idea
that every resolvent ρ̂x(Υ) can be computed as a sequence of simple resolutions
ρx(ξi, ξj) on two clauses ξi, ξj ∈ Υ, and on several criterions to reduce the
number of necessary sequences to be considered [6].

Finally, in accordance with (3.25) of Subsection 3.1.1, the minimal conse-
quence of Σ relative to x is given by

Consx(Σ) = µ(Σ ∪Rx(Σx)). (5.82)

This expression describes a single step of the procedure for computing minimal
consequences of Σ relative to a set of variables Q. Again, any ordering of the
variables in Q can be used for the procedure. This is possible because the
properties of Subsection 3.1.1 are still valid.

5.3.2 Deletion and Elimination

The problem of computing ElimQ(Σ) for a set Q = {x1, . . . , xq} can also be
solved by decomposing the procedure into a sequence Elimx1 ◦ · · · ◦Elimxq (Σ),
where at each step only a single variable is eliminated. Therefore, if x ∈ Q is
such a variable to be eliminated, then

Elimx(Σ) = Delx(Consx(Σ)) = Delx(µ(Σẋ ∪Rx(Σx)))
= µ(Delx(Σẋ ∪Rx(Σx)))
= µ(Delx(Σẋ) ∪Delx(Rx(Σx))))
= µ(Σẋ ∪Delx(Rx(Σx))). (5.83)

The difference between (3.32) and (5.83) is that the variable x may still be
contained in some of the clauses in Rx(Σx). Clearly, clauses containing the
variable x are not allowed in Elimx(Σ) and are therefore deleted from Rx(Σx).
Note that the corresponding algorithms for computing Rx(Σx) can be adapted
for the purpose of deleting such clauses automatically [6].
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6 Conclusion

This chapter presents the framework of probabilistic argumentation systems
from a theoretical and computational point of view. It shows the state of the
art by introducing properly the main theoretical concepts and by summarizing
the computational methods. The aim of the theory is to judge open questions
about the unknown or future world in the light of uncertain knowledge. The
theory supports both a qualitative and a quantitative judgement. Compared
with other theories for solving problems of inference under uncertainty, this is
one of the main advantages of probabilistic argumentation systems, since most
other approaches are either restricted to qualitative or quantitative aspects only.

Probabilistic argumentation systems are based on a novel combination of clas-
sical logic and probability theory. In this way, non-monotonicity is obtained in
a natural and convenient way without leaving the field of classical logic. The
advantage is that the richness of computational techniques for classical logic
is preserved. Furthermore, the theory of probabilistic argumentation systems
shows that probability theory, which is fundamental for the Bayesian approach,
can also be used to obtain a more general way of reasoning under uncertainty.
As shown in this chapter, the result of this more general use of probability theory
is equivalent with the Dempster-Shafer theory of evidence. Therefore, an im-
portant contribution of probabilistic argumentation systems is to demonstrate
how probability theory is linked with the Dempster-Shafer theory.

The main computational concept of probabilistic argumentation systems is the
idea of eliminating variables or propositions. The strength of this approach is
that the same principle is applicable for different formalisms such as proposi-
tional logic, set constraint logic, and also for systems with linear equations or
inequalities. The theory presented in this chapter is therefore based on generic
computational methods.

So far, probabilistic argumentation systems have been developed for the purpose
of judging questions under uncertainty. Future work will focus on integrating
the related problems of decision and action under uncertainty.
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A Proofs

Remark: If γ is a propositional sentence in LA∪P , then the corresponding set
of models NA∪P (γ) ⊆ NA∪P of γ will often be abbreviated as N(γ).

Proof of Theorem 2.1

(1) QSA(⊥, ξ) = {s ∈ NA : s |=ξ ⊥} = IA(ξ). 2

(2) QSA(>, ξ) = {s ∈ NA : s |=ξ >} = {s ∈ NA : ξA←s |= >}
= {s ∈ NA : s↑A∪P ∩N(ξ) ⊆ N(>) }
= {s ∈ NA : s↑A∪P ∩N(ξ) ⊆ NA∪P } = NA. 2

(3) QSA(h1 ∧ h2, ξ) = {s ∈ NA : s |=ξ h1 ∧ h2}
= {s ∈ NA : ξA←s |= h1 ∧ h2}
= {s ∈ NA : s↑A∪P ∩N(ξ) ⊆ N(h1 ∧ h2)}
= {s ∈ NA : s↑A∪P ∩N(ξ) ⊆ N(h1) ∩N(h2)}
= {s ∈ NA : s↑A∪P ∩N(ξ) ⊆ N(h1), s↑A∪P ∩N(ξ) ⊆ N(h2)}
= {s ∈ NA : s↑A∪P ∩N(ξ) ⊆ N(h1)} ∩
= {s ∈ NA : s↑A∪P ∩N(ξ) ⊆ N(h2)}
= QSA(h1, ξ) ∩QSA(h2, ξ). 2

(4) Clearly, h1 |= h1 ∨ h2 and h2 |= h1 ∨ h2. Thus, from (5) follows that
QSA(h1, ξ) ⊆ QSA(h1∨h2, ξ) and QSA(h2, ξ) ⊆ QSA(h1∨h2, ξ). Therefore,
QSA(h1, ξ) ∪QSA(h2, ξ) ⊆ QSA(h1 ∨ h2, ξ). 2

(5) If h1 |= h2 then ∃h∗ ∈ LA∪P such that h1 ≡ h2 ∧h∗. From (3) and (6) fol-
lows that QSA(h1, ξ) = QSA(h2, ξ) ∩QSA(h∗, ξ). Therefore, QSA(h1, ξ) ⊆
QSA(h2, ξ). 2

(6) This property follows immediately from h1 ≡ h2 ⇐⇒ N(h1) = N(h2). 2

Proof of Theorem 2.2

Some of the properties follow from Theorem 2.1 and (2.4):

(1) SPA(⊥, ξ) = QSA(⊥, ξ)−QSA(⊥, ξ) = Ø. 2

(2) SPA(>, ξ) = QSA(>, ξ)−QSA(⊥, ξ) = NA − IA(ξ) = CA(ξ). 2
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(3) SPA(h1 ∧ h2, ξ) = QSA(h1 ∧ h2, ξ)−QSA(⊥, ξ)
= (QSA(h1, ξ) ∩QSA(h2, ξ))−QSA(⊥, ξ)
= (QSA(h1, ξ)−QSA(⊥, ξ)) ∩ (QSA(h2, ξ)−QSA(⊥, ξ))
= SPA(h1, ξ) ∩ SPA(h2, ξ). 2

(4) Clearly, h1 |= h1 ∨ h2 and h2 |= h1 ∨ h2. Thus, from (5) follows that
SPA(h1, ξ) ⊆ SPA(h1 ∨ h2, ξ) and SPA(h2, ξ) ⊆ SPA(h1 ∨ h2, ξ). Therefore,
SPA(h1, ξ) ∪ SPA(h2, ξ) ⊆ SPA(h1 ∨ h2, ξ). 2

(5) If h1 |= h2 then ∃h∗ ∈ LA∪P such that h1 ≡ h2 ∧ h∗. From (3) and (6)
follows that SPA(h1, ξ) = SPA(h2, ξ) ∩ SPA(h∗, ξ). Therefore, SPA(h1, ξ) ⊆
SPA(h2, ξ). 2

(6) This property follows immediately from h1 ≡ h2 ⇐⇒ N(h1) = N(h2). 2

Proof of Theorem 2.3

Some of the properties follow from Theorem 2.1 and (2.5):

(1) PSA(⊥, ξ) = NA −QSA(>, ξ) = NA −NA = Ø. 2

(2) PSA(>, ξ) = NA −QSA(⊥, ξ) = NA − IA(ξ) = CA(ξ). 2

(3) Clearly, h1 ∧ h2 |= h1 and h1 ∧ h2 |= h2. Thus, from (5) follows that
PSA(h1 ∧h2, ξ) ⊆ PSA(h1, ξ) and PSA(h1 ∧h2, ξ) ⊆ PSA(h2, ξ). Therefore,
PSA(h1 ∧ h2, ξ) ⊆ PSA(h1, ξ) ∩ PSA(h2, ξ). 2

(4) PSA(h1 ∨ h2, ξ) = NA −QSA(¬h1 ∧ ¬h2, ξ)

= NA − (QSA(¬h1, ξ) ∩QSA(¬h2, ξ))

= (NA −QSA(¬h1, ξ)) ∪ (NA −QSA(¬h2, ξ))

= PSA(h1, ξ) ∪ PSA(h2, ξ). 2

(5) If h1 |= h2 then ∃h∗ ∈ LA∪P such that h1 ∨ h∗ ≡ h2. From (4) and (6)
follows that PSA(h2, ξ) = PSA(h1, ξ)∪PSA(h∗, ξ). Therefore, PSA(h1, ξ) ⊆
PSA(h2, ξ). 2

(6) This property follows immediately from h1 ≡ h2 ⇐⇒ N(h1) = N(h2). 2

Proof of Theorem 2.4

Properties (2) and (3) follow from (2.4), (2.5), and property (1):

66



(1) QSA(hA, ξ) = {s ∈ NA : s |=ξ hA} = {s ∈ NA : ξA←s |= hA}
= {s ∈ NA : s↑A∪P ∩NA∪P (ξ) ⊆ NA∪P (hA)}
= {s ∈ NA : (s↑A∪P ∩NA∪P (ξ))↓A ⊆ NA∪P (hA)↓A}
= {s ∈ NA : {s} ∩NA∪P (ξ)↓A ⊆ NA(hA)}
= {s ∈ NA : s ∈ NA(hA) or s /∈ NA∪P (ξ)↓A}
= {s ∈ NA : s ∈ NA(hA)} ∪ {s ∈ NA : s /∈ NA∪P (ξ)↓A}
= NA(hA) ∪ {s ∈ NA : {s} ∩NA∪P (ξ)↓A = Ø}
= NA(hA) ∪ {s ∈ NA : s↑A∪P ∩NA∪P (ξ) ⊆ NA∪P (⊥)}
= NA(hA) ∪QSA(⊥, ξ) = NA(hA) ∪ IA(ξ). 2

(2) SPA(hA, ξ) = QSA(hA, ξ)−QSA(⊥, ξ)
= (NA(hA) ∪QSA(⊥, ξ))−QSA(⊥, ξ)
= NA(hA)−QSA(⊥, ξ) = NA(hA) ∩ CA(ξ). 2

(3) PSA(hA, ξ) = NA −QSA(¬hA, ξ) = NA − (NA(¬hA) ∪ IA(ξ))

= (NA −NA(¬hA)) ∩ (NA − IA(ξ)) = NA(hA) ∩ CA(ξ). 2

Proof of Theorem 2.5

(1) This property follows immediately from (1) in Theorem 2.1 and property
(3). 2

(2) This property follows immediately from (2) in Theorem 2.2 and property
(4). 2

(3) QSA(h, ξ′) = QSA(h, ξ ∧ ξ̃) = {s ∈ NA : s |=ξ∧ξ̃ h}

= {s ∈ NA : (ξ ∧ ξ̃)A←s |= h}
= {s ∈ NA : s↑A∪P ∩N(ξ ∧ ξ̃) ⊆ N(h)}
= {s ∈ NA : s↑A∪P ∩N(ξ) ∩N(ξ̃) ⊆ N(h)}
⊇ {s ∈ NA : s↑A∪P ∩N(ξ) ⊆ N(h)} = QSA(h, ξ). 2

(4) This property follows immediately from (2.5) and property (3). 2

Proof of Theorem 2.6

(1) This property follows immediately from (1) in Theorem 2.1 and from (1)
in Theorem 2.7. 2
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(2) This property follows immediately from (2) in Theorem 2.2 and from (2)
in Theorem 2.7. 2

Proof of Theorem 2.7

(1) QS(h, ξ) = {α ∈ CA : NA(α) ⊆ QSA(h, ξ)}
= {α ∈ CA : NA(α) ⊆ {s ∈ NA : s |=ξ h}}
= {α ∈ CA : NA(α) ⊆ {s ∈ NA : s↑A∪P ∩N(ξ) ⊆ N(h)}}
= {α ∈ CA : N(α) ∩N(ξ) ⊆ N(h)} = {α ∈ CA : α ∧ ξ |= h}. 2

(2) SP (h, ξ) = {α ∈ CA : NA(α) ⊆ SPA(h, ξ)}
= {α ∈ CA : NA(α) ⊆ (QSA(h, ξ)−QSA(⊥, ξ))}
= {α ∈ CA : NA(α) ⊆ QSA(h, ξ), NA(α) ⊆ (NA −QSA(⊥, ξ))}
= {α ∈ CA : α ∧ ξ |= h, NA(α) ⊆ (NA −NA(α̂)), ∀α̂ ∈ QS(⊥, ξ)}
= {α ∈ CA : α ∧ ξ |= h, NA(α) ⊆ (NA −NA(α̂)), ∀α̂ ∈ CA, α̂ ∧ ξ |= ⊥}
= {α ∈ CA : α ∧ ξ |= h, NA(α) ⊇ NA(α′), ∀α′ ∈ CA, α′ ∧ ξ 6|= ⊥}
= {α ∈ CA : α ∧ ξ |= h, ∀α′ ⊇ α, α′ ∈ CA, α′ ∧ ξ 6|= ⊥} 2

(3) PS(h, ξ) = {α ∈ CA : NA(α) ⊆ PSA(h, ξ)}
= {α ∈ CA : NA(α) ⊆ (NA −QSA(¬h, ξ))}
= {α ∈ CA : NA(α) ⊆ (NA −NA(α̂)), ∀α̂ ∈ QS(¬h, ξ)}
= {α ∈ CA : NA(α) ⊆ (NA −NA(α̂)), ∀α̂ ∈ CA, α̂ ∧ ξ |= ¬h}
= {α ∈ CA : NA(α) ⊇ NA(α′), ∀α′ ∈ CA, α′ ∧ ξ 6|= ¬h}
= {α ∈ CA : ∀α′ ⊇ α, α′ ∈ CA, α′ ∧ ξ 6|= ¬h}. 2

Proof of Theorem 3.1

This theorem can be proved with the aid of Theorem 2.7:

µQS(h, ξ) = µ{α ∈ CA : α ∧ ξ |= h} = µ{α ∈ CA : α |= ¬ξ ∨ h}
= µ({α ∈ CA∪P : α |= ¬ξ ∨ h} ∩ CA) = µ({α ∈ CA∪P : α |= ¬ξ ∨ h}) ∩ CA
= Ψ(¬ξ ∨ h) ∩ CA = ¬Φ(ξ ∧ ¬h) ∩ CA = ¬(Φ(ΣH) ∩ DA). 2
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Proof of Theorem 3.2

(1) Let Σ′ = Consx(Σ) = µ(Σ∪Rx(Σx,Σx̄)) be the set of clauses after the first
step. Clearly, Σ′x ⊆ Σx, Σ′x̄ ⊆ Σx̄, and thus Rx(Σ′x,Σ

′
x̄) ⊆ Rx(Σx,Σx̄).

Therefore,

Consx(Consx(Σ)) = Consx(Σ′) = µ(Σ′ ∪Rx(Σ′x,Σ
′
x̄))

= µ(µ(Σ ∪Rx(Σx,Σx̄)) ∪Rx(Σ′x,Σ
′
x̄))

= µ(Σ ∪Rx(Σx,Σx̄) ∪Rx(Σ′x,Σ
′
x̄))

= µ(Σ ∪Rx(Σx,Σx̄)) = Consx(Σ). 2

(2) Suppose that ξ is a clause in Consy(Consx(Σ)). Clearly, there are six
possible reasons for this:

1) ξ ∈ Σ,

2) ξ = ρx(ξ1, ξ2),

3) ξ = ρy(ξ1, ξ2),

4) ξ = ρy(ξ1, ρx(ξ2, ξ3)),

5) ξ = ρy(ρx(ξ1, ξ2), ξ3),

6) ξ = ρy(ρx(ξ1, ξ2), ρx(ξ3, ξ4)),

with ξ1, ξ2, ξ3, ξ4 ∈ Σ. Obviously, the first three cases are the same for
clauses in Consx(Consy(Σ)). Furthermore, case 4) can be divided into
three sub-cases, depending whether ¬y is only in ξ2, only in ξ3, or in ξ2 and
ξ3. Each of these sub-cases has corresponding case in Consx(Consy(Σ)):

4a) ξ = ρy(y ∨ ϕ1, ρx(x ∨ ¬y ∨ ϕ2,¬x ∨ ϕ3))
= ρx(ρy(y ∨ ϕ1, x ∨ ¬y ∨ ϕ2),¬x ∨ ϕ3)
= ϕ1 ∨ ϕ2 ∨ ϕ3;

4b) ξ = ρy(y ∨ ϕ1, ρx(x ∨ ϕ2,¬x ∨ ¬y ∨ ϕ3))
= ρx(x ∨ ϕ2, ρy(y ∨ ϕ1,¬x ∨ ¬y ∨ ϕ3))
= ϕ1 ∨ ϕ2 ∨ ϕ3;

4c) ξ = ρy(y ∨ ϕ1, ρx(x ∨ ¬y ∨ ϕ2,¬x ∨ ¬y ∨ ϕ3))
= ρx(ρy(y ∨ ϕ1, x ∨ ¬y ∨ ϕ2), ρy(y ∨ ϕ1,¬x ∨ ¬y ∨ ϕ3))
= ϕ1 ∨ ϕ2 ∨ ϕ3;

Similarly, case 5) can also be divided into three sub-cases, depending
whether y is only in ξ1, only in ξ2, or in ξ1 and ξ2:

5a) ξ = ρy(ρx(x ∨ y ∨ ϕ1,¬x ∨ ϕ2),¬y ∨ ϕ3)
= ρx(ρy(x ∨ y ∨ ϕ1,¬y ∨ ϕ3),¬x ∨ ϕ2)
= ϕ1 ∨ ϕ2 ∨ ϕ3;
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5b) ξ = ρy(ρx(x ∨ ϕ1,¬x ∨ y ∨ ϕ2),¬y ∨ ϕ3)
= ρx(x ∨ ϕ1, ρy(¬x ∨ y ∨ ϕ2,¬y ∨ ϕ3))
= ϕ1 ∨ ϕ2 ∨ ϕ3;

5c) ξ = ρy(ρx(x ∨ y ∨ ϕ1,¬x ∨ y ∨ ϕ2),¬y ∨ ϕ3)
= ρx(ρy(x ∨ y ∨ ϕ1,¬y ∨ ϕ3), ρy(¬x ∨ y ∨ ϕ2,¬y ∨ ϕ3))
= ϕ1 ∨ ϕ2 ∨ ϕ3;

Finally, case 6) can be divided into nine sub-cases, depending whether y
is only in ξ1, only in ξ2, or in ξ1 and ξ2, and ¬y is only in ξ3, only in ξ4,
or in ξ4 and ξ5. Note that some of these sub-cases can be simplified in a
first step:

6a) ξ = ρy(ρx(x ∨ y ∨ ϕ1,¬x ∨ ϕ2), ρx(x ∨ ¬y ∨ ϕ3,¬x ∨ ϕ4))
=| ρy(ρx(x ∨ y ∨ ϕ1,¬x ∨ ϕ2), ρx(x ∨ ¬y ∨ ϕ3,¬x ∨ ϕ2))
= ρx(ρy(x ∨ y ∨ ϕ1, x ∨ ¬y ∨ ϕ3),¬x ∨ ϕ2)
= ϕ1 ∨ ϕ2 ∨ ϕ3;

6c) ξ = ρy(ρx(x ∨ y ∨ ϕ1,¬x ∨ ϕ2), ρx(x ∨ ϕ3,¬x ∨ ¬y ∨ ϕ4))
=| ρx(x ∨ ϕ3,¬x ∨ ϕ2)
= ϕ2 ∨ ϕ3;

6d) ξ = ρy(ρx(x ∨ y ∨ ϕ1,¬x ∨ ϕ2), ρx(x ∨ ¬y ∨ ϕ3,¬x ∨ ¬y ∨ ϕ4))
=| ρy(ρx(x ∨ y ∨ ϕ1,¬x ∨ ϕ2), ρx(x ∨ ¬y ∨ ϕ3,¬x ∨ ϕ2))
= ρx(ρy(x ∨ y ∨ ϕ1, x ∨ ¬y ∨ ϕ3),¬x ∨ ϕ2)
= ϕ1 ∨ ϕ2 ∨ ϕ3;

6e) ξ = ρy(ρx(x ∨ ϕ1,¬x ∨ y ∨ ϕ2), ρx(x ∨ ¬y ∨ ϕ3,¬x ∨ ϕ4))
=| ρx(x ∨ ϕ1,¬x ∨ ϕ4)
= ϕ1 ∨ ϕ4;

6f) ξ = ρy(ρx(x ∨ ϕ1,¬x ∨ y ∨ ϕ2), ρx(x ∨ ϕ3,¬x ∨ ¬y ∨ ϕ4))
=| ρy(ρx(x ∨ ϕ1,¬x ∨ y ∨ ϕ2), ρx(x ∨ ϕ1,¬x ∨ ¬y ∨ ϕ4))
= ρx(x ∨ ϕ1, ρy(¬x ∨ y ∨ ϕ2,¬x ∨ ¬y ∨ ϕ4))
= ϕ1 ∨ ϕ2 ∨ ϕ4;

6g) ξ = ρy(ρx(x ∨ ϕ1,¬x ∨ y ∨ ϕ2), ρx(x ∨ ¬y ∨ ϕ3,¬x ∨ ¬y ∨ ϕ4))
=| ρy(ρx(x ∨ ϕ1,¬x ∨ y ∨ ϕ2), ρx(x ∨ ϕ1,¬x ∨ ¬y ∨ ϕ4))
= ρx(x ∨ ϕ1, ρy(¬x ∨ y ∨ ϕ2,¬x ∨ ¬y ∨ ϕ4))
= ϕ1 ∨ ϕ2 ∨ ϕ4;

6h) ξ = ρy(ρx(x ∨ y ∨ ϕ1,¬x ∨ y ∨ ϕ2), ρx(x ∨ ¬y ∨ ϕ3,¬x ∨ ϕ4))
=| ρy(ρx(x ∨ y ∨ ϕ1,¬x ∨ ϕ4), ρx(x ∨ ¬y ∨ ϕ3,¬x ∨ ϕ4))
= ρx(ρy(x ∨ y ∨ ϕ1, x ∨ ¬y ∨ ϕ3),¬x ∨ ϕ4)
= ϕ1 ∨ ϕ3 ∨ ϕ4;

6i) ξ = ρy(ρx(x ∨ y ∨ ϕ1,¬x ∨ y ∨ ϕ2), ρx(x ∨ ϕ3,¬x ∨ ¬y ∨ ϕ4))
=| ρy(ρx(x ∨ ϕ3,¬x ∨ y ∨ ϕ2), ρx(x ∨ ϕ3,¬x ∨ ¬y ∨ ϕ4))
= ρx(x ∨ ϕ3, ρy(¬x ∨ y ∨ ϕ2,¬x ∨ ¬y ∨ ϕ4))
= ϕ2 ∨ ϕ3 ∨ ϕ4;
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6j) ξ = ρy(ρx(x ∨ y ∨ ϕ1,¬x ∨ y ∨ ϕ2), ρx(x ∨ ¬y ∨ ϕ3,¬x ∨ ¬y ∨ ϕ4))
= ρx(ρy(x ∨ y ∨ ϕ1, x ∨ ¬y ∨ ϕ3), ρy(¬x ∨ y ∨ ϕ2,¬x ∨ ¬y ∨ ϕ4))
= ϕ1 ∨ ϕ2 ∨ ϕ3 ∨ ϕ4;

Therefore, every possible clause in Consy(Consx(Σ)) has a corresponding
clause in Consx(Consy(Σ)). Symmetrically, every clause in Consx(Consy(Σ))
has also a corresponding clause in Consy(Consx(Σ)). 2

Proof of Theorem 3.3

Let Σ′ = Dely(Σ) = Σ ∩ DP−{y} denote the set of clauses after deleting y from
Σ. Therefore,

Dely(Consx(Σ)) = Dely(µ(Σ ∪Rx(Σx,Σx̄))

= µ(Σ ∪Rx(Σx,Σx̄)) ∩ DP−{y}
= µ(Σ ∪Rx(Σx,Σx̄) ∩ DP−{y})
= µ((Σ ∩ DP−{y}) ∪ (Rx(Σx,Σx̄) ∩ DP−{y}))
= µ((Σ ∩ DP−{y}) ∪Rx(Σx ∩ DP−{y},Σx̄ ∩ DP−{y}))
= µ(Σ′ ∪Rx(Σ′x,Σ

′
x̄)) = Consx(Σ′) = Consx(Dely(Σ)). 2

Proof of Theorem 3.4

(1) Let Σ′ = Elimx(Σ) = µ(Σẋ ∪ Rx(Σx,Σx̄)) be the set of clauses after the
first step. Clearly, Σ′x = Ø, Σ′x̄ = Ø, and thus Σ′ẋ = Σ′. Therefore,

Elimx(Elimx(Σ)) = Elimx(Σ′) = µ(Σ′ẋ ∪Rx(Σ′x,Σ
′
x̄))

= µ(Σ′ẋ ∪Rx(Ø,Ø)) = µ(Σ′ẋ ∪Ø) = Σ′ẋ = Σẋ

= Elimx(Σ). 2

(2) This property follows from (3.32), property (2) in Theorem 3.2, and The-
orem 3.3:

Elimx(Elimy(Σ)) = Delx(Consx(Dely(Consy(Σ))))

= Delx(Dely(Consx(Consy(Σ))))

= Dely(Delx(Consy(Consx(Σ))))

= Dely(Consy(Delx(Consx(Σ))))

= Elimy(Elimx(Σ)). 2
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Proof of Theorem 3.5

Let Q = {x1, . . . , xq} ⊆ P be the propositions considered. The theorem can
then be proved by repeatedly applying the result of Theorem 3.3:

DelQ(ConsQ(Σ)) = Delx1 ◦ · · · ◦Delxq ◦ Consx1 ◦ · · · ◦ Consxq (Σ)

= Delx1 ◦ · · · ◦Delxq−1 ◦ Consx1 ◦Delxq ◦ · · · ◦ Consxq (Σ)

= · · · = Delx1 ◦ · · ·Delxq−1 ◦ Consx1 ◦ · · · ◦Delxq ◦ Consxq (Σ)

= · · · = Delx1 ◦ Consx1 ◦ · · · ◦Delxq ◦ Consxq (Σ)

= Elimx1 ◦ · · · ◦ Elimxq = ElimQ(Σ). 2

Proof of Theorem 3.6

Clearly, Theorem 3.2 implies that ConsQ(ConsR(Σ)) = ConsR(ConsQ(Σ)) for
disjoint sets Q and R. Similarly, Theorem 3.3 implies that DelQ(ConsR(Σ)) =
ConsR(DelQ(Σ)) for Q ∩ R = Ø. The theorem can therefore be proved with
the aid of Theorem 3.5:

ElimQ(ConsR(Σ)) = DelQ(ConsQ(ConsR(Σ)))

= DelQ(ConsR(ConsQ(Σ))) = ConsR(DelQ(ConsQ(Σ)))

= ConsR(ElimQ(Σ)). 2

Proof of Theorem 3.7

(1) QSA(h, ξ, 0) = NA(µQS(h, ξ, 0)) = NA(µQS(h, ξ) ∩ C0
A)

= NA(µQS(h, ξ) ∩Ø) = NA(Ø) = Ø. 2

(2) QSA(h, ξ,∞) = NA(µQS(h, ξ,∞)) = NA(µQS(h, ξ) ∩ C∞A )

= NA(µQS(h, ξ) ∩ CA) = NA(µQS(h, ξ)) = QSA(h, ξ). 2

(3) Clearly, β1 ≤ β2 implies Cβ1
A ⊆ C

β2
A . Therefore,

µQS(h, ξ, β1) = µQS(h, ξ) ∩ Cβ1
A ⊆ µQS(h, ξ) ∩ Cβ2

A = µQS(h, ξ, β2),

and consequently, QSA(h, ξ, β1) ⊆ QSA(h, ξ, β2). 2

Proof of Theorem 3.8

These properties follow from (3.42), (3.44), and Theorem 3.4:
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(1) Elimβ
x(Elimβ

x(Σ)) = Cutβ(Elimx(Cutβ(Elimx(Σ))))

= Elimx(Elimx(Σ) ∩ DβA∪P ) ∩ DβA∪P = Elimx(Elimx(Σ)) ∩ DβA∪P
= Elimx(Σ) ∩ DβA∪P = Cutβ(Elimx(Σ)) = Elimβ

x(Σ). 2

(2) Elimβ
x(Elimβ

y (Σ)) = Cutβ(Elimx(Cutβ(Elimy(Σ))))

= Elimx(Elimy(Σ) ∩ DβA∪P ) ∩ DβA∪P = Elimx(Elimy(Σ)) ∩ DβA∪P
= Elimy(Elimx(Σ)) ∩ DβA∪P = Elimy(Elimx(Σ) ∩ DβA∪P ) ∩ DβA∪P
= Cutβ(Elimy(Cutβ(Elimx(Σ)))) = Elimβ

y (Elimβ
x(Σ)). 2

Proof of Theorem 3.9

Let Q = {x1, . . . , xq} ⊆ P be the propositions to be eliminated.

Cutβ(ElimQ(Σ)) = ElimQ(Σ) ∩ DβA∪P
= [Elimx1 ◦ · · · ◦Elimxq (Σ)] ∩ DβA∪P
= Elimx1([Elimx2 ◦ · · · ◦Elimxq (Σ)] ∩ DβA∪P ) ∩ DβA∪P
= · · · = Elimx1(Elimx2(· · · (Elimxq (Σ) ∩ DβA∪P ) · · ·) ∩ DβA∪P ) ∩ DβA∪P
= · · · = Elimβ

x1
◦ · · · ◦Elimβ

xq = Elimβ
Q(Σ). 2
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degree of support, 42
elimination, 40
focusing, 37
possibility, 41
support, 41

Counter-argument, 3
Counter-model, 11
Credibility, 2

Davis-Putnam
procedure, 31

Degree
of possibility, 4, 26, 51
of quasi-support, 25, 26, 54, 55
of support, 4, 25, 51

Deletion, 30, 63
Dempster’s rule, 51, 55, 56
Dempster-Shafer theory, 25, 26, 51
Disjunction, 12

empty, 12
Disjunctive normal form, 12
DNF, 12

Elimination, 31
β-, 40
cost-bounded, 40

Evidence
theory of, 25, 51

Heidtmann
algorithm of, 27

Hypergraph, 49, 50
Hypertree, 49, 50

covering, 50
Hypothesis, 2, 3, 15, 24, 28, 43

Idempotency, 50
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Implicant, 12
prime, 12, 20, 21, 28

Implicate, 12, 29, 59
prime, 12, 28–30, 59

Inclusion-exclusion, 27

Knowledge, 3
adding new, 43
uncertain, 3

Knowledge base, 8, 14

Lindenbaum algebra, 12
Logic

propositional, 5, 10–12, 15, 26,
49, 50, 57

set constraint, 57, 61

Many-valued logic, 57
Marginalization, 49
Model, 11, 13

Non-monotonicity, 15, 19, 26

Plausibility, 26
function, 52

Possibility, 23
cost-bounded, 41
degree of, 4, 26, 42, 51
minimal, 23

Prime implicant, 12, 20, 21, 28
Prime implicate, 12, 28–30, 59
Probabilistic argumentation system,

2, 4, 8, 24
Probability, 4
Propagation network, 50, 54, 56
Proposition, 10
Propositional argumentation system,

14
Propositional logic, 5, 10–12, 15, 26,

49, 50, 57

Quasi-support, 23
degree of, 25
minimal, 23

Query, 43

Reasoning under uncertainty, 1
Residue, 61
Resolution, 29

SCL-, 57, 61
Resolvent, 29, 61

Scenario, 6, 14, 23, 59
consistent, 14, 59
inconsistent, 14, 59
possibly refuting, 19, 60
possibly supporting, 15, 17, 60
quasi-refuting, 19, 60
quasi-supporting, 15, 17, 60
refuting, 19, 60
supporting, 8, 15, 17, 60

SCL
-clause, 58
-formula, 57
-resolution, 57, 61
-term, 58

Set constraint, 57
proper, 58

Set constraint logic, 57, 61
Signed logic, 57
Support, 23

Allocation of, 17
cost-bounded, 41
degree of, 4, 25, 26, 42, 51
minimal, 23

Tautology, 10
Term, 12

β-irrelevant, 38
β-relevant, 38
consistent, 22
empty, 12, 36
important, 37
inconsistent, 22
length of, 37
minimal, 20, 21
probability of, 37
proper, 12
representation, 20, 21, 37, 60
SCL-, 58
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Theory of evidence, 25, 51

Uncertain
fact, 5
knowledge, 5
rule, 5

Uncertainty, 5
reasoning under, 1

Updating, 43
Utility function, 38

Valuation, 49, 56
network, 49, 50
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