

Case Study of Technology Transfer between Japan and China in iron/steel industry

May 19, 2005

Toshi Sakamoto
CTI Executive Committee Chair

<u>Outline</u>

- 1. Energy efficiency technologies of iron/steel industry
- 2. Factors that affect diffusion of energy efficiency technologies
- 3. Lessons learned

Note: Most of the slides are the excerpt of Prof. Yamaguchi's presentation in the mitigation workshop at SBSTA22

Energy efficiency technologies of iron/steel industry

- international comparison

Energy efficiency technologies of iron/steel industry

- typical examples

CDQ (Coke Dry Quenching)

➤ Heat recovery system in which heated inert gas is used to generate electricity after quenching hot cokes.

➤ Effects of CDQ

- Energy conservation (generation of electricity)
- →CO2 emission reduction
- Improvement of quality and strength of cokes
- Prevention of air pollution (SOx, dust, etc.)
- Reduction in usage of water
- ➤ Cost of installation US\$ 20-40 million
- ➤ Payback period
 3-5 years (model case in China)

Factors that affect diffusion of energy efficiency technologies - demonstration projects

The Ministry of Economy, Trade and Industry has implemented 36 projects since 1993 and contributed to the diffusion of energy efficiency technologies in the Asian region.

Factors that affect diffusion of energy efficiency technologies -case study of CDQ in China

Demonstration project at a steel plant in Beijing to install CDQ

Period: 1997-2001

Budget: ¥ 2.97 billion (US\$ 28 million)

Site: Shougang Corporation, No.1 Cokes Oven

Technical support: Nippon Steel Corporation

Energy conservation: 24,700 toe/year

CO2 emission reduction: 68,300 t-CO2/year

A joint venture between Chinese and Japanese steel companies (Oct 2003) to design, produce and sell CDQ and other energy conservation facilities

Factors that affect diffusion of energy efficiency technologies

- implications from case study of CDQ in China

Keys for success

Local steel manufacturers tend to choose investment to increase production capacity, but this can be changed by:

(1) Awareness of local industry

- > Energy-saving effect
- ➤ Co-benefits such as better air quality (very visible in CDQ)

(2) Initial cost reduction through localization of manufacturing

- ➤ Business strategies, such as IPR, of the investing company from Japan
- ➤ Local competitor

(3) Local environmental policy

- ➤ 10th 5-year National Plan in China (target of diffusion rate of CDQ: 60% by 2005)
- ➤ Pressure from local governments (air quality, water usage, etc.)

7

Factors that affect diffusion of energy efficiency technologies

- implications from case study of other projects in China
- ➤ Best available technologies: high initial cost (high energy-saving)
- ➤ Similar but less-effective technologies: low initial cost (low energy-saving)

<Case of oxygen converter gas recovery system>

	BAT in the demonstration project	Similar domestic technologies
Amount of recovered exhaust gas	75-100 m ³ /t-steel	50-90 m ³ /t-steel
Calorie of recovered gas	2,000-2,200 kcal/m ³	1,500-1,800 kcal/m ³
Dust in exhaust gas	below 50 mg/m ³	80-100 mg /m ³
Cost of facility	approx. 20 million US\$	approx. 10 million US\$

- Low initial cost of similar technologies, which are sometimes copied from BAT, may prevent diffusion of BAT
- ► But this can be considered as achievement of the demonstration projects.

Lessons learned

- The energy-saving potential is enormous. By exploring these opportunities, a win-win situation can be created: energy security, lower energy cost, better air quality, higher competitiveness, etc. This is clear from Japan's experience.
- Technology transfer and diffusion are not unilateral actions but collaboration between developed and developing countries.
 - •Business incentives for investment: reform of CDM (next slide)

 IPR protection
 - •Local industry's awareness and host government's environmental policy
- ➤ Bilateral and multilateral cooperation should have a sectoral focus which would enable us to enhance technology transfer by clearly identifying technology needs and energy-saving opportunities.

Lessons learned

- promotion of CDM activities

- CDM should be designed to facilitate technology transfer by providing business incentives for investment in energy efficient technologies.
- Such CDM projects would contribute best to sustainable development in developing countries.

<Action Plans by METI, Japan>

- Workshop joined by CDM experts (Tokyo, March)
- ➤ 1st Meeting of Committee on Future CDM (Bonn, May)

Five Working Groups established under the Committee:

Multi-Project Baseline WG, Program Based CDM WG, ESCO WG Consolidated Energy Conservation Methodology WG, Transportation CDM WG

(Further Steps)

- ➤ Workshop: outcomes of the 5 WGs will be presented (Sep.)
- ➤ COP/MOP1: the outcomes will be input (Montreal, Nov.-Dec.)

Thank you for your attention!

Toshi Sakamoto CTI Executive Committee Chair

Any comments and questions are welcomed to: sakamoto-toshiyuki@meti.go.jp