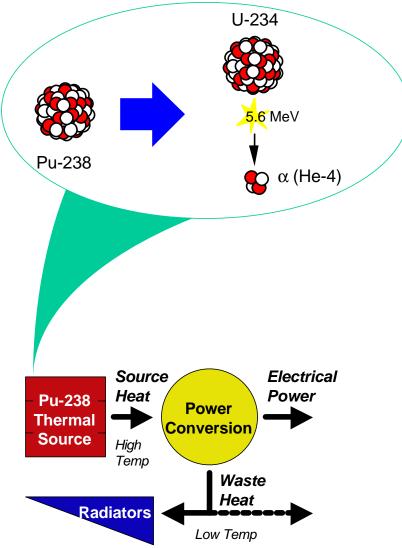
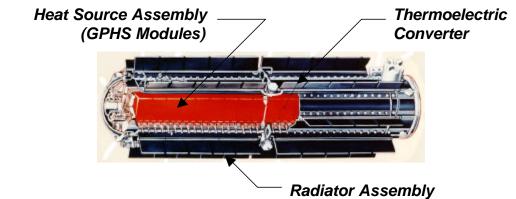


Radioisotope Power Systems (RPS) for New Frontiers Applications

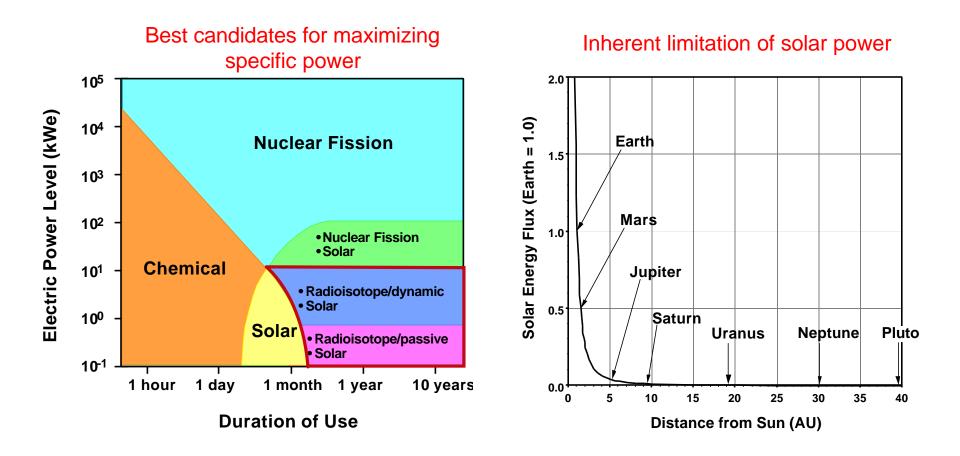

Presentation to New Frontiers Program Pre-proposal Conference

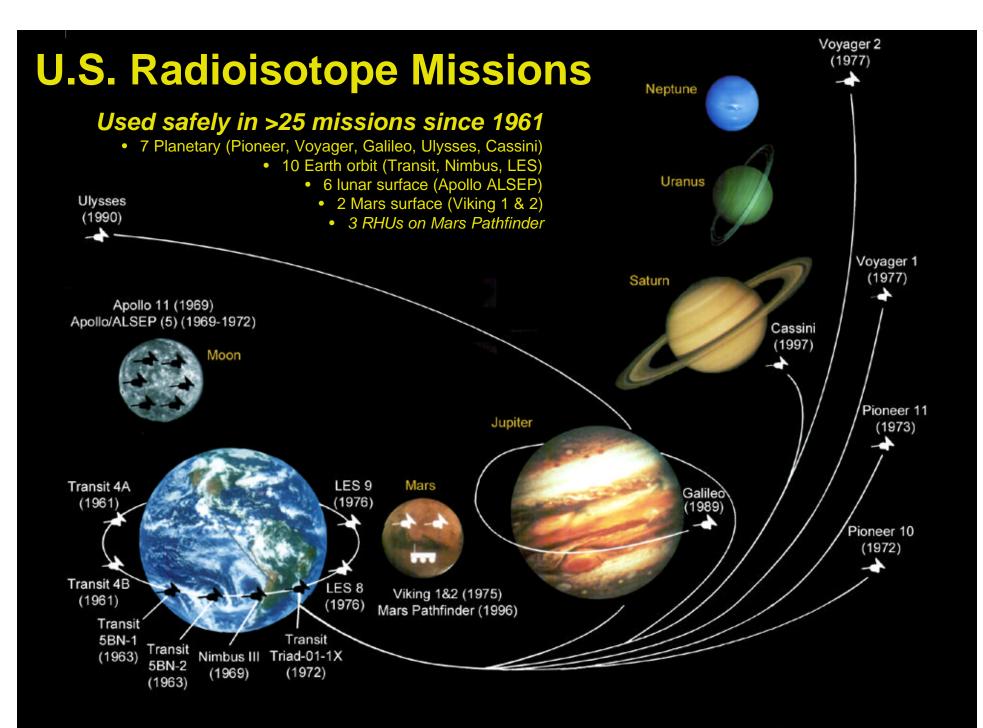
November 13, 2003


George Schmidt (NASA Program Executive) Robert Wiley (DOE MMRTG Program Mgr) Richard Furlong (DOE SRG Program Mgr)

Radioisotope Power Systems (RPS)

- Heat produced from natural alpha (a) particle decay of Plutonium (Pu-238)
 - 87.7-year half-life
- Small portion of heat energy (6%-25%) converted to electricity via passive or dynamic processes
 - Thermoelectric (existing & under development)
 - Stirling (under development)
 - Brayton, TPV, etc. (future candidates)
- Waste heat rejected through radiators portion can be used for thermal control of spacecraft subsystems

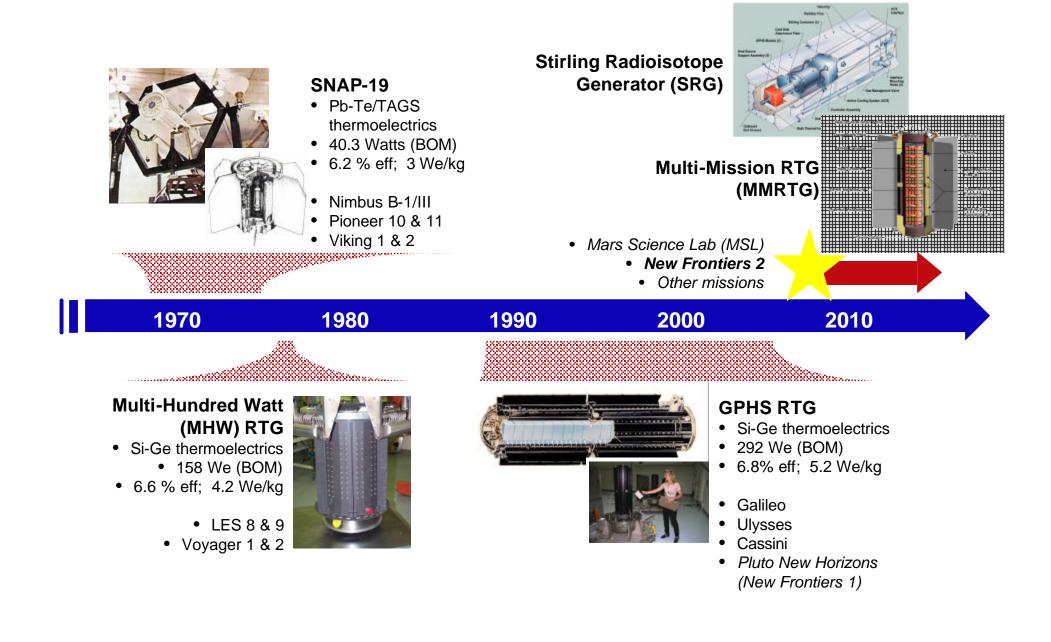

GPHS-Radioisotope Thermoelectric Generator (RTG)



Suitability of RPS

Radioisotope generators will continue to serve a *critical role* in the scientific exploration of the solar system and deep space

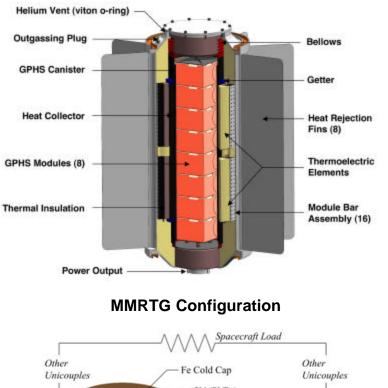
- Low to moderate power levels (=1-10 kW) for more than several months
- Operations independent of distance and orientation with respect to Sun

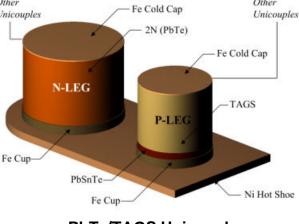


Distances & Planets Are Not to Scale

Recent and Planned RPS Units

Multi-Mission RTG (MMRTG)


 State-of-practice, multi-functional RTG designed for potential use on Mars 2009 (MSL) and subsequent RPS-powered missions


Objectives/Requirements:

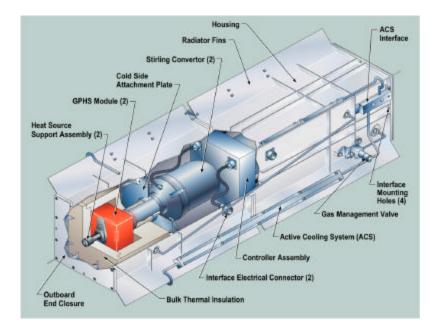
- Minimize development risk through use of flightdemonstrated technology (PbTe/TAGS thermoelectric unicouples)
- >110 Watts-electric at beginning of mission (BOM)
- =14 year lifetime
- Operation in space and on surface of atmospherebearing planets and moons

• Status:

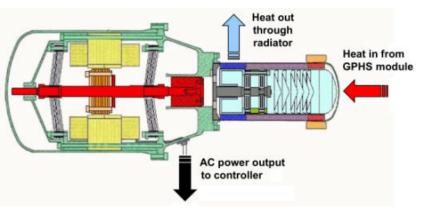
- Awarded and initiated development contract in mid-2003 to team of Boeing-Rocketdyne and Teledyne Energy Systems
- Completed Incremental PDR of unicouple design.
 Engineering Unit (EU) PDR in January 2004.

PbTe/TAGS Unicouple

Stirling Radioisotope Generator (SRG)


 High-efficiency RPS for alternate/backup on Mars 2009 (MSL) and potential use on subsequent RPS-powered missions

• Objectives/Requirements:

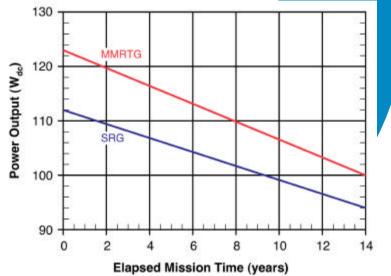

- Minimize program risk associated with limited Pu-238 availability (uses x4 less Pu-238 than MMRTG)
- >110 Watts-electric at beginning of mission (BOM)
- =14 year lifetime
- Operation in space and on surface of atmospherebearing planets and moons

• Status:

- Awarded and initiated development contract in mid-2002 to Lockheed-Martin – teamed with Stirling Technologies and NASA GRC
- EU PDR in December 2003.
- Tests of Stirling convertors at GRC have accumulated =2300 hours of operation.

Stirling "Convertor"

Proposal Assumptions & Groundrules


- For these Phase A proposals, use information in "RPS Description" document (New Frontiers Program Library) for aspects associated with RPS accommodation and operation
 - MMRTG and SRG performance and design requirements
 - Projected availability and acquisition schedules
 - Cost (including launch approval and other activities associated with accommodation of RPS)
- During Phase A, NASA point of contact (POC) will work with awardees to refine RPS accommodation concepts
- From Phase B and on, major RPS elements will be funded by the mission and provided as GFE/GFS (government furnished equipment and services)
 - RPS hardware
 - NEPA compliance/EIS development
 - Nuclear safety launch approval engineering management
- Some smaller items may be assigned as responsibility of contract team
 - Risk communication

Design and Performance

Power Source	MMRTG	SRG		
Power (We)	¥ >110 BOM	¥>110 BOM		
	¥ 123 We @ BOM (nom)	¥ 112 We @ BOM (nom)		
	¥~100 @ 14 yrs	¥ ~94 @ 14 yrs		
Mass (kg)	40	34		
Envelope (length x fin-fin width)	65.0 cm x 63.0 cm	88.9 cm x 26.7 cm		
Fuel Load	8 GPHS modules	2 GPHS modules		
	(~4 kg Pu-238)	(~1 kg Pu-238)		
Voltage (Vdc)	28 +/- 0.2			
Operational Environments	Space & Atmosphere			
Design Lifetime (yrs)	³ 14			
Design Vibration Load (g ² /Hz)	0.2 (example	0.2 (example for new ELV)		
Design Ac celeration Load (g)	40 (example	40 (example for new ELV)		
EMI/EMC (nT @ 1 meter)	25 (mission-	25 (mission-specific)		
Sterilization (Mars only)	NASA 4A or 4B			

RPS Power Performance in a Space Environment

Availability

MMRTG

# MMRTG units used on spacecraft	Date of delivery to KSC		
1 unit	July 2009		
2 units	July 2009		

SRG

# SRG units used on spacecraft	Date of delivery to KSC
1 unit	September 2008
2 units	December 2008
3 units	March 2009
4 units	July 2009
5 units	July 2009

• All scenarios include provisioning of spare unit at launch site

Costs (\$M)

Fiscal Year	FY04	FY05	FY06	FY07	FY08	FY09	ТОТ
Activity/Element							
NEPA Compliance/EIS	0.4	1.0	0.6				2.0
Nuclear Launch Safety Approval*	0.2	0.8	1.5	2.5	2.0	1.0	8.0
Emergency Preparedness		0.1	0.1	0.1	0.1	1.6	2.0
Spacecraft Accommodations,	0.2	0.2	0.5	1.1	4.0	4.0	10.0
Processing & Integration*							
Risk Communication	0.1	0.2	0.2	0.2	0.5	0.8	2.0
Delivered Hardware Costs (for N	0.1¥T	0.2¥T	0.3¥T	0.3¥T	0.1¥T		Т
flight units)**							

Principal RPS Cost Elements

• All costs (except Delivered Hardware) are independent of number of RPS units.

- * Does not include NASA KSC costs (e.g., launch vehicle data book, RPS accommodations). See ELV Launch Services Information Summary in NFPL for appropriate cost assumptions.
- ** Expressed as fraction of total Delivered Hardware Costs (T). $T = C_1 + ... + C_N$, where $C_i = cost$ of unit i and N = number of units.

	Unit Number	1st	2nd	3rd	4th	Nth
Unit Type						
MMRTG		20	20	20	20	20
SRG		5	5	5	15	15

Hardware Cost for Each Flight Unit (C_i)