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Abstract

I discuss the literature and benefits of symbolic calculation in the life sciences; some ways to

develop the field; and a way to model sequential processes.

Introduction

I went to college in 1945, grew up professionally in an age of scientific optimism, and see

symbolic calculation in biology as part of the scientific infrastructure that supports the development

of products and services to increase and extend the quality of life. The use of symbolic calculation in

teaching, research and the practice of the life sciences will have a profound impact on

1. the inter-related issues of public health and environmental protection,

2. the clinical practice of prophylaxis, diagnosis and therapy throughout “people–care” and the

protection and treatment of animal and plant life,

3. agricultural, industrial and commercial operations that involve biological materials and generate

products which impact biological systems.

Successive sections of this paper discuss

1. the present literature of symbolic calculation in the life sciences,

2. the benefits of symbolic calculation,

3. interdisciplinary communication,

4. curricular issues,

5. a way to model sequential processes with some possible life science uses.

1. Published accounts of life science applications

Well over 300 research papers and several books that report symbolic calculation in biological

research have been published already. These manipulate mathematical formulas and perform other

non-numerical processes algorithmically. I explain the background of the applications, summarize

the topics and gives detailed citations to a large part of this material in the survey [5] which can be

accessed online at

http://www.princeton.edu/~allengrp/ms/annobib.cals.

The following list of topics maintains the structure and order of presentation in the survey which

should be consulted for more details on items that are given without references. Material that

postdates the survey is included below with explicit mention of authors and references. Most of this

further material either
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1. is summarized in a second survey of symbolic calculation in chemistry and related fields [13] or

2. is part of a thematic issue of the International Journal of Quantum Chemistry on Mathematical

Methods and Symbolic Calculation in Chemistry and Chemical Biology that I put together [9].

This is in press.

I organized the material in [5] as follows.

1. Clinical work on cancer, the cardiovascular system, drug design and testing, eeg scans, food

poisoning, genetic counseling, the immune system, medical decision making, medical imaging,

mental health, prosthetic devices, and trauma care. This work includes the control of equip-

ment and the analysis of data in diagnosis and treatment. Biostatistics and other probabilistic

methods are used.

2. Public health issues of risk analysis, survival analysis, drug testing, epidemiology of infec-

tious diseases and other ailments. Statistical methods, Markov chains, sensitivity analysis and

quantifier elimination are used.

3. Bioengineering of prosthetic robotics, computer vision and ergonomic design. The Denavit-

Hartenburg formulation, differential geometry, algebraic invariance, topology, group theory and

probability are used.

4. Population dynamics that deals with the time variation of abundance and spatial distribution

of populations of people, animals and plants. Models cover invasion, diffusion, dispersal, natural

and controlled reproduction, crop planting, migration, and death. Differential, difference and

integro-difference equations are used. Many of the models are dynamical systems and some

involve biological oscillators and waves. Predator-prey models are formalized as Lotka-Volterra

systems. Matrix models are used extensively.

5. Population and evolutionary genetics that are based, respectively, on classical theories of

heredity and modern theories of genomics. Work includes the breeding of plants and animals,

some forms of genetic counseling, maximum likelihood estimates of gametic disequilibrium,

choice of markers to determine probabilities of genetic diversity, mutation rates, cross pollina-

tion, phylogenetic distance and rates of evolution. Statistical methods, systematic enumeration,

Markov chains, multivariate polynomial equations, and discrete and computational geometry

are used.

6. Physiology and related work on the behavior of cellular substructures and complete cells and

organs that are determined by the laws of physics and chemistry. Kuchel and Mulquinney use a

powerful combination of methods in an ongoing study of erythrocytes [43]. Work of other authors

includes studies of transport and diffusion across living cell membranes, electroencephalography,

the growth of cells in the geniculate nucleus, and models of carcinogenesis. Compartmental

analysis and identifiability in metabolic networks lead to heavy Gröbner basis calculations [2]

et ante. Much of the experimental work uses nuclear magnetic resonance that is discussed in

[5] and a little more fully in [13]. It includes solid state characterization of membrane proteins

by Nielsen et al [15].

7. Biochemical kinetics. This deals with the rates of metabolic processes. Yildirim deals with

pseudo-steady state enzyme reactions [62] et ante. Cobelli’s group use compartmental analysis

and identifiability methods that are computationally intense [2] et ante. Both lines of work

use Gröbner bases. Fraser uses slow manifold theory [24]. Tóth and Rospars discuss the time
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evolution of the differential equations of signal transduction and ion signaling [55]. Ratkiewicz

and Truong use a graph theoretic approach to enumerate complex reaction networks [50].

8. Molecular structure — photophysics. Boens and Ameloot apply compartmental analysis

to the energy transfer kinetics of fluorescence spectroscopy for biological assays [16].

9. Molecular structure — stereochemistry. Calculations that are based on the linkage rep-

resentation of organic molecules [29] include the recent work of Coutsias, Seok, Wester and Dill

on tripeptide loop closure [19], Emiris, Fritzilas and Manocha on pharmacophore behavior [22],

Barnett and Capitani on puckering in small ring molecules [11], Lewis and Bridgett on docking

[38], and the textbook study of cyclohexane [28]. The geometrical considerations usually lead

to multivariate polynomial equations that are solved using Gröbner bases and resultants.

10. Molecular structure and dynamics — other methods. Symbolic calculatons in nuclear

magnetic resonance, laser experiments and crystallography are discussed without spe-

cific reference to life sciences in [13]. The discussion of solitons in the same survey points to

biological examples and to the extensive symbolic calculations of Gao and Tian. More recently,

Güntert described his mathematica package for spin operator analysis of pulsed NMR work

on biological materials [31]. Eick and Souvignier [21], Fritzsche [25], Stokes and Hatch [52] and

Vail, Aris and Scarlete [56] report their work on crystallography and group theory.

11. General statistical methods provide the infrastructure for several topics mentioned above.

The recent books by Andrews and Stafford [1], by Rose and Smith [51] with its supporting

mathStatica software package, and by Pistone, Riccomagno and Wynn [48] are important

resources for teaching and research. Many more papers on statistical work of biological interest

that use symbolic calculation are described in [5]

The most popular software platforms in this work have been maple and mathematica. Other

systems that have been used in life science research include axiom (formerly called scratchpad),

macsyma, reduce, and the specialized polynomial system singular [30]. Very intense symbolic

calculations are supported by form and saclib, but I have not found applications of these to biology.

Ratkiewicz stresses the power of fortran 95 in [50] mentioned above. The trade-off between special

purpose packages that are

1. based on general purpose computer algebra platforms e.g. the Canon tensor package [41] and

2. written independently e.g. the tensor contraction engine [47]

remains an open question (see e.g. [17]). Interfacing different packages provides the benefits of both.

The special purpose computer for biological sequencing [53] widens the issue. Recently, Capitani

and I wrote a package igm.m [12] to postprocess gaussian 03 calculations of electronic structure in

mathematica. The parser in igm.m can handle the output of many other packages, too. Makarov

and Meliu have built a genetic programming style on mathematica [40]. The numerical system

matlab has an add-on that accesses maple. The maple worksheet and mathematica notebook

resources are used to teach a host of topics. Information on how this activity can stimulate research

applications would be useful. Several major non-numerical applications of computers can be handled

by systems such as mathematica and it is timely to bring these within the focus of the symbolic

calculation community. These include isomer enumeration, chemical structure searching, computer

aided chemical synthesis and combinatorial chemistry, and gene sequencing.
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2. Benefits of symbolic calculation

Symbolic calculation software performs analytic differentiation and integration, takes limits,

constructs power series expansions, solves some algebraic equations analytically, and simplifies math-

ematical expressions. The major systems have elaborate graphics capabilities and support file and

character string operations. The software also has an extensive mathematical infrastructure [28].

These features provide many benefits.

1. Increased dependability of mathematical formulas through:

(a) reduced errors of transcription and manipulation, though the possibility of programming

errors must be recognized,

(b) new ways to check the results, which is essential, though seldom mentioned,

(c) the clarity of simple mathematical methods that were precluded by tedium or digital

erosion in the past.

2. Increased dependability and precision of numerical results through:

(a) unrestricted-precision integer, rational, real and complex arithmetic that overcome the loss

of accuracy which made many formulas useless for numerical work in the past,

(b) mutual annihilation of expressions of opposite sign and identical magnitude, that were

added in piecewise numerical computations,

(c) retention of radicals and other irrationals symbolically to late stages of a calculation,

and use of series expansions when an expression such as aepx − beqx loses precision when

computed directly.

(d) interval arithmetic that is unrestrictedly precise,

(e) ability to bypass error bound analyses that are weak, obscure, controversial, wrong or

omitted.

I distinguish

(a) dependability i.e. reliability of all the digits in a result, from

(b) precision i.e. the actual number of digits.

3. Improved models that are based on enriched mathematical and algorithmic repertoires.

These include:

(a) the simple mathematics as just been mentioned, and

(b) more eclectic methods that are not practical without the support of symbolic calculation,

(c) manipulation of operators and high level mathematical objects such as actual deriva-

tions and proofs in n-th order expressions.

4. Improved numerical methods. These include

(a) powerful convergence accelerators requiring high precision, and

(b) new numerical analysis algorithms

i. that are specialized e.g. to particular forms of integrand in quadrature formulas [26]

and particular grids for pdes,
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ii. that go to higher dimensionality in interpolation,

iii. that go to higher orders in numerical methods for differential equations e.g. [57].

5. Mechanized optimization. Long sets of alternative computational schemes that are based

on a single set of formulas can be enumerated, calibrated and selected mechanically for optimal

performance [7].

6. Collegial computing in which

(a) formulas are developed and validated at multiple sites,

(b) distributed as machine readable input for further computation that

(c) produce results in print for visual inspection and hard copy publication, including step-by-

step display of intermediate results.

Classifying the uses and benefits helps

1. to pinpoint new areas of application and to stimulate work on these,

2. to analyze software needs that software developers need to know,

Looked at another way, symbolic calculation supports

1. The construction of very long end results with demands on permanent storage and trans-

mission and a need for abbreviated display.

2. The construction of very long tables of formulas, as in the 40,000 hyperspherical harmonics

computed by Wang and Kuppermann. These have the same needs as item 1. Using long tables

of formulas raises further practical questions — see DEMO_NOTES.dta and DEMOS.mma in

http://www.princeton.edu/~allengrp/ms/overlap/.

3. Calculations that involve very long intermediate results and short end results, e.g. when

subexpressions of opposite sign and identically equal magnitude annihilate each other. Short

term storage is critical.

4. The construction of very long proofs and derivations that, at times, involve very large

numbers of special cases, and adapting these in mechanized reasoning by analogy.

5. Combinatorial and other processes that involve lengthy iterations and recursions, where

computational intensity can limit the models that are studied, and parallelization is important.

6. Producing long sets of coursework problems and worked examples.

7. Producing long sets of diagrams and on-demand-production of individual diagrams that depict

e.g. phylogenetic trees, spin coupling NMR, metabolic and other reaction pathways, stereochem-

istry, electron distribution, isopotential surfaces and other properties of molecules and molecular

fragments and aggregates — see [5, 13, 18].

Another categorization which bears strongly on the modeling ideas in §5 distinguishes calculations

that, respectively,

1. produce numerical results or diagrams,

2. produce formulas that give numerical results or diagrams when numbers replace the constituent

parameters,
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3. produce general formulas that give specific formulas of the kind just mentioned when numbers

replace the constituent parameters,

and so on to increasing levels of abstraction. Also, “algorithm” can replace “formula” in items 2 and

3.

Symbolic calculations use mathematical methods from several disciplines, with varied termi-

nology and approaches. In particular

1. biometrics — dominated by statistics, probability and stochastic theory,

2. computational physics and chemistry — dominated by differential equations and linear algebra,

3. control systems and signal processing — topics similar to those in item 2 often couched in

different terminology needing different prior knowledge,

4. structural mechanics and fluidics — dominated by linear algebra and differential equations.

Also, symbolic calculation has stimulated work on

1. Gröbner bases and resultants, matrix and other algebraic methods discussed in [28]. Applica-

tions are discussed in [42] and [65].

2. Quantifier elimination, differential and Clifford algebras, discrete and computational geometry.

Applications are discussed in [5].

3. Lie algebras in perturbation theory [23], Lie symmetry methods for differential equations [35],

homotopy theory [32], Painlevé test methods [59], slow manifold theory [24], nonlinear evolution

equations [39], soliton theory e.g. [54], and stability analysis [3], the many papers on methods

for solving the time dependent Schrödinger equation and other nonlinear pdes mentioned in

[13] and discussed more recently e.g by [60], and

4. group theory [21, 25, 52].

3. Improving interdisciplinary communication

Interdisciplinary teaching and research is a major issue in higher education today. New orga-

nizational structures and multi-million dollar institutes are appearing on campuses, particularly in

the United States. Teaching and research that uses symbolic calculation in the life science can be

pursued much less dramatically in ways discussed below. But several communication issues remain.

In principle, applications experts can present their work in mathematical terms for mathematicians

and computer scientists to solve. It has been a truism since the start of electronic computing that

whilst this approach has occasional success, the computational breakthroughs occur when the ap-

plications and computer experts learn enough about the opportunities and needs of each other to

establish priorities that home in on tractable significant issues, avoiding unnecessary demands and

simplifications.

Responsible popular science explanations help considerably, but there is no substitute for

collegial enthusiasm. Ironically, the barriers of terminology, formalism and ideas that are taken for

granted between different specializations and schools that form the biological sciences, and even within

some of these, compound the communication problem. And similar compartmentalization seems to

exist within mathematics and computer science. The sheer vastness of activity and literature makes

these problems almost inevitable.
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Cultural differences A deeper problem, discussed at length in a major report on inter-

disciplinary cooperation [46] lies in cultural differences between (1) the natural sciences and (2)

mathematics and computer science. The extensive use of symbolic calculation by natural scientists

leads inevitably to new methodologies as well as to new scientific results. This information has to

be exchanged. Fortunately, every major journal run by natural scientists who use mathematics has

a tradition of publishing scripts in fortran. With the advent of symbolic calculation, scripts in

maple, mathematica and other languages have been accepted without demur. For some computer

science journals, however, this is the kiss of death. These journals have also adopted the preoccupation

with algorithms and theorems that the National Research Council report mentions [46]. Symbolic

calculation involves a lot more. Exclusivity and intolerance have to be set aside by journals that wish

to mediate the symbiotic development of their primary subjects with fields that interact with these.

Language issues A more tractable problem that can wreak havoc until recognized concerns

the baggage that the same term carries in the minds of people with different backgrounds. At

ISSAC03, I showed an audience of computer scientists what “ring”, “field” and “homology” mean

to chemists by flourishing a doughnut to suggest a benzene molecule, some refrigerator magnets

that produced magnetic fields, and some Leggo towers to demonstrate homology — I really wanted

sausage strings of different lengths. A recent paper with Minamair [42] explains Gröbner bases without

mentioning the word “ideal”. This word stops many chemists dead in their tracks. Mathematicians

and computer scientists must recognize the barrier that a set of definitions creates, no matter how

familiar they are with the underlying ideas.

Also, natural and computer scientists must be sure they are talking about the same thing when

they think they are. My paper on parameterized eigenvalues [14] got off the ground after a one-hour

conversational mismatch when I used linear dependence for the plot of y versus x looking reasonably

close to a straight line and Thomas Decker thought I meant y identically equal to kx.

Starting a dialogue can be the hardest part of the development of joint work. I have found it

useful to concoct some tenuous suggestions for the application of a software resource to a field outside

my expertize, and then to ask an expert for comment. This usually evokes — “that is not a real

problem” or “that would not work” followed by “but . . . would be useful”. Presenting an abstract

“solution in search of a problem” usually evokes “cannot think of anything”.

4. Curricular measures

Many higher education systems allow “special projects” courses in which each student, or a

team of two or three students, undertakes an individual research exercize. Many systems let one de-

partment offer a course that is attended by students from other departments. Within this framework,

a natural science student can team up with a mathematics / computer science student to explore the

application of symbolic calculation to a problem in the life sciences. Scenarios in several countries are

described in [9].

Problems can be suggested by faculty from their immediate interests or by reference to books

that include the mathematical biology texts by Edelstein-Keshet [20], Hoppensteadt and Peskin [34],

Keener and Sneyd [36], and Murray [44], none of which mention symbolic calculation, and by Yeargers,

Shonkwiler and Herod [61] which uses mathematica pivotally. Edelstein-Keshet discusses discrete

and continuous processes: population growth, continuous models in population dynamics, molecular

events, limit cycles, oscillations and excitability; spatially distributed processes: population dispersal,

microbial motion, traveling waves, transport, pattern formation and morphogenesis; with the primary
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mathematical focus on ordinary and partial difference and differential equations. Hoppensteadt and

Peskin discuss, successively, heart and lungs, cell behaviour, renal mechanisms, muscle mechanics,

neural systems, microbial population dynamics, genetics, epidemiology, and population growth and

dispersal. Keener and Snyd progress through discussions of cell physiology: biochemical reactions,

cellular homeostasis, membrane ion channels, excitability, calcium dynamics, bursting electrical ac-

tivity, intercellular communication, passive electric flow in neurons, wave and cardiac propagation,

calcium waves and cell regulation; system physiology: cardiac rhythmicity, circulation, blood and

respiration, muscle, hormones, kidneys, gastrointestinal system, seeing and hearing. Murray deals

exhaustively with differential equations and their biological effects.

The reissue [20] contains a superb list of more than 50 further books that apply mathematics to

biology and which focus individually on bioeconomics of resource management, branching processes,

cell regulation and evolution, dynamic state models, dynamical systems, ecological complexity, flu-

idics, genetic and biochemical networks, immunology and virology, oscillations and cellular rhythms,

pattern formation, physiological kinetics, population statistics and epidemiology, probability, scal-

ing, and stochastic processes. Some of the books are aimed at mathematics students and some at

biologists.

Mathematicians and computer scientists who think they have found a potential application

should run a literature search using a catch phrase that identifies the topic in conjunction with “Maple”

or “Mathematica” or “symbolic calculation” or “symbolic computation” or “computer algebra” as the

key. And above all, they should make sure that an applications expert is at hand or accessible on the

web to ensure perspective on what may be achieved.

The papers by Hereman [32] and Hydon [35] illustrate another approach. These deal with

homotopy theory and Lie symmetry methods in the solution of differential equations. Both authors

gave me a list of named equations that their methods address. I used these names as keys in Chemical

Abstracts online searches. The results are summarized in endnotes to [32] and [35]. I got over 1000

hits. Most relate to plasma physics and related topics. But a substantial number relate to topics

in chemistry and biology. These include applications of the Korteweg–de Vries (KdV) equation to

chemical ecology, food sterilization, porous media, colloid chemistry, surface viscosity, mechanism of

adherence, and the physiology of biomechanical behaviour; the Boussinesq equation to ultra short

pulsing, and the chemical biology of the neuron; soliton equations for the behaviour of proteins and

muscles, surface catalysis, liquid films, Raman processes in molecular liquids, carcinogenic radiation,

coherent biosystem excitation, hydrogen bonded molecular chain solids, and polyelectrolyte light

scattering; the Thomas equation to ion-exchange processes in purification and separation; the Burgers

equation to plasticity, fluid interfaces, and cardiac behavior; the Maxwell-Vlasov equation to cluster

growth, and free-electron and ultra-intense lasers; the Fitzhugh-Nagumo equation to physiological

excitable systems including cardiac behavior, neurophysiological modeling, cell membranes, chemical

and biological oscillation, and amoeba aggregation; and the isotachophoresis equation which is the

theoretical basis of electrophoresis and chromatography. I have done a similar search that led from

integer programming to a substantial number of papers in the life sciences.

I think that new life science applications of symbolic calculation will be found by literature

searches that start from mathematical methods which have been facilitated by symbolic calculation

in any field. Also, getting students (and faculty and industrial practitioners) of mathematics and

computer science accustomed to the Chemical Abstracts and Science Citation Index and other search

tools of the natural sciences, with the help of subject specialist librarians, as well as to internet search

engines will be invaluable in the development of strong interdisciplinary work.



9

Two technical points. To facilitate interdisciplinary work, get “symbolic calculation” and

related terms into the thesauri of indexing and abstracting services and into the controlled keyword

lists of journals. And try to establish a mechanism to get information about papers on life science

applications that computer journals publish into medlars and other life science information resources

which do not cover the journals directly.

5. Modeling

5.1. Background

I have used mathematica to construct thousands of formulas for work on computational

chemistry over the past 15 years. Most of these symbolic calculations involved special functions

of mathematical physics, specialized integration, limits, recurrence schemes and matrix operations.

Many of the formulas comprise machine readable tables. Recent papers that describe this work

include [7, 11]. These refer to earlier work that is also listed on the website [10]. I use a mnemonic

programming style and a collection of scripts that I call mathscape. The basic process in the majority

of mathscape sessions is, mathematically, the conversion of X to Y by a postfix operator P , where

X and Y denote a pair of equations or identities or algebraic or geometric or logical statements.

Y = X • P (1)

Additionally, several of my recent calculations involve processes of generalization, reasoning by analogy

and optimization that are, mathematically,

S = R • F (2)

where R and S denote a pair of operators with the status of P in Eq. (1) and F is a second order

operator. A few calculations have involved corresponding third order operators.

Güntert’s paper [31] in the forthcoming thematic issue of the International Journal of Quantum

Chemistry uses mathematica constructions that are very similar to the mathscape style. These

simulate the cumulative effect of some physical processes that occur sequentially in real time. I found

the similarity startling, and it led me to a growing realization that similar constructions could model

a host of other sequential processes. The invitation to contribute to AB2005 gave this idea impetus.

Hence §§5.5.–5.7., that I present in the “kite-flying” spirit described at the end of §3..

5.2. Composition of unary operators

To illustrate the basic ideas of mathscape without recourse to specialized applications, con-

sider Pólya’s discussion of “conjecture E” — Euler’s expansion of the sine as an infinite product

[49].

sin x = x lim
N→∞

N∏

n=1

(
1− x

nπ

)
.
(
1 +

x

nπ

)
(3)

I represent this by

eqn[conjectureE] =
sin[x] ==

x lim[N->infinity][
prod[n,1,N][(1 - x/(n pi))(1 + x/(n pi))]]

(4)

Curry-style expressions represent the limit and the indexed product. The evaluation of the infinite
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product in Eq. (5) is set as exercise 6.23 in [49]. The proof of this result illustrates many features of

mathscape without the need for specialized knowledge of computational chemistry.

(
1− 1

4

) (
1− 1

9

) (
1− 1

16

)
. . . =

1

6
(5)

The following mathscape script converts Eq. (3) to Eq. (5) .

eqn[polya[6.23]] =
eqn[conjectureE] //

pipe[
toTheProduct[leftExpand],
toTheLimit[moveCoefficientLeft],
toTheProduct[reindex[n, n-1]],
transposeFromRhsFactorsFreeOf[lim],
propagateLimit[x->pi],
toTheProductand[Apart],
canonicalizeTheLimit]

(6)

The postfix expression x // pipe[f1, . . . , fn] represents the composition of unary functions that is

nested as fn[ . . . [f1[x]] . . . ]. In my early experiments with mathematica, I found myself using

postfix compositions increasingly, in several ad hoc ways. When I found how convenient these are to

build and to document, and the reasons for this, I systematized the style. This evolution highlights

the extent to which symbolic calculation is an experimental activity that leads to insights about

programming languages which could not be found by abstract speculation.

The constructions toTheProduct, toTheLimit, toTheProductand are “targeting” functions

that focus action on components of a nested mathematical structure. Mathscape supports a large,

open-ended class of these. Their usage is explained in detail in [8]. The following pipe expression

illustrates two further features of mathscape targeting. It refers to a hypothetical identity between

two algebraic expressions in x, y, z.

pipe[
toTheLhs[

toTermContaining[x^2]][
toFactorFreeOf[x]][Expand]]],

toTheRhs[
toTheNumerator[
collectPowersOf[y], factorOut[z]],

toTheDenominator[
collectivelyToTermsContaining[z]][Factor]]]]

(7)

This shows the nesting of targeting functions and the usage that allows argument lists of unary

functions that are composed. Not surprisingly, nested operators are powerful tools for manipulating

nested expressions. And, as a consequence, nested operators are amenable to manipulation by higher

level nested operators.

5.3. Analogy

Exercise 6.24 in [49] is the evaluation of

(
1− 4

9

) (
1− 4

16

) (
1− 4

25

)
. . . (8)

The operator that reduced Eq. (5) is retrieved by
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op[6.23] = betweqn[conjecture E, polya[6.23]]

(9)

Inspection suggests

1. moving the two low order elements out of the scope of the
∏

operator, instead of just one,

2. reducting the lower limit of n correspondingly by 2 instead of 1, and

3. replacing x by 2π instead of π,

The new composition expression is formed and applied, accordingly, by

op[6.24] =
op[6.23] //

pipe[leftExpand->leftExpand^2, n-1->n-2, pi->2pi]

eqn[polya[6.24]] = eqn[conjectureE] // op[6.24]|
(10)

This reduces the product Eq. (8) to 1/6. By analogy, the next formula in the style of Eqs. (5) and

(8) should be formed by changing 2 to 3 in the composition that was just used. I tried

eqn[conjectureE] // (op[6.24] /. {2->3, -2->-3})
(11)

It produced
1

20
= lim

N→∞

N∏

n=1

(
1− 9

(3 + n)2

)
. (12)

5.4. Optimization

The combination of Eqs. (6, 9, 10) corresponds to the expression of analogy by the scheme

Y1 = X • F1, F2 = F1 • G, Y2 = X • F2 (13)

Optimization is expressed by

Y = X • F1, F2 = F1 • G, Y = X • F2 (14)

where the conversion of X to Y using F2 is faster or causes less swelling than the conversion us-

ing F1. This covers many practical situations with different characteristics. Replacing the builtin

Simplify function by a simplification function that addressed special features of the target speeded

one calculation by an order of magnitude [6] .

The calculation of a table of 10,000 “molecular integrals” described in [7] involves a much

more complicated situation that is endemic to numerical and symbolic scientific computing. The end

products in [7] — for present purposes call them An1,...,n6(x, y) — depend on 6 integer parameters and

2 real variables. Each A function is computed from a combination of B and C functions that depend

on several integer parameters, with ranges that are related to those that characterize the As. And so

on down through 8 levels, described by a set of 17 formulas. Some of these involve recurrence.

When a set of function Cm1,... is given by an expression containing functions D`1,... and Ek1,...,

alternative computational schemes include calculating

1. all the C functions first, followed by all the Ds,

2. each C function and each D function whenever it is needed,



12

3. subsuming the equation for the Ds, in terms of still lower level functions, into the equation for

the Cs,

and obvious variations. Enumerating the alternatives and assessing or measuring their relative merits

is the key to an important class of optimization procedures. In [7] I discuss an approach to this

problem that expresses an overall computation scheme based on the given set of equations as a nested

pipe expression that acts on the list of sets of indexes m1, . . . that characterize the set of C functions

that are needed. The constituent unary functions specify the equations and the ranges of indexes to

be used in successive steps. Altering the computing scheme corresponds to coalescing pairs of parent

sibling nodes or transposing sibling nodes. This alteration is covered by Eq. (14). The steps that are

needed in a full scale enumeration–assessment are discussed in [7].

5.5. NMR and MRI

Güntert has written a mathematica package poma that simulates an important class of

pulse sequence nmr experiments [31]. The package converts a representation of the sequence of ra-

diofrequency pulses and other actions that comprise an experiment into a Fourier series for the time

evolution (dependence) of the “density operator”. The coefficients contain certain molecular param-

eters that depend on the interactions of the nuclear spins of constituent atoms. NMR experiments

are used to identify substructures and to measure molecular dynamics in a vast range of biological

studies. There are many texts on the subject e.g. [37]. The online introduction [64] includes helpful

animations. Individual concepts are explained accessibly in [33].
The following mathematica expression for the 3QF-COSY calculation, in the poma docu-

mentation shows the style of input.

spin[1,z] // pulse[ 90,{0,Pi/3,2Pi/3,Pi,4Pi/3,5Pi/3}] //
delay[t,{{1,2},{1,3}}] // pulse[90,{0,Pi/3,2Pi/3,Pi,4Pi/3,5Pi/3}] //
pulse[ 90,{x, x, x, x, x, x}] // receiver[{x, -x, x, -x, x, -x}] //
observable

The successive pulse and other formal operators correspond to physical actions and happenings. The
physical experiment can be described, accordingly, as

experiment[3QF-COSY] =
pulseSequence[
pulse[90, {0,Pi/3,2 Pi/3,Pi,4 Pi/3,5 Pi/3}], delay[t, {{1,2},{1,3}}],

..., observable]

where pulseSequence is a placeholder, and pulse[ . . . ], . . . , observable describe physical happen-
ings. Then the 3QF-COSY calculation is performed by

spin[1, z] // (experiment[3QF-COSY] /. pulseSequence -> pipe)

The presence of mathematica procedures with pattern names that match the subexpressions pulse[. . . ],

. . . , observable causes automatic evaluation.

Going from pulseSequence to pipe makes only a minute change in the appearance of the

expression and it requires only minute word processing capabilities. But the impact is dramatic —

it moves from the representation of a time sequenced multi–step process in the physical world to an

operator whose action is to simulate the cumulative effects. Formally, let D be a description of a

member of some class of physical process, let D denote the operator that simulates D, and let T
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denote the mapping of the Ds to the corresponding D. Then the general transformation from the

physical world to the operator world is encapsulated by

D = D • T (15)

Of course modeling programs have always converted input representations of physical reality to data

for table driven software or to sequences of statements that call appropriate subroutines. Mnemonic

descriptions of physical objects, scenarios and engineering systems are accepted by the modeling

languages that are described in texts on computer graphics and by languages such as modelica

[66, 45]. In object-oriented programming “software objects are often used to model real-world objects

you find in everyday life” [63]. The mathscape tactics which have just been described, however,

open up innumerable opportunities because of

1. the ease of handling tree structures, that describe the physical system, in mathematica,

2. targeting capabilities to pinpoint where the system is to be changed,

3. pattern matching that enhances the targeting actions,

4. the ability to use overlapping repertoires of commands to operate on

(a) representations of physical objects and time-sequenced processes,

(b) the operators that act on these,

(c) the pipe expressions that do the modeling,

(d) the operators that act on these,

with further opportunities to work by analogy and to optimize the physical systems using the methods

discussed in earlier subsections.

Güntert’s work raises the following questions in the specific area of NMR.

1. Can algorithms be devised to convert the pulseSequence description of an experiment into

computer controls to drive the experiment?

2. Can sets of operators be devised to support the convenient interactive change of the pulseSequence

description of one experiment into the corresponding description of an experiment with related

objectives, by reference to the changes in the target material or conditions or objective?

3. Can algorithms be devised to do this?

4. Can algorithms be devised to construct pulseSequence descriptions of experiments directly

from the chemical nature of the study for significant classes of investigation, that are more

elaborate than tables of numerical parameters?

In private communications, Istvan Pelczer and Malcolm Levitt have suggested material that I should

review for possible answers to some of these questions, which I will do. The pulseSequence displayed

above contains items with relatively little internal structure. The conventions can be extended to

include gradients, pulse shapes and further details.

It is a very short leap of thought from modeling NMR to modeling MRI and on to other medical

imaging equipment. These are controlled by computer software. Medical staff provide numerical data

for protocols that they select. I have started a dialogue with a clinical radiologist about the possible

application of the modeling methods in this paper to medical imaging and I hope to pursue this in

coming months, too.
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5.6. Organic chemistry

Organic chemistry provides fertile ground for modeling based on Eq. (15) that bears on phar-

maceuticals and biochemistry. Representations are the key. I use nested mathematica expressions,

e.g. ethyl chloride CH3.CH2.Cl is represented by ch[C[H, H, H], sb, C[H, H, Cl]] where ch and

sb denotes a chain and a single bond, respectively, and X[A, B,. . . ] denotes the group consisting of

X attached to atoms or subsidiary groups A, B, . . . . The notations are under development. They are

meant to show the kinds of tactics that are possible and the ways these are supported, to encourage

other workers to develop notations that meet their individual needs rather than adopting the precise

details of my scripts. Representations are non-unique and can be restructured mechanically.

Properties of atoms and bonds are included in extra brackets. The meaning can be implicit,

as in C[13][H, H, H] for a methyl group containing 13C. Alternatively, the meaning can be made

explicit, as in sb[bondLength[145 pm], bondOrder[1.2]]. The mathematica syntax allows a

host of other labeling tactics that include == and -> as connectives, as in sb[dipole -> 1.3], but

= should not be used in this context. The item bondTo[n]in a ch expression connotes bonding to

the non-adjacent atom at position n in the chain, with further conventions for bonding to out of

chain atoms, for double and Kekulé bonds and for fused rings and three-dimensional structures. The

chemical mark up language ChemML may suggest notations for particular topics [67].

The representation of chemical reactions is illustrated by the dehydration

CH3.CH2OH −→ CH2 : CH2 (16)

This is represented by the notationally similar

dehydration[1] =
ch[C[H, H, H], sb, C[H, H, OH]] -> ch[C[H, H], db, C[H, H]]

The representation of a reaction can be modified by use of targeting functions. For example,

dehydration[2] = dehydration[1] // toBothSides[
toAtom[C][1][toSubstituent[1][H -> R1], toSubstituent[2][H -> R2]],
toAtom[C][2][toSubstituent[1][H -> R3], toSubstituent[2][H -> R4]]]

assigns the name dehydration[2] to the more general reaction

ch[C[R1, R2, H], sb, C[R3, R4, OH]] -> ch[C[R1, R2], db, C[R3, R4]]

Elementary pattern transformation applies these representations to individual compounds. math-
scape treats patternRule[dehydration[2]] automatically as

ch[C[R1_, R2_, H], sb, C[R3_, R4_, OH]] :> ch[C[R1, R2], db, C[R3, R4]]

with the standard meaning of the underscore [58]. Hence, for example, the statement

ch[C[H, H, H], sb, C[CH3, OH], sb,
C[CH3, OH], sb, C[H, H, H]] //. patternRule[dehydration[ ]]

converts the representation of pinacol to that of 2,3-dimethylbutadiene-1,3.

Chemistry texts often extend Eq. (16) to show the dehydrating agent by

CH3.CH2OH
Al2O3−→ CH2 : CH2 (17)

I represent this kind of extension by, e.g.
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dehydration[1, ] =
{ch[C[H, H, H], sb, C[H, H, OH]],
{Al2O3 || kaolin}, tempRange[350,360]}
{ch[C[H, H], db, C[H, H]]}

In general, {{reactants}, {further details}, {products}} allows multiple reactants, conditions and

products. Usually, the reactants are generic in the sense that dehydration[2] contains R1, R2, R3,

R4. The further details can have an elaborate conditional structure to meet the needs of different

reactants. The patternRule formed from a triple of this kind is an operator that acts on a reactant

list that matches the pattern formed from reactants if further details is null or True as the result of

earlier assignments. The further details are omitted when they be taken for granted.
A recent article by Ganesan [27] illustrates heterocyclic combinatorial synthesis by the 3-step

production of the thiohydantoin library by (1) alkylating an α-amino acid ester using an aldehyde,
(2) treating the product with an isothiocyanate to give a transient thiourea, (3) letting this cyclize
automatically. I am using this to test the current conventions and software at the time of writing. The
plan is to base the first step on the alkylation of a primary amine XNH2 + Y.CHO → X.NH.CH2.Y by
substituting, in the text processing sense, R1.CH2.CO2Me for X and CH2.R2 for Y. The second step
will be based on the reaction of a secondary amine NH(X1)X2 + CS:NX3 → N(X1)(X2).CS.NH.X3

by substituting R3 in place of X3. The pattern rule that is formed for this step should transform the
result of the first step to the representation of the thiourea as a tertiary amine

N[C[S,N[H,R3]], C[H,H,R2], C[H,R1,C[O],O[Me]]]

Then a command to restructure this as a chain beginning with the O[Me] and containing the C[S]

will put this in the form that is cyclized by the pattern rule for the third step.

I assume that my computational experiments so far cannot produce results that match main-

stream software for combinatorial synthesis but I think it may lead in new directions. A simple change

to the representation of the thiohydantoin synthesis gives the synthesis of thioxodihydropyrimidinones

from β-amino acid esters. Formal analogy between different classes of reaction should lead to high

order abstractions. The syntax allows further commands that represent separation, purification and

experiments to measure properties, and action that is conditionalized on the result of these measure-

ments. This tactic addresses some needs of chemical robotics. Parallel operations on two or more

species that are produce during a synthesis can be represented easily. So can the rejoining of these,

leading on to the representation of metabolic networks.

5.7. Cell signaling

It is very tempting to speculate on the possible extension of these ideas to cell signaling.

Tentatively, I am considering a model that cycles through successive time increments, maintaining

data for a list of metabolic processes. The data for each process X includes a list of substances that

terminate X immediately and a list of substances that terminate X when a preset tolerance is reached.

The level of each of these substances can change from cycle to cycle and the levels are stored, too.

The widely used diagrams of cell signaling suggest a style analogous to the ch expressions to represent

a receptor sequence on a membrane protein. Then the attachment of ligands to receptors, and the

further attachment of molecules to the ligands, and interaction between ligands on adjacent receptors

would be represented in a style analogous to the reaction sequences discussed above. Some forms of

abberant behaviour could be described by changes in the spatial sequence of receptors and the order

and time of arrival of signals. A process X that changes a process Y can be regarded as an operator

and this idea extends immediately to operators of increasing level. But I would be presumptuous to

go further with these speculations now.
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I have had a long term interest in biological information processing. But exigencies of time

and space preclude more than a passing reference to the account of the PST model in [4]. It depends

on string substitutions by molecular assemblages that act as associative memory devices, with latent

codes that are activated by the same mechanism. .
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