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Abstract

TD-Gammon is a neural network that is able to teach itself to play backgammon solely by playing
against itself and learning from the results. Starting from random initial play, TD-Gammon’s self-
teaching methodology results in a surprisingly strong program: without lookahead, its positional
judgement rivals that of human experts, and when combined with shallow lookahead, it reaches a
level of play that surpasses even the best human players. The success of TD-Gammon has also been
replicated by several other programmers; at least two other neural net programs also appear to be
capable of superhuman play.

Previous papers on TD-Gammon have focused on developing a scientific understanding of its
reinforcement learning methodology. This paper views machine learning as a tool in a programmer’s
toolkit, and considers how it can be combined with other programming techniques to achieve and
surpass world-class backgammon play. Particular emphasis is placed on programming shallow-depth
search algorithms, and on TD-Gammon’s doubling algorithm, which is described in print here for
the first time.  2002 Elsevier Science B.V. All rights reserved.
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1. Introduction

Complex board games such as Go, chess, checkers, Othello and backgammon have long
been regarded as great test domains for studying and developing various types of machine
learning procedures. One of the most interesting learning procedures that can be studied
in such games is reinforcement learning from self-play. In this approach, which originated
long ago with Samuel’s checkers program [18], the program plays many games against
itself, and uses the “reward” signal at the end of each game to gradually improve the quality
of its move decisions.
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This paper presents TD-Gammon, a self-teaching program that was directly inspired by
Samuel’s research. TD-Gammon is a neural network that trains itself to be an evaluation
function for the game of backgammon, by playing against itself and learning from the
outcome. It combines two major developments of recent years that appear to overcome
traditional limitations to reinforcement learning. First, it uses the Multi-Layer Perceptron
neural net architecture, widely popularized in backpropagation learning, as a method
of learning complex nonlinear functions of its inputs. Second, it apportions “temporal
credit assignment” during each self-play game using a “Temporal Difference” (or simply
TD) learning methodology [23]. The basic idea of TD methods is to base learning on
the difference between temporally successive predictions. In other words, the goal is to
make the learner’s current prediction for the current input pattern more closely match the
subsequent prediction at the next time step. The specific TD method used, which will be
described later in more detail, is the TD(λ) algorithm proposed in [22].

TD-Gammon was originally conceived as a basic-science study of how to combine
reinforcement learning with nonlinear function approximation. It was also intended to
provide a comparison of the TD learning approach with the alternative approach of
supervised training on a corpus of expert-labeled exemplars. The latter methodology was
used previously in the development of Neurogammon, a neural network backgammon
program that was trained by backpropagation on a data base of recorded expert move
decisions. Its input representation included both the raw board information (number
of checkers at each location), as well as several hand-crafted “features” that encoded
important expert concepts. Neurogammon achieved a strong intermediate level of play,
which enabled it to win in convincing style the backgammon championship at the 1989
International Computer Olympiad [24]. By comparing TD-Gammon with Neurogammon,
one can get a sense of the potential of TD learning relative to the more established approach
of supervised learning.

Despite the rather academic research goals listed above, TD-Gammon ended up having a
surprising practical impact on the world of backgammon. The self-play training paradigm
enabled TD-Gammon’s neural net to significantly surpass Neurogammon in playing
ability. The original version 1.0 of TD-Gammon, which was trained for 300,000 self-play
games, reached the level of a competent advanced player which was clearly better than
Neurogammon or any other previous backgammon program [16]. As greater computer
power became available, it became possible to have longer training sessions, and to use
greater depth search for real-time move decisions. An upgraded version of TD-Gammon,
version 2.1, which was trained for 1.5 million games and used 2-ply search, reached the
level of a top-flight expert, clearly competitive with the world’s best human players [27,
29]. It was interesting to note that many of the program’s move decisions differed from
traditional human strategies. Some of these differences were merely technical errors, while
others turned out to be genuine innovations that actually improved on the way humans
played. As a result, humans began carefully studying the program’s evaluations and rollouts
(a Monte Carlo analysis procedure described in Section 4.2), and began to change their
concepts and strategies. After analysis of thousands of positions, new heuristic principles
were formulated which accounted for the new data.

This trend of human experts learning from the machine was significantly accelerated
when several other researchers were able to replicate the success of TD-Gammon with
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self-teaching neural nets. Two such efforts, by Fredrik Dahl and Olivier Egger, have led to
the creation of commercial PC programs called Jellyfish and Snowie, respectively. These
programs play at or better than world-class level and enable the user to obtain neural net
evaluations or rollouts for any position. As a result, the new knowledge generated by the
neural nets has been widely disseminated, and the overall level of play in backgammon
tournaments has greatly improved in recent years. Kit Woolsey described some of the
changes in human strategies as follows [29]:

“Some of the previously believed concepts about backgammon were overturned.
The wild slotting style of the late 1970’s and 1980’s was, if the neural nets were
to be believed, more costly than previously thought. The race was found to be very
important, and many plays were based on racing potential. Purity was found to have
been overrated, while ugly attacking plays proved to be stronger than expected. The
style of the average good player drifted toward these new concepts. Of course, one
does wonder if these results from the bots are somewhat self-fulfilling prophecies.
Could it be that the bots prefers blitzes and races to priming games and back games
because it plays them better? The jury is still out on that topic.”

This paper describes some of the programming issues in using self-teaching neural
network technology to achieve a world-class program. To some extent, these issues have
already been described in previous papers on TD-Gammon. This paper describes for the
first time issues in programming n-ply search for move decisions, and in programming an
algorithm for making doubling cube decisions, based on neural net evaluations.

2. Complexity in the game of backgammon

Backgammon is an ancient 1 two-player game that is played on an effectively one-
dimensional track. The standard opening board configuration is illustrated in Fig. 1. The
players take turns rolling dice and moving their checkers in opposite directions along the
track as allowed by the dice roll. The first player to move all her pieces (commonly called
“checkers” or “men”) all the way forward and off the end of the board is the winner.
In addition, the player wins double the normal stake if the opponent has not taken any
checkers off; this is called winning a “gammon”. It is also possible to win a triple-stake
“backgammon” if the opponent has not taken any checkers off and has checkers in the
farmost quadrant; however, this rarely occurs in practice.

The one-dimensional racing nature of the game is made considerably more complex by
two additional factors. First, it is possible to land on, or “hit”, a single opponent checker
(called a “blot”) and send it all the way back to the far end of the board. The blot must
then re-enter the board before other checkers can be moved. Second, it is possible to form
blocking structures that impede the forward progress of the opponent checkers. These two
additional ingredients lead to a number of subtle and complex expert strategies [10,15].

1 Precursors to the modern game existed in Egypt and Mesopotamia, possibly as much as five thousand years
ago [7].
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Fig. 1. Illustration of the normal opening position in backgammon. Black checkers move counter-clockwise in
the direction of decreasing point numbers. White checkers move clockwise in the direction of increasing point
numbers.

Additional complexity is introduced through the use of a “doubling cube” through which
either player can offer to double the stakes of the game. If the opponent accepts the double,
he gets the exclusive right to make the next double, while if he declines, he forfeits the
current stake. Hence, the total number of points won at the end of a game is given by the
current value of the doubling cube multiplied by 1 for a regular win (or for a declined
double), 2 for a gammon, and 3 for a backgammon.

Programming a computer to play high-level backgammon has been found to be a rather
difficult undertaking. One can’t solve the full game exactly due to the enormous size of the
state space (estimated at over 1020 states), although it has been solved exactly for a lim-
ited number of checkers (up to 3 checkers per side), and for certain no-contact endgame
situations. Furthermore, the brute-force methodology of deep searches, which has worked
so well in chess, checkers and Othello, is not feasible due to the high branching ratio
resulting from the probabilistic dice rolls. At each ply there are 21 dice combinations
possible, with an average of about 20 legal moves per dice combination, resulting in a
branching ratio of several hundred per ply. This is much larger than in checkers and chess
(typical branching ratios quoted for these games are 8–10 for checkers and 30–40 for
chess), and too large to reach significant depth even on the fastest available supercom-
puters.

In the absence of exact tables and deep searches, computer backgammon programs must
rely on heuristic positional judgement. The traditional approach to this in backgammon
and in other games has been to work closely with human experts, over a long period
of time, to design a heuristic evaluation function that mimics as closely as possible the
positional knowledge and judgement of the experts [3]. There are several problems with
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such an approach. First, there may be a large number of features required, and it’s very
difficult to articulate and code up all the useful features. Second, the features may interact
with each other in complex and unanticipated ways. Third, there is no principled way to
assign the correct weights for features or combinations of features. Finally, when doing
knowledge engineering of human expert judgement, some of the expertise being emulated
may be erroneous. As human knowledge and understanding of a game increases, the
concepts employed by experts, and the weightings associated with those concepts, undergo
continual change. This has been especially true in Othello and in backgammon, where
over the last 20 years, there has been a substantial revision in the way experts evaluate
positions. Many strongly-held beliefs of the past, that were held with near unanimity
among experts, are now believed equally strongly to be quite wrong. In view of this,
programmers are not exactly on firm ground in accepting current expert opinions at face
value.

In the following section, we shall see that TD-Gammon represents a radically different
approach toward developing a program capable of sophisticated positional judgement.
Rather than trying to imitate humans, TD-Gammon develops its own sense of positional
judgement by learning from experience in playing against itself. While it may seem that
forgoing the tutelage of human masters places TD-Gammon at a disadvantage, it is also
liberating in the sense that the program is not hindered by human biases or prejudices that
may be erroneous or unreliable.

3. TD-Gammon’s learning methodology

We now present a brief summary of the TD backgammon learning system. For more
details, the reader is referred to [26]. A fairly detailed description of both the TD(λ)
learning procedure and the TD-Gammon application is also contained in [23]. At the heart
of TD-Gammon is a neural network that utilizes a standard multilayer perceptron (MLP)
architecture, identical to that used in backpropagation learning [17]. The neural net may
be thought of as a generic nonlinear function approximator. Given sufficient training data
and sufficiently many hidden units, MLPs have been shown to be able to approximate any
nonlinear function to arbitrary accuracy [6]. Furthermore, MLPs are known to have a robust
capability of generalization from training cases to test cases that were not included in the
training data.

The training procedure for TD-Gammon is as follows: the network observes a sequence
of board positions starting at the opening position and ending in a terminal position
characterized by one side having removed all its checkers. The board positions are
fed sequentially as input vectors x1, x2, . . . , xf to the neural network, encoded using a
representation scheme that is described below. Each time step in the sequence corresponds
to a move made by one side, i.e., a “ply” or a “half-move” in game-playing terminology.
For each input pattern xt there is a neural network output vector Yt indicating the neural
network’s estimate of expected outcome for pattern xt . For this system, Yt is a four-
component vector corresponding to the four possible outcomes of either White or Black
winning either a normal win or a gammon. (Due to the extreme rarity of occurrence, triple-
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value backgammons were not represented.) At each time step, the TD(λ) algorithm is
applied to change the network’s weights. The formula for the weight change is as follows:

wt+1 − wt = α(Yt+1 − Yt )

t∑

k=1

λt−k∇wYk, (1)

where α is a small constant (commonly thought of as a “learning rate” parameter), w is
the vector of weights that parameterizes the network, and ∇wYk is the gradient of network
output with respect to weights. (Note that Eq. (1) expresses the weight change due to a
single output unit. In cases where there are multiple output units, the right-hand side of
Eq. (1) should be modified by summing over each individual output unit.)

The quantity λ is a heuristic parameter controlling the temporal credit assignment of
how an error detected at a given time step feeds back to correct previous estimates. When
λ = 0, no feedback occurs beyond the current time step, while when λ = 1, the error feeds
back without decay arbitrarily far in time. Intermediate values of λ provide a smooth way
to interpolate between these two limiting cases. Since there are no theoretical guidelines for
choosing an optimal value of λ for a given nonlinear function approximator, one typically
has to experiment with a range of values. Empirically, it was found with TD-Gammon that
small-to-moderate values of λ gave about equally good asymptotic performance, whereas
the performance degraded for large values of λ close to 1. In the initial experiments
reported in [26] a value of λ = 0.7 was used. Subsequent development of TD-Gammon
mostly used λ = 0: while this doesn’t give a noticeable performance advantage compared
to small nonzero λ values, it does have the merit of requiring about a factor of two less
computation per time step.

At the end of each game, a final reward signal z (containing four components as
described previously) is given, based on the outcome of the game. Once again equation
1 is used to change the weights, except that the difference (z − Yf ) is used instead of
(Yt+1 − Yt ). Under these training conditions, we interpret the trained network’s output as
an estimate of expected outcome, or “equity” of the position. This is a natural interpretation
which is exact in cases where TD(λ) has been proven to converge.

In the preliminary experiments of [26], the input representation only encoded the raw
board information (the number of White or Black checkers at each location), and did not
utilize any additional pre-computed features relevant to good play, such as the strength
of a blockade or probability of being hit. A truncated unary encoding scheme was used
for the raw board description. This required no great cleverness, as unary encodings are
commonly used by neural net practitioners to encode integer data, and the truncation was
imposed primarily to economize on the total number of input units. These experiments
were “knowledge-free” in the sense that no knowledge of expert concepts or strategies
was built in at the start of learning, nor did the neural net observe any expert move
decisions during training. In subsequent experiments, a set of hand-crafted features (the
same set used by Neurogammon) was added to the representation, resulting in higher
overall performance, as detailed in the following section.

During training, the neural network itself is used to select moves for both sides. At each
time step during the course of a game, the neural network scores every possible legal move.
The move that is selected is then the move with maximum expected outcome for the side
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making the move. In other words, the neural network is learning from the results of playing
against itself. This self-play training paradigm is used even at the start of learning, when the
network’s weights are random, and hence its initial strategy is a random strategy. A priori,
this methodology would appear unlikely to produce any sensible learning, because random
strategy is exceedingly bad, and because the games end up taking an incredibly long time:
with random play on both sides, games often last several hundred or even several thousand
time steps. In contrast, in normal human play games usually last on the order of 50–60 time
steps.

4. Results of training: TD-Gammon’s move decision performance

The rather surprising finding of the experiments described in the previous section was
that a substantial amount of learning actually took place, even in the zero initial knowledge
experiments utilizing a raw board encoding. A sample curve illustrating the progress
of learning is shown in Fig. 2. Performance is measured by periodic benchmarking of
expected equity against a fixed opponent, Sun Microsystems’ Gammontool program. Note
that in this figure and throughout the paper, units of equity are expected points per game
(ppg) won or lost. We can see in Fig. 2 that the initial random strategy loses nearly every
game against Gammontool, and nearly every loss is a double-value gammon. As self-play
training begins, we see that there is rapid initial learning: during the first few thousand
training games, the network learns a number of elementary principles, such as hitting
the opponent, playing safe, and building new points. More sophisticated context-sensitive

Fig. 2. A sample learning curve of one of the original nets of [26], containing 10 hidden units, showing playing
strength as a function of the number of self-play training games. Performance is measured by expected points per
game (ppg) won or lost against a benchmark opponent (Sun Microsystems’ Gammontool program).
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concepts (e.g., slotting home board points in certain situations but not in others) emerged
later, after several tens of thousands of training games. The end of learning is characterized
by a long slow asymptote to peak performance, which ends up being significantly better
than Gammontool.

Perhaps the most encouraging finding was good scaling behavior, in the sense that
as the size of the network and amount of training experience increased, substantial
improvements in performance were observed. The largest network examined in the raw-
encoding experiments had 40 hidden units, and its performance appeared to saturate
after about 200,000 games. This network achieved a strong intermediate level of play
approximately equal to Neurogammon. An examination of the input-to-hidden weights
in this network revealed interesting spatially organized patterns of positive and negative
weights, roughly corresponding to what a knowledge engineer might call useful features
for game play [26]. Thus the neural networks appeared to be capable of automatic “feature
discovery,” one of the long-standing goals of game learning research since the time of
Samuel.

Since TD-trained networks with a raw input encoding were able to achieve parity with
Neurogammon, it was hoped that by adding Neurogammon’s hand-designed features to
the raw encoding, the TD nets might then be able to surpass Neurogammon. This was
indeed found to be the case: the TD nets with the additional features, which form the
basis of version 1.0 and subsequent versions of TD-Gammon, have greatly surpassed
Neurogammon and all other previous computer programs. The improvement due to the
additional features depends on the number of hidden units: a network without hidden units
might improve ∼0.5 ppg, while a large net with many hidden units might improve ∼0.2
ppg.

Note that no further tinkering with the definition and encoding of features was performed
as TD-Gammon was developed: the exact same features from Neurogammon were
retained. It is quite likely that performance improvements could have been obtained
by further refining the features based on the observed problems and weaknesses of
TD learning. Indeed, it is common practice in machine learning to use knowledge
engineering as a way of patching up the deficiencies of learning algorithms. However,
it is this author’s firm opinion, based on much experience, that this provides only
short-term benefit and is dangerously likely to turn out to be a waste of time in the
long run. Rather than devoting time and effort to covering up the flaws of existing
learning algorithms, the ultimate goal of machine learning research should be to develop
better learning algorithms that have no such flaws in the first place. As an example,
the supervised learning procedure used in Neurogammon was seriously flawed in that
it failed to learn the expected outcome of positions, and it failed to adequately take
into account the opponent configuration in making move decisions. Much effort was
expended to try to compensate for these deficiencies through clever feature design.
However, when the vastly superior TD learning method was found to have no such
deficiencies, this effort was revealed to be superfluous. Several of the features in the
Neurogammon feature set probably could be deleted from TD-Gammon without harming
its performance.
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4.1. Move decisions using n-ply search

One important factor in TD-Gammon’s piece movement performance, which has not
received much attention in prior papers, is the ability to perform shallow-lookahead
searches. Initially, the real-time move decisions of version 1.0 used simple 1-ply search,
in which every top-level move is scored by the neural net, and the highest-scoring move
is selected. After about 1–2 years of software and hardware speedups, versions 2.0 and
2.1 were capable of 2-ply search. The 2-ply search algorithm works as follows: First,
an initial 1-ply analysis is performed and unpromising candidates are pruned based on
the 1-ply score. (This is commonly known as forward pruning.) Then, the remaining top-
level candidates are expanded by an additional ply. The 1-ply expansion of the surviving
candidates involves making a 1-ply move decision for each of the opponent’s 21 possible
dice rolls, and computing a probability-weighted average score (weighting non-doubles
twice as much as doubles) for each of the resulting states.

Versions 3.0 and 3.1 (the current version) are capable of a simplified 3-ply search. This
is similar to the 2-ply search described above, except that a depth-2 expansion of the top
level moves is performed, rather than a depth-1 expansion. The depth-2 expansion consists
first doing a depth-1 expansion of the 21 dice rolls as above, selecting a move for each dice
roll, and then doing an additional depth-1 expansion of the 21 followup dice rolls. In other
words, a total of 441 two-roll sequences are examined, in which a 1-ply move decision
is made by each side, and the score backed up to the top-level move is the probability-
weighted average score of the 441 resulting successor states. This gives a huge speed
advantage over full-width minimax backup, while still producing a significant boost in
move quality relative to 2-ply search.

Version 3.1 of TD-Gammon contains 160 hidden units and about 50,000 floating-
point weights, and was trained for over 6 million self-play games. With extensive code
optimization and extensive use of pruning, it averaged about 10–12 seconds per move
decision at the 1998 AAAI Hall of Champions exhibit, running on a 400 MHz Pentium II
processor.

4.2. Assessing performance vs. human experts

Several methods have been used to assess the quality of TD-Gammon’s move decisions
relative to those of human experts. Each version of the program has typically played several
dozen games against top humans; results have been quoted in previous papers. One can get
an idea of the program’s strength from both the outcome statistics of the games, and from
the masters’ play-by-play analysis of the computer’s decisions. The main problem with this
method is that play against humans is slow, and it is infeasible to play the several thousand
games that would be required for a statistically definitive result.

Probably the most meaningful way to measure human vs. computer performance is to
perform an offline “rollout” analysis of the move decisions a match between the two.
A rollout is a Monte Carlo evaluation of a position in which the computer plays a position
to completion many times (typically thousands of trials), using different random dice
sequences in each trial. The rollout score is the average outcome obtained in each of the
trials. To analyze a recorded move decision, one rolls out each candidate move, and checks
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whether the recorded move obtained the highest rollout score. If so, it is deemed to be
“correct”, and if not, an equity loss is assigned based on the score difference between the
highest-scoring move and the recorded move. Rollout analysis of move decisions, while not
perfect, has been found to be extraordinarily accurate, even if the program performing the
rollouts is fallible. This is due to two factors: first, for most normal backgammon positions,
a program playing both sides of a position will tend to lose roughly equal amounts of equity
for both sides, and thus the equity losses will tend to cancel out. Second, any systematic
errors in the rollout scores of sibling top-level moves are likely to be highly correlated,
since the positions are nearly identical, and would thus cancel out in determining the best
move.

If there are least a few dozen games in a match, this should provide enough data to give
a clear indication of the relative skill levels of the players. One might be concerned that
rollouts performed by “bots” could be biased against humans. However, it appears that if
there are any such biases they are likely to be small, and in any case, if there are any doubts
about a rollout’s accuracy, one can always redo the rollouts using a stronger player. Doing
full rollouts of every decision in a long match can require a prohibitive amount of CPU
time. Fortunately, it is also possible to do truncated rollouts, in which a fixed number of
moves are made from the starting position, and the neural net equity estimate of the final
position is recorded. Truncated rollouts are potentially much faster than full rollouts, while
only giving up a small amount of accuracy in the results.

Truncated rollout analysis (depth-11, min. 3000 trials) has recently been performed for
two of TD-Gammon’s longer matches with top humans: the 40-game 1993 match between
two-time World Champion Bill Robertie and version 2.1, and the 100-game 1998 AAAI
Hall of Champions exhibition match 2 between World Cup Champion Malcolm Davis and
version 3.1. (Several weeks of CPU time were required to complete the analysis.) The
rollouts were performed using a recently released beta version of Snowie 3.2: this is now
regarded as the strongest available rollout program, and using Snowie mitigates against
the possibility that TD-Gammon rollouts might be biased in favor of itself. Results are
summarized in Tables 1 and 2.

One can see that, according to the rollout statistics, TD-Gammon 2.1 technically
outplayed Bill Robertie in piece-movement decisions, although the results are fairly close.
The results confirm impressions at the time that the two players were fairly evenly
matched. Robertie had an edge in technical plays, while TD-Gammon had an edge in
vague positional situations. It is of interest to note that TD-Gammon made significantly
fewer large errors, or “blunders” that gave up a large amount of equity.

Between 1993 and 1998, the rollouts indicate that TD-Gammon underwent a major
improvement in playing ability, while the human performance remained relatively constant.
Table 2 shows a lopsided advantage of TD-Gammon 3.1 over Malcolm Davis in equity
loss, number of errors and number of blunders. About 80% of the improvement can be
attributed to using 3-ply search instead of 2-ply; the remainder is due to the larger neural net
with greater training experience. The 3-ply search eliminates virtually all of the program’s
technical errors, and the program now almost never makes any large mistakes.

2 Only the first 95 games were used for rollout analysis. In the remaining games, Davis was playing excessively
conservatively to protect his match score lead, and would have been unfairly downgraded by the rollout results.
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Table 1
Rollout analysis by Snowie 3.2 of the move decisions in the 1993 match between Bill
Robertie and TD-Gammon 2.1. First column gives the average cumulative equity loss per
game due to inferior moves. Second column gives the average number of move decisions
per game classified as “errors” (inferior to the best move by at least 0.02 ppg). Third
column gives the average number of move decisions per game classified as “blunders”
(inferior to the best move by at least 0.08 ppg)

Snowie rollouts Equity loss Avg. errors/game Avg. blunders/game

Bill Robertie −0.188 ppg 2.12 0.47

TD-Gammon 2.1 −0.163 ppg 1.67 0.20

Table 2
Rollout analysis by Snowie 3.2 of the move decisions in the 1998 AAAI Hall of
Champions exhibition match between Malcolm Davis and TD-Gammon 3.1. Equity loss,
errors and blunders are defined as in Table 1

Snowie rollouts Equity loss Avg. errors/game Avg. blunders/game

Malcolm Davis −0.183 ppg 1.85 0.48

TD-Gammon 3.1 −0.050 ppg 0.59 0.04

One would have expected Davis’ 1998 performance to have surpassed Robertie’s in
1993, due to the amount of theoretical progress made in the intervening years obtained by
the use of neural networks as an analytical tool. Apparently this was counterbalanced by
more difficult match conditions: Davis was operating in “speed-play” mode for a day and
a half in an effort to complete 100 games, and there were numerous moves that appeared
to be simple oversights, due to the rapidity of play. Playing at a more leisurely pace and for
significant stakes, one could expect today’s best humans to approach the −0.10 ppg level;
however, a score of −0.05 ppg appears to be beyond human capabilities in long matches.

5. TD-Gammon’s doubling algorithm

As stated previously, TD-Gammon’s neural network, which estimates the cubeless
equity of a position, is primarily used to make move decisions by selecting the move with
the highest estimated cubeless equity. In play against humans, the neural network is also
used to make doubling cube decisions, by feeding the estimated cubeless equity into a
doubling formula. This formula is based on a generalization of prior theoretical work on
doubling strategies published in the 1970s [9,30] and is described below.

5.1. Background on doubling theory

The approach used by backgammon experts in making doubling decisions is first to
decide whether or not the opponent should accept a double. The basic rule of thumb states
that a 25% cubeless chance of winning is needed in order to accept a double. At this
value, the expected outcome declining the double (−1 point) equals the expected outcome
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accepting the double (0.75 × (−2) + 0.25 × (+2)). Taking gammons into account, the
rule states that a double can be accepted at a cubeless equity of −0.5: the equity accepting
(−0.5 × 2) equals the equity declining (−1). In practice, doubles can be taken with less
equity than this, due to the value of owning the cube: the player owning the cube can
sometimes win by redoubling, whereas the player who offered the double has to then win
outright.

Given the location of the opponent’s take/pass indifference point, the player considering
a double decides if the current position is close to crossing or has already crossed this
point. If so, the player should double, and if not, the player should wait. The definition of
“close” has to do with the magnitude of equity fluctuations that are likely to occur on the
next 2-roll sequence. If there are sufficiently many “market-losing” sequences that cross
the take/pass point, and if the magnitude by which they go past this point compensates for
the bad sequences in which the player’s equity deteriorates, then it is correct to double.

An important advance in doubling theory was made by Keeler and Spencer [9], who
proposed the model of a binary-outcome “continuous game.” In this model there is a single
real variable x indicating the cubeless probability of one player winning, and at each time
step x makes arbitrarily small random fluctuations. This was suggested to be a reasonable
model for no-contact backgammon positions with high pip count, i.e., both players are
many rolls away from bearing off all their pieces. In this model they showed that a player
can accept a double with at least 20% winning chances, and a player should double right at
the opponent’s take/pass point. On the other hand, right at the end when the game is won or
lost on the next roll, the minimal doubling point is 50%, whereas the opponent’s fold point
is 75%. For intermediate positions there is a smooth interpolation between these two limits,
based on pip count, which was verified by computer simulation. Zadeh and Kobliska [30]
worked out an analytic formula for doing the interpolation based on pip count, and verified
its accuracy by more detailed and realistic computer simulations.

5.2. Generalization to multiple outcomes

In an unpublished manuscript, Tesauro [25] generalized these previous works in two
ways. First, the above formalism was extended from races to more general contact positions
by defining the concept of “volatility” of a position as the standard deviation in expected
equity averaging over the upcoming dice rolls, and doing the interpolation between the
continuous limit and the last-roll limit based on volatility. An extreme leap of faith was
made that the Zadeh–Kobliska formula for the doubling threshold as a function of pip
count, T (P ), could be converted into an equivalent function of volatility, T (v), by working
out the expected volatility for races of length P , and that this converted formula would also
be valid for contact positions.

At the time there was no way of knowing whether this assumption was correct, as it
predated the existence of TD-Gammon. In hindsight, with TD-Gammon and other strong
neural net programs being capable of doing rollouts including the doubling cube, one
can now accurately determine the correct doubling decisions for contact positions, and
can go back and check the extent to which the converted Zadeh–Kobliska formula can
also be used in contact situations. The approximation turns out to have been surprisingly
accurate, except for one rarely-occuring class of positions where it gives large errors. The
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type of position where this occurs is characterized by the side on roll having a moderate
equity, in range of ∼ 0.20–0.35, and the volatility being extremely high but not quite at the
last-roll limit: v ∼ 0.50–0.75. For racing positions with these parameters, many of these
positions are redoubles, whereas for contact positions they are almost never good enough
to redouble. Such contact positions often have high gammon threats for one or both sides,
and if redoubled, the opponent frequently gets an efficient re-redouble on the very next
roll. Due to the rarity of occurence (about once every hundred games), this “bug” in TD-
Gammon’s doubling algorithm persisted for several years without being detected.

The second generalization of prior work was an extension from binary outcomes to
games with multiple outcomes. Ignoring backgammons, the cubeless state indicator x was
extended from a scalar to a four-dimensional vector �x = (x1, x2, y1, y2), where x1 and
x2 are the probabilities of a regular or gammon win for White, and y1 and y2 are the
probabilities of a regular or gammon win for Black. Since the probabilities must sum to 1 at
all times, the fluctuations of �x are constrained to lie on a 3-dimensional unit simplex defined
by x1 + x2 + y1 + y2 = 1. The doubling points and fold points in the one-dimensional case
are generalized to doubling and fold surfaces in the three-dimensional case. Obviously,
in the last-roll high-volatility limit, these surfaces correspond to flat planes, representing
equities of 0 and 0.5 respectively. However, in general, the surfaces may have some smooth,
curved shape that would be difficult to calculate. Computing the exact shape and location
of these surfaces would entail solving the steady-state diffusion equation with absorbing
boundary conditions in an unusual three-dimensional geometry.

In the absence of an exact solution, Tesauro [25] proposed an approximation technique
based on locating the points where the doubling surface intersects the edges of the simplex.
These intersection points correspond to eliminating one of White’s and one of Black’s
possible winning outcomes, leaving a binary game where either White wins K points
or Black wins L points. There are four possible combinations of (K,L): (1,1), (1,2),
(2,1) and (2,2). For each combination, we can compute the low-volatility double and fold
points, using the Keeler–Spencer formalism. Having located the four intersection points,
Tesauro [25] then proposed approximating the doubling and fold surfaces in the continuous
limit by flat, planar surfaces that pass through the intersection points. Fortunately, the four
intersection points turn out to be co-planar, so this surface is well-defined for money game
play.

Having defined a low-volatility and a high-volatility doubling surface and fold surface,
TD-Gammon makes doubling decisions and take-pass decisions as follows:

(1) Use the neural net to estimate the volatility v and the cubeless state vector �x =
(x1, x2, y1, y2) of the position.

(2) Given v, compute the interpolated doubling, redoubling, and fold surfaces using the
converted Zadeh–Kobliska formulae.

(3) Determine which side of the interpolated surfaces �x lies on. This determines the
double, redouble, and take/pass decisions.

We also note that a similar calculation can be done of a “veto” surface, beyond which
the state is too good to double, and the player should play on in the hopes of winning a
gammon. Zadeh and Kobliska did not consider this case, as gammons don’t occur in the
types of races they examined. However, it was found that reusing the take/pass interpolation
formula to also do the veto interpolation seemed to give good results in practice.
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As a final remark, one can do a certain amount of hand-tuning of the doubling algorithm
by multiplying the Zadeh–Kobliska interpolation coefficient by a heuristic rescaling factor.
This was motivated because in the original examination of TD-Gammon 2.1, the algorithm
appeared to be systematically too conservative in doubling, and much too aggressive in
taking doubles. Using doubling and redoubling rescaling factors ∼0.9 seemed to place the
program at exactly the right point where it made extremely sharp doubling decisions in line
with expert judgements. For take/pass decisions, a more significant rescaling of ∼0.7 was
used; this eliminated some of the program’s bias towards bad takes. Heuristic rescaling
appeared to compensate both for inaccuracies in the doubling formulae, and in systematic
biases of the neural net equity estimates.

5.3. TD-Gammon’s doubling performance

The doubling algorithm in TD-Gammon 2.1 used 1-ply expansion of the root nodes
to make equity and volatility estimates, whereas version 3.1 used 2-ply expansion. Once
again these doubling algorithms have been compared with human doubling decisions by
performing Snowie rollouts of the cube decisions in the Robertie and Davis matches. The
Snowie rollouts are depth-11 truncated, cubeless rollouts that apply a heuristic formula
to estimate equity including the location and value of the doubling cube (i.e., “cubeful”
equity) at the terminal nodes. In addition, TD-Gammon 2.1 full rollouts including the
doubling cube have been performed for the Davis match. Results are presented in Tables 3
and 4. The rollouts indicate that Robertie’s take/pass decisions were superb, and somewhat
better than TD-Gammon’s. However, TD-Gammon was clearly better in double/no double
decisions: several of Robertie’s doubling decisions were extremely conservative and would
almost certainly be regarded by any top expert as large errors.

In the Hall of Champions match, the Snowie and TD-Gammon rollouts indicate that TD-
Gammon had a slight edge in doubling decisions, and a larger edge in take/pass decisions.
Davis was clearly better than Robertie in doubling decisions, whereas Robertie did better
in take/pass decisions. TD-Gammon 3.1 was clearly better than version 2.1 in take/pass
decisions, while it appears to have gotten worse in doubling decisions. This was due to
one singular position of the type mentioned previously where the Zadeh–Kobliska formula
breaks down. TD-Gammon’s redouble from 4 to 8 in this one position accounted for about
half its total error in the entire 100-game session. Afterwards, a modification of the Zadeh–
Kobliska formula was implemented which avoids this problem and provides a much better
fit to rollout data. As a result, it appears that TD-Gammon is now capable of scoring
∼−0.008 ppg in double/no double decisions. If correct, this would most likely indicate

Table 3
Rollout analysis by Snowie 3.2 (depth-11 truncated) of the cube
action in the 1993 match between Bill Robertie and TD-Gammon
2.1

Snowie rollouts BR equity loss TD equity loss

Double decisions −0.081 ppg −0.013 ppg

Take/pass decisions −0.007 ppg −0.010 ppg
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Table 4
Rollout analysis of the cube action in the 1998 Hall of Champions
match between Malcolm Davis and TD-Gammon 3.1. First set
of figures are based on Snowie 3.2 depth-11 truncated rollouts.
Second set of figures are TD-Gammon 2.1 full rollouts including
the doubling cube

Snowie rollouts MD equity loss TD equity loss

Double decisions −0.031 ppg −0.020 ppg

Take/pass decisions −0.026 ppg −0.005 ppg

TD-Gammon rollouts MD equity loss TD equity loss

Double decisions −0.022 ppg −0.015 ppg

Take/pass decisions −0.026 ppg −0.002 ppg

a slight edge over today’s top humans, who would be hard pressed to reach the −0.01 ppg
level in long matches.

In summary, it appears that TD-Gammon’s doubling algorithm holds at least a slight
advantage over world-class humans. In future research, further improvements might be
obtained by utilizing a learning approach to doubling strategy. Certainly the rescaling
factors and the threshold surfaces as a function of volatility could be learned by fitting
to rollout data. However, a more principled and probably superior approach would be
to base doubling decisions on intrinsically cubeful equity estimates, rather than plugging
cubeless estimates into a heuristic formula. One method of approximating cubeful equities,
which was incorporated in the latest version of Snowie, was developed by Janowski [8]. An
alternative table-based approach for endgames was studied by Buro [4]. Ideally the neural
net self-play training should include the doubling cube and allow the net to learn to make
cubeful equity estimates. This would allow doubling decisions to be made directly by the
neural net, and would also confer a slight additional benefit of being able to make checker
plays taking the state of the cube into account, rather than just making the best cubeless
play.

6. Conclusion

The combination of neural network function approximation and self-play learning
using TD(λ) turned out to have worked much better than one could have expected for
backgammon. Primitive neural nets with only a raw board input description are able to train
themselves to at least a strong intermediate level of play. Adding a set of hand-designed
features to the neural net’s input representation, encoding concepts like blockade strength
and hit probability, increases the performance to expert level. Finally, by adding a shallow
search capability for real-time move decisions, a level of play is reached which by all
indications is beyond current human capabilities. It was also surprising to find that, even
though the doubling cube was not included in the self-play training, an excellent doubling
algorithm could be obtained by feeding the neural net’s cubeless equity estimates into a
heuristic doubling formula. The latest evidence now suggests that TD-Gammon has a clear
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advantage over top humans in piece movement decisions, and a slight advantage in cube
decisions. This assessment is not seriously disputed by human experts. Malcolm Davis, for
example, currently estimates that a top human player would be an underdog against any of
the top neural net programs by about a tenth of a point per game.

Humans are continuing to improve their level of play by using neural net programs as
an analytic tool and as a sparring partner. However, prospects for further improvement of
the programs are also good, if for no other reason than the inexorable increase in computer
power due to Moore’s Law. This will enable more extensive training of larger neural nets,
and will also allow search depths beyond 3-ply. The next significant improvement in real-
time search capability will probably take the form of Monte Carlo search using truncated
rollouts. This was recently studied by Tesauro and Galperin [28]; results suggest that a
real-time rollout player would be 5–6 times more accurate than its base 1-ply player, and
twice as accurate as the corresponding 3-ply player. While a supercomputer is currently
needed to perform the rollouts in real time, one can easily envision this becoming feasible
on a desktop machine in the next few years.

Beyond any specific performance achievements in the backgammon application, the
larger significance of TD-Gammon is that it shows that reinforcement learning from self-
play is a viable method for learning complex tasks to an extent previously unrealized by
AI and machine learning researchers. Prior to TD-Gammon, it’s fair to say that there
had been no significant real-world applications of reinforcement learning. As a result of
TD-Gammon’s success, there has been much renewed interest in applying reinforcement
learning in numerous real-world problem domains, and in expanding our theoretical
understanding of such methods. Some of the successful applications inspired by TD-
Gammon include: elevator dispatch [5], job-shop scheduling for the NASA Space Shuttle
[31], cell-phone channel assignment [21], assembly line optimization and production
scheduling [11,20], financial trading systems and portfolio management [13], and call
admission and routing in telecommunications networks [12].

Some researchers also believe that temporal difference learning offers the hope of
automated tuning of evaluation functions in many other high-performance game-playing
programs [19]. As a result, there have been several applications of TD learning to other
two-player board games such as Othello, Go and chess. While there has been a measure
of success in these games, it hasn’t been quite at the level obtained for backgammon.
Amongst these other games, probably the most significant achievement of TD learning
was obtained by a chess program called KnightCap, which used an extension of TD(λ)
called TD-Leaf [2]. KnightCap’s learning resulted in an improvement of several hundred
rating points, leading to an expert rating on an internet chess server. It is of interest to note
that, instead of self-play training, KnightCap trained by play against human opponents.
The authors report that the program attracted progressively stronger human opposition as
its rating improved, and this was essential to the success of learning.

A possible key difference between backgammon and the above-mentioned games is its
intrinsic non-deterministic element due to random dice rolls. The randomness appears to
have at least two beneficial effects for self-play learning. First, it provides a natural and
automatic mechanism for “exploration” of a wide variety of different types of positions.
Exploration is vital for reinforcement learning to work well. While exploration can be
externally imposed in a deterministic game, it’s not clear what would be the best way
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of doing so. Second, in backgammon the game-theoretic optimal value function is a
real-valued function with a great deal of smoothness and continuity, in the sense that a
small change in position leads to a small change in expected outcome. Such a function
is presumably easier to learn than the discrete (win, lose, draw) value functions of
deterministic games, which contain numerous discontinuities where a small change in
position can make a huge difference in its game-theoretic value.

In conclusion, while self-teaching neural nets have turned out to be a useful tool for
programming high-performance backgammon, the discovery of this fact was not at all
motivated by any performance or engineering goals. Indeed, the original expectation was
that random neural nets with no built-in knowledge would be exceedingly unlikely to
learn anything sensible simply by playing against themselves. However, out of simple
curiosity to explore what the capabilities of TD(λ) might be, the experiments of [26] were
performed and surprising results obtained. Now that the engineering goal of world-class
play has been achieved in numerous games like checkers, chess, Othello, Scrabble, and
backgammon [19], perhaps there will be more exploratory efforts in computer games
research that study new and intriguing approaches to machine learning, and are not
motivated and judged strictly on competitive performance goals. Understanding how
machines may generally learn intelligent concepts and strategies in a complex environment
is a worthwhile undertaking in its own right, regardless of how learning fares competitively
against other methods. If used properly, the clear performance measures in computer games
can measure progress in the development of learning algorithms, whereas a short-sighted
attitude would be to simply dismiss any learning algorithm that failed to outperform the
best competing technique on a given task. 3

An example of exploratory research that merits further investigation is the recent work
of Pollack and Blair [14] on HC-Gammon, a neural net backgammon player that evolves
by random mutation and self-play test. That this method works at all is certainly surprising.
HC-Gammon is both fascinating and frustrating in that it is definitely capable of learning
linear structure, but unlike TD learning it appears to be incapable of extracting nonlinear
structure. If correct, this would pose a serious limitation, equivalent to a backprop net being
unable to learn XOR or any other high-order predicate. Determining the source of this
apparent limitation, and how to overcome it, would constitute progress in the understanding
and practice of evolutionary methods for training neural networks.

Three types of games seem promising for further exploratory machine learning studies.
First, there are a class of games such as Connect-4 and Hypergammon (3-checker
backgammon) that have been solved exactly [1], yet are challenging tasks for learning
heuristic evaluation functions. Having access to the exact optimal solution for a game
would greatly facilitate the assessment of the quality of learning. Second, there is the
outstanding challenge offered by the game of Go. Current game-programming techniques
all appear to be inadequate for developing high-performance Go programs, so there
is ample motivation and opportunity to explore a variety of novel techniques. Finally,
there are now opportunities to extend games research from classic two-player perfect-

3 In the late 1980s, certain extremely famous senior scientists expressed the opinion that machine learning
research in backgammon was a “failure” unless it outperformed Berliner’s BKG program. Presumably they would
have rejected publication of [26] since the reported performance did not match BKG’s playing ability.
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information games to games with more realistic characteristics, such as many players,
hidden or noisy state information, continuous states and actions, and asynchronous actions
and events taking place in real time. Games ranging from card games such as poker and
bridge, to video games such as Doom and Quake, to economic games such as bidding and
trading in auctions and financial markets, all incorporate such realistic aspects. In order for
machine learning algorithms to work well in these domains, they will have to address issues
that lie beyond prior studies of TD learning in games. Exploring new learning algorithms
in these domains may motivate further progress in machine learning theory, and may also
lead to more direct and immediate applications in general real-world problem domains.
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