
The evolution of the
Common User Access
Workplace Model

by R. E. Berry
C. J. Reeves

This paper describes some of the influences
contributing to and issues in dealing with the
evolution of user interface guidelines over time.
In particular, we focus on the evolution of IBMs
user interface architecture, the Common User
Accessm (CUATM) interface, over a period of six
years. Discussed are the key architectural and
design elements of the CUA Workplace Model,
the fundamental shifts in computer-human
interaction that have occurred since the first
publication of the guidelines in 1987, and how
user interface design, operating systems, and
tools have interacted in the evolution of the
guidelines.

The information should help designers of user
interfaces and developers of user interface
guidelines to appreciate some of the factors
involved in the long-term evolution of a user
interface style. The paper provides an
introduction to the most recent evolutionary step
in the CUA style (the Workplace Model) to help
the reader place these factors in perspective
relative to the degree of evolutionary change.

U ser interface guidelines are intended to help
product designers and developers create a

user interface that users will find easy to learn and
use. The user inte$zce is the means by which
users and computers communicate with each
other. It supports a dialog, much like a conver-
sation between people, but this dialog occurs be-
tween a user and a computer.

The Common User Access" (CUA*) interface
guidelines are based on sound user interface de-
sign principles and object-oriented relationships.

414 BERRY AND REEVES

They specify common user interface components
and techniques, and guidelines for applying them.

The CUA interface guidelines are general guide-
lines that are intended to apply to aspects that are
common across many products. However, apply-
ing these guidelines alone is not enough. Many
aspects of a user interface for a product pertain to
specific product functions and are not addressed
by generalized user interface (UI) design guide-
lines. These are considered product-specific as-
pects of the user interface. Two important points
to remember regarding product-specific aspects
are:

Generalized guidelines, such as CUA guidelines,
should not limit product design creativity and
ingenuity for product-specific design issues.
For example, IBM's CUA guidelines' do not pro-
vide direction about how an accounting product
should implement a balance sheet or how for-
mulas are handled in a spreadsheet.
To make good decisions for product-specific
design issues, designers need to understand user
interface design principles, models, and methods,
in addition to applying the CUA guidelines. The
user interface design principles, models, and
methods described in IBM CUA publications',' are

Wopyright 1992 by International Business Machines Corpo-
ration. Copying in printed form for private use is permitted
without payment of royalty provided that (1) each reproduc-
tion is done without alteration and (2) the Journal reference
and IBM copyright notice are included on the first page. The
title and abstract, but no other portions, of this paper may be
copied or distributed royalty free without further permission
by computer-based and other information-service systems.
Permission to republish any other portion of this paper must
be obtained from the Editor.

IBM SYSTEMS JOURNAL, VOL 31, NO 3, 1992

generally applicable to product-specific interface
aspects as well.

Evolution of the CUA guidelines

Three publications containing CUA guidelines
have appeared in 1987, 1989, and 1991, respec-
tively. The guidelines have changed in response
to two related factors: the fast-growing technol-
ogy of the personal computer, and increasing de-
mand from users that the computer match their
way of thinking, rather than the other way
around.

The CUA interface has always emphasized the
user’s needs, but with different assumptions about
the technology that would meet them. The guide-
lines appearing in 1987 (CUA87), for example, as-
sumed a world of personal computers intermixed
with host-attached nonprogrammable terminals,
like the IBM 3270 Information Display System.
CUA87 had a goal of consistency and transfer of a
user’s knowledge between those systems. But per-
sonal computer technology and capabilities ad-
vanced rapidly in the 1980s and the gap between
how a user could interact with a terminal and what
was possible using a personal computer began to
widen significantly.

The CUA interface was updated in 1989 (CUA89) to
separate and focus on the guidelines that are
unique to the needs of a personal computer user.
CUA89 applied the principles inherent in CUA87 to
a personal computer environment that provided a
rich set of user interface mechanisms, like sizable
and movable windows, standard menus, user
interface controls, and dialogs. Equally as impor-
tant, the personal computer operating system,
exemplified by os/2* and the Presentation Man-
ager*, offered a graphical view of available pro-
grams and data, and the ability to run multiple
applications concurrently. The user was no
longer constrained to working with one applica-
tion at a time, within the limitations of character-
based presentation. Suddenly all of the resources
of a powerful system were available to users.

The 1991 guidelines (CUA91) built on this advance-
ment, with tools and techniques that moved the
interface closer to the way users accomplish work
in the real world. Together, the CUA interface and
the 0s/2 Workplace Shell* redefine data and ap-
plication programs to create a set of familiar user
objects, and provide the ability for users to utilize

IBM SYSTEMS JOURNAL, VOL 31, NO 3, 1992

these objects in ways that support a variety of
users’ tasks.

CUA’s evolution since 1987 marks a growing abil-
ity for the adaption of computers to a user’s world
and the extension of that world. From a model of
interaction in which a user takes actions to ac-
complish a single task, in a sequence strictly con-
trolled by the computer application, the user is
now able to take on a wide variety of tasks and
move smoothly between them at a comfortable
pace. Contrary to a view of an application pro-
gram as the dominant and controlling factor in the
interface, the user is in control and deals with
objects that relate to the user’s view of the world.
Figure 1 summarizes CUA’s change in focus over
time.

The CUA interface in 1987

In 1987, CUA was influenced by the goals of con-
sistency and transfer of knowledge between non-
programmable terminals (NPTS) like the IBM 3270
Information Display System and personal com-
puters. These goals were difficult to maintain as
the capabilities of the two environments di-
verged.

An NPT device is usually connected to a host
mainframe processor shared by many other
users. A goal of application design in this envi-
ronment is to optimize the use of the connection,
and to minimize the number of interactions with
the host. For example, a user fills in a form, se-
lects an action from a menu, or enters a command
without interacting with the application program.
When the user input is complete it is submitted to
the computer for validation and processing. The
practical limitations of the terminal environment
limit the bandwidth of communication between
the user and the computer. This results in a po-
larization of interface usefulness: simplicity with
fixed and inflexible access for the novice, and ar-
cane but powerful command languages for the ex-
pert.

The personal computer (or PC) offers two funda-
mental advantages for users: the PC can detect
and provide feedback to a user’s actions imme-
diately; and it can keep data and applications that
are private and controlled by the user. The ability
to provide immediate feedback offers a far higher
rate of interaction between user and machine: re-
sults can be shown and refined immediately ac-

BERRY AND REEVES 415

cording to the user’s actions; and the higher feed-
back rate supports devices and techniques that
make the interface more natural and intuitive, like
the point-and-select techniques provided using a

The OS/2 object-oriented
Workplace Shell has evolved
from the Graphical Model and

the Workplace Model.

mouse. Standard mechanisms like menu bars,
push buttons, and dialog boxes are implemented
in PC systems like Os/2. CUA87 also prescribes
their use in the NPT environment, but without in-
stant feedback, the advantages are diminished
considerably.

The personal nature of the PC environment, in-
cluding the skill, training, and motivation levels of
typical users, are additional reasons for the di-
vergence between the PC and NPT interface styles.
With a PC, the user has open access to the data
and programs on the local system, and maybe
even those shared on a network. As a result, the
challenge in the interface is not simply how to
interact with an application, but how to find the
applications that are available, how to start and
stop them, and how to locate and access data. To
a great degree users in the PC environment expect
to be self-sufficient and not to rely on operational
support that is typically available in NPT environ-
ments.

These needs contributed to the development of a
graphical shell for 0 ~ 2 . The shell offers a pictorial
view of applications and data files, standard ways
to start and stop applications in windows, ways to
find and access data files, and ways to move be-
tween the application windows.

CUA87 established a user interface architecture
built on sound principles of user interface design,
and it established IBM as a participant in the in-
terface design field. However, the CUA87 guide-
lines were quickly outdated by rapidly emerging
PC capabilities. The goals of consistency and

416 BERRY AND REEVES

transfer between the NPT and PC environments
tended to inhibit the designers of PC applications,
and raised a need for new development tools and
techniques for application development.

The primary tool that implemented PC-terminal
consistency was the OS/?. Dialog Manager (DM),
which became available in 1989. This combina-
tion of rapidly evolving PC capabilities and a
shortage of development tools led to mixed ac-
ceptance of CUA87. However, CUA87 established
foundations that would lead to two significant
benefits in the future: the CUA87 architecture and
design principles provided a sound basis for con-
verging IBM’s PC user interface with Microsoft
Corporation’s early work on Microsoft Win-
dows**, contributing to designs of the Presenta-
tion Manager and 0s/2 Workplace Shell; and the
limited success of CUA87 underscored the impor-
tance of providing tools to support application
creation and execution. Figure 2 shows an exam-
ple of the CUA87 style.

The CUA interface in 1989

In 1989, IBM placed the CUA personal computer
and nonprogrammable terminal interfaces on
clearly separate paths, and synchronized delivery
of the CUA guidelines publication with enabling
components, such as os12 Version 1.2, with its
graphical shell, and the EASEL** application de-
velopment tool. The CUA89 interface established
an application-oriented Graphical Model as the
primary style for the PC environment. It also in-
troduced an object-oriented Workplace Model,
which extended the Graphical Model with notions
of hiding computer concepts, focusing users on
their objects and tasks, enhancing user control,
and providing richer interaction with the com-
puter.

In comparison, the CUA87 guidelines had as a goal
the consistency between NPTS and PCS, while the
CUA89 guidelines focused on consistency between
applications within the PC environment, and op-
timizations made possible through PC-unique ca-
pabilities. The guidelines dealt with the issues of
locating applications and data, starting and stop-
ping applications, interacting with applications in
standard ways, and manipulating application win-
dows. The CUA Graphical Model was so called
because it exploited the capability of the PC to
display graphical rather than character-based in-
formation. It offered a pictorial view of the system

IBM SYSTEMS JOURNAL, VOL 31, NO 3, 1992

and was supported by a series of ready-to-use
user interface components supplied by the osi2
Presentation Manager. These components, called
controls, automated and made consistent most of
the common techniques for interaction with the
system, such as entering and editing text, select-
ing from lists, setting options, and interacting
with windows and dialog boxes.

The CUA89 interface became a de facto standard
for PC user interfaces largely because of the con-
vergence of five factors:

It was endorsed by both IBM and the Microsoft
Corporation.
It was supported by standard components (con-
trols) in both 0s/2 Presentation Manager and Mi-
crosoft’s Windows for the Disk Operating Sys-
tem (DOS).
It was exemplified by the two companies’ re-
spective system shells and a series of popular
applications like Word**, PageMaker* *, De-
signer**, and Excel**.
Application development tools such as EASEL,
which facilitated implementation, began to ap-
pear.
Use of the guidelines was encouraged as an
open standard.

The Open Software Foundation, Inc. (OSF)
adopted CUA as the model for its OSF/Motif**
standard for UNIX** systems, and leading ven-
dors with divergent interface styles, like Lotus
Development Corporation and Wordperfect Cor-
poration, produced CUA-oriented versions of
their key products, like the Lotus 1-2-3** spread-
sheet, and Wordperfect** word processing pack-
age.

The CUA89 interface was initially realized in the
0s/2 Version 1.2 graphical shell and in personal
productivity tools, such as spreadsheets, graph-
ics programs, and word processors. In addition,
the IBM Systems Application Architecture* strat-
egy called for the industry to adopt the interface
for business applications developed by in-house
information system organizations and third-party
software vendors. However, programming to the
0s/2 Presentation Manager was complex, time-
consuming, and required specialized skills. Ap-
plication development tools, such as EASEL, were
key to the creation of business applications. For
example, EASEL had been originally developed as
a means to put a more attractive PC interface on

IBM SYSTEMS JOURNAL, VOL 31, NO 3, 1992

existing host-based terminal applications. In this
timeframe it was extended with facilities to pro-
duce new applications that embodied the key el-
ements of the CUA89 interface. Available for both
Windows and os12 Presentation Manager, EASEL
moved acceptance of the CUA interface into the
information systems department, IBM’s tradi-
tional customer. Figure 3 shows an example of
the CUA89 os12 Version 1.3 desktop.

The CUA89 graphical model mapped the key ar-
chitectural elements and principles on which the
CUA87 interface had been based into 0si2, its
tools, and applications. It did not significantly ad-
vance the concepts behind nor the fundamental
style of the interface. The CUA89 publication also
included a brief description of a user interface
style that originated in IBM’s OfficeVision*/2 com-
posite applications. This style, which evolved to
the CUA Workplace Model, extended the Graph-
ical Model style with the notions of object orien-
tation, consistency across different types of ob-
jects, and richer user interaction with the
computer. This interaction was characterized by
a transformation of the user’s view of the system
from one of applications and data to one of fa-
miliar objects, such as telephones, calendars,
memos, and mail baskets. This Workplace Model
has been implemented in 0s/2 Version 2.0 and its
Workplace Shell, and is the basis for the CUA91
guidelines, published in September 1991.

The CUA interface in 1991

The CUA91 interface, or Workplace Model, hides
computer-based concepts, focuses users on their
own objects and tasks, and increases the user’s
control of the computer-human interface. It pro-
vides the user with access to information in con-
text, that is, in the way the user wishes it rather
than in some limited application-defined form.
The Workplace Model places an emphasis on di-
rect manipulation of objects and making the com-
puter transparent to the user’s tasks. Norman
states:

When I use a direct manipulation system-
whether for text editing, drawing pictures or
playing games-I do think of myself not as us-
ing a computer but as doing a particular task.
The computer is, in effect, invi~ible.~

The CUA91 guidelines emphasize this perspective
in application design.

BERRY AND REEVES 417

The CUA91 interface has evolved using new tools
and extensions to the capabilities of the underly-
ing operating system. The extensions include
drag and drop support, container and notebook
objects, sliders, and other new user interface con-
trols. ow2 Version 2.0 has a new shell, called the
Workplace Shell, which converges the previously
separate file manager, desktop manager, and
desktop into a single user concept: the Work-
place. The Workplace Shell user is free to orga-
nize work in any way that is convenient, and to
use direct manipulation to perform common
tasks, such as moving, copying, printing, mailing,
and establishing relationships between objects.

Tools to implement the interface are increasingly
object-oriented. As noted in Graham’s recent
book:

Most of the current GUIS [graphical user inter-
faces] just could not have been written without
the use of object-oriented techniques . . . The
API [application programming interface] in such
systems is huge and the event-driven style of
user interaction makes programming doubly
difficult. . . there is a profound need for object-
oriented solutions to the problems of the con-
struction, maintenance and use of GUIS.~

The ow2 Presentation Manager embodies some
object-oriented concepts, and the IBM Systems
Application Architecture strategy has extended
that capability to a broader audience of develop-
ers by adding tools such as Smalltalk V/PM** for
ow2 to the strategic Systems Application Archi-
tecture toolkit for AD/Cycle*. In the case of
Smalltalk VRM, it provides a basis for additional
tools that will extend to end users the ability to
create advanced graphical user interfaces. Figure
4 shows an example of the CUA91 user interface as
implemented in the os12 Workplace Shell.

The CUA today

The evolution of graphical user interfaces has had
profound effects on the usability of personal com-
puter systems, and the evolution must continue.

The evolution to more user-driven interfaces
means that more attention must be given to un-
derstanding users and their tasks, to creating user
interface architectures that match users’ expec-
tations, and to providing application design and
enabling tools that facilitate implementation of

418 BERRY AND REEVES

the interface model. The remainder of this paper
and the paper detailed in Reference 5 expand on
these aspects.

What is the CUA interface?

The CUA interface today is described by two mod-
els, the Graphical Model, which specifies visual
representations and interaction techniques, and
the Workplace Model, an object-oriented exten-
sion that specifies a standard environment for
user interface objects. The CUA interface is fully
described in two publications (see References 1
and 2).

CUA Graphical and Workplace Models. As new
and better methods of interacting with computers
have been developed, user interfaces have
evolved to take advantage of those methods.
Most of the currently popular interfaces have
reached a plateau characterized by a graphical
user interface or GUI. The CUA interface defines
two levels of GUI. The CUA Workplace Model is
the latest example of that evolutionary process.

The Graphical Model (as defined by CUA89) de-
fines a graphical user interface in which the user
starts application programs and then uses appli-
cation-provided facilities, such as menus and File
Open windows, to find and open data files used
to accomplish the user’s task. This model allows
users to take advantage of operating systems
having multitasking capabilities by letting them
run several applications concurrently. Applica-
tions are initially represented on the display
screen as small graphic images called icons.
When a user starts an application, a portion of the
screen called a window is opened to give the user
access to the functions in the application. Many
windows can be open on the screen simulta-
neously and a user can have many applications
running at the same time. The Graphical Model is
called an application-oriented model because the
user’s focus is on finding and starting the appro-
priate application program first, then finding and
opening data. Figure 3 shows an example of the
Graphical Model user interface, as implemented
in OW Version 1.3.

The Workplace Model is an object-oriented ex-
tension of the Graphical Model. It also allows
users to take advantage of multitasking capabili-
ties. The Workplace Model, however, is an ob-
ject-oriented userinte~ace, which means that the

IBM SYSTEMS JOURNAL, VOL 31, NO 3, 1992

user’s focus is on finding, opening, and manipu-
lating data objects. Application programs and the
concepts of starting and running programs are
transparent to most users. Icons represent ob-
jects instead of application programs, and win-
dows provide one or more views of those objects.
This method of interaction gives a user the ability
to modify objects without having to explicitly find
and start a program first.

We call this model the Workplace Model because
the background of the screen, which was called
the desktop in the Graphical Model, can contain
objects for performing a variety of tasks, such as
preparing reports, selling cars, or controlling
manufacturing processes. All kinds of objects can
be used on the workplace.

Workareas are container objects that can be used
within the Workplace Model to group objects
used in specific tasks. For example, a user might
create one work area to contain the objects used
in preparing a monthly activity report and another
work area to prepare an annual sales analysis re-
port. The Workplace Model allows an object to
have several icons that can appear in different
places in the interface at the same time. If an
object, such as a personal calendar, is needed in
several different tasks, additional icons, each rep-
resenting the calendar, can be created and placed
in the appropriate work areas.

Work areas help the user maintain context and
distinction between the two tasks. For example,
the windows for objects opened from a particular
work area are treated as a group. They can be
closed and opened as a group as the user desires,
such as when switching between tasks.

By grouping objects in this manner, users can
have all of the objects and views of those objects
needed to perform a particular task in one con-
venient place instead of having to search the sys-
tem to locate the objects each time they are
needed. Figure 4 shows an example of the Work-
place Model user interface, as described in CUA91.

The Workplace Model extends the Graphical
Model primarily in the following ways:

It is object-oriented.
It defines standard CUA objects, which are pro-
vided by the system.
Objects are composed of other objects.

IBM SYSTEMS JOURNAL, VOL 31, NO 3, 1992

A user can see multiple views of each object.
Direct manipulation allows users to perform ba-
sic actions on objects directly without interact-
ing with menus.

The 1989 version of the CUA design guide de-
scribed the Graphical Model, and introduced the
Workplace Model. The current CUA design guide

An object-oriented user
interface focuses the user
on finding, opening, and

manipulating data objects.

and design reference publications’,’ focus on the
design of the Workplace Model, but also describe
the Graphical Model and the migration from the
Graphical Model to the Workplace Model.

Migrating from the Graphical Model to the Work-
place Model. When designing the user interface
for products, designers can use either the Graph-
ical Model or the Workplace Model. We recom-
mend that those designers who are either in the
early design stages of a new product or who have
not yet begun that design process should plan to
implement the Workplace Model.

However, moving from an application-oriented
user interface to an object-oriented user interface
(OOUI) may be a major step for designers who are
well into product development or who support
products that have current versions being used by
customers. Designers who fit into one of these
categories will need time to plan for and imple-
ment the transition from application-orientation
to object-orientation. Therefore, CUA allows for
both the Graphical and Workplace Models.

The following sections explain some of the con-
cepts on which an OOUI model such as the Work-
place Model is based, including definitions of ob-
jects, object classes, and object containment, and
a description of the benefits of using an OOUI.

What is an object-oriented user interface? When
using an object-oriented user interface, the user’s

focus is on objects. Users see and use represen-
tations of their data objects, and each different
kind of object supports actions appropriate for the
object. Typical users need not be aware of appli-
cations, programs, and programming concepts.

Different kinds of objects are said to belong to
different classes. Class distinctions are based on
behaviors that are common within a group of ob-
jects and that differ between groups of objects.
Users can perceive common characteristics de-
spite specializations within a group of objects.
Specializations are achieved by using subclasses.
For example, a folder is a general-purpose con-
tainer that can contain objects of many different
classes. Users learn the properties and behaviors
of folders that allow them to add to, arrange, and
view a folder’s contents, and see how these be-
haviors can be used to accomplish their tasks.
Another type of object, such as a portfolio, may
be a specialization, or subclass, of the folder
class. A subclass inherits properties and behav-
iors from its parent class. New properties and
behaviors are added to the subclass by its devel-
oper to create the desired specialization. Users of
the subclass object benefit from a transfer in
learning achieved by the inheritance of properties
and behaviors they usually already understand.
They need only learn the distinguishing features
of the new type of object to take advantage of its
intended benefits.

Objects are composed of and contain other ob-
jects, which can be used individually or collec-
tively. That is, objects are composed of other ob-
jects, which in turn are composed of yet other
objects, all the way down to elemental-level ob-
jects, which cannot be further decomposed by the
user.

An OOUI allows a user to focus on objects and
work with them directly, which more closely re-
flects the user’s real-world way of doing tasks
rather than having to go through an application to
get to objects.

Objects. An object is something that a user needs
to work with to perform a task. It is any entity that
can be manipulated as a unit, or that can be
thought of by a user as capable of existing inde-
pendently, such as a spreadsheet, a cell in a
spreadsheet, a bar chart, a bar in a bar chart, a
report, a telephone number, a folder, a printer, a
string of characters, or even a single character.

422 BERRY AND REEVES

Each of us deals with objects daily. Some objects,
such as a telephone, are so common that we find
them in many places. Other objects, like the fold-
ers in a file cabinet or the tools we use for home
repairs, may be particular to a certain place.

The Workplace Model allows users to organize
objects in the computer environment similar to
the way they organize objects in the real world.
Users can keep objects used across many tasks in
a common, convenient place. And, they can keep
objects used for specific tasks in specific places.

The CUA design guide’ describes how we de-
signed a sample CUA application for a car deal-
ership. The following list contains examples of
objects that are used in that application.

A work area for selling cars that contains work-

A worksheet that contains the details about a

A list of the new cars in stock
Pictures of the cars in stock and those that can
be ordered, for use in the new car stock list
A printer to print the worksheet

These objects are also shown in Figure 5 . The
figure is taken from a Smalltalk VPM prototype,
one of the tools used in the design and testing of
the CUA91 interface.

Objects are often represented on a user’s screen
as icons, small graphic images that help a user
identify an object. Icons are used to provide a
concise, easy-to-manipulate representation of an
object regardless of how much additional infor-
mation the object may contain. A user can open
an icon to see a view of this additional information
in a window if desired.

Users can perform actions on objects by using
various techniques, including point-and-select
and direct manipulation.

Object classes. Object classes are used to distin-
guish one type of object from another. Object
classes are very useful because they help design-
ers make clear distinctions between the types of
objects that their products need to provide. These
distinctions, in turn, make it easy for a user to
learn and predict how an object will behave.

sheets

car that a customer wants to buy

m

IBM SYSTEMS JOURNAL, VOL 31, NO 3, 1992

Different properties and behaviors are used as the
basis for making distinctions between classes and
subclasses. The basis for distinction must be
clearly defined and be relevant to the users of the
objects. This is easy to see when parallels are
drawn between computer objects and objects that
are found in the world in general. For example,
“automobile” could be a class that includes prop-
erties such as body style, price range, and opti-
mizations for intended uses, among others. Fig-
ure 6 shows an automobile class hierarchy based
on body style and size for a particular manufac-
turer.

CUA uses a class hierarchy for computer objects.
“Data,” for example, is a class that includes doc-
ument, chart, and picture as subclasses.

Each object the user interacts with, then, is an
instance, or unique occurrence, of an object class
or subclass. The automobiles on a car dealer-
ship’s lot are instances of the luxury, full-size,
medium, compact, and utility subclasses, just as
a written memo is an instance of the “document”
subclass.

The distinctions that allow objects to be grouped
into classes are their characteristics and uses or,
to use OOUI terminology, theirproperties and be-
haviors.

Just as the real cars on the car dealership’s lot are
instances of automobiles, the car icons that could
be shown in a computerized version of the deal-
er’s lot represent instances. Each instance has the
same properties: year, make, model, and so forth.
Also, each instance follows the same rules of be-
havior. An action performed on one of these in-
stances, such as changing the price, could be per-
formed on any other instance of the automobile
class.

Icons help to depict the class of an object by pro-
viding a pictorial representation of the object. For
example, icons help a user to see that the objects
in a list belong to the “automobile” class.

Although users create and manipulate objects,
many users will never have to be consciously
aware of which class an object belongs to. For
example, a person approaching an office chair
does not need to stop and think, “This is an office
chair, which belongs to the class chair. There-
fore, I can sit in it.” Likewise, a user can work

IBM SYSTEMS JOURNAL, VOL 31, NO 3, 1992

with charts and come to expect that all charts will
behave in the same way without caring that the
charts belong to the data object class.

Object classes are also very useful to product de-
signers because they prompt designers to think
about making clear distinctions among the types
of objects that products need to provide. Object
classes must be carefully defined with respect to
users’ tasks and distinctions users currently un-
derstand that are useful. When object classes are
carefully defined, these distinctions make it easy
for a user to learn and predict how an object will
behave.

Object containment. All objects except the most
elemental ones are composed of and may contain
other objects. For example, a spreadsheet is an
object that is composed of cells, and cells are
objects that can contain text, mathematical for-
mulas, video, and so forth. The breaking down of
objects into the objects from which they are com-
posed is called decomposition.

How far object decomposition should be ex-
tended depends entirely on what a user finds prac-
tical or useful for performing a particular task. A
user who is writing a report, for example, would
probably not be interested in dealing with objects
smaller than characters, so here characters would
be considered elemental objects. However, a user
who is creating or editing a character font might
need to manipulate individual pixels. In this case
characters would be composed of pixels and
therefore would not be elemental objects.

Benefits of using an OOUI. By extending the
Graphical Model into the realm of object orien-
tation, the object-oriented user interface provides
the following specific new benefits:

Direct access to and focus on objects

By giving a user direct access to objects, an
OOUI lessens the need for a user to be aware of
the programming that is providing the functions
that the user needs. Instead, the user can con-
centrate on the objects and the actions that the
user wants to perform. The aspects of starting
and running programs are hidden to all but those
users who want to be aware of these aspects. A
user should only need to know which objects
are required to complete the task and how to

BERRY AND REEVES 423

manipulate those objects to achieve the desired
result.

Removal of user interaction requirements and
obstacles

An OOUI removes user interaction requirements
and obstacles that some existing graphical user
interfaces still impose. For example, by remov-
ing the necessity for starting and running pro-
grams, you can simplify the learning process for
each user. The learning process is simplified be-
cause the user has only one process to deal
with, opening an object, as opposed to starting
an application and then finding and opening or
creating a file. A computer is a tool and, as with
any other tool, it has to be learned to be used
effectively. However, when we can help a user
by simplifying the process of learning to use a
tool, we should do so.

An implicit benefit of an OOUI is that the designers
have to think more precisely about distinctions
between object classes that are useful to users.
Each object class that a product provides should
be distinctly different from the other object
classes provided by that product in a way that
users find natural, easy to remember, and useful.

The more similar object classes are, the harder it
is for a user to remember their differences. There-
fore, designers must provide obvious and useful
distinctions between object classes so that an ob-
ject’s behavior is obvious and useful to a user.

Key aspects of CUA’s Workplace Model

The CUA91 guidelines are intended to support cre-
ation of an interface adhering to a set of object-
oriented characteristics we call the key aspects.
The key aspects of CUA’S Workplace Model are:

9 The Workplace Model is object-oriented.
9 Standard objects and controls are defined.

Objects provide multiple concurrent views of

Objects are composed of and contain other ob-

Objects can be interconnected.
Direct manipulation is provided by all objects.
Icons reflect dynamically changing properties

Changes to objects are immediate, but revers-

themselves.

jects.

of objects.

ible.

424 BERRY AND REEVES

Visual and interaction paradigms are pervasive.
Window types are based on user-task distinc-

Users can control groups of related windows.

The key aspects of the CUA Workplace Model are
introduced briefly here. Many are addressed in
greater detail in Reference 5 , which describes the
CUA Object Model. The CUA91 publications sup-
port many of these key aspects. A few, however,
have only initial levels of guideline definition.
These will be extended and refined over time.

Object orientation. The Workplace Model focuses
on user objects required to accomplish user tasks.
The aspects of starting and running programs are
hidden, but they are accessible to those users who
wish to be knowledgeable of these aspects them-
selves. In Figure 5 , the objects that a car sales-
person might use are shown in the workplace, but
no application programs are visible because the
salesperson interacts directly with objects with
which the salesperson is already familiar.

Notice the graphic images of objects (New Car
Lot work area, Worksheet, Customer feedback,
In-basket, Printer, and Delete Folder) on the bot-
tom of the screen. The graphic images of objects
are represented by icons. Icons represent objects
that a user can manipulate to accomplish a task,
such as selling a car, and that can be placed in a
container, such as a folder, a work area, or the
workplace. Designers should allow any object to
be placed on the workplace, as a temporary
“parking place,” and in general-purpose contain-
ers such as folders. Therefore, an icon should be
available for every object. For example, if a user
selects an arbitrary string of text in a document,
then drags the string and drops it onto the work-
place (draddrop) for temporary placement in the
course of locating and opening the final intended
destination, an icon representing the string of text
should appear. Its title might be the first few
words of the text string.

The icon labeled “New Car Lot” represents a
salesperson’s work area. Notice the diagonal
stripes on the New Car Lot icon. This is a visual
paradigm indicating that the work area is open
and being used.

Standard objects and controls. The CUA interface
defines standard objects and controls for use by
many products. Examples of standard objects in-

tions.

IBM SYSTEMS JOURNAL, VOL 31, NO 3, 1992

clude workplaces, folders, work areas, and print-
ers. Examples of standard controls include entry
fields, list boxes, radio buttons, push buttons, and
pop-up menus. The standard objects and controls

A user typically has one
workplace containing objects

(kg. , printers) and other
containers (ems., work areas).

have cuA-defined visual representations and sup-
port standard interaction techniques, which pro-
vide for consistency across products.

Each standard cuA-defined object has been de-
signed for a particular role in the user interface.
For example, work areas are CuA-defined stan-
dard containers that are used to group objects that
are used together to perform a task. A user can
place any object in a work area. Windows that are
opened from objects in a work area are grouped
together for opening and closing. This allows a
user to avoid excessive window clutter when
switching between multiple concurrent tasks. All
windows opened from a work area are automat-
ically closed together; and they are reopened to-
gether when the work area is reopened.

Work areas are typically created and arranged by
users, although products can provide initial work
areas to help users get started with specific tasks.

The background of the screen, on which windows
and icons are displayed, is called the workplace.
The workplace is a container whose view fills the
entire screen. An individual user typically uses a
single workplace and that workplace contains all
objects accessible by the user, including objects
that reside on remote servers and host computers.

Multiple views of objects. Objects can provide dif-
ferent views of themselves, and multiple views of
an object can be displayed concurrently. A view
is a representation of details about an object, such
as what it contains, how it is composed, or what
its properties are.

IBM SYSTEMS JOURNAL, VOL 31, NO 3, 1992

Although an icon also represents an object, it is
intended to provide a concise representation that
is easy to manipulate. The emphasis in using
icons is to provide sufficient and useful informa-
tion for dealing with the object as a whole. Views
of an object displayed in a window allow a user to
“look inside’’ and manipulate the contents, com-
position, and properties of an object. Figure 5
shows a window that displays a view of the New
Car Lot object.

Objects support multiple concurrent views. Each
view can show different aspects of the object,
such as its contents or its settings, or the same
aspects in different ways, such as listing its con-
tents in an iconic format or in a format that uses
small icons and provides details about the con-
tents.

Object composition and containment. All but the
most elemental objects are composed of and may
contain other objects. For example, a folder can
contain spreadsheets, graphs, printers, and other
folders. A spreadsheet is composed of cells but a
cell might contain text, graphics, video, or even
another group of cells.

A queued printer might be presented to the user
as a composition of a container, representing the
queue, and a printer device. Together they would
appear as a single printer icon on the workplace,
but the user might be provided with a view of the
printer that showed this composition. This view
would provide additional capabilities and user
control by allowing the user to manipulate the
composition. For example, the user might be al-
lowed to manipulate the connection between the
queue and the printer device by dragging a con-
necting line between them, thus providing a direct
manipulation approach to holding and releasing
the queue.

Composition and containment aspects of objects
are represented by providing appropriate views.
Composite objects, such as a newsletter that con-
tains text, figures, and photographic images, pro-
vide views that identify and support manipulation
of these individual components. Container ob-
jects, such as folders, provide views that identify
and support manipulation of the objects they con-
tain. All objects provide consistent techniques for
accessing and working with objects regardless of
how they are composed or what they contain.

BERRY AND REEVES 425

The Workplace Model supports these aspects by
defining different types of views so users can look
at objects in different ways, such as composed
views and contents views, and a menu bar style
that allows users to work with the individual parts
of an object as well as its contents.

Object connections. Objects can be connected for
navigation (hypermedia) and data transfer (link-
ing). Navigation connections allow users to spec-
ify connections between objects so they can ac-
cess one object from another. For example, the
model name of a car in a text description can be
connected to a picture of the car, which would
appear in a window when requested by a user
clicking a mouse button on the car’s model name.

Data transfer connections allow users to transfer
data between objects. Once a connection is es-
tablished between two objects, users can specify
how and when data transfer between the two
should occur. For example, a user may identify
some cells in a spreadsheet and connect them to
a bar chart so that the bars automatically change
size to reflect changes to the values in the cells,
and vice versa.

Reference 2 specifies navigation connections for
displaying help information. These guidelines will
be extended over time and will address user tai-
loring of connection options. Guidelines for ad-
ditional usages of navigation connections and for
data transfer connections will also be added over
time.

Direct manipulation is provided by all objects. A
user can accomplish actions by using dragldrop
andpop-up menus on most objects. The CUA ar-
chitecture considers drag/drop and pop-up menus
as two degrees of direct manipulation. Drag/drop
is a more direct action mechanism than is a
pop-up menu, but a pop-up menu is also more
direct than is a menu bar.

Each object provides direct manipulation capa-
bilities regardless of how it is used in relation to
other objects. That is, drag/drop and pop-up
menus are provided by objects at all levels of
composition and containment, not just for icons
on the workplace.

A user can display a pop-up menu for any object.
A pop-up menu is a menu that is displayed next

426 BERRY AND REEVES

to, and contains choices appropriate for, a given
object or set of objects in the current context.
Create, move, copy, connect, print, and discard
are typical actions that can be performed by using
drag/drop or a pop-up menu.

Icons reflect dynamically changing properties of
objects. Icons are a mechanism for representing
objects visually and for conveying important as-
pects about an object, such as its class. Most ob-
jects undergo state changes that are of interest to
a user. When a view of the object is being pre-
sented in a window the state changes are usually
obvious. State changes that are of interest regard-
less of whether a window is open on the object
should be reflected in changes to the icon for the
object. For example, when a printer is out of pa-
per the printer icon can be augmented with a vi-
sual indication of the condition. Similarly, con-
tainers, such as folders, queued printers, and mail
baskets, should display a dynamically updated
count of the number of objects they contain.

Immediate, but reversible, actions. The effects of
changes are shown and recorded immediately,
but are reversible. For example, when a user
chooses a different font for some specified text,
the text should change immediately to reflect the
font chosen. If the result is not what the user
wanted, the user can immediately choose a dif-
ferent font.

As technology improves, the distinction between
the computer’s temporary memory (random ac-
cess memory, or RAM) and longer term memory
(such as a disk) is being eliminated. Changes
made by users will be saved without requiring
users to perform an explicit saving action. These
changes will also be reversible, for example, al-
lowing users to create and manage multiple ver-
sions of a document.

Pervasive visual and interaction paradigms. Para-
digms for displaying object states, moving the
cursor, selecting, and editing, are consistent
across object types and are appropriate to the
type of view being presented. For example, de-
signers must allow text to be edited by providing
the same editing interaction techniques at all
times, wherever text editing is available, such as
in window titles, icon labels, text in entry fields,
and text in an object view.

IBM SYSTEMS JOURNAL, VOL 31, NO 3, 1992

Task-relevant window types. A window’s type is
based on how it is used to support user tasks.
Window types are defined in terms of:

The type of information displayed in the win-

How the window relates to other windows with
dow

which it is used

There are three window types with respect to the
type of information displayed in the window: ob-
ject windows, action option windows, and mes-
sage windows. Object windows display views of
objects. They appear when a user opens an icon
or requests additional views of an object by using
a menu of available views.

Action option windows contain options that allow
a user to further specify an action request. They
appear when a user selects an action choice, such
as “Print. . .”, from a menu. Menu choices that
cause action windows to be displayed are called
action choices and are followed by ellipses. This
provides a visual cue for users, indicating that no
action will occur until further dialog is completed.

Message windows contain information about sit-
uations that arise unexpectedly and that may re-
quire intervention by the user.

Because each of these window types has a spe-
cific yet different role in the user-computer dialog,
CUA specifies standard layout and interaction
guidelines to aid consistency and make them easy
to use.

There are two window types with respect to the
relationships between windows: primary win-
dows and secondary windows. Users can open
and close primary windows independent of other
windows that are currently displayed. A view of
an object is typically shown in aprimary window.
Users can open and close views of objects as
needed.

Other windows that are dependent on a primary
window are called secondary windows. Action
option windows and message windows are typi-
cally secondary windows because the information
they display is usually not relevant or useful inde-
pendent of information in a primary window.

When a user closes a primary window, all of its
secondary windows close also.

IBM SYSTEMS JOURNAL, VOL 31, NO 3, 1992

User control of window groups. As mentioned pre-
viously, the work area is an object that provides
users with a degree of automatic window man-
agement. Users can implicitly create groups of
related windows by placing objects in a work
area. The windows opened from a work area are
grouped together for purposes of opening and
closing. However, users should be provided with
greater levels of control and flexibility, and ex-
plicit techniques should be available. Over time,
the CUA guidelines will be extended to provide
users with the ability to explicitly group and un-
group windows.

Summary

This paper has provided an example of factors
that can drive and influence the evolution of a
user interface style. In the evolution of CUA, sig-
nificant shifts in focus have occurred in approx-
imately two-year cycles. The initial goal of CUA
was simply to achieve user interface consistency
within and across the mainframe and personal
computing environments. As the role of appli-
cations and application development tools be-
came increasingly important, the focus shifted to
emphasize application support in each environ-
ment. Finally, as the interface began to mature
the focus shifted to advancing the user interface
technology. We have also provided a glimpse of
our goals for the future by introducing the object-
oriented style of C U A ~ I and its Workplace Model.
For a detailed description of the CUA Workplace
Model, as well as a description of user interface
design models used in the development of CUA91,
see the paper by Berry (Reference 5) .

*Trademark or registered trademark of International Business
Machines Corporation.

**Trademark or registered trademark of Microsoft Corpora-
tion, Easel Corporation, Aldus Corporation, Micrograk,
Inc., Open Software Foundation, Inc., UNIX Systems Lab-
oratories, Inc., Lotus Development Corporation, WordPer-
fect Corporation, or Digitalk, Inc.

Cited references

1. Systems Application Architecture Common User Access
Guide to User Interface Design, SC34-4289, IBM Corpo-
ration (October 1991); available through IBM branch of-
fices.

2. Systems Application Architecture Common User Access
Advanced Interface Design Reference, SC34-4290, IBM
Corporation (October 1991); available through IBM branch
offices.

3. D. Norman, The Psychology of Evetyday Things, Basic
Books, New York (1988).

BERRY AND REEVES 427

4. I. Graham, Object Oriented Methods, Addison-Wesley
Publishing Co., Wokingham, England (1991).

5. R. E. Berry, “The Designer’s Model of the CUA Work-
place,”ZBMSystemsJoumal31, No. 3,429-458 (1992, this
issue).

Accepted for publication March 17, 1992.

Richard E. Berry ZBM Personal Systems Programming,
11400BurnetRoad, Austin, Texas 78758. Mr. Perryis a Senior
Technical Staff Member in the object technology area in
IBM’s Personal Systems Programming group in Austin,
Texas. He joined IBM in 1968 in the Albuquerque, New Mex-
ico, branch office where he performed a variety of program-
ming maintenance and systems engineering duties. Since
moving to programming development in 1971, he has held
various technical and management positions including: lead
programmer and chief designer of the user programming fa-
cility for the IBM 3650 Retail Store System; programming
development manager for the Retail Store System; lead ar-
chitect for the IBM 5520 Administrative System Files Pro-
cessing, and architecture manager for the IBM 5520 Externals
Design. Throughout his career Mr. Berry has concentrated on
defining product function and user interfaces. In 1982 he was
appointed lead architect of IBM’s User Interface Architecture
which became the Common User Access (CUA) component
of Systems Application Architecture (SAA) in 1987. He was
one of the codesigners of the Workplace Model.

Cliff J. Reeves ZBM Personal Systems Programming, 11400
Burnet Road, Austin, Texas 78758. Mr. Reeves is the manager
of the object technology business area in IBM’s Personal Sys-
tems Programming group in Austin, Texas. He was formerly
the manager of IBM’s Common User Access team in Cary,
North Carolina. Mr. Reeves joined IBM in England in 1971
and has held a variety of programming and management po-
sitions in the areas of IBM’s Cross System Product, Data
Processing (DP) Professional Products, and Decision Support
Products. He was the manager of user interface strategy for
Office Vision/2 and also managed IBM’s business and tech-
nical relationships with EASEL Corporation and Digitalk,
Inc. In 1989 he was appointed manager of CUA and directed
the development of the CUA interface for 1991. Mr. Reeves
is currently responsible for IBM’s business relationship with
Taligent and for future use and IBM marketing of Taligent
products.

Reprint Order No. G321-5480.

428 BERRY AND REEVES IBM SYSTEMS JOURNAL, VOL 31, NO 3, 1 992

