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I. Introduction

All industrialized countries have experienced a transition from stagnant standards of living to sus-

tained growth in per capita income. Over the same period of time, resources were reallocated from rural

to non-rural production, the land share in total income declined significantly, while the labor income

share increased. In each case, this economic transition was accompanied by a demographic transition

from high to low birth and mortality rates. These key changes together constitute one of the major

transformations of modern times.

What factors were responsible for these changes and to what extents? Did the economic and demo-

graphic changes transpire through common or distinct channels? To answer these questions and further

understand the link between economic and population dynamics, we construct a dynamic general equi-

librium two-sector model with endogenous fertility. Within the framework of our model, parameterized

to match key moments of 17th century England, we quantitatively assess the importance of two factors

(channels) in shaping the demographic and economic transformation in England: changes in young-age

mortality and technological progress. More precisely, we examine the model dynamics that result when

young-age mortality and sector-specific total factor productivity (TFP) are stipulated to vary over time

in accordance with historical data.1

It is important to note that we investigate the model behavior resulting from the historical time series

of TFP and young-age mortality without attempting to elucidate the underlying causes for these empirical

phenomena. Thus, we seek to ascertain the effects on the demographic and economic transformations that

are communicated through the TFP and young-age mortality "channels." A word of caution is needed

here to avoid a possible misinterpretation of our results. For example, our finding that technological

progress is quantitatively a major channel through which urbanization transpired does not imply that

changes in young-age mortality, or any other force, had no causal effect with regard to this phenomenon.

Instead, this finding leads to the conclusion that if a given force contributed to resource reallocation, its

influence must have been communicated predominantly through its effect on TFP.

We choose to focus on the effect of changes in young-age mortality and TFP because empirical

evidence and related historical, demographic, and economic literature overwhelmingly link these factors

to economic and demographic variables.2

Related work has provided a number of illuminating dynamical systems that capture potentially very

important mechanisms. However, many of these point to drastically different causes behind the economic

and demographic transformations. To give just a few examples, the mechanisms proposed in Greenwood

and Seshadri (2000), Jones (2001), Kalemli-Ozcan (2002) and Soares (2005) each generates a drop in

fertility and a take-off to a sustained growth regime through the acceleration of technological progress,

institutional change, a decline in young-age mortality, and a decline in adult mortality, respectively. Thus,

the relative importance of each such mechanism for the case of a particular country remains unclear.

Our quantitative findings help elucidate the relative importance of each of these mechanisms for the

1Three experiments are performed within the parameterized framework: (1) changing TFP growth rates while keeping
young-age mortality at its initial level; (2) changing young-age mortality while keeping TFP growth rates at their initial
values; (3) changing both simultaneously.

2See Section III.
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case of England. Our framework is quite general, and in fact, a number of existing models developed for

the purpose of jointly studying growth and demographics can be mapped into it. For example, consider

a model developed by Galor and Weil (2000). In that work, children’s human capital is a function of the

TFP growth rate and parental time investment in raising children. This function is chosen so as to satisfy

several assumptions guaranteeing that parents respond to the acceleration of technological progress by

having fewer, higher quality children. The growing stock of human capital then feeds back into higher

technological progress. Although there is no mortality or physical capital in Galor and Weil (2000), their

mechanism is consistent with our model in the sense that any behavior of variables exhibited in Galor

and Weil (2000) can be generated in our model with particular sequences of parameters representing

TFP and the time cost of raising children. Similarly, mechanisms that emphasize the role of declining

old-age mortality, such as in Soares (2005), act in our model through the channels of extending the

time endowment per adult household together with technological progress and the rising cost of children.

Again, this means that any behavior of variables exhibited in Soares (2000), can be generated in our

model with particular sequences of parameters representing TFP, the household time endowment and the

time cost of raising children.

In fact, most of the proposed mechanisms capable of generating the economic/demographic trans-

formation act through some combination of the following channels: technological progress, young-age,

adult-age, old-age mortality and the cost of raising children. What is needed is a framework of growth and

demographic accounting which would allow a decomposition of the economic and demographic changes

into these channels. When applied to a particular country, this framework would identify the impor-

tant channels through which the economic/demographic transitions transpired, pointing to the class of

mechanisms most relevant to the case in question.3 This paper, in which we only investigate techno-

logical progress and young-age mortality channels, keeping adult-mortality and the time cost of children

unchanged,4 is a step in this direction.

An advantage of using our framework for assessing the relative importance of young-age mortality

and TFP channels on population, output, resource allocation and factor income shares is that it allows a

straightforward mapping to the data. We use standard functional forms, and our choice of parameters is

strictly guided by the observables. We do not make any assumptions regarding parameters to guarantee

certain behavior or tell a particular story. (For example, the utility function parameters can be chosen

to guarantee that birth rates fall as income rises.) Indeed, the time series used in the design of our

experiments represent their actual historical estimates. Our framework also enables us to estimate TFP

series in the rural and urban sectors using the available data on wages, land and capital rental rates, and

the GDP deflator, which is an important contribution in and of itself.5 Moreover, our framework allows

us to study the two channels under consideration both jointly and in isolation. This is in contrast to

models encompassing intricate collections of forces, each of which cannot be tested in isolation without

shutting down the entire mechanism.

3Such a growth accounting framework would be similar in spirit to the business cycle accounting framework developed
in Chari et al. (2006).

4There is an endogenous resource cost of children in our model, consisting of inheritance.
5 If, instead, we chose a different framework for modeling production, for example, assuming the agricultural good

production function used in Greenwood and Seshadri (2000), with skilled labor, unskilled labor, and capital as inputs, we
would face a great difficulty in attempting to extract productivity changes for such production function from available data.
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Thus, to reemphasize the main contribution of this paper, it provides a thorough quantitative as-

sessment of young-age mortality and sector-specific technological progress in shaping the economic and

demographic transformations of England. It does so in a way that sheds light on the relative importance

of several of the proposed theoretical mechanisms in this field.

Also significant is our study of transitional dynamics (from one balanced growth path towards another)

triggered by mortality and/or TFP changes. We find that a great deal of insight is lost when focusing on

comparative statics analysis alone, as discussed in detail in Section IV.

Model description and preview of quantitative findings

Our model has three important components. First, the final good can be produced using two different

technologies, the Malthusian, which takes capital, labor, and land as inputs, and the Solow, which

employs capital and labor only. We associate the Malthusian technology with rural production and the

Solow technology with urban production. This two-technology framework allows us to investigate the

implications of changes in young-age mortality and TFP regarding resource reallocation. The second

important component in the model is endogenous fertility. Parents place value on both the number of

surviving children and their children’s well-being,6 and thus face a quantity-quality trade-off between

having many children each with a small inheritance in the form of capital and land and having few

children with a larger inheritance. Finally, we assume that parental time is needed for raising each child,

including those not surviving to adulthood. The time cost of raising a surviving child thus declines as

more newborns survive to adulthood, reflecting the fact that fewer newborns are needed to realize one

surviving offspring.

How do changes in young-age mortality and TFP growth rates propagate in our model? To high-

light a few effects here, we focus on the implications of these changes for birth rates and the level of

industrialization.7

One effect of the decline in young-age morality is that fewer births are needed to realize the desired

number of surviving children. In addition, declining young-age mortality lowers the time cost per surviving

child, thus relaxing the budget constraint and allowing parents to optimally adjust the number and quality

of their surviving offspring.

The transition to a more rapidly growing TFP and hence income may also alter fertility choices. On

one hand, higher income growth induces higher fertility, because children enter parental utility. On the

other hand, it raises the opportunity cost of rearing children measured in terms of foregone wage earnings,

thus dampening fertility. In addition, with more rapidly growing incomes, parents choose to have higher

quality children (children with larger inheritance), which further increases the cost of rearing children.

Interestingly, when separate experiments are conducted within the parameterized model to indepen-

dently determine the implications of technological progress and the change in young-age mortality, it is

found that each generates full resource reallocation towards the urban sector. As the Solow TFP be-

gins to grow more rapidly than the Malthusian TFP, the Solow sector attracts an increasingly higher

proportion of resources. The result that falling young-age mortality causes an increase in the level of in-

dustrialization is less intuitive. However, this can be understood by first recalling that as the probability

6We use two specifications, one introduced in Barro and Becker (1989) and one introduced in Lucas (2002).
7 In this paper we refer to the fraction of non-rural output in the total output as “the level of industrialization” and the

fraction of labor employed by the non-rural sector in the total labor as “the level of urbanization.”
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of survival increases, the time cost of raising a surviving child declines, which leads to an augmentation

of the aggregate labor supply. This, in turn, results in a relative expansion of the output in the Solow

sector, which uses labor more intensively. This is the type of logic employed in the Rybczynski Theorem.

Such a possible effect of falling young-age mortality on the level of industrialization has not previously

been considered in related works.

In this work, we find that the decline in young-age mortality accounts for 59% of the fall in the crude

birth rate (CBR),8 while changes in productivity account for 73% of the increase in GDP per capita and

for over 90% of the movement in factor income shares for the period 1650-1950 in England. Although both

changes generate a transition from Malthus to Solow, only changes in the TFP growth do so in a manner

consistent with empirical observations, driving the share of the Malthusian output from approximately

67% to nearly zero in the period from 1600 to 2000. Changes in young-age mortality lead to a much

slower transition, according to which even in 2400, the Malthusian output would represent as much as

10 percent of the total output. Our finding that changes in TFP account for long-term trends in the

observed patterns of factor income shares can be attributed to resource reallocation between sectors with

different but constant factor elasticities.

Interestingly, we find that changes in productivity are quantitatively insignificant in accounting for

the observed patterns in fertility behavior, while mortality changes are quantitatively relevant only to

population dynamics. This finding does not rule out the possibility of important interactions between

changes in mortality and productivity, nor the existence of some other force responsible for both of

these changes. Instead, it suggests only that the quantitatively relevant channels through which the

demographic and economic transformations transpired were distinct in the case of England.

The remainder of the paper is organized as follows. In Section II we summarize the historical data

for England. Related literature is discussed in Section III. In Section IV we set up the model and discuss

its equilibrium properties. The model’s calibration and estimation of TFP time series are presented in

Section V. The main results are reported in Section VI. We present a sensitivity analysis in Section VII

and conclude in Section VIII.

II. Motivating Facts about England

We chose to focus on England because its data are most complete.9 Floud and Johnson (2004)

and Chesnais (1992) describe England during this period. Lee (2006) and Galor (2005) provide general

accounts of the demographic change and facts concerning development.

Figure 1 displays the natural log of the real GDP per capita index.10 After remaining stagnant

for centuries, real GDP per capita took off in the beginning of the 19th century. This period is also

characterized by a large-scale shift of the population from the rural sector to the urban sector. As

depicted in Figures 2 and 3, the share of the urban GDP rose from around 30% in the 1550s to roughly

98% in the 1990s, while the share of employment in non-rural production increased from around 40% to

8The crude birth rate (crude death rate (CDR)) is the number of births (deaths) in a given year per 1000 people.
9All data sources used in this paper are listed in the appendix.
10Data sources for this figure are Clark (2001a) for 1560-1860 and Maddison (1995) for 1850-1992.
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98%.11 Further, the land income share fell from as much as 30% at the outset of the 17th century to

nearly 0% today (Figure 4).

The dramatic economic transformation described above was accompanied by remarkable demographic

changes (Figure 5).12 Before the mid 18th century, both birth and death rates remained high, with the

average population growth in the first half of the 18th century remaining low (approximately 0.4% per

year.) The decrease in the CDR beginning in the second half of the 18th century was due mainly to

declining adult mortality. Sustained decline of the mortality rates for the age groups 5-10, 10-15, and

15-25 began in the mid 19th century, while that for the age group 0-5 began three decades later (Wrigley

et al. (1997)). Major factors behind the decline in mortality were the sanitary revolution, which reduced

fatalities due to water-borne and food-borne disease and advances in medical science, most notably, the

discovery of the benefits of pasteurization, hospitalization, and small pox vaccination.

A sustained fall in birth rates, driven by a fall in marital fertility, occurred from 1870 to 1930, after

which both birth and death rates stabilized at their current low levels. Previous changes in birth rates

resulted from changes in the timing and prevalence of marriage (Floud and Johnson (2004) and Wilson

and Woods (1991)). The general fertility rate (GFR),13 a measure less sensitive to the age structure of

the population than CBR, exhibited similar behavior (Figure 13). Although the fall in birth rates lagged

behind the onset of the fall in death rates, it coincided with the fall in young-age mortality (Figure 6).14

Note that the lag between the drop in CDR and the drop in CBR resulted in a hump-shaped population

growth rate.

Figure 7 plots our own sector-specific TFP estimates. We postpone the discussion of the estimation

methodology to Section V. The rural TFP exhibited a somewhat higher growth than the non-rural TFP

until the second half of the 18th century, when the growth of the urban TFP sharply increased surpassing

that of the rural TFP. Around 1800, the growth of the rural TFP caught up slightly. This short-lived

trend marks a small-scale agricultural revolution subsequent to the industrial revolution.

III. Related Literature

We only highlight work directly related to the focus of this paper, technological change and young-age

mortality.15

Among the theoretical and quantitative studies focusing on the role of mortality in driving the demo-

graphic and/or economic transition are Ehrlich and Lui (1991), Wolpin (1997), Eckstein et al. (1999),

Kalemli-Ozcan et al. (2000), Kalemli-Ozcan (2002), Lagerloff (2003), Doepke (2005), Soares (2005),

Tamura (2006).16 All of these works employ a quantity-quality trade-off. Ehrlich and Lui (1991), Kalemli-

11Data for the level of industrialization and urbanization up to 1860 are taken from Clark (2001a, 2002); the time series
are continued using Maddison’s data (1995).

12Data for CBR and CDR are taken from Wrigley et al. (1997) up to 1871 and continued using the data in Mitchell
(1978).

13The general fertility rate is the number of births in a given year per 1000 females of ages 15-44.
14The probability of surviving to age 25 is calculated from age-specific mortality rates taken from Wrigley et al. (1997)

and the Human Mortality Database.
15 It should be noted that there are several studies investigating other channels. Doepke (2004), for example, studies the

effect of policies such as education subsidies and child-labor laws, while Becker et al. (1999) and Boucekkine et al. (2005)
focus on population density.

16Boldrin and Jones (2002) also explores the role of mortality but in a framework that reverses the direction of altruism.
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Ozcan (2002), Lagerloff (2003), Soares (2005) and Tamura (2006) explicitly model human capital accu-

mulation and assume increasing returns to scale to parents’ human capital and time spent with children

in production of children’s human capital.17 Because the production of the surviving children’s human

capital requires a quantity of parents’ time that is proportional to their fertility, a drop in young-age

mortality raises the return to human capital investment. The necessary parametric restrictions are then

made to ensure a transition to a sustained growth regime through substitution of quality for quantity.18 A

few of these studies, in particular, Ehrlich and Lui (1991), Kalemli-Ozcan (2002), Lagerloff (2003), Soares

(2005) and Tamura (2006) conclude that a decline in child mortality results in a significant reduction of

the number of surviving children and pulls the economy onto a sustained growth path.

The view that technological progress governs fertility choices and/or the process of development is

also common. (See Becker and Lewis (1973), Becker (1981), Hotz et al. (1997), Galor and Weil (2000),

Fernandez-Villaverde (2001), Greenwood and Seshadri (2002), Hansen and Prescott (2003).) In fact,

our findings are qualitatively consistent with this view, as they imply that changes in TFP growth

trigger convergence to a sustained growth regime characterized by lower fertility. However, we find the

quantitative effect of technological progress on birth rates to be small.

With regard to the method of modeling production, our work is closely related to Hansen and Prescott

(2003). However, in contrast to Hansen and Prescott (2003), in which population growth is postulated

to be a function of per capita consumption, we explicitly model fertility choice and young-age mortality.

Fernandez-Villaverde (2001) uses a parameterized framework in which unskilled labor and capital are

substitutes, while skilled labor and capital are complements. Capital-specific technological change that

matches the fall in the relative price of capital equipment during the years of falling birth rates, 1875-

1920, is introduced into the model and found to be important in accounting for the observed patterns of

fertility and per capita income in England. However, the empirical fact that after 1920 the relative price

of capital and capital equipment began to increase reaching almost its 1875 level, while fertility remained

roughly constant, is difficult to reconcile with this finding.

Greenwood and Seshadri (2000) uses a two-sector model with exogenous technological progress and

endogenous fertility to study the case of the U.S. The preference parameters are chosen such that as

incomes increase the demand for the agricultural good relative to the manufacturing good declines.

Because unskilled labor is not used in the production of the manufacturing good, parents substitute

quality for quantity. Galor and Weil (2000) presents a theoretical model with explicit human capital

accumulation, endogenous technological change and fertility, as already discussed.19 Further, Greenwood

and Seshadri (2000) and Galor and Weil (2000) abstract from young-age mortality; hence, surviving

children and fertility are represented by the same time series in these models, while their empirical

behavior is very different.

Note that we avoid heterogeneity in skills and human capital considerations. This greatly reduces

Empirical results pointing to mortality as one of the most important determinants of fertility and/or the onset and speed of
its decline are reported in Woods (1987), Bos and Bulatao (1990), Shultz (1997) and Mason (1997a), among others.

17Doepke (2005) also studies a setup with human capital accumulation. However, he assumes that children’s human
capital is a decreasing returns to scale function of only parents’ time spent with children.

18Soares (2005) and Kalemli-Ozcan et al. (2000) explore the effect of changes in adult mortality on human capital
accumulation.

19Lagerlof (2003) performs a quantitative test of this model.
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the difficulty of mapping observables into our model, thus enabling us to estimate sector-specific TFP

and calibrate the model in a meaningful way. Moreover, Mokyr (2005) argues that the technical change

around the turn of the 19th century England could not have been fueled by human capital accumulation,

and carried little connection to the demographic behavior.

IV. Model

A. Environment

Technology and firms

Firms are endowed with one of two possible technologies to be used in production of the consumption

good. The Malthusian technology that requires capital, labor, and land as inputs is given the subscript

“1,” and it is associated with production taking place in the rural sector. The Solow technology that

employs capital and labor as inputs is given the subscipt “2,” and it is associated with production

taking place in the cities. Both technologies exhibit constant returns to scale, which allows us to assume

two aggregate competitive firms (sectors). Output production of these firms is described by Y1t =

A1tK
φ
1tL

µ
1tΛ

1−φ−µ
t and Y2t = A2tK

θ
2tL

1−θ
2t , where Kj and Lj denote the capital and labor employed by

technology j ∈ {1, 2}, and Λt denotes the land input. Exogenous technological change augments TFP in
both technologies, so that Ajt = Aj0

Qt−1
τ=0 γjτ , j ∈ {1, 2}. Letting wt, rt, and ρt denote the real wage,

capital rental rate, and land rental price at time t, we can describe profit maximization by

max
K1t,L1t,Λt

A1tK
φ
1tL

µ
1tΛ

1−φ−µ
t − wtL1t − rtK1t − ρtΛt,

max
K2t,L2t

A2tK
θ
2tL

1−θ
2t − wtL2t − rtK2t.

Preferences, households and dynasties20

There is a measure 1 of identical dynasties, each populated byNt households at time t. Households live

for two periods, childhood and adulthood. An adult household derives utility from its own consumption

(ct), the number of its surviving children (nt), and its children’s average utility according to Ut =

α log ct + (1− α) lognt + βUt+1, where α, β ∈ (0, 1) . This utility function, also used in Lucas (2002),
is increasing and concave in the number of children, like the utility used in Barro and Becker (1989),

Ut = cσt + βn1−εt Ut+1. In the appendix, we prove that these preferences are equivalent if σ → 0 and
1−ε−σ

σ = 1−α−β
αβ . We also explore the Barro and Becker utility in the sensitivity section.

A fraction πt of children born (ft) survive to adulthood,21 and thus ft = nt
πt
newborns are needed to

realize nt surviving offspring. A household must spend a fraction a of its time with each born child and

an additional fraction b with each child who lives to adulthood.22 Allowing two parameters govern the

cost of raising children enables us to capture the young-age mortality profile. For example, a high value

20See Bar and Leukhina (2007) for a more rigorous description of this environment.
21There is no uncertainty in the survival of newborns’ (as in Sah (1991) or Kalemli-Ozcan (2002)) that would give rise to

precautionary motives for having children.
22 If the cost of raising children were to be paid in terms of the final good, the results would not change. In that case, for

the existence of a balanced growth path along which per capita variables grow at constant rates, we would need to assume
that the goods cost grows in proportion to income.
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of b relative to a captures the empirical observation that children not surviving to adulthood tend to die

very early in life. We will return to this discussion when calibrating the model. The total time spent

raising children is hence given by aft + bnt =
³

a
πt
+ b
´
nt. We let qt ≡ a

πt
+ b denote the net time cost

per surviving child. Observe that qt is a decreasing function of πt. Intuitively, as more newborn children

survive to adulthood, fewer newborns are needed to realize one surviving offspring and hence less time is

spent rearing non-survivors.

An adult household rents its land holdings (λt) and capital (kt), and devotes all time not spent raising

children to work (lt = 1− qtnt). Given {wt, rt, ρt, qt}∞t=0, households choose consumption, the number of
surviving children, the amount of capital (kt+1) to pass on to each surviving child, and divide their land

holdings equally among its descendants. The problem faced by an adult household is thus given by

Ut (kt, λt) = max
ct,nt,λt+1,kt+1≥0

α log ct + (1− α) lognt + βUt+1 (kt+1, λt+1)

subject to ct + kt+1nt = (1− qtnt)wt + (rt + 1− δ) kt + ρtλt,

λt+1 =
λt
nt
.

It is common to assume that the conjecture about Ut+1 (kt+1, λt+1) formed by a time t adult household

must correspond to the actual level of its children’s utility resulting from their optimal response to

inheriting (kt+1, λt+1). In other words, we focus on subgame perfect equilibria of an infinite horizon

dynastic game, in which at each time, current adults solve the above problem. As in Golosov, Jones,

Tertilt (2006), it can be shown that the subgame perfect equilibrium outcome of such game is unique23 and

coincides with the unique solution to the dynastic problem (DP) below24, where the objective function

is obtained applying recursive substitution to household utility. Given {wt, rt, ρt, qt}∞t=0, the dynastic
planner (or the original household) solves

max
{ct,nt,λt+1,kt+1}t≥0

∞X
t=0

βt(α log ct + (1− α) lognt) (DP)

subject to ct + kt+1nt = (1− qtnt)wt + (rt + 1− δ) kt + ρtλt, ∀t

λt+1 =
λt
nt
, ct, nt, kt+1 ≥ 0, k0, λ0 given

Population dynamics and market clearing

The number of adult households evolves according to Nt+1 = ntNt. We use upper case letters to

denote aggregate quantities: Ct ≡ ctNt, Kt ≡ ktNt, K1t ≡ k1tNt, K2t ≡ k2tNt, Lt = ltNt, L1t ≡ l1tNt,

L2t ≡ l2tNt. The market clearing conditions in the final goods, capital, labor, and land markets are given

by

Ct +Kt+1 = A1tK
φ
1tL

µ
1tΛ

1−φ−µ
t +A2tK

θ
2tL

1−θ
2t + (1− δ)Kt,

K1t +K2t = Kt, L1t + L2t = (1− qtnt)Nt, Λt = Λ.

23The only equilibria considered are those that are limits of equilibria of the finite horizon truncations of this infinite
horizon game.

24Bar and Leukhina (2007) prove uniqueness of the solution to DP.



10

B. Equilibrium

Definition 1 A competitive equilibrium, for given parameter values, initial conditions (k0, N0) and ex-

ogenous sequences {γ1t, γ2t, πt}∞t=0, consists of the allocations {ct, nt, λt, kt+1, k1t, k2t, lt, l1t, l2t, Nt+1}∞t=0
and prices {wt, rt, ρt}∞t=0 such that firms’ and dynastic maximization problems are solved, and all markets
clear.

In Bar and Leukhina (2007), we prove that the first-order and transversality conditions25 characterize

the solution to DP. It is instructive to review the intuition behind the first-order conditions written in

dynastic aggregates,

Ct+1

Ct
= β (rt+1 + 1− δ) ,(1)

(1− α− β)Ct

αNt+1
= qtwt −

wt+1

rt+1 + 1− δ
.(2)

Equation (1) is a standard Euler equation that describes the intertemporal trade-off in aggregate consump-

tion. Condition (2) represents the intratemporal trade-off between consumption and surviving children.

The marginal rate of substitution between children and consumption equals their relative price, that is,

forgone parental wages due to the time cost of raising children less the present value of the child’s earnings

at t+ 1.

Due to decreasing returns to scale in capital and labor, the marginal products of the inputs in the

Malthusian technology become very large when its capital and labor inputs approach zero. This guaran-

tees that the Malthusian technology is always employed, and factor prices are determined by

rt = φA1tK
φ−1
1t Lµ

1tΛ
1−φ−µ,(3)

wt = µA1tK
φ
1tL

µ−1
1t Λ

1−φ−µ,(4)

ρt = (1− φ− µ)A1tK
φ
1tL

µ
1tΛ

−φ−µ.(5)

It is profitable to use the Solow technology as long as 1 ≥ 1
A2t

µ
φA1tK

φ−1
t Lµt Λ

1−φ−µ

θ

¶θ µ
µA1tK

φ
t L

µ−1
t Λ1−φ−µ

1−θ

¶1−θ
,

that is, as long as its unit cost computed when all resources are employed in the Malthusian sector does

not exceed 1. With both sectors operating, factor prices equalize across them: φA1K
φ−1
1 Lµ

1Λ
1−φ−µ =

θA2 (K −K1)
θ−1 (L− L1)

1−θ and µA1K
φ
1L

µ−1
1 Λ1−φ−µ = (1− θ)A2 (K −K1)

θ (L− L1)
−θ .26

Limiting Behavior of Equilibrium Time Paths

We can identify three possible types of limiting behavior of equilibrium time paths (i.e. three types of

qualitatively distinct balanced growth), characterized by the properties that (i) the ratio of the output in

the Solow sector to total output converges to a constant in the interval (0, 1),27 (ii) the level of output in

the Solow sector converges to 0, (iii) the ratio of the output in the Malthusian sector to that of the Solow

sector converges to 0. We refer to these types of limiting behavior of equilibrium time paths as convergence

25 limt→∞ βt α(rt+1−δ)
(Nt−qNt+1)wt+(rt+1−δ)Kt+ρtΛ−Kt+1

Kt = 0 and limt→∞ βt αwt

(Nt−qNt+1)wt+(rt+1−δ)Kt+ρtΛ−Kt+1
Nt = 0 sum-

marize the transversality conditions.
26All formal derivations of optimal resource allocation for given Kt and Lt are presented in Bar and Leukhina (2007).
27Along such a balanced growth path, the two sectors operate side by side forever, with the relative outputs constant.
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to the Malthus-Solow balanced growth path (BGP), Malthus BGP, and Solow BGP, respectively.28 In

the appendix, we provide systems of equations summarizing balanced growth properties and comparative

statics results for each type of these balanced growth paths.

The behavior of equilibrium allocations depends on the choice of the parameter values and initial

conditions. All derivations and a detailed discussion of how parameter values and initial conditions affect

the limiting behavior of equilibrium time paths, formulated in terms of propositions and their proofs, are

presented in Bar and Leukhina (2007).

Note that along a Malthus-Solow BGP, both population growth (n) and per capita output growth (γ)

are determined by the TFP growth rates in the two sectors:29

(6) γMS = γ
1

1−θ
2 , nMS =

µ
γ1γ

− 1−φ
1−θ

2

¶ 1
1−φ−µ

.

The growth rate of per capita output is an increasing function of the Solow TFP growth rate, while

population growth increases in the Malthusian TFP growth rate and decreases in the Solow TFP growth

rate (∂γ
MS

∂γ1
= 0, ∂γMS

∂γ2
> 0, ∂nMS

∂γ1
> 0, ∂nMS

∂γ2
< 0). The time cost of raising children does not enter these

two equations (∂γ
MS

∂q = ∂nMS

∂q = 0), and therefore a rise in π results in a proportional reduction of fertility

(n = πf). For the class of simulations involving an increase in π such that the type of limiting behavior

of equilibrium paths is unaltered as a result of this increase, we found that during the transition from

the original to a new BGP, population growth exhibits a hump.

Although Malthus BGP and Solow BGP properties do not have a closed-form solution, we derive the

following comparative statics results. Along both types of balanced growth, an increase in TFP growth

dampens population growth and encourages economic growth (∂n
M

∂γ1
< 0, ∂γM

∂γ1
> 0, ∂nS

∂γ2
< 0, ∂γS

∂γ2
> 0),

while a decline in young-age mortality leads to a higher population growth (∂n
M

∂q < 0, ∂nS

∂q < 0). Along a

Malthus BGP, a decline in young-age mortality, through its positive effect on population growth, tends

to slow down economic growth
³
∂γM

∂q > 0
´
, while the growth rate of per capita variables along any Solow

BGP, γS = γ
1

1−θ
2 , is independent of q.

Before moving on, we note that the above comparative statics results should be interpreted with

caution. Specifically, it must be kept in mind that it is possible for the dynamic system to admit

a bifurcation in response to a change in parameter values; i.e., it is possible for the type of limiting

behavior of equilibrium paths to change qualitatively. In such a situation, the comparative statics results

given above are meaningless.

V. Calibration and TFP estimation

One objective is to calibrate the model parameters so as to match certain key data moments char-

acterizing the English economy at the outset of the 17th century. Because per capita output growth,

28The existence of three types of limiting behavior here contrasts with the situation studied in Hansen and Prescott
(2003). In that work, as long as the growth rate of the Solow TFP is positive, all equilibria exhibit convergence to a Solow
BGP.

29This result is due to the constancy of the interest rate along a Malthus-Solow BGP and the equality of the marginal
products of capital in the two sectors. Hence, it is robust with respect to the choice of the utility function.
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birth rates, factor shares in total income, young-age mortality, levels of urbanization and industrializa-

tion exhibited no trend during the period 1580-1650, we mapped the data moments into the parameters

under the assumption that the English economy was on a Malthus-Solow BGP. Another objective is to

estimate the time series of TFP in the rural and non-rural sectors. Because there are no data on time

series of inputs and outputs for the two sectors, which are necessary for standard growth accounting, we

implemented the dual approach of TFP estimation. This approach employs the assumption of profit-

maximization and requires time series data on wages in the two sectors, land rental prices, capital rental

rates, and the GDP deflator. The procedure we used for TFP estimation is intertwined with calibration,

and for this reason we describe both of them in this section.

We chose each time period to represent 25 years. To be calibrated are the Malthusian parameters,

A10, γ1, φ and µ, the Solow parameters, A20, γ2 and θ, the preference parameters, α and β, the cost of

children parameters, a, b and π, and the remaining parameters, Λ and δ.

Land is a fixed factor whose value we normalized to 1. Since A10 and Λ always appear as a product¡
A10Λ

1−φ−µ¢, we are allowed a second degree of normalization, and we set A10 = 100. For simplicity,

we also set A20 = 100, as we lack a criterion for making a more meaningful choice.30 Thus, we have 11

parameters left to calibrate. In order to pin them down, we rewrite the balanced growth path equations

in terms of moments and parameters only, and then solve for the model parameters using the 11 pieces

of information presented in Table 1.31 The numbers in parenthesis in the table and the rest of the paper

represent annual rates.

Table 1: England Around 1600: Data Moments Used for Calibration

Data Moment Description

δ = 0.723 (0.05) Depreciation
π = 0.67 Probability of survival to 25
l1
l = 0.6 Fraction of rural labor in total labor
y1
y = 0.67 Fraction of rural output in total output
rk
y = 0.16 Capital share in total income
wl
y = 0.6 Labor share in total income

r + 1− δ = 2.666 (1.04) Interest rate
qn = 0.42 Fraction of time spent with children (or not working)
a+b
a = 4 Time cost of a surviving child / that of a non-surviving child

γ1,1600 = 1.042 (1.0016) Growth of rural TFP around 1600
γ2,1600 = 1.006 (1.00025) Growth of non-rural TFP around 1600

Note that we do not aim to match per capita output growth and population growth in our model

because, although stationary, these moments are quite volatile near the beginning of the 17th century. We

do, however, compare these moments to their counterparts predicted by the calibrated model. Historical

estimates of the annual depreciation rate range from 2.5% (Clark 2002) to over 15% (Allen 1982). We

30The choice of value for A20 affects the magnitude of level variables, such as output or population size. Because we study
growth rates and fractions of level variables, our results are insensitive to this choice.

31For a more technical description of the calibration process, which consists of solving this system of linear equations, see
Bar and Leukhina (2007).
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set δ = 0.723 to realize 5% annual depreciation. The probability of surviving to age 25 around 1600 was

roughly constant at approximately 67%. (Wrigley at al. (1997)). Hence, π is also pinned down directly

by its data counterpart.

Clark (2001a) provides the labor and capital shares of the total output produced in England, as well

as the relative levels of employment and output in the two sectors. The interest rate is taken from Clark

(2001b). The fraction of time spent raising children (qn) is set to 0.42. There is no obvious way to

infer qn from the data, but a simple example may be illustrative. For a person with 100 hours of time

endowment per week, of which he works 40 hours, rests 30 hours and spends 30 hours with children, we

would infer qn = 30
30+40

∼= .429, because there is no leisure in our model. Recall that a is the fraction

of time spent on each newborn child, while b represents the additional time cost incurred when a child

lives to become an adult. We set a+b
a = 4, using the data on age-specific mortality and the assumption

that the instantaneous cost function of raising a child is a decreasing linear function of the child’s age.32

The sensitivity of the results to the choice of δ, qn, and a+b
a is addressed in Section VI. Our method for

obtaining γ1,1600 and γ2,1600 is described below.

Calibrating φ, µ, θ

We determine the labor share µ = 0.537 of the Malthusian technology using y1
y ,

l1
l ,

wl
y and the

equilibrium property that wages equal the marginal product of labor in the Malthusian sector, w l
y =³

µy1
l1

´
l
y . With µ known, we pin down the capital share of the Solow technology, θ, by using y1

y ,
wl
y ,

and the equality of the total labor income and the sum of incomes paid to labor in the two sectors,

µy1
y + (1− θ) y2y =

wl
y . This yields θ = 0.273. Similarly, the capital share of the Malthusian technology,

φ, is determined by y1
y ,

rk
y , and the equality of the total income paid to capital and the sum of rental

incomes paid to capital in each sector, φy1
y + θ y1y =

rk
y . This gives φ = 0.104.

Calibrating γ1 and γ2 and estimating TFP time series

We next explain how γ1,1600 and γ2,1600 are obtained. We first estimate TFP time series for each

sector during 1585-1915.33 Then, for each of these series we fit a trend consisting of two parts, each

characterized by a constant growth rate. The growth rates characterizing the first part of the TFP trends

in the two sectors are denoted by γ1,1600 and γ2,1600. In order to estimate the TFP time series, we use

the inferred factor income shares in the two sectors, φ, µ and θ.

From profit maximization of the firms, we derive

A1t =

µ
rt
φ

¶φµw1t
µ

¶µµ ρt
1− φ− µ

¶1−φ−µ
,(7)

A2t =
³rt
θ

´θ µ w2t
1− θ

¶1−θ
,(8)

where rt (%) is the rental rate on capital, wt is the real wage measured in units of the final good per unit

of labor, and ρt is the land rental price measured in units of the final good per acre. Since Clark only

provides the time series of rt (%), nominal wages ω1t and ω2t (£), ρ̃t (% return on land rent), PΛt (price

of land in £/acre), and the GDP deflator Pt, we infer the real wages wit and the real land rental price ρt

32See the appendix for a more detailed explanation of how we arrive at this quantity.
33See the appendix for a complete description that would allow anyone to reproduce our TFP estimates.
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using wit =
ωit
Pt
and ρt =

ρ̃tPΛt
Pt
.

Figure 7 displays these time series together with their trends. To see how a constant growth trend

with a regime switch is fitted to a given series, let xt represent the data and yt its trend, restricted to the

form

yt =

(
y0g

t
1

y0g
τ
1g

t−τ
2

0 ≤ t ≤ τ

τ ≤ t ≤ T
,

where g1 and g2 denote the growth rates in the first and second growth regimes, and τ represents the

timing of the regime switch. To find the trend, we solve miny0,g1,g2,τ
PT

t=0 (yt − xt)
2 . Note that this

procedure determines the two growth rates and the timing of the regime switch. Applying this method

to both of the TFP time series, we obtain the TFP growth rates characterizing the first part of the

trends, γ1,1600 = 1.042 (0.16%) and γ2,1600 = 1.006 (0.025%) , as well as the endpoint growth rates,

γ1,1900 = 1.126 (0.4%) and γ2,1900 = 1.174 (0.6%).
34

Interestingly, γ1,1600 and γ2,1600 yield predictions for the growth rate of the population and per

capita output around 1600 (Equation 6). These predictions, n =
µ
γ1γ

− 1−φ
1−θ

2

¶ 1
1−φ−µ

= 1.097 (0.37%) and

γ = γ
1

1−θ
2 = 1.0085 (0.00034%), are consistent with the data, according to which population grew at the

annual rate of 0.4%, while output per capita remained roughly constant.

Calibrating the remaining parameters

The value of preference parameter β is determined to be 0.415 from the Euler equation γ = β
n [r + 1− δ] ,

after we substitute for γ, n, and the gross interest rate.

Time spent with children (qn) and the relation a+b
a , together yield a = 0.085 and b = 0.256. Finally,

the balanced growth path feasibility equation, ck = r y
rk+1−δ−γn, gives a prediction for the consumption-

capital ratio. Using c
k , n, γ, qn and

l1
l along with the data moments, r,

rk
y and

y1
y , in the remaining balanced

growth path equation, (1−α−β)(1−qn)αµ
y
y1
1
r
rk
y
l1
l ρ = qn− γn

(r+1−δ) , we obtain α = 0.582.

The calibrated parameter values are listed in Table 2.

Table 2: Calibrated Parameter Values

Malthusian Technology: A10 = 100, γ1,1600 = 1.042, φ = .104, µ = 0.537
Solow Technology: A20 = 100, γ2,1600 = 1.006, θ = 0.273
Preferences: α = 0.582, β = 0.415
Cost of Children: π = 0.67, a = 0.085, b = 0.256
Other: δ = 0.723, Λ = 1

VI. Main Results

Three experiments were conducted within the calibrated framework. In the first experiment (Exp.

1), the growth rates of TFP in the two sectors were varied according to our estimates obtained in Section

34Our estimation results are in line with those in Antras and Voth (2002). In that work, TFP growth in Britain is
estimated for the period 1770-1860, and it is found not to exceed 0.6% annual rate.
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V with the young-age mortality held fixed at its 1600 level. In the second experiment (Exp. 2), the

probability of surviving to adulthood was varied according to its historical estimates with the growth

rates of TFP in both sectors held at their 1600 values. In the third experiment (Exp. 3), the two

exogenous changes employed in Exps. 1 and 2 were carried out simultaneously. The experimental values

of γ1, γ2 and π are plotted in Figures 8-10. Because we do not aim at investigating high frequency

behavior, we smoothed the experimental time series.35

The economy starts off on a Malthus-Solow BGP.36 Each period in the model represents a specific

25-year period in the data. With the appropriate exogenous change fed into the model, the model was

solved for the equilibrium dynamics under the assumption of perfect foresight.37 Although different types

of limiting behavior of equilibrium time paths are possible in our model, in all three experiments, the

solution converged to a Solow BGP.38 Figures 11-19 depict the results of the experiments. The dotted

curves represent the time paths of relevant variables in the data. The remaining curves represent their

model counterparts, resulting from each of the experiments. The results are summarized in Table 3.39 To

assess the quantitative importance of different channels in facilitating birth rate dynamics, we compare

model’s results with respect to both CBR and GFR. Recall that GFR is less sensitive to the population

structure, as in its definition it considers births among women of reproductive age.

Table 3: Main Results

1600-1950 1650-1950
%Accounted for by Model %Accounted for by Model

%4 in Data Exp. 1 Exp. 2 Exp. 3 %4 in Data Exp. 1 Exp. 2 Exp. 3

y 379.55 68.34 2.23 65.78 348.89 72.77 1.68 69.33
CBR −48.73 −0.24 44.67 45.85 −39.95 −0.00 59.06 60.72
GFR −46.28 −0.56 41.35 44.23 −36.45 −0.01 56.91 61.10
ρΛ
y −95.32 92.26 −1.97 91.90 −95.68 91.90 −0.89 91.68
wl
y 16.67 111.93 −2.39 111.51 20.69 90.05 −0.88 90.95
y2
y 187.88 95.03 −2.03 94.70 177.38 100.35 −1.00 103.30
l2
l 137.25 98.18 −2.54 97.89 113.26 118.61 −1.46 122.17

35The series for π during the period 1612.5 − 1912.5 was replaced by its 7-period MA. The series for γ1 and γ2 were
modified by fitting a logistic function to the endpoint growth rates to minimize the distance between the estimated TFP
time series and the smoothed trend. The smoothing parameter was restricted to be no more than 3.

36This assumption, given the calibrated parameter values, pins down the initial conditions, N0 and k0.
37The solution method is described in Bar and Leukhina (2007). Briefly, the objective is to find time paths that satisfy

the first order, feasibility and transversality conditions. Because the original variables exhibit exponential growth, we work
with detrended variables. Since our experiments involve parameter changes, a bifurcation of the dynamical system, i.e.,
a qualitative change in the type of a BGP towards which convergence takes place, is possible. This forces us to use a
non-standard detrending method.

38For each of the three experiments, the asymptotic BGP towards which convergence takes place is locally stable (pos-
sessing a single eigen value which is less than 1). This can be understood by noting that if the Malthusian technology is
removed, Nt is no longer a state variable. In this case, the only state variable is kt and the condition that exactly one eigen
value be less that 1 is necessary and sufficient for local stability of the BGP towards which convergence takes place.

39To understand the numbers in the table, consider for example the first line. Real GDP per capita increased by 379.55%
during the period 1600-1950. Experiment 1 generates a smaller change, in the amount of 68.34% of 379.55%.
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Experiment 1: Changes in the growth rates of sector-specific TFP

The results of this experiment lead us to conclude that changes in the productivity in the two sectors

represent an important force behind the observed patterns in per capita income, the level of industrial-

ization and urbanization, and patterns of labor, capital, and land shares in the total income. By contrast,

changes in productivity are found to be quantitatively unimportant in driving fertility behavior.

Acceleration of TFP generates a transition from the early stagnation to modern growth. Around

1600, the growth rate of per capita GDP is near zero. It then takes off around 1800 and exhibits a

sustained growth of nearly 1% per year. The increase in per capita GDP obtained in this experiment is

approximately 73% of the actual increase in the English per capita GDP during the period 1650− 1950.
TFP acceleration also drives the process of industrialization and urbanization40 (see Figures 14 and

15). As the Solow TFP begins to grow more rapidly than the Malthusian TFP, the Solow sector employs

an increasingly larger fraction of the available resources, the equilibrium paths converging to a Solow

BGP. As a result of successfully capturing factor reallocation (Figures 17 and 18), this experiment also

accounts for over 90% of long-term trends in the observed income shares.

Interestingly, we find that changes in productivity have a very small quantitative impact on fertility

behavior (see Figures 12 and 1341). Because children are normal goods, higher income growth exherts

upward pressure on fertility. TFP acceleration also causes an increase in the cost of rearing children

through both channels: a rising time cost measured in terms of wages and parents choosing to have higher

quality children. Indeed, we can interpret kt+1 as a measure of quality, and the ratio kt+1/yt increases

from 0.0675 to 0.113. We find that these two effects nearly offset each other. Through their combined

influence, fertility rises slightly, and then declines, with the overall change being small. Similarly, this

experiment yields a quantitatively insignificant hump in the population growth rate (see Figure 19).

Starting at the calibrated level of a 0.37% annual rate, the population growth rate increases slightly, and

then decreases, converging to a 0.36% annual rate in the limit.

The limiting behavior of the equilibrium time paths is summarized by yt+1/yt → 1.0088, Nt+1/Nt →
1.0036, rt → 1.045, and ct/kt → 0.398, given in annualized rates.

Experiment 2: Changes in young-age mortality

The results of this experiment suggest that changes in young-age mortality were an important driving

force behind the demographic transformation in England but had little bearing on the economic changes

that took place during the period 1650− 1950.
Because every child requires an investment of time from the parents, declining young-age mortality

lowers the time cost of surviving children, thus relaxing the budget constraint and allowing parents to

optimally adjust fertility and the quality of surviving children. Parents do choose to raise higher quality

children as the ratio kt+1/yt increases from 0.0675 to 0.1021. Finally, fertility is pressured downwards,

because with more newborns living to adulthood, fewer births are needed to realize the desired number

of surviving children. The downward pressure on birth rates appears to be stronger overall, as changes in

young-age mortality account for nearly 60% of changes in CBR and GFR during the period 1650− 1950

40Levels of urbanization and industrialization are imperfect data counterparts of l2/l and y2/y in our model. The main
reason is that in the data, rural output is not a perfect substitute for the non-rural output, while in the model the Malthusian
good is a perfect substitute for the Solow good. It is nonetheless instructive to make these comparisons.

41To compare the results of the experiments to the data we use a 3-period MA representation of CBR and GFR.
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(Figures 12 and 13). Although the population growth rate does increase from 0.37% to 0.8%, this increase

is small. It is important to note that since we do not model changes in adult mortality, which greatly

affect population growth, we deem it more appropriate to resort to comparing model’s predictions to

fertility behavior.42 For the same reason we do not make comparison to the net reproduction rate, as it

explicitly takes into account maternal mortality over her lifecycle.

Note that additional factors must have played a role in generating birth rate dynamics. Recall that

in this paper we do not explore the significance of the cost of children channel, as we held fixed the time

cost parameters (a and b). Factors that would increase the cost of raising children (e.g., child labor laws,

as studied in Doepke (2005), or demand for higher education of children) may possibly account for the

remaining part of birth dynamics in England. Mokyr (2005) also suggests that it is important to explore

changes in contraception technology as a possible contributing factor to the fall in birth rates.

Figure 16 displays the time series for the level of industrialization in the model and in the data using

a longer time scale. We see that as π increases, the time spent on raising surviving children decreases,

freeing up time for work. This results in the relative expansion of the labor-intensive urban sector, but

the reallocation of resources occurs slowly. Even in 2400, as much as 10% of the total output is still

produced in the rural sector. Note that if, on the contrary, we performed a comparative statics analysis

alone, we woud misleadingly conclude that a drop in young-age mortality was as important in driving the

industrialization/urbanization as sector-specific technical change. Changes in the probability of survival

are also found to be quantitatively insignificant in accounting for patterns in the GDP per capita (see

Figure 11).

The limiting behavior of equilibrium time paths is summarized by yt+1/yt → 1.00034, Nt+1/Nt →
1.008, rt → 1.04, and ct/kt → 0.357.

Experiment 3: Simultaneous change in both quantities

When both the TFP growth rates and young-age mortality are varied simultaneously in accordance

with their historical estimates, the result is nearly a simple sum of changes generated by the first two

experiments. The limiting behavior of the equilibrium time paths in this case is summarized by yt+1/yt →
1.0088, Nt+1/Nt → 1.008, rt → 1.05, and ct/kt → 0.45.

VII. Sensitivity Analysis

TFP estimates

Recall that the time series of TFP growth rates were estimated on the basis of the data up to 1915. For

later years, sector-specific TFP were assumed to retain their constant growth trends
¡
γ1,1900 and γ2,1900

¢
.

Would changes in TFP growth rates be more successful in accounting for the demographic and economic

changes if the growth rate of TFP increased further since 1915? In this sensitivity exercise, we repeat

Exp. 1 and 3, but this time with the Solow TFP series updated to guarantee that the model generates

the growth rate of per capita income in the 20th century (1.4%). Because there is convergence to the

Solow BGP, we can determine γ2,1900 using γ = γ
1

1−θ
2,1900 = 1.4156 (1.4%). This yields γ2,1900 = 1.2755

(0.98%), a slightly higher growth rate than 1.174 (0.64%) used in the original experiments. The original

42Recall that the observed hump in the English population growth rate resulted from the fact that CDR fell before CBR.
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result, that changes in the TFP growth rates drive the economic transformation while having a negligible

effect on birth rates, is reconfirmed (Table 4).

Table 4: Sensitivity to the Endpoint Solow TFP Growth, γ2,1900 = 1.2755
%Accounted for by Model
1600-1950 1650-1950

Exp. 1 Exp. 3 Exp. 1 Exp. 3

y 81.93 79.03 87.34 83.42
CBR −0.26 45.88 −0.03 60.75
GFR −0.61 44.29 −0.07 61.18
ρΛ
y 95.88 95.59 95.51 95.31
wl
y 116.32 115.98 93.58 94.56
y2
y 98.76 98.50 104.30 107.40
l2
l 101.40 101.17 122.51 126.22

Barro and Becker parental utility

As proved in the appendix, the parental utility used here, Ut (ct, nt, Ut+1) = α log ct+(1− α) lognt+

βUt+1, is a special case of the Barro and Becker parental utility, Ut (ct, nt, Ut+1) = cσt + βn1−εt Ut+1,

realized when σ → 0 and 1−ε−σ
σ = 1−α−β

αβ . Note that this implies that ε → 1. A natural question is

whether our main results would change if we used the Barro and Becker parental utility form with σ > 0

and ε < 1. Below we investigate this point.

First we recalibrated the model under the assumption of the Barro and Becker utility43, using the

procedure similar to that described in Section IV, with the only difference being that the calibration

precedure used here does not fix both ε and σ. Instead, it pins down the ratio 1−ε−σ
σ = 0.0129, thus

allowing one free choice. We performed experiments using several values of ε in the admissible range of

(0, 1). For ε = 0.9, which implies that σ = 0.0987, the results are very close to the original results. Here

we report the results for a more extreme case, with ε = 0.7 (and implied σ = 0.2962).

Table 5: Sensitivity to the Choice of Parental Utility, Barro and Becker form
%Accounted for by Model

1600-1950 1650-1950
Exp. 1 Exp. 2 Exp. 3 Exp. 1 Exp. 2 Exp. 3

y 61.45 1.09 55.80 65.58 0.34 58.49
CBR −8.20 41.01 36.67 −9.38 54.26 49.62
GFR −19.77 32.17 20.53 −23.53 44.40 31.22
ρΛ
y 97.64 −1.46 97.42 97.26 0.22 97.16
wl
y 118.45 −1.77 118.23 95.27 0.22 97.07
y2
y 100.57 −1.51 100.45 106.14 0.25 111.45
l2
l 102.96 −1.93 102.87 124.32 0.26 130.59

In this case, again we find the demographic transition is driven mainly by changes in young-age

43We describe the solution and calibration of the model under the assumption of the Barro and Becker parental utility
in Bar and Leukhina (2007).
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mortality, while the economic transformation is driven mainly by technological progress. However, here

we observe that the overall effect on birth rates is weakened.

Sensitivity to δ, (a+ b) /a, and qn

We find that all of the quantitative results obtained here are extremely robust with respect to changes

in δ. Since the estimates of δ vary from 2.5% to 15% in the literature, as mentioned above, we investigated

δ in this range.

Recall that (a+ b) /a is an estimate of the average time cost of surviving children relative to that of

non-surviving children. This quantity only affects the calibration of a and b, and it has no bearing on

q. In particular, a decreases and b increases in (a+ b) /a. An increase of (a+ b) /a slightly raises the

importance of π in driving the fertility behavior. We examined values of (a+ b) /a ranging from 1 to 7,

and we found that the results were not affected significantly.

Finally, we set the fraction of time spent raising children, qn, to 0.42. Unfortunately, for qn ≤ 0.411,
we have 1 − α − β < 0, or equivalently 1 − ε − σ < 0 for the Barro-Becker preferences, which implies

that the dynastic utility decreases as the population increases. Although this does not imply that the

equilibrium population size will equal zero, as households would still be valued as a factor of production,

strict concavity of the objective function would not be guaranteed. For this reason, we only analyzed

values of qn in the range [0.411−0.7]. For this range, we found little quantitative dependence of the main
results on the choice of qn.

VIII. Conclusion

Mokyr (2005) claims that "the exact connection between the demographic changes and the economic

changes in the post 1750 period are far from being understood." He makes this claim despite the existence

of numerous economic models connecting technological change to the demographic variables and providing

interesting, insightful (and distinct) mechanisms capable of generating both a take-off to sustained growth

and a demographic transition. We interpret this as implying the need for more quantitative work.

In order to obtain a clear understanding of the relation between demographic and economic transfor-

mations, it is necessary to construct a framework of quantitative growth and demographic accounting that

allows the decomposition of economic and demographic changes into several important channels, such

as technological progress, changes in young-age, adult-age and old-age mortality and the cost of raising

children. In fact, all the proposed mechanisms developed for the purpose of endogenously generating the

economic/demographic transformation act through one or more of the above channels. When applied

to a particular country, such a framework of growth accounting would pin down the important channels

through which the economic/demographic transitions transpired, pointing to the class of mechanisms

most relevant to the case under study. Our work is a step in the direction of developing such a growth

and demographic accounting framework.

We constructed a general equilibrium model with endogenous fertility and two sectors of production.

Our framework has standard ingredients and maps into observables in a straightforward way. This is

a key feature of our model, and a point we wish to emphasize in this paper, because it enables us to

calibrate the model’s parameters using meaningful criteria based on empirical data. It further enables us

to estimate sector-specific TFP time series, which are necessary to conduct the quantitative analysis of
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this paper, by utilizing the available data on factor prices.

We used our framework, calibrated to match key moments of 17th c. England, to study the roles

played in the demographic and economic transformations of England by the two channels most frequently

considered in the discussion of such transformations: changes in young-age mortality and technological

progress. We find that changes in sector-specific TFP represent a major driving force behind the economic

transformation, accounting for nearly all of the increase in per capita output, the entire process of

industrialization and urbanization, the decline of the land share in total income and the increase in the

labor share in total income. Although TFP acceleration at the onset of the 19th century does prompt

quality investment and lowers population growth in the long run, we find its overall effect on birth rate

dynamics to be negligible quantitatively. By contrast, changes in survival probability from birth to

adulthood account for almost 60% of the observed fall in birth rates, but play a quantitatively small

role in the economic transformation. Still, a significant part of the birth rate dynamics is unexplained

by the channels explored in this paper. Factors that communicated their effects through the remaining

channels mentioned above (in particular, the time cost of raising children) must explain the remaining

fall in birth rates. However, this would not alter any of the conclusions of this paper, and in particular,

that the quantitatively relevant channels through which the demographic and economic transformations

transpired were distinct in the case of England.

Appendix

Data Sources44

Fraction of non-rural labor in total labor (L2/L): [1565-1865] - Clark (2001a), Table 1, p. 8 (England);

[1820 - 1992] - Maddison (1995), p. 253 (UK).

Index of Real GDP per capita (y): [1565-1865] - Clark (2001a), Table 7, p. 30, rescaled to equal 100

in 1565 (England and Wales); [1820-1990] - Maddison (1995), p. 194, rescaled to match Clark’s index in

1850 (UK).

Labor Share in Total Income (wL/Y ): [1585 - 1865] - Clark (2001a), Table 9, p. 46 (England); [1924

- 1973] - Matthews et al. (1982), p. 164 (UK); Average for [1973 - 1982] - Maddison (1987), p. 659 (UK);

1992 - Gollin (2002), p. 470, Table 2, Adjustment 3 (UK).

Land Share in Total Income (ρΛ/Y ): [1585 - 1865] - Clark (2001a), Table 9, p. 46 (England); [1873

- 1913] - Matthews et al. (1982), p. 643 (UK); [1987 - 1998] - UK National Statistics.

Capital Share in Total Income: Imputed according to the relation rK/Y = 1− wL/Y − ρΛ/Y.

Fraction of non-rural output in total output (Y2/Y ): [1555-1865] Imputed by dividing the nominal net

farm output (alternative labor) obtained from Clark (2002), Table 4, p. 14 (England), by the nominal

GDP obtained from Clark (2001a), Table 3, p. 19 (England and Wales), but adjusted for population

44Due to data limitations for England, we were forced to draw on the data sources available for England and Wales and
UK. Although this inconsistency introduces some degree of error, we believe that it is small for the following reasons. (1)
We do not consider level variables, such as GDP or population size, but instead growth rates, indices, and fractions of level
variables. (2) For the period under consideration, the population of Wales is less than 6% of that of England. (3) Scotland’s
population size relative to that of England and Wales falls from 17% in 1820 (the earliest date for which we are forced to
use UK data sources) to less than 10% today. (4) Appropriate rescaling was made in all cases.
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differential between England and Wales, with the resulting fraction indexed to match Mitchell’s estimates

in 1800; [1788-1991] - Mitchell, 1978 (UK)

Crude Birth and Crude Death Rates: [1541 - 1871] - Wrigley et al. (1997) (England); [1871 - 1986] -

Mitchell, 1978 (England and Wales).

General Fertility Rate: Computed using CBR and the fraction of females in the total population,

taken from Wrigley et al. (1997) for [1541 - 1841] (England) and Human Mortality Database for [1841 -

1999] (England and Wales).

Population Growth Rate: [1541 - 1836] - Wrigley et al. (1997) (England); [1841 - 1999] - Human

Mortality Database (England and Wales).

Age-specific survival probabilities: [1580-1837] - Wrigley et al. (1997) (England); [1841 - 1999] -

Human Mortality Database (England and Wales).

Data used in TFP Estimation: See the appendix on TFP estimation.

Barro and Becker vs. Lucas Utility

Proposition 2 The form of the parental utility used in Lucas (2002), Ut (ct, nt, Ut+1) = α log ct +

(1− α) lognt+βUt+1, represents the same preferences as the Barro and Becker utility, Ut (ct, nt, Ut+1) =

cσt + βn1−εt Ut+1, if σ → 0 and 1−ε−σ
σ = 1−α−β

αβ .

Proof. Let 1−ε−σσ = 1−α−β
αβ . Consider the following transformation of the Barro and Becker utility,

Wt (ct, nt, Ut+1) = (1− β)Ut (ct, nt, Ut+1) :

Wt (ct, nt,Wt+1) = (1− β) cσt + βn1−εt Wt+1.

Next, consider the transformation, Vt (ct, nt,Wt+1) =Wt (ct, nt,Wt+1)
α

(1−β)σ , given by

Vt (ct, nt, Vt+1) =

∙
(1− β) cσt + βn1−εt V

(1−β)σ
α

t+1

¸ α
(1−β)σ

=

Ã∙
(1− β) cσt + β

µ
n
1−ε
σ

t V
(1−β)
α

t+1

¶σ¸ 1σ! α
(1−β)

.

Now, taking the limit σ → 0 while varying ε in such a manner that 1−ε−σσ = 1−α−β
αβ , we have

lim
σ→0

Vt (ct, nt, Vt+1) =

Ã
lim
σ→0

∙
(1− β) cσt + β

µ
n
1−ε
σ

t V
(1−β)
α

t+1

¶σ¸ 1σ! α
(1−β)

=

Ã
c1−βt

µ
n
1−ε
σ

t V
(1−β)
α

t+1

¶β
! α

(1−β)

.

Note that n
1−ε
σ

t and V
(1−β)
α

t+1 remain fixed as σ → 0. Consider the final transformation, Ut (ct, nt, Vt+1) =

log Vt (ct, nt, Vt+1) , which takes the form

Ut (ct, nt, Ut+1) =
α

(1− β)

∙
(1− β) log ct +

1− ε

σ
β lognt +

(1− β)

α
βUt+1

¸
.
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Simplifying and using the assumption that 1−ε−σσ = 1−α−β
αβ , i.e., 1−εσ = (1−α)(1−β)

αβ , we obtain

Ut (ct, nt, Ut+1) = α log ct +
α

(1− β)

(1− α) (1− β)

αβ
β lognt + βUt+1

= α log ct + (1− α) lognt + βUt+1.

Balanced Growth Path Properties

As discussed in the paper, equilibrium time paths may exhibit one of three possible types of limiting

behavior. It is both the parameter values and initial conditions that determine which type of behavior

the equilibrium paths will exhibit. It is instructive to present the equations determining the properties

along each possible type of balanced growth. See Bar and Leukhina (2007) for derivations, propositions

and proofs.

(1) Malthus-Solow balanced growth,
y1t(θ̂,k0,N0)
yt(θ̂,k0,N0)

= ρy ∈ (0, 1) ∀t.

All per capital variables grow at the same rate, γc = γk = γk1 = γy = γy1 ≡ γ.

The unknowns γ, n, r, l1, ρ, ρk, ρy (where ρ =
c
k , ρk =

k1
k , ρy =

y1
y ) satisfy the following equations,

45

γ = γ
1

1−θ
2 ,

n =

µ
γ1γ

−1−φ
1−θ

2

¶ 1
1−φ−µ

,

γ =
β

n
[r + 1− δ] ,

(1− α− β)

αn

ρφl1
µrρk

= q − γ

(r + 1− δ)
,

θρk
(1− ρk)

=
φρy¡
1− ρy

¢ ,
µρy¡
1− ρy

¢ =
(1− θ) l1

(1− l1 − qn)
,

ρ+ γn =
rρk
ρyφ

+ (1− δ).

Comparative statics results: ∂n
∂γ1

> 0, ∂n
∂γ2

< 0, ∂γ
∂γ1

= 0, ∂γ
∂γ2

> 0, ∂n
∂q =

∂γ
∂q = 0.

(2) Malthus balanced growth, y2t
³
θ̂, k0, N0

´
= 0 ∀t.

All per capital variables grow at the same rate, γc = γk = γy ≡ γ. The unknowns γ, n, r, ρ (where

45There is a unique analytical solution to this system of equations, which is derived in the proof.
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ρ = c
k ) are determined by the following system of equations,

γ1γ
φ−1 = n1−φ−µ,

γn = β (r + 1− δ) ,

(1− α− β) ρφ (1− qn)

αnµr
= q − γ

r + 1− δ
,

ρ+ γn =
r

φ
+ (1− δ).

A necessary condition for such balanced growth is that n ≤
µ
γ1γ

− 1−φ
1−θ

2

¶ 1
1−φ−µ

, which ensures that

employing Solow technology is never optimal.

Comparative statics results: ∂n
∂γ1

< 0 (=0 if δ = 1), ∂γ
∂γ1

> 0, ∂n
∂q < 0 (equivalently, ∂n

∂π > 0), ∂γ
∂q > 0.

(3) Solow balanced growth,
y1t(θ̂,k0,N0)
yt(θ̂,k0,N0)

~0. Equations are derived under the assumption that A1t = 0

∀t.
All per capital variables grow at the same rate, γc = γk = γy ≡ γ. The unknowns γ, n, r, ρ (where

ρ = c
k ) are determined by the following system of equations,

γ = γ
1

1−θ
2

γn = β (r + 1− δ)

(1− α− β)

α
ρ
θ (1− qn)

(1− θ) r
= qn− β

ρ+ γn =
r

θ
+ (1− δ)

Comparative statics results: ∂n
∂γ2

< 0 (=0 if δ = 1), ∂γ
∂γ2

> 0, ∂n
∂q < 0 (equivalently, ∂n

∂π > 0), ∂γ
∂q = 0.

Cost of Raising Children, Measuring (a+ b) /a

In this appendix we explain our method of determining the average time cost of a surviving child

relative to that of a non-surviving child, (a+ b) /a = 4. Denoting the momentary cost of raising a child

by p (t), the total cost of raising a child to age τ is given by c (τ) =
R τ
0 p (t) dt. Under the assumption that

the momentary cost is a decreasing linear function of the form p (t) = η − η
25 t, we have c (τ) = τη − τ2

50η

and the total cost of raising a surviving child becomes a+ b = c (25) = 25η − 252

50 η = 12.5η.

Figure 20 displays the age specific mortality distribution for people who died before reaching age 25 in

early 17th century England. The five groups here correspond to the age ranges 0-1, 1-5, 5-10, 10-15, and

15-25. (Below, we refer to the beginning and ending ages of the ith group as Ab
i and A

e
i , respectively.) In

the figure, for example, the first point indicates that of all the people who died before reaching age 25,

45% died before age 1. The pattern of age-specific mortality, conditional on dying before age 25, persists

throughout the years considered in this paper and, in fact, is similar to that in present-day UK. Then,

assigning to every child belonging to group i the time cost associated with a child that dies at age Abi+A
e
i

2 ,
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we obtain

a = 0.45c (0.5) + 0.22c (3) + 0.12c (7.5) + 0.05c (12.5) + 0.16c (20) = 4η,

b = 12.5η − 4η = 8.5η.

It follows that b
a = 2.15 and a+b

a = 3.15. If, instead, we assign to each child in group i the time cost

associated with a child that dies at age Ab
i , we find

b
a = 3.45, and hence

a+b
a = 4.45. Finally, beause it is

reasonable to assume that the average age of death for the children belonging to a given group is closer

to Ab
i than to Ae

i , we choose the value
a+b
a = 4; this corresponds to the assumption that all children

belonging to each group i die at age Ab
i + 0.1(A

e
i −Ab

i).

Estimation of TFP Time Series

Given the calibrated values of φ, µ and θ and using the assumption of profit maximization, we back

out the time series for A1t and A2t given by (7) and (8), where rt is the rental rate of capital (%/100), wt

is the real wage (final goods per unit of labor), and ρt is the rental price of land (final goods per acre).

We work with historical data for rt (%/100), ω1t (nominal rural wages in £), ρ̃t (rental rate of land

in %/100), PΛt (price of land in £/acre), and the GDP deflator, Pt. These series yield the real wage and

the rental price of land through the identities wit =
ωit
Pt
and ρt =

ρ̃tPΛt
Pt

.

The GDP deflator, Pt, is obtained from Table 9 in Clark (2001a), and for the time period 1875-1910,

it is imputed under the assumption that it grew at the same rate as the agricultural prices given in Table

1 of Clark (2002).

Table 1 in Clark (2002) contains nominal wages in the rural sector ω1t (pence per day). Dividing these

time series by 240 changes the units into pounds. Further, multiplying the resulting time series by 300

gives the annual nominal wage, ω1t, under the assumption that 300 days are worked per year. We infer

ω2t using the time series for the wage bill in the rural sector, ω1L1, the total wage bill in the economy,

ω1L1+ω2L2, the fraction of rural labor in total labor, L1L , and the identity
ω1L1+ω2L2

ω2L2
= ω1L1

ω2L2
+1, which

implies ω2 = ω1
ω1L1+ω2L2

ω2L2
−1

1
1
L1
L

−1 .

The time series of the wage bill in the rural sector, ω1L1, is given in Table 3 of Clark (2002). The total

wage bill in the economy, ω1L1 + ω2L2, is taken from Table 3 in Clark (2001a), and for the period 1875-

1910, it is imputed using the time series of ω1L1 and the assumption that the ratio ω1L1/(ω1L1+ω2L2)

continued to fall at the same rate as it did between 1865 and 1875. The fraction of the total labor

constituted by rural labor, L1
L , is obtained from Table 1 of Clark (2001a), and for the period 1875-1910

from Maddison (1995) (page 253).

Having obtained ω1t and ω2t, we back out real wages according to the relation wit =
ωit
Pt
.

We obtain ρ̃t (rental rate of land in %/100) from Table 2 in Clark (2002). Following Clark (2002) (p.

6), we infer rt = ρ̃t + 0.04, allowing 1.5% for risk premium and 2.5% for depreciation.

Table 4 in Clark (2002b) provides us with “Total Land Rents and Local Taxes,” which represents

ρ̃tPΛtΛ, where PΛt is the price of land, £/acre. Dividing this time series by Λ = 26.524 M acres, taken

from Clark (2002) (p. 10), and by Pt, we obtain ρt =
ρ̃tPΛt
Pt

.
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Mapping of the Model to the Data: Population Size, CBR, GFR

We need to estimate the average size of the population in period t. The number of adults is constant

at 2N over the duration of a period. The number of children changes during each period due to child

mortality. In the beginning of each period, 2fN children are born. Using age-specific child mortality

rates for the age groups 0-1,1-5,5-10,10-15, 15-25 and the simplifying assumption made above that all

children belonging to group i die at age Ab
i+ν(Ae

i −Ab
i), with ν =

1
10 , we compute the average population

size in each period according to

P = 2N + [
¡
ν + (1− ν)π10

¢
+ 4

¡
νπ10 + (1− ν)π50

¢
+ 5

¡
νπ50 + (1− ν)π100

¢
+5
¡
νπ50 + (1− ν)π100

¢
+ 10

¡
νπ50 + (1− ν)π250

¢
]
1

25
2fN.

The model counterpart of CBR is then given by CBR = 10002fNP . Further, GFR is computed as GFR =

10002fNN = 2000f.
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Figure 1. Log of the Real GDP/capita Index
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Figure 2. Industrialization
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Figure 3. Urbanization
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Figure 4. Land Share in Total Income
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Figure 5. Demographic Transition
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Figure 6. CBR and Young-Age Mortality
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Figure 7. Estimated TFP
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Figure 8. Exp. 1: Changing TFP
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Figure 9. Exp. 2: Changing π
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Figure 10. Exp. 3: Changing TFP and π



30

1550 1600 1650 1700 1750 1800 1850 1900 1950 2000

4.5

5

5.5

6

6.5

7

Year

Lo
g 

of
 in

de
x 

of
 re

al
 G

D
P

/c
ap

ita

Model - Exp 1 

Model - Exp 3 

Data 

Model - Exp 2 

Figure 11. Model vs. Data: Real GDP/capita
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Figure 12. Model vs. Data: CBR
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Figure 13. Model vs. Data: GFR
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Figure 14. Model vs. Data: Industrialization
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Figure 15. Model vs. Data: Urbanization
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Figure 16. Exp. 2: Industrialization
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Figure 17. Model vs. Data: Land Share
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Figure 18. Model vs. Data: Labor Share
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Figure 19. Model vs. Data: Population Growth
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Figure 20. Child Mortality Distribution


