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Abstract: this article introduces some of the main concepts and methods of the science 

studying complex, self-organizing systems and networks, in a non-technical manner. 

Complexity cannot be strictly defined, only situated in between order and disorder. A 

complex system is typically modeled as a collection of interacting agents, representing 

components as diverse as people, cells or molecules. Because of the non-linearity of the 

interactions, the overall system evolution is generally unpredictable and uncontrollable. 

However, the system tends to self-organize, in the sense that local interactions eventually 

produce global coordination and synergy. The resulting structure can in many cases be 

modeled as a network, with stabilized interactions functioning as links connecting the 

agents. Such complex, self-organized networks typically exhibit the properties of 

clustering, being scale-free, and forming a small-world. These ideas have obvious 

applications in information science when studying networks of authors and their 

publications. 
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INTRODUCTION 

In the last two decades, a new paradigm for scientific inquiry has been emerging: 

complexity. Classical science, as exemplified by Newtonian mechanics, is essentially 

reductionist: it reduces all complex phenomena to their simplest components, and then 

tries to describe these components in a complete, objective and deterministic manner. The 

philosophy of complexity is that this is in general impossible: complex systems, such as 

organisms, societies or the Internet, have properties—emergent properties—that cannot 

be reduced to the properties of their parts. Moreover, the behavior of these systems is 

intrinsically unpredictable and uncontrollable, and cannot be described in any complete 

manner. At best, we can find certain statistical regularities in their quantitative features, 

or understand their qualitative behavior through metaphors, models and computer 

simulations.  

While these observations are mostly negative, emphasizing the traditional qualities that 

complex systems lack, these systems also have a number of surprisingly positive features, 

such as flexibility, autonomy and robustness, that traditional mechanistic systems lack. 

These qualities can all be seen as aspects of the process of self-organization that typifies 

complex systems: these systems spontaneously organize themselves so as to better cope 

with various internal and external perturbations and conflicts. This allows them to evolve 

and adapt to a constantly changing environment.  

Processes of self-organization literally create order out of chaos. They are responsible for 

most of the patterns, structures and orderly arrangements that we find in the natural 

world, and many of those in the realms of mind, society and culture. The aim of 

information science can be seen as finding or creating such patterns in the immense 

amount of data that we are confronted with. Initially, patterns used to organize 

information were simple and orderly, such as “flat” databases in which items were 

ordered alphabetically by author’s name or title, or hierarchically organized subject 

indices where each item was assigned to a fixed category. Present-day information 

systems, such as the world-wide web, are much less orderly, and may appear chaotic in 

comparison. Yet, being a result of self-organization, the web possesses a non-trivial 

structure that potentially makes information retrieval much more efficient. This structure 

and others have recently been investigated in the science of networks, which can be seen 

as part of the sciences of complexity and self-organization. 

The concept of self-organization was first proposed by the cyberneticist W. Ross Ashby 

(1) in the 1940s and developed among others by his colleague Heinz von Foerster (2). 

During the 1960s and 1970s, the idea was picked up by physicists and chemists studying 

phase transitions and other phenomena of spontaneous ordering of molecules and 

particles. These include Ilya Prigogine (3), who received a Nobel Prize for his 

investigation of self-organizing “dissipative structures”, and Hermann Haken (4), who 

dubbed his approach “synergetics”. In the 1980s, this tradition cross-fertilized with the 

emerging mathematics of non-linear dynamics and chaos, producing an investigation of 

complex systems that is mostly quantitative, mathematical, and practiced by physicists. 

However, the same period saw the appearance of a parallel tradition of “complex 
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adaptive systems” (5), associated with the newly founded Santa Fe Institute for the 

sciences of complexity, that is closer in spirit to the cybernetic roots of the field. Building 

on the work of John Holland, Stuart Kauffman, Robert Axelrod and other SFI associates, 

this approach is more qualitative and rooted in computer simulation. It took its inspiration 

more from biology and the social sciences than from physics and chemistry, thus helping 

to create the new disciplines of artificial life and social simulation. The turn of the 

century witnessed a surging popularity of research into complex networks, inspired by 

the growth of the world-wide web and the models proposed by Watts and Strogatz (6), 

and Barabasi and Albert (7). 

At present, the emerging “science of complexity” is little more than a collection of 

exemplars, methods and metaphors for modeling complex, self-organizing systems. 

However, while it still lacks integrated theoretical foundations, it has developed a number 

of widely applicable, fundamental concepts and paradigms that help us to better 

understand both the challenges and opportunities of complex systems. The present article 

will try to introduce the most important of these concepts in a simple and coherent 

manner, with an emphasis on the ones that may help us to understand the organization of 

networks of information sources. 

 

COMPLEX SYSTEMS  

There is no generally accepted definition of complexity: different authors have proposed 

different notions, none of which captures all the intuitive aspects of the concept. Yet, 

there are a number of features of complex systems that appear again and again in the 

different attempts to characterize the domain (8). One that is more or less universally 

accepted is that complexity must be situated in between order and disorder: complex 

systems are neither regular and predictable (like the rigid, “frozen” arrangement of 

molecules in a crystal), nor random and chaotic (like the ever changing movement of 

molecules in a gas). They exhibit a mixture of both dimensions, being roughly 

predictable in some aspects, surprising and unpredictable in others.  

Another fundamental feature is that complex systems consist of many (or at least several) 

parts that are connected via their interactions. Their components are both distinct and 

connected, both autonomous and to some degree mutually dependent. Complete 

dependence would imply order, like in a crystal where the state of one molecule 

determines the state of all the others. Complete independence would imply disorder, like 

in a gas where the state of one molecule gives you no information whatsoever about the 

state of the other molecules. 

The components of a complex system are most commonly modeled as agents, i.e. 

individual systems that act upon their environment in response to the events they 

experience. Examples of agents are people, firms, animals, cells and molecules. The 

number of agents in the system is in general not fixed as agents can multiply or “die”. 

Usually, agents are implicitly assumed to be goal-directed: their actions aim to maximize 

their individual “fitness”, “utility” or “preference”. When no specific goal can be 

distinguished, their activity still follows a simple cause-and-effect or condition-action 

logic: an agent will react to a specific condition perceived in the environment by 
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producing an appropriate action. The causal relation or rule connecting condition and 

action, while initially fixed for a given type of agent, can in some cases change, by 

learning or evolutionary variation.  

The environmental conditions to which an agent reacts are normally affected by other 

agents’ activity. Therefore, an action by one agent will in general trigger further actions 

by one or more other agents, possibly setting in motion an extended chain of activity that 

propagates from agent to agent across the system. Such interactions are initially local: 

they start out affecting only the agents in the immediate neighborhood of the initial actor. 

However, their consequences are often global, affecting the system of agents as a whole, 

like a ripple produced by a pebble that locally disturbs the surface of the water, but then 

widens to encompass the whole pond.  

 

NON-LINEARITY 

The spreading of a wave is not a complex phenomenon, though, because its propagation 

is perfectly regular and predictable, and its strength diminishes as its reach widens. 

Processes in complex systems, on the other hand, are often non-linear: their effects are 

not proportional to their causes. When the effects are larger than the causes, we may say 

that there is an amplification or positive feedback: initially small perturbations reinforce 

themselves so as to become ever more intense. An example is the spread of a disease, 

where a single infection may eventually turn into a global pandemic. Another example is 

the chain reaction that leads to a nuclear explosion. When the effects are smaller than the 

causes, there is a dampening or negative feedback: perturbations are gradually 

suppressed, until the system returns to its equilibrium state.  

Interactions with positive feedback are very sensitive to their initial conditions: a change 

in that condition may be so small that it cannot be observed, yet result in a drastically 

altered outcome. This is called the butterfly effect after the observation that, because of 

the non-linearity of the system of equations governing the weather, the flapping of the 

wings of a butterfly in Tokyo may cause a hurricane in New York. The non-observability 

of the initial perturbations means that the outcome is in principle unpredictable, even if 

the dynamics of the system were perfectly deterministic: no weather monitoring system 

can be so accurate that it senses all the movements of butterfly wings… This explains 

why weather forecasts cannot be truly reliable, especially for the longer term. Positive 

feedback will amplify small, random fluctuations into wild, unpredictable swings, 

making the overall behavior of the system chaotic. An illustration can be found in the 

erratic up-and-down movements of quotations on the stock exchange. 

In spite of the omnipresence of fluctuations, most systems around us appear relatively 

stable and predictable. This is due to the presence of negative feedback, which suppresses 

the effects of such fluctuations. However, while negative feedback makes a system more 

predictable, it also makes it less controllable: if we try to change the state of such a 

system, we may find that our changes are counteracted, and that whatever we do the 

system always returns to its own “preferred” equilibrium state. Examples can be found in 

social systems where attempts from leaders or governments to change the behavior often 

are actively resisted so that they eventually come to nothing.  
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The dynamics of complex systems typically exhibits a combination of positive and 

negative feedbacks, so that certain changes are amplified and others dampened. This 

makes the system’s behavior both unpredictable and uncontrollable. Moreover, such 

systems are normally open, which means that they exchange matter, energy and/or 

information with their wider environment. For example, an economy or ecosystem is 

dependent on the climate, and the amount of sunlight, rain and heat that it produces. 

These in-going and out-going flows make the dynamics even more complicated, since we 

cannot know every external event that may affect the system. For example, a thriving 

economy or ecosystem may suddenly collapse because of the invasion by a foreign pest. 

Furthermore, the input of energy (such as sunlight) tends to feed amplification processes, 

so that they never reach the equilibrium that would otherwise follow the exhaustion of 

resources.  

 

MODELLING COMPLEX SYSTEMS 

For the above reasons, traditional deterministic models (such as systems of partial 

differential equations) of truly complex systems are in general impracticable. Instead, 

researchers prefer using computer simulations. Here the system’s evolution is traced step-

by-step by iteratively applying the rules that govern the agents’ interactions, thus 

generating the subsequent states of the system. Such simulations typically include a 

generator of random variations, to represent the effect of unpredictable perturbations. A 

typical setting is inspired by the Darwinian mechanism of natural selection, in which the 

rules that determine an agent’s behavior are randomly “mutated” and sometimes 

recombined with the rules of another agent, after which the “fittest” or best performing 

agents or rules are selected to carry on, while the others are eliminated. To explore the 

possible behaviors of the system, many different “runs”—with different initial conditions 

or random variations during the process—of the simulation are performed. The main 

variable values for each run are collected. These results are then analyzed statistically to 

discover recurring trends.  

This sometimes produces very robust results, in the sense that all runs, however different 

in their initial behavior, eventually appear to converge to the same type of stable pattern. 

In the majority of cases, the outcomes can be classified into a relatively small number of 

distinct categories. This provides the researchers with a qualitative picture of the most 

likely results—and hopefully an insight into the factors that promote one outcome rather 

than another one. It is only exceptionally that no clear pattern can be discerned in the 

outcomes of the different simulation runs. The reason that complex systems in spite of 

their intrinsic unpredictability tend to settle into a relatively small set of recognizable 

behaviors is their inherent tendency to self-organize. 

 

SELF-ORGANIZATION 

Self-organization can be defined as the spontaneous emergence of global structure out of 

local interactions. “Spontaneous” means that no internal or external agent is in control of 

the process: for a large enough system, any individual agent can be eliminated or 
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replaced without damaging the resulting structure. The process is truly collective, i.e. 

parallel and distributed over all the agents. This makes the resulting organization 

intrinsically robust and resistant to damage and perturbations. 

As noted, the components or agents of a complex system initially interact only locally, 

i.e. with their immediate neighbors. The actions of remote agents are initially 

independent of each other: there is no correlation between the activity in one region and 

the activity in another one. However, because all components are directly or indirectly 

connected, changes propagate so that far-away regions eventually are influenced by what 

happens here and now. Because of the complex interplay of positive and negative 

feedbacks, this remote influence is very difficult to predict and may initially appear 

chaotic.  

To explain the appearance of organization, we need to make one further assumption, 

namely that the outcome of interactions is not arbitrary, but exhibits a “preference” for 

certain situations over others. The principle is analogous to natural selection: certain 

configurations are intrinsically “fitter” than others, and therefore will be preferentially 

retained and/or multiplied during the system’s evolution. When the agents are goal-

directed, the origin of this preference is obvious: an agent will prefer an outcome that 

brings it closer to its goals. For example, in a market a firm will prefer the outcome that 

brings it more profit. In an ecosystem, an animal will prefer an outcome that brings it 

more food, or that reduces its risk of being attacked by a predator. But even inanimate, 

physical objects, such as molecules or stones, have an in-built “preference”, namely for 

the state that minimizes their potential energy. Thus, a stone “prefers” the stable state at 

the foot of a hill to an unstable state on the top. Here, “preference” simply means that the 

unstable state will sooner or later be abandoned, while the stable one will be retained. 

 

CO-EVOLUTION AND SYNERGY 

Given such a preference, it is clear why an individual agent tends to “organize” itself so 

as to settle down in its preferred situation. The problem is that what is best for one agent 

is in general not best for the other agents. For example, more profit for a firm generally 

means less profit for its competitors, and an animal safe from attack by a predator means 

a predator that goes hungry. However, interaction is in general not a zero-sum game: a 

gain by one party does not necessarily imply an equivalent loss by the other party. In 

most cases, an outcome is possible in which both parties to some degree gain. For 

example, a firm may increase its profits by developing a more efficient technology, 

which it then licenses to its competitors, so that they too become more productive. In that 

case, we may say that the interaction exhibits synergy: the outcome is positive for all 

parties; all involved agents “prefer” the outcome to the situation without the interaction.  

In general, such a collective solution is still a compromise, in the sense that not all agents 

can maximally realize their preferences. Not all the stones can end up in the same, lowest 

spot at the bottom of the hill, but they can all end up much lower than they were, by 

reducing the irregular hill to an even plain. Such a compromise reduces the tension or 

“conflict” between competing agents. (Such conflict would otherwise lead to instability 

as every action of the one triggers a counteraction by the other.) In that sense, we may 
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say that the agents have mutually adapted; they have coordinated their actions so as to 

minimize friction and maximize synergy. 

The achievement of this stable, synergetic state is in general a process of trial-and-error 

or variation-and-selection. Because agents are independent and interact locally, and 

because the dynamics of the system is unpredictable, they in general do not know what 

the effect of their actions on the other agents will be. They can only try out actions 

because they appear plausible, or even choose them at random, and note which ones bring 

them closer to their goals. Those actions can then be maintained or repeated, while the 

others are abandoned. This is the fundamental dynamics of natural selection. The main 

difference with traditional Darwinian evolution is that trial-and-error happens 

simultaneously on different sides: the agents co-evolve, the one adapting to the other, 

until they mutually “fit”. 

 

FROM LOCAL TO GLOBAL ORGANIZATION 

To shift from local coordination to global organization, we just need to note that all 

interactions between all agents in the complex system will tend towards such a coherent, 

stable state, until they are all mutually adapted. This process generally accelerates 

because of a positive feedback. The reason is that if two or more agents have reached a 

mutually fit state, this defines a stable assembly to which other agents can now adapt, by 

trying to “fit” into the assembly as well. The larger the assembly, the more “niches” it has 

in which other agents can fit. The more agents join the assembly, the larger it becomes, 

and the more niches it provides for even more agents to join. Thus, the assembly may 

grow exponentially until it encompasses the global system.  

This growth is typically faster when the agents are identical (e.g. molecules of the same 

substance) or similar (e.g individuals from the same species), because the solution found 

by one agent will then suit the other agents as well, so that minimal further trial-and-error 

is needed once a good arrangement is locally found. This typically happens in processes 

of physical self-organization, such as crystallization, magnetization or the emergence of 

coherent light in a laser. When the agents are all different (e.g. species in an ecosystem), 

each in turn needs to explore in order to find its unique niche in an environment that 

continues to evolve, resulting in a much less explosive development. 

In the case of identical agents, the global structure that emerges is typically uniform or 

regular, because the arrangement that is optimal for one agent is also the one optimal for 

the other agents. As a result, they all tend to settle into the same configuration. An 

example is a crystal, where all molecules are arranged at regular intervals and in the same 

orientation. In this case, self-organization produces a perfectly ordered pattern. In cases 

where the agents are diverse, like in an ecosystem or a market, the resulting structure is 

much more complex and unpredictable. 
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GLOBAL DYNAMICS 

If we now consider the system as a whole—rather than the agents individually—we may 

note that the system too undergoes a process of variation. This can be seen as an 

exploration by the system of different regions of its state space, thus following an 

intricate trajectory. (The state space of the system is merely the Cartesian product of the 

state spaces of all its components). Self-organization then means that the system reaches 

an attractor, i.e. a part of the state space that it can enter but not leave. In that sense, an 

attractor is a region “preferred” by the global dynamics: states surrounding the attractor 

(the attractor basin) are unstable and will eventually be left and replaced by states inside 

the attractor.  

A non-linear system has in general a multitude of attractors, each corresponding to a 

particular self-organized configuration. If the system starts out in a basin state, it will 

necessarily end up in the corresponding attractor, so that the long-term behavior can in 

principle be predicted (assuming we know what the attractor is, which is generally not the 

case). However, if it starts out in a state in between basins, it still has a “choice” about 

which basin and therefore which attractor it ends up in, and this will depend on 

unpredictable fluctuations. An attractor generally does not consist of a single state, but of 

a subspace of states in between which the system continues to move. The self-organized 

configuration, while more stable than the configuration before self-organization, is 

therefore in general not static but full of on-going activity. 

Self-organization can be accelerated by augmenting the initial variation that makes the 

system explore its state space: the more different states it visits, the sooner it will reach a 

state that belongs to an attractor. The simplest way to increase such variation is to subject 

the system to random perturbations, i.e. “noise”. For example, if you shake a pot filled 

with beans, the beans will explore a variety of configurations, while tending to settle into 

the one that is most stable, i.e. where the beans are packed most densely near the bottom 

of the pot. Thus, shaking will normally reduce the volume taken in by the beans. This 

principle was called “order from noise” by the cyberneticist von Foerster (2) and “order 

through fluctuations” by the thermodynamicist Prigogine (3). 

  

EMERGENCE 

The pattern formed by the stabilized interactions, mutual “fittings”, or “bonds” between 

the agents determines a purposeful or functional structure. Its function is to minimize 

friction between the agents, and thus maximize their collective “fitness”, “preference” or 

“utility”. Therefore, we may call the resulting pattern “organization”: the agents are 

organized or coordinated in their actions so as to maximize their synergy. However, such 

organization by definition imposes a constraint on the agents: they have lost the freedom 

to visit states outside the attractor, i.e. states with a lower fitness or higher friction. They 

have to obey new “rules”, determining which actions are allowed, and which are not. 

They have lost some of their autonomy. The resulting mutual dependency has turned the 

collection of initially independent agents into an “organization”, i.e. a cohesive whole 

that is more than the sum of its parts. The goal of this “superagent” is to maximize overall 

synergy rather than individual utility. In a sense, the agents have turned from selfish 
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individualists into conscientious cooperators. They have become subordinated (or 

“enslaved” in the terminology of Haken (4)) to the regulations of the collective. 

This whole has emergent properties, i.e. properties that cannot be reduced to the 

properties of its parts. These include various specific interaction rules, and global aspects 

such as robustness, synergy, coherence, symmetries and order. Different attractor regimes 

will have different properties. Since it cannot be a priori predicted which attractor the 

system will end up in, the emergent properties of the whole are not determined by the 

behavior of its parts. We can rather say that the behavior of the parts is determined or 

constrained by the properties of the higher-level whole. This is called downward 

causation. For example, the way DNA codes for proteins is not determined by the 

chemical properties of the molecules that constitute DNA but by the evolutionary history 

of living cells. The languages that different people speak are not determined by the 

neurophysiology of their brain, but by the self-organization of shared lexicons and 

grammatical rules within a community of communicating individuals.  

While the self-organized whole is intrinsically stable, it is still flexible enough to cope 

with outside perturbations. These perturbations may push the system out of its attractor, 

but as long as the deviation is not too large, the system will automatically return to the 

same attractor. In the worst case, the system is pushed into a different basin but that will 

merely make it end up in a different attractor. In that sense, a self-organizing system is 

intrinsically adaptive: it maintains its basic organization in spite of continuing changes in 

its environment. As noted, perturbations may even make the system more robust, by 

helping it to discover a more stable organization.  

 

COMPLEX NETWORKS 

The structure emerging from self-organization can often be represented as a network. 

Initially, agents interact more or less randomly with whatever other agents happen to pass 

in their neighborhood. Because of natural selection, however, some of these interactions 

will be preferentially retained, because they are synergetic. Such a preferentially 

stabilized interaction may be called a bond, relationship, or link. A link couples or 

connects two agents, in the sense that linked agents preferentially interact with each 

other. The different links turn the assembly of agents into a network. Within the network, 

the agents can now be seen as nodes where different links come together. Perhaps the 

most intuitive example is a social network, which links people on the basis of friendship, 

trust or collaboration. Other well-known examples are the Internet, which connects 

computers via communication links, and the Web, which connects documents via 

hyperlinks. A more abstract example is the biochemical network that connects the 

molecules that react with each other within a cell in order to produce further molecules.  

It is easy to define an abstract mathematical network. You just need a set N consisting of 

nodes ni, and then select any subset L of links from the set of all possible connections 

between two nodes:  

 L = {(ni, nj)} ! N " N.  
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However, complexity researchers have observed that “natural” (i.e. self-organized rather 

than artificially designed) or “complex” networks tend to exhibit a number of specific 

features: they are scale-free, small-world, and clustering. These features are defined 

statistically: certain configurations of links appear with a much higher probability than 

chance. We will here try to explain these particular link distributions from the dynamics 

of self-organization of a network. 

 

RANDOM NETWORKS 

Let us assume that we start with a collection N of independent agents (future nodes of the 

network) that initially interact randomly, thus creating random links. This produces a 

random network, i.e. a network where the links have been selected by chance from the set 

N " N of all possible connections. Random networks have been extensively studied in 

mathematics. They exhibit the phenomenon of percolation: when links between 

randomly chosen nodes are added one by one, larger and larger subsets of N become 

connected into cohesive subnetworks. When more links are added, subnetworks will 

become connected to each other, defining a larger connected subset. When a certain 

threshold is passed, all subsets become connected so that there is now just a single 

connected network. It is said that the network percolates: imagine the links as tubes and a 

liquid being injected into one of the nodes; when the network percolates, the liquid will 

spread throughout the whole system, because any node is now directly or indirectly 

connected to any other node by an uninterrupted path or chain of links. Whatever 

happens in one node of the network can now in principle propagate to every other node in 

the network. 

 

SMALL-WORLD NETWORKS 

The maximum length of the shortest path connecting two nodes in a connected network is 

called the diameter of the network. If the diameter is small relative to the number of 

nodes, the network is said to be a small-world network. The notion derives from the “it’s 

a small world” phenomenon in social networks: two strangers encountering each other 

will often find that they have one or more acquaintances in common. Studies of social 

networks have indicated that it is in general possible to find a short sequence of friend-of-

a-friend links connecting two people. It has been estimated that on the scale of the world 

as a whole, two randomly chosen individuals are unlikely to more than 6 such links 

removed from each other (“six degrees of separation”). 

Whereas random networks have the small-world property, the opposite applies to regular 

networks. An example of such a network is a two-dimensional lattice or grid, where each 

node is connected to its 4 direct neighbors (left-right-up-down), each of which is 

connected to its 4 neighbors, and so on. In a square grid of 100 000 " 100 000 = 10 

billion nodes, the nodes at the opposite ends of a diagonal are 200 000 links apart.  This is 

the diameter of the network. Compare this to the distance of a mere 6 links that 

apparently characterizes the world social network with its nearly 10 billion nodes! 

Regular networks, where nodes are linked according to strict, repetitive rules rather than 
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random connections, are typically large-world networks. This means that a change in one 

node will normally take a very long time to propagate to the rest of the network. As a 

result, the network will be slow to react to perturbations or innovations. 

We may conclude that complex networks are not regular. But they are not random either: 

their linking patterns do obey certain regularities, albeit not strictly. In fact, it has been 

shown that a regular network can easily be turned into a small-world network by adding a 

small number of randomly chosen links to the otherwise strictly constrained links (6). 

These random links by definition do not care about the “distances” within the regular 

grid: e.g. they may directly connect nodes that are otherwise 100 000 links apart. Such 

random links create “wormholes” or “shortcuts” between otherwise remote regions, thus 

bringing them suddenly within easy reach. As a result, a small number of random links 

added to a regular network spectacularly decreases the shortest path length between 

nodes. 

 

CLUSTERING 

One of the non-random features that characterize complex networks is clustering. 

Clustering means that when A is linked to B, and B to C, then the probability is high (or 

at least much higher than could be expected in a random network) that A is also linked to 

C. In other words, two randomly chosen connections of B have a much higher than 

chance probability of being connected themselves.  

The origin of this can best be explained by considering social networks. Here, the 

clustering property can be formulated as “the friends of my friends are (likely to be) 

friends”. In other words, friends tend to form a cluster or community in which everyone 

knows everyone. The reason is simple: when you regularly encounter your friends, you 

are likely to encounter their friends as well. More generally, if an agent A frequently 

interacts with an agent B, and B interacts with C, then the probability is high that A will 

sooner or later interact with C as well. If A and B have some similarity in aims that helps 

them to find synergy, and the same applies to B and C, then A and C are likely to 

discover a synergetic relationship as well.   

 

SCALE-FREE NETWORKS 

A less intuitive feature of complex networks is that their distribution of links tends to 

follow a power law (7): there are many nodes with few links, and few nodes with many 

links. More precisely, the number of nodes N with a given degree (i.e. number of links) K 

is proportional to a (negative) power a of that degree: 

  N(K) ~ K
-a  

The values of the exponent a tend to vary between 1 and 3. When a = 1, N is inversely 

proportional to K: in other words, as the number of links goes up, the number of nodes 

with that number of links goes down proportionally. A network that obeys such a power 

law is called scale-free. 
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This property has been established empirically, by counting the number of links in 

various networks, such as the web or social networks. It turns out that a few nodes have 

an inordinate amount of links. They function as the hubs of the network, the central 

“cross-roads” where many different connections come together. The most common 

nodes, on the other hand, have just a few links. This means that nodes are strongly 

differentiated: something that happens to a hub will have a disproportionately large 

influence on the rest of the network, while something that happens to an ordinary node 

may have little or no consequences. This has great practical implications: an innovation 

or perturbation that appears in a hub (e.g. a central network server, a high-visibility web 

page, or a person who is known by many) may change the whole network in a short time, 

because it is immediately propagated far and wide. By identifying the hubs in a network, 

it becomes easier to manipulate its dynamics, for good or for bad. Obvious applications 

are the spread of computer viruses, contagious diseases, new ideas, or fashions.  

Whereas clustering tends to increase distances in a network, by creating locally 

connected clusters that have few links outside the cluster, the presence of hubs has the 

opposite effect. Because hubs have a very large number of links they are likely to link 

into many different clusters, thus acting as shortcuts that reduce the distance between the 

clusters. But this also means that removing a hub may break the connections between 

otherwise remote regions of the network. This is a danger especially in communication 

networks such as the Internet, where the failure of a small number of hubs may split up 

the network into separate “islands” that no longer communicate with each other. Similar 

dangers exist in ecosystems where the disappearance of one or more key species—i.e. 

“hubs” on which many other species depend—may lead to a complete breakdown of the 

system. 

Barabasi and Albert (7) have proposed a theoretical explanation for power-law 

distributions based on the mechanism of preferential attachment: new nodes joining the 

network preferentially establish links with nodes that already have a large number of 

links. They have shown that when the probability of linking to a node is exactly 

proportional to the number of links of that node the resulting network obeys a power law 

with a = 3.  

For a more general scenario for the self-organization of a complex network, consider a 

collection of agents that initially only interact locally with those that happen to pass in 

their neighborhood. Some of these interactions will be stabilized into enduring links. 

Once they have some links, the locality principle entails that agents are more likely to 

forge links with the “friends of their friends” than with randomly chosen others, thus 

promoting clustering. But agents that already have a high number of links also have many 

“friends of friends” (i.e. nodes two links away) and therefore they will be more likely to 

develop additional links within this 2-step neighborhood or cluster. The more links an 

agent has, the larger its neighborhood, and therefore the larger the probability that it will 

receive even more links from within this neighborhood. Similarly, the larger the cluster, 

the more likely it is to receive random links from outside, thus extending the 

neighborhood outwards and linking it into other clusters. This determines a positive 

feedback, which leads to an explosive growth in the number of links. The agents that 

happen to be in the center of such a quickly growing cluster will become the hubs of the 

network. 
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APPLICATION TO KNOWLEDGE NETWORKS 

Having reviewed key concepts typifying complex, self-organizing systems and networks, 

we will sketch some possible applications of these ideas in the area of information 

science. Information science focuses on the knowledge that is available in the documents 

that are available in libraries and databases across the world. These documents are 

typically produced by authors or researchers who investigate a domain, building further 

on the results of other authors, and publishing their results in new papers or books that 

refer to these used sources. This knowledge producing system can be viewed as a very 

complex network, formed by the researchers, the concepts they use and the publications 

they produce. All the "nodes" of the network are linked directly or indirectly, by relations 

such as citation, collaboration or information exchange. This complex system is 

intrinsically self-organizing: no individual or organization is in charge, or can decide in 

which direction knowledge should develop. Novel, globally available knowledge 

emerges out of the spontaneous, local interactions between the individual agents.   

By applying the concepts and methods from the domain of complexity, we may hope to 

better understand the development and structure of this network. We can view it as a 

complex, adaptive system that generates new patterns (knowledge) through the complex, 

non-linear interactions between multitudes of autonomous agents (individual scientists 

and organizations).  This system has the structure of a heterogeneous network (Fig. 1), 

consisting of three basic types of nodes: agents, i.e. the individuals or organizations who 

actively process and produce knowledge, containers, i.e. the documents, databases or 

journals in which the produced knowledge is stored and made available to other agents, 

and concepts, i.e. the abstract elements of knowledge itself, which are typically 

represented as keywords.  
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Fig. 1: a heterogeneous knowledge network, containing authors, concepts and documents 

 

There already exists some preliminary work on subnetworks of this encompassing 

network, such as collaboration networks between authors (9) or citation networks 

between documents. This research has found that they possess typical features of 

complex networks, such as being scale-free and small-world. For example, citation 

networks typically contain a small number of hubs (“citation classics”) with very many 

links, while most publications only gather a few citations. Some of the most successful 

recent methods for information retrieval, such as the PageRank algorithm underlying the 

Google search engine, or the HITS method developed by Kleinberg (10), implicitly use 

this network structure to identify the “hubs” of a hypertext network.  

More interesting even than the static analysis of existing networks is the modeling of 

their evolution. We may assume that an information network will self-organize through 

the propagation of information between nodes across links, creating new links and nodes 

in the process. For example, assume that information is transferred from paper A to 
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researcher B. After reading the paper, B may decide to get some more information linked 

to paper A, e.g. by contacting A's author, or reading some of A's references. These in turn 

may refer B to other authors or papers relevant for B's interests, and so on. Some of these 

additional sources may turn out to be particularly important for B's research, inspiring B 

to develop a new concept, published in the form of one or more papers. This process will 

create links (e.g. B may start collaborating with another author, or refer in new papers to 

papers discovered in this way) and nodes (e.g. new papers, new concepts, new journals). 

Such links and nodes will tend to cluster around a small number of “hubs”—thus defining 

a new “community” of related authors, documents and ideas.  

The emergence of a new scientific domain is a good example of the self-organization of 

such a community of knowledge (11), where people from initially diverse backgrounds 

find each other around a common interest, which gradually coalesces into a new 

paradigm. This process could be observed by mapping the network of authors, 

publications and keywords in a particular domain at regular intervals (e.g. every 2-5 

years), and analyzing it in terms of clustering, hubs, average distances, etc. The change of 

these features over time may show processes of self-organization taking place. A good 

theory of the self-organization of knowledge communities would propose a number of 

processes and parameters that allow us to predict where, when and how such self-

organization is most likely to take place. Such a theory would help us to find not only the 

presently most authoritative concepts, publications or authors (hubs), but those that are 

likely to become so in the future. This would provide a very powerful instrument to 

uncover emerging trends and to direct attention and investment towards the most 

promising people, ideas and information sources. 

 

CONCLUSION 

The science studying complex, self-organizing systems and networks is still in its 

infancy. Yet, it already provides us with a powerful new perspective and a number of 

promising conceptual and modeling tools for understanding the complex phenomena that 

surround us, including organisms, the Internet, ecosystems, markets and communities.  

On the one hand, the complexity perspective reminds us to be modest in our aims: many 

phenomena in nature and society are simply too complex to be analyzed in the traditional 

scientific manner. Openness and non-linearity make a complex system in principle 

unpredictable and uncontrollable: the tiniest internal or external perturbations can be 

amplified into global changes. Therefore, we will never be able to capture it in a 

complete and deterministic model. Still, agent-based computer simulations can help us to 

get an insight into the qualitative dynamics of the system, and to classify and delimit the 

likely scenarios for its further evolution.  

On the other hand, the complexity perspective gives us new reasons for optimism: while 

we cannot truly control a complex system, it tends to self-organize to a state where it 

regulates itself. This state tends to increase the utility or fitness of the system’s active 

components or agents, by coordinating their interactions so as maximize synergy. The 

resulting organization is distributed over all the agents and their interactions, and thus 

much more robust and flexible than any centralized design. Moreover, it determines a 
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number of emergent, global properties that cannot be reduced to the properties of the 

individual components. By understanding the underlying mechanisms, we may be able to 

facilitate and stimulate such self-organization, or to drive it in one direction rather than 

another.  

One of the most recent applications of the complexity perspective is the analysis of 

complex networks, such as the World-Wide Web, and the non-linear processes that 

generate them. This has led to the identification of common statistical features of such 

networks: small-world, clustering and scale-free link distributions. These notions promise 

a wealth of applications in the analysis of information networks, potentially helping us 

with the organization, management, retrieval and discovery of relevant knowledge within 

masses of ill-structured and continuously changing data. 
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