Aviation Hazards: Thunderstorms and Deep Convection

TREND

Effects of Thunderstorms on Aircraft

Australian Government

Bureau of Meteorology

Contents

- Aviation weather hazards associated with convection / thunderstorms:
 - 1. Turbulence
 - 2. Wind shear
 - 3. Icing
 - 4. Reduced visibility
 - 5. Lightning
 - 6. Damaging hail
 - 7. Tornado / Water Spout
 - 8. Heavy precipitation
 - 9. Water ingestion
 - **10. Altimeter Interference**

Hazards at take-off / landing, in flight, on the ground

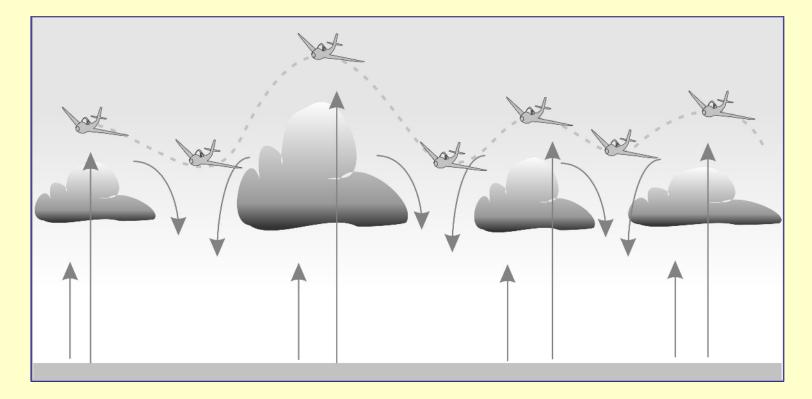
Australian Government Bureau of Meteorology

Turbulence

Vertical displacements, velocities and accelerations

Gust front from horizontal outflow from down draft spreading out from storm base / wind shears

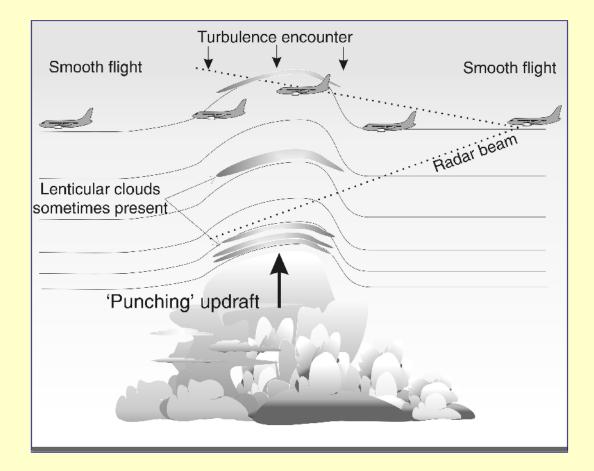
Australian Government Bureau of Meteorology


Turbulence Hazards

- Up / down draft boundaries within the cloud
- Leading edge and upper surface of the gust front:
 - Strong vertical and horizontal wind shears
- Funnel clouds (e.g., tornadoes)
- Upper extent of updraft within cloud

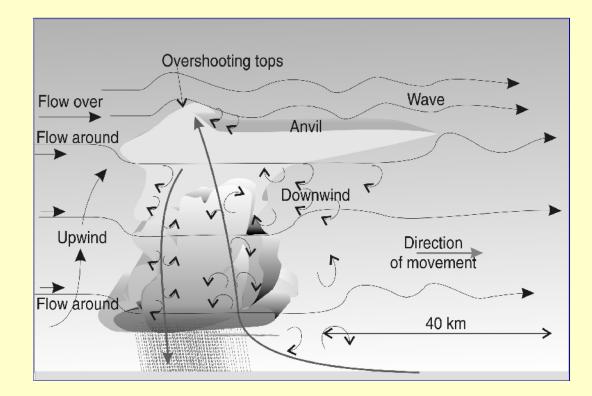
Australian Governmen Bureau of Meteorology

Vertical Motion Close to Convective Clouds

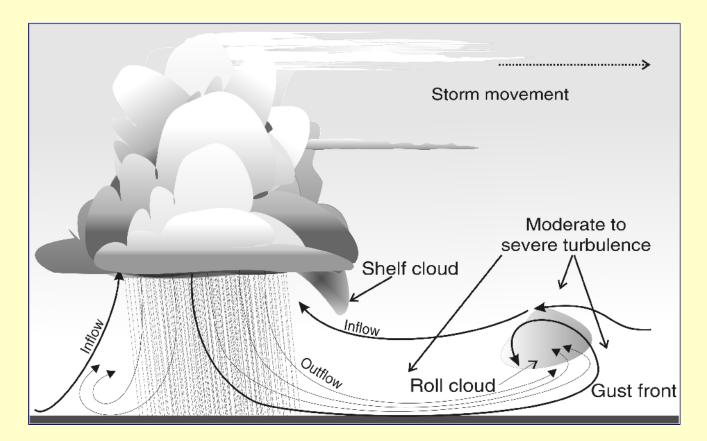


Aircraft deviations due to convective up and down motion

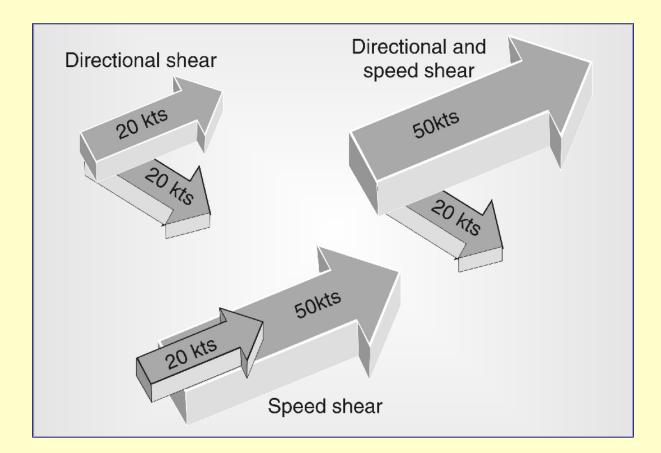
Australian Government Bureau of Meteorology


Cruising Above Cumulonimbus Tops

Australian Government Bureau of Meteorology


Turbulence Associated with a Large Cumulus Cloud

Australian Government Bureau of Meteorology

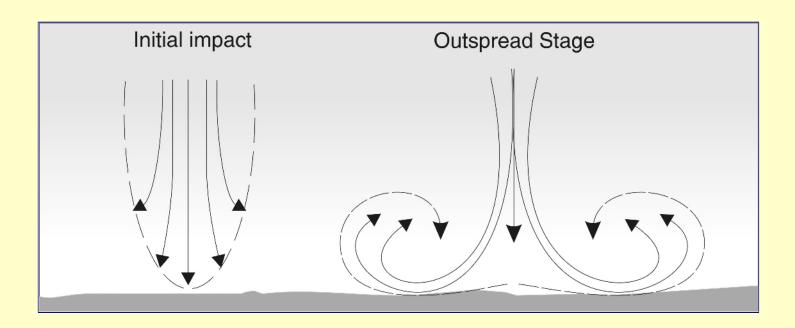

Turbulence Associated with a Downdraft

Australian Government Bureau of Meteorology

Wind Shear: Shears in Horizontal Winds

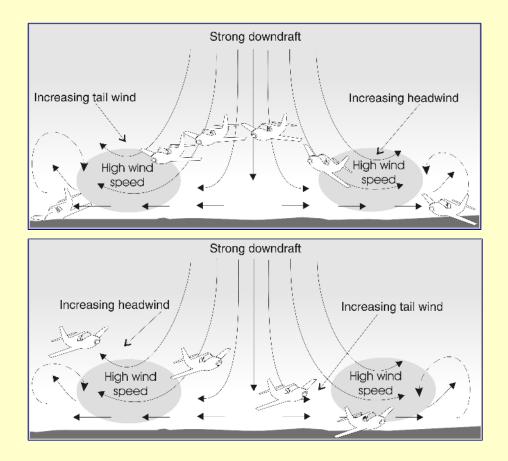
Australian Government Bureau of Meteorology

Low-level Wind Shear Hazard


Thunderstorm out-flow:

- Associated with low-level wind shear
- Capable of upsetting the flight of an aircraft, sometime disastrously

Australian Government Bureau of Meteorology


Downburst Schematic

Australian Government Bureau of Meteorology

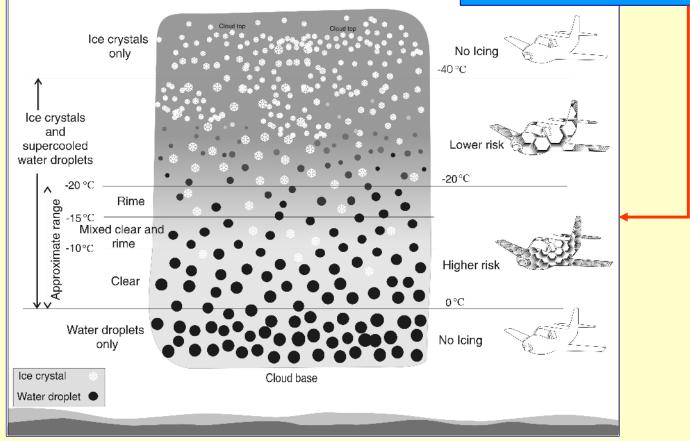
Downburst Wind Shears: Effects on Landing and Taking Off

Australian Government Bureau of Meteorology

Icing in Thunderstorms

≻Mechanism:

Thunderstorm updrafts support large drops of super-cooled liquid water


Super-cooled water may freeze upon impact with an aircraft

Australian Government Bureau of Meteorology

General Icing Regimes

An abundance of large supercooled water droplets in a thunderstorm cloud between 0° C and -20° C

Australian Government Bureau of Meteorology

Hazardous Effects of Aircraft Icing

> Accumulated icing may lower aircraft performance:

- Increase stalling speed
- Destroy optimal aerodynamic flow over the aircraft
- Increase drag
- Decrease lift
- Cause engine failures
- Cause propeller vibration
- In jet engines, damage compressor blades
- Interfere with:
 - Control surfaces and landing gear
 - > Instrument readings (e.g. air speed, altitude and vertical speed)
 - Communication systems
- Reduce visibility

Australian Government Bureau of Meteorology

Icing Intensity

>Trace Ice is perceptible – not hazardous unless exposure is for an extended period ≻Light Accumulation rate may cause problems if flight is prolonged >Moderate Short periods of exposure become hazardous >Severe Short term exposures are hazardous and an immediate diversion is necessary

Australian Government Bureau of Meteorology

Reduced Visibility

Mechanism:

Horizontal visibility Due to precipitation Showers of rain, snow and hail

Vertical visibility Due to obscuring cloud Cumulonimbus, Stratus, etc.

Australian Government Bureau of Meteorology

Lightning

- A high-current electrical discharge caused by a thunderstorm ...
 - Cloud-to-cloud
 - Within-cloud (~ 50 % of all strikes)
 - Cloud-to-ground prime hazards to people (risk of electrocution) or property on the ground
 - Generally, the higher the frequency of strikes
 The more severe the thunderstorm
 - In precise location and timing, lightning strikes are difficult to predict

Australian Government Bureau of Meteorology

Lightning

Australian Government Bureau of Meteorology

Lightning: Aircraft Damage

Direct damage

- Puncturing the fuselage
- Burning, melting or distorting aircraft parts

Indirect damage

- Temporary or permanent damage to avionics
- Fire in the fuel system
- Temporary blinding of the pilot
 - Visual or instruments

Australian Government Bureau of Meteorology

The Effects of Lightning on Aircraft

Flight Safety Australia Magazine article: "Bolt from the Blue"

http://www.casa.gov.au/fsa/2005/aug/48-50.pdf

Australian Government Bureau of Meteorology

Damaging Hail

- Hail can inflict severe damage to an aircraft in flight or on the ground
- > Hail is mostly a mid-latitude phenomenon
- > An intense thunderstorm allows:
- Storm updrafts are strong
 - Large hail is suspended and circulated up and down within the could until it falls from the storm cloud
 - Hail stones accumulate mass by sweeping through super-cooled water droplets and ice particles

Australian Government Bureau of Meteorology

Funnel Clouds: Tornado / Water Spout

Tornadoes / water spouts are usually identified by a funnel cloud

Tornadic winds are extremely destructive – the most violent weather phenomenon

Can cause structural damage to an aircraft

Tornado formation depends on the wind shear environment of the severe storm

Australian Government Bureau of Meteorology

Heavy Precipitation

- Thunderstorms are capable of extreme rainfall intensities
- Heavy precipitation can:
 - Reduce visibility in flight and on the ground
 - "St. Elmo's Fire"
 - Precipitation, especially in vicinity of a thunderstorm can build up static electric on the aircraft
 - Interferes with radio transmission
 - Noisy disturbance at low radio frequencies
 - Wet runways reduce stopping ability upon landing and decrease steering control on the ground
 - Flooding of airfield, boggy environs

Australian Government Bureau of Meteorology

Water Ingestion

- If thunderstorm updraft suspends sufficient water droplets ...
 - Jet engine may ingest more water than design specifications
 - Can lead to engine flame-out
 - There is no known successful operational recovery procedure

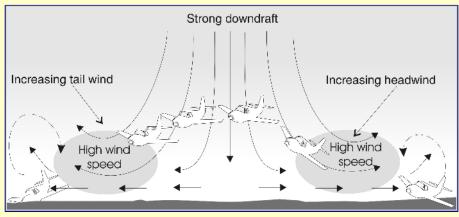
Australian Government Bureau of Meteorology

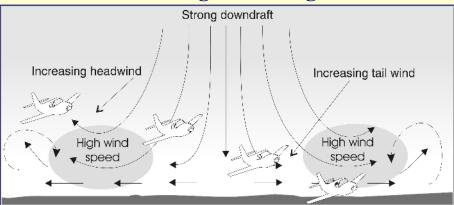
Altimeter Interference

- Air pressure changes often respond to a thunderstorm's downdraft ...
 - Usually, the pressure changes are very rapid
 - As the storm approaches, often the pressure falls steadily
 - Air pressure then rises rapidly
 - With the onset of gust front and arrival of the cold down draft (with heavy precipitation)
 - Air pressure falls back to ambient pressure when the storm moves away
 - Total cycle time = 10 to 15 minutes only
 - Whence, the altimeter could be of the order of 100 feet in error

Australian Government Bureau of Meteorology

Take-off / Landing Thunderstorm Hazards


- Statistically, the most hazardous phase of flight is take-off and /or landing
 - Turbulence
 - Wind shear
 - Reduced Visibility:
 - Vertical visibility, due to Cloud (Cb, St, etc)
 - Horizontal visibility, due to Precipitation (SHRA, SHGR, SHSN)
 - Lightning
 - Damaging hail
 - Tornado / Water Spout
 - Heavy precipitation
 - Water ingestion


Australian Government Bureau of Meteorology

Downdrafts Interfering with Landing and Taking Off

Taking off, right to left

Landing, left to right

Australian Government Bureau of Meteorology

In-flight Thunderstorm Hazards

- Turbulence
- Wind shear
- Icing
- Reduced Visibility:
 - Vertical visibility, due to Cloud (Cb, St, etc)
 - Horizontal visibility, due to Precipitation (SHRA, SHGR, SHSN)
- Lightning
- Damaging hail
- Tornado / Water Spout
- Water ingestion

Australian Government Bureau of Meteorology

On-the-ground Thunderstorm Hazards

- Turbulence / Gusts / Strong Winds
- Lightning
- Damaging hail
- Tornado / Water Spout
- Heavy precipitation

Australian Government Bureau of Meteorology

Strong Gusts Blew these Aircraft into Each Other on the Ground

Australian Government Bureau of Meteorology

Summary

- Thunderstorms are extremely hazardous to flight
- Pilots should avoid thunderstorms because of the number and severity of associated hazards

Forecasting thunderstorm activity in a timely and accurate way has great utility to the aviation Industry

Australian Government Bureau of Meteorology

Forward to

Satellite and radar observations of thunderstorms

Australian Government Bureau of Meteorology