
Chapter 12

Degenerate Ideal Fermi

Gases

Applications of the properties of a degenerate fermion gas are relevant to (i) the
electrons in a metal and (ii) the interiors of very dense stars (white dwarf and
neutron stars).

12.1 The completely degenerate limit

In the completely degenerate limit, which corresponds to zero thermal motions,
all the lowest energy states of the particles are occupied, up to a maximum
energy, called the Fermi energy, and all the higher energy states are unoccupied.
Let the spin degeneracy for each state be g, with g = 2 in all cases of interest
to us. Then the occupation number for a completely degenerate Fermi gas is

n(p) =

{

g for p < pF ,

0 for p > pF ,
(12.1)

where pF is the Fermi momentum, which is the momentium corresponding to
the Fermi energy. Now consider the limit T → 0 of the FD distribution (11.8),
viz., n(ε) = g/{exp[(ε−µ)/kT ]−1}. This gives n(ε) = g for ε < µ and n(ε) = 0
for ε > µ. Comparison with (12.1) shows that the Fermi energy is equal to the
chemical potential, µ = εF , for a completely degenerate Fermi gas.

The relativistically correct relation between the energy and momentum is
ε = (m2c4 + p2c2)1/2. However, it is convenient to define the Fermi energy to
be zero when the Fermi momentum is zero, so that (12.1) applies. This requires
that one subtract the rest energy in writing

εF = (m2c4 + p2
F c

2)1/2 −mc2. (12.2)

In order to treat both relativistic and nonrelativistic particles together, it is
helpful to introduce hyperbolic functions by writing

p = mc sinhχ, ε = mc2 coshχ, (12.3)
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where the relation cosh2 χ − sinh2 χ = 1 is used. Let χ = χF correspond to
the Fermi energy. A more convenient quantity in the following is the parameter
ξ = 4χF . Then one has

pF = mc sinhχF = mc sinh(ξ/4), εF = mc2[cosh(ξ/4)− 1]. (12.4)

The quantities N , U and P may be evaluated relatively simply for the distri-
bution (12.1). The number of particle corresponding to the distribution (12.1)
is found by integrating over all of the 6-dimensional phase space:

N =

∫

d3
xd3

p

(2πh̄)3
n(p) =

4πgV

3

( pF

2πh̄

)3

=
4πgV

3

( mc

2πh̄

)3

sinh3(ξ/4). (12.5)

The internal energy is given by a similar integral, with an extra factor ε−mc2,
corresponding to the kinetic energy per particle in the integrand. The integral
in this case is most easily performed by changing the variable of integration
from p to χ, with dp = mc coshχdχ. One finds

U

V
=

4πg

(2πh̄)3

∫ pF

0

dpp2 [(m2c4 + p2c2)1/2 −mc2]

=
4πg

32(2πh̄)3
m4c5(sinh ξ − ξ). (12.6)

The pressure may be determined from Ω = −PV , as in (11.14). This gives

Ω = − 4πgV

3(2πh̄)3

∫ pF

0

dpp3 dε

dp
= − 4πg

(2πh̄)3
m4c5

32

[

1

3
sinh ξ − 8

3
sinh(ξ/2) + ξ

]

.

(12.7)
In the nonrelativistic (NR) and ultrarelativistic (UR) limits it is much simpler
to perform the integrals, cf. Exercise 12.1). The result obtained, either directly,
or from (12.7) with (12.5) is

P0 =



















h̄2

5m

(

6π2

g

)2/3 (

N

V

)5/3

NR,

2πh̄c

4

(

3

4πg

)1/3 (

N

V

)4/3

UR.

(12.8)

The thermodynamic potential has a numerical value determined by Ω0 =
−P0V , but it must be expressed as a function of µ. To write down the form of
Ω0 for a completely degenerate Fermi gas, one uses (12.5) and µ = εF . Hence
one finds

Ω0 = − 4πgV

3(2πh̄)3















(2mµ)5/2

5m
NR,

µ4

4c3
UR,

(12.9)

where the subscript 0 indicates that the result applies only at T = 0.
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Figure 12.1: The occupation number for a completely degenerate Fermi gas is
illustrated (solid line) and how it it modified in the almost degenerate limit
(dashed line).

12.2 The almost degenerate limit

The completely degenerate limit corresponds to T → 0. One may define a Fermi
temperature in terms of the Fermi energy by writing TF = εF /k. According to
(12.5), pF and εF are determined by the value of the number density n = N/V .
It is convenient to assume that pF , εF and TF are defined in terms of n for any
value of T . The degenerate limit corresponds to T � TF , and the nondegenerate
limit to T � TF . In the almost degenerate limit one assumes T � TF and
expands in powers of T/TF . The distribution function is then of the form
illustrated schematically in Figure 12.1.

For a Fermi gas at T = 0 the chemical potential is equal to the Fermi energy,
µ = εF . This is not the case for T 6= 0. As T increases at fixed n, µ decreases,
passes through zero and becomes large and negative in the nondegenerate limit.
In the almost degenerate limit, µ is approximately equal to εF and the actual
expansion made is in powers of kT/µ.

In the almost degenerate limit we wish to expand an integral of the form

I =

∫ ∞

0

dε
F (ε)

e(ε−µ)/kT + 1
(12.10)

in powers of kT/µ. The first step is to change the variable of integration to
z = (ε− µ)/kT , so that one has ε = µ+ kTz, and then one assumes that kTz
is a small correction, and one expands in terms of it. After some algebra one
finds

I =

∫ ∞

0

dεF (ε) + (kT )2F ′(µ)

∫ ∞

0

dz
z

ez + 1

+
1

3
(kT )4F ′′′(µ)

∫ ∞

0

dz
z3

ez + 1
+ · · · , (12.11)
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where a prime denotes a derivative. The integrals may be evaluated explicitly,
cf. Exercise 12.2), to give

I =

∫ ∞

0

dεF (ε) +
π2

6
(kT )2F ′(µ) +

7π4

360
(kT )4F ′′′(µ) + · · · , (12.12)

which is the desired expansion.
In the case of the evaluation of the thermodynamic potential, Ω, the specific

integrals that appear have F (ε) = ε3/2 and F (ε) = ε in the NR and UR cases,
respectively. One finds

Ω = Ω0



















1 +
5π2

8

(

kT

µ

)2

− 7π4

384

(

kT

µ

)4

+ · · · NR,

1 + 2π2

(

kT

µ

)2

− 7π4

40

(

kT

µ

)4

+ · · · UR.

(12.13)

where Ω0 is given by (12.9). The value of µ may be found by inserting (12.13)
into N = −∂Ω/∂µ, expressing the resulting value of N/V in terms of εF using
(12.5). This gives an expansion of εF in powers of µ, which may be inverted to
find an expansion of µ in powers of εF , cf. Exercise 12.3).

12.3 The Richardson effect

Historically, one of the earliest successes of FD statistics relates to the theory
of thermionic emission from metals. Let us compare the predictions of classical
theory (MB statistics) with the theory assuming that the electrons in a metal
constitute an almost degenerate Fermi gas.

Due to their thermal motions, some electrons can always escape from a
metal. Inside the metal the electrons are at a uniform potential, −W , where W
is the work function of the metal. Let the z-axis be normal to the surface. Then
electrons with p2

z/2m > W should be able to escape. The number of electrons
that leave unit area of the surface in unit time is (g = 2)

R =

∫

pz>(2mW )1/2

d3
p

(2πh̄)3
pz

m
n(p). (12.14)

In the classical and Fermi cases one has

n(p) =







2e(µ−ε)/kT (MB),

2

e(ε−µ)/kT + 1
(FD).

(12.15)

For ε ≥W � kT , which is the case of relevance in (12.14), the FD distribution
is indistinguishable from the MB distribution. (That is, even for an almost
degenerate Fermi gas, the high energy tail of the distribution is of the same
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Figure 12.2: The work function for a metal, illustrating how the effective value
Weff in the degenerate Fermi case differs from the classical value, W .

form as for a classical thermal gas.) Hence, in either case the integral in (12.14)
gives

R =
4πm(kT )2

(2πh̄)3
e(µ−W )/kT . (12.16)

The interpretation of (12.16) is quite different in the two cases. In the case of a
classical gas one has, cf. (11.10),

eµ/kT =
Nλ3

T

2V
, (12.17)

so that µ is large and negative, whereas in the degenerate Fermi case µ = εF is
positive.

The work function, W , may be measured experimentally, by applying an
electric field to the metal surface and observing how the rate, R, of thermionic
emission changes as a function of the potential energy, eφ, of this field. The
prediction of the classical theory, R ∝ neT

1/2e−W/kT , is not compatible with
the experimental data. The FD case implies a smaller effective work function,
Weff = W −εF , than does the classical theory, as illustrated in Figure 12.2. The
FD case also implies a different functional form R ∝ T 2e−Weff/kT . It is found
that εF can be a sizable fraction of W , so that the effective work function can
be much less than classical theory would imply.

12.4 White dwarf stars

Another major success of the theory of degenerate Fermi gases was in the theory
of white dwarf stars. White dwarf stars are supported against their self-gravity
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by degenerate electron pressure. The basic theory for white dwarf stars was
worked out by Chandrasekhar in the 1930s, when he was a student on a ship
from India to England to begin his PhD studies at Cambridge.

In any star, the gravitational force is balanced by a pressure gradient. In an
ordinary star, called a “main sequence” star, thermal pressure balances gravity.
Thermal pressure requires that the star be maintained at a high temperature,
and because a hot body loses energy through its thermal (“black body”) radi-
ation, an energy source is required. That source is nuclear energy in a main
sequence star. When its energy source is exhausted, a main sequence star must
die, and leave some form of remnant star. The remnants is usually either a
white dwarf or neutron star either of which are supported by degeneracy pres-
sure, which does not require an ongoing energy source. It is accepted that stars
less than about four times as massive as the Sun leave a white dwarf as a rem-
nant. More massive stars explode as supernovas and leave behind a remnant
that is usually a neutron star. The only other possibility is that the star goes
into continuous collapse under its own self gravity, leading to a black hole.

The relation between the gravitational field and the mass density is of the
same form for all stars. Let ψ(r) be the gravitational potential of a (spher-
ically symmetric) star, and let ρ(r) be its mass density, where r is the ra-
dial coordinate. The radial component of the gravitational acceleration is then
−dψ(r)/dr. The contribution to this acceleration from the gravitation force due
to a shell of matter of thickness dr, volume 4πr2dr and hence mass 4πρ(r)r2dr is
−4πGρ(r)r2dr, where G = 6.67×10−11 N m2kg−2 is Newton’s constant. Hence,
the gravitational potential is determined by

∇2ψ(r) =
1

r2
d

dr

[

r2
dψ(r)

dr

]

= −4πGρ(r). (12.18)

Equation (12.18) describes only how the gravitational field is related to the mass
profile. A model for a main sequence star requires three other equations that
relate the pressure, temperature and energy flux to the properties of the matter.
One of these equation relates the pressure gradient to the gravitational force:

dP (r)

dr
= −GM(r)ρ(r)

r2
, (12.19)

where

M(r) = 4π

∫ r

0

dr′r′2 ρ(r′) (12.20)

is the mass inside a radius r. The radius of the star is R and its mass is
M = M(R). The boundary conditions are dP (r)/dr = 0 at r = 0 and P (R) = 0.
These equations also apply to a white dwarf star. Although (12.19) applies to a
white dwarf star, it is simpler to impose the condition that the star be in force
balance using a different argument.

In a white dwarf star the only important source of pressure is the completely
degenerate electrons. The pressure is given by (12.7). We may express P (r) in
terms of the Fermi energy εF(r) by eliminating the variable ξ between (12.4) and
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(12.7). At T = 0, εF may be interpreted as the local chemical potential. There
is another contribution to the chemical potential. Recall that the chemical
potential is the energy required to add a particle to the system. To add a
particle at radius r one also needs to give it the gravitational potential energy
required by a particle at that radius. Let this potential be U(r), which is just
the mass time ψ(r). Each electron has a proton or another ion associated with
it, such that the star is charge neutral. The appropriate mass associated with
an electron added to the system is the mean mass per electron ζemH , where
mH is the mass of a hydrogen atom. The chemical potential for electrons inside
the star must be a constant in equilibrium:

µ(r) = εF(r) + ζemHψ(r) = constant. (12.21)

The mass density is ρ(r) = ζemHne(r), with ne = N/V . Equation (12.21) is
more convenient than (12.19) for describing the equilibrium of a white dwarf
star.

Using (12.21), one may express ψ(r) in terms of εF on the left hand side of
(12.18). The right hand side involves only constants and the number density
of electrons, ne = N/V , which may be written in terms of εF using (12.5).
In this way (12.18) is reduced to a differential equation for εF as a function
of r. It is convenient to introduce dimensionless variables by writing ξ = r/R
and combining the other constants to define an energy εc, and writing εF (r) =
εcf(ξ). In this way, (12.18) reduces to

1

ξ2
d

dξ

[

ξ2
df(ξ)

dξ

]

=

{−[f(ξ)]3/2 NR,

−[f(ξ)]3 UR,
(12.22)

with

εc =



















32(2πh̄)6

213π4ζ4
em

4
Hm

9/2
e G3R6

NR,

[

3(2πh̄)3c3

32π2ζ2
em

2
HG

3R2

]1/2

UR.

(12.23)

One needs to solve (12.22) numerically, with the boundary conditions f ′(0) =
0 and f(1) = 0. Chandrasekhar found

f(0) =

{

178.2 NR,

6.897 UR,
f ′(1) =

{−132.4 NR,

−2.018 UR.
(12.24)

The numerical solution may be integrated to find the mass of the star.
Apart from a numerical value, the mass of the star may be estimated from the

central density of the star times its volume. The central density is ζemHεcf(0),

and the volume is 4πR3/3. In the NR case one has M ∝ ε
3/2
c R3 ∝ 1/R3, and

in the UR case one has M ∝ ε3cR
3 which is independent of R. This leads to

the surprising conclusion that as the mass of a white dwarf star increases its
radius decreases (M ∝ 1/R3) until the Fermi energy becomes relativistic, when
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Figure 12.3: The variation of the mass of a white dwarf star is illustrated
schematically as a function of radius.

the mass approaches a constant, cf. Figure 12.3. This limiting mass is called
the Chandrasekhar mass. Its value is

Mc =
3.1

ζ2
em

2
H

(

h̄c

G

)3/2

=
1.45

(ζe/2)2
M�, (12.25)

where M� is the mass of the Sun, and where ζe = 2 corresponds to fully ionized
He4, C12 or O16, which are the likely constituents of white dwarf stars. No
white dwarf star can exist with a mass greater than this limiting value. Most
observed white dwarf stars have a mass between ∼ 0.5M� and M�.
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Exercise Set 12

12.1). Evaluate the integral in equations (12.6) and (12.7) by performing the
integrals in terms of p in the nonrelativistic (pF � mc) and ultrarelativistic
(pF � mc) separately. Show that your answers reproduces the expressions
obtained from (12.6) and (12.7) by assuming sinh ξ ≈ ξ � 1 and sinh ξ ≈
1
2e

ξ � 1 in these two limits, respectively.

12.2) Fill in the steps between (12.11) and (12.12) by using the integral

∫ ∞

0

dz
zx−1

ez + 1
= Γ(x)ζ(x), (E12.1)

where the gamma function satisfies

Γ(x+ 1) = xΓ(x), Γ(1/2) =
√
π, (E12.2)

and hence Γ(3/2) =
√
π/2 and Γ(5/2) = 3

√
π/4, and where the Riemann zeta

function

ζ(x) =

∞
∑

n=1

1

nx
, (E12.3)

for n an integer has the value

ζ(2n) =
22n − 1

2n
π2nBn, (E12.4)

where Bn are the Bernoulli numbers,

B1 =
1

6
, B2 =

1

30
, B3 =

1

42
, · · · . (E12.5)

12.3) Show that the chemical potential for an almost degenerate, nonrelativistic
Fermi gas is related to the Fermi energy by

µ = εF

[

1− π2

12

(

kT

εF

)2

+ · · ·
]

. (E12.6)
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