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Abstract 
 
In this paper, we examine the SECOAS project 

which aims to design and field a self-organising, 
wireless sensor network for environmental monitoring. 
We examine the background of the project and follow 
the design through to an implementation in field trials. 
We show how implementation issues led to several 
significant changes in the direction of the project. We 
explore one aspect of the project—the operating system 
kOS—in detail, and explain the rationale for various 
design decisions. The lessons learnt during this 
process will be of interest to other researchers and 
developers in the areas of wireless sensor networks. 

1. Background 

Currently, oceanographic studies frequently 
involve using large, expensive devices to log data, 
typically for several months at a time. During each 
deployment, there are substantial risks that the 
platform will be damaged or destroyed [2]. This 
approach also has the disadvantage that the sensors 
measure environmental phenomena at only one 
physical location. 

An alternative is to use a network of sensors to 
build a spatio-temporal picture of the environment. 
This leads to a system that is robust even when nodes 
are destroyed or the network topology changes. 
Furthermore, nodes can be added at will or 
reconfigured for various purposes. The availability of 
increasingly low-cost microprocessors and radio 
devices has made this approach feasible from an 
economic point of view. 

2. Introduction 

With these developments in mind, we proposed a 
project that would investigate a range of novel and 
emerging technologies needed to create self-organising 
networks of microcontroller-base nodes, integrate the 

best ideas into a sensor network, and prove that the 
network can be used by scientists to meet the needs of 
a dynamic and challenging sensing application. We 
focussed on science as the first application because 
environmental monitoring is of immense importance in 
improving the science of climate change, and because 
this simplifies requirements in areas such as security—
yet is challenging enough to adequately test the fielded 
system. 

Our initial objectives [1] are shown below. As we 
will show later, practical considerations necessitated 
re-evaluations leading up to the first field trial. 

 
• To develop and demonstrate decentralised 

algorithms to enable automated adaptation to 
failures, upgrades and requirement changes in a 
distributed network of microcontroller-based 
sensors 

• To investigate and demonstrate novel cooperative 
adaptive data handling techniques 

• Design lightweight, low-power, ad-hoc wireless 
communication protocols for a range of physical 
layer media and end-to-end guarantees for network 
services 

• To explore methods for implementing locally 
intelligent sensors capable of dynamic self-
configuration 

• To develop and test an appropriate control 
interface for scientific user communities 

• To demonstrate and prove the new technologies in 
a realistic application context 

• To undertake a major re-evaluation of 
environmental sensing field methodologies, and 
design new approaches that fully exploit the new 
technology 
 
The first point in the list above states a 

requirement for the system to be responsive to high-
level user-forwarded policies. As we shall see later, 
this requirement proved to also be a mandatory for 
implementation testing purposes. In contrast to most 



existing work, the proposed system was also designed 
to enable sharing of processing load and establishment 
of consensus amongst groups of devices. This 
“collegiate” behaviour is crucial when the devices are 
heterogeneous, or when the load varies across the 
network, both of which are expected in natural 
environments. 

From this initial plan, the necessary components in 
an overall system can be designed. In Figure 1 we 
show the top-level view of system components. As can 
be seen, there is one base-station node on the land-side 
of the system. A small network of floating sensor 
nodes is placed in the ocean for sensor monitoring. We 
examine the components in more details below. 

We initially decided to design the system to 
support the collection of a range of environmental 
parameters, including temperature, pressure, salinity, 
turbidity and current direction. From our project 
objectives above, we designed the system to forward 
sensor data to the shore-based node. 
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Figure 1. Top-level view of system components, showing 

typical distances 

3. Project Organisation 

The project involved three industrial and three 
academic partners [15]. In the first collaboration, a 
small company—whose experience is in sensor 
packages for water monitoring—built locally-
intelligent sensors which adapt to local changes, such 
as remaining battery power. These sensors also execute 
a distributed application that communicates with other 
nodes in order to adapt to network conditions. 

University College London, together with a large 
industrial research partner collaborated to implement 
various adaptation, data handling and control features. 
This included building a simple operating system 
(kOS) [3][4][12] and various applications 
[5][7][8][9][10] to handle sensor data and radio 
packets. A custom operating system was designed due 
to several unique features of our approach, as described 
in [3]. A robust, self-configuring networking layer was 
also designed in this collaboration [5]. 

A third small industrial partner, together with an 
academic partner collaborated to build the wireless 

communications infrastructure necessary for 
networking the nodes. As well as investigating 
physical layer properties, work here also focussed on 
the design of a self-configuring network layer, as 
mentioned above. 

A separate academic partner provided our primary 
expertise in oceanography. This was necessary firstly 
to drive the project with reasonable user requirements, 
and secondly to provide domain knowledge when 
examining the integrity of the sensor data. 

Most of the project partners began significant 
contributions around mid-2003, with the first field trial 
scheduled for summer (August) 2004. A second (full) 
field trial was scheduled for summer 2005, with project 
completion by early 2006. Both field trials were 
planned to be conducted at the Scroby Sands site, off 
the Norfolk Coast of the United Kingdom. Other minor 
field trials were planned to test various aspects of the 
system. 

4. Initial research and simulation 

Most of the applications designed to execute on 
kOS were already simulated algorithms when 
development began in the project (such as the 
gossiping/“firefly-flashing” protocol). Below we 
briefly examine some kOS applications and look at the 
research conducted into radio communications. 

4.1. Information dissemination 

All application objects need to communicate with 
(at least) their instances on radio-adjacent nodes to be 
most effective—that is, they are inherently distributed 
applications. For data that must be shared across the 
network, we have designed a gossiping/“firefly-
flashing” transport protocol [10] using hash functions 
[13]. In this scheme, objects exchange small hash 
functions (data “signatures”) between nodes to 
determine whether data stored on nodes is the same. If 
differences are detected, nodes increase their 
exchanges until data is identical. Using this scheme, 
whole-network traffic naturally adapts to local 
changes—traffic increases when differences between 
nodes are detected via hash function exchanges, and 
returns to normal after exchanges occur. 

This algorithm was also simulated extensively 
prior to the start of the SECOAS project [10], and is 
also a continuing research effort. 

4.2. Quorum sensing 

Quorum sensing is based on the idea that 
significant power savings can be made by separating 
the network nodes into quorums (clusters), each of 
which nominates a node to send data on the quorum’s 



behalf. In our case [9], quorums are not based on 
arbitrary geographical or topological boundaries but 
are rather based on the structure of the observed 
parameter of interest. This results in energy savings, as 
nodes which observe similar parameters do not report 
their findings individually but use representative nodes 
to report parameters. 

Prior to the SECOAS project (and continuing), 
simulation work was carried out to observe the 
response and limitations of this algorithm using various 
environmental models of the coastal environment. 
These models were designed to capture the wave 
variations that occur during various weather 
conditions. The cluster quality, used energy and 
execution time of the algorithm was then compared 
with other established clustering mechanisms. This 
algorithm is also implemented in our hardware nodes 
across an emulated network. 

4.3. Auto-location 

Auto-location is a necessary service for other 
applications, such as spatial data fusion and quorum 
sensing. It is inherently difficult to perform on sensor 
nodes due to limited power and processing capabilities. 
Therefore, our efforts have focussed on developing 
simple methods to estimate position, based on a 
ranging capability between nodes. We have simulated 
this algorithm [14][7], and also implemented the 
algorithm across various networked nodes. 

4.4. Data fusion 

It was important to analyse known environment 
data from the Scroby Sands site in order to properly 
dimension our solution. For example, we wished to 
understand the dynamic ranges, rates of change and 
correlations between the modalities of various 
parameters of the environmental parameters in order to 
scale the sampling functions accordingly. This also 
affected the ways in which we planned to spatially and 
temporally compress the data, as described in [14]. 

4.5. Adaptive Sensing 

The design of our adaptive sampling policy [8] 
involves the use of both local and distributed 
information. Local information (such as battery power 
remaining and queue length) is used to modify local 
behaviour. Parameters defining this local behaviour 
and a related fitness measure are passed through the 
network. This has the effect of spreading types of 
behaviour of the sensing application, so the whole 
network adapts to the conditions of the environment 
and nodes. This work also involved significant 
amounts of simulation work [8] before it was 

successfully implemented into the sensor module of the 
prototype system. 

4.6. Radio Communications 

Several trials were conducted to gauge to 
characteristics of radio transmissions at sea. This was 
done for several sea states. Bit-error rate correlations 
and receive signal strength were calculated with 
several antenna designs and inter-node distances. 

5. Initial design 

In this section we briefly show the initial system 
design decisions. 

5.1. kOS 

The design of kOS was built upon several guiding 
principles. Note that a more thorough examination of 
the kOS design can be seen in [4]. Our design 
principles are shown below: 

 
• Modularity of object design—we defined a simple 

messaging interface between both system and 
application objects. This decouples object function 
from location. For example, the adaptive sensing 
object could just as easily be located on the kOS 
board or the sensor module. This allows 
configuration changes to be easily made, for 
example from separate boards to a monolithic 
device (vice-versa). Development is also greatly 
simplified 

• Simple execution model—this involved a single 
threaded execution model for all objects, except 
for occasional services of communication devices. 
This eliminates most context information 

• Power awareness—using firefly/gossiping and 
adaptive scheduling, as well as other standard 
techniques such as using shutdown features, the 
kOS adapts to the lowest power usage as possible 
under the circumstances. We may then extend the 
system lifetime; keeping battery sizes small, for 
example 

• Simple processing load control—by controlling 
“iterating” application objects, such as quorum 
sensing and auto-location, we can scale the 
processor load to local conditions, as explained in 
Section 6.2 

 
The kOS was designed to execute on a 

microcontroller, as it needs access to interrupts, a 
USART for communication, timers, logical ports, etc, 
and must be debugged and re-programmable. We 
chose the Microchip PIC 18F452 microcontroller [6], 
as it (amongst other candidates) (i) has the necessary 



features we wanted; (ii) was already used by one of our 
industrial partners and (iii) had a large user community 
ensuring ongoing access to timely support. 

5.2. Networking 

For networking, our design used a system of 
inducing transmissions to form a hierarchy of nodes, as 
explained in [5]. In this scheme, the base-station node 
sets the receive and transmit timing of all nodes in the 
network by forming a hierarchy of nodes with inducing 
transmissions—signals that force listening nodes into 
particular operational time-slots. Once the network 
topology is functional, policies flow to the network 
from the base-station, whilst data flows back to shore 
from the sensor nodes. 

5.3. Radio communications system 

The radio was designed to operate in the ISM band 
at 173 MHz, to operate in half-duplex at a 2% duty 
cycle. The design was for a maximum node spacing of 
1km. The radio also used an RS232 communication 
interface for access to the kOS module. 

5.4. Sensor module 

The initial design for the sensor module was based 
on the approach used by Intelisys in past projects—that 
is, using PIC microcontrollers for control; a large flash 
memory for data storage and custom enclosures. The 
sensor module was also designed to use an RS232 
communications interface for access to the kOS 
module. 

6. Development 

One of the most fundamental design decisions to 
make was how to allocate functions to physical 
devices. In our case, we could have located the kOS 
board inside the submerged sensor module. However, a 
substantial risk of failure existed in the 
communications cable breaking between the floating 
buoy and the submerged module. By co-locating the 
kOS and radio boards, the kOS board could still 
perform some network routing and processing of data 
from other nodes. This design for the first trial is 
shown in Figure 2. It shows the main components in a 
SECOAS node (we call this a “seno” from SECOAS 
node). Figure 3 shows a photo of the prototype buoy. 
This buoy is tethered to a submerged sensor module 
which logs data locally. 

The sensor module occasionally passes important 
data to the kOS which stores and forwards it to the 
base-station. Various applications use this data and 
communicate with instances of themselves across the 

network. User polices and application data are 
forwarded by the radio module to the kOS—
information is passed to the sensor module if 
necessary, for example and data re-transmission 
requests may be forwarded by the user to a particular 
node. 

In the sections below, we show some issues that 
perhaps were not identified as important (if at all) in 
the early stages of the project; but which became 
increasingly important as implementation issues 
became apparent. 
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Figure 2. System configuration of SECOAS node (Seno) 

 

 
 

Figure 3. Photo of prototype buoy with attached 
radio/kOS enclosure. 

6.1. kOS module 

As work on the various modules continued, it 
became clear that at UCL (and indeed, at other partner 
locations) we required our own laboratory-based 
facility for testing inter-node communications, 
especially for distributed application object messaging. 
More importantly, we required some kind of emulation 
of the radio and sensor modules. We then devised a 
facility which emulated most facets of the physical, 



logical and application interfaces for both kOS-
external modules. We configured this facility such that 
some boards could be “radio adjacent” to other 
boards—in short, an emulated network of any topology 
could be created. Received Signal Strength was also 
injected to each kOS board upon every transfer, 
primarily for the use of auto-location application. This, 
again, was a feature of the hardware radio boards. 

Thus a facility was created whereby distributed 
applications could execute across a network as if on a 
real, fielded system. Similarly, we emulated the 
essential features of the interface to a sensor module. 

With the emulation facility, testing at UCL could 
continue without the constant need for hardware from 
project partners. The development schedules for each 
partner was decoupled from UCL and the overall risks 
were reduced. This process also vindicated the design 
decision to use standard RS232 connectors rather than 
I2C, for example, in that simple, standard tools could 
be employed to test and interface the boards. 

6.2. kOS task scheduling 

Each application object, upon execution, usually 
decides on its next execution time—and execution 
times are relatively constant each instance. That is, 
they are designed with iterative execution in mind. 
Thus we can control the quality of the result an 
application produces simply by altering the period of 
its execution. 

As we began to appreciate that processor CPU 
contention may affect the operation of kOS during 
development, we sought methods to manage the total 
processor load. By noting the simple relationship 
between application result and processing load by 
performing off-line measurements, we were able to 
implement a simple method for control over total 
processor load. 

6.3. kOS robustness of operation 

In SECOAS, seno robustness is very important as 
we are operating a remote, embedded system. By 
robustness, we mean several things: (1) that each node 
will operate as expected, and if not, is expected to 
reboot itself in an attempt to bypass any intermittent 
problems; (2) that applications will operate given 
unknown radio connectivity conditions; and (3) that 
applications will operate acceptably when load-
controlled by the scheduler (see Section 6.2 above). 

The in-built PIC Watch-Dog Timer (WDT) is the 
first simple step in ensuring that each node is robust as 
in point (1) above. This hardware feature simply resets 
the PIC microcontroller if the WDT is not reset within 
a preset time (several seconds), and is a standard 
method used for embedded applications. 

However, after a WDT power-on reset, the 
problem that led to the reset may occur again. To give 
ourselves a significant amount of safety during field 
trials, we sought a method to limit or prevent the 
execution of particular application objects. We are 
currently investigating countering problems by keeping 
a record of the last object to execute—after a WDT 
power-on reset, the system examines this record and 
adds this object ID to a list of prohibited objects. The 
scheduler then ignores (or more closely monitors) calls 
to this object, bypassing this problem for that particular 
node. 

7. Implementation issues 

For the first trial, various implementation issues 
were discovered that changed the design. In this 
section we attempt to list some example items. 

7.1. Power consumption 

During the early stages of the project, the power 
efficiency of our senos was considered paramount, as 
the devices would have to remain in situ for possibly 
months at a time. At that time, the devices were 
conceived as small, possibly wallet-sized devices. As 
the development began, it became clear that at least for 
the first trial, demonstrating the essential features of 
the project should take precedence over device 
miniaturisation or an emphasis on efficiency. 

The design decision was then to move towards 
large (60cm diameter) buoys with 18�18�10cm 
enclosures for the radio and kOS boards. Similarly, the 
sensor module was not required to be miniature. 
Consequently, relatively large batteries could be used 
to power the kOS board. This led to the design of the 
kOS board on an off-the-shelf prototype board from 
Microchip [11], with the plan to build custom boards 
later (with all the power efficiencies inherent in the 
future designs). This prototype board was suitable in 
that it contained all necessary features, and would 
allow UCL to initially focus on software development. 
This was important, as UCL had initially planned to 
only support software. 

One of the tangible problems associated with an 
emphasis on power efficiency was found in the design 
of the radio module. In particular, a microcontroller 
was chosen for this board that would operate under 
adverse battery voltage conditions, extending its 
lifetime significantly. The downside to this was that the 
microcontroller had a limited number of logical ports, 
complicating the design of the logical communications 
interface between the radio and kOS boards. 



7.2. Interfaces 

Interfacing modules and applications proved to be 
one of the most difficult steps in design a functioning 
prototype system. The geographic distribution of 
project partners led to a difficulty in understanding, not 
of the physical interfaces, but rather of the logical 
nature of interfaces. Similarly, application-writers 
tended to produce good work in isolation; interfacing 
with other applications proved more challenging.  

7.3. Communications 

The radio and networking design was simplified 
for the first trial. In particular, a decision was made 
early to limit the size of packet payloads to 16 bytes for 
the 2004 summer trial. This restriction was made in 
order to keep the physical frame sizes small so that 
timing errors would be minimal—with the plan to 
increase frame sizes once the physical constraints were 
clearer. With messaging overhead, only 10 bytes could 
be transmitted at one time between nodes, although 
intra-node communication was not so limited. 

A fundamental design decision, shown in Section 
2, was to implement one base-station node and a 
number of floating sensor nodes. The idea was that the 
base-station node would communicate with its closest 
neighbours, and information from the rest of the 
network would gradually spread to these “edge nodes”. 
It became clear, however, that especially for radio 
testing purposes we required a facility to directly query 
each sensor node from the shore. For this to be an 
active process we also required that each sensor node 
would respond to a reset command and take the 
appropriate action. 

7.4. Logistics 

For operations in the Scroby Sand area, we were 
subject to various regulatory conditions. Firstly, as we 
were transmitting radio power we had to apply for a 
suitable licence. Secondly, as we were deploying nodes 
in the ocean we had to apply to relevant government 
agencies for a Consent to Undertake Marine Works 
licence. We then had to issue a Notice to Mariners. 
Thirdly, we had to liaise with local interest groups 
(including fishermen) to ensure they were informed 
and consenting to our proposals. This elicited negative 
reactions from fishermen, complicated by previous 
disruptions caused by the construction of the Scroby 
wind farm. 

8. Summary 

Here we compare the end design solution in the 
first trial to the stated project objectives given in 

Section 2. A number of these items, by necessity, are to 
be addressed at a later stage—including (i) the design 
of the user interface design and (ii) evaluating sensing 
field methodologies. 

A number of the items will be fulfilled by 
successful operation in the first trial—at the time of 
writing the first trial is several weeks away. An 
example is the demonstration of our technology in a 
realistic application context. We feel the remaining 
items have already been partially addressed: 

 
• Designing and fielding decentralised algorithms—

this has been demonstrated in an emulated 
network. We will support upgrades in the near 
future 

• Designing novel cooperative adaptive data 
handling techniques—our gossiping/”firefly-
flashing” techniques, for example, address this 
issue 

• Implementing locally intelligent sensors capable 
of dynamic self-configuration—this has been 
implemented fully and is ready for initial testing 

• Designing lightweight, low power, ad-hoc wireless 
communication protocols—this has been 
simplified for the first trial by necessity 

9. Conclusions 

Especially with geographically-distributed project 
partners, careful attention needs to be given to handling 
the design of physical and logical interfaces. Interfaces 
should be kept simple and standard, if possible. If this 
is done correctly, individual project partners may then 
concentrate on their particular functionality, in the 
knowledge that hardware and software modules will 
communicate as expected. 

Standard engineering methodologies such as 
systems requirement analyses are also useful exercises 
in the early stages of a multi-partner project like 
SECOAS. If done adequately, this will provide a 
traceability of requirements from implementation 
decisions back to project goals (and steps in between). 
Conversely, this will highlight deficiencies in design 
reasoning. During this process, allocation of functions 
to hardware and software is performed. Integral to this 
whole process should be a weighting and prioritisation 
of user preferences for various system features. These 
steps will help ensure that a useful system is 
developed, which addresses real user requirements—a 
real danger in any research and development project is 
that self-satisfying interests prevail. 

Above all, we have found that initial pragmatic 
solutions must be found in order to counter unexpected 
delays, organisational differences and kick-start the 
development before more sophisticated work can 
proceed. This is especially so in projects where there 



are new operational practices combined with 
significant hardware and software complexity. 
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