
Information Integration for Concurrent Engineering
(IICE)

IDEF5 Method Report

Prepared for:
Armstrong Laboratory

AL/HRGA
Wright-Patterson Air Force Base, Ohio 45433

Prepared by:
Knowledge Based Systems, Inc.

1408 University Drive East
College Station, Texas 77840

(409) 260-5274

Revision Date: September 21, 1994
Contract Number: F33615-C-90-0012

i

Information Integration for Concurrent Engineering
(IICE)

IDEF5 Method Report

This document was prepared by the IDEF5 Method Development Team for the IICE Methods
Engineering Thrust.

Contributors:

Perakath C. Benjamin, Ph.D.

Christopher P. Menzel, Ph.D.

Richard J. Mayer, Ph.D.

Florence Fillion

Michael T. Futrell

Paula S. deWitte, Ph.D.

Madhavi Lingineni

Date: September 21, 1994

ii

Preface

This document provides a comprehensive description of the IDEF5 Ontology Description
Capture Method. The IDEF5 method was developed under the Information Integration for
Concurrent Engineering (IICE) project, F33615-90-C-0012, funded by Armstrong Laboratory,
Logistics Research Division, Wright-Patterson Air Force Base, Ohio 45433, under the technical
direction of Captain JoAnn Sartor and Mr. James McManus. The prime contractor for IICE is
Knowledge Based Systems, Inc. (KBSI), College Station, Texas. The authors wish to
acknowledge and extend special thanks to the following people who helped compose this
document:

Julie Holden
James MacDougall
Richard McGuire

iii

Table of Contents

Preface .. ii

Table of Contents ... iii

List of Figures ...vii

1 Executive Summary .. 1
1.1 Motivations .. 2

1.1.1 Motivations for Ontology.. 5
1.1.2 Motivations for an Ontology Development Method ... 6

1.2 Benefits of Ontology Development ... 7
1.3 Overview of the Report.. 7
1.4 The Connection Between IDEF5 and Other Methods ... 10

2 Conceptual Foundations of Ontology.. 12
2.1 The Nature of Ontological Inquiry... 12
2.2 The Central Concepts of Ontology .. 13

2.2.1 Kinds ... 13
2.2.2 Kinds as Distinguished Properties... 15
2.2.3 Contrasting Properties and Attributes ... 16
2.2.4 Relations.. 17
2.2.5 Second-order Properties and Relations ... 17
2.2.6 Two Ways to Introduce Kinds into an Ontology... 19
2.2.7 Parts, Wholes, and Complex Kinds... 19
2.2.8 Processes, States, and Process Kinds .. 20

2.3 Levels of Ontologies .. 21
2.4 On the Need for a Separate Ontology Modeling Method .. 23

3 The IDEF5 Ontology Development Process ... 25
3.1 Organize and Define the Project .. 27

3.1.1 Organize the Project .. 27
3.1.2 Define the Project.. 28

3.2 Collect Data ... 33
3.2.1 Interview Guidelines ... 33
3.2.2 Protocol Analysis .. 35

iv

3.2.3 Data Collection Documents .. 35
3.3 Analyze Data.. 44
3.4 Develop Initial Ontology ... 46

3.4.1 Develop Proto-Concepts ... 46
3.4.2 Develop Proto-Kinds... 46
3.4.3 Identify Proto-Characteristics.. 48
3.4.4 The Role of IDEF5 Schematics in Ontology Visualization 50
3.4.5 Using Classification Schematics for Ontology Development 50
3.4.6 Kinds Versus Properties .. 51
3.4.7 Coining Terms... 51
3.4.8 Other Guidelines ... 52
3.4.9 Develop Proto-Relations ... 53
3.4.10 Role of Relation Schematics in Ontology Development................................. 56
3.4.11 Role of Composition Schematics in Ontology Development 57

3.5 Refine and Validate Ontology ... 58
3.5.1 Kind Refinement Procedure .. 58
3.5.2 Relation Refinement Procedure .. 60

4 The IDEF5 Ontology Languages... 63
4.1 The IDEF5 Schematic Language ... 64

4.1.1 The Schematic Language Lexicon .. 64
4.1.2 IDEF5 Schematics and their Interpretation ... 66

4.2 The IDEF5 Elaboration Language ... 102
4.2.1 Overview ... 102
4.2.2 Description of the Language ... 103

A.1 Classification Relations ... 125
A.1.1 Overview ... 125
A.1.2 Relation Definition.. 126

A.1.3 Relation Characterization .. 127
A.1.3.1 General axioms.. 127
A.1.3.2 Reflexivity... 128
A.1.3.3 Antisymmetry.. 128
A.1.3.4 Transitivity .. 128

A.2 Meronymic Relations .. 129
A.2.1 Overview ... 129

v

A.2.2 Relation Definition .. 129
A.2.3 Relation Characterization .. 131

A.2.3.1 Mutual Exclusivity .. 131
A.2.3.2 Irreflexivity.. 132
A.2.3.3 Asymmetry .. 132
A.2.3.4 Transitivity .. 132
A.2.3.5 Miscellaneous.. 133

A.3 Temporal Relations ... 134
A.3.1 Overview.. 134
A.3.2 Relation Definition .. 135
A.3.3 Relation Characterization .. 136

A.4 Spatial Relations.. 137
A.4.1 Overview.. 137
A.4.2 Relation Definition .. 138
A.4.3 Relation Characterization .. 138

A.5 Influence Relations.. 142
A.5.1 Overview.. 142
A.5.2 Relation Definition .. 143
A.5.3 Relation Characterization .. 143

A.6 Dependency Relations ... 145
A.6.1 Overview.. 145
A.6.2 Relation Definition .. 145
A.6.3 Relation Characterization .. 146

A.7 Case Relations ... 147
A.7.1 Overview.. 147
A.7.2 Relation Definition .. 147
A.7.3 Relation Characterization .. 148

B.1 Constant and variables .. 149

B.2 Operators ... 150

B.3 Terms... 151

vi

B.4 Definitions... 152

B.5 Sentences... 152
B.5.1 General Sentences.. 152
B.5.2 IDEF5 Specific Sentences.. 153

B.5.2.1 IDEF5 Ontology Sentences ... 153
B.5.2.2 IDEF5 Kind Sentences .. 154
B.5.2.3 IDEF5 Individual Sentences.. 154
B.5.2.4 IDEF5 Property Sentences .. 154
B.5.2.5 IDEF5 Attribute Sentences.. 155
B.5.2.6 IDEF5 Relation Sentences... 155
B.5.2.7 IDEF5 Function Sentences .. 155
B.5.2.8 IDEF5 Source Sentences ... 156
B.5.2.9 IDEF5 Source-Statement Sentences.. 156
B.5.2.10 IDEF5 Ontology-Term Sentences ... 157
B.5.2.11 IDEF5 Note Sentences .. 157
B.5.2.12 Object State Related Constructs and Relations ... 157

Bibliography.. 160

Glossary .. 165

vii

List of Figures

Figure 2-1. Defining/Nondefining vs. Essential/Accidental Properties 14

Figure 2-2. Levels of Ontologies.. 22

Figure 3-1. IDEF5 Description Summary Form... 31

Figure 3-2. Source Material Log .. 36

Figure 3-3. Source Material Description Form .. 38

Figure 3-4. Source Statement Pool... 40

Figure 3-5. Source Statement Description Form.. 41

Figure 3-6. Term Pool .. 43

Figure 3-7. Term Description Form.. 44

Figure 3-8. Source Material Analysis... 45

Figure 3-9. Proto-Kind Pool ... 47

Figure 3-10. Proto-Kind Specification Form ... 48

Figure 3-11. Proto-Characteristic Pool... 49

Figure 3-12. Classification Schematic.. 50

Figure 3-13. Coining Terms ... 52

Figure 3-14. Developing Proto-Kinds .. 53

Figure 3-15. Structure of a Proto-Association Chart.. 55

Figure 3-16. Proto-Relation Pool ... 55

Figure 3-17. Proto-Relation Specification Form.. 56

Figure 3-18. First-order Schematic .. 57

viii

Figure 3-19. Alternative Syntax for the Schematic in Figure 3-18 .. 57

Figure 3-20. Composition Schematic... 57

Figure 3-21. Kind Specification Form ... 59

Figure 3-22. Relation Specification Form.. 61

Figure 4-1. Basic IDEF5 Schematic Language Symbols ... 64

Figure 4-2. General Form of a Basic First-Order Schematic ... 68

Figure 4-3. Example of a Basic First-Order Schematic ... 69

Figure 4-4. Example Illustrating Alternative Syntax for Basic First-Order Schematics.............. 70

Figure 4-5. An Existential Schematic .. 71

Figure 4-6. An Existential Schematic for a Relation.. 71

Figure 4-7. Example of a Basic 3-Place First-Order Schematic .. 72

Figure 4-8. Alternative Syntax for Figure 4-7.. 72

Figure 4-9. General Form of 4- and 5-Place First-Order Schematics .. 73

Figure 4-10. Example Illustrating the Use of an Individual Symbol.. 73

Figure 4-11. A Fully Particularized Example... 74

Figure 4-12. A Small Complex Schematic... 74

Figure 4-13. Complex Schematic Involving Multiple Relations ... 75

Figure 4-14. Peripheral Connections to a Personal Computer ... 75

Figure 4-15. Basic Second-Order Schematic ... 76

Figure 4-16. Example of a Second-Order Schematic with Subkind-of .. 76

Figure 4-17. Example of a General Second-Order Schematic ... 77

Figure 4-18. The General Form of a Basic Relation Schematic... 77

ix

Figure 4-19. Bill of Material Relation Schematic .. 79

Figure 4-20. Relation Schematics Involving the Specialization-of Relation 79

Figure 4-21. A Partial Relation Taxonomy of the Part-of Relation ... 80

Figure 4-22. Complex Second-Order Relation Schematic... 80

Figure 4-23. Composition Schematic... 81

Figure 4-24. Composition Schematic for the Kind Ballpoint Pen ... 82

Figure 4-25. Hiding Composition Information .. 83

Figure 4-26. Different Types of Classification... 84

Figure 4-27. Classification of Resources ... 85

Figure 4-28. Classification of Resources with Hidden Information... 86

Figure 4-29. Kinds and States .. 87

Figure 4-30. Schematic Depicting States of Water .. 87

Figure 4-31. Basic State Transition Schematic .. 87

Figure 4-32. Schematic for Object State Transition within a Process.. 88

Figure 4-33. Schematic for Object State Transition between Processes 88

Figure 4-34. The General Semantics of Figure 4-32.. 88

Figure 4-35. The General Semantics of Figure 4-33.. 89

Figure 4-36. Strong State Transition Schematic .. 89

Figure 4-37. An Example of Strong State Transition Schematic ... 90

Figure 4-38. Instantaneous State Transition Schematic ... 90

Figure 4-39. An Example of Instantaneous State Transition ... 90

Figure 4-40. Interval Diagram for Figure 4-39... 91

x

Figure 4-41. A Precise Expression of Figure 4-40 ... 91

Figure 4-42. Cutoff Switch Example for Figure 4-41 .. 91

Figure 4-43. A More Informative Object State Transition Schematic ... 92

Figure 4-44. Interval Diagram for Figure 4-43... 92

Figure 4-45. A Complex Object-state Schematic... 92

Figure 4-46. Default Semantics for Figure 4-45 .. 93

Figure 4-47. A Schematic Subsumed by Figure 4-45 .. 93

Figure 4-48. Schematic Depicting States of Water .. 94

Figure 4-49. Combined Schematic Displaying States and State Transitions 94

Figure 4-50. State Composition Schematic.. 94

Figure 4-51. The General Semantics of a State Composition Schematic 95

Figure 4-52. An Example of State Composition Schematic .. 95

Figure 4-53. Strict State Composition Schematic .. 96

Figure 4-54. Complex Strict State Composition Schematic for the Kind Ballpoint Pen 96

Figure 4-55. Strong State Transition in a Composition Schematic.. 97

Figure 4-56. Object State Decomposition Schematic .. 97

Figure 4-57. Disjunctive State Transition Schematic... 98

Figure 4-58. Exclusive Disjunctive State Transition Schematic.. 98

Figure 4-59. Conjunctive State Transition Schematic.. 98

Figure 4-60. Converse Logical State Transition Schematic... 99

Figure 4-61. An OS Illustrating Possible Complex State Transition Logic 100

Figure 4-62. State Transitions in a Heating Process .. 100

xi

Figure 4-63. Hiding State Transition Information.. 101

Figure 4-64. IDEF5 Schematic Involving OS Constructs .. 101

Figure 4-65. Examples of Terms in the IDEF5 Elaboration Language...................................... 107

Figure 4-66. Definitions in the IDEF5 Elaboration Language ... 109

Figure 4-67. Examples of Sentences in the IDEF5 Elaboration Language 110

Figure 4-68. Example of Ontology Constructs in the IDEF5 Elaboration Language................. 112

Figure 4-69. Examples of Kind Constructs in the IDEF5 Elaboration Language...................... 113

Figure 4-70. Examples of Individual and Property Constructs .. 115

Figure 4-71. Examples of Relation Constructs .. 116

Figure 4-72. Examples of Function Constructs.. 117

Figure 4-73. Examples of Source Constructs... 119

Figure 4-74. Examples of Source-statement Constructs .. 120

Figure 4-75. Examples of Ontology-Term Constructs ... 120

Figure A-1. Overview of the IDEF5 Library Relations.. 125

Figure A-2. A Partial Taxonomy of Meronymic Relations.. 130

Figure A-3. Special Properties of Meronymic Relations ... 133

Figure A-4. Binary Temporal Relations ... 135

Figure A-5. List of Spatial Relations.. 137

Figure A-6. The Five “Influences” Relations and Their Directional Influence.......................... 143

1

1 Executive Summary

This document provides a comprehensive description of the IDEF5 Ontology Capture Method.
Its purpose is to guide a person in becoming proficient in applying IDEF5 to develop and manage
domain ontologies effectively.

The IDEF5 Method Report is designed for the following audience:

• Knowledge engineers and application domain experts interested in developing,
documenting, storing, and sharing domain knowledge;

• System analysts and designers interested in managing ontology knowledge
effectively for the purposes of both analysis and design; and

• Researchers in the application of knowledge representation methods to problems in
engineering and manufacturing.

The document is divided into the following four sections and two appendices:

1. An Executive Summary, which discusses the scope and content of the ontology
capture method report and provides an initial overview of the method (Section 1);

2. A section on the conceptual foundations of ontology (Section 2);

3. A section on the ontology representation languages: a graphical language for
expressing basic ontology information and a much richer, linear language (the
“elaboration language”) for expressing detailed ontology information (Section 4);

4. A section on the IDEF5 ontology development procedure, which discusses the
application of the method for capturing and maintaining ontology information
(Section 3);

5. An appendix containing the IDEF5 relation library, consisting of a collection of
detailed characterizations of common domain relations (Appendix A); and

6. An appendix containing the formal Backus-Naur Form (BNF) for the elaboration
language (Appendix B).

2

The authors anticipate the use of this document for a wide variety of purposes. Thus, the
material is presented in a manner that allows readers to obtain the needed knowledge without
having to read the entire document. The following guidelines are suggested for the use of this
document.

• For an executive overview, read Sections 1 and 2.

• To become proficient in the development of accurate IDEF5 ontology descriptions,
read the entire manual, with special emphasis on Sections 3 and 4.

• An IDEF5 project leader should study Section 3 in detail, but must also have an
understanding of the method in its entirety. The introduction (Section 2) describes
the motivations and potential uses for the IDEF5 method. Section 3 describes a
procedure for developing IDEF5 ontology descriptions. Finally, Section 4 describes
the IDEF5 ontology language.

1.1 Motivations

We characterize the meaning of the term “ontology” to include a catalog of terms used in a
domain, the rules governing how those terms can be combined to make valid statements about
situations in that domain, and the “sanctioned inferences” that can be made when such statements
are used in that domain. In every domain, there are phenomena that the humans in that domain
discriminate as (conceptual or physical) objects, associations, and situations. Through various
language mechanisms, we associate definite descriptors (e.g., names, noun phrases, etc.) to that
phenomena. In the context of “ontology,” we use the term “relation” to refer to a definite
descriptor that refers to an association in the real world. We use the term “term” to refer to a
definite descriptor that refers to an object or situation-like thing in the real world. In an ontology,
we try to catalog the descriptors (like a data dictionary) and create a model of the domain, if
described with those descriptors. Thus, in building an ontology, you must produce three
products. You have to catalog the terms, capture the constraints that govern how those terms can
be used to make descriptive statements about the domain, and then build a model that when
provided with a specific descriptive statement, can generate the “appropriate” additional
descriptive statements. By appropriate descriptive statements we mean (i) because there are
generally a large number of possible statements that could be generated, the model generates only
that subset which is “useful” in the context, and (ii) the descriptive statements that are generated
represent facts or beliefs that would be held by an intelligent agent in the domain who had
received the same information. The model is then said to embody the “sanctioned inferences” in

3

the domain. It is also said to “characterize” the behavior of objects and associations in the
domain. Thus, an ontology is similar to the now familiar data-dictionary, plus a grammar, plus a
model of the behavior of the domain.

Another characterization of the meaning of “ontology” is given in the following excerpt from
Tom Gruber (see [Gruber 93] also):

The word “ontology” seems to generate a lot of controversy in discussions about
AI. It has a long history in philosophy, in which it refers to the subject of
existence. It is also often confused with epistemology, which is about knowledge
and knowing.

In the context of knowledge sharing, I use the term ontology to mean a
specification of a conceptualization. That is, an ontology is a description (like a
formal specification of a program) of the concepts and relationships that can exist
for an agent or a community of agents. This definition is consistent with the usage
of ontology as set-of-concept-definitions, but more general. And it is certainly a
different sense of the word than its use in philosophy.

Ontologies are often equated with taxonomic hierarchies of classes, class
definitions and the subsumption relation, but ontologies need not be limited to
these forms. Ontologies are also not limited to conservative definitions, that is,
definitions in the traditional logic sense that only introduce terminology and do
not add any knowledge about the world (Enderton, 1972). To specify a
conceptualization, one needs to state axioms that do constrain the possible
interpretations for the defined terms.

Pragmatically, a common ontology defines the vocabulary with which queries and
assertions are exchanged among agents. Ontological commitments are
agreements to use the shared vocabulary in a coherent and consistent manner. The
agents sharing a vocabulary need not share a knowledge base; each knows things
the other does not, and an agent that commits to an ontology is not required to
answer all queries that can be formulated in the shared vocabulary.

Any domain with a determinate subject matter has its own terminology, a distinctive vocabulary
that is used to talk about the characteristic objects and processes that comprise the domain. A
library, for example, involves its own vocabulary having to do with books, reference items,
bibliographies, journals, and so forth. Similarly, semiconductor manufacturing has its own

4

language of chips, wafers, etchants, designs, and so on. The nature of a given domain is thus
revealed in the language used to talk about it. Clearly, however, the nature of a domain is not
revealed in its corresponding vocabulary alone; in addition, one must (i) provide rigorous
definitions of the grammar governing the way terms in the vocabulary can be combined to form
statements and (ii) clarify the logical connections between such statements. Only when this
additional information is available is it possible to understand both the natures of the individuals
that exist in the domain and the critical relations they bear to one another. An ontology is a
structured representation of this information. More exactly, an ontology is a domain vocabulary
together with a set of precise definitions, or axioms, that constrain the meanings of the terms in
that vocabulary sufficiently to enable consistent interpretation of statements that use that
vocabulary.

Taken by itself, it may seem that there is not much difference between an ontology and a data
dictionary. However, a data dictionary is typically just a compendium of terms together with
definitions for the individual terms stated in natural language. By contrast, the grammar and
axioms of an ontology are stated in a precise formal language with a very precise syntax and a
clear formal semantics (see Section 4.2). Consequently, ontologies are, in general, far more
rigorous and precise in their content than a typical data dictionary (and, hence, more so than a
typical data “encyclopedia,” because an encyclopedia is just a collection of related data
dictionaries). Ontologies also tend to be more complete as well: relations between concepts and
objects in a domain, and constraints on and between domain objects, are made explicit rather
than left implicit, thus minimizing the chance of misunderstanding logical connections within the
domain. A data dictionary, by contrast, generally relies upon an intuitive understanding of the
terms in question and the logical connections between the concepts and objects they stand for.
This works well enough in small restricted domains. But when information systems span
organizational, geographic, and enterprise boundaries, problems arise. The traditional approach
is problematic for several reasons, not the least of which is that different persons in different
domains might understand the same term subtly different but important ways that are not
uncovered in a natural language definition (which can lead to inconsistent interpretations of the
same term across different contexts), and so forth. The regimentation of an ontology of the
involved domains in a canonical language helps to avoid this problem. Furthermore, the
discipline of expressing the ontology information in a formal language enhances the skills
necessary for extracting the information, in particular, the ability to abstract from particular
objects to the kinds of which they are instances, from particular connections to the relations such
instances stand in generally, and from particular behaviors to the constraints that bind instances
of various kinds together logically within the domain.

5

1.1.1 Motivations for Ontology

The ability to fix a domain vocabulary and its meaning in the context of use in this manner is
critical for true concurrent engineering. A large engineering or manufacturing project involves
the resources of many different clusters of cooperative agents (human or otherwise) in the given
endeavor. Each cluster makes its own contributions, and the overall success of the project
depends in large measure on the degree of integration between those different clusters throughout
the development process. A key to effective integration is the accessibility of rich ontologies
characterizing each of the domains addressed by each cluster. For instance, access to a
manufacturing ontology that includes constraints on how a given part is manufactured can aid
designers in their design of a complex product by giving them insight into the manufacturing
implications of their design concepts. Similarly, access to an engineering ontology that includes
constraints on how a given part is to function given a particular shape or fit can aid process
planners in their development of the appropriate manufacturing processes. A commonly
accessible collection of relevant ontologies thus permits more efficient sharing of information
arising from various sources within the enterprise.

A related motivation for ontology capture is the standardization of terminology. An enormous
problem in the coordination of large projects is the diversity of backgrounds the various kinds of
engineers bring to their respective roles. As a consequence, many engineers use similar
terminology in many different ways with many different connotations. Because of such
differences, the information that one engineer intends to convey to another may in fact become
garbled; in the best case, such miscommunications can be responsible for a great deal of lost time
and resources; in the worst case, such miscommunications can result in the loss of life.
Consequently, it is often necessary in the course of a large project to standardize the relevant
vocabulary. The ontology capture method provides a principled method for carrying out this task
efficiently and effectively, and maintaining the results of the task in a robust, accessible form.

This suggests another, strong motivation for ontology: reusability. Among the most significant
problems in engineering and manufacturing in general is the redundant effort expended in
capturing or recreating information that has already been recorded elsewhere. For example, in
programming, the same kinds of routines (e.g., in the design of user interfaces) are often used
again and again in different programs by (in general) different programmers. Consequently,
enormous amounts of time and effort have gone into reinventing the wheel time and again.
Recognition of this problem has led to the development of vast libraries that contain often used
routines which programmers can simply call straight into their programs, rather than having to
duplicate the function of existing code. Engineering and manufacturing face the same type of

6

problem. Manufacturing domains, for example, share many common features that are
independent of the specific characteristics of a given domain; and the more similar the domains,
the more such features they share. Rather than encoding this information all over again in every
new setting, analogous of the concept of a programming library, one can imagine collecting this
common information into ontology libraries, (i.e., large revisable ontology databases of
structured, domain-specific information.) Information in these ontologies can then be reused and
modified to suit the needs of the moment. Moreover, because ontologies provide a standardized
terminology by their very nature, no special additional effort need be expended on fixing domain
terminology. It must be emphasized, however, that, despite the potential size of a given
ontology, the concept itself is highly scaleable; that is, ontologies are no less effective in smaller
contexts than on very large ones.

1.1.2 Motivations for an Ontology Development Method

There is a global vision behind the idea of ontology development. Spearheaded by the
Knowledge Sharing Effort sponsored by the Advanced Research Projects Agency (ARPA),
ontologies are being constructed for a growing number of manufacturing, engineering, and
scientific domains. With such ontologies in place, the advantages noted above could be realized
on a global scale: standardized terminology with precise meanings that are fixed across
industries and across international borders, and the ability to access and reuse a huge number of
existing ontologies in the design and construction of new systems. Central products of this effort
include the Knowledge Interchange Format (KIF), a text-based logical language for the
interchange of knowledge, and Ontolingua, a mechanisms built on KIF for translating knowledge
between different representation languages. The IDEF5 method described in this report has been
designed with the Knowledge Sharing Effort and its vision closely in mind. Most notably, the
IDEF5 elaboration language (see Section 4.2) — the central medium for storing ontology
information collected via the IDEF5 method (see Section 3) — uses KIF as its foundation, and is
thus wholly compatible with the central tools of the Knowledge Sharing Effort. This is
particularly crucial as the concepts behind the effort become even more widely accepted and
implemented.

Another key motivation for an ontology development method is a pragmatic one. Previous
approaches to ontology have almost exclusively been academic in nature. Researchers from
varied fields such as Artificial Intelligence, Philosophy, Database Management, Mathematics,
and Cognitive Science have studied ontology from different perspectives. All previous
approaches have failed to produce a practical method for ontology acquisition. The IDEF5

7

method therefore fulfills an important need by providing a cost-effective mechanism to acquire,
store, and maintain scaleable and re-usable ontologies. The intended contribution of IDEF5 is a
method to guide and assist domain experts and knowledge engineers in the construction of both
small and large reusable ontologies. We have designed the IDEF5 technique to be usable by a
personnel at varying skill levels and from a variety of different kinds of organizations.

1.2 Benefits of Ontology Development

Ontology development provides several benefits to organized enterprises. The benefits of
ontology development can be grouped under two headings:

1) Benefits of developing the ontology: The process of ontological analysis is a
discovery process that leads to an enhanced understanding of a domain. The insights
of ontological analysis are useful for (i) identification of problems (diagnosis), (ii)
identification of the problem causes (causal analysis), (iii) identification of
alternative solutions (discovery and design), (iv) consensus and team building, and
(v) knowledge sharing and reuse.

2) Benefits derived from the products of ontology development: The ontologies that
result at the end of an ontology development effort can be used beneficially for (i)
information systems development: ontologies provide a blueprint for developing
more intelligent and integrated information systems, (ii) systems development:
ontologies can be used as reference models for planning, coordinating, and
controlling complex product/process development activities, (iii) business process re-
engineering: ontologies provide clues to identifying focus areas for organizational
restructuring and suggest potential high-impact transition paths for restructuring.

Ontological analysis and development have been shown to be useful for: (i) Consensus building,
(ii) Object-oriented design and programming, (iii) Component based programming, (iv) User
interface design, (v) Enterprise information modeling, (vi) Business process reengineering, and
(vii) Conceptual schema design.

1.3 Overview of the Report

The sections following this executive summary jointly constitute a comprehensive report on the
IDEF5 ontology capture method. Section 2 of the report provides a detailed discussion of the
conceptual foundations of IDEF5. It begins by tracing the roots of ontological inquiry, with

8

respect to engineering and manufacturing, to the classical philosophical tradition — also known
as “ontology” — of characterizing and classifying what ultimately exists. From this tradition
springs the central concepts of ontology: kinds (roughly, classes or types), properties, attributes,
relations, parts and wholes, and processes. Most of Section 2 is devoted to explicating and
relating these concepts. The section closes with a discussion of the need for a separate ontology
method distinct from existing methods. (The relation of the ontology capture method with
existing IDEF methods is discussed in Subsection 1.3.)

Section 3 provides a practical method for the construction of ontologies. Ontology development
requires extensive iterations, discussions, reviews, and introspection. Knowledge extraction is
usually a discovery process and requires considerable introspection. It requires a process that
incorporates both significant expert involvement as well as the dynamics of a group effort.
Given the open-ended nature of ontological analyses, it is not prudent to adopt a “cookbook”
approach to ontology development. We recommend the use of a general procedure along with a
set of useful guidelines. Section 3 describes the mechanics of such a process for potential IDEF5
ontology developers.

In brief, the IDEF5 ontology development process consists of the following five activities.

1. Organizing and Scoping This activity involves establishing the purpose, viewpoint,
and context for the ontology development project and assigning roles to the team
members.

2. Data Collection This activity involves acquiring the raw data needed for ontology
development.

3. Data Analysis This activity involves analyzing the data to facilitate ontology extraction.

4. Initial Ontology Development This activity involves developing a preliminary
ontology from the acquired data.

5. Ontology Refinement and Validation This activity involves refining and validating the
ontology to complete the development process.

Although the above activities are listed sequentially, there is a significant amount of overlap and
iteration between the activities. These activities, and their interconnections, are described in
detail in Section 3.

9

Section 4 contains a description of the IDEF5 ontology languages. There are two such
languages: the IDEF5 schematic language and the IDEF5 elaboration language. The schematic
language is a graphical language that has been specially tailored to enable domain experts to
express the most common forms of ontological information, especially with the aid of an
automated ontology capture tool. This enables average users both to input the basic information
needed for a first-cut ontology and to augment or revise existing ontologies with new
information.

There is a price for the relative ease of use of the schematic language, viz., that it lacks the full
expressive power needed to capture general ontology information. To capture such information
is the purpose of the IDEF elaboration language. The elaboration language is a structured text
language with the full expressive power of first-order logic and set theory. This enables a user to
express virtually any condition, or relation, or fact that one might need to express to characterize
a given kind of thing, or property, or relation, or process found in a domain. In addition to set
theoretic constructs, the language also includes specialized constructs for expressing ontology
information in the particular format of IDEF5. This makes for easy translation from the
schematic language into the elaboration language, and vice versa, insofar as that is possible.

Finally, the report concludes with two appendices. The first is the (current) IDEF5 relation
library of reusable ontology elements. This library is a rich repository of information consisting
of a set of characterizations of (i.e., definitions and axioms for) commonly used relations. It
provides a repository of formally defined and characterized relations that can be reused and
customized in a particular project. The relation library itself is a specialized ontology: an
ontology of commonly used relations. The motivation for this library grew out of the previously
mentioned analogy with software engineering. Often in software development, the same kinds of
routines are used again and again in different programs by (in general) different programmers.
The development of ontologies will face the same sort of problem. It is likely that the same or
similar relations will appear in a number of different ontologies. The role of a library of relations
such as the one presented in Appendix A will be to enable modelers to reuse and customize
relations that have been defined in previously captured ontologies. The library can also be used
as a reference for the different ways to define and characterize relations and illustrative examples
of the use of the IDEF5 elaboration language. All definitions and characterizing axioms in the
library have been written using the IDEF5 elaboration language. Thus, the library can also serve
as a useful learning tool for mastering the IDEF5 elaboration language. Finally, the library is
extensible in that any relation that has been formally defined and characterized may be added to
it.

10

The second appendix consists of the BNF specification of the IDEF5 elaboration language to
ensure that the language is well-defined. A glossary for the report follows this appendix.

1.4 The Connection Between IDEF5 and Other Methods

As Mr. John Zachman in his seminal work on information systems architecture observed, “...
there is not an architecture, but a set of architectural representations. One is not right and another
wrong. The architectures are different. They are additive, complementary. There are reasons for
electing to expend the resources for developing each architectural representation. And, there are
risks associated with not developing any one of the architectural representations.” [Zachman 87]
Consistent, reliable creation of correct architectural representations, whether artificial approxima-
tions of a system (models) or purely descriptive representations, requires the use of a guiding
method. These observations underscore the need for many “architectural representations,” and
correspondingly, many methods.

Typically, methods, and their associated architectural representations, focus on a limited set of
system characteristics and explicitly ignore those that are not directly pertinent to the task at
hand. Thus, IDEFØ provides a compact, yet surprisingly powerful, conceptual universe for
modeling business activities; for all its power, however, it would be highly inconvenient, if
possible at all, to use it to design a relational database; IDEF1X is the method that is optimized
for that task. Similarly, IDEFØ explicitly excludes temporal information, and limits what can be
represented about temporal relations that hold between business activities, as well as the objects
involved in the internal structure of those activities. These exclusions are what give IDEFØ its
power in modeling business activities. For in a method design as in a programming language
design, what distinguishes a well designed effective method is what is left out more so than what
is left in. IDEF3, on the other hand, includes explicit representations of processes, time intervals,
and temporal relations and, hence, is ideally suited for expressing information about timing and
sequencing; it also includes the capacity to express arbitrary information about the individuals
participating in those processes. It lacks, however, the specialized representations of IDEFØ and,
therefore, information that IDEFØ expresses with great ease and simplicity is, by comparison,
expressed only awkwardly in IDEF3.

The connection between these methods and IDEF5 is rather straightforward. Of the methods just
mentioned, the IDEF5 schematic language is perhaps closest to IDEF1 and IDEF1X. However,
the connection between IDEF1/1X and IDEF5 is analogous to that between IDEFØ and IDEF3.
The information in an IDEF1 or IDEF1X model could in principle be expressed in the IDEF5
elaboration language. However, because it does not contain the well-designed, specialized

11

representations of IDEF1/1X, it would be exceedingly cumbersome in IDEF5 to design a
relational database, for example. But the expressive power of IDEF1/1X soon reaches its limits
and, hence, could not possibly do all that is expected of a general ontology language. (For a
more detailed comparison of IDEF1/1X and IDEF5, see Subsection 2.4.)

In a sense, the designs of both IDEF3 and IDEF5 break the traditional mold according to which
methods are purposely designed with limited expressive power. The elaboration languages of
both methods are full first-order languages (and more besides) and, hence, are capable of
expressing most any information that might need to be recorded in a given domain. This break
with tradition not only reflects the need for greater expressive power, but also reflects the
development and increased utilization of more intelligent tools and automated, model-driven
systems in business and engineering. Intelligent tools and model-driven systems generally must
manipulate much richer forms of information than can be expressed in a traditional method. This
motivates the design of richer methods that have the capacity to represent and organize such
information, methods that are not restricted to pencil and paper form and, hence, which truly
augment the ability of human agents to create, manage, and reuse a richer store of knowledge.
For the reasons above, these newer methods will not make the older, more restricted methods
obsolete; the ability to filter and structure information relative to certain well-defined tasks will
still be very useful. At the same time, the greater demands of intelligent tools and model-driven
systems will require more.

The broader vision that guides these newer methods is one in which all system definition
information is stored in a global (albeit perhaps virtual) repository of information, with modeling
methodologies providing different views that filter the information in various useful ways
relative to the task at hand. When the task at hand is the general nature of the domain in which
the system operates, the ontology capture method will provide the appropriate perspective. The
next tier in the vision is for all organizations — within the bounds of their proprietary interests
— to have ontologies of their various component systems available for sharing and reuse.
IDEF5 is being developed in the belief that it can contribute in a vital way to the realization of
this vision of global knowledge sharing.

12

2 Conceptual Foundations of Ontology

The primary goal of the Ontology Description Capture method is to provide a structured
technique, supported by automated tools, by which a domain expert can effectively develop and
maintain usable, accurate, domain ontologies. In the IDEF5 method, an ontology is constructed
by capturing the content of certain assertions about real-world objects, their properties, and their
interrelationships and representing that content in an intuitive and natural form. This section
provides an overview of the nature and content of an ontology, followed by a discussion that
contrasts the ontology capture method presented in this report with other existing methods.

2.1 The Nature of Ontological Inquiry

Historically, ontologies arise out of the branch of philosophy known as metaphysics, which deals
with the nature of reality, of what exists. The traditional goal of ontological inquiry in particular
is to divide the world “at its joints,” to discover those fundamental categories, or kinds, into
which the world’s objects naturally fall. So viewed, natural science provides an excellent
example of ontological inquiry. For example, a goal of subatomic physics is to develop a
taxonomy of the most basic kinds of objects that exist within the physical world (e.g., protons,
electrons, muons). At the other end of the spectrum, astrophysics, among other goals, seeks to
discover the range of objects that populate its domain (e.g., quasars, black holes, gravity waves).
Similarly, the biological sciences seek to categorize and describe the various kinds of living
organisms that populate the planet. Further examples of ontological inquiry can be observed in
the fields of geology, psychology, chemistry, sociolinguistics, and, in general, any discipline that
attempts to understand the nature of some set of physical, psychological, or social phenomena.

However, this sort of inquiry is not limited to the natural and social sciences. Abstract sciences
as well ��mathematics, in particular ��attempt to discover and categorize the domain of abstract
objects such as prime numbers, polynomial algorithms, commutative groups, topological spaces,
and so forth.

The natural and abstract worlds of pure science do not exhaust the applicable domains of
ontology. There are vast, human-designed and engineered systems such as manufacturing plants,
businesses, military bases, and universities in which ontological inquiry is just as relevant and
just as important. In these human created systems, ontological inquiry is primarily motivated by
the need to understand, design, engineer, and manage such systems effectively. This being the

13

case, it is useful to adapt the traditional techniques of ontological inquiry in the natural sciences
to these domains as well.

2.2 The Central Concepts of Ontology

2.2.1 Kinds

The construction of ontologies for human engineered systems is the focus of this report. In the
context of such systems, the nature of ontological knowledge involves several modifications to
the more traditional conception. The first of these modifications has to do with the notion of a
kind. Historically, a kind is an objective category of objects that are bound together by a
common nature, a set of properties shared by all and only the members of the kind. More
exactly, on the traditional notion, for every kind K there is a set N consisting of properties that
are individually necessary and jointly sufficient for being a K; that is, x is a K if and only if x has
every property in N. Moreover, and significantly, these properties are traditionally held to be
essential to their bearers; that is to say, they are properties that their bearers could not possibly
lack. For instance, it is reasonable to say that the nature of gold is to have the particular atomic
structure that it has: everything that has this property is gold, and nothing that lacks it is gold.
Furthermore, in contrast to nonessential, or accidental, properties like shape, this property is
essential to every instance of gold: no instance of gold could possibly lack it; otherwise, it would
not be gold. On the traditional conception, then, to divide the world at its joints via an ontology
is simply to identify the nature of each relevant kind in a given domain.

While there is an attempt to divide the world at its joints in the construction of enterprise
ontologies, those divisions are not determined by the natures of things in the enterprise so much
as the roles those things are to play in the enterprise from some perspective or other. Because
those roles might be filled in any of a number of ways by objects that differ in various ways, and
because legitimate perspectives on a domain can vary widely, it is too restrictive to require that
the instances of each identifiable kind in an enterprise share a common nature, let alone that the
properties constituting that nature be essential to their bearers. Consequently, enterprise
ontologies require a more flexible notion of kind. Toward this end, the first modification to be
made is terminological. To avoid overloading the term “nature," call the set of properties
associated with membership in a given enterprise kind K its defining properties. (Note: as with
natures, defining properties are not properties exemplified by the kind K itself; they are
properties exemplified by its instances, the K’s.)

14

Second, unlike the properties that make up a kind’s nature in the traditional conception, the
defining properties of a kind need not be essential to its instances. Depending on the kind in
question, a defining property, this may or may not be so. Mathematical kinds provide the easiest
examples of the former. The property having four sides, for example, can be taken as a defining
property of the kind rectangle (not the only one, obviously), and is also an essential property of
all instances of the kind; no rectangle could possible fail to have four sides. On the other hand,
because of its role in a certain manufacturing cell, the property having a diamond insert might
be a defining property of the kind cutter in a certain enterprise, even though the particular cutter
chosen to fill that role could, if desired, be fitted with a carbide insert instead. In this case, the
defining property of the kind is accidental to (at least one of1) its instances. A property’s status
as a defining property, relative to a given kind, is thus independent of its being essential or
accidental to instances of the kind.

By the same token, a property’s status as essential to some or all instances of a kind is
independent of its status as a defining property. That is to say, the two classification dimensions
of defining and essential are orthogonal. For example, suppose the defining property of a circle
is taken to be being a closed planar Figure all of whose points are equidistant from a given
point. Then, while not a defining property of the kind circle, the property having no interior
angles is nonetheless essential to all of its instances — no circle could possibly have an interior
angle. Finally, there may be properties of instances which are neither defining nor essential: for
example, the number of pages of a given requirements document. These different possibilities
are represented in tabular form in Figure 2-1.

Defining Nondefining

Essential Kind: Rectangle

Property: having four sides

Kind: Circle

Property: having no interior angles

Accidental Kind: Cutter

Property: having a diamond insert

Kind: Req’ts document

Property: being 10 pages in length

Figure 2-1. Defining/Nondefining vs. Essential/Accidental Properties

1This is yet another possible subtlety; properties essential to some members of a given kind may be accidental to
other members of the kind.

15

One final modification to the traditional notion of a kind remains. Instead of requiring that the
defining properties of K are individually necessary and jointly sufficient for membership in K, it
is required only that, for every instance x of a kind K, x have at least one of the defining
properties of K. The reason for this weaker condition is that it often happens that, although
instances may be easily recognizable, it may also be that there are no clear, exceptionless criteria
for something’s being an instance of a given kind; a domain expert might simply “know them
when she sees them.”2 In such cases, one must rely upon the domain expert to stipulate when a
given object is, in fact, an instance of the kind in question.

In a particular case, of course, when the defining properties of a kind fit the more traditional
conception of a nature, the stronger conditions associated with natures can, and should, be added
to the definition of the kind. The point of the weaker conditions is to allow something to count
as a kind even without meeting the stronger conditions of the traditional conception. It is
because of the weaker conditions on instancehood in our conception that we have avoided
familiar related terms like “type” and “class” in favor of the less entrenched term “kind." In
virtually all contexts, types and classes are taken to have unambiguous, well defined, necessary,
and sufficient membership conditions; this is so, for example, for the notion of a type in Pascal or
C, the notion of an abstract data type in the theory of programming languages, and the notion of
class in the theory of sets. Though entirely appropriate in those contexts, such rigorously defined
membership conditions are simply too inflexible to capture the subtleties of categorization and
grouping in human engineered systems.

2.2.2 Kinds as Distinguished Properties

What then, exactly, are kinds? For the reasons just noted, they should not be identified with
types or classes. Even if they are so identified, the question of what they are would not be settled
until the same question is answered with regard to types and classes. What is distinctive of all
three notions is the fact that they are what might be called categorial. Classes, types, and kinds
all indicate some grouping of individuals into categories. Thus, all three are (typically) multiply
instantiable; different individuals, that is, can be instances, or members, of the same type, class,

2The philosopher Wittgenstein illustrated this idea with the kind Game. Though games certainly appear to constitute
a distinct kind of activity, there is no specific set of properties that are individually necessary and jointly sufficient
for something to be a game. Some, but not all, games have rules; some involve scoring, while others do not; some
are competitive; some have a time-limit; and so forth. Instead of a set of properties that determine whether
something is an instance of the kind Game, there is a broad set of properties each of which is characteristic of some
but perhaps not all instances of the kind. In any case, the properties provide nothing like a set of necessary and
sufficient conditions for being a game.

16

or kind. Furthermore, in the case of types (in general) and kinds at least, these entities are
intensional; that is to say, unlike sets (and perhaps classes, depending on the account), the
identity of a type or kind — its being what it is — is not dependent upon its membership; the
instances of a type or kind K can change over time without any change in K itself. The
employees of an enterprise can grow, yet the kind employee — that in virtue of which a thing is
rightfully considered an employee — persists; an aging aircraft can be replaced by a newer one
without any effect on the kind aircraft, and so forth. These two characteristics — multiple
instantiability and intensionality — however, are distinguishing features of what are typically
called properties. Because properties are already a part of the basic metaphysics of IDEF5, it
will, therefore, be both intuitive and convenient simply to take kinds to be properties of a certain
distinguished sort.

2.2.3 Contrasting Properties and Attributes

It is important for the purposes of ontology that the terms “property” and “attribute” be clarified.
An attribute is best thought of as a function, that is, a mapping that takes each member of a given
set of individuals to a single specific value. Thus, the attribute color-of maps each object (in a
given set) to its color; the attribute age-of maps each employee to his or her age. By contrast, a
property is intuitively not such a mapping. Rather, they are just characteristics of things, “ways
things are,” abstract, general characteristics that individuals share in common.

Things exhibit certain attribute values: the color-of that object is red, hence, it has the property
of being red; the age-(in-years-)of that employee is 40, hence, she has the property of being 40
years old. However, there is not always such a correlation between properties and attribute
values to be found. For example, neither the property having at least one interior angle nor the
property having a color, because of their indefiniteness, is obviously clearly correlated with any
sort of attribute value. The usefulness of both properties and attributes in IDEF5 lies in precisely
this observation. It is often the case that the defining properties of a kind will be indefinite with
regard to any particular attribute value. For example, the property has-identifiable-serial-
number might be a defining property of the kind NC machine in a given manufacturing domain.
An NC machine’s having this property, however, says nothing about what its actual serial
number is. A modeler can, therefore, indicate that this is information that is to be kept about
instances of the kind by including the corresponding attribute serial-number-of among the
attributes associated with the kind in question.

Practice has confirmed that in the course of building an ontology it may initially be unclear
whether an identified notion is best thought of as a property or as an attribute. Consequently, in

17

the IDEF5 methodology, the term “characteristic” is used as a neutral term encompassing both
properties and attributes (See Section 3).

2.2.4 Relations

So far, only properties and attributes of individuals have been considered. But, of course, there
are other sorts of general features that individuals exhibit, albeit jointly rather than individually,
namely, connections, or associations, or as they shall be referred to here, relations. The relation
works-in, for instance, is a general feature that holds between an individual and the department
in which he or she works. Like a property, then, it is both multiply instantiable — different pairs
of things can stand in the same relation — and intensional — a relation’s identity does not
consist in its instances.

The relations in an ontology are typically binary; that is to say, they hold between two entities, as
with the relation works-in. However, there is no theoretical bound on the “arity” (number of
arguments) of a relation; the relation between, for instance, holds between three objects. More
artificial but nonetheless useful relations can easily be defined with four or more arguments.
IDEF5 thus places no restriction on the arity of the relations that can be introduced into an
ontology.

2.2.5 Second-order Properties and Relations

Intuitively, properties and individuals are of different logical types. Properties are the abstract,
general features that are shared by distinct individuals, the respects in virtue of which distinct
individuals are the same. Similarly, relations are the general associations which can be shared by
distinct pairs (triples, etc.) of individuals. Thus, properties and relations are identified by
abstracting away from the particular features of individuals and, hence, are often characterized as
being of a higher (i.e., roughly, more abstract) logical type than the individuals that exemplify
them. Individuals are thus frequently referred to as first-order objects, and properties and
relations of first-order objects as first-order properties and relations. However, properties and
relations that hold among individuals are identifiable (albeit abstract) objects themselves. But
because they are one level of abstraction above ordinary first-order objects, they are said to be of
a higher logical type and, hence, classified as second-order objects. As objects, first-order
properties and relations can themselves have properties that apply to them, but not to individuals:
for example, the property having at least one instance. Such properties are typically known as
second-order properties, because they apply to second-order objects. Furthermore, second-order
objects can stand in relations with one another. The relation has-more-instances-than: for

18

example, is a relation that holds between two kinds. Again, the subkind relation is a relation
that holds between a given kind and a more general kind that subsumes it, for example, the kinds
human and mammal, or NC machine and machine. Some second-order relations, however,
include individuals among their arguments. The instance-of relation, for example, holds
between an individual a and a kind K just in case a is an instance of K. Such “mixed-type”
relations that hold between objects of different logical types are nonetheless second-order. A
second-order relation, therefore, is a relation that always includes at least one first-order property
or relation among its arguments.

As with properties and relations holding of individuals, IDEF5 permits reference to any higher-
order property or relation. The subkind-of relation and the instance-of relation, however,
because of their prominence and importance, are included explicitly in the IDEF5 language.
Note that both of the distinguished second-order relations — subkind-of and instance-of — are
often ambiguously expressed by the expression “is-a” in semantic nets and other graphical
languages. To avoid the possible confusions this practice might engender, they are explicitly
distinguished in IDEF5, and the expression “is-a” is not used in the IDEF5 language.

2.2.5.1 More on the Subkind Relation

The subkind relation has an important consequence for individuals: if K is a subkind of K´, then
every instance of K is an instance of K´. It should be noted that the converse does not hold in
general: if every instance of a kind K is an instance of another K´, then it does not in general
follow that K is a subkind of K´. The reason for this is that the subkind relation is necessary: it
is not enough that, as a matter of fact, every K is a K´; it must also be impossible (in some
appropriate sense) for a K to fail to be a K´. For instance, every U.S.-president is a human-
male. But this is obviously a contingent relationship; there is nothing necessary about it, and
indeed quite likely in the future there will be a woman president. By contrast, in the current U.S.
government ontology (holding fixed certain basic laws about the presidency), U.S.-president is a
subkind of American-citizen. The previous examples are more obvious still; clearly, no human
being (as the notion is currently understood) could fail to be a mammal, just as no NC machine
could fail to be a machine.

It should be noted also that the subkind relation encompasses several widely-used notions. The
notion of kind subsumes those of type and class. A corollary to this is that the notion of subkind
subsumes those of subtype and subclass. More exactly, types and classes are just kinds with
definite necessary and sufficient membership conditions. A subtype T of a type T´ is a type
whose membership conditions entail those of T´. The same holds for classes. In such cases, it is

19

also said that T is a subkind of T´, and such occurrences of the subkind relation are known as
description subsumption, because the membership conditions of T´, the description of what it is
to be a member of T´, subsume those of T.

By contrast, in those cases where a kind does not have rigorously specified necessary and
sufficient membership conditions, the subkind relation, in general, can only be stipulated, not
inferred. That is, in cases where it is only possible to declare that a given individual is a member
of a certain kind K, the information associated with K, in general, will not provide a means for
determining whether another kind K´ is a subkind of K. The reason for this is that, if
membership is not neatly determined for a given kind K, there will be no guarantee that
membership in another kind K´, in particular, will be sufficient for membership in K (though it
might be in specific cases).

The notion of subkind also encompasses the notion of generalization/specialization, that is,
occurrences of the subkind relation in which the subkind is naturally thought of as a special case
of a more general concept. For instance, the kind hex-headed-bolt is naturally characterized as a
specialization of the concept fastener.

2.2.6 Two Ways to Introduce Kinds into an Ontology

Kinds are introduced into an ontology either by definition or stipulation. The former case is
applicable when it is possible to provide necessary and sufficient conditions for a thing’s being
an instance of a kind K in terms of objects, properties, and relations already assumed to exist in
the domain at hand. In the case of definition, then, the whole of K’s logical nature is given in
terms of antecedently given elements of the ontology. In the latter case, K is postulated to exist,
but only a partial definition of its nature is provided. To illustrate, the kind prime number can
be totally defined in terms of the kind number, the number one, and the relation divisible-by.
By contrast, a kind like book in a library ontology cannot be defined completely in terms of other
kinds, properties, and relations in the domain; it is not, for instance, just the collection of pages.
However, it can (let us suppose) be partially defined, or axiomatized, in terms of other kinds in
the domain, for instance, the kinds author and publisher. Properties and relations in general can
be introduced into an ontology by definition or stipulation as well.

2.2.7 Parts, Wholes, and Complex Kinds

The examples above might suggest that individuals are considered logically simple in IDEF5.
However, it is clear that individuals of most kinds (people, NC machines, etc.) can themselves be

20

viewed as complex objects comprising many other objects of various kinds. In general,
individuals are considered simple only insofar as their composite nature is irrelevant to the
particular perspective from which they are being viewed. By the same token, from some
perspectives, the composite nature of a certain kind of object may be highly relevant; one might,
for example, wish to document not only the existence of the kind engine but also the fact that
this kind of object includes objects of other kinds (e.g., distributors, pistons, sparkplugs) as parts.
One might then want to document the decomposition of those objects as well. IDEF5, therefore,
includes among its primitives a basic part-of relation that holds between an individual and the
more complex objects of which it is a part. It thus holds between, say, a given spark plug and the
engine in which it has been installed. When the members of a kind are viewed as having parts in
a given ontology, the kind is known as a complex kind.

The part-of relation is characterized in IDEF5 simply as a weak partial ordering on the domain
of individuals. That is to say, it is entirely characterized formally by the two (higher-order)
properties of reflexivity (every object is a part of itself) and transitivity (every part of a part of an
object a is a part of a). Thus, for instance, a spark plug that is a part of a car’s engine is also a
part of the car. It should be noted, though, that IDEF5 does not assume the full theory of parts
and wholes; in particular, it is not assumed that the domain of individuals is closed under the
formation of complex objects. For example, it is not assumed that, for every two individuals a
and b, there is a third individual that is the “sum” of a and b (though, of course, one is free to
postulate such a principle as part of the ontology of a given domain).

2.2.8 Processes, States, and Process Kinds

An adequate characterization of the kinds that inhabit a given domain often cannot be divorced
from the processes in which their instances are involved. Typically, processes involve two sorts
of change: change in kind and change in state. In an incineration process, for example, there is
a transformation of some quantity of wood into ashes and gas; the wood is destroyed and
quantities of ash and gas result. By contrast, a process in which ice is melted simply involves a
change in state of a given quantity of water from frozen to liquid; the water itself is not
destroyed, but only altered in a nonessential way. This is in fact what generally distinguishes
states from kinds: unlike kinds, states are usually contingent groupings within a domain. That
is, the distinguishing feature of a state is usually a changeable, accidental feature of a thing: for
example, a quantity of water’s being frozen, or a car body being painted. Both sorts of change
are accomodated in IDEF5.

21

Like individual objects, processes, too, cluster naturally into general categories. For instance,
temporally distinct events in which a manufacturing process plan is generated from a given
design are all instances of the general process of manufacturing process planning. Thus, general
processes, like the kinds discussed in the previous paragraph, are multiply instantiable; distinct,
individual events can be instances of the same general process. Furthermore, the identity of a
general process is independent of its instances; it remains the same regardless of whether or how
it is instantiated. Hence, also like kinds, a general process is intensional. Therefore, general
processes can be thought of as kinds no less than object kinds. Unlike the instances of individual
kinds, however, processes are things that happen. Thus, not only do they “contain” other objects
as parts, like the instances of complex kinds, they occur over an interval of time, and things are
true of the objects in the process over at least some parts of that interval. It is this fact that often
makes it relevant to refer to relevant processes in the characterization of a given kind.

Because of the importance process kinds can have in the definition of a domain ontology, IDEF5
permits one to refer to them no less than object kinds. However, there are two distinct contexts
in which such reference can occur, and the information that is kept about a process kind will
differ depending on the context. If a process kind P is referred to in the description of a
transformation or transition involving two kinds of objects, then the “internal” character of P is
described in accordance with the IDEF3 process description capture method. That is, P is
described in terms of the object kinds it involves, their properties, and the relevant relations that
hold between instances of those kinds when the process in question is instantiated. In particular,
in such contexts, the usual sort of information kept about an object kind — its defining properties
and so forth — is not kept about the process kind.

On the other hand, it may be important for understanding a domain not only to know how objects
are involved in the internal structure of a process, but also — as with object kinds generally —
how one kind of process relates logically to another kind of process, independent (in general) of
the details of its internal structure. For instance, manufacturing process planning is a subkind
of planning. In these cases, process kinds are characterized exactly like object kinds: defining
properties are identified, and so on. Two distinct constructs will be provided in the IDEF5
graphical language corresponding to these two possible characterizations of process kinds.

2.3 Levels of Ontologies

Roughly speaking, enterprise ontologies can be categorized in terms of three levels of generality,
as shown in Figure 2-2. These levels are useful when scoping an ontology-building effort as
discussed in Section 3. At the highest level of generality are domain ontologies. A domain

22

ontology classifies the most general information that characterizes an entire domain. For
example, a domain ontology for semiconductor manufacturing would include general
information about products, manufacturing techniques and tools, and so forth, applicable across
the entire semiconductor manufacturing domain. (The notion of a domain ontology is somewhat
flexible in the sense that it might be possible to abstract further across various specific domain
ontologies to derive an even more general domain ontology; for instance, one might abstract
from semiconductor manufacturing, the automobile industry, and so forth, to derive an ontology
that encompasses manufacturing generally.)

At a lesser level of generality are practice ontologies. A practice ontology is an extension of a
domain ontology that includes the common features of similar sites in that domain. For example,
a group of semiconductor manufacturing companies involved in the development of similar
product lines might develop an ontology that characterizes the semiconductor domain from the
perspective of the development of that product line.

Finally, at the lowest level of generality are site-specific ontologies. A site-specific ontology
extends a practice ontology (hence, also a domain ontology) to include information about all
relevant kinds of objects, properties, and relationships found within a specific site. Thus, for
example, beginning with a portable practice ontology developed independently on the basis of
similar sites, a specific semiconductor manufacturing plant in Silicon Valley might use IDEF5 to
extend this ontology to create a site-specific ontology to describe its own facilities in detail.

Domain
Ontology

Practice
Ontologies

Site Specific
Ontologies

Figure 2-2. Levels of Ontologies

A traditional problem with ontology development has been that many practice and site-specific
ontologies for the same sites may exist within a single domain [Hobbes 87] because what an
ontology captures is influenced by the viewpoint of the developers. Recognizing this problem,
IDEF5 facilitates the capture of ontologies from multiple viewpoints and suggests guidelines for
resolving inconsistencies because of different frames of reference.

23

2.4 On the Need for a Separate Ontology Modeling Method

Ontology development has traditionally been a difficult and expensive task. Ontologies
developed to date, such as Tacitus [Hobbes 87] and CYC [Lenat 86], are the result of very
expensive and handcrafted efforts by highly skilled specialists. Many enterprises are unable to
fund such expensive efforts. A standard and cost-effective means of developing ontologies must
be developed if enterprises are to gain the benefits of ontology use. The development of a
theoretically and empirically well-grounded method specifically designed to assist in creating,
modifying, and maintaining ontologies will result in both standardized procedures and reduced
costs.

The goal of IDEF5 is not to define yet another method to do something a little better or a little
different than an existing method. Rather, the IDEF5 method development is designed to fill a
gap in the existing set of methods. A type of information — ontological information — has not
been directly targeted by any existing method. The importance of this sort of information should
be clear. What is perhaps less clear is the need for a new method for capturing this information.
This issue is taken up in this section.

For those familiar with other IDEF methods, the idea of capturing information about kinds and
their associated properties will no doubt suggest both IDEF1 and IDEF1X. A kind has been
defined in Subsection 2.2.1 as a certain sort of class, which might then suggest that a kind is like
an IDEF1 entity class or an IDEF1X entity. Furthermore, associated with each entity class
(entity) is a list of associated attributes that assign values to the members of the entity class. So
perhaps the makings of an ontology modeling method are already available in one of these two
methods.

However, this is not the case. The chief reason is that IDEF1 and IDEF1X are purposely
designed with certain intrinsic expressive limitations to constrain the structure of the information
that they represent. IDEF1X, for example, was designed explicitly for the design of relational
database models; hence, it can only express information of a rather low logical complexity. This
makes for very clear, uncluttered, and easily implemented data models, but it also limits the
applicability of IDEF1 and IDEF1X outside their intended domains. For example, neither
method has the capacity to express modal information. For instance, in the manufacturing cell
example discussed earlier, it could be desired for security reasons that it be impossible to swap
out the diamond tool in the cutter; that is, suppose it is specified that any instance of the kind
Cutter must have a nonremovable diamond tool. Without the capacity to express modal

24

information, it is not possible to represent this constraint. But as the example illustrates, it may
be of singular importance to be able to express such information.

Further examples abound. For instance, in both IDEF1 and IDEF1X, it is not possible to name
individual objects in an ontology and assert things specifically about them. Rather, one can only
say things that hold of every member of a given class of entities in general. This is a crucial
limitation in cases where there is a distinguished member of a given kind with special properties.
Again, the two methodologies can express only a limited variety of general propositions about
the structure of the entities within a given class. For instance, one might want to note that for
every member of class A with property P, there is another member with property Q. This is a
straightforward quantification statement, easily expressed in the language of predicate logic that
underlies IDEF5; once again, though, this proposition is beyond the expressive capabilities of
IDEF1 and IDEF1X. However, as with the previous examples, the capacity to express such
information might well be needed in giving a thorough characterization of the nature of the
objects within a system.

The main point here is that the existing IDEF methods were simply not designed to do ontology
modeling; they were designed with other goals in mind. Granted, the methods could perhaps be
extended to incorporate additional expressive power as the need arises, but there would be no
point. A method designed for one purpose should not be forced to perform another. Again, the
claim is not that there is something wrong with or inadequate about the existing IDEFs. They
were simply not designed as methods for ontology development.

25

3 The IDEF5 Ontology Development Process

This section describes the IDEF5 ontology description development process. As described in
Subsection 2.1, an ontology characterizes what exists: the kinds, their properties, and their
interrelationships in a given domain, as revealed in the terminology used by experts in the
domain. A complete ontology, then, reveals the fundamental nature of a given domain. In the
context of business re-engineering, concurrent engineering, and information system development,
an ontology is key for the design of effective scalable solutions.

Practically, an ontology is a documentation of the terminology used in a particular domain. It
also includes the rules for combining and using that terminology to form statements about the
domain, and sanctioned inferences that can be made from those statements in the domain. This
use of ontology is consistent with the traditional use because what “exists” in a given domain is
largely influenced by the ability of the agents to individuate or “carve up” the world. As humans
differ greatly in this ability, both because of differing capabilities and differing perspectives,
ontologies are rarely perspective-invariant. Ontology development is focused on understanding
the concepts of a domain from these varied perspectives. It is also focused on extracting the
essential nature of these concepts and representing this knowledge in a structured manner.

The construction of an ontology differs from traditional information capture activities in the
depth and breadth of the information captured. Thus, an ontology development exercise will go
beyond asserting the mere existence of relations in a domain; the relations are “axiomatized”
within an ontology (i.e., the behavior of the relation is explicitly documented). To illustrate,
consider the relation higher than. Typical information analysis activities (such as IDEF1X
modeling) would assert the existence of this relation and declare its cardinality, only if the
organization “managed information about” the kinds of objects in the domain that can participate
in the relation. IDEF5 allows the characterization of the relation in greater detail. Thus, an
IDEF5 model of the higher than relation might declare that this relation has the property of
being transitive. Moreover, IDEF5 provides mechanisms for characterizing the nature of
transitivity by means of appropriate axioms (i.e., rules and constraints governing the behavior of
relations with that property). Axioms are recorded using the IDEF5 elaboration language
(Section 4.2). These axioms may be used to make inferences (i.e., derive new knowledge from
existing knowledge). The property of transitivity, for example, enables inferences of the
following form: suppose it is given that A is higher than B and that B is higher than C. Then, by
the transitivity of the higher than relation, it can be inferred that A is higher than C. Ontological

26

analysis, therefore, facilitates the extraction of information that is conveyed, but not displayed, in
an ontology.

The ontology development process requires considerable skill and experience primarily because
of the following reasons:

• The knowledge about a domain is often very poorly documented, and exists primarily
in the minds of a few domain experts. This domain knowledge is of two kinds:
procedural and declarative [Musen 89]. Declarative knowledge is the type of
knowledge that human experts often find easy to make explicit (i.e., humans are
consciously aware of this type of knowledge). This knowledge can be inspected,
abstracted, and applied in a variety of different contexts. On the other hand, it has
been observed that domain experts find it difficult to make procedural knowledge
explicit [Musen 89]. Research reveals that experts’ awareness of what they know
progressively degrades after repeatedly applying their know-how to specific tasks.3

The nature of domain knowledge therefore makes the process of “extracting”
knowledge from domain experts intrinsically difficult.

• Researchers have found that a person’s prior knowledge of a domain area is critical
for properly assimilating new information and clarifying areas of ambiguous
interpretation. Therefore, knowledge engineers must make an effort to learn the
domain expert’s area to avoid the consequences of misunderstanding what the expert
is trying to convey.

• The knowledge analysis needed for ontology capture requires considerable
introspective thought. Typically, it requires the effort of a group working in close
concert, with ontology evolution occurring iteratively by a process of successive
refinement [Musen 89].

3The problem for knowledge engineers is that experts do not introspect reliably. Although human beings may have
some declarative knowledge of the extent of their procedural memory, the two types of memory appear to be handled
quite separately by the nervous system. For example, Cohen investigated patients with neurologic amnesia to learn
more about the mechanisms of human memory. In one experiment, 12 such patients were taught how to solve the
Tower of Hanoi puzzle. The patients with amnesia became proficient at the task just as quickly as did control
subjects without amnesia and learned rapidly to perform the necessary sequences of moves “without thinking”.
However, despite their obvious acquired expertise at solving the Tower of Hanoi puzzle, not one of the amnesia
patients would ever state that he was familiar with the puzzle or knew its solution!

27

Ontology development requires extensive iterations, discussions, reviews, and introspection.
Knowledge extraction is usually a discovery process and requires considerable introspection. It
requires a process that incorporates both significant expert involvement as well as the dynamics
of a group effort. Given the open-ended nature of ontology analyses, it is not prudent to adopt a
“cookbook” approach to ontology development. We recommend the use of a general procedure
along with a set of useful guidelines. This section describes the ontology development process
for potential users of the IDEF5 method.

The IDEF5 ontology development process consists of the following five activities.

• Organize and Define Project This activity involves establishing the purpose,
viewpoint, and context for the ontology development project and assigning roles to
the team members.

• Collect Data This activity involves acquiring the raw data needed for ontology
development.

• Analyze DataThis activity involves analyzing the data to facilitate ontology
extraction.

• Develop Initial OntologyThis activity involves developing a preliminary ontology
from the acquired data.

• Refine and Validate Ontology This activity involves refining and validating the
ontology to complete the development process.

Although these activities are listed sequentially, there is a significant amount of overlap and
iteration between the activities. Thus, the initial ontology development (Activity # 4) often
requires the capture of additional data (Activity # 2) and further analysis (Activity # 3). Each of
the five activities will involve other activities and tasks. The remainder of this section will
describe the ontology development process in greater detail.

3.1 Organize and Define the Project

3.1.1 Organize the Project

An important initial step in developing an IDEF5 ontology description is the formation of a
development team. Each member of the IDEF5 team will perform a particular role in the

28

development effort. Individuals who are involved in the modeling may each fulfill several roles,
but each role is dealt with distinctly and should be clearly separated in the minds of the
participants. The following are the roles assumed by IDEF5 development project personnel.

• Project Leader This administrative role is responsible for overseeing and guiding
the entire IDEF5 development effort. This person is ultimately responsible for the
outcome of the ontology development effort, team organization and leadership, and
schedule and budget management.

• Analyst/Knowledge Engineer This technical role is filled by a person with IDEF5
expertise who will be the primary developer of the IDEF5 ontology description. The
person filling this role may be a regular employee of the organization requiring the
ontology development, or the person may be hired on contract for the task. In the
latter case, the organization requesting the ontology development is referred to as the
Client.

• Domain Expert This role is played by the primary source of knowledge from the
application domain of interest. Persons filling this role will provide insights about
the characteristics of the application domain that are needed for extracting the
underlying ontology knowledge. Often the knowledge of a domain expert is
supplemented by a variety of different documents from the organization. The
supporting documents are referred to as source material.

• Team Members All persons involved with the IDEF5 ontology description project.

• Reviewers Persons knowledgeable about the application domain and/or the IDEF5
method responsible for reviewing and commenting on draft descriptions and
documents. Reviewers authorized to make written critiques of IDEF5 descriptions
are commentors. The remaining reviewers are called readers. Team members and
domain experts can be reviewers.

3.1.2 Define the Project

The development team must establish the purpose and context of the description capture effort as
early as possible in the project. The context statement bounds or delimits the area of the domain
addressed by the development effort. The context is established by scope statements and the
identification of the initial boundaries for the ontology acquisition project. The scope defines the
boundaries of the description development effort and specifies parts of the systems that must be

29

included or must be excluded. The purpose statement provides a set of “completion criteria” for
the ontology description capture effort. The purpose is usually established by a list of 1)
statements of objectives for the effort, 2) statements of needs that the description must satisfy,
and 3) questions that must be answered by the resulting ontology description. The purpose and
context can rarely be determined completely and accurately in advance. The list of needed
findings or questions (the purpose) should be periodically revised as the data starts being
compiled. Similarly, the context an analyst thinks will contain the data often turns up leads to
other areas not originally considered within the scope. Thus, the purpose and context generally
evolve and are refined throughout the duration of the project. The purpose, context, and
viewpoint of an IDEF5 ontology description are captured in an IDEF5 Description Summary
Form, as shown in Figure 3-1. The IDEF5 Description Summary Form also references the
document numbers of all the different artifacts that comprise the IDEF5 description.

3.1.2.1 Define Purpose

The statement of purpose clearly specifies the main objective(s) of the ontology development
effort. Defining the purpose is an important initial step in the development effort. Often, project
personnel take the purpose for granted only to find the results of their efforts ignored by or of
little use to the enterprise. Without a purpose statement, the only completion criteria is the
budget and time allocated to the effort. Conversely, with a clearly defined purpose, the project
can often be completed much more cost effectively. Defining the purpose can be separated into
two parts: 1) defining a statement of need (SON) and 2) defining objectives of acquiring and
maintaining the ontology.

The SON should identify the source of the request (person or project) and paraphrase the stated
motivations for the project. Identifying the objectives is simplified by answering the following
questions.

• What decisions must be supported by the ontology description?

• How much detail is needed in the ontology to resolve an issue, make a decision, or answer
a question?

• What question(s) does the client or domain expert need answered?

• Who will use the ontology once it is available?

30

3.1.2.2 Determine Scope and Level of Detail

Once the purpose of the effort has been characterized, it is possible to define the context of the
project in terms of 1) the scope of coverage and 2) the level of detail for the ontology
development effort. The scope defines the boundaries of the description development effort, and
specifies parts of the systems that must be included or excluded. A sample context statement
from the semiconductor domain might be: “This is a site-specific description of the concepts and
terminology associated with the shop floor level objects in the domain” (e.g., wafers, etchants,
wafer carriers, automated ground vehicles). This context statement indicates that the description
will not cover scheduling, manufacturing cells, bills of materials, or many other possible aspects
of the semiconductor manufacturing domain. The level of detail specification is normally
documented in the form of a set of examples. It should be noted, however, that the scope and
level of detail decisions are tentative at this stage of the project and should be updated as the
ontology data becomes available. An astute project leader will periodically assess the adequacy
of the ontology captured against the specified needs and information goals of the client.

3.1.2.3 Establish Viewpoints

Although ontology is the study of the “. . . nature of being, reality, or ultimate substance,”
[Webster 88], ontologies are tinted, just as any other data/information/knowledge, through the
eyes of the individual responsible for recording the description. Different individuals perceive
the world around them in (often significantly) different ways because of differences in cognitive
skills and background knowledge. These differences in humans’ capacity to individuate are
reflected in the perspective or viewpoint that every individual brings to bear on everyday
activities. Differing viewpoints therefore have a significant impact on the outcome of an
ontology capture effort.

The differences in viewpoints, or frames of reference, are often reflected in different aspects of
the ontology such as the definition of the scope of the entire effort, the definition of boundaries
between subsystems, and the specification of the level of detail of the description capture. A
sample viewpoint statement for an automobile manufacturing ontology might be “described from
the viewpoint of the production engineering department.” Although the focus domain can be
studied from different viewpoints, each IDEF5 description requires the selection of a specific
viewpoint.

31

An IDEF5 description can have a set of different viewpoints associated with it. Resolving
differences in viewpoints is an important part of ontology analysis. The viewpoints must be
explicitly recorded in the IDEF5 Ontology Description Summary Form (Figure 3-1).

3.1.2.4 IDEF5 Description Summary Form

The IDEF5 Description Summary Form summarizes the evolving/completed ontology
description. It records the purpose, viewpoint, and context and also provides a summary of all
the schematics and documents used to record the ontology. The following are the fields of an
IDEF5 Description Summary Form (see Figure 3-1).

IDEF5 Description Summary Form

Project: Project Planning Ontology Analyst: P. Benjamin Reviewer: R. Mayer

Version: 1.0 Review Starting Date: 5/10/94 Review completion Date: 10/15/94

Purpose: To develop an ontology of the project planning domain.

Context: The information acquired must be sufficient to plan activities, specify precedence
relationships, and assign resources to activities.

Viewpoint: Project Manager

List of Documents

Source Material Log
Source Statement Pool
Source Statement Description Form
Term Pool
Term Description Form
Proto-Kind Pool
Proto-Kind Specification Form
Proto-Relation Pool
Proto-Relation Specification Form
Proto-Characteristic Pool

Kind Pool
Kind Specification Form
Property Pool
Attribute Pool
Relation Pool
Relation Specification Form
Classification Schematic
Composition Schematic
Relation Schematic

Figure 3-1. IDEF5 Description Summary Form

32

• Project Name The name of the ontology description development project is
recorded in this field. This purpose of this field is to identify the domain for the
ontology description capture effort.

• VersionThis field records the version number of the ontology description. The
version number is important because it provides a means to document and trace the
evolution process of the ontology development.

• Analyst This field records the signature of the IDEF5 expert who is the primary
developer of the IDEF5 description. It is important to record the name of the analyst
responsible for the ontology development because the domain ontology reflects
his/her viewpoint, individuation schemes (ways of “carving up” domain), and
analytical skills.

• Review Start This field captures the date of dispatch of ontology for review.

• Reviewer The signature of the reviewer is recorded in this field. This information
is useful for future reference.

• Review Completion This field captures the date of review completion. The
difference between the review completion date and review starting date indicates
how much time a reviewer has taken to provide recommendations, insights, and
comments on the ontology development project.

• Purpose The purpose of the ontology description development project is recorded
in this field. The purpose of the domain ontology development is important because
it provides a brief and concise description of what to expect from this ontology
document.

• ContextThe context of the ontology description development project is recorded in
this field. The context comprises the boundaries and the level of detail. The
statement of context is important because it indicates the scope and level of
granularity of the study.

• Viewpoint This field records the viewpoint of the ontology development project.
Knowledge of the viewpoint provides clues about the rationale for the schemes of
individuation used to carve up the domain.

33

• List of Documents The name(s) of the IDEF5 document(s) are recorded on an
IDEF5 Description Summary Form. This information is important in order to have a
basic idea of how anontology is developed and organized in each document, and
serves as an index for each document.

3.2 Collect Data

The definition of viewpoint, context, and purpose sets the stage for the data gathering phase of
the ontology capture effort. One problem with data collection is determining the appropriate
sources of data. Experience indicates that the main data sources are the domain expert and
documents relevant to the circumscribed ontology. It may be also instructive to scrutinize
existing and relevant IDEF models in the organization. IDEFØ models and IDEF3 descriptions
are likely to be sources of data.

The knowledge engineer/analyst must work closely with the domain expert to effectively record
all the data relevant to the description development effort. The data collection process is both
iterative and interactive. The process is iterative because the result of compiling/organizing the
data will drive additional data acquisition efforts. The interactions are necessary to make
clarification and discover insights based on discussions with the domain expert. The data
collection may occur in different modes: 1) direct transcription of data from source documents,
2) interviews and protocol analysis with domain experts, or 3) introspected observation of
particular organization activities/phenomena.

Direct Questioning (Interview) and Protocol Analysis are the most commonly used knowledge-
elicitation methods for acquiring knowledge from domain experts. An expert’s response to a
question may depend on the type of questions asked by a knowledge engineer during an
interview [Musen 89]. The typical questions asked during an interview are described in
Subsection 3.2.1.2.

3.2.1 Interview Guidelines

3.2.1.1 Interview Preparation

Data that needs to be acquired directly from a domain expert often will be obtained through
interviews. The following general guidelines are suggested to prepare for the interview.

34

• Obtain background information about each expert who will provide potentially
useful information including information about the responsibilities, current
assignments, and other areas within or related to the domain in which the expert has
experience. The name, location, telephone number, and e-mail address of the
expert(s) should also be recorded.

• Prepare a brief outline of: 1) the purpose of the interview with the expert, 2) the
topics to be covered, 3) the types of information being sought, 4) the authority for
requesting the interview, and 5) the relevant questions that can be used to motivate
discussions.

• Schedule a date and time for the interview with the expert.

3.2.1.2 The Interview

The interview with the expert is critical. The knowledge engineer/analyst (interviewer) should
create a positive, friendly atmosphere during the interview. The interviewer should attempt to
convey to the domain expert the feeling that they are working together to create the required
ontology and solve some problem for the organization. Novice interviewers should constantly
remind themselves that the experts are the ones with the knowledge about the domain.
Generally, experts are interested in helping and often provide questions and lines of investigation
that the interviewers had not thought of pursuing. Well-prepared interviewers will find that
experts provide far more information than was expected, often covering topics the interviewer
had not anticipated. In an ontology description capture project, this is the bonus for good
preparation.

The guidelines below should be considered when preparing questions for an interview.

• Questions should not interfere with the domain expert’s line of thought. Research
has shown that very detailed questions are often counter-productive. Examples of
such questions are, “What RPM should a machinist maintain while performing a
drilling operation?” or “Why didn’t you consider performing Operation X before
Operation Y?”

• Questions should prompt experts to express their thought processes during problem
solving. When domain experts remain silent for a considerable amount of time, it is
possible that they are solving the problem in their minds and not expressing all their
thoughts. Prompting questions are useful at this stage. Examples of prompting

35

questions are, “At this point of time, what are you thinking?,” “What are you
considering now?,” and “What are your reasons for doing this?”

• Questions should cover details regarding not only frequently occurring situations but
also rare situations in the domain.

3.2.2 Protocol Analysis

A protocol is an underlying pattern or structure of a discourse or behavioral process. The term
protocol implies that an expert is solving a problem using commonly used approaches and tools.
Protocol analysis is the process of analyzing a record of discourse or behavioral process. There
are two types of protocol analysis: verbal protocol analysis and movement protocol analysis
[Jackson 90]. In verbal protocol analysis, experts are asked to think aloud as they are solving
problems. Knowledge engineers record the entire discussion during the problem-solving process.
In movement protocol analysis, industrial engineers identify idle movements by studying motion
efficiency.

3.2.3 Data Collection Documents

Regardless of the data collection methods used, it is important to establish an action plan for
collecting data pertinent to the purpose and viewpoint of the model. Once collected, each piece
of collected data must be traceable back to its source. Traceability of source material is
important because it is the data that provides objective evidence for the basic ontology structures
that are later isolated from this data. We suggest the use of six important support documents to
facilitate source data traceability: 1) Source Material Log, 2) Source Material Description Form,
3) Source Statement Pool, 4) Source Statement Description Form, 5) Term Pool, and 6) Term
Description Form. These documents are described in greater detail later in this section.

3.2.3.1 Source Material Log

The Source Material Log is a document that serves as the primary index to all source material
collected and utilized in the project. Each piece of source material is sequentially assigned a
unique identifying number as the log is filled out (Figure 3-2). A source material may be a text
book, a research article, an enterprise-specific document such as a policy manual or a procedure
manual, a set of an interview notes, or direct observation notes. A Source Material Description
Form (Figure 3-3) is filled out to describe each source material in greater detail. The following
fields are used in the Source Material Log (see Figure 3-2):

36

Source Material Log

Project: Project Planning Ontology Analyst: P. Benjamin

Source
Material #

Source Material Name Collected
From

Collected By Date of
Collection

SM #1 “Production and Operations
Analysis”, by Nahmias, S.,
Richard D. Irwin Inc., 1989

---- Hari 5/20/93

SM #2 Interview Notes Phillips Hari 5/25/93

Figure 3-2. Source Material Log

• Source Material # The reference number assigned to each source material is
documented in this field. It is important to maintain source material numbers to
provide traceability to the source material from which statements, terms, kinds,
properties, etc. are individuated by member(s) of the ontology development team.

• Source Material Name The name of the source material is recorded in this field.
The name of the source material provides a basic idea of whether it is a textbook, a
research article(s), an enterprise-specific document such as a policy manual(s),
procedure manual(s) or so forth, interview notes, or direct observation notes.

• Collected From The name of the person from whom the source material was
collected is recorded in this field. If the source material is a set of interview notes,
the name of the interviewee will be recorded in this field. This information is
important for traceability, especially when many domain experts are interviewed
during data collection. On the other hand, if the source material is something like a
text book, a research article, etc., then this field is empty.

• Collected By The name of the individual(s) who collects the source material is
documented in this field. It is important to document information about who is
responsible for the collection of each source material for future reference.

• Date of Collection This field represents the date(s) on which the source material
was/were obtained.

37

3.2.3.2 Source Material Description Form

The Source Material Description Form provides a summary of the source material information.
For each source material item referenced in this log, there is a Source Material Description that is
used to record more detailed information. The following fields are used in a Source Material
Description Form (see Figure 3-3).

38

Source Material Description Form

Project: Ontology of Project Planning Analyst: P. Benjamin

Source Material #: SM #1

Source Material Name: “Production and Operations Analysis,” by Nahmias, S., Richard
D. Irwin Inc., 1989. Chapter # 8 (Project Scheduling)

Purpose: To record the relevant source statements that help individuate ontology
elements in the project planning domain.

Comments: This source material concerns production in the broadest sense of the word:
that is, production of goods and services.

Abstract: “Project Scheduling” chapter focused on: 1) the network representations of a
project, 2) the Critical Path Method (CPM), 3) project costing, 4) the program
evaluation review technique method (PERT).

1) Networks are a convenient means of representing a project. There are two ways of
using networks to represent projects: activity-on-arrow and activity-on-node. 2) The
critical path is the longest path or chain through the network. The length of the critical
path is the minimum project completion time, and the activities that lie along the
critical path are known as critical activities. Delay in critical activity delays the project.
This chapter presents a method, involving forward and backward passes through the
network, that specifies the earliest and latest starting and ending times for all activities.
3) The goal of the project costing analysis is to determine the optimal time to perform
the project that minimizes the sum of indirect and direct costs. Direct costs include
labor, material, and equipment. Indirect costs include costs of rents, interest, and
utilities. 4) PERT is an extension of critical path analysis to incorporate uncertainty in
the activity estimates.

Terms Supported: T #1, T #3, T #4, T #5, T #6, T #7, T #9, T #10

Statements Supported: SS #1, SS #3, SS #10, SS #12, SS #13, SS #15

Figure 3-3. Source Material Description Form

• Source Material # The source material number is recorded in this field. The source
material number is important because it provides traceability to the source material
from which statements, terms, kinds, and properties are individuated by member(s)
of the ontology development team.

39

• Source Material Name In this field, the name of the source material is
documented.

• Purpose The reason(s) for acquiring the source material are recorded in this field
because future readers of the ontology document might be interested in knowing the
purpose of collecting source material in the first place.

• CommentsAny additional relevant remarks that help describe or justify the
collection of source material are recorded in this field. This field is important
because it allows a team member(s) to record special features or comments that are
worth referencing at a later date.

• Abstract A summarized description of the source material is documented in this
field. The abstract is important because it provides a concise overview of the main
concepts discussed in the source material.

• Terms Supported The list of term numbers supported by the source material is
documented in this field (see Subsection 3.2.3.5). The terms supported are important
because they provide traceability for all the terms that are identified based on this
specific source material.

• Statements Supported This field represents a list of statement numbers supported
by the source material. It is an important field because it provides traceability to all
statements that are identified based on a specific source material.

The Source Material Log, together with the Source Material Description, establishes important
links between the ontology and the source knowledge that the ontology embodies. The
information contained in the source material is the basis for much ontology discovery that occurs
during ontology development.

3.2.3.3 Source Statement Pool

The Source Statement Pool records meaningful statements made by different individuals, as well
as statements extracted from source documents during the ontology development effort. Each
source statement is given a unique identification number to improve traceability. The following
fields are used in a Source Statement Pool (see Figure 3-4).

40

Source Statement Pool

Project: Project Planning Ontology Analyst: P. Benjamin

Source Statement
Source Statement Supported by

SS #1 Project definition is comprised of project
statement, project goals, personnel, and resources
required for the project.

Caraway,
Lingineni, &

Hari

SS #2 Resources may be classified as personnel,
computer systems, and facilities.

Caraway

SS #3 The project planner determines the sequence of
activities to be performed, and specifies
precedence constraints to be maintained.

Hari

Figure 3-4. Source Statement Pool

• Source Statement # The unique identifier assigned to a statement is recorded in
this field. It is very important to maintain this information because the source
statement numbers provide traceability to the evidence from which ontology
elements such as proto-kinds, proto-relations, proto-properties, etc. are individuated.

• Source Statement The source statement itself is recorded in this field. This field
will contain the latest version of the source statement. Older versions of the source
statement can be obtained from the source statement description form (Figure 3-5).

• Supported by The name(s) of the team member(s) responsible for the
identification of the source statement are recorded in this field.

The Source Statement Pool together with the Source Statement Description Form(s) allows
ontology development team member(s) to document the evolution process of source statement(s).

3.2.3.4 Source Statement Description Form

The following fields are used in a Source Statement Description Form (Figure 3-5).

41

Source Statement Description Form

Project: Project Planning Ontology Analyst: P. Benjamin

Source Statement #: SS #1 Statement #S Evolved To:
Status:

Active / Retired

Source Material #: SM #1 Statement #S Derived From: Original / Derived

Source Statement: Project definition is a clear statement of the project, the goals
of the project, and the resources and personnel that the project requires.

Supported
by:
Caraway,
Hari

Version 1: Project definition comprises the project statement, project goals, and
resources (including personnel) required for the project.

Supported

by:
Caraway,
Hari,
Lingineni

Version 2: Supported

by:

Version 3: Supported

by:

Comments:

Figure 3-5. Source Statement Description Form

• Source Statement # The unique identifier assigned to a source statement is
recorded in this field. It is very important to maintain this information because the
statement number provides traceability to the evidence from which ontology
elements such as proto-kinds, proto-relations, proto-properties, etc. are individuated.

• Source Material # This field represents the number(s) of the source material items
that support a source statement. When it is important to know the supporting source
material from which the source statement(s) is identified, the source material
number(s) provides a pointer to the source material.

• Status The statement is categorized as either active or retired and as either original
or derived, and this categorization is recorded in this field. When a source statement

42

is (still) used for data analysis purposes, the status of the statement is active. If a
source statement is no longer used for data analysis purpose(s), the status of the
source statement is retired. When a statement is directly collected from a source
material, the status of that statement is original. On the other hand, if a statement is
derived from a set of statements, the status of that statement is derived. The status of
a source statement provides an indication of where the statement is located in its
evolution process.

• Statement # evolved to The source statement numbers that were generated using
this statement as the base will be recorded in this field.

• Statement #s derived from The source statement numbers that were used to derive
this source statement will be recorded in this field.

• Source Statement This field provides space to document the statement itself. It is
important to document the source statement because it provides the necessary
evidence based on which various ontology elements are individuated.

• Supported By This field represents the name of the team member(s) responsible
for the identification of the source statement from a source material.

• Version # A source statement might undergo many successive refinements during
the ontology development process. This field records the version number of the
statement, which is incremented in chronological order. The versions of the
statement are useful for recording the evolution of the thought processes that underlie
the data capture and for helping in the ontology extraction process.

• CommentsThis field documents any additional information about the statement for
future reference.

3.2.3.5 Term Pool

The meaningful terms relevant to the ontology development project effort are recorded
alphabetically in a Term Pool. Terms often evolve to proto-kinds, proto-characteristics, proto-
relations, kinds, characteristics, and relations (Figure 3-6). A term that is identified by a
member(s) of an ontology development effort may be promoted to a proto-kind, proto-relation, or
a proto-characteristic at a later stage. The following fields are used in a Term Pool (see Figure
3-6).

43

Term Pool

Project: Project Planning Ontology Analyst: P. Benjamin

Term # Term
Source Statement

Reference
Source

Material
Reference

Support List

T #11 Project SS #1 SM #1 PK #1

T #12 Project goal SS #1 SM #1 PK #2

T #13 Resource SS #1 SM #1 PK #3, PR #5

Figure 3-6. Term Pool

• Term # The unique identification number assigned to a term is documented in this
field.

• Term This field records the term itself.

• Source Statement Reference The source statement(s) based on which the term is
individuated by a team member is documented in this field.

• Source Material Reference The unique identification number of source material
that is used to individuate a term is recorded in this field. This information is very
useful for determining which statement is the basis for individuating a term and also
which source material is used for collecting that particular statement.

• Support List The list of proto-kinds, proto-characteristics, and proto-relations that
are supported by the term are documented in this field.

The Term Pool provides a list of the terms used to derive the ontology. Each term in the Term
Pool is described in greater detail using the Term Description Form (see Figure 3-7).

44

Term Description Form

Project: Project Planning Ontology Analyst: P. Benjamin
Term # Term Description

T #3 Event An event is a characterized point in time that has
some significance to a real-world process.

T #10 Process A process is a collection of interrelated activities
that produces a set of outputs from a set of
inputs.

T #12 Resource Resources are objects/personnel that are
consumed, used, or required to perform activities
and tasks. Resources play an enabling role in
processes.

Figure 3-7. Term Description Form

The following fields are used in the Term Description Form (see Figure 3-7):

• Term # Each term individuated by an analyst from a statement is given a unique
identifier for future traceability, and the unique number is recorded in this field.

• Term This field documents the term itself. This term may be promoted as a proto-
kind, proto-characteristic, or a proto-relation during data analysis.

• Description A description of the term is recorded in this field. Often, it is useful to
document a concise description of the term during the ontology development
process.

3.3 Analyze Data

The objective of this task is to analyze the source material to construct an initial (“first pass”)
characterization of the ontology. This task is performed by a team consisting of knowledge
engineer(s)/analyst(s) and domain expert(s). This task will typically involve the following
activities.

45

• List the objects4 of interest in the domain. Some objects will be fairly obvious from
an initial study of the source data (such objects are called phenomenological naive
objects). For example, the different kinds of machines that are on the shop floor will
be obvious ontology candidates for a manufacturing system ontology. The level of
detail that needs to be employed to develop this list will be guided by the viewpoint
and context statements constructed earlier in the development process.

• Identify objects that are on the boundaries of the ontology. The initial boundaries
defined in the context statement may need to be re-drawn to facilitate better
conceptual structuring of the ontology. For example, recognizing that an
Autonomous Guided Vehicle (AGV) is on the (initial) boundary between the
machine cell subsystem and the stores subsystem may cause the boundaries to be re-
drawn to include material handling equipment, and, hence, the AGV.

• Look for and individuate internal systems within the boundary of the description.
Systems are defined as collections of physical and/or conceptual objects that work
together to achieve common objective(s). Organizing ontologies by the system in the
domain provides a clear conceptual framework for subsequent analysis of ontology
knowledge.

The activities involved in the analysis of source material are summarized in Figure 3-8.

<Fastener Handbook, description
 of common fasteners>
<SEMI standard V. 1, reference
 for wafer standards>
<Webster's, Dictionary of Terms>

machine threaded fasteners
reagents
wafers

Look for Boundary
Objects Look for Systems

DOMAIN DOMAIN

Catalog Objects

Figure 3-8. Source Material Analysis

4The term object is used in a generic sense to denote instances and kinds and also physical things and conceptual
things.

46

3.4 Develop Initial Ontology

3.4.1 Develop Proto-Concepts

The term proto-concepts, in the IDEF5 method, refers to the set of proto-kinds, proto-properties,
proto-attributes, and proto-relations. The prefix proto- suggests that the concepts are tentative
and subject to further inquiry before final change of status. During the process of ontology
development, proto-concepts often mature into concepts (i.e., kinds, properties, attributes, and
relations). The kind refinement procedure and relation refinement procedure are described in
Subsection 3.5.1 and Subsection 3.5.2, respectively.

3.4.2 Develop Proto-Kinds

The objective of this task is to convert one or more objects that result from the source data
analysis to proto-kinds (if this is appropriate). A proto-kind is the result of a preliminary attempt
at individuating a kind. This task essentially consists of associating the objects identified in Task
1 (Subsection 3.1) with the proto-properties identified in Subsection 3.4.3. It may be instructive
to perform this association process in two stages. First, the association is carried up to the point
where the proto-kind can be clearly distinguished from any other proto-kind; that is, the proto-
kinds have a basis for being uniquely individuated. These properties that contribute to the
uniqueness of a kind are candidate defining properties. Defining properties stipulate necessary
conditions for membership to a kind. Once the defining properties are identified, other (non-
defining) properties and attributes are used to characterize the kinds in greater detail. The proto-
kinds are tagged with supporting source material (for traceability) and catalogued in the Proto-
Kind Pool5 (Figure 3-9).

5When a proto-kind matures into a kind during an ontology development process, the kind is recorded in a kind pool.
The design of a kind pool is same as that of the Proto-Kind Pool, as shown in Figure 3-10.

47

Proto-Kind Pool

Project: Ontology of Process Planning Analyst: P. Benjamin

Proto-Kind # Proto-Kind

Name

Supported By Supported

By

Supports

List

Schematic

List

PK #1 p6- Activity Caraway SM #1 PR #11 COS #1

PK #2 p- Resource Caraway SM #1 PR #12 CLS #2

PK #3 p- Project Plan Caraway SM #1 PR #13 RLS #1

Figure 3-9. Proto-Kind Pool

The various fields in a Proto-Kind Pool Form are briefly described below.

• Proto-Kind # The unique identifier of a proto-kind is recorded in this field. This
proto-kind number is important because it provides traceability to the proto-kind.

• Proto-Kind Name The name of the proto-kind is recorded in this field. This proto-
kind may be promoted to a kind at a later stage by team members during the ontology
development process.

• Supported By The source material items (terms, statements) that support the
process of individuating the proto-kind are documented in this field.

• Supports List The properties and relations that are identified based on the
individuation of this proto-kind are recorded in this field.

• Schematic List The schematics in which this proto-kind occurs are documented in
this field. Thus this field is important because it acts as a pointer to all the
schematics in which the proto-kind is an element.

Each proto-kind has a Proto-Kind Specification Form (Figure 3-10) in which a brief description
of the proto-kind, its synonyms, and other relevant comments can be documented.

6Prefix “p” denotes the notion of “proto” (i.e., proto-characteristic, or proto-kind, or proto-relation).

48

Proto-Kind Specification Form

Project: Ontology of Project Planning Analyst: P. Benjamin

Proto-Kind #: PK #1

Proto-Kind Name: Resource

Description: Resources are individuals that are consumed, used, or required to perform
activities and tasks. Resources play an important role in processes.

Synonyms: Machines, Equipment, Personnel, etc.

Comments: Individuated by B. Caraway

Figure 3-10. Proto-Kind Specification Form

3.4.3 Identify Proto-Characteristics

The objective of this task is to catalog the characteristics (that is, the properties and/or attributes)
needed to identify and describe the objects in the domain. Properties and attributes are the
characteristics that hold of objects in the real world. Examples of attributes are weight, color,
age, shape, and so forth. Examples of properties are has-color, has-depth, has-interior-angles,
etc7. The potential candidates for “properties/attributes” in the ontology are initially called
“proto-characteristics.” Proto-characteristic identification usually occurs concurrently with
proto-kind identification because kinds are usually individuated on the basis of (some of) the
properties/attributes that they exhibit. The listing of characteristics is a relatively
straightforward task because characteristics are readily observable and are often measurable. The
proto-characteristics are tagged with supporting source material (for traceability) and catalogued
in the Proto-Characteristic Pool (Figure 3-11). The distinction between attributes/properties and
kinds is not always clear, however, and guidelines to differentiate these concepts are given in
Subsection 2.2.3. For illustration, a proto-kind project task can have five characteristics: 1)
duration, 2) earliest starting time, 3) latest starting time, 4) earliest finishing time, and 5) latest

7The difference between properties and attributes is described in Subsection 2.2.3.

49

finish time. These attributes are catalogued in a Proto-Characteristic Pool 8, as shown in Figure
3-11.

Proto-Characteristic Pool

Project: Ontology of Project Planning Analyst : P. Benjamin

Proto-characteristic
Proto-characteristic Name SupportedB

y
Supported By Kinds Used

In

PC #1 p-earliest starting time SM #1 Hari PK #8 PK
#9

PC #2 p-latest starting time SM #1 Hari PK #8 PK
#9

PC #3 p-earliest finish time SM #2 Hari PK #8 PK
#9

PC #4 p-latest finish time SM #2 Hari PK #8 PK
#9

Figure 3-11. Proto-Characteristic Pool

The following fields are used to describe the Proto-Characteristic Pool:

• Characteristic # The unique identifying number assigned to each characteristic is
documented in this field. The characteristic number is important because it can be
used as a means of traceability to the characteristic in the future.

• Characteristic Name The name of the characteristic is recorded in this field.

• Supported By The names of the team members responsible for the identification
of the proto-characteristic are recorded in this field.

8When a proto-characteristic matures into an characteristic during ontology development process, the characteristic
is recorded in a Characteristic Pool. The design of a Characteristic Pool is the same as that of a Proto-Characteristic
Pool, as shown in Figure 4-9.

50

• Kinds Used In This field consists of the list of all kinds that possess this
characteristic.

3.4.4 The Role of IDEF5 Schematics in Ontology Visualization

The IDEF5 languages are used during the invocation of the IDEF5 procedure to assist with the
development and visualization of the ontology. The purpose of IDEF5 schematics is to serve as
an aid for the construction of ontologies; they are not the primary representational medium for
storing the ontologies (refer Subsection 4.1.2 for more details). The elements of the Schematic
Language9 that are used to illustrate the IDEF5 procedure in this section are as follows: 1) A
kind is represented by a circle containing a label, 2) A first-order relation is represented either by
an arrow with a label or by a rectangle with rounded corners containing a label, and 3) A second-
order relation is represented by an arrow with its arrowhead at its back end. The use of
Classification Schematics, Relation Schematics, and Composition Schematics are briefly
illustrated in this section.

3.4.5 Using Classification Schematics for Ontology Development

The following example demonstrates how a Classification Schematic feature helps visualize the
subkind-of relation between different kinds in a domain. A source statement “plans may be
broadly classified as project plans, process plans, and manpower plans,” can be considered.
Suppose that based on this source statement, team members individuated kinds as plan, project
plan, process plan, and manpower plan during data analysis. A Classification Schematic is
designed to explicitly display the subkind-of relation between various proto-kinds/kinds in a
domain, as shown in Figure 3-12.

Plan

Process
Plan

Project
Plan

Manpower
Plan

Figure 3-12. Classification Schematic

9The IDEF5 Schematic Language is described in detail in Subsection 4.1.

51

3.4.6 Kinds Versus Properties

A common problem in ontology development is distinguishing between kinds and properties.
Properties, by definition, are characteristics that hold of kinds. An example of a property may be
(an object) being red. However, in some circumstances, it may be useful to objectify (make
objects of) the properties and treat them as kinds in their own right. To illustrate the nature of the
problem, the tolerance of a mechanical part used to make an assembled product can be
considered. For the manufacturing engineer performing the assembly, the tolerance is simply a
property that must hold for all parts supplied to him. If the tolerance does not hold, it is rejected;
otherwise, it is accepted. For the part designer, however, tolerances are of greater significance.
Thus, the designer finds it useful to classify different kinds of tolerances (dimensional tolerance,
positional tolerance, geometrical tolerance, etc.) and to study the characteristics of each kind of
tolerance. The designer will, thus, find it useful to model tolerance as a kind rather than as a
property. In general, the decisions between kinds and properties are a function of the granularity
(detail) level of the ontology development effort. The level of granularity is significantly
influenced by the purpose, viewpoint, and context of the project (see Subsection 3.1.2).

3.4.7 Coining Terms

Closely associated with the discovery of proto-kinds is the task of unambiguously identifying
each of these proto-kinds; in practical terms,this means that each individuated candidate kind
must be bestowed a name. Giving names in ontology development is not as trivial a task as it
may first appear. Names are used as referential pointers to the real world individuals being
described. They must, thus, connote a meaning that closely mirrors the individuals that are
referenced. For many real world individuals (especially the phenomenological naive ones),
widely accepted names already exist and will be used as such. For example, domains of certain
engineered products, such as automaking, have hardened and have fairly stable ontologies. (On
the other hand, ontologies of new technological fields, such as “virtual reality,” are in constant
flux.) It may be necessary, at this stage, to invent new names for certain individuals. This is
often true for new conceptual groupings of individuals, as illustrated in Figure 3-13. The strategy
suggested in IDEF5 is to coin a term to describe the individual and record the fact that the
individual’s name was coined rather than discovered to avoid later confusion.

Conceptual objects are often discovered during interviews with domain experts. For example,
during development of a fastener selection expert system for an automobile manufacturer, a
domain expert had conceptualized a set of systems for fastener usage in various parts of a car
body. These systems were not recorded in the literature, and the expert had never given them

52

names. Rather, he carried the ideas with him internally and used them without names. The term
world class systems was coined to describe these conceptual ideas (see Figure 3-13).

Figure 3-13. Coining Terms

The Proto-Kind Pool is provided in IDEF5 to record proto-kinds (see Figure 3-9). As seen in
Figure 3-9, each proto-kind is tagged to the supporting source document for traceability purposes.
As a further aid to identifying proto-kinds, the IDEF5 ontology library (see Appendix B)
provides a catalog of generic kinds that commonly occur in engineering and business domains.
These kinds may be used for effectively organizing the captured ontology knowledge about
different kinds of objects and phenomena.

3.4.8 Other Guidelines

Other useful guidelines for developing proto-kinds are as follows.

• Identify and record special cases. Special cases are instances of objects that do not
seem to fit the pattern of other instances of the object. For example, a particular
fastener in a handbook may have a special heat resistant property not present in other
fasteners. All special cases are catalogued separately in the source material catalog.

• Group objects together to form new kinds and categories, wherever appropriate. It
may be helpful to abstract away from a group of objects and form new proto-kinds by
extracting the properties from the object group. Such abstractions often serve to
enhance the conceptual clarity of the ontology.

• Group the objects to isolate systems and subsystems. Systems are collections of
objects that fulfill a common purpose. Systems may not have any distinguishing
characteristics but often provide a useful framework for organizing knowledge about
relations.

“I have this idea for
a new set of fastening

systems.”

“Let's call them
world class
systems.”

Concept name: world class system

53

• Use the IDEF5 classification and other relation schematics to aid the conceptual
analysis of kinds. The classification schematics and the composition schematics are
particularly useful in the development of kinds.

Figure 3-14 summarizes some of the key activities associated with developing proto-kinds.

OBJECTS

PROPERTIES

PROTO-KINDS

Combine objects and
properties to form

proto-kinds

Fastener M6,
Fastener Handbook, p7
has heat resistant property

Fastener M6,

Fastener
Handbook, p7

has heat
resistant
property

Record Special Cases

Fastener Application
Wafer Fabrication Cell

Proposal Preparation Station

Generate System
Proto-Kinds

Figure 3-14. Developing Proto-Kinds

3.4.9 Develop Proto-Relations

The objective of this task is to identify and characterize the proto-relations between the proto-
kinds. A proto-relation is the result of a preliminary attempt at individuating a relation, and it
expresses associations between the proto-kinds. The identification and characterization of
relations is often the most difficult part of knowledge acquisition. The identification of proto-
relations refers to the activity of recognizing the existence of, or becoming attuned to, a particular
proto-relation in the domain. Characterization follows identification and refers to the activity of
identifying and specifying the properties of a proto-relation in a manner that will allow the
relational knowledge to be used for making useful inferences at some time in the future. Thus,
recognizing that a tool post is On-top-of the lathe bed is the act of discovering and asserting its
existence and giving it a name. Characterizing it will involve making assertions such as the On-
top-of relation is transitive.

Several mechanisms are provided in IDEF5 to guide the relation knowledge acquisition process.
They are:

• The IDEF5 Statement Pool is the richest source of information for relation discovery
and characterization. Source statements assert the existence of relations either
implicitly or explicitly.

54

• The IDEF5 Relation Library provides a catalog of relations that commonly occur in
business and engineering domains. These libraries can be reused and tailored to the
requirements of particular ontology development efforts within a wide range of
domains.

• The IDEF5 Relation Schematics (including Composition Schematics) facilitate the
display of relations in a graphical form.

• The IDEF5 Elaboration Language, which provides a structured text format for
capturing complex relation knowledge at any level of complexity, can express
everything that can be recorded using the Schematic Language; it can also express
knowledge that is beyond the scope of the Schematic Language. For example, the
expression z = a + b + c + d, where z, a, b, c, and d are integers, can only be
expressed in the IDEF5 Elaboration Language10.

The development of proto-relations will involve the following activities.

• Record meaningful associations between proto-kinds. Such meaningful associations
often indicate the existence of proto-relations. A useful source for extracting such
associations is the Source Statement Pool (Subsection 3.2.3.3). A Proto-Association
Chart is a two-dimensional matrix with relevant proto-kinds listed on both axes. An
X is marked in cells where the existence of a possible proto-relation is indicated, as
shown in Figure 3-15.

• Categorize the proto-relations as being system-accidental or system-essential and
recall that system-essential relations have to necessarily hold, given the existence of
instances of the participating kinds.

• Identify the properties of the proto-relation. The IDEF5 relation library and the
IDEF5 elaboration language are used to facilitate this process.

• Examine the nature of the participating proto-kinds. Relations often have restrictions
on the types11 of arguments. For example, the assertion A Reports-to B implies that
both A and B refer to instances of people, or to instances of organizational roles, or

10The IDEF5 Elaboration Language is described in Section 4.2.

11The term “type” is used here in a general sense. See Subsection 2.1.2 for a discussion of kinds and types.

55

to a combination of an organization role instance and a person instance. Thus,
knowledge of the participating proto-kinds will focus attention on a more restricted
set of possible relations that may exist between instances of these proto-kinds.

K3

K4

Kinds

Kinds
Kn

Kn

K1 K2 K3 K4

K1

K2

X

X

X

X

Note: Proto-kinds are denoted K1, K2, ... , Kn.

Figure 3-15. Structure of a Proto-Association Chart

The proto-relations that are identified are recorded in the Proto-Relation Pool12, as shown in
Figure 3-16.

Proto-Relation Pool

Project: Ontology of Project Planning Analyst: P. Benjamin

Proto-Relation # Proto-Relation
Name

Supported By Participating
Kinds

Comments

PR #1 p- Determines SS #2 PK #7, PK #9

PR #2 p- Specifies SS #2 PK #7, PK #8

Figure 3-16. Proto-Relation Pool

• Proto-Relation # The unique identification number assigned to the proto-relation
is recorded in this field. This field is important to enhance traceability of the proto-
relation that is individuated by a member of the ontology development team.

12When a proto-relation matures into a relation during ontology development process, the relation is recorded in a
Relation Pool. The design of a relation pool is same as that of Proto-Relation Pool, as shown in Figure 3-17.

56

• Proto-Relation Name The name of the proto-relation is documented in this field.

• Supported By This field involves source data items (terms, statements) that
support the individuation process of the relation during the ontology development
process.

• Participating Kinds The set of all kinds between which this relation holds is
documented in this field, which is important because it helps in characterizing the
relation itself.

• Comments Any additional descriptive remarks about the proto-relation important
for future reference should be recorded in this field.

Each proto-relation has a Proto-Relation Specification Form (Figure 3-17), in which a brief
description of the proto-relation, examples of use, and other relevant comments can be
documented.

Proto-Relation Specification Form

Project: Ontology of Project Planning Analyst: P. Benjamin

Proto-Relation #: PR #1

Proto-Relation Name: Determines

Description: To fix conclusively or authoritatively.

Examples of Use: A project planner determines all the precedence constraints that must
be maintained in the system.

Comments: Individuated by B. Caraway

Figure 3-17. Proto-Relation Specification Form

3.4.10 Role of Relation Schematics in Ontology Development

The IDEF5 Relation Schematics allows ontology developers to visualize and understand relations
between relevant proto-kinds or kinds in a domain. Consider the source statement: a manpower
planner develops a manpower plan in which resources are allocated to perform the

57

required activities. Based on this source statement, suppose that the ontology development
team individuated the following kinds: manpower planner, manpower plan, resource, and
activity . The relations between these kinds are visualized using the relation schematic shown in
Figures 3-18 or, alternatively, Figure 3-19.

Manpower
Planner

Develops

Performs ResourceActivity

Allocates

Plan
Manpower

Figure 3-18. First-order Schematic

Manpower
Planner

Activity

ResourceManpower
Plan

Allocates

Performs
Develops

Figure 3-19. Alternative Syntax for the Schematic in Figure 3-183.4.11 Role of
Composition Schematics in Ontology Development

The IDEF5 Composition Schematics allows ontology team member(s) to visualize part-of
relations between relevant proto-kinds or kinds in a domain. Consider the following source
statements: A project plan is comprised of project goals, an activity list, and the manpower
allocation plan and The activity list includes a major activity list and a minor activity list.
Based on these source statements, team members individuate the following kinds: project plan,
project goal, activity list, manpower allocation plan, major activity list, and minor activity
list. Figure 3-20 illustrates the use of a composition schematic to display part-of relations in this
(project planning) domain.

Manpower
Allocation

Plan

Part-of Part-of

Non-
Critical
Activity

Critical
Activity

Project
Goal

Activity
List

Project
Plan

Figure 3-20. Composition Schematic

58

3.5 Refine and Validate Ontology

The objective of this phase of ontology development is to refine the proto-characteristics, kinds,
and relations, and to affirm their authenticity by converting them to properties/attributes, kinds,
and relations, respectively. The refinement process is essentially a deductive validation
procedure. The ontology structures are “instantiated” (tested) with actual data, and the result of
the instantiation is compared with the ontology structure. If the comparison produces any
mismatch, every such mismatch must be adequately resolved. Refinements (if any) to the initial
ontology are incorporated to obtain a validated ontology.

3.5.1 Kind Refinement Procedure

The kind refinement procedure is summarized in the following (roughly, but not necessarily,
sequential) steps:

• Make instances of the proto-kinds. The examples may be constructed from the
available source data (source data log); otherwise, new data must be gathered for the
purpose of constructing these examples. The examples must be reasonably
representative, with at least one exception case included, if possible. Each of the
proto-kind instances created is populated with properties and/or attributes (this may
involve converting proto-characteristics to properties/attributes). Classification
schematics and kind characterization forms are used to support the kind instantiation
process.

• Record information that cannot be recorded in the kind instances, determining
whether this additional information is really necessary, and, if so, refining the
structure of the kind to include the information.

• Check whether two instances of the same kind have different defining properties, and
in such cases, check whether the viewpoints are different. If not, the inconsistencies
will have to be resolved by refining the ontology.

• Convert the proto-kinds (along with their proto-properties) to kinds after all the kind
instances have been validated using Steps 1 through 3. The validated kinds are listed
in the Kind Pool.

A Kind Specification Form (Figure 3-21) is designed to document all relevant features of a kind
after it is promoted from a proto-kind.

59

Kind Specification Form

Project: Ontology of Project Planning Analyst: P. Benjamin

Kind #: K #1

Kind Name: Resource

Description:

Attributes:

1. Has status : active/idle (Defining)
2. Has a unique identification number (Non-defining)
3. Has a unique label (Non-defining)

Defining Properties:

1. Is necessary for performing task/activity efficiently

Properties:
1. Identification number is R #857 (Accidental)
2. Label is “Capstan Lathe #4” (Accidental)

Relation the Kind Participates in:

Comments:

Elaboration Language Specification:

Figure 3-21. Kind Specification FormThe various fields in a Kind Specification Form are
briefly described as follows.

• Kind # The unique identifier of a kind is recorded in this field. The kind number is
important because it provides traceability to the kind.

• Kind Name The name of the kind is recorded in this field. This kind may have
been promoted from a proto-kind status by team members during the ontology
development process.

• Description A brief description of the kind is documented in this field.

60

• Attributes All the attributes of the kind are documented in this field.

• Defining Properties All the properties of the kind are recorded in this field.

• Properties All non-defining properties are recorded in this field. Each non-defining
property may be categorized as an essential or accidental property and tagged to the
stated property.

• Relations the Kind Participates In All the relations in which the kind participates
are documented in this field.

• CommentsAny additional descriptive remarks about the kind important for future
reference should be recorded in this field.

• Elaboration Language SpecificationThe IDEF5 Elaboration Language
specification of the kind should be documented in this field. (The IDEF5
Elaboration Language is described in Subsection 4.2.)

3.5.2 Relation Refinement Procedure

The relation refinement procedure is summarized in the following (roughly, but not necessarily,
sequential) steps:

• Make instances of the proto-relations. The examples may be constructed from the
available source data (source data catalog); otherwise, new data must be gathered for
this purpose. The IDEF5 Relation Schematics and the IDEF5 Relation
Characterization forms are used to aid the instantiation and validation procedure.

• Compare the properties of each of the relation instances with the properties identified
in the IDEF5 description, thus resolving any mismatches. Moreover, missing
relation properties should be checked for and added, if needed.

• Sample instances of selected system essential relations and examine whether two or
more instances of such relations are incompatible. For example, one system-
essential relation may say that a fastener must have a sealant, and another may say
that it cannot have a sealant. Such inconsistencies may be either due to hidden
viewpoint differences not recorded in the ontology or to differing viewpoints.
Incompatibilities that occur because of differing viewpoints may be resolved by
splitting the focus relation into different relations, one for each viewpoint.

61

Otherwise, a consensus must be reached to resolve the incompatibility through
discussions with the domain expert.

• Detect new relations discovered by example that were not captured in the ontology
and add such relations to the ontology.

• Make instances of inference sequences using the relation properties, if appropriate.
For example, if it is recorded that relation R is transitive, instances x, y, and z of
kinds A, B, and C respectively such that xRy and yRz are both true must be found.
The transitivity of R must be validated by checking whether xRz is true.

• Convert the proto-relations to relations, after all the relation instances have been
validated using Steps 1 through 5, and record the validated relations in a Relation
Pool.

The Relation Specification Form (Figure 3-22) is designed to facilitate the characterization of
relations. Notice that the Elaboration Language statements are also recorded on this form.

Relation Specification Form

Relation #: R #1

Relation Name: Determines

Description: To fix conclusively or authoritatively.

Arguments: Project Planner, precedence constraints

Examples of Use: A project planner determines all the precedence constraints
that must be maintained in the system.

Comments: This relation is individuated by B. Caraway.

Elaboration Language Specification:

Figure 3-22. Relation Specification Form•Relation # The unique identification number
assigned to the relation is recorded in this field. This field is important to enhance
traceability of the relation that is individuated by a member of the ontology
development team.

62

• Relation Name The name of the relation is documented in this field.

• Description This field records a brief explanation of the relation.

• Arguments The set of all kinds between which this relation holds is documented
in this field, which is important because it helps in characterizing the relation itself.

• Examples of Use A set of sentences, that provides a basic idea of how the relation
holds between kinds, can be recorded in this field.

• CommentsAny additional descriptive remarks about the relation important for future
reference should be recorded in this field.

• Elaboration Language SpecificationThe IDEF5 Elaboration Language
specification of the relation should be documented in this field. (The IDEF5
Elaboration Language is described in Subsection 4.2.)

63

4 The IDEF5 Ontology Languages

A domain ontology is a detailed characterization of “what there is” in a given application
domain. Such characterizations must, of course, be given in some language; hence, languages
play an important role in the ontology capture process. More specifically, languages for ontology
capture are important for two reasons.

• They provide a medium for capturing and storing knowledge.

• They provide a format for displaying the acquired knowledge.

Representational structures that are rich in expressive power are important for ontology because
previously acquired knowledge is often used to guide the process of acquiring additional
knowledge.

Because it cannot generally be determined a priori what sorts of representational structures will
be needed to capture the ontology of a given domain, languages for ontology need to be
expressively very rich. However, if the method of ontology capture is to be usable, its
representational structures must be intelligible to ontology developers. The ease of use of a
language is determined by its “look and feel” and by how well it supports the cognitive activities
of the ontology development process. The ontology languages must have a synergistic
relationship with the ontology development procedure (Section 3). That is, the languages must
support the use of the procedure and the procedure must support the use of the languages.

The purpose of this section is to describe the ontology capture languages. IDEF5 has two
languages.

• The IDEF5 Schematic Language This language is the graphical component of the
IDEF5 languages. It provides visual assistance in the ontology capture process and
facilitates communication.13

13The IDEF5 Schematic Language is supplemented by two important forms: 1) the Kind Specification Form and 2)
the Relation Specification Form. These forms allow the ontology developer to record the ontology in a textual form.
It permits ontology characterization at a greater level of detail than what is possible in a graphical form. The IDEF5
forms are also designed to facilitate the recording of IDEF5 Elaboration Language statements. The IDEF5 forms are
described in Subection 3.1.4. The IDEF5 Elaboration Language is presented in Section 4.2.

64

• The IDEF5 Elaboration Language This language is a structured textual language
and has the full power of first-order logic.

The two IDEF5 languages complement and supplement each other. The Schematic Language is
somewhat restricted in expressive power. However, the graphical structures of this language
make it intuitive and easy to use. The IDEF5 Elaboration Language, on the other hand, is an
expressively rich textual language. In particular, it can express everything that can be expressed
in classical first-order logic. However, the structured text syntax requires a higher level of
proficiency for its effective use.

4.1 The IDEF5 Schematic Language

Essentially, an ontology identifies and organizes the relevant kinds and individuals, their
properties, and the network of relations between them within a specific application domain.
The IDEF5 Schematic Language provides a variety of graphical constructs to assist in the
construction of ontologies. In the following subsections, a summary of the IDEF5 Schematic
Language lexicon is first presented. The use of these representational “building blocks” to
develop diagrams, or schematics, is then described with the help of illustrative examples.

4.1.1 The Schematic Language Lexicon

The central primitive symbols of the IDEF5 Schematic Language are shown in Figure 4-1.

Kind symbols;
Individual symbols;

Referents

Relation symbols;
State transition symbols

Alternative 2-place First-order
Relation Symbols

Relation Label

Kind Label

Kind Symbols

Individual
Label

Individual Symbols

2-Place Second-order Relation Symbols

Relation Label

ID Method Name

Referenced
Concept Label

 Referents

Relation Label

n -Place First-order Relation Symbols

Process symbols;
Connecting symbols;

Junctions

Process
Label

Process symbols

X O &

Junctions

Connecting symbols

State Transition Symbols

Weak Transition Arrow

Strong Transition Arrow

Instantaneous Transition Marker
�

Figure 4-1. Basic IDEF5 Schematic Language Symbols

65

The basic lexicon of the IDEF5 Schematic Language (see Figure 4-1) consists of the following:

• Kind Symbols A kind is represented by a circle containing a label. The label in a
kind symbol should be either identical with the name of the kind given in the
associated specification form for the kind (Subsection 4.1.4), or in shorthand form of
the name.

• Individual Symbols Labeled circles that also include a small, filled-circle (as
shown in Figure 4-1) represent specific individuals identified in an ontology. The
label should be unique within the ontology.

• Referents An IDEF5 Referent is an artifact used to make reference to a concept in
any other IDEF method. Referent rectangles have the following information items.

1) Referenced Concept Label This is the label of the concept (within an
IDEF model) that is being referenced. For example, an activity kind may
reference an activity label in an IDEFØ model.

2) ID This is the identification label for the Referent.

3) Method Name This is the name of the IDEF method that is being
referenced.

• Relation Symbols Rectangles with rounded corners signify first-order n-place
relations (i.e., relations that hold between first-order individuals). In the case of 2-
place relations, a labeled arrow can be used instead of a rectangle. Arrows with their
arrowheads at the back represent second-order relations (i.e., relations that hold, not
between individuals, but between kinds or between individuals and kinds). There are
no symbols in the IDEF5 Schematic Language for n-place higher-order relations, as
experience has shown their presence in ontologies to be rare. If necessary, however,
such relations can always be added to an ontology via the IDEF5 Elaboration
Language (see Subsection 4.2). Because of the importance of the first-order part-of
relation in ontology, the distinguished label part-of is included in the IDEF5
Schematic Language.

Every relation symbol includes a label connoting the relation represented. As with
kind symbols, the label should be either identical with the name of the relation given
in the associated specification form for the relation or in shorthand form of the name.

66

Like part-of, the distinguished labels instance-of and subkind-of are provided for the
second-order relations instance-of and subkind-of.

• State Transition Symbols There are two types of state transition links provided by
IDEF5 schematic languages: 1) an arrow with an open circle at the center of the
arrow that represents weak transition and 2) a double headed arrow with an open
circle at the center of the arrow that represents strong transition.

An instantaneous transition marker “∆” is provided by the IDEF5 Schematic
Language to represent the state transition that occurs over a period smaller than the
smallest time unit recognized in the context being modeled.

• Process Symbols Rectangles with square corners and a line near the bottom
indicate process kinds (i.e., general, repeatable states of affairs, as discussed in
Section 2). Their syntax and informal semantics are provided in Subsection 4.1.5.

• Connecting Symbols Connecting symbols are a type of arrow used to connect
kinds to first-order relations. Their syntax is discussed in Subsection 4.1.5.

• Junctions Junctions are simply symbols that represent boolean operators. Their
syntax and semantics are discussed in Subsection 4.1.5.

4.1.2 IDEF5 Schematics and their Interpretation

In this subsection, the various diagram types, or schematics, that can be constructed in the IDEF5
Schematic Language are presented. The purpose of these schematics, like any representations, is
to carry information. Thus, semantic rules must be provided for interpreting every possible
schematic. Following the usual approach, these rules will be provided by providing rules for
interpreting the most basic constructs of the language, which can then be applied recursively to
more complex constructs. However, the character of the semantics for the Schematic Language
differs from the character of the semantics for other graphical languages. More specifically, each
basic schematic is provided only with a default semantics that can be overridden in the
Elaboration Language (see Subsection 4.2). The reason for this is that the chief purpose of the
Schematic Language is to serve as an aid for the construction of ontologies; they are not the
primary representational medium for storing them. That task falls to the Elaboration Language.
The Schematic Language particularly useful for the construction of first-cut ontologies in which
the central concern is to record in a rough way the basic kinds of things that exist in a domain,
their characteristic properties, and the salient relations that can be obtained between objects of

67

those kinds and between the kinds themselves. Consequently, the basic constructs of the
Schematic Language are designed specifically to capture this type of information. However, the
default semantics may not accurately capture the desired information. In such a case, a user can
explicitly override the default semantics in the Elaboration Language.

However, the precise character of the properties of, and relations between, objects of various
kinds is often quite different from one case to another: Does the relation hold between every pair
of instances? Some instances? Must it hold between two instances if it holds between them at
all? Therefore, to assign a semantics that enforces just one of these semantic possibilities with
respect to a given construct rules out other legitimate possibilities and, hence, limits the
flexibility and usefulness of the language in the construction of an ontology, because any of the
possibilities might be present in the domain under consideration. The idea behind the default
semantics, for each construct, is to express what experience has shown to be the most useful
meaning as a default but also to allow revision or further specification of this meaning in the
Elaboration Language, should the need arise.

This issue raises an obvious question: Why not simply endow the Schematic Language with the
power to express these subtle semantic distinctions directly? Why not simply adopt a graphical
representation language like Semantic Nets (SNs — in its more sophisticated guises) or
Conceptual Graphs (CGs) that have the full expressive power of a first-order language?14 Why
not adopt a graphical language that is intended to be complete in itself, without need of any
further supplementation by a nongraphical language, instead of one that falls far short of the full
expressive power of a first-order language?15 The central answer is again rooted in the fact that
the Schematic Language is designed only for the construction of first-cut ontologies and the easy
browsing and rapid addition of new information to existing ontologies. It was designed to
streamline the process of ontology construction and evolution, not to be the central
representational medium for ontology. Among the central considerations behind its design, then,
was to give domain experts largely unfamiliar with full first-order languages and the subtleties of

14That is, loosely, for any given SN or CG language L, there is a mapping that takes any SN or CG A of L into a set
of sentences in a first-order language with the same meaning. That is, A and the set will be true of the same models
and vice versa (for finite sets of sentences). For SNs, see S. Shapiro, “The SNePS semantic network processing
system,” in N. Findler, Associative Networks: Representation and Use of Knowledge by Computers, New York,
Academic Press, 1979. For CGs, see J. Sowa, Conceptual Graphs: Information Processing in Mind and Machine,
Menlo Park, CA, Addison-Wesley Publishing Co., 1984.

15More exactly, with regard to its default semantics, it is, very roughly, equivalent to a first-order language that
permits only strings of existential quantifiers.

68

modality and quantification an intuitive interface for entering basic ontology information. For
this purpose, a graphical language is ideal. However, beyond relatively simple pieces of
information about kinds and their characteristic properties and relations, graphical languages
have no advantage over standard linear languages in either learnability or usability; indeed, in the
eyes of many experts, graphical representations of more complex information are substantially
more cumbersome than their standard linear counterparts. There is, thus, no reason not to carry
out refinements of an ontology in the Elaboration Language directly. That is at any rate much
more efficient with respect to the development of an automated ontology support tool: a
graphical language is not in itself computer processable. Hence, if the information expressed in
such a language is to be manipulated, queried, updated, and so forth, it needs to be compiled into
a more standard computer processable form. The Elaboration Language, however, is processable
as it stands, and hence, once again, there is no advantage in using an expressively equivalent
graphical language for ontology refinement.s

4.1.2.1 Basic First-Order Schematics

This subsection presents the syntax and default semantics for the basic first-order schematics of
the language. The simplest of these are schematics involving 2-place, first-order relations.

4.1.2.1.1 2-Place Relation Schematics

IDEF5 schematics are constructed by putting together the basic IDEF5 graphical symbols in
different ways. The basic IDEF5 schematics are the smallest diagrams that can be so
constructed. The syntax of the basic schematics is quite simple: they are obtained by connecting
circles with relation and proto-relation symbols.

The most common construct of this sort involves connecting two kind symbols with a first-order
relation symbol, as in Figure 4-2.

Kind label Kind labelRelation Label

Figure 4-2. General Form of a Basic First-Order Schematic

Such diagrams need a default semantics (i.e., an accepted meaning that can be assumed in the
absence of any further clarification in the Elaboration Language). For this purpose, we
considered the concrete example in Figure 4-3.

69

Sparkplug EnginePart-of

Figure 4-3. Example of a Basic First-Order Schematic

What, exactly, should the default meaning of this construct be? It is very important to note that it
does not mean that the kind sparkplug is a part of the kind engine, for part-of in IDEF5 is a
first-order relation that holds between first-order physical objects, and, in particular not between
abstract, higher-order objects like kinds. Thus, Figure 4-3 must be about instances of the kinds
in question–the individuals that exemplify those kinds. Given that there are a variety of possible
meanings that might be assigned to Figure 4-3, the following specifications are made.

(1) Every sparkplug (in the domain in question) is a part of every engine (in the domain in
question).

Clearly that is not even physically possible, in general: sparkplug can only be a part of one
engine. A weaker reading is the following.

(2) Every sparkplug is a part of some engine.

This is a much more plausible reading, but as a default, it is still too strong. There may be loose
sparkplugs in inventory or on the shop floor.

(3) Every engine has some sparkplugs among its parts.

This reading takes account of the possibility of loose sparkplugs, but now the problem is that
there may well be engines lying about with the plugs removed, so this, too, is too strong.

(4) Some sparkplugs are parts of some engines.

This reading now accounts for both counterexamples, but again, as a default, it still might say too
much. That is, Figure 4-3 might only be recording the way the domain in question ordinarily is,
but not at all any way that it is at all times. For instance, the domain in question might be an
ontology for an automobile factory that has temporarily shut down its engine fabrication division
and is making only car bodies and, hence, which, for the time being, contains no engines at all.
To accommodate such cases, a reading weaker than (4) is needed for the default semantics of
Figure 4-3; specifically, the default semantics for schematics like the one in Figure 4-3 will be
taken to indicate only what is possible, or permissible, in a certain domain vis-a-vis sparkplugs

70

and engines relative to the part-of relation. Thus, more exactly, it will be taken as a default to
mean only that, in the current ontology.

(5) Sparkplugs can be parts of engines.

That is, it is possible, or permissible, that a sparkplug (i.e., an instance of the kind sparkplug) be
a part of an engine (i.e., an instance of the kind engine).16 Therefore, the default semantics of
schematics like Figure 4-3 should be viewed as analogous to type declarations in a program that
gives the permissible arguments to certain functions without declaring precisely how those
functions are instanced in a run of the program. In the same way, Figure 4-3 is essentially
specifying permissible arguments for the part-of relation.

Note that the sense of possibility in question here is stronger than mere logical possibility. In the
purely abstract sense, it is logically possible for almost anything to bear a given relation to
anything else. It is logically possible, for example, that a sparkplug be part of an oddly designed
computer. The sense of possibility in question here, though, is intended to reflect the actual
nature of a given domain; it is intended to capture the way things can be in the domain, other
things being equal, not how things could be, under any imagined circumstances. Indeed,
generally speaking, in the evolution of an ontology, basic assertions will more generally reflect
actual observations in the domain (i.e., generalizations of what has actually been observed in the
domain: Specific sparkplugs have been observed to be parts of specific engines. These
observations are then generalized in the form of Figure 4-3 and, for the reasons noted, given the
semantics of (5). It should again be noted, though, that this is only a default semantics; stronger
meanings for such diagrams (3), for instance can be imposed via the Elaboration Language.

As an alternative syntax for 2-place first-order schematics, it is permissible (and often preferable)
to replace the two connecting symbols and the relation symbol with a single arrow labeled by the
same relation label, as illustrated in Figure 4-4.

Part-ofSparkplug Engine

Figure 4-4. Example Illustrating Alternative Syntax for Basic First-Order Schematics

16Figure 4-3 is equivalent to the elaboration language statement (possibly (exists (?x ?y) (and (Sparkplug ?x)
(Engine ?y) (Part-of ?x ?y)))).

71

The direction of the arrow, as with the direction indicated by connecting symbols, corresponds to
the natural English reading of sentences involving the kind labels and the relation label:
Sparkplug can be Part-of an Engine.

4.1.2.1.2 Existential Schematics

The semantics of basic schematics like Figure 4-3 suggests a natural understanding of a kind
symbol standing alone as in Figure 4-5:

Sparkplug

Figure 4-5. An Existential Schematic

Specifically, this should be understood simply as the assertion that Sparkplug is a kind that can
be instantiated in the domain, or more colloquially, that sparkplugs are among the things that one
can expect to find in the domain. Again, this is a rather weak reading; it does not imply that
there are, in fact, any sparkplugs in the domain, only that there could be, in the sense that the
domain in question is appropriate for such things.17 Stronger readings can, once again, be
enforced in the Elaboration Language.

Free standing (first-order) relation symbols are also allowed, as in Figure 4-6.

Option-of

Figure 4-6. An Existential Schematic for a Relation

Analogous to Figure 4-6, Figure 4-5 asserts that the Option-of relation is one that can hold in the
domain in question, or again, more colloquially, that one thing’s being an option of another is
something one can expect to find in the domain.

17Thus, the sense of possibility in question, the sense of “could be” here, is somewhat stronger than mere logical
possibility. It is logically possible that virtually any kind be instantiated in any domain. However, in most cases this
will require extraordinary or unusual means outside the nature and function of the agents and mechanisms in the
domain. For example, it is, of course, logically possible for an employee to bring a baseball into a semiconductor
fabrication domain, thus instantiating the kind baseball. But it would, presumably, not be part of that agent’s role in
the domain to do so. Hence, in the sense in question, the kind baseball is not a kind that could be instantiated in the
domain.

72

Because they assert the possible existence of objects of a certain kind in a domain, free-standing
kind symbols like Figure 4-5 and its ilk will be known as existential schematics. Such
schematics are useful insofar as they enable one to record that certain kinds have been observed
in a given domain without requiring any further information about the relations such objects
stand in with other objects.

4.1.2.1.3 n-Place First-Order Schematics

The semantics for first-order schematics involving 2-place (first-order) relation symbols
generalizes to schematics involving n-place relation symbols. So, for example, Figure 4-7
indicates only that an instance of the conveys-to relation can involve a conveyer, a car body,
and a paint primer vat.

Conveyer

Car body

Paint
primer vatConveys-to1

2

3

Figure 4-7. Example of a Basic 3-Place First-Order Schematic

The numbers (optionally) attached to the spokes here generalize the arrows on connecting
symbols in the 2-place case. Specifically, they indicate that conveyer, car body, and paint
primer vat are to be associated with the first, second, and third argument places of the conveys-
to relation, as they occur in the natural English reading of the label: conveyer conveys a car
body to a paint primer vat.

As in the 2-place case, the relation symbol can be omitted and labeled links can simply be used,
as in Figure 4-8.

Conveyer

Car body

Paint
primer vatConveys-to

1

2

3

Figure 4-8. Alternative Syntax for Figure 4-7

73

In this document, this notation will generally be preferred.

Though they are somewhat uncommon, relations of arity four and greater can be expressed in a
similar fashion. To illustrate, the general form of 4- and 5-place relation schematics are shown in
Figure 4-9 (though the placement of the relation label and the numbering of the kind symbols can
vary); if desired, of course, a rectangular relation symbol containing the relation label can
alternatively be placed near the middle of the diagram.

Relation
labelKind 1

Kind 4

Kind 2

Kind 31

2

3

4

Relation
label1

2

3

4

5

Kind 1

Kind 2

Kind 3

Kind 4

Kind 5

Figure 4-9. General Form of 4- and 5-Place First-Order Schematics

4.1.2.1.4 Using Individual Symbols

The use of individual symbols eliminates some of the indefiniteness of the schematics in Figure
4-8. For instance, the situation depicted by Figure 4-8 permits multiple paint primer vats.
However, it might be desirable in some situations to focus on, say, one particular vat, and hence
to represent it explicitly by an individual symbol as in Figure 4-10.

Conveys-to
Conveyer

Car body

PPV-1
1

2

3

Figure 4-10. Example Illustrating the Use of an Individual Symbol

This schematic now expresses that a conveyer can convey a car body to the particular primer vat
PPV-1, indicated by the individual symbol, a more definite proposition than the one expressed in
Figure 4-8.

74

Indefiniteness is eliminated completely if only individual symbols are used. Thus, the schematic
in Figure 4-11 is taken to express that the particular car body CB-J27-S121 is (as opposed to
only can be) at some time conveyed by conveyer Conv-2 to the paint primer vat PPV-1.18

Conveys-to
Conv-2

CB-J27-
S121

PPV-1
1

2

3

Figure 4-11. A Fully Particularized Example

4.1.2.2 Complex First-Order Schematics

Multiple circles can be connected to the same circle by different arrows to create complex
schematics. In general, complex schematics that do not involve process symbols are essentially
just conveniences; they simply enable one to reuse graphical elements and enable one to make
several assertions in the language by means of a single complex schematic. Thus, for instance, if
one wished to express both that sparkplugs can be parts of engines and that engines can be parts
of cars, there is no need for two circles representing the kind engine. Rather, the two facts in
question can be expressed more succinctly, as in Figure 4-12.

Sparkplug EnginePart-of CarPart-of

Figure 4-12. A Small Complex Schematic

Similarly, one might want to add the information that, in the given domain, cars can be made in
Detroit and from there shipped to dealers, conveniently expressed as in Figure 4-13.

18That is, in terms of the elaboration language, Figure 4-11 translates to (conveys-to Conv-2 CB-J27-S121 PPV-1).

75

CarPart-of

Dealer Detroit

Shipped-to
from

1

2 3

EnginePart-ofSparkplug

Made-in

Figure 4-13. Complex Schematic Involving Multiple Relations

Complex schematics that do involve process symbols are discussed in Subsection 4.1.5.

4.1.2.2.1 Single Relation Complex Schematic Convention

At the same time, it will commonly be the case that an IDEF5 schematic may involve only one
type of relation. In such cases, to prevent needless clutter, the modeler can omit labels and
simply note the (single) meaning of the relation symbols at the bottom of the diagram, as
illustrated in Figure 4-14:

Connected-to

Power
supply

Surge
protector Terminal

Server CPU unit Keyboard

Mouse

Figure 4-14. Peripheral Connections to a Personal Computer

Note also that the connected-to relation is included in the IDEF5 relation library (see
Appendix A).

4.1.2.3 Second-Order Schematics

As noted, second-order relations are relations that hold between second-order objects (i.e., kinds
and first-order relations) or between first-order and second-order objects. A paradigm of the
former is the subkind-of relation between kinds, while a paradigm of the latter is the instance-of

76

relation. A distinct type of arrow is needed to represent second-order relations because both
types of arrows connect circles representing kinds. Because the associated semantics in the two
cases are quite different, to avoid ambiguity, separate constructs must be used.

The basic form of a second-order schematic looks just like that of a first-order schematic, except
for the presence of a second-order relation arrow instead of a first-order relation arrow.

Relation Label
Kind label Kind label

Figure 4-15. Basic Second-Order Schematic

The semantics for second-order schematics is much more definite than the semantics for first-
order schematics. Specifically, these schematics are about the indicated kinds directly, rather
than about their instances: Figure 4-15 means that the kind represented by the left-hand circle
stands in the (second-order) relation, indicated by the arrow with the kind represented by the
right-hand circle. Furthermore, note that the default semantics is not qualified; unlike first-order
schematics, the semantics is not merely about how things can be in the domain but about how
two kinds are in fact related. The reason for this is that such second-order assertions generally
concern the natures of the kinds in question, and, thus, are not usually dependent on the
contingencies of the domain though this is certainly not always so. Figure 4-16 illustrates a
schematic involving the distinguished second-order relation subkind-of, which is provided as an
IDEF5 primitive:

Subkind-ofHex-headed
bolt Fastener

Figure 4-16. Example of a Second-Order Schematic with Subkind-of

By the semantics just given, the kind hex-headed bolt is a subkind of the kind fastener.19

Similarly, the schematic in Figure 4-17 expresses that there are more U.S. citizens than Canadian
(i.e., more literally, that the kind U.S. Citizen has more instances than the kind Canadian
Citizen)

19In terms of the elaboration language again, we have simply (subkind-of hex-headed-bolt fastener).

77

Has-more-
instances-than

US Citizen Canadian
Citizen

Figure 4-17. Example of a General Second-Order Schematic

Because the subkind relation is so common within ontologies, the default meaning of the second-
order relation arrow with no associated label represents the subkind relation, thus permitting
users to avoid having to attach the label subkind-of repeatedly throughout a schematic.

4.1.2.4 Relation Schematics

This section describes the use of IDEF5 schematics to capture and display relations between first-
order relations. The main motivation for using schematics to capture and display such second-
order relations is derived from the observation that people often describe and discover new
concepts in terms of existing concepts. This is consistent with Ausubel’s theory of learning,
wherein learning often occurs by subsuming new information under more general, more inclusive
concepts [Novak and Gowin 84, Sarris 92]. Using this hypothesis, a natural way to describe a
new (or poorly understood) relation is to connect it to a relation that is already well understood
and, more generally, to categorize its place in a “conceptual space” of other relations. The
IDEF5 relation library (Appendix A) provides a baseline reference for users of IDEF5 to aid the
discovery and characterization of relations using relation schematics.

The basic syntax of relation schematics is illustrated in Figure 4-18.

(Second-order)
 relation label(First-order)

 relation label
(First-order)
 relation label

Figure 4-18. The General Form of a Basic Relation Schematic

It should be noted that the syntax of Figure 4-18 is identical to that of second-order schematics,
except that first-order relation symbols are substituted for kind symbols. The use in this context
of a second-order relation symbol is not mere notational parsimony, because kinds and first-order
relations are of the same logical type. As noted in Section 2, kinds are properties of individuals,
and first-order relations are associations between individuals, that is, properties of n-tuples.
Thus, relations between first-order relations are of the same logical type as relations between
kinds: both relate entities that hold (or not) with respect to individuals and, hence, are second-
order relations (as indicated explicitly in Figure 4-18 to avoid confusion).

78

4.1.2.4.1 Using Relation Schematics for Relation Analysis

The use of relation schematics to facilitate conceptual analysis involving relations (both relations
between kinds and relations between relations) will now be illustrated. Consider the ontology for
an engineering Bill Of Materials (BOM) of an automobile manufacturing company. The Part-of
relation plays an important structural role in the BOM. The data acquired in the data collection
process might contain the following statements about the BOM:

• An automatic transmission is a variant of the transmission.

• A manual transmission is a variant of the transmission.

• A radio is an option of the car.

A Variant of a product is an essential characteristic of the product that is often determined by
customer choice [Anupindi 92]. The customer picks one of several possible variants. In this
example, automobile customers choose between automatic and manual transmissions. Notice
that having a transmission system is an essential property of the car (for most contemporary
auto makers). The choice of a particular variety of transmission is a choice exercised by the
customer.

An Option is a feature of a product that the customer chooses. Options are different from
variants in that options can be completely eliminated from a product, whereas variants are
required characteristics. In this example, the radio is not essential to the function of the car and
can be optionally excluded.

Based on an analysis of the source statements, the IDEF5 developer hypothesizes the existence of
two relations, and selects the relation names Variant-of and Option-of. These relations are
mapped graphically on a relation schematic in the manner shown in Figure 4-19.

79

Part-of

Option-of

Variant-ofVa
ria

nt
-o

f

Transmission

Radio

Automatic
Transmission

Car

Manual
Transmission

Figure 4-19. Bill of Material Relation Schematic

At this stage, an IDEF5 developer would browse the IDEF5 Relation Library. He or she may
notice that the Variant-of and the Option-of relations are conceptually similar to some of the
library relations. Specifically, he or she may realize that the Option-of relation is a
specialization of the Part-of relation.

Suppose that these insights are now represented by the second-order relation Specialization-of in
the relation schematics shown in Figure 4-20.

Sp
ec

ia
liz

at
io

n-
O

f

Part-Of

Option-of

Figure 4-20. Relation Schematics Involving the Specialization-of Relation

The higher-order Specialization-of relation is used to assert the generalization-specialization
relation between the indicated first-order relations. Further reflection leads the IDEF5
developers to draw a more detailed relation schematic that places the Option-of relation in a
relation taxonomy diagram (i.e., a special type of relation schematic that shows a hierarchy of

80

relations that are associated by generalization-specialization relationships). The taxonomy in
question is exhibited in Figure 4-21.20

Specialization-of

Part-of

Physical
Part-of

Conceptua
l

Part-of

Option-Of

Component-ofPortion-of Stuff-of

Figure 4-21. A Partial Relation Taxonomy of the Part-of Relation

It is to be noted that the single relation complex schematic convention is operative with respect to
second-order relations in Figure 4-21, and also that complex second-order schematics can be
constructed in the same manner as first-order schematics. That is, one can “reuse” kind and
(first-order) relation symbols within a single schematic. For instance, the information contained
in Figure 4-19 and Figure 4-20 could be expressed in the single schematic in Figure 4-22.

Spec-of

Variant-ofVa
ria

nt
-o

f

Transmission

Radio Car

Part-Of

Option-of

Automatic
Transmission

Manual
Transmission

Figure 4-22. Complex Second-Order Relation Schematic

20A more complete taxonomy diagram of the meronymic (part-of) relations is given in the IDEF5 Relation Library
(Appendix A).

81

4.1.2.5 Referents

An IDEF5 referent is a modeling artifact used to indicate a concept in any another IDEF method.
Referent rectangles have the following information items.

• Referenced Concept Label This is the label of the concept (within an IDEF model)
that is being referenced. For example, an activity kind may reference an activity
label in an IDEFØ model.

• ID This is the identification label for the Referent.

• Method Name This is the name of the IDEF method that is being referenced.

IDEF5 Referents provide a mechanism to link IDEF5 with other IDEF methods. For example, a
kind in IDEF5 may be represented as an Entity in IDEF1, and the IDEF5 developer can make this
reference explicit within the IDEF5 model.

4.1.3 Composition Schematics

Because the part-of relation is so common in design, engineering, and manufacturing ontologies,
the “part-of” label, and associated axioms, are included in the IDEF5 languages. In particular,
this capability enables users to express facts about the composition of a given kind of object. In
general, this is achieved by means of schematics of the form illustrated in Figure 4-23.

A1

•••

An

B

A2

Part-of

Part-of

Part-of

Figure 4-23. Composition Schematic

As noted in Section 4.1.2, Figure 4-23 is simply a convenient way to draw multiple instances of
the basic first-order relation schematic illustrated in Figure 4-4, and hence, the default semantics
of Figure 4-23, means that A1’s (i.e., instances of A1) can be parts of B’s, A2’s can be parts of
B’s, . . ., and Ai’s can be parts of B’s. However, in the context of part-of, it is frequently the

82

case that a stronger reading is desired. For instance, in a bill of materials, one wishes to say not
simply that A1’s can be parts of B’s, and so on, but that every B does in fact consist of an A1, an
A2, and so forth. For example, one might wish to represent the component structure for a certain
kind of ballpoint pen, as in Figure 4-24.

L owe r
Body

Part-of

Spr ing

Ink
Supply

Car tridgeCar tridge

L owe r
Barre l

Ba llpoin t
pe n

U pper
Body

L owe r
Body

Button

Retrac -
t ion

Mech.

Upper
Bar rel

Figure 4-24. Composition Schematic for the Kind Ballpoint Pen

To capture this stronger meaning one must resort to the Elaboration Language (Subsection 4.2)
and, for each instance of Figure 4-23, add the statement that every B does in fact have an A1, and
A2, . . ., and an An as parts.21 On this stronger semantics, then, the schematic in Figure 4-24
expresses that a ballpoint pen in the domain in question has both an upper body and a lower
body, that the former consists of a button, a retraction mechanism, and an upper barrel, while the
latter consists of a lower barrel and a cartridge, which in turn consists of a spring and an ink
supply.

4.1.3.1 Hiding Composition Information

As Figure 4-24 illustrates, composition schematics can be quite detailed. Such detail can cause a
great deal of clutter in an IDEF5 diagram. For instance, in addition to describing the component
structure of the kind ballpoint pen, one might also want to talk about many of the other relations

21Specifically, in the case of a kind B whose instances have three parts of kinds A1, A2, and A3, one would add the
elaboration language statement (forall ?x (-> (B ?x) (exists (?y1 ?y2 ?y3)(and (A1 ?y1) (A2 ?y2) (A3 ?y3)
(part-of ?y1 x) (part-of ?y2 x) (part-of ?y3 x)))).

83

it and its instances are involved in, for example, that the pens can be made in Sequim,
Washington, that fountain pens generally cost more than ballpoint pens, that ballpoint pen is a
subkind of pen, and so on. Hence, in many contexts, the component structure of the kind might
well be irrelevant, and in such cases it would be useful to be able to hide that information. That
such information is being hidden is indicated on a diagram by using a double circle to represent
the kind (instead of a standard single circle), along with an upper case ‘P’ (for part-of) in the top
of the circle to distinguish the kind of information that is being hidden, as illustrated in Figure 4-
25.

Made-in SequimSubkind-ofPen Ballpoint
pen

Fountain
pen

Su
bk

in
d-

of

Cost
s m

ore
 th

an

P

P

Figure 4-25. Hiding Composition Information

Note that this example illustrates the use of first- and second-order relation symbols in the same
diagram.

4.1.4 Classification Schematics

Among the more commonly used structuring mechanisms used by humans to organize
knowledge are taxonomy diagrams [Brachman 84]. Domain experts engaged in knowledge
acquisition often make statements such as A is a B, A is a type of B, or A is a kind of B. The
cognitive activity involved in organizing knowledge in this fashion is called classification. There
are several identifiable varieties of classification. Two particularly prominent types of
classification are description subsumption and natural kind classification. In description
subsumption, (i) the defining properties of the “top-level” kind K in the classification, as well as
those of all its subkinds, constitute rigorous necessary and sufficient conditions for membership
in those kinds, and (ii) the defining properties of all the subkinds are “subsumed” by the defining
properties of K in the sense that the defining properties of each kind entail the defining properties
of K; the defining properties of K constitute a more general concept.

In natural kind classification, by contrast, it is not assumed that there are rigorously identifiable
necessary and sufficient conditions for membership in the top-level kind K, but that, nonetheless,

84

there are some underlying structural properties of its instances that, when specialized in various
ways, yield the subkinds of K. The best examples of such classification schemes are, of course,
genuine natural kinds such as metal, feline, and so forth, but the idea can be extended to
artifactual kinds like automobile and NC machine. These two types of classification are
illustrated in Figure 4-26.

Description
Subsumption

Natural Kind
Classification

Polygon
Metal

Hexagon Iron

Triangle
Aluminum CopperRectangle

Figure 4-26. Different Types of Classification

Clearly, with its central notion of a kind, a natural application for the IDEF5 schematic language
is the development of taxonomy diagrams, or as we shall call them, classification schematics.

Classification is typically much more detailed than the examples suggest. Most classification
schemes will involve several levels of more specialized subkinds “below” more general kinds in
the scheme. (Such schemes are often called ‘is-a hierarchies,’ but for the reasons adduced in
Subsection 2.2.5, the use of ‘is-a’ is strongly discouraged in IDEF5; either the subkind-of relation
or the instance-of relation should be used instead, depending on the intended meaning.) To
illustrate, it is essential in project planning that one categorize the kinds of resources that will be
needed for the project’s success. Informally, a resource can be defined as an object that is
consumed, used, or required to perform activities and tasks. Resources, therefore, play an
enabling role in processes. Classification diagrams provide a natural way of categorizing
necessary resources, as, for example, in Figure 4-27. (Second-order relation symbols with no
attached label, default to the subkind relation):

85

Local

Administrator

Resource

Tech
writer

Programmer

Tech
support

specialist

Computer
SystemPersonnel Facility Quadra

486
Machine Pentium

Machine Sun
Sparcstation

IBM
RISC 6000

Older
model

Centris

Remote80x86
Architecture

Unix
Workstation

Macintosh

Figure 4-27. Classification of Resources

4.1.4.1 Hiding Classification Information

As with complex composition schematics, however, it often proves very useful to hide some
detail in a classification schematic. Thus, in some contexts (e.g., those in which facilities and
personnel need to be highlighted), information about computer systems might not need to be
explicit. As with composition schematics, hidden information will be indicated by a double
circle, annotated in this case with an upper case ‘C’ (for ‘classification’) at the top of the circle as
shown in Figure 4-28. Thus, one might hide that information and add information about
facilities to obtain the following schematic.

86

Personnel

Resource
Programmer

Tech
writer

Administrator

Tech
support

specialist
Computer
System

C

Ins
ta
nc

e-
of I n

st a
nc

e- o
f

Instanc e-of

I nst ance- of

Facility

Main St.
Office

Remote

Local

First St.
Office

El Paso
Office

Wash DC
Office

Figure 4-28. Classification of Resources with Hidden Information

4.1.5 Object State Schematics

As noted in Subsection 2.2.8, there is no clean division to be made between information about
kinds and states and information about processes. This subsection describes how the IDEF5
schematic language enables modelers to express fairly detailed object-centered process
information, that is, information about kinds of objects and the various states they can be in
relative to certain processes. Diagrams built from these constructs are known as object-state
schematics (OS's); the integration of OS's with the various kind schematics introduced above is
discussed below.

In Section 2.2.8 two types of changes that can be observed in the objects undergoing processes
were noted: change in kind and change in state. There is in fact no formal difference between
these two types of change: objects of a given kind K that are in a certain state can simply be
regarded as a constituting a subkind of K. For formal purposes, for example, warm water can
just be regarded as a subkind of water. However, it is very useful to distinguish the two in the
schematic language to indicate explicitly the kind of thing that is in a certain state. This is done
by means of a colon notation, that is, kind:state. For example, warm water will be indicated by
the label water:warm, frozen water by water:frozen, and so on. The notation is illustrated in
Figure 4-29.

87

Figure 4-29. Kinds and States

In this context, the subkind-of relation is best thought of as a state-of relation, as illustrated in the
classification diagram in Figure 4-30.

Figure 4-30. Schematic Depicting States of WaterTo indicate how objects change either kind
or state within processes requires an entirely new class of construct. The remainder of this
section will be devoted to introducing the syntax and information semantics of these constructs.

4.1.5.1 Basic Object State Transition Schematics

The first and most basic construct is the simple transition link shown in Figure 4-31. Note that
the presence of the open circle distinguishes an object state transition link from a general relation
arrow.

A B

Figure 4-31. Basic State Transition SchematicThe circles labeled A and B in these links still
indicate two kinds, and everything said about kinds and kind symbols in the previous subsection
still applies. However, in characterizing in a general fashion the way objects are transformed
through a process, it is natural to classify those objects in terms of the states they are in at various
stages of the process. Hence, typically, the kind symbols in a state transition schematic will
indicate a kind in a particular state, for example, dry wood, warm water, unreworked part,
and so forth. To emphasize this role of the kind symbols, their meanings will often simply be
referred to as object states or, simply, states.

Intuitively, an object state transition link indicates that there is an allowable transition such that
an object in a given state A may be modified, transformed, or consumed so as to yield an object

Water:
Warm

Water:
Cold

Water:
Frozen

State-of

Water:
Cold

Water:
Frozen

Water:
Warm

Water

88

(possibly the same object) in a different state. Figure 4-31 depicts the situation where a certain
type of transition from A to B is observed, but there is either no knowledge or desire to specify
the process(es) involved in the transition.

It is important to note the distinction between the characterization of an object in a given state
and the conditions or rules that govern how the object transitions to and from that state. In the
”IDEF3 process description capture method, conditions for entering and leaving a state are called
entry and exit conditions, respectively. The IDEF5 Elaboration Language (Section 4.2) can be
used to specify relevant entry and exit conditions for a given state.

Additional information about the process(es) involved in a state transition may be displayed in
IDEF5, as shown in Figures 4-32 and 4-33.

P

A B

Figure 4-32. Schematic for Object State Transition within a

Process
A B

P Q

Figure 4-33. Schematic for Object State Transition between ProcessesMore precisely, the
semantics of the state transition schematic displayed in Figure 4-32 is this: during some initial
segment tinit of any occurrence p of the process P, there is an object a in state A (indicated by the
atomic formula ‘Aa’ in the “interval diagram” in Figure 4-34), and during some final segment tfin
(possibly the very last moment) of p, a possibly different object b is in state B.

Aa Bb

Instance of the process P

Figure 4-34. The General Semantics of Figure 4-32

It may happen, however, that an identified transition occurs not within a process, but between the
end of a given process P and the start of some process Q (See Figure 4-33). A special case of
this situation is discussed in section 4.1.5.3 wherein two contiguous processes P and Q meet.

89

The transition arrow in such a schematic does not represent a single unspecified process but
rather marks the division in time between an object’s being in state A at the end of some process
P and the transformation to an object’s being in state B at the start of another process Q, as
displayed in the interval diagram in Figure 4-35. (The dashed line between the instances of P
and Q indicates that they need not be temporally contiguous).

Aa Bb

Instance of P Instance of Q

Figure 4-35. The General Semantics of Figure 4-334.1.5.2 Strong State Transition
Schematics

The semantics of an object state transition link is open on the question of whether the object in
state A at the beginning of a transition is identical22 to the object in state B after the transition, as
when an unpainted object becomes a painted object, or distinct, as when a piece of wood is
transformed into a pile of ashes by a furnace. The basic state transition schematic should be used
in any of the following three cases: (i) the objects at the beginning and end of the process are in
fact distinct; (ii) it is not known whether or not they are distinct; or (iii) it does not matter one
way or the other. On the other hand, if a modeler desires to represent explicitly that the object at
the beginning of an instance of a state transition is identical with the object at the end, a strong
state transition link should be used. This involves simply affixing a double tip on the arrow in a
state transition link, as shown in Figure 3-36.

P

A B

Figure 4-36. Strong State Transition Schematic

In order to allow for noninstantaneous state change within an instance p of a process, it is not
generally required that p’s initial segment tinit, during which an object is in state A, and its final
segment tfin, during which an object is in state B, be contiguous or overlap. In such cases, the

22Identity may be in terms of chemical structure, mass, physical form, function, etc. For example, grape juice
becomes wine after undergoing a fermentation process. One might argue that the “stuff of” the kind grape juice is
the same as that of the resulting kind wine. Other people having different attunements may perceive the two kinds as
being entirely different based on, for example, chemical composition of the two kinds. It is therefore recommended
that the assumed criteria for identity be established or characterized when there is possible ambiguity.

90

intervening period will, therefore, typically be thought of as a period during the process during
which an object in state A is in the course of being transformed into something in state B, but
during which there is actually nothing in either state, as in the period of time during which a
quantity of water is heated from 5°C (state A) to 100° (state B). This indeterminacy in the
semantics between instantaneous and noninstantaneous transitions is reflected graphically in the
dashed line connecting the two states of the object a in Figure 4-37.

Vaporize
Water

Water:
Liquid

Water:
Gaseous

Figure 4-37. An Example of Strong State Transition Schematic

4.1.5.3 Instantaneous State Transition Schematics

As with the identity of objects in a transition, it is often useful to allow for the explicit
representation of instantaneous state transitions within a process (relative to a certain temporal
granularity). Accordingly, the OS syntax allows a modeler to tag the small circle in an object
state transition link with a �,�as in Figure 4-38, indicating thereby that the transition occurs over
a period smaller than the smallest time unit � recognized in the context being modeled.

�A B

Figure 4-38. Instantaneous State Transition Schematic

A double arrow tip, of course, may be added if a strong transition is desired. For instance, when
liquid oxygen is exposed to atmosphere, it transforms to gaseous state instantaneously (as shown
in Figure 4-39).

�

Expose to
atmospher

e

Oxygen:
Liquid

Oxygen:
Gaseous

Figure 4-39. An Example of Instantaneous State TransitionOne may be more interested in
the processes which immediately precede and/or follow the transition rather than the

91

instantaneous process which occurs upon transition. This situation is illustrated by the interval
diagram in Figure 4-40.

Point of state transition

Aa Ab

Instance of P Instance of Q

Figure 4-40. Interval Diagram for Figure 4-39

To express the content of Figure 4-40 precisely, the construct in Figure 4-41 is used. The
transition arrow in such a schematic marks the division in time between an object’s being in state
A at the end of some process P and the transformation to an object’s being in state B at the start
of another process Q.

B�A

QP

Figure 4-41. A Precise Expression of Figure 4-40For example, one could imagine a cutting
tool that is driven forward across a workpiece until it activates a limit switch whereupon the
cutter is switched off and retracted to its starting position (Figure 4-42).

B�A

Shut down
and retract

cutter
P

Limit
switch:

On
�

Limit
switch:

Off

Move cutter
forward

Figure 4-42. Cutoff Switch Example for Figure 4-414.1.5.4 Complex Object-State
Schematics

As with the schematics introduced thus far, the simple object schematics introduced in the
previous section can be combined to form more complex object-state schematics. Unlike
complex schematics introduced to this point, however, complex object-state schematics are not
simply notational conveniences; they carry additional meaning. For instance, Figure 4-43
expresses more than is pictured in Figure 4-41; the latter indicates nothing about the state of
object a prior to its being in state A (in particular, nothing about state D), and nothing about the
state of object b after its being in state B (in particular, nothing about state C).

92

BA CD

P Q

�

Figure 4-43. A More Informative Object State Transition SchematicAt times, one may only
wish to record the bare transition itself, without providing any further detail about what happens
on “either side” of the transition. In such a case, Figure 4-41 suffices. Otherwise, a diagram
such as that in Figure 4-43 can be used. Th interval diagram for Figure 4-43 is shown in Figure
4-44. Hence, Figure 4-43 is appropriate, for example, in those cases in which one knows about,
or wishes to express, the details of the process by which an object comes to be in state A and the
details of what happens after that object is in state B.

Da

Instance of P Instance of Q

Instantaneous transition

Aa Ba Ca

Figure 4-44. Interval Diagram for Figure 4-43

Another example of how complex schematics can provide additional information is as follows.

P Q

A B C

Figure 4-45. A Complex Object-state Schematic

Figure 4-45 means, first, that there is a transformation from something’s being in state A to
something’s being in state B in instances of process P and, subsequently, a transformation
involving that same thing in state B to something’s being in state C in instances of process Q.
That is, the fact that the symbols for object states A and C are linked to the symbol for B in
Figure 4-45 indicates, first, that P and Q can be thought of as parts of a more complex process R
that encompasses them both and, second, that the instances of P and Q within an instance of the

93

overarching R share an object in state B. This general semantics is depicted in the interval
diagram in Figure 4-46.23

Aa Bb

Instance of P

Cc

Instance of Q

Bb

Instance of R

Figure 4-46. Default Semantics for Figure 4-45(The semantics, of course, generalizes to more
complex OS schematics involving more than two process symbols.) Figure 4-45 is to be
contrasted with Figure 4-47 in which the symbols for states A and C are each linked to separate
symbols for B.

P

A B

Q

B C

Figure 4-47. A Schematic Subsumed by Figure 4-45

Because the two schematics are not connected as in Figure 4-45, there is no implication that there
is any overarching process R that subsumes both P and Q, nor is it implied that any instances of
the two transitions share an object in state B. Figure 4-45 thus implies what is expressed by the
two separate diagrams of Figure 4-47 but, in addition, implies more information.

4.1.5.5 State Classification Schematics

An important corollary of the inclusion of object states as possible meanings of kind symbols in
transition schematics is that the subkind-of relation can, in these contexts, be thought of as the
state-of relation, as illustrated in Figure 4-48.

23The second condition of the default semantics here might be too strong for some situations. For instance, a domain
expert might want to represent a situation in which multiple parts may be produced through a given process P and
inspected at random through some process Q. In general, then, in this case, although there is an overarching process
R, there is no assumption that the object in state B at the end of (an instance of) P is identical with the object in state
B at the beginning of Q. Such a situation can be represented, for example, by connecting the two symbols for B in
Figure 4-47 with a weak transition arrow or, of course, can be expressed in the elaboration language directly.

94

State-of

Water:
Boiling

Water:
Warm

Water:
Cold

Water:
Hot

Water:
Frozen

Water

Figure 4-48. Schematic Depicting States of Water

Here, instead of various subkinds of the kind water, various possible states of water that can
occur in the given domain are represented. Such schematics can be combined with standard OS
schematics as in Figure 4-49.

State-of
Water

Water:
Boiling

Water:
Warm

Water:
Cold

�
Water:

Hot
Water:
Frozen

Melt ice Heat to
40Þ C

Heat to
100Þ C

Figure 4-49. Combined Schematic Displaying States and State Transitions

4.1.5.6 State Composition Schematics

A particularly important point of contact between OS's and the basic IDEF5 schematics concerns
compositions. The general OS composition schematic is illustrated in Figure 4-50.

A1

•••

An

A2

P

B&

Figure 4-50. State Composition Schematic

95

The semantics for state composition schematics is a generalization of the semantics for state
transition schematics. Intuitively, once again, the OS in Figure 4-49 represents a process type P
in which objects a1, . . ., an in states A1, . . ., An, respectively, are involved in some process that
yields an object b in state B. As with state transition schematics, each of the ai should be in state
Ai during some initial segment of p. It is not required that every ai be in state Ai throughout
some initial segment, as their coming into these states may be staggered throughout the course of
p. It is required that every ai be in state Ai prior to b’s being in B (or else, contrary to the
intuitive meaning of the schematic, it would not be the case that the ai’s in the corresponding
states are combined into b). This general semantics for Figure 4-50 is indicated graphically in
Figure 4-51.

A1a1

A2a2

Anan

•
•
•

Bb

Instance of P

Figure 4-51. The General Semantics of a State Composition Schematic

The process represented in Figure 4-52 initially involves wood in a dry state and air that is
oxygen rich. Objects in these states are then involved in the incineration process, which results
in ashes. (Note that this example also illustrates that kind labels that don’t involve reference to
an object state can be used in OS schematics; the label ‘Ashes’, in particular, is not qualified in
this manner. Such a usage arises in those situations in which the state of the object in a certain
process is irrelevant from the perspective being modeled.)

Incinerate
Wood

Ashes&

Wood:
dry

Air:
oxygen-

rich

Figure 4-52. An Example of State Composition Schematic

96

Combining this semantics with the composition schematics of Figure 4-23 generates the notion
of a strict state composition schematic, whose form is the same as a composition schematic, but
with the label ‘Part-of’ attached to the arrow, as shown in Figure 4-53.

A1

•••

An

A2

P

B&
Part-of

Figure 4-53. Strict State Composition Schematic

The semantics of a strict composition schematic is that, not only are instances a1, . . ., an of A1, . .
., An, respectively, involved in a process that yields an instance b of B, but also that those objects
are all parts of b. This idea is illustrated in Figure 4-54 by explicitly adding process information
to the complex composition schematic of Figure 4-23 depicting the component structure of a
kind of ballpoint pen. [It should be emphasized that this schematic is not intended to represent
the structure of all possible ballpoint pens (some ballpoint pens don’t have a retraction
mechanism, for example), but rather the particular kind of pen found in some hypothesized
domain.]

Spring

Cartridge

Ink
Supply Lowe

r
Body

Cartridge

Lower
Barrel

Ball-
point
pen

Upper
Body

Lower
Body

Button

Retrac-
tion

Mech.

Upper
Barrel

Assembly
Process #1

Assembly
Process #3

Assembly
Process #2

Assembly
Process #4

&

&

&

&

Figure 4-54. Complex Strict State Composition Schematic for the Kind Ballpoint Pen

97

In the usual case, the object b resulting from a composition process will be distinct from the
objects a1, . . ., an of which it is composed. However, the conception of objects here is flexible
enough that this is not always so; a car body without a side-view mirror is intuitively the same as
the car-body that results from affixing such a mirror. Hence, the representation of strong
transition in composition schematics is permitted as well, indicated once again by means of
double-tip arrows, as in Figure 4-55. Note also that instantaneous transitions can also be
represented by appropriate placement of the � symbol.

Attach
Mirror

�

Auto
Body

Side-view
Mirror

Auto
Body

+
Mirror

Figure 4-55. Strong State Transition in a Composition Schematic

In the context of OS's, where there is an explicit temporal component, the notion of object state
decomposition makes sense. It is, furthermore, easy to specify, as it is just the inverse of state
composition; its representation, shown in Figure 4-56, reflects this:

A1

•••

An

A2

P

B &

Figure 4-56. Object State Decomposition Schematic

The semantics of a state decomposition schematic as well is just the inverse of the semantics for
composition schematics. And once again, double-tip arrows are permitted for indicating strong
transitions. State transition schematics can be taken to be limiting cases of composition and
decomposition schematics for the case n = 1.

98

The next OS construct to be introduced – a disjunctive state transition schematic – is a logical
schematic that indicates that an object state may transition alternatively to one of a number of
other states, as shown in Figure 4-57.

•••

P

B O

Figure 4-57. Disjunctive State Transition Schematic

The type of disjunction here is inclusive, in that it permits a transition from B to any of the
subsequent states, possibly more than one. To indicate exclusive disjunction, which permits
transition to no more than one of the subsequent states, the construct in Figure 4-58 is used:

•••

P

B X

Figure 4-58. Exclusive Disjunctive State Transition Schematic

By the same token, a conjunctive schematic is introduced to indicate a transition from a given
state to all of several subsequent states, as illustrated in Figure 4-59.

•••

P

B &

Figure 4-59. Conjunctive State Transition Schematic

99

In each case, the modeler is permitted to attach a process symbol to the junction or to each arrow
extending from the junction (but not both). In the case of disjunctions, attaching a process
symbol to the junction means that the indicated process can bring about any of the subsequent
states. In the case of conjunctions, attaching a process symbol to the junction means that the
indicated process brings about all of the subsequent transitions. (Decomposition, therefore, is
just a special case of a conjunctive state transition schematic when the lines leading out from the
junction indicate the part-of relation.) Judicious use of the � operator once again can be used to
indicate which, if any, of the transitions in an (inclusive or exclusive) disjunctive or conjunctive
schematic are instantaneous.

As with composition, these logical schematics have “converses.” Specifically, where the symbol
‘*’ is O, X, or &, the diagram in Figure 4-60 is also a schematic:

•••

P

B*

Figure 4-60. Converse Logical State Transition Schematic

The semantics in each case will be exactly the converse of the corresponding schematic above.
(Hence, in particular, composition schematics will be special cases of the converse conjunction
schematic.) It is conceivable that one object state might transition alternatively in many different
ways, as illustrated in Figure 4-61:

100

A

E

F

D

B

C

�X

&

&

P

Q

Figure 4-61. An OS Illustrating Possible Complex State Transition Logic

4.1.5.7 Hiding Object State Information

As with composition and classification schematics, it is possible to hide information in object
state schematics. That is, for certain purposes, it may often prove useful to collapse complex
state transition information about a given object into a single object state. For example, a series
of state transitions involved in the process of heating water from freezing to boiling is depicted in
Figure 4-62:

Water:
Boiling

Water:
Warm

Water:
Cold

�
Water:

Hot
Water:
Frozen

Melt ice Heat to
40Þ C

Heat to
100Þ C

Figure 4-62. State Transitions in a Heating Process

If, from a certain perspective, the intermediate transitions from ice to boiling water are irrelevant,
then these transitions can be hidden in a single state in which the only relevant state is the coarse-
grained Water being heated as depicted in Figure 4-63; again a double circle is used, only in
this case an‘S’ indicates that the type of information that is hidden is state transition information:

101

Ice

Heat water

Water
being
heated

Boiling
water

S

Melt ice

Figure 4-63. Hiding State Transition Information

The procedure for generating a coarse-grained schematic from a finer-grained schematic is not
quite algorithmic. In the example, the kind symbol for Water being heated can be thought of as
directly replacing the “schematic” of Figure 4-62, consisting of the middle three kind symbols
and their connecting links. However, the instantaneous transition schematic in Figure 4-62 had
to be replaced by an ordinary state transition schematic, and an appropriate label had to be found
for the attached process box. The exact nature of this alteration had to be determined by the
nature of the represented process and, hence, is, in general, a nonalgorithmic modeling decision.

4.1.5.8 Integrating Transition Schematics and Relation Schematics

OS's integrate naturally into ordinary IDEF5 schematics as the OS constructs are simple
extensions of the schematic language presented above; one can supplement any schematic built
from the original constructs with OS constructs as desired. An example of this was seen in
Figure 4-53, in which composition information and process information are integrated in a single
generalized state composition schematic. Another simple example of a schematic that integrates
both the original constructs and the OS constructs is seen in Figure 4-64.

Wet
Paint

Subtype-of

Dry

Liquid Solid

On On

Subtype-of

Car

Dry
Paint

Figure 4-64. IDEF5 Schematic Involving OS Constructs

102

In this example, in addition to indicating the transition of a wet paint object to a dry paint object
via a drying process, relation symbols are used to indicate that the states Wet Paint and Dry
Paint are also related to other kinds, as indicated by the labels on the arrows. Again, despite the
fact that relation symbols are similar to the arrows used in transition schematics and point-of-
transition schematics, there is no danger of ambiguity, as the arrows in transition schematics
always include an open circle.

4.2 The IDEF5 Elaboration Language

4.2.1 Overview

The IDEF5 Elaboration Language is a structured textual language that facilitates the direct
capture of ontologies. The power of the language derives from its theoretically sound foundation
and its expressively rich structure. The design of the IDEF5 Elaboration Language was
motivated by the need to capture and represent complex ontology knowledge from a wide range
of application domains. While a graphical medium can help to visualize relatively simple
ontology knowledge, its expressive limitation does not allow complex information to be easily
expressed (if at all). Hence, the necessity for a more expressive medium was evident.

The perceived users of the IDEF5 Elaboration Language are knowledge engineers and systems
analysts in collaboration with domain experts. The language is intended to be used along with
the IDEF5 Schematic Language. The two languages will complement each other in a variety of
different usage scenarios.

• The system analyst and domain expert record an initial ontology with the IDEF5
Schematic Language. This initial knowledge is analyzed, then recast into the (more
structured) Elaboration Language format.24

• The ontology capture is done concurrently with the Elaboration Language and the
Schematic Language, with one language complementing the other throughout the
knowledge capture phase.

24If IDEF5 is used with an automated tool, some of the recast could be done automatically using the information
represented in the schematic language.

103

• The knowledge capture is done entirely with the Elaboration Language. The
Schematic Language is used mainly for communication and post-acquisition visual
analysis purposes.

As stated previously, the Elaboration Language can be used to capture the entire ontology.
Therefore, some of its constructs duplicate the functions of the Schematic Language and the
specification forms associated with the kinds, relations, properties, source material, source-
statements, and ontology-terms. In general, the capture of ontology information using
Elaboration Language constructs will be more difficult than using the Schematic Language and
will require good knowledge and understanding of the language.

Subsection 4.2.2 describes the valid sentences of the languages and gives examples of use for
each construct. For a detailed description of the language, refer to Appendix A, which contains
the grammar for the language.

4.2.2 Description of the Language

The syntax of the language uses a prefix notation and parentheses to delimit expressions. The
alphabet for the language consists of the standard alphanumeric and punctuation characters. The
core of the IDEF5 Elaboration Language, which enables the expression of axioms, is based on
the Knowledge Interchange Format (KIF) [Genesereth 92]. In this subsection, the term string
will refer to any finite sequence of characters and white spaces enclosed in double quotes. In the
following subsections, the words that are reserved words in the language (i.e., that have a specific
meaning in the language) will in appear in Courier font.

4.2.2.1 Constants, Variables, and Operators

The notion of a word is taken as a primitive of the IDEF5 Elaboration Language. A sentence in
the language is composed of operators, constants, and, possibly, variables.

4.2.2.1.1 Constants

A constant is a word that is neither an operator nor a variable. Constants can be viewed as words
denoting objects in the world. In the IDEF5 Elaboration Language, constants are divided into the
following categories:

• Ontology Constants An ontology constant is a word denoting an ontology.

104

• Logical Constants A logical constant is a word denoting a truth value.

• Individual Constants An individual constant is a word denoting an individual.

• Kind Constants A kind constant is a word denoting a kind.

• First-Order-Relation Constants A first-order relation constant is a word denoting
a first order predicate (i.e., a relation that holds between individuals).

• Second-Order Relation Constants A second-order relation constant is a word
denoting a second-order predicate (i.e., a relation that holds between first order
relations).

• Relation ConstantsA relation constant is either a first-order predicate constant or a
second-order predicate constant.

• Function Constants A function constant is a word denoting a function.

• Attribute Constants An attribute constant is a word denoting an attribute.

• Property Constants A property constant is a word denoting a property.25

• Object-State Constant An object-state constant is a construct of the form
kind:property, where kind is a kind constant and property is a property constant.

• Source-Statement Constants A source-statement constant is a word denoting a
source-statement.

• Ontology-Term Constants An ontology-term constant is a word denoting a term in
the ontology.

• Source Constants A source constant is a word denoting a source.

• Note Constants A note constant is a word denoting a note.

25Properties are treated separately from relations in the IDEF5 elaboration language because of their roles as primary
concepts of the method. A property can be a first-order predicate if it applies to individuals, or a second-order
predicate if it applies to relations between individuals.

105

Examples of constants are Mary (an individual constant), Car (a kind constant), and Transitive
(a property constant). In the description of terms, definitions, and sentences (see Subsections
4.2.2.2-4.2.2.4), the term IDEF5-constant will be used to refer to any constant that is neither an
ontology-constant nor a logical constant. Constant may be prefixed by the name of an ontology
when necessary to disambiguate a term (e.g., manufacturing::technology where
manufacturing is the name of an ontology and technology is the name of a kind that is part of
the manufacturing ontology).

4.2.2.1.2 Variables

A variable can be viewed as a one-place holder for a constant. In the IDEF5 Elaboration
Language, a variable is a word whose first character is either ? or #. A word whose first
character is ? is an individual variable (i.e., a one-place holder for an individual constant). A
word whose first character is # is an predicate variable (i.e., a one-place holder for a predicate
constant). Individual variables are used in quantifying over individual constants while predicate
variables are used in quantifying over predicate constants. Examples of variables are ?x, ?ind,
#p, and #pred.

4.2.2.1.3 Operators

Operators are reserved words and characters that can be used to form complex expressions. The
operators that are part of the IDEF5 Elaboration Language are presented in this Subsection. For a
better understanding of the use of these operators, refer to Subsections 4.2.2.2 and 4.2.2.3.

• Definition Operators These operators are used in forming definitions. There are
five definition operators in the Language: the define-relation operator is used
in forming definitions of second and third-order predicates; the
define-function operator is used in forming definitions of functions; the
define-individual operator is used in forming definitions of individuals;
finally, the operators := and :arg-types are operators that are used in definitions
(for more on these operators, see Subsections 4.2.2.2 and 4.2.2.3).

• Term OperatorsThese operators are used to form complex terms. There are six
such operators: listof, setof, if, cond, the, and setofall.

• Sentence Operators These operators are used to form complex sentences. The
IDEF5 Elaboration Language includes common logical operators (=, /=, not, and,

106

or, implies, equiv, forall, and exists), two modal operators (nec for
necessary and pos for possibly), and a number of IDEF5-Specific operators. For a
complete list of IDEF5-Specific operators, refer to Appendix A.

4.2.2.2 Terms

The IDEF5 Elaboration Language supports three types of expressions: terms, definitions, and
sentences. Terms are used to denote objects. Examples of some terms are shown in Figure 4-65.

Terms are divided into the following categories.

• IDEF5-Constants and Ontology Constants All constants except logical constants
are terms because they denote objects in the domain of discourse.

• Variables A variable is a term because it is a one-place holder for a constant.

• Attribute Term An attribute term is an expression of the form (attribute-constant
individual-constant). It denotes the object corresponding to the value of the
attribute denoted by attribute-constant when applied to individual-constant. An
example of an attribute term is the expression (age-of Mary) as in Figure 4-65, in
which age-of is an attribute constant and Mary is an individual constant. If Mary is
25 years of age, then the term denoted by the form (attribute-constant
individual-constant) is the number 25.

• Function Term A function term is an expression that contains a function constant
followed by one or more terms. It denotes the object corresponding to the value of
the function denoted by function-constant when applied to the argument term. For
example, the functional term (square 2) denotes the object 4.

• List Term A list term consists of the listof operator and one or more terms. The
object denoted by a list term is the list of objects denoted by the given terms. The list
term example presented in Figure 4-65 denotes the list containing the objects blue,
red, and white.

• Set Term A set term consists of the setof operator followed by one or more
terms. The object denoted by a set term is the set of objects denoted by the
corresponding terms. For example, the set term (setof employee manager) denotes
the set containing the objects employee and manager.

107

• Logical TermA logical term can denote one of several objects based on some given
condition. It consists of either the if operator followed by a sentence and one or
two terms, or the cond operator and a finite list of sentence-term pairs. In both
cases, the sentence preceding a term denoting an object O represents the condition
that must be met for the logical term to denote O. Two examples of logical terms are
given in Figure 4-65. The terms might be used to denote the child sizes for a
particular line of clothing. The first term denotes the constant medium if the
attribute weight applied to a child is strictly less than 120 pounds, and the constant
large otherwise. In this form of a logical term, the second term can be omitted. In
such case, no default term is specified if the condition is not met. The second term
allows for a finer grain characterization. It denotes the constant small if the attribute
weight applied to some child is strictly less than 80 pounds, medium if the attribute
value is strictly less than 120 pounds, and large otherwise.

• Quantified Term A quantified term is used to denote an object (or a set of objects)
by specifying a condition that allows the identification of the object(s). It involves
either the the operator or the setofall operator. A quantified term using the
the operator denotes an object that satisfies the given condition, such as the first
example shown in Figure 4-65, which denotes the object that Paul married. A
quantified term using the setofall operator denotes the set of objects that satisfy
the given condition. An example of a quantified term using the setofall operator
is the second example shown in Figure 4-65, which denotes the set of all objects that
are married and are thirty years of age.

Attribute Term (age-of Mary)

Functional Term (square 2)

List Term (listof blue red white)

Set Term (setof employee manager)

Logical Term 1. (if (< (weight ?x)120) medium large)

 2. (cond ((< (weight ?x) 80) small)
 ((< (weight ?x) 20) medium)

 ((>= (weight ?x) 120) large))

Quantified Term 1. (the (?x) (married Paul ?x))
 2. (setofall (?x) (and (married ?x) (= (age ?x) 30))

Figure 4-65. Examples of Terms in the IDEF5 Elaboration Language

108

4.2.2.3 Definitions

A definition is a type of expression used to define an individual, relation, or function constant. A
definition can be complete or partial. A complete definition is used when a constant can be
defined completely, while a partial definition is used when only limited information is available
regarding a constant. For example, the expression (define-individual origin := (listof 0 0))
defines the constant origin to be the list (0,0), while the expression (define-function F (?x ?y))
specifies only that the function F takes two arguments. A constant may have only one complete
definition but several partial definitions.

There are three types of definitions illustrated in Figure 4-66. An individual definition is used to
define an individual. In a complete individual definition, the name of the individual and a term
defining the individual must be specified. In a partial definition, only the name of the individual
must be specified. Optionally, a sentence can be included in a partial definition to restrict the
definition of the individual.

A function definition is used to define a function. In a complete function definition, the name of
the function, a list of variables (the number of variables in the list specifies the arity of the
function), and a term that defines the function must be given. The types of the arguments
expected by the function and the type of argument the function returns can also be specified.
They are specified as a list whose elements are lists of kinds or object-states. Each list represents
a legal set of argument types for the function. The last element in a list specifies the type of
argument returned by the function. In a partial function definition, only the name of the function
and a list of variables must be specified. Optionally, the types of the arguments expected by the
function and a sentence restricting the definition of the function can be added.

Constant
/Definitions

Complete Partial

Individual (define-individual origin
:= (listof 0 0))

(define-individual sun
 (rotates-around earth sun))

Function (define-function integral-part (?x)
:argument-type ((real integer))
:= (the (?y) (and (integer ?y)

 (=< ?y ?x)
(> ?y (- ?x 1))))

(define-function duration (?x)
:argument-type ((process time-

interval))
(number (duration ?x)))

109

Relation (define-relation below (?x ?y)
:= (above ?y ?x))

(define-relation daughter-of (?x ?y)
:argument-type ((female parent))
(=> (daughter-of ?x ?y)

(child-of ?x ?y)))

Figure 4-66. Definitions in the IDEF5 Elaboration LanguageA relation definition is used to
define a relation. A complete relation definition contains the name of the relation, a list of
variables (the number of variables in the list specifies the arity of the relation), and a sentence
defining the relation completely. Optionally, the kinds of instances that can stand in the relation
are specified (in the form of a list whose elements are lists of kinds or object-states). In a partial
relation definition, only the name of the relation and a list of variables must be specified.
Optionally, the kinds of instances that can stand in the relation (in the form of a list of kinds or
object-states) and a sentence restricting the definition of the relation can be added.

4.2.2.4 Sentences

A sentence in the IDEF5 Elaboration Language expresses some fact about the constants in the
ontology. There are seven types of sentences in the language, some of which are illustrated in
Figure 4-67.

• Logical Constants A logical constant is a word denoting a truth value.

• Equation An equation is an expression consisting of the operator = and two terms.

• Inequality An inequality is an expression consisting of the symbol /= and two
terms.

• Relation Sentence A relation sentence is an expression consisting of a relation
constant or a function constant followed by one or more terms.

• Logical Sentence A logical sentence consists of a logical operator followed by the
appropriate number of sentences. A logical sentence with the not, pos, or nec
operator contains only one sentence for argument, while any other logical sentence
has two sentences for argument.

• Quantified Sentence There are two types of quantified sentences: universally
quantified sentences and existentially quantified sentences. A universally quantified
sentence consists of the operator forall followed by one or more variables
enclosed in parentheses and a sentence. Such a sentence is used to make a general

110

statement about some class of objects. The universally quantified sentence in Figure
4-67, for example, states that all humans that are at least twenty-one years of age are
adults. An existentially quantified sentence consists of the operator exists
followed by one or more variables enclosed in parentheses and a sentence. An
existentially quantified sentence allows the declaration of the existence of an object
that possesses certain properties.

• IDEF5-Specific SentenceAn IDEF5-specific sentence is a sentence that enables the
introduction of constants according to the concept structure of the IDEF5 method.
This type of sentence is described in detail in Subsection 4.2.2.5.

Equation (= (age-of Paul) 30)

Inequality (/= (gas-mileage truck) (gas-mileage car))

Relational sentences (married-to Suzy James)

Logical sentence (and (= (age Paul) 30) (not (married-to Paul Suzy)))

Quantified sentences (forall (?x) (=> (and (human ?x) (> (age ?x) 21))
 (adult ?x)))

Figure 4-67. Examples of Sentences in the IDEF5 Elaboration Language

4.2.2.5 IDEF5-Specific Sentences

There are eleven categories of IDEF5-specific sentences, each category corresponding to a
concept in the IDEF5 method.

4.2.2.5.1 Ontology Constructs

There are eight ontology constructs, each of which provides a construct to express some
information about an ontology. The nine constructs are explained in this Subsection and
examples of some of the constructs are shown in Figure 4-68.

• Ontology Sentence This type of sentence is used to declare an ontology. An
ontology declaration consists of the operator I5-ontology followed by an
ontology constant or an individual variable.

• Context Sentence This type of sentence is used to declare the context in which an
ontology is captured. A context declaration consists of the operator
I5-ontology-context followed by an ontology constant or an individual
variable and a string.

111

• Viewpoint Sentence This type of sentence is used to declare the viewpoint
adopted to describe an ontology. A viewpoint declaration consists of the operator
I5-ontology-viewpoint followed by an ontology constant or an individual
variable and a string.

• Purpose Sentence This type of sentence is used to declare the purpose in capturing
an ontology. A purpose declaration consists of the operator
I5-ontology-purpose followed by an ontology constant or an individual
variable and a string.

• Project Sentence This type of sentence is used to declare the project of which the
ontology capture effort is a part. A project declaration consists of the operator
I5-ontology-project followed by an ontology constant or an individual
variable and a string.

• Analyst Sentence This type of sentence is used to declare the analyst responsible
for the capture of the ontology. An analyst declaration consists of the operator
I5-ontology-analyst followed by an ontology constant or an individual
variable and a string.

• Reviewer Sentence This type of sentence is used to declare the person responsible
for reviewing the ontology. A reviewer declaration consists of the operator
I5-ontology-reviewer followed by an ontology constant or an individual
variable and a string.

• In Ontology Sentence This type of sentence is used to declare that a constant is part
of an ontology. It consists of the operator I5-in-ontology followed by an
IDEF5 constant or variable and an ontology constant or an individual variable.

112

(I5-ontology shop_floor_control_system)

(I5-ontology-context shop_floor_control_system “This ontology is focused
on understanding what knowledge is used to manage jobs and
manufacturing resources in a job shop environment. The ontology will
also describe key resource constraints that the shop floor control system
must take into account.”)

(I5-ontology-purpose shop_floor_control_system “The purpose of this
ontology is to establish what information is actually required in a shop
floor control system in a job shop environment. It will enable future
analysts to determine what information and knowledge is critical to the
success of controlling resources and jobs on a shop floor.”)

(I5-ontology-viewpoint shop_floor_control_system “This ontology is
described from the viewpoint of the cost center schedulers working in
different cost centers throughout a company’s precision gear
manufacturing facility.”)

Figure 4-68. Example of Ontology Constructs in the IDEF5 Elaboration Language4.2.2.5.2
Kind Constructs

There are nine kind constructs, each of which provides a construct to express some information
about a kind. The seven constructs are described in this Subsection and examples of some of the
constructs are shown in Figure 4-69.

• Kind Sentence This type of sentence is used to declare a kind and consists of the
operator I5-kind followed by a kind constant or a predicate variable. The example
in Figure 4-69 shows a kind sentence which declares that drilling is a kind in a
particular ontology.

• Kind-Property Sentence This type of sentence is used to associate a property with a
kind. A property sentence consists of the operator I5-kind-property followed
by a kind constant or predicate variable, a property constant or predicate variable,
and, optionally, the reserved words defining and essential. The example shown
in Figure 4-69 shows that the property uses_drill_bit (presumably declared
beforehand) is a defining property of the kind drilling.

• Kind-Attribute SentenceThis type of sentence is used to associate an attribute with
a kind. An attribute sentence consists of the operator I5-kind-attribute
followed by a kind constant or predicate variable and an attribute constant or
predicate variable. The kind-attribute sentence shown in Figure 4-69 declares that
drill_bit_type is an attribute of the kind drilling. It is assumed that drill_bit_type
was previously declared to be an attribute.

• Kind-Description Sentence This type of sentence is used to associate a description
string with a kind. A kind description sentence consists of the operator

113

I5-kind-description followed by a kind constant or predicate variable and a
string.

• Kind-Synonyms Sentence This type of sentence is used to declare the ontology-
terms that are synonyms to a kind constant. A kind synonyms declaration consists of
the operator I5-kind-synonyms followed by a kind constant or predicate
variable and one or more ontology-term constants or individual variables enclosed in
parentheses.

• Referenced-Relations Sentence This type of sentence is used to declare the
relations in which a kind is involved. A referenced-relations declaration consists of
the operator I5-referenced-relations followed by a kind-constant or
predicate variable and one or more relation constants or predicate variables enclosed
in parentheses.

• Subkind Sentence This type of sentence is used to declare a kind as a subkind of
another. A subkind sentence consists of the operator I5-subkind-of followed
by a kind-constant or predicate variable and a kind-constant or predicate variable.

• Object-State SentenceThis type of sentence is used to declare an object state and
consists of the operator I5-object-state followed by an object-state constant
or a predicate variable.

• Process Sentence This type of sentence is used to declare a process and consists of
the operator I5-process followed by a process constant or a predicate variable.

(I5-kind drilling)

(I5-kind-description drilling “Drilling is a type of cutting
operation.”)

(I5-kind-property drilling uses_drill_bit defining)

(I5-kind-attribute drilling drill_bit_type)

Figure 4-69. Examples of Kind Constructs in the IDEF5 Elaboration Language4.2.2.5.3
Property Constructs

Property constructs are used to provide information about properties. There are three types of
property constructs. Some examples of property constructs are given in Figure 4-70.

114

• Property Sentence A property sentence is used to declare a property. It consists of
the operator I5-property followed by a property constant or a predicate variable.
The property sentence shown in Figure 4-70 declares the property made_in_Detroit.

• Property-Description Sentence This sentence can be used to describe a property.
It consists of the operator I5-property-description followed by a property
constant or a predicate variable and a string.

• Has-Property Sentence This sentence is used to declare that an individual
possesses a given property. It consists of the operator I5-has-property
followed by an individual constant or variable and a property constant or predicate
variable. The has-property sentence shown in Figure 4-70 declares the property
made_in_Detroit to be a property of the individual CB-J27-S121.

4.2.2.5.4 Individual Constructs

Individual constructs are used to declare information about individuals. There are three
individual constructs in the IDEF5 Elaboration Language. Examples of individual constructs are
given in Figure 4-70.

• Individual Sentence this sentence is used to declare individuals. It consists of the
operator I5-individual followed by an individual constant or variable. The
individual sentence shown in Figure 4-70 declares CB-J27-S121 to be an individual.

• Individual-Description Sentence This sentence is used to associate a description
string with an individual. It consists of the operator
I5-individual-description followed by an individual constant or variable
and a string.

• Is-of-kind Sentence This sentence is used to declare that an individual is of a
given kind. It consists of the operator I5-is-of-kind followed by an individual
constant or variable and a kind constant or a predicate variable. The is-of-kind
displayed in Figure 4-70 declares the individual CB-J27-S121 to be of kind car-
body.

(I5-individual CB-J27-S121)

(I5-property made_in_Detroit)

(I5-has-property CB-J27-S121 made_in_Detroit)

(I5-is-of-kind CB-J27-S121 car-body)

115

Figure 4-70. Examples of Individual and Property Constructs

4.2.2.5.5 Attribute Constructs

Attribute constructs are used to provide information about attributes. There are three types of
attribute constructs.

• Attribute Sentence This sentence is used to declare attributes. It consists of the
operator I5-attribute followed by an attribute constant or a predicate variable
and an attribute type. An attribute type may be one of the following: a list term, a set
term, or a kind constant. An example of an attribute sentence is the sentence
(I5-attribute dimensions (listof real)) which declares dimensions to be an attribute
of type a list of real numbers.

• Attribute-Description Sentence This sentence is used to describe an attribute. It
consists of the operator I5-attribute-description followed by an attribute
constant or a predicate variable and a string.

• Attribute-Applies-to Sentence This sentence is used to declare that an attribute
applies to a given individual. It consists of the operator
I5-attribute-applies-to followed by an attribute constant or a predicate
variable and an individual constant or variable. An example of an
attribute-applies-to sentence is the sentence (I5-attribute-applies-to
dimensions CB-J27-S121) which declares dimensions to be an attribute of the
individual CB-J27-S121.

4.2.2.5.6 Relation Constructs

Relation constructs are used to provide information about relations. There are four relation
constructs, some of which are illustrated in Figure 4-71.

• Relation Sentence This sentence is used to declare relations. It consists of the
operator I5-relation followed by a relation constant or predicate variable. The
relation sentence shown in Figure 4-71 declares part-of to be a relation.

• Relation Arity Sentence This sentence is used to declare the arity of a relation. It
consists of the operator I5-relation-arity followed by a relation constant or

116

predicate variable and a positive integer or individual variable. The relation sentence
shown in Figure 4-71 declares part-of to be a relation of arity 2.

• Relation-argument-type Sentence This sentence is used to declare the kind of
individuals that can stand in a relation. It consists of the operator
I5-rel-arg-type followed by a relation constant or predicate variable and a list
whose elements are lists of kinds and/or predicate variables. Each list of kinds
represents a set of legal argument kinds for the relation. For example, the
relation-argument-type sentence given in Figure 4-71 declares that instances of the
kind spark-plug can stand in the part-of relation with instances of the kind engine,
and that instances of the kind engine can stand in the part-of relation with instances
of the kind car.

• Relation Description Sentence This sentence is used to describe a relation. It
consists of the operator I5-relation-description followed by a relation
constant or a predicate variable and a string.

(I5-relation part-of)
(I5-relation-arity part-of 2)
(I5-rel-arg-type part-of ((spark-plug engine) (engine car)))

Figure 4-71. Examples of Relation Constructs

4.2.2.5.7 Function Constructs

Function constructs are used to provide information about functions. There are four function
constructs, some of which are illustrated in Figure 4-72.

• Function Sentence This sentence is used to declare functions. It consists of the
operator I5-function followed by a function constant or predicate variable. The
example in Figure 4-72 declares warranty-exp to be a function.

• Function-Arity Sentence This sentence is used to declare the arity of a function (i.e.,
the number of arguments that the function can take). It consists of the operator
I5-function-arity followed by a function constant or predicate variable and a
positive integer or individual variable. The example in Figure 4-72 declares that the
function warranty-exp takes one argument (i.e., is of arity 1).

117

• Function-Argument-Type Sentence This sentence is used to declare the argument
types for a function. It consists of the operator I5-fct-arg-type followed by a
function constant or predicate variable and a list of kinds and/or predicate variables.
The example in Figure 4-72 declares that the function warranty-exp takes an
instance of date for argument and returns an instance of date.

• Function-Description This sentence is used to describe a function. It consists of the
operator I5-function-description followed by a function constant or a
predicate variable and a string.

(I5-function warranty-exp)

(I5-function-arity warranty-exp 1)

(I5-function-description warranty-exp “This function
returns the expiration date of the warranty on a car battery
given the date shown on the battery.”)

(I5-fct-arg-type warranty-exp ((date date))

Figure 4-72. Examples of Function Constructs

4.2.2.5.8 Source Constructs

Source constructs are used to provide information about source materials. There are nine source
constructs, some of which are illustrated in Figure 4-73.

• Source SentenceA source sentence is used to declare a source material. It consists
of the operator I5-source followed by a source constant or an individual variable.
An example of a source sentence is given in Figure 4-73. The sentence declares
Chang_TC as a source material.

• Source-Description Sentence A source description sentence is used to describe a
source material. It consists of the operator I5-source-description followed
by a source constant or an individual variable and a string.

• Collected-from Sentence This sentence is used to declare who the source material
was collected from. It consists of the operator I5-collected-from followed by
a source constant or an individual variable and a string.

• Collected-by SentenceThis sentence is used to declare by whom the source material
was collected. It consists of the operator I5-collected-by followed by a source
constant or an individual variable and a string.

118

• Source-Abstract Sentence This sentence is used to give an abstract of the source
material. It consists of the operator I5-source-abstract followed by a source
constant or an individual variable and a string. An example of a source-abstract
sentence is given in Figure 4-73. The sentence specifies the source-abstract for the
source material Chang_TC.

• Source-Purpose Sentence This sentence is used to declare the purpose of a source
material. It consists of the operator I5-source-purpose followed by a source
constant or an individual variable and a string. An example of a source-purpose
sentence is given in Figure 4-73. The sentence specifies the purpose of using the
source material Chang_TC.

• Support-Ontology-Terms Sentence This sentence is used to declare the ontology-
terms that are supported by a source material. It consists of the operator
I5-support-ontology-term followed by a source constant or an individual
variable and one or more ontology-terms or individual variables enclosed in
parentheses.

• Support-Statement Sentence This sentence is used to declare the source-
statements in the ontology that are supported by a source material. It consists of the
operator I5-support-statement followed by a source constant or an
individual variable and one or more source-statements or individual variables
enclosed in parentheses. An example of a support-statement sentence is given in
Figure 4-73. The sentence declares the statements S1, S2, and S3 to be supported by
the source material Chang_TC.

• Has-Supporting-Sources Sentence This sentence is used to declare that an IDEF5
constant is supported by one or more source materials. It consists of the operator
I5-has-supporting-sources followed by an IDEF5 constant or a variable
and one or more source constants or an individual variable enclosed in parentheses.

119

(I5-source Chang_TC)

(I5-source-purpose Chang_TC “Description of general terms in
manufacturing domains.”)

(I5-source-abstract Chang_TC “Role of computers in the
planning, control and scheduling of manufacturing
processes; computer controlled manufacturing systems with
emphasis on the design and integration of hardware and
software systems.”)

(I5-support-statement Chang_TC (S1 S2 S3)

Figure 4-73. Examples of Source Constructs

4.2.2.5.9 Source-Statement Constructs

Source-statement constructs are used to provide information about source-statements. There are
four such constructs, some of which are illustrated in Figure 4-74.

• Source-Statement Sentence This sentence is used to declare a source-statement. It
consists of the operator I5-source-statement followed by a source-statement
constant or an individual variable. An example of a source-statement sentence is
given in Figure 4-74. The sentence declares design_questions as a source-statement.

• Source-Statement-Description This sentence provides the text associated with a
source-statement and/or provides a description of the source-statement. It consists of
the operator I5-source-statement-description followed by a source-
statement constant or an individual variable and a string. An example of a source-
statement-description sentence is given in Figure 4-74. The sentence provides the
text associated with the design_questions source-statement.

• Status Sentence This sentence is used to declare the status of a source-statement. It
consists of the operator I5-status followed by a source-statement constant or an
individual variable and one of the following operators: active-original, active-
derived, retired-original, or retired-derived. An example of a status sentence is given
in Figure 4-74. The sentence declares the status of the design_questions source-
statement as active and original.

• Has-Original-Statement Sentence This sentence is used to declare the original
source-statement of a derived source-statement. It consists of the operator
I5-has-original-statement followed by a source-statement constant or an
individual variable and a source-statement constant or individual variable.

120

(I5-source-statement design_questions)

(I5-source-statement-description design_questions “Design
questions should consider the most appropriate material
removal process which depends on volume, batch size,
accuracy, finish, materials, and cost constraints.”)

(I5-status design_questions active/orginal)

Figure 4-74. Examples of Source-statement Constructs

4.2.2.5.10 Ontology-Term Constructs

Ontology-term constructs are used to provide information about ontology-terms. There are three
such constructs, some of which are illustrated in Figure 4-75.

• Ontology-Term Sentence This sentence is used to declare an ontology-term. It
consists of the operator I5-ontology-term followed by an ontology-term
constant or an individual variable. An example of a ontology-term sentence is given
in Figure 4-75. The sentence declares Perishable_Tooling as an ontology-term.

• Ontology-Term description Sentence This sentence is used to describe an
ontology-term and consists of the operator I5-ontology-term-description
followed by an ontology-term constant or an individual variable and a string. An
example of an ontology-term sentence is given in Figure 4-75. The sentence
describes the ontology-term Perishable_Tooling.

• Used-in-Statements Sentence This sentence is used to declare the statements used
by an ontology-term. It consists of the operator I5-used-in-statements
followed by an ontology-term constant or an individual variable and one or more
source-statement constant or individual variables enclosed in parentheses. An
example of an ontology-term sentence is given in Figure 4-75. The sentence declares
that the ontology-term Perishable_Tooling is used in the source-statement SS39.

(I5-ontology-term Perishable_Tooling)

(I5-ontology-term-description Perishable_Tooling “Tools
with a limited usable life due to wear.”)

(I5-used-in-statements Perishable_Tooling (SS39))

Figure 4-75. Examples of Ontology-Term Constructs

121

4.2.2.5.11 Note Constructs

Note constructs are used to provide information about notes. There are three such constructs and
they are described as follows.

• Note Sentence This sentence is used to declare a note. It consists of the operator
I5-note followed by a note constant or an individual variable.

• Note-Description Sentence This sentence is used to describe a note. It consists of
the operator I5-note-description followed by a note constant or an
individual variable and a string.

• Has-Note Sentence This sentence is used to “attach” a note to an IDEF5 constant. It
consists of the operator I5-has-note followed by an IDEF5 constant or a variable
and a note constant or an individual variable.

4.2.2.6 Predefined Relations

The relation constants listed in this Subsection are predefined in the language and, hence, can be
used in sentences.

• part-of This relation constant denotes the “part of” relation. It is partially defined as
a first-order relation of arity 2 and takes two instances of kinds as arguments.

• transitions-toThis relation constant denotes the “transitions to” relation that can be
found in a Basic State Transition Schematic where it is represented as an object-state
transition link without a process symbol attached to it. It is partially defined as a
first-order relation of arity 2 and takes two instances of kinds as arguments.

• transitions-during This relation constant denotes the “transitions during” relation
that can be found in the Basic State Transition Schematics where it is represented as
a state transition link without a process symbol attached to it. It is partially defined
as a first-order relation of arity 3 and takes two instances of kinds and an instance of
a process as arguments.

• inst-transitions-to This relation constant denotes the “transitions instantaneously
to” relation that can be found in the Basic State Transition Schematics where it is
represented as an instantaneous state transition link without a process symbol
attached to it. It is partially defined as a first-order relation of arity 2.

122

• inst-transitions-during This relation constant denotes the “transitions
instantaneously during” relation that can be found in the Basic State Transition
Schematics where it is represented as an instantaneous state transition link with a
process symbol attached to it. It is partially defined as a first-order relation of arity 3
and takes two instances of kinds and an instance of a process as arguments.

• s-transitions-to This relation constant denotes the “strongly transitions to” relation
that can be found in the Strong Transition Schematics where it is represented as a
strong transition link without a process symbol attached to it. It is partially defined
as a first-order relation of arity 2 and takes two instances of kinds as arguments.

• s-transitions-during This relation constant denotes the “strongly transitions
during” relation that can be found in the Basic State Transition Schematics where it
is represented as a strong state transition link with a process symbol attached to it. It
is partially defined as a first-order relation of arity 3 and takes two instances of kinds
and an instance of a process as arguments.

• inst-s-transitions-to This relation constant denotes the instantaneous s-
transitions-to relation. It is partially defined as a first-order relation of arity 2 and
takes two instances of kinds as arguments.

• inst-s-transitions-during This relation constant denotes the instantaneous s-
transitions-to relation. It is partially defined as a first-order relation of arity 3 and
takes two instances of kinds and an instance of a process as arguments.

• in-state-throughout This relation constant is used to specify that an individual
stays in a given state throughout a process. It is partially defined as a first-order
relation of arity 2 and takes an instance of a kind and an instance of a process as
arguments.

123

Appendices, Bibliography, Glossary

124

Appendix A: IDEF5 Relation Library

This appendix describes the IDEF5 relation library. The library is a knowledge-rich repository
made of a set of definitions and characterizations of commonly used relations. It provides a
repository of formally defined and characterized relations that can be reused and customized.
The motivation for this library developed from an analogy with software engineering. Often in
software development, the same kinds of routines are used again and again in different programs
by (in general) different programmers. In earlier times, great amounts of time and effort were
lost for lack of the ability to reuse work. Recognition of this problem over time has led to the
development of extensive libraries that contain frequently used routines which programmers can
simply call straight into their programs. Such libraries have eliminated the need to duplicate the
functionality of existing code. The development of ontologies will face the same sort of problem
(and solution). The same or similar relations will likely appear in a number of different
ontologies. A library of relations such as the one presented here will enable modelers to reuse
and customize relations that have been defined in previously captured ontologies. The library
can also be used as a reference for the different ways to define and characterize relations and
illustrative examples of the use of the IDEF5 elaboration language. All definitions and
characterizing axioms in the library are written using the IDEF5 elaboration language. Finally,
the library is extensible in that any relation that has been formally defined and characterized may
be added to it.

The IDEF5 library relations are grouped into the following seven categories.

1. Classification Relations (including class inclusion relations).
2. Meronymic Relations.
3. Temporal Relations.
4. Spatial Relations.
5. Influence Relations.
6. Dependency Relations.
7. Case Relations.

Figure A-1 illustrates the IDEF5 relations categorization.

This appendix is organized in the following manner. For each type of relation shown in
Figure A-1, an overview describing the relation type is given, the formal definitions of the
relations that are members of that type are provided, and the relations are formally characterized.
Most axioms that are part of the characterizations are followed by a brief explanation. The

125

formal definitions are numbered using the letter “D” followed by a numeral, while axioms are
numbered using the letters “Ax” followed by a numeral.

member-of

Classification
Relation

Meronymic
Relation

Temporal
Relation

Dependency
Relation

Influence
Relation

Case
Relation

IDEF5 Relation

Spatial
Relation

Figure A-1. Overview of the IDEF5 Library Relations

A.1 Classification Relations

A.1.1 Overview

The classification relations are targeted at capturing the intuitive semantics of the is-a relation
and include the categorization relations kind and type and the class inclusion relations. A
categorization relation allows the specification that an object belongs to a certain kind or type.
At the most general level, a class inclusion relation relates two types (or kinds) when one type
subsumes the other (relations subkind and subtype). At a more detailed level, the meaning of a
class inclusion relation can be determined from knowledge of the basic nature of related objects
and the context of use of the relation. Five specialized class inclusion relations, which were
chosen for their prominence in AI research results, are provided [Winston, et. al. 87]. The
distinction between the five more specific class inclusion relations is based on the basic nature of
the related kinds or types as follows.

• Functional-Inclusion This relation is used to relate kinds whose relationship is
functional in nature. A chair is-a piece of furniture and A hammer is a tool are
examples of functional-inclusion relations.

• State-Inclusion This relation is used to relate kinds whose relationship involves a
state or condition. Polio is a disease and Hate is an emotion are examples of state-
inclusion relations.

126

• Activity-Inclusion This relation is used to relate kinds whose relationship involves
an activity. Tennis is a sport and Murder is a crime are examples of activity-
inclusion relations.

• Action-Inclusion This relation is used to relate kinds whose relationship involves
an action. Lecturing is a form of talking and Frying is a form of cooking are
examples of functional-inclusion relations.

• Perceptual-Inclusion This relation is used to relate kinds whose relationship is
perceptual in nature. A cat is a mammal and An apple is a fruit are examples of
perceptual-inclusion relations.

A.1.2 Relation Definition

As explained in Section 2, a kind contains instances that are similar in some, possibly arbitrary,
way. It is required only that an object possess at least one defining property of the kind for it to
be an instance of that kind. A type, on the other hand, regroups objects that share the same
properties. An object is an instance of a type if and only if it has all the properties of the type.
This section contains the formal definitions of the classification relations. The five more specific
class inclusion relations can take either two kinds or two types as arguments.

D.1 (defrelation type (#t)

D.2 (defrelation subkind-of (#x #y)
:argument-type ((I5-kind I5-kind)))

D.3 (defrelation subtype-of (#x #y)
:argument-type ((type type)))

D.4 (defrelation functional-inclusion (?x ?y)
 :argument-type ((I5-kind I5-kind) (type type)))

D.5 (defrelation state-inclusion (?x ?y)
 :argument-type ((I5-kind I5-kind) (type type)))

D.6 (defrelation activity-inclusion (?x ?y)
 :argument-type ((I5-kind I5-kind) (type type)))

D.7 (defrelation action-inclusion (?x ?y)
 :argument-type ((I5-kind I5-kind) (type type)))

D.8 (defrelation perceptual-inclusion (?x ?y)
 :argument-type ((I5-kind I5-kind) (type type)))

127

A.1.3 Relation Characterization

In this section, the relations defined in Subsection A.1.2 are characterized. Axioms Ax.1 to Ax.5
are general statements about the classifications relations. Axioms Ax.6 to Ax.8 state some of the
properties of the classification relations. Properties that are common to all classification relations
need only be stated for the kind and subkind relations because all other relations are
specializations of these two relations.

A.1.3.1 General axioms

Ax.1 (forall (?x #y)
(=> (and (I5-kind #y) (instance-of ?x #y))

(exists (#p) (and (I5-kind-property #y #p defining)
(I5-has-property ?x #p)))))

Ax.2 (forall (?x #y)
 (<=> (and (type ?y) (I5-is-of-kind ?x #y))

(forall (?p) (= > (I5-kind-property #y #p defining) (I5-has-property ?x #p))))

Ax.3 (forall (#x) (=> (type #x) (kind #x)))

- “Type” is a specialization of “kind,” hence every type is also a kind.

Ax.4 (forall (#x #y #p)
(=> (and (subtype #x #y) (I5-kind-property #y #p defining))

(I5-kind-property #x #p defining)))

- If a type T1 is a subtype of a type T2 and P is a defining property for T2, then P is also a
defining property for T1.

Ax.5 (forall (#x #y #p) (=> (and (subkind #x #y) (I5-kind-property #y #p essential))
(I5-kind-property #x #p essential)))

- If a kind K1 is a subkind of a kind K2 and P is an essential property of K2, then P is also an
essential property of K1.

Ax.6 (forall (#x #y) (=> (subkind #x #y)
(forall (?z) (=> (is-of-kind ?z #x) (is-of-kind ?z #y)))))

- If a kind K1 is a subkind of a kind K2, then all instances of K1 are also instances of K2. Note
that from this axiom and Axiom Ax.1, it can deduced that the same axiom holds for subtypes.

Ax.7 (forall (#x #y)
(=> (or(functional-inclusion #x #y) (activity-inclusion #x #y)

128

(state-inclusion #x #y) (action-inclusion #x #y)
(perceptual-inclusion #x #y) (subtype #x #y))

(subkind #x #y)))

- The subtype, functional-inclusion, activity-inclusion, state-inclusion, action-inclusion, and
perceptual-inclusion relations are all specializations of the subkind relation.

A.1.3.2 Reflexivity

A relation has the property of reflexivity if every object stands in the relation with itself. For
example, the relation knows, which takes humans as arguments, is reflexive because each human
knows himself/herself. The following axiom states that the subkind relation is reflexive.

Ax.8 (forall (#x) (subkind #x #x))

A.1.3.3 Antisymmetry26

A relation R is antisymmetric if the fact that an object A is related to an object B through R and
B is also related to A through R implies that A and B denote the same object. An example of an
antisymmetric relation is the relation ≥ (greater than or equal to). If x is greater than or equal to y
and y is greater than or equal to x, then x is equal to y. The following axiom states that the
subkind relation is antisymmetric.

Ax.7 (forall (#x #y)
(=> (and (subkind #x #y) (subkind #y #x)) (= #x #y)))

A.1.3.4 Transitivity

A relation R is transitive if for all objects A, B, and C, such that A is related to B through R and
B is related to C through R, A is related to C through R. An example of a transitive relation is
the ≥ relation. If A≥B and B≥C, then A≥C. The following axiom states that the subkind
relation is transitive.

Ax.9 (forall (#x #y #z) (=> (and (subkind #x #y) (subkind #y #z)) (subkind #x #z)))

26A relation R is symmetric if for every objects A and B, such that A is related to B through R, B is also related to A
through R.

129

A.2 Meronymic Relations

A.2.1 Overview

Meronymic relations are used to describe part-of relationships and are introduced in Section 4.
Figure A-2 shows a partial taxonomy of meronymic relations. Physical and conceptual part of
relationships are first distinguished. There are four physical part of relations. The place-within
relation is used to relate geographical objects. It relates a geographical object and the area where
the object is located. Examples of the use of this relation are The Everglades are part of
Florida and The Alps are part of Europe. The component-of relation is used to relate an
object and one of its components. The object is considered an integral whole that is divided into
its components. Examples of the use of this relation are A chapter is a part of a book and A
wheel is a part of a bicycle. The stuff-of relation is used to describe that an object is partly
made of some material. Examples of the stuff-of relation are A bike is partly steel and A chair
is partly wood. The portion-of relation describes the relationships between two similar objects,
one being included in the other. Examples of portion-of relations are A slice is part of a pie
and A yard is part of a mile.

There are two conceptual part-of relations. The member-of relation describes the fact that an
object is a member of some collection. It is important to note that this relation differs from the
classification relations described in Section 4. The member-of relation does not require any
similarity between the members of a collection of objects except their membership to that
collection. Examples of the use of the member-of relation are Cards are part of a deck and A
tree is part of a forest. The activity-within relation describes the features or phases of
activities. Examples of the use of that relation are Paying is part of shopping and Dating is
part of adolescence.

A.2.2 Relation Definition

In this subsection, the meronymic relations described in Subsection A.2.1 are formally defined.
Most definitions consist simply of the declaration of the relation. The inverse relations of the
relations shown in Figure A-2 are also defined.

130

Included-By

Included-Spatially Included-Meronymically

Physical
Part-Of

Included-Descriptively

Component-Of
Stuff-Of

Portion-Of

Conceptual
Part-Of

Member-Of Activity-Within

Specialization-Of

Place-Within

Figure A-2. A Partial Taxonomy of Meronymic Relations

D.9 (defrelation member-of (?x ?y))

D.10 (defrelation has-member (?x ?y) := (member-of ?y ?x))

- The relation has-member is defined as the inverse relation of the relation member-of.

D.11 (defrelation activity-within (?x ?y))

D.12 (defrelation contains-activity (?x ?y) := (activity-within ?y ?x))

- The relation contains-activity is defined as the inverse relation of the relation activity-within.

D.13 (defrelation made-of (?x ?y) :=> (material ?y))

D.14 (defrelation makes-up (?x ?y) := (made-of ?y ?x))

- The relation makes-up is defined as the inverse relation of the relation made-of.

D.15 (defrelation stuff-of (?x ?y) :=> (material ?y))

D.16 (defrelation makes-in-part (?x ?y) := (stuff-of ?y ?x))

- The relation makes-in-part is defined as the inverse relation of the relation stuff-of.

D.17 (defrelation portion-of (?x ?y)
(forall (?x ?y ?z) (exists (?z) (and (not (equal ?x ?z) (portion-of ?z ?y)))))

- If x is a portion of y, then there exists some other material z of which x is composed.

D.18 (defrelation has-portion (?x ?y) := (portion-of ?y ?x))

- The relation has-portion is defined as the inverse relation of the relation portion-of.

131

D.19 (defrelation component-of (?x ?y))

D.20 (defrelation has-component (?x ?y) := (component-of ?y ?x))

- The relation has-component is defined as the inverse relation of the relation component-of.

D.21 (defrelation place-within (?x ?y))

D.22 (defrelation contains-place (?x ?y) := (place-within ?y ?x))

- The relation contains-place is defined as the inverse relation of the relation place-within.

D.23 (defrelation physical-part-of (?x ?y)
:= (or (component-of ?x ?y) (stuff-of ?x ?y) (portion-of ?x ?y) (place-within ?x ?y)))

- The relations component-of, stuff-of, portion-of, and place-within are all physical-part-of
relations and there exists no other physical-part-of relation.

D.24 (defrelation conceptual-part-of (?x ?y)
:= (or (member-of ?x ?y) (feature-of ?x ?y)))

- The relations member-of and feature-of are all conceptual-part-of relations and there exists no
other conceptual-part-of relation.

D.25 (defrelation part-of (?x ?y)
:= (or (physical-part-of ?x ?y) (conceptual-part-of ?x ?y)))

- The part-of relations consist of the physical-part-of relations and the conceptual part-of
relations.

A.2.3 Relation Characterization

In this subsection, the relations defined in Subsection A.2.2 are characterized. The
characterization is organized according to common properties of relations.

A.2.3.1 Mutual Exclusivity

A set of n-ary relations (i.e., relations with n arguments) has the property of mutually exclusivity
if, given n objects, either the objects stand in none of the relations or they stand in exactly one
relation. The axioms below formally state that all meronymic relations are mutually exclusive.

Ax.10 (forall (?x ?y) (=> (component-of ?x ?y)
(and (not (conceptual-part-of ?x ?y)) (not (stuff-of ?x ?y))

132

(not (portion-of ?x ?y)) (not (place-within ?x ?y)))))

Ax.11 (forall (?x ?y) (=> (stuff-of ?x ?y)
(and (not (conceptual-part-of ?x ?y)) (not (component-of ?x ?y))

(not (portion-of ?x ?y)) (not (place-within ?x ?y)))))

Ax.12 (forall (?x ?y) (=> (portion-of ?x ?y)
(and (not (conceptual-part-of ?x ?y)) (not (component-of ?x ?y))

(not (stuff-of ?x ?y)) (not (place-within ?x ?y)))))

Ax.13 (forall (?x ?y) (=> (place-within ?x ?y)
(and (not (conceptual-part-of ?x ?y)) (not (portion-of ?x ?y)

(not (component-of ?x ?y)) (not (stuff-of ?x ?y)))))

Ax.14 (forall (?x ?y) (=> (member-of ?x ?y)
(and (not (physical-part-of ?x ?y)) (not (activity-within ?x ?y)))))

Ax.15 (forall (?x ?y) (=> (activity-within ?x ?y)
(and (not (physical-part-of ?x ?y)) (not (member-of ?x ?y)))))

A.2.3.2 Irreflexivity

An irreflexivity axiom for a relation states that no object can stand in the relation with itself. The
following axiom formally states that all meronymic relations are irreflexive.

Ax.16 (forall (?x) (not (part-of ?x ?x))

A.2.3.3 Asymmetry

A relation R is asymmetric if the fact that an object A is related to an object B through R implies
that B does not stand in that relation with A. The axiom below formally states that all
meronymic relations are asymmetric.

Ax.17 (forall (?x ?y) (=> (part-of ?x ?y) (not (part-of ?y ?x))))

A.2.3.4 Transitivity

The axiom below formally states that all physical-part-of relations are transitive.

Ax.18 (forall (?x ?y ?z) (=> (and (physical-part-of ?x ?y) (physical-part-of ?y ?z))
(physical-part-of ?x ?z)))

133

A.2.3.5 Miscellaneous

The meronymic relations may be characterized further with three properties: separability,
functionality, and homeomerosity [Winston, et. al. 87]. These properties enable further-grained
differentiation of meronymic relations. The separability property applies to part-of relations in
which objects can be physically separated, at least in principle, from the whole to which they are
connected. Objects that participate in a functional relation have a functional role with respect to
the whole. Objects participating in a homeomerous relation are similar to each other and to the
whole to which they belong. These three properties are formally defined below. Figure A-3
summarizes the properties for each meronymic relation. In the table, the symbol “-” indicates
that the corresponding relation does not have the property, while the symbol “+” indicates that
the corresponding relation has the property. The formal IDEF5 elaboration language statements
for the three properties of separability, functionality, and homeomerosity are provided.

Meronymic Relations Separable Functional Homeomerous

place-within - - -
component-of + + -
stuff-of - - -
portion-of + - +
member-of + - -
activity-within - + -

Figure A-3. Special Properties of Meronymic Relations

Ax.19 (property separable)

Ax.20 (property homeomerous)

Ax.21 (property functional)

Ax.22 (has-property member-of separable)

Ax.23 (has-property portion-of separable)

Ax.24 (has-property component-of separable)

Ax.25 (not (has-property activity-within separable))

Ax.26 (not (has-property stuff-of separable))

134

Ax.27 (not (has-property place-within separable))

Ax.28 (not (has-property member-of functional))

Ax.29 (not (has-property portion-of functional))

Ax.30 (has-property component-of functional)

Ax.31 (has-property activity-within functional)

Ax.32 (has-property stuff-of functional)

Ax.33 (not (has-property place-within functional))

Ax.34 (not (has-property member-of homeomerous))

Ax.35 (has-property portion-of homeomerous)

Ax.36 (not (relation-property component-of homeomerous))

Ax.37 (not (relation-property activity-within homeomerous))

Ax.38 (relation-property stuff-of homeomerous)

Ax.39 (not (relation-property place-within homeomerous))

A.3 Temporal Relations

A.3.1 Overview

This subsection contains the definitions and characterizations of a set of commonly occurring
temporal relations. These relations should be viewed as part of a time ontology that contains two
kinds called “time-interval” and “time-point.” The time-interval kind corresponds to the intuitive
notion of an interval of time, while the time-point kind corresponds to the notion of a point in
time. The time-interval kind has three attributes: beginning, which returns the beginning point
of an interval; end, which returns the end point of an interval; and duration, which returns the
length of an interval. Time points are ordered using a primitive relation, denoted <<, that
corresponds to the before relation. The relations between time intervals are all defined in terms
of the << relation between time points. The semantics of the time-interval relations presented
here are the ones found in Allen [85]. These relations, whose intuitive semantics are illustrated
in Figure A-3, are all binary relations.

135

A.3.2 Relation Definition

In this subsection, temporal relations are formally defined.

D.26 (defrelation << (?x ?y)
:argument-type ((time-point time-point)))

D.27 (defrelation before (?x ?y)
:argument-type ((time-interval time-interval))
(forall (?x ?y) (<=> (before ?x ?y) (<< (end ?x) (beginning ?y))))

X before Y
Y after X

X during Y
Y contains X

X overlaps Y
Y overlapped-by X

X meets Y
Y met-by X

X starts Y
Y started-by X

X finishes Y
Y finished-by X

XXX
YYYYYY

XXX YYY

XXX
 YYYY

XXXYYY

XXX
YYYYYY

 XXX
YYYYY

X equals Y XXX
YYY

Figure A-4. Binary Temporal Relations

D.28 (defrelation after (?x ?y) := (before ?y ?x))

D.29 (defrelation during (?x ?y)
:argument-type ((time-interval time-interval))
(forall (?x ?y)

(<=> (during ?x ?y)
(and (<< (beginning ?x) (beginning ?y)) (<< (end ?y) (end ?x)))))

D.30 (defrelation contains (?x ?y) := (during ?y ?x))

D.31 (defrelation overlaps (?x ?y)
:argument-type ((time-interval time-interval))
(forall (?x ?y)

(<=> (overlaps ?x ?y)
(and (<< (beginning ?x) (beginning ?y)) (<< (end ?x) (end ?y)

(<< (beginning ?y) (end ?x)))))

D.32 (defrelation overlapped-by (?x ?y) := overlaps (?y ?x))

D.33 (defrelation meets (?x ?y)
:argument-type ((time-interval time-interval))

136

(forall (?x ?y) (<=> (meets ?x ?y) (= (end ?x) (beginning ?y))))

D.34 (defrelation met-by (?x ?y) := meets (?y ?x))

D.35 (defrelation starts (?x ?y)
:argument-type ((time-interval time-interval))
(forall (?x ?y)

(<=> (starts ?x ?y)
(and (= (beginning ?x) (beginning ?y)) (<< (end ?x) (end ?y)))))

D.36 (defrelation started-by (?x ?y) := starts (?y ?x))

D.37 (defrelation finishes (?x ?y)
:argument-type ((time-interval time-interval))
(forall (?x ?y)

(<=> (finishes ?x ?y)
(and (<< (beginning ?y) (beginning ?x)) (= (end ?x) (end ?y)))))

D.38 (defrelation finished-by (?x ?y) := finishes (?y ?x))

The equals relation is the common identity relation between objects.

A.3.3 Relation Characterization

The temporal relations defined in Subsection A.3.2 are characterized in this subsection. First, the
axioms that characterizes the << relation completely are presented. The properties of the
temporal relations are also given. (All these properties can be deduced from the relation
definitions). In the following discussion, the identity relation will not be considered a temporal
relation per se. The properties of temporal relations presented here are stated for only six
relations: before, during, overlaps, meets, starts, and finishes. Properties for their inverse
relation can be deduced easily.

Ax.40 (forall (?x) (not (<< ?x ?x)))

Ax.41 (forall (?x ?y ?z) (=> (and (<< ?x ?y) (<< ?y ?z))

Ax.42 (forall (?x ?y) (or (<< ?x ?y) (<< ?y ?z)))

The following axioms state that all the temporal relations (excluding the identity relation) are
irreflexive.

Ax.43 (forall (?x) (and (not (before ?x ?x) (not (during ?x ?x) (not (overlaps ?x ?x)
(not (meets ?x ?x)(not (starts ?x ?x) (not (finishes ?x ?x)))

137

The following axioms state that all the temporal relations are asymmetric. Formally stated:

Ax.44 (forall (?x ?y) (=> (equals ?x ?y) (equals ?y ?x)))

Ax.45 (forall (?x ?y) (=> (before ?x ?y) (not (before ?x ?y))))

Ax.46 (forall (?x ?y) (=> (during ?x ?y) (not (during ?x ?y))))

Ax.47 (forall (?x ?y) (=> (overlaps ?x ?y) (not (overlaps ?x ?y))))

Ax.48 (forall (?x ?y) (=> (meets ?x ?y) (not (meets ?x ?y)))

Ax.49 (forall (?x ?y) (=> (starts ?x ?y) (not (started-by ?x ?y)))

Ax.50 (forall (?x ?y) (=> (finishes ?x ?y) (not (finished-by ?x ?y)))

The following axioms state that the before, during, starts, and finishes relations are transitive.

Ax.51 (forall (?x ?y ?z) (=> (and (before ?x ?y) (before ?y ?z)) (before ?x ?z)))

Ax.52 (forall (?x ?y ?z) (=> (and (during ?x ?y) (during ?y ?z)) (during ?x ?z)))

Ax.53 (forall (?x ?y ?z) (=> (and (starts ?x ?y) (starts ?y ?z)) (starts ?x ?z)))

Ax.54 (forall (?x ?y ?z) (=> (and (finishes ?x ?y) (finishes ?y ?z)) (finishes ?x ?z)))

A.4 Spatial Relations

A.4.1 Overview

Spatial relations can be used to describe pictures (i.e., to specify the spatial relationships between
objects in a picture). The IDEF5 library contains the commonly occurring spatial relations listed
in Figure A-4.

far
near
touching
beside
adjacent
disjoint
intersect
coincident

left-of
right-of
above
below
behind
in-front-of
inside
outside
between

Figure A-5. List of Spatial Relations

138

All listed relations are binary relations except the between relation, which is a ternary relation.
Seventeen relations are shown in Figure A-5. The relations right-of, below, and in-front-of are
the respective inverse relations of the relations left-of, above, and behind.

A.4.2 Relation Definition

In this subsection, the spatial relations listed in Figure A-5 are formally defined.

D.39 (defrelation left-of (?x ?y))

D.40 (defrelation right-of (?x ?y) := (left-of ?y ?x))

D.41 (defrelation above (?x ?y))

D.42 (defrelation below (?x ?y) := (above ?y ?x))

D.43 (defrelation behind (?x ?y))

D.44 (defrelation in-front-of (?x ?y) := (behind ?y ?x))

D.45 (defrelation near (?x ?y))

D.46 (defrelation far (?x ?y) := (near ?y ?x))

D.47 (defrelation between (?x ?y ?z))

D.48 (defrelation touching (?x ?y))

D.49 (defrelation beside (?x ?y))

D.50 (defrelation adjacent (?x ?y))

D.51 (defrelation disjoint (?x ?y))

D.52 (defrelation intersect (?x ?y))

D.53 (defrelation coincident (?x ?y))

A.4.3 Relation Characterization

In this Subsection, the spatial relations are characterized using the common relation properties of
reflexivity, symmetry, antisymmetry and transitivity, as well as the relationship they bear to one
another.

139

A.4.3.1 Reflexivity and Irreflexivity

The following axioms state that the coincident relation is reflexive. All other relations are
irreflexive.

Ax.55 (forall (?x) (coincident ?x ?x))

Ax.56 (forall (?x) (not (right-of ?x ?x)))

Ax.57 (forall (?x) (not (above ?x ?x)))

Ax.58 (forall (?x) (not (behind ?x ?x)))

Ax.59 (forall (?x) (not (inside ?x ?x)))

Ax.60 (forall (?x) (not (below ?x ?x)))

Ax.61 (forall (?x) (not (in-front-of ?x ?x)))

Ax.62 (forall (?x) (not (outside ?x ?x)))

Ax.63 (forall (?x) (not (far ?x ?x)))

Ax.64 (forall (?x) (not (near ?x ?x)))

Ax.65 (forall (?x) (not (touching ?x ?x)))

Ax.66 (forall (?x) (not (beside ?x ?x)))

Ax.67 (forall (?x) (not (adjacent ?x ?x)))

Ax.68 (forall (?x) (not (disjoint ?x ?x)))

Ax.69 (forall (?x) (not (intersect ?x ?x)))

A.4.3.2 Symmetry and Antisymmetry

The following axioms state that the near, far, across, faces, and beside relations are symmetric,
while the relations left-of, above, behind, and inside are antisymmetric.

Ax.70 (forall (?x ?y) (=> (near ?x ?y) (near ?y ?x)))

Ax.71 (forall (?x ?y) (=> (far ?x ?y) (far ?y ?x)))

Ax.72 (forall (?x ?y) (=> (beside ?x ?y) (beside ?y ?x)))

Ax.73 (forall (?x ?y) (=> (and (left-of ?x ?y) (left-of ?y ?x)) (= ?x ?y)))

140

Ax.74 (forall (?x ?y) (=> (and (above ?x ?y) (above ?y ?x)) (= ?x ?y)))

Ax.75 (forall (?x ?y) (=> (and (behind ?x ?y) (behind ?y ?x)) (= ?x ?y)))

Ax.76 (forall (?x ?y) (=> (and (inside ?x ?y) (inside ?y ?x)) (= ?x ?y)))

A.4.3.3 Transitivity

The following axioms state that the relations left-of, right-of, above, behind, and their inverse
relations, as well as the relation inside are transitive.

Ax.77 (forall (?x ?y ?z) (=> (and (left-of ?x ?y) (left-of ?y ?z)) (left-of ?x ?z)))

Ax.78 (forall (?x ?y ?z) (=> (and (right-of ?x ?y) (right-of ?y ?z)) (right-of ?x ?z)))

Ax.79 (forall (?x ?y ?z) (=> (and (above ?x ?y) (above ?y ?z)) (above ?x ?z)))

Ax.80 (forall (?x ?y ?z) (=> (and (below ?x ?y) (above ?y ?z)) (below ?x ?z)))

Ax.81 (forall (?x ?y ?z) (=> (and (behind ?x ?y) (behind ?y ?z)) (behind ?x ?z)))

Ax.82 (forall (?x ?y ?z) (=> (and (in-front-of ?x ?y) (in-front-of ?y ?z)) (in-front-of ?x ?z)))

Ax.83 (forall (?x ?y ?z) (=> (and (inside ?x ?y) (inside ?y ?z)) (inside ?x ?z)))

A.4.3.4 Mutual Exclusivity

The following are sets of mutually exclusive relations: {left-of, coincident, inside}, {right-of,
coincident, inside}, {above, coincident, inside}, {below, coincident, inside}, {behind,
coincident, inside}, {in-front-of, coincident, inside}, {near, coincident, inside, far},
{coincident, outside}, {beside, inside, coincident}, {touching, far}, {adjacent, far,
coincident, intersect, inside}, and {coincident, disjoint, intersect, inside}. The formal
statements corresponding to these sets of mutually exclusive relations are organized in the
following way. For each relation R, the relations that are incompatible with it (i.e., the relations
in which a pair (a,b) cannot stand if (a,b) already stand in the relation R) are given.

A.84 (forall (?x ?y)
 (=> (left-of ?x ?y)

(and (not (right-of ?x ?y)) (not (coincident ?x ?y)) (not (inside (?x ?y)))))

A.85 (forall (?x ?y)
 (=> (right-of ?x ?y)

(and (not (left-of ?x ?y)) (not (coincident ?x ?y)) (not (inside (?x ?y)))))

141

A.86 (forall (?x ?y)
 (=> (above ?x ?y)

(and (not (coincident ?x ?y)) (not (below ?x ?y)) (not (inside (?x ?y)))))

A.87 (forall (?x ?y)
 (=> (below ?x ?y)

(and (not (above ?x ?y)) (not (coincident ?x ?y)) (not (inside (?x ?y)))))

A.88 (forall (?x ?y)
(=> (behind ?x ?y)

(and (not (in-front-of ?x ?y)) (not (coincident ?x ?y)) (not (inside (?x ?y)))))

A.89 (forall (?x ?y)
 (=> (in-front-of ?x ?y)

(and (not (behind ?x ?y)) (not (coincident ?x ?y)) (not (inside (?x ?y)))))

A.90 (forall (?x ?y)
(=> (near ?x ?y)

(and (not (coincident ?x ?y)) (not (far ?x ?y)) (not (inside (?x ?y)))))

A.91 (forall (?x ?y)
(=> (far ?x ?y)

(and (not (adjacent ?x ?y)) (not (coincident ?x ?y)) (not (intersect ?x ?y))
(not (inside ?x ?y)) (not (touching ?x ?y)) (not (near ?x ?y)))))

A.92 (forall (?x ?y) (=> (outside ?x ?y)
(and (not (inside ?x ?y)) (not (coincident ?x ?y)))))

A.93 (forall (?x ?y) (=> (beside ?x ?y)
(and (not (inside ?x ?y)) (not (coincident ?x ?y)))))

A.94 (forall (?x ?y) (=> (touching ?x ?y) (not (far ?x ?y))))

A.95 (forall (?x ?y)
 (=> (adjacent ?x ?y)

(and (not (far ?x ?y)) (not (coincident ?x ?y)) (not (intersect ?x ?y))
(not (inside ?x ?y)))))

A.96 (forall (?x ?y)
 (=> (intersect ?x ?y)

(and (not (far ?x ?y)) (not (coincident ?x ?y)) (not (adjacent ?x ?y))
(not (disjoint ?x ?y)) (not (inside ?x ?y)))))

A.97 (forall (?x ?y)
(=> (disjoint ?x ?y)

(and (not (coincident ?x ?y)) (not (intersect ?x ?y)) (not (inside ?x ?y)))))

142

A.98 (forall (?x ?y)
 (=> (inside ?x ?y)

(and (not (far ?x ?y)) (not (coincident ?x ?y)) (not (intersect ?x ?y))
(not (above ?x ?y)) (not (below ?x ?y)) (not (behind ?x ?y))
(not (right-of ?x ?y)) (not (near ?x ?y)) (not (beside ?x ?y))
(not (left-of ?x ?y)) (not (adjacent ?x ?y)))))

A.99 (forall (?x ?y)
 (=> (coincident ?x ?y)

(and (not (left-of ?x ?y)) (not (right-of ?x ?y)) (not (above ?x ?y))
(not (below ?x ?y)) (not (behind ?x ?y)) (not (in-front-of ?x ?y))
(not (beside ?x ?y)) (not (adjacent ?x ?y)) (not (disjoint ?x ?y)))
(not (intersect ?x ?y)) (not (far ?x ?y)) (not (inside ?x ?y))
(not (outside ?x ?y)))))

A.5 Influence Relations

A.5.1 Overview

Influence relations can be used to express that an object has some effect or impact on another
object. There are five influence relations, influences being the most general. It can be used
when the type of influence or the implication of the influence between two objects is unclear or
unknown. The four remaining influence relations are specializations of the general one and can
be used to relate objects in some quantitative way. They are particularly appropriate in
describing the influence of some measure on another. The endings in the name of the relations
indicate the directional influence of one measure on another. For example, a statement of the
form (influences-pp x y) expresses that if the measure x augments, so will the measure y.
Similarly, a statement of the form (influences-pm x y) expresses that if the measure x augments,
the measure y will decrease. A statement of the form (influences-mp x y) expresses that if the
measure x decreases, the measure y will augment. Finally, a statement of the form
(influences-mm x y) expresses that if the measure x decreases, so will the measure y. Figure
A-6 illustrates the directional influence expressed by each relation. In the table, the first arrow
indicates the behavior of the first argument and the second arrow indicates the behavior of the
second argument. An arrow pointing upward indicates an increase in the value of the
corresponding argument, while an arrow pointing downward indicates a decrease in the value of
the corresponding argument.

Finally, an inhibits relation is also included. This relation can be used to express the fact that
some object inhibits some other object in some undetermined way. This relation could be further
specialized to describe special cases of inhibition.

143

Relation Directional
Influence

Influences -
Influences-pp ���

Influences-pm ���

Influences-mp ����

Influences-mm ���

Figure A-6. The Five “Influences” Relations and Their Directional Influence

A.5.2 Relation Definition

In this subsection, the influence relations are formally defined.

D.54 (defrelation influences (?x ?y))

D.55 (defrelation influences-pp (?x ?y))

D.56 (defrelation influences-pm (?x ?y))

D.57 (defrelation influences-mp (?x ?y))

D.58 (defrelation influences-mm (?x ?y))

D.59 (defrelation inhibits (?x ?y))

A.5.3 Relation Characterization

In this subsection, the influence relations are characterized by identifying their properties.

A.5.3.1 Specialization

The following axioms state that the relations influences-pp, influences-pm, influences-mp, and
influences-mm are specializations of the influences relation.

Ax.100 (forall (?x ?y)
(=> (or (influences-pp ?x ?y) (influences-pm ?x ?y) (influences-mp ?x ?y)

(influences-mm ?x ?y))
(influences ?x ?y))

144

A.5.3.2 Reflexivity and Irreflexivity

The following axioms state that the relations influences, influences-pp, and influences-pm are
reflexive. The relations influences-pm and influences-mp are irreflexive.

Ax.101 (forall (?x ?y) (influences ?x ?x))

Ax.102 (forall (?x ?y) (influences-pp ?x ?x))

Ax.103 (forall (?x ?y) (influences-mm ?x ?x))

Ax.104 (forall (?x ?y) (inhibits ?x ?x))

Ax.105 (forall (?x ?y) (not (influences-pm ?x ?x)))

Ax.106 (forall (?x ?y) (not (influences-mp ?x ?x)))

A.5.3.3 Transitivity

The following axioms state that the influence relations are transitive.

Ax.107 (forall (?x ?y ?z) (=> (and (influences ?x ?y) (influences ?y ?z))
(influences ?x ?z))

Ax.108 (forall (?x ?y ?z) (=> (and (influences-pp ?x ?y) (influences-pp ?y ?z))
(influences-pp ?x ?z))

Ax.109 (forall (?x ?y ?z)
(=> (and (influences-pm ?x ?y) (influences-pm ?y ?z))

(influences-pm ?x ?z))

Ax.110 (forall (?x ?y ?z)
(=> (and (influences-mp ?x ?y) (influences-mp ?y ?z))

(influences-mp ?x ?z))

Ax.111 (forall (?x ?y ?z)
(=> (and (influences-mm ?x ?y) (influences-mm ?y ?z))

(influences-mm ?x ?z))

Ax.112 (forall (?x ?y ?z) (=> (and (inhibits ?x ?y) (inhibits ?y ?z)) (inhibits ?x ?z))

A.5.3.4 Mutual exclusivity

The following axioms state that the specialized influence relations are mutually exclusive.

Ax.113 (forall (?x ?y)

145

(=> (influences-pp ?x ?y)
(and (not (influences-pm ?x ?y)) (not (influences-mp ?x ?y))

(not (influences-mm ?x ?y)))

Ax.114 (forall (?x ?y)
(=> (influences-pm ?x ?y)

(and (not (influences-pp ?x ?y)) (not (influences-mp ?x ?y))
(not (influences-mm ?x ?y)))

Ax.115 (forall (?x ?y)
(=> (influences-mp ?x ?y)

(and (not (influences-pm ?x ?y)) (not (influences-pp ?x ?y))
(not (influences-mm ?x ?y)))

Ax.116 (forall (?x ?y)
(=> (influences-mm ?x ?y)

(and (not (influences-pm ?x ?y)) (not (influences-mp ?x ?y))
(not (influences-pp ?x ?y)))

A.6 Dependency Relations

A.6.1 Overview

The dependency relations can be used to express the fact that an object depends on another. The
dependency can be general (in which case the “depends-on” relation is used) or may be more
specific. In particular, the dependency may be existential (in which case the “depends-on-
existentially” relation is used) or causal (in which case the “depends-on-causally” relation can
be used). An object A is existentially dependent on an object B if the existence of A depends on
the existence of B. In such a case, if B ceases to exist, then A will also cease to exist. An object
A is causally dependent on an object B if A is the result or effect of the existence of B. In other
words, B is the cause or one of the causes for the existence of A. The existentially-dependent
and causally-dependent relations differ in that, with the latter relation, B’s destruction may not
cause A to cease to exist.

A.6.2 Relation Definition

In this subsection, the dependency relations are formally defined. To enable a detailed definition
of the depends-on-existentially relation, an exists relation that takes one argument is also
defined. A statement of the form (exists A) denotes the fact that A exists.

D.60 (defrelation exists (?x)

146

D.61 (defrelation depends-on (?x ?y))

D.62 (defrelation depends-on-existentially (?x ?y)
(forall (?x ?y)

 (=> (and (depends-on-existentially ?x ?y) (not (exists ?y))) (not (exists ?x)))))

D.63 (defrelation depends-on-causally (?x ?y))

A.6.3 Relation Characterization

In this subsection, the dependency relations are charcterized by identification of their properties.

A.6.3.1 Specialization

The following axioms state that the relations depends-on-existentially and depends-on-
causally are specializations of the relation depends-on.

Ax.117 (forall (?x ?y)
(=> (or (depends-on-existentially ?x ?y)

(depends-on-causally ?x ?y))
(depends-on ?x ?y))

A.6.3.2 Transitivity

The following axioms state that the three dependency relations are transitive.

Ax.118 (forall (?x ?y ?z)
(=> (and (depends-on ?x ?y) (depends-on ?y ?z))

(depends-on ?x ?z))

Ax.119 (forall (?x ?y ?z)
 (=> (and (depends-on-existentially ?x ?y)

(depends-on-existentially ?y ?z))
(depends-on-existentially ?x ?z))

Ax.120 (forall (?x ?y ?z)
(=> (and (depends-on-causally ?x ?y) (depends-on-causally ?y ?z))

(depends-on-causally ?x ?z))

147

A.7 Case Relations

A.7.1 Overview

The case relations differ from other families of relations introduced so far in that they do not
depend solely on the nature or the meaning of the terms they relate [Winston, et. al. 87]. Each
case relation provides a knowledge structure without which the relation cannot exist. Five case
relations that are common in that they all can be used to describe parts of an event are defined
and characterized. An event typically involves an agent, an action, an instrument or an object,
and a recipient. The five case relations presented here involved two such components of an event.
The five relations are as follows.

• Agent-ActionThis relation relates an agent of an event to the corresponding action.
The arguments to this relation should be a kind and a verb. Examples of terms
related through this relation are dog and bark, and artist and paint.

• Agent-Instrument This relation relates an agent of an event to the corresponding
instrument. Examples of the use of this relation are A skier uses skis and A soldier
uses a gun.

• Agent-ObjectThis relation relates an agent of an event to the object that takes part in
the event. This relation is used in case the object is neither the recipient nor the
instrument. Examples of terms related through such relations are writer and paper
and baker and flour.

• Action-Recipient This relation relates the recipient of an event to the
corresponding action. Examples of terms related through this relation are lay down
and bed and type and keyboard.

• Action-Instrument This relation relates the instrument in an event to the
corresponding action. Examples of terms related through this relation are paint and
brush and strum and guitar.

A.7.2 Relation Definition

In this subsection, the case relations are formally defined.

D.64 (defrelation agent-action (?x ?y))

148

D.65 (defrelation agent-instrument (?x ?y))

D.66 (defrelation agent-object (?x ?y))

D.67 (defrelation agent-recipient (?x ?y))

D.68 (defrelation action-instrument (?x ?y))

A.7.3 Relation Characterization

In this subsection, the case relations are charaterized

A.7.3.1 Irreflexivity

The following axioms state that the five case relations are irreflexive.

Ax.121 (forall (?x) (not (agent-action ?x ?x))

Ax.122 (forall (?x) (not (agent-instrument ?x ?x))

Ax.123 (forall (?x) (not (agent-object ?x ?x))

Ax.124 (forall (?x) (not (agent-recipient ?x ?x))

Ax.125 (forall (?x) (not (action-instrument ?x ?x))

A.7.3.2 Asymmetry

The following axioms state that the five case relations are asymmetric.

Ax.126 (forall (?x ?) (=> (agent-action ?x ?y) (not (agent-action ?y ?x))))

Ax.127 (forall (?x ?) (=> (agent-instrument ?x ?y) (not (agent-instrument ?y ?x))))

Ax.128 (forall (?x ?) (=> (agent-object ?x ?y) (not (agent-object ?y ?x))))

Ax.129 (forall (?x ?) (=> (agent-recipient ?x ?y) (not (agent-recipient ?y ?x))))

Ax.130 (forall (?x ?) (=> (action-instrument ?x ?y) (not (action-instrument ?y ?x))))

149

Appendix B. Grammar for the IDEF5 Elaboration
Language

B.1 Constant and variables

<word> ::= a primitive syntactic object
<expression> ::= <word> | (<expression>*)

<indvar> ::= a word beginning with the character ?
<predvar> ::= a word beginning with the character #
<variable> ::= <indvar> | <predvar>

<I5-ontology-constant>::= a word denoting an ontology
<logical-constant> ::= a word denoting a truth value | <ontology-constant>::<logical-constant>
<I5-individual-constant> ::= a word denoting an individual

| <ontology-constant>::<I5-individual-constant>
<I5-kind-constant> ::= a word denoting a kind | <ontology-constant>::<I5-kind-constant>
<I5-SO-pred-constant> ::= a word denoting a second order predicate

| <ontology-constant>::<I5-SO-pred-constant>
<I5-TO-pred-constant> ::= a word denoting a third order predicate

| <ontology-constant>::<I5-TO-pred-constant>
<relation-constant> ::= <I5-SO-pred-constant> | <I5-TO-pred-constant>
<I5-function-constant> ::= a word denoting a function

| <ontology-constant>::<I5-function-constant>
<I5-attribute-constant> ::= a word denoting an attribute

| <ontology-constant>::<I5--attribute-constant>
<I5-property-constant> ::= a word denoting a property

| <ontology-constant>::<I5-property-constant>
<I5-source-statement-constant> ::= a word denoting a statement

|
<ontology-constant>::<I5-source-statement-constant>
<I5-ontology-term-constant> ::= a word denoting a term

| <ontology-constant>::<I5-ontology-term-constant>
<I5-source-constant> ::= a word denoting a source

| <ontology-constant>::<I5-source-constant>
<I5-note-constant> ::= a word denoting a note

150

| <ontology-constant>::<I5-note-constant>
<I5-object-state-constant> ::= <I5-kind-constant>:<I5-property-constant> |

<ontology-constant>::<I5-kind-constant>:<I5-property-constant>

<I5-constant> ::= <I5-property-constant> | <I5-SO-pred-constant> | <I5-TO-pred-constant> |
<I5-function-constant> | <I5-kind-constant> |
<I5-ontology-term-constant> | <I5-source-constant> | <I5-note-constant> |
<I5-source-statement-constant> | <I5-attribute-constant> |
<I5-individual-constant>

<constant> ::= <I5-constant> | <I5-ontology-constant> | <logical-constant>

B.2 Operators

<definition-operator> ::= define-relation | define-function | define-individual | := |
:argument-type

<term-operator> ::= listof | setof | if | cond | the | setofall

<sentence-operator> ::= = | /= | not | and | or | implies | equiv | forall | exists | nec | poss |
<I5-sentence-operator>

<I5-sentence-operator> :=<I5-kind-operator> | <I5-ontology-operator> | <I5-note-operator> |
<I5-relation-operator> | <I5-function-operator> |
<I5-individual-operator> | <I5-property-operator> |
<I5-attribute-operator> | <I5-statement-operator> |
<I5-ontology-term-operator> | <I5-source-operator> |
I5-process

<I5-kind-operator>::= I5-kind | I5-kind-property | I5-kind-attribute | I5-has-synonyms |
I5-kind-description | I5-referenced-relations | defining | essential |
subkind-of | I5-object-state

<I5-ontology-operator> ::= I5-ontology | I5-ontology-context | I5-ontology-viewpoint |
I5-ontology-purpose | I5-ontology-project |
I5-ontology-analyst | I5-ontology-reviewer |
I5-ontology-description

151

<I5-individual-operator> ::= I5-individual | I5-individual-description | I5-instance-of

<I5-relation-operator> ::= I5-relation | I5-relation-description | I5-relation-arity |
I5-rel-arg-type

<I5-function-operator> ::= I5-function | I5-function-description | I5-function-arity |
I5-fct-arg-type

<I5-property-operator> ::= I5-property | I5-property-description | has-property

<I5-attribute-operator> ::= I5-attribute | I5-attribute-description | I5-attribute-type |
I5-attribute-applies-to

<I5-source-statement-operator> ::= I5-source-statement | I5-source-statement-description |
I5-source-statement | I5-has-original-statement |

I5-status-type | active_original | active_derived |
retired_original | retired_derived

<I5-ontology-term-operator> ::= I5-ontology-term | I5-use-statements | I5-sources-used |
I5-ontology-term-description |
I5-ontology-term-description

<I5-note-operator> ::= I5-note | I5-note-description | I5-has-note

<I5-source-operator> ::= I5-source | I5-source-description | I5-collected-from | I5-collected-by |
I5-source-abstract | I5-source-purpose |
I5-support-ontology-terms | I5-support-statement |
I5-has-supporting-sources

<operator> ::= <definition-operator> | <term-operator> | <sentence-operator>

B.3 Terms

<term> ::= <indvar> | <I5-constant> | <I5-ontology-constant> | <funterm> | <listterm> |
<setterm> | <logterm> | quanterm> | <I5-attribute-term>

<funterm> ::= (<I5-function-constant> <term>+)
<I5-attribute-term> ::= (<I5-attribute-constant> <individual-constant> | <indvar>) |
<setterm> ::= (setof <term>*)
<listterm> ::= (listof <term>*)

152

<logterm> ::= (if <sentence> <term> [<term>]) |
(cond (<sentence> <term>) (<sentence> <term>)+)

<quanterm> ::= (the <term> <sentence>) |
(setofall <term> <sentence>)

B.4 Definitions

<definition> ::= <partial-definition> | <complete-definition>

<complete-definition> ::= (define-individual <individual-constant> := <term>) |
(define-function <function-constant> ({<indvar> | <predvar>}+)

[:argument-type (({<I5-kind-constant> |
<I5-object-state-term>}+)+)]

:= <term>) |
(define-relation <relation-constant> ({<indvar> | <predvar>}+)

[:argument-type (({<I5-kind-constant> |
<I5-object-state-term>}+)+)]

:= <sentence>)

<partial-definition> ::= (define-individual <individual-constant> [<sentence>]) |
(define-function <function-constant> ({<indvar> | <predvar>}+)

[:argument-type (({<I5-kind-constant> |
<I5-object-state-term>}+)+)]

[<sentence>])) |
(define-relation <relation-constant> ({<indvar> | <predvar>}+)

[:argument-type (({<I5-kind-constant> |
<I5-object-state-term>}+)+)]

[<sentence>]))

B.5 Sentences

B.5.1 General Sentences

<sentence> ::=<logical-constant> | <equation> | <inequality> | <relsent> | <logsent>
<quantsent> | <I5-sentence>

<equation> ::=(= <term> <term>)

153

<inequality> ::= (/= <term> <term>)

<relsent> ::= (<relation-constant> <term>+) | (<function-constant> <term> <term>*)

<logsent> ::= (not <sentence>) | (and <sentence> <sentence>+) | (poss <sentence>) |
(implies <sentence> <sentence>) | (equiv <sentence> <sentence>) |
(nec <sentence>)

<quantsent> ::= (forall ([<indvar> | <predvar>]+) <sentence>) |
(exists ([<indvar> | <predvar>]+) <sentence>)

B.5.2 IDEF5 Specific Sentences

<I5-sentence> ::= <I5-kind-sentence> | <I5-ontology-sentence> | <I5-individual-sentence> |
<I5-property-sentence> | <I5-attribute-sentence> | <I5-statement-sentence>

| <I5-ontology-term-sentence> | <I5-source-sentence> | <I5-note-sentence> |
<I5-relation-sentence> | <I5-function-sentence> | <I5-process-decl>

B.5.2.1 IDEF5 Ontology Sentences

<I5-ontology-sentence>::= <I5-ontology-decl> | <I5-ontology-context-decl> |
<I5-ontology-viewpoint-decl> | <I5-ontology-purpose-decl> |
<I5-ontology-project-decl> | <I5-ontology-analyst-decl> |
<I5-ontology-reviewer-decl> | <I5-ontology-description-decl>

<I5-ontology-decl> ::= (I5-ontology <I5-ontology-constant> | <indvar>)
<I5-ontology-context-decl> ::= (I5-ontology-context <I5-ontology-constant> | <indvar>

string)
<I5-ontology-viewpoint-decl> ::= (I5-ontology-viewpoint <I5-ontology-constant> | <indvar>

string)
<I5-ontology-purpose-decl> ::= (I5-ontology-purpose <I5-ontology-constant> | <indvar>

string)
<I5-ontology-project-decl> ::= (I5-ontology-project <I5-ontology-constant> | <indvar> string)
<I5-ontology-analyst-decl> ::= (I5-ontology-analyst <I5-ontology-constant> | <indvar> string)
<I5-ontology-reviewer-decl> ::= (I5-ontology-rewiever <I5-ontology-constant> | <indvar>

string)
<I5-ontology-description-decl> ::= (I5-ontology-description <I5-ontology-constant> |

<indvar> string)

154

<I5-in-ontology-decl> ::= (in-ontology <I5-constant> | <predvar>
<I5-ontology-constant> | <indvar>)

B.5.2.2 IDEF5 Kind Sentences

<I5-kind-sentence> :=<I5-kind-decl> | <I5-kind-property-decl> | <I5-kind-attribute-decl> |
<I5-kind-description-decl> | <I5-has-synonyms-decl> |
<I5-referenced-relations-decl> | <I5-object-state-decl>

<I5-kind-decl> ::=(I5-kind <I5-kind-constant> | <predvar>)
<I5-kind-property-decl> ::= (I5-kind-property <I5-kind-constant> | <predvar>

<I5-property-constant> | <predvar> [defining] [essential])
<I5-kind-attribute-decl> ::= (I5-kind-attribute <I5-kind-constant>| <predvar> |

 <I5-attribute-constant> | <predvar>)
<I5-kind-description-decl> ::= (I5-kind-description <I5-kind-constant> | <predvar> string)
<I5-kind-synonyms-decl> ::=(I5-kind-synonyms <I5-kind-constant> | <predvar>

({<I5-ontology-term> | <indvar>}+))
<I5-referenced-relations-decl> ::= (I5-referenced-relations <I5-kind-constant> | <predvar>

({<I5-relation-constant> | <predvar>}+))
<I5-subkind-of-decl> ::= (I5-subkind-of <I5-kind-constant> | <predvar>

<I5-kind-constant> | <predvar>)
<I5-object-state-decl> ::=(I5-object-state <I5-object-state-constant> | <predvar>)

B.5.2.3 IDEF5 Individual Sentences

<I5-individual-sentence> ::= <I5-individual-decl> | <I5-individual-description-decl> |
<I5-instance-of-decl>

<I5-individual-decl> ::= (I5-individual <I5-individual-constant> | <indvar>)
<I5-individual-description-decl> ::= (I5-individual-description <I5-individual-constant> |

<indvar> string)
<I5-is-of-kind-decl> ::= (I5-is-of-kind <I5-individual-constant> | <indvar>

<I5-kind-constant> | <predvar>)

B.5.2.4 IDEF5 Property Sentences

<I5-property-sentence> ::= <I5-property-decl> | <I5-property-description-decl> |
<has-property-decl>

<I5-property-decl> ::=(I5-property <I5-property-constant> | <predvar>)

155

<I5-property-description-decl> ::= (I5-property-description <I5-attribute-constant> |
<predvar> string)

<I5-has-property-decl> ::= (I5-has-property <I5-individual-constant> | <predvar>
<I5-property-constant> | <predvar>)

B.5.2.5 IDEF5 Attribute Sentences

<I5-attribute-sentence> ::= <I5-attribute-decl> | <I5-attribute-description-decl> |
<I5-attribute-type-decl> |<I5-attribute-applies-to-decl>

<I5-attribute-decl> ::= (I5-attribute <I5-attribute-constant> | <predvar> <I5-attribute-type>)
<I5-attribute-type-decl> ::= <list-type> | <I5-kind-constant> | <set-type>
<list-type> ::= (listof <I5-kind-constant> | (or <I5-kind-constant> <I5-kind-constant>+)) |

(list-of <list-type>) | (listof <type>)
<I5-attribute-description-decl> ::= (I5-attribute-description <I5-attribute-constant> |

<predvar> string)
<I5-attribute-applies-to -decl> ::=(I5-attribute-applies-to <I5-attribute-constant> | <predvar>

<I5-individual-constant> | <indvar>)

B.5.2.6 IDEF5 Relation Sentences

<I5-relation-sentence> ::=<I5-relation-decl> | <I5-relation-description-decl> |
<I5-rel-arg-type-decl> | <I5-relation-arity-decl>

<I5-relation-decl> ::=(I5-relation <predvar> | <I5-relation-constant>)
<I5-relation-arity-decl> ::= (I5-relation-arity <relation-constant> | <predvar>

pos-int | <indvar>)
<I5-rel-arg-type-decl> ::= (I5-rel-arg-type <relation-constant> | <predvar>

(({<I5-kind-constant> | <predvar> | <I5-object-state-term>}+)+))
<I5-relation-description-decl> ::= (I5-relation-description <I5-relation-constant> | <predvar>

string)

B.5.2.7 IDEF5 Function Sentences

<I5-function-sentence> ::= <I5-function-decl> | <I5-function-description-decl> |
<I5-function-arity-decl> | <I5-fct-arg-type-decl>

<I5-function-decl> ::= (I5-function <I5-function-constant> | <predvar>)
<I5-function-arity-decl> ::= (I5-function-arity <I5-function-constant> | <predvar>

pos-int | <indvar>)

156

<I5-fct-arg-type-decl> ::= (I5-fct-arg-type <I5-function-constant> | <predvar>
(({<I5-kind-constant> | <predvar> | <I5-object-state-term>}+)+))

<I5-function-description-decl> ::= (I5-function-description <I5-function-constant> |
<predvar> string)

B.5.2.8 IDEF5 Source Sentences

<I5-source-sentence> ::= <I5-source-decl> | <I5-source-description-decl> |
<I5-collected-from-decl> | <I5-collected-by-decl> |
<I5-source-abstract-decl> | <I5-source-purpose-decl> |
<I5-support-ontology-terms-decl> | <I5-support-statement-decl> |
<I5-has-supporting-sources-decl>

<I5-source-decl> ::= (I5-source <source-constant> | <indvar>)
<I5-source-description-decl> ::= (I5-source-description <I5-source-constant> | <indvar> string)
<I5-collected-from-decl> ::= (I5-collected-from <I5-source-constant> | <indvar> string)
<I5-collected-by-decl> ::= (I5-collected-by <I5-source-constant> | <indvar>string)
<I5-source-abstract-decl> ::= (I5-source-abstract <I5-source-constant> | <indvar> string)
<I5-source-purpose-decl> ::=(I5-source-purpose <I5-source-constant> | <indvar> string)
<I5-support-ontology-terms-decl> ::= (I5-support-ontology-terms <I5-source-constant> |

<indvar> ({<I5-term-constant> | <indvar>}+))
<I5-support-statement-decl> ::= (I5-support-statements <I5-source-constant> | <indvar>

({<I5-source-statement-constant> | <indvar>}+))
<I5-has-supporting-sources-decl> ::= (I5-has-supporting-sources <I5-constant> |

<indvar> | <predvar>
 ({<I5-source-constant> | <indvar>}+))

B.5.2.9 IDEF5 Source-Statement Sentences

<I5-source-statement-sentence> ::= <I5-source-statement-decl> | <I5-status-decl> |
<I5-source-statement-description-decl> |
<I5-source-statement-decl> |
<I5-has-original-statement-decl> |
<I5-has-supporting-sources-decl>

<I5-source-statement-decl> ::= (I5-source-statement <I5-source-statement-constant> |
<indvar>)

157

<I5-source-statement-description-decl> ::= (I5-source-statement-description
<I5-source-statement-constant> | <indvar> string)

<I5-status-decl> ::= (I5-status <I5-source-statement-constant>| <indvar>
<I5-status-type-decl>

<I5-status-type-decl> ::= active_original | active_derived | retired_original | retired_derived
<I5-has-original-statement-decl> ::= (I5-has-original-statement

<I5-source-statement-constant> | <indvar>
<I5-source-statement-constant> | <indvar>)

B.5.2.10 IDEF5 Ontology-Term Sentences

<I5-ontology-term-sentence> ::= <I5-ontology-term-decl> | <I5-use-statements-decl> |
<I5-ontology-term-description-decl> |
<I5-ontology-term-description-decl>

<I5-ontology-term-decl> ::= (I5-ontology-term <I5-term-constant> | <indvar>)
<I5-ontology-term-description-decl> ::= (I5-ontology-term-description <I5-term-constant> |

<indvar> string)
<I5-uses-statements-decl>::= (use-statements <I5-ontology-term-constant> | <indvar>

({<I5-source-statement-constant> | <indvar>}+))

B.5.2.11 IDEF5 Note Sentences

<I5-note-sentence> ::= <I5-note-decl> | <I5-note-description-decl> | <I5-has-note-decl>

<I5-note-decl> ::= (I5-note <I5-note-constant> | <indvar>)
<I5-note-description-decl> ::= (I5-note-description <I5-note-constant> | <indvar> string)
<I5-has-note-decl> ::= (I5-has-note <I5-constant> | <indvar> | <predvar> <I5-note-constant>

| <indvar>)

B.5.2.12 Object State Related Constructs and Relations

<I5-process-decl> ::= (I5-process <I5-process-constant> | <predvar>)

The following relations are predefined and chracterized as follows:

(define-relation part-of (?x ?y))
(forall (#x #y) (=> (I5-rel-arg-type part-of (#x #y))

158

(and (I5-kind #x) (I5-kind #y))))

(define-relation transitions-to (?x ?y))
(forall (#x #y) (=> (I5-rel-arg-type transitions-to (#x #y))

(and (or (I5-kind #x) (I5-object-state #x))
(or (I5-kind #y) (I5-object-state #y)))))

(define-relation inst-transitions-to (?x ?y))
(forall (#x #y) (=> (I5-rel-arg-type transitions-to (#x #y))

(and (or (I5-kind #x) (I5-object-state #x))
(or (I5-kind #y) (I5-object-state #y)))))

(define-relation transitions-during (?x ?y ?z))
(forall (#x #y #z) (=> (I5-rel-arg-type transitions-to (#x #y))

(and (or (I5-kind #x) (I5-object-state #x))
(or (I5-kind #y) (I5-object-state #y))
(I5-process #z))))

(define-relation inst-transitions-during (?x ?y ?z))
(forall (#x #y #z) (=> (I5-rel-arg-type transitions-to (#x #y))

(and (or (I5-kind #x) (I5-object-state #x))
(or (I5-kind #y) (I5-object-state #y))
(I5-process #z))))

(define-relation s-transitions-to (?x ?y))
(forall (#x #y) (=> (I5-rel-arg-type transitions-to (#x #y))

(and (or (I5-kind #x) (I5-object-state #x))
(or (I5-kind #y) (I5-object-state #y)))))

(define-relation inst-s-transitions-to (?x ?y))
(forall (#x #y) (=> (I5-rel-arg-type transitions-to (#x #y))

(and (or (I5-kind #x) (I5-object-state #x))
(or (I5-kind #y) (I5-object-state #y)))))

(define-relation s-transitions-during (?x ?y ?z))
(forall (#x #y #z) (=> (I5-rel-arg-type transitions-to (#x #y))

(and (or (I5-kind #x) (I5-object-state #x))
(or (I5-kind #y) (I5-object-state #y))

159

(I5-process #z))))

(define-relation inst-s-transitions-during (?x ?y ?z))
(forall (#x #y #z) (=> (I5-rel-arg-type transitions-to (#x #y))

(and (or (I5-kind #x) (I5-object-state #x))
(or (I5-kind #y) (I5-object-state #y))
(I5-process #z))))

160

Bibliography
Allen, J. F. (1984). “Towards A General Theory Of Action And Time.” Artificial Intelligence

23: 123-154.

Anupindi, S. R. (1992). Semantic Requirements for an Integrated Bill of Materials System.
M.S. Thesis. Dept. of Industrial Engineering, Texas A&M University, College Station, TX.

Aczel, P., Israel, D., Katagiri, Y., and Peters, S. (Eds.) (1993). Situation Theory and its
Applications, Volume 3. CSLI Lecture Notes 37.

Barwise, J., Gawron, M., Plotkin, G., and Tutiya, S. (Eds.) (1991). Situation Theory and its
Applications, Volume 2. CSLI Lecture Notes 26.

Bealer, G. (1980). Quality and Concept. Oxford: Oxford University Press.

Barwise, J. and Perry, J. (1983). Situations and Attitudes. Cambridge: MIT Press.

Benjamin, P. C., Menzel, C., and Mayer, R. J. (forthcoming). “Towards a Method for Acquiring
CIM Ontologies.” To appear in International Journal of CIM. (Expected 1994).

Brachman, R. J. (1983). “What IS-A Is and Isn’t: An Analysis of Taxonomic Links in Semantic
Networks.” IEEE Computer. October.

Burkhart, R., et al. (1991). IRDS Conceptual Schema Working Paper. ISO/IEC
JTC1/SC21/WG3 N. ANSI X3H3 Working Committee.

Chaffin, R. and Herrmann, D. J., (1987). “Relation Element Theory: A New Account of the
Representation and Processing of Semantic Relations.” In Memory and Learning: The
Ebbinghaus Centennial Conference. Gorfein, D. S. (Ed.). Hillsdale, NJ: Erlbaum.

Chen, P. (1976). “The Entity-Relationship Model: Toward a Unified View of Data.” ACM
Transactions on Database Systems 1(1): 9-36.

Cohen, N. J. (1987). “Preserved Learning Capacity in Amnesia: Evidence for Multiple Memory
Systems.” Neuropsychology of Memory. New York: Guilford Press, 1987: 83-103.

Coleman, D. S. (1989). A Framework for Characterizing the Methods and Tools of an Integrated
System Engineering Methodology (ISEM), Draft 2 Rev. 0. Santa Monica, CA: Pacific
Information Management, Inc.

Devlin, K. (1991). Logic and Information. Cambridge: Cambridge University Press.

Enderton, H. (1972). A Mathematical Introduction to Logic. New York, Academic Press.

161

Fulton J, et al. (1991). “The Semantic Unification Meta-model: Technical Approach.” Draft
Report of the Dictionary/Methodology Committee of IGES/PDES. Version 0, Release 6,
Draft 3.

Futrell, M. T. (1991). The IDEF5 Application Procedure. Master’s Project Report. Department
of Industrial Engineering, Texas A&M University, College Station, TX.

Genesereth, M. R. and Fikes, R. E. (1992). Knowledge Interchange Format Version 3.0 -
Reference Manual. Report Logic-92-1. Logic Group, Stanford University, CA.

Gruber, T. R. (1992). Ontolingua: A Mechanism to Support Portable Ontologies, Knowledge
Systems Laboratory Technical Report KSL 91-66, Final Version. Stanford University.

Gruber, T. R. (1993). “A translation approach to portable ontologies.” Knowledge Acquisition,
5(2):199-220, 1993.

Guha, R. V. and Lenat, D. V. (1990). “CYC: A Mid-Term Report.” AI Magazine 11(3): 32-59.

Hobbs, J. R., et al. (1987). “Commonsense Metaphysics and Lexical Semantics.”
Computational Linguistics 13(3-4): 241-250.

Hobbs, J., Croft, W., Davies, T., Edwards, D., and Laws, K. (1987). The TACITUS
Commonsense Knowledge Base. Artificial Intelligence Research Center, SRI International.

Information Processing Systems: Concepts and Terminology for the Conceptual Schema and the
Information Base. (ISO/TR 9007). (1987). International Standards Organization.

Integrated Computer-Aided Manufacturing (ICAM) Architecture. Pt. II Vol. IV: Function
Modeling Manual (IDEFØ) (DTIC-B062457). (1981). SofTech, Inc.

Integrated Computer-Aided Manufacturing (ICAM) Architecture. Pt. II, Vol. V: Information
Modeling Manual (IDEF1) (DTIC-B062457). (1981). SofTech, Inc.

Integrated Computer-Aided Manufacturing (ICAM) Architecture. Pt. II, Vol. VI: Dynamics
Modeling Manual (IDEF2) (DTIC-B062457). (1981). SofTech, Inc.

Integrated Information Support System (IISS), Volume 5: Common Data Model Subsystem: Part
4: Information Modeling Manual. (DTIC-A181952). (1985). General Electric.

International Standards Organization (1987). Concepts and Terminology for the Conceptual
Schema. ISO Technical Report TR9007.

Jackson, P. (1990). Introduction to Expert Systems. Addison-Wesley, 1990.

Knowledge Based Systems, Inc. (KBSI) (1991). Formal Foundations for an Ontology
Description Method. Technical Report, KBSI-SBONT-91-TR-01-1291-02.

Knowledge Based Systems, Inc. (KBSI) (1992). Situation Based Ontology: Phase I Report.
DARPA SBIR Contract No. DAAH01-91-C-R236.

162

Knowledge Based Systems, Inc. (KBSI) (1993). Ontology-Driven Information Integration: Phase
I Final Report. NASA SBIR Project, Contract No. NAS-9-18829.

Kripke, S. (1963). “Semantical Considerations on Modal Logic.” Acta Philosophica Fennica
16: 39-48.

Lenat, D., Prakash, M., and Shepherd, M. (1986). “CYC: Using Common Sense Knowledge to
Overcome Brittleness and Knowledge Acquisition Bottlenecks.: The AI Magazine. Summer.

Link, G. (1983). “The Logical Analysis of Plurals and Mass Terms: A Lattice Theoretic
Approach.” In R. Bauerle (Ed.), Meaning, Use, and Interpretation. Berlin: De Gruyter.

Loiselle, C. L. and Cohen, P. L. (1989). “Explorations in the Contributors to Plausibility.”
COINS Technical Report 89-29. University of Massachusetts, Amherst, MA.

Mayer, R. J., et al. (1987). Knowledge-based Integrated Information Systems Development
Methodologies Plan, Volume 2. (DTIC-A195851).

Mayer, R. J. (Ed.). (1990). IDEFØ Function Modeling: A Reconstruction of the Original Air
Force Report. College Station, TX: Knowledge Based Systems, Inc.

Mayer, R. J. (Ed.). (1990). IDEF1 Information Modeling: A Reconstruction of the Original Air
Force Report. College Station, TX: Knowledge Based Systems, Inc.

Mayer, R. J. (Ed.). (1990). IDEF1X Data Modeling: A Reconstruction of the Original Air Force
Report. College Station, TX: Knowledge Based Systems, Inc.

Mayer, R. J., Menzel, C. P., and deWitte, P. S (1991). IDEF3 Technical Report. WPAFB, OH:
AL/HRGA.

Mayer, R. J., Menzel, C. P, and Mayer, P. S. D. (1991). IDEF3: A Methodology for Process
Description. WPAFB, OH: AL/HRGA.

Mayer, R. J., Edwards, D. A., Decker, L. P., and Ackley, K. A. (1991). IDEF4 Technical Report.
WPAFB, OH: Al/HRGA.

Mayer, R. J., deWitte, P., Griffith, P., and Menzel, C. P. (1991). IDEF6 Concept Report.
WPAFB, OH: AL/HRGA.

Mayer, R. J. and deWitte, P. (1991). Framework Research Report. WPAFB, OH: AL/HRGA.

Mayer, R. J., Menzel, C., Painter, M., and Benjamin, P. C. (1993). “The Role of Ontology in
Enterprise Integration.” In Proceedings of the May 1993 IDEF Users Group Conference.
College Park, MD.

Mayer, R. J., Benjamin, P. C., Caraway, B. E., and Painter, M. K. (forthcoming). “A Framework
and a Suite of Methods for Business Process Reengineering.” In Business Process
Reengineering: A Managerial Perspective. Kettinger, B. and Grover, V. (Eds.) (Expected
1994).

163

McGraw, K. and Briggs, K. (1989). Knowledge Acqusition Principles and Guidelines. Prentice
Hall.

Menzel, C. (1990). “Actualism, Ontological Commitment, and Possible World Semantics”
Synthese 85: 355-389.

Menzel, C. (1991). “The True Modal Logic.” Journal of Philosophical Logic 20: 331-374.

Menzel, C. and Mayer, R. J. (1991). “Theoretical Foundations for Information Representation
and Constraint Specification.” Technical Paper #AL-TP-1991-0044. Human Resources
Directorate, Logistics Research Division, WPAFB, OH.

Menzel, C., Mayer, R., and Sanders, L. (1992). “Representation, Information Flow, and Model
Integration.” In [Petrie 92], 131-141.

Menzel, C., Mayer, R., and Edwards, D. (1994). “IDEF3 Process Descriptions and Their
Semantics.” In Kuziak, A., and Dagli, C. Intelligent Systems in Design and Manufacturing.
ASME Press.

The Merriam-Webster Dictionary. (1986) New York: Simon and Schuster.

Musen, M. A. (1989). “Conceptual Models of Interactive Knowledge-Acquisition Tools.”
Knowledge Acquisition 1. 73-88.

Neches, R., et al. (1991). “Enabling Technology for Knowledge Sharing.” AI Magazine 12(3):
36-56.

Painter, M. K. (1990). “Modeling with an IDEF Perspective: Some Practical Insights.”
Proceedings, SME Autofact 90. Dearborn, MI: Society of Manufacturing Engineers.

Painter, M. K. (1991). “Information Integration for Concurrent Engineering (IICE): Program
Foundations and Philosophy.” IDEF Users Group Conference Proceedings. May.

Petrie, C. (1992). Enterprise Integration Modeling. Proceedings of the First International
Conference. Cambridge: MIT Press.

Ross, D. T. (1985). “SADT Today: A Retrospective on an Idea.” IEEE Computer Magazine
(special issue on Requirements Engineering).

Sarris, A. K. (1992). “Needs Analysis and Requirements Document: Integration Toolkit and
Methods, Corporate Data Integration Tools.” MANTECH Report WL-TR-92-8027.
WPAFB, OH.

Sowa, J. (1984). Conceptual Structures: Information Processing in Mind and Machine. Reading,
MA: Addison Wesley.

Tarski, A. (1983). “The Concept of Truth in Formalized Languages.” In Logic, Semantics, and
Metamathematics. Oxford: Oxford University Press.

164

Touretzky, D. S. (1984). “Implicit Ordering of Defaults in Inheritance Systems.” Proceedings of
the 5th National Conference on Artificial Intelligence. Austin, TX. 322-325.

Winston, M.E., Chaffin, R., and Herrmann, D. (1987). “A Taxonomy of Part-whole Relations.”
Cognitive Science 11: 417-444.

Wittgenstein, L. (1953). Philosophical Investigations. Oxford: Basil Blackwell.

Zachman, J. (1987). “A Framework for Information Systems Architecture.” IBM Systems
Journal 26(3): 276-292.

165

Glossary

Analyst A primary developer of an ontology, in the context of an IDEF5
project. The central method for acquiring such information
consists of interviewing domain experts and analyzing relevant
domain documents.

Antisymmetry A property that holds of a given relation R when, for any objects
x and y (of the appropriate kinds), if x bears R to y and y bears R
to x, it follows that x is identical to y.

Arity The number of arguments of a relation, that is, the number of
things that are involved in the relation in a given instance. For
example, the relation larger-than has arity two, the relation
between has arity three, and so forth.

Asymmetry A property that holds of a given relation R when, for any objects
x and y (of the appropriate kinds), if x bears R to y, then y
cannot bear R to x.

Attribute A function, or mapping, that takes each member of a given set of
individuals to a single specific value. So, for example, the
attribute color-of maps each object in a given set to its color; the
attribute age-of maps each employee to his or her age.

Axiom A precise characterization of the logic of a term or set of related
terms stated in the IDEF5 elaboration language. An axiom
typically expresses a constraint on the objects denoted by the
terms in axiom.

Characteristic A distinguishable feature. This term encompasses both
attributes and properties. See attributes and properties.

Classification When applied to relations, categorizing objects in the domain of
discourse according to how individuals relate to kinds and how
kinds relate to one another in terms of subsumption and
inclusion.

Client An individual or organization acting as a contracting agent for
IDEF5 project services with an external source of IDEF5
expertise.

Commentor Member of an IDEF5 project team responsible for reviewing
draft IDEF5 descriptions and making written critiques.

166

Constant A word in the IDEF5 elaboration language that is neither an
operator nor a variable. Semantically, constants are words that
denote objects in the domain.

Constraint Most generally, a statement which must (or equivalently, must
not) hold in a system. Most often, constraints express logical
properties of, or connections between, domain objects that must
be maintained if the system is to function as intended.

Context A statement that identifies the boundaries of the IDEF5 project
and the level of detail. The statement of context is important
because it indicates the scope and level of granularity of the
study.

Declarative Knowledge The type of knowledge that human beings (domain experts) are
aware of.

Definition An expression that formally identifies an individual, relation, or
function.

Domain A sphere of interest, such as the semiconductor domain or the
domain of abstract algebra. A domain has its own distinctive
vocabulary for talking about the characteristic kinds of objects
and processes typically found in the domain.

Domain Expert An individual considered knowledgeable of, and conversant in,
most of the distinguishing characteristics of a certain aspect of a
domain. A role played by the primary sources of knowledge
from the application domain of interest. Persons filling this role
provide insights about the characteristics of the application
domain that are needed for extracting the underlying ontological
knowledge.

Elaboration Language A structured textual language designed specifically to express
ontology information. The IDEF5 elaboration language has the
full power of first-order modal logic plus set theory.

Extensional Criteria that specifies the identity of an abstract object be
determined by its members or instances. Sets and, in some
theories, classes, are the paradigmatic extensional entities: the
principle of extensionality in set theory is that two purported sets
are identical if and only if they have exactly the same members.

Form, Description
Summary

A form that summarizes the evolving/completed ontology
description. It records the purpose, viewpoint, and context and
also provides a summary of all the schematics and documents
used to record the domain ontology.

167

Form, Kind Specification A form that records the information associated with a kind in a
domain, in particular, the defining properties of the kind,
relevant non-defining properties, relations the kind participates
in, and other information.

Form, Proto-kind
Specification

A form that records information associated with a proto-kind in
a domain.

Form, Proto-relation
Specification

A form that records information associated with a proto-relation
in a domain.

Form, Relation
Specification

A form that records information associated with a relation in a
domain.

Form, Source Material
Description

A form that records information associated with a source
material.

Form, Source Statement
Description

A form that records information associated with a source
description.

Form, Term Description A form that records list of the terms used to derive the ontology
and a brief description of each term.

IDEF Acronym for Integration Definition. Also used to refer to a
family of mutually-supportive methods for enterprise integration
including in particular IDEFØ, IDEF1, IDEF1X, IDEF3, IDEF4,
and IDEF5.

IDEFØ Integration Definition (IDEF) method for Function Modeling

IDEF1 Integration Definition (IDEF) method for Information Modeling

IDEF1X Integration Definition (IDEF) method for Semantic Data
Modeling

IDEF2 Integration Definition (IDEF) method for Simulation Modeling

IDEF3 Integration Definition (IDEF) method for Process Description
Capture

IDEF4 Integration Definition (IDEF) method for Object-Oriented
Design

168

Individual The most logically basic kind of real world object. Prominent
examples include human persons, concrete physical objects, and
certain abstract objects such as programs. Unlike objects of
higher logical orders such as properties and relations, individuals
essentially are not multiply instantiable. Individuals are also
known as first-order objects.

Initial Scope A specification of the boundaries of the ontology development
effort, in particularly, the parts of the systems that need to be
included and those which are to be excluded from the
ontological development effort.

Intensionality In the context of IDEF5, the characteristic possessed by an
abstract object when its identity is not determined by its
members or instances. Properties are the paradigmatic
intensional entities. Two distinct properties can have precisely
the same instances without, intuitively, being identical. The
property being a living former U.S. president from California
and the property of being the most famous actor-turned-
politician are intuitively distinct properties, yet have precisely
the same instances, viz., Ronald Reagan.

Interview A face-to-face meeting with domain experts for the purpose of
pursuing some line of investigation.

Irreflexivity The property that holds for a relation R if and only if no object
stands in the relation R with itself.

Keyword A word that has special meaning and usage in the IDEF5
elaboration language and cannot be used to denote objects in the
domain of discourse.

Kind Informally, a group of individuals that share some set of
distinguished characteristics. More formally, kinds are
properties typically expressed by common nouns such as
‘employee’, ‘machine’, and ‘lathe’.

Kind Refinement
Procedure

The activity of eliminating unvalidated proto-kinds from an
ontology and promoting validated proto-kinds to kinds.

Knowledge Engineer A technical role filled by personnel with IDEF5 expertise who
are the primary developers of an IDEF5 ontology. Also known
as an analyst.

Lexicon The set of basic symbols of a language.

169

Meronymic Relations Part-whole relations of various sorts, as, for instance, between an
engine and the automobile that contains it, an acre of real estate
and a larger piece of land containing it, the hydrogen in a cup of
water and the water itself, and so forth.

Metaphysics The branch of philosophy that systematically investigates first
principles and, in particular, what ultimately exists.

Method An organized, single-purpose discipline or practice for accom-
plishing some set of tasks. The IDEF methods are specifically
designed to accelerate the learning process and help novice
practitioners emulate the performance of highly experienced
individuals engaged in a particular analysis or design activity.
IDEF methods guide users through a disciplined approach,
consistent with good-practice experience, to achieve consistently
high levels of performance (quality and productivity).

Movement Protocol
Analysis

A type of analysis in which idle movements are identified by
studying motion efficiency.

Multiply Instantiable Ability to have more than one instance or member. Sets, proper-
ties, relations, classes, types, and kinds are all examples of
multiply instantiable objects.

Mutually Exclusive A condition that exists, given M objects and N relations, when
either the objects stand in none of the N relations or they stand
in exactly one relation.

Object In general, anything that can be referred to within a domain,
including concrete and abstract things, as well as kinds,
properties, and relations.

Object, First-Order See individual.

Ontology A domain vocabulary together with a set of precise definitions,
or axioms, that constrain the meanings of the terms in that
vocabulary sufficiently to enable consistent interpretation of data
that use the vocabulary.

Ontology, Domain The highest level of three distinguished levels of ontologies,
when categorized in terms of generality. A domain ontology
classifies the most general information that characterizes an
entire domain. See practice ontology and site-specific
ontology.

Ontology, Practice An extension of a domain ontology that includes the common
features of similar sites in that domain.

170

Ontology, Site-specific An extension of a practice ontology (hence also a domain
ontology) to include information about all of the relevant kinds
of objects, properties, and relationships found within a specific
site.

Operator A lexical item in the IDEF5 elaboration language that attaches to
terms to form other terms, or to statements to form other
statements. The boolean operator “not” is a one-place sentence
operator.

Pool, Kind The collection of kinds that have been identified in an ontology.

Pool, Property The collection of properties that have been identified in an
ontology.

Pool, Proto-kind The collection of proto-kinds that have been identified in an
ontology.

Pool, Proto-characteristic The collection of proto-characteristics that have been identified
in an ontology.

Pool, Proto-relation The collection of proto-relations that have been identified in an
ontology.

Pool, Relation The collection of relations that have been identified in an
ontology.

Pool, Source Statement The collection of meaningful statements made by different
individuals, as well as statements extracted from source
documents during the ontology development effort. Each source
statement is given a unique identification number to improve
traceability.

Pool, Term The collection of meaningful terms used in an ontology.
Typically these are the terms referring to proto-kinds, proto-
properties, proto-relations, kinds, properties, and relations in the
ontology.

Procedural Knowledge Knowledge concerning the manner in which a certain task is
carried out.

Process A real world event or state of affairs involving one or more
individuals over some (possibly instantaneous) interval of time.
Typically, a process involves some sort of change in the
properties of one or more of the individuals within the process.
Because of the ambiguity in the term “process”, sometimes
referred to as process instance.

171

Process Kind The abstract general character that is shared by similar
processes. Such processes are said to be instances of the process
kind. For example, the process kind manufacture part found in
a certain enterprise is the general behavior exhibited by each
particular instance in which a part is manufactured.

Project A plan for conducting an IDEF5 ontology description capture
effort with a clearly defined statement of purpose, context (scope
and level of detail), and viewpoint.

Project Leader An administrative role that carries the responsibilities for
overseeing and guiding an ontology development effort. In
particular, the project leader is ultimately responsible for the
outcome of the ontology development effort, team organization
and leadership, and schedule and budget management.

Prompting Questions A question intended to prompt a domain expert to verbalize
thoughts and/or to help guide a discussion.

Property An abstract, general feature or characteristic that is multiply
instantiable; that is, it can be shared by distinct objects.

Property, Accidental A property that an individual has, but could have lacked.

Property, Defining An element of the set of properties associated with membership
in a given kind K.

Property, Essential A property that an individual could not have failed to exemplify.

Property, First-Order A property that holds only of individuals.

Property, Non-defining A property which is important for characterizing a given kind,
but which is not used in defining the kind, and is therefore not
counted among the defining properties of the kind.

Property, Second-Order A property that holds only of kinds and other first-order
properties and first-order relations.

Protocol An underlying pattern or structure of a discourse or behavioral
process. The term protocol implies that an expert is solving a
problem using commonly used approaches and tools.

Protocol Analysis The process of analyzing a record of discourse or behavioral
process. There are two types of protocol analysis: verbal
protocol analysis and movement protocol analysis [Jackson, 90].

172

Proto-association Chart A two dimensional matrix with relevant proto-kinds listed on
both the axes. An X is marked in cells to indicate the possible
existence of a proto-relation.

Proto-characteristic A characteristic tentatively identified for inclusion in an
ontology. A proto-characteristic at a later point is either
eliminated from the developing ontology or elevated to the
status of a full fledged property or attribute. Tentatively
identified relations are known as proto-relations, and have the
same status as proto-characteristics.

Proto-kind A group in a domain tentatively identified as a kind. A proto-
kind at a later point is either eliminated from the developing
ontology or elevated to the status of a full fledged kind.

Proto-relation See proto-characteristic.

Reader A member of an IDEF5 project team responsible for reviewing
draft IDEF5 descriptions but who is not responsible for
providing written comments.

Referent A construct in the IDEF5 elaboration language used to refer to a
kind, object, property, relation, or process kind in another
ontology or an IDEF model.

Reflexivity A property that holds of a given relation R if, for any object x (of
the appropriate kind), x bears the relation R to itself. An
example of a reflexive relation is weighs-as-much-as.

Relation An abstract, general association or connection that holds
between two or more objects. Like properties, relations are
multiply instantiable. The objects among which a relation holds
in a particular instance are known as its arguments.

Relation, First-Order A relation that can hold only between individuals.

Relation, Second-Order A relation, one of whose arguments is a kind, property, or first-
order relation.

Relation, Spatial A relation between spatial locations such as to the left of, above,
contiguous with and so forth.

Relation, Temporal A relation between temporal points or intervals such as before,
during, overlaps and so forth.

Relation Library A collection of common, predefined, axiomatized relations that
are available to IDEF5 users. The library is extensible.

173

Relation Refinement
Procedure

The activity of eliminating unvalidated proto-relations from an
ontology and promoting validated proto-relations to relations.

Reviewer A member of an IDEF5 project team who is knowledgeable
about the application domain and/or the IDEF5 method and is
responsible for reviewing and commenting on draft descriptions
and documents. Team members and domain experts can be
reviewers. See also reader and commentor.

Sanctioned Inference See constraint.

Schematic A connected diagram constructed from the lexicon of the IDEF5
schematic language, in accordance with the syntactic guidelines
of the language.

Schematic, Basic First-
Order

Either an existential schematic, or an n-place first-order
schematic.

Schematic, Basic Second-
Order

A schematic consisting of two kind symbols, or two relation
symbols, or a kind symbol and a relation symbol connected by a
single second-order relation symbol.

Schematic, Classification A schematic representing how the subkind-of relation holds
between different kinds in a domain.

Schematic, Complex First-
Order

Any first-order schematic other than a basic first-order
schematic.

Schematic, Composition A schematic representing how the part-of relation holds between
the instances of different kinds in a domain.

Schematics, Existential A schematic consisting of a single individual, kind, or relation
symbol. Such schematics enable a domain expert to record the
mere fact that certain indiviuduals, kinds, or relations have been
observed in a given domain without requiring any further
information about the relations such objects stand in with other
objects in the domain.

Schematic, First-Order Either a basic first-order schematic, or the result of connecting a
kind symbol in a given first-order schematic to another kind
symbol by a first-order relation symbol.

Schematic, Object-State The basic construct for describing process kinds in the IDEF5
schematic language.

Schematic, Relation A schematic consisting only of first-order relation symbols
connected by second-order relation symbols.

174

Schematic, Second-Order A schematic involving at least one second-order relation symbol.

Schematic, State
Composition

A complex first-order schematic used to represent how objects
of certain kinds are transformed to yield an object of some kind.

Schematic, n-place For n ≥ 1, a schematic consisting of n kind and individual
symbols connected by a single n-place first-order relation
symbol.

Schematic Language,
IDEF5

The graphical component of the IDEF5 languages.

Sentence A sentence in the IDEF5 elaboration language is an expression
of some fact that is observed or believed to be true in a domain.

Source Material A textbook, a research article, an enterprise-specific document
such as a policy manual or a procedure manual, a set of an
interview notes, or direct observation notes that has relevant
information to the ontology development project.

Source Material Log A document which serves as the primary index to all source
material collected and used in an IDEF5 project.

State A property, generally indicated by an adjective rather than a
common noun, that is characteristic of objects of a certain kind
at a certain point within a process. For example, water can be in
frozen, liquid, or gaseous states.

Statement of Need (SON) A statement that records the source of the request (person or
project) and paraphrases the stated objectives of the project.

Statement of Purpose A statement that clearly specifies the main objective(s) that the
ontology development team intends to achieve. Defining the
purpose can be separated into two parts, 1) defining a statement
of need (SON) and 2) defining the information goals in terms of
how the ontology will be used.

Subkind-of The characteristic relation that holds between a given kind and
its subkinds. For example, the kinds capstan lathe and turret
lathe bear the subkind-of relation to lathe.

Symmetry A property that holds of a given relation R if, for any objects x
and y (of the appropriate kinds), if x bears the relation R to y,
then y bears R to x. An example of a symmetric relation is
contiguous-with.

175

System A collection of physical and/or conceptual objects that work
together to achieve common objective.

Team Member A person involved with the IDEF5 ontology description project.

Term Coining The strategy of coining a term for new a new domain object.

Transitivity A property that holds of a given relation R if, for any objects x,
y, and z (of the appropriate kinds), if x bears the relation R to y,
and y bears R to z, then x bears R to z. An example of a
transitive relation is larger-than.

Verbal Protocol Analysis A method of acquiring domain knowledge in which experts are
asked to think aloud during a problem solving activity. The data
derived from this exercise are then analyzed, and domain
knowledge extracted.

Variable A term in the IDEF5 elaboration language that ranges over, i.e.,
can take arbitrary semantic values in, some given domain of ob-
jects.

Variable, Individual A variable that ranges over the individuals in a domain.

Variable, Second-Order A variable that ranges over kinds and first-order relations in a
domain.

Variable, Sequence A variable that ranges over finite sequences of individuals in a
domain.

