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Irregular satellites—moons that occupy large orbits of significant
eccentricity e and/or inclination I—circle each of the giant planets.
The irregulars often extend close to the orbital stability limit, about
1/3–1/2 of the way to the edge of their planet’s Hill sphere. The
distant, elongated, and inclined orbits suggest capture, which pre-
sumably would give a random distribution of inclinations. Yet, no
known irregulars have inclinations (relative to the ecliptic) between
47 and 141◦.

This paper shows that many high-I orbits are unstable due to se-
cular solar perturbations. High-inclination orbits suffer appreciable
periodic changes in eccentricity; large eccentricities can either drive
particles with ∼70◦ < I < 110◦ deep into the realm of the regular
satellites (where collisions and scatterings are likely to remove them
from planetocentric orbits on a timescale of 107–109 years) or expel
them from the Hill sphere of the planet.

By carrying out long-term (109 years) orbital integrations for a
variety of hypothetical satellites, we demonstrate that solar and
planetary perturbations, by causing particles to strike (or to escape)
their planet, considerably broaden this zone of avoidance. It grows
to at least 55◦ < I < 130◦ for orbits whose pericenters freely oscillate
from 0 to 360◦, while particles whose pericenters are locked at ±90◦

(Kozai mechanism) can remain for longer times.
We estimate that the stable phase space (over 10 Myr) for satel-

lites trapped in the Kozai resonance contains ∼10% of all stable
orbits, suggesting the possible existence of a family of undiscov-
ered objects at higher inclinations than those currently known.
c© 2002 Elsevier Science (USA)
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Using those few fragments remaining today, archaeologists
reconstruct the birth and death of ancient civilizations. Plane-
tary scientists may have a similar opportunity to decipher the
origin of the giant planets by correctly interpreting the structure
that is displayed in the orbital distributions of irregular satellites.
Since the number of known irregular moons has nearly quadru-
pled to 39 in the past 4 years (see Gladman et al. 2001 and the
references therein), we are now in a much better position to use
their distinctive distributions to restrict possible origin scenarios.

The orbits of the irregular satellites (Fig. 1) have several not-
able characteristics. First, these moons are located at a few hun-
dred planetary radii, an order of magnitude more distant from
their planets than regular satellites (Burns 1986); this means
that their paths fill significant fractions of their planets’ Hill
spheres. Second, orbits with inclinations I (measured relative
to the planet’s heliocentric orbital plane or, nearly equivalently,
to the ecliptic) between ∼50 and ∼140◦ are not present, but
otherwise orbit normals seem to be randomly oriented, filling
about half of all solid angles. Lastly, the irregular satellites of
the various planets are clustered in semimajor axis, inclination,
and eccentricity, suggesting—as similarly inferred for asteroid
families—one or more break-up events (Gladman et al. 2001).

Owing to their distant, highly eccentric, and substantially in-
clined orbits, the irregular satellites are generally believed to
have once been independent planetesimals that were snared by
the giant planets early in the Solar System’s history (Burns
1986). When considered in the framework of the circular
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FIG. 1. The orbital properties of the known irregular satellites are displayed
in this sketch; all the moons of any giant planet are represented by a distinct
symbol. Each orbit’s inclination I relative to the J2000 ecliptic (approximately
the planet’s orbital plane about the Sun) is depicted by the angle from the hor-
izontal; moons in the right quadrant orbit in the same (direct) sense as their
planets circle the Sun, while those in the left quadrant move retrograde (oppo-
site to the planet’s orbital motion). The radial distance from the origin to the
symbol represents the orbit’s semimajor axis a (given as a fraction of the radius
of its planet’s Hill sphere RH ; see Eq. (1). The length of each line illustrates
the pericenter-to-apocenter variation in distance due to the orbital eccentricity
e. A symbol’s size is proportional to the logarithm of the satellite’s radius, either
measured or estimated from its magnitude and an assumed albedo of 6%. Time-
averaged orbital elements (Jacobson 2001) are used to minimize the effect of
solar perturbations. Reprinted by permission from Nature, Gladman et al., 412,
163–166, Copyright 2001, MacMillan Publishers Ltd.

restricted three-body problem (where a massless particle moves
in the gravity field of the Sun, having mass m�, and a giant
planet of mass m moves in a circular orbit of radius r�), a parti-
cle can be considered permanently captured only if it has suffi-
ciently low energy so that its zero-velocity surface is closed. The
Jocobi constant gives the particle’s total energy in a reference
frame that rotates with the mutual orbital motion of the primaries
(Hamilton and Krivov 1997). The largest zero-velocity surface
that encloses only m is called the Hill sphere; it has a mean
radius

RH = (µ/3)1/3r�, (1)

where µ = m/(m� + m). Hamilton and Krivov (1997) argue
analytically that particles will become unbound if they are started
on uninclined, initially circular orbits at distances greater than
0.53 RH (direct) and 0.69 RH (retrograde). Hamilton and Burns
(1992) maintain that the distance r� should be replaced by the

pericenter distance q = a�(1 − e�) when the planet’s orbit is
rather eccentric.
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Permanent capture from heliocentric orbit thus requires a
change in the Jacobi constant. Two mechanisms have been pro-
posed for the capture of irregular satellites. In the first, energy
is lost while the particle is within the planet’s Hill sphere, either
through gas drag by a circumplanetary nebula (Pollack et al.
1979) or through collisions with comets or satellites (Colombo
and Franklin 1971). In the alternative mechanism, rapid
growth of the giant planet expands the zone of stable orbits
(Heppenheimer and Porco 1977, Saha and Tremaine 1993) so
that a particle, previously outside the Hill sphere, suddenly finds
itself enveloped by a new, expanded Hill sphere.

II. THE SETTING

The orbital paths of the known irregular satellites are among
the most complicated of any satellite paths in the Solar System
(Kovalevsky and Sagnier 1977). The complexity of these mo-
tions has attracted both theoreticians and numerical analysts to
investigate them, as Saha and Tremaine (1993) summarized.
The already eccentric and inclined orbits are strongly disturbed
by solar tugs. If a represents the satellite’s orbital semimajor
axis, a good measure of the solar perturbation’s strength is
(a/RH )3, which is between 0.064 and 0.097 for the retrograde
jovian satellites. Excepting irregular satellites, Earth’s Moon has
the next largest solar perturbation of 0.018, only one-fourth as
potent.

The histories of highly inclined orbits are distinct from those
of nearly equatorial paths, as documented in various numeri-
cal simulations relevant to both Solar System problems (e.g.,
Hamilton and Burns 1991, Bailey et al. 1992, McKinnon et al.
1995) and hierarchical triple stellar systems, the latter most re-
cently in connection with the extrasolar planet orbiting 16 Cygni
B (e.g., Holman et al. 1997, Innanen et al. 1997, Mazeh et al.
1997). In such three-body systems, the tidal tugs of the distant
body cause large coupled oscillations between the eccentricity
and inclination of a small mass’s orbit whose pericenter is free
to range from 0 to 360◦ (“circulating orbits”). On the other hand,
a particle whose pericenter oscillates (“librates”) around 90 or
270◦ experiences more limited variations of eccentricity and in-
clination. This is referred to as the Kozai resonance.

As noted above, irregular satellites with mean orbital inclina-
tions between 47 and 141◦ seem to be absent (Fig. 1). The re-
mainder of this paper describes the circumstances under which
solar perturbations, among others, cause the eccentricities of
such bodies on circulating orbits to become large enough that
either collisions ensue in the depths of the regular satellite sys-
tem or the particles move so far from their planet that they are
pulled by the Sun from planetocentric orbits. To understand how
this may occur, and to estimate the relevant timescales, we first
consider analytically the secular (time-averaged) effects of the
Sun on orbits distant from a planet. Then we study numerically a
more complete problem that includes the Sun’s periodic nudges

as well as those of the other giant planets. For simplicity, we
restrict our detailed calculations to the jovian system.
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III. SECULAR THEORY AND KOZAI OSCILLATIONS

To help interpret our numerical integrations, we start with the
secular problem, following Innanen et al’s. (1997) analysis. We
choose a reference frame centered on Jupiter that revolves at that
planet’s heliocentric orbital rate; r = x i + yj + zk is the parti-
cle’s position with i pointing away from the Sun and k normal
to Jupiter’s orbit plane. Only the Sun’s tidal potential affects the
satellite’s joviocentric orbit. Particles that are stationary in this
reference frame experience a perturbation to their joviocentric
orbits that pulls them along the solar direction away from Jupiter
(proportional to 3x) and into Jupiter’s orbital plane (proportional
to −z) (Hamilton and Burns 1991). In response to these forces,
orbit planes precess and oscillate in eccentricity; direct (vs retro-
grade) orbits become most elongated when their lines of apsides
align with (vs are at 90◦) from the solar direction (Hamilton and
Krivov 1997). At any position, the tidal potential RI , to second
and lowest order in r/r� (which is a reasonable approximation,
since in our case r/r� is generally less than 0.001), is given by
Kozai (1962).

RI = G0(m�/r�)(r/r�)2 P2[cos S], (2)

where S is the angle between the position vectors r and r� from
Jupiter to the satellite and the Sun, respectively; P2 is the sec-
ond Legendre polynomial, and G0 is the gravitational constant.
Orbital periods for the irregular satellites range from about 6
months up to 7 years, whereas the giant planets circle the Sun
in tens to hundreds of years. As we will learn below, the orbital
shape and orientation oscillate over times measured in scores to
thousands of years. Hence, if we are interested only in the orbit’s
long-term behavior, we can apply Gauss’s approach in which the
masses of the perturbing Sun and the satellite are smeared out
along their paths with densities that are proportional to the times
spent at the various places. This amounts to averaging (2) over
the mean anomalies of the Sun and the satellite. The result-
ing secular tidal potential R1, also called the secular disturbing
function, is

R1 = G0m�a2[2 + 3e2 − (3 + 12e2

− 15e2 cos2 ω) sin2 I ]/
(
8b3

�
)
, (3)

where a is the orbit’s semimajor axis, ω is the argument of peri-
center, and b� = a�(1 − e2

�)1/2 is the semiminor axis of Jupiter’s
orbit (Innanen et al. 1997). R1 depends on Jupiter’s eccentricity
e� only through the semiminor axis b�. So we are effectively
treating a case of the circular restricted three-body problem, in
which the mass of the Sun is slightly increased. We can com-
bine the osculating orbital elements (a, e, I , �, ω, M) (where
� and M have the usual meaning of longitude of the nodes and

mean anomaly) into the canonically conjugate Delaunay vari-
ables (Murray and Dermott 1999),
ET AL.

L = √
µa; l = M,

G =
√

µa(1 − e2); g = ω, (4)

H =
√

µa(1 − e2) cos I ; h = �,

where µ = G0(m J ) (m J is the mass of Jupiter); L = (µ2/2ε)1/2,

with ε the specific (i.e., per unit mass) orbital energy, given
by

ε = −G0m J /2a; (5)

G is the specific orbital angular momentum; and H is the com-
ponent of the specific orbital angular momentum that is perpen-
dicular to Jupiter’s orbit plane. In these variables, the secular
disturbing function can be written as

R = −G0m�L4

8b3�µ2

[
−10 + 3

L2
(3G2 − 4H 2)

+ 15
H 2

G2
+ 15 cos2 g

(
1 − G2

L2
− H 2

G2
+ H 2

L2

)]
. (6)

Since this function does not depend on l, its conjugate variable
L is a constant of the motion, which implies that the total spe-
cific orbital energy is also constant. Thus, under the action of
tides, the satellite’s orbit size does not change secularly. Sim-
ilarly, since the disturbing function (6) does not involve h, its
conjugate momentum H is conserved. Because both H and L
remain constant, the behaviors of e and I must be coupled: as
e reaches its minimum, | cos I | must also achieve its minimum.
Keep in mind that these constancies, which result from the prob-
lem’s symmetries, apply strictly only in the averaged problem
where hoops of material replace the real bodies.

The secular evolution of the mean orbit can be found by using
Hamilton’s equations for the Delaunay variables and by trans-
forming back into orbital elements. Alternatively, they can be de-
rived from the planetary perturbation equations using (3) (Burns
1977, Murray and Dermott 1999). Either procedure yields

dI/dτ = −(15/16)e2(1 − e2)−1/2 sin 2ω sin 2I, (7a)

de/dτ = (15/8)e(1 − e2)1/2 sin 2ω sin2 I, (7b)

dω/dτ = (3/4)(1 − e2)1/2{2(1 − e2) + 5 sin2 ω[e2 − sin2 I ]},
(7c)

and

d�/dτ = −(cos I/4)(1 − e2)−1/2[3 + 12e2 − 15e2 cos 2ω],

(7d)

3
where we have scaled time according to t = (b�n/G0m�)τ
(Innanen et al. 1997) with n the satellite’s mean motion about its
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planet. In principle, these nonlinear equations can be integrated,
and their solutions can be expressed in terms of Jacobi ellip-
tic functions (Kinoshita and Nakai 1991, 1999). In our work,
we solve these equations numerically, by using a Runge–Kutta
approach. Since all the dependent variables in (7) are dimension-
less, the system’s evolution takes place over periods (Holman
et al. 1997, Mazeh et al. 1997) of order

tsec = 2π
(
b3

�n/G0m�
)
, (8a)

or

tsec ∼ Porbit(m J /m�)(a�/a)3
(
1 − e2

�
)3/2

∼ 3Porbit × (RH/a)3
(
1 − e2

�
)3/2

. (8b)

For nearly circular orbits of low inclination, the circulation pe-
riod of ω is 2tsec/3, while the nodal regression period is 4tsec/3.
For the actual jovian system, tsec is about 180 years for most
known prograde satellites and 65 years for the retrograde ones.
An inspection of Eqs. (7) indicates that the amplitudes of the
Kozai oscillations in e and I are independent of the distance to,
and mass of, the perturbing Sun. As (8b) indicates, however, the
timescale for these oscillations does vary with m� and a�.

The system’s evolution differs considerably according to
whether the satellite orbits lie close to Jupiter’s heliocentric
orbit plane or well out of it. For small e, the term within the
curly brackets of (7c) is approximately 2 − 5 sin2 ω sin2 I ; thus,
dω/dτ will always be positive if sin2 I < 2/5 (i.e., when either
I < Icrit = 39.2◦ or I > Icrit = 140.8◦). In these circumstances,
ω will circulate, obliging the right-hand sides of (7a) and (7b)
to oscillate. Thus the changes in e and I will alternate in sign; in
addition, due to the factors e2 and e, the right-hand sides of (7a)
and (7b) will generally be small. Accordingly, the histories of e
and I will be quasi-periodic, and the character of low-inclination
orbits will scarcely change as ω circulates. A similar outcome
will apply anytime ω drifts swiftly in one direction, for example,
as a result of planetary oblateness acting on inner satellite orbits
(Dermott and Nicholson 1986).

In contrast, for paths that are highly inclined relative to
Jupiter’s orbital plane, i.e., those where sin2 I > 2/5, dω/dτ

may change sign, meaning that ω can slow significantly or os-
cillate about ±π/2. This allows e and I to vary substantially
(see Eqs. (7a) and (7b), where sin ω is now roughly constant).

R has only one degree of freedom, so trajectories in phase
space track contours of R. Following the approach of Holman
et al. (1997), we can describe the system in terms of the di-
mensionless momentum variable x = 1 − e2 = G2/L2, the an-
gle ω = g, and the conserved quantity

 = (1 − e2) cos2 I = H 2/L2.
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In these variables, from Hamilton’s equations, dω/dt (Eq. (7c)
is:

dg

dt
= 3G0m�L3

4b3�x3/2

[
3x2 − 5
 + 5 cos2 g

(
3

5
− x2

)]
. (9)

For 
 < 3/5 (which corresponds to sin2 I > 2/5 for e0 � 1),
a new class of solutions is possible, centered on the station-
ary point where dg/dt = 0 for g = ±90◦; i.e., x = (5
/3)1/2.
Figure 2 shows the results of numerical integrations of Eqs. (7)
for 
 = 0.25, 0.50, and 0.7 in the phase space x = 1 − e2 vs ω

and I vs ω. Since this system is Hamiltonian, these trajectories
can also be obtained by plotting equipotential levels of Eq. (6)
(Kozai 1962, Holman et al. 1997). The presence of the libration
island for 
 < 3/5 is apparent. Figures 3 and 4 show the time
evolution of e, I , and ω for orbits with e0 = 0.1 and 0.4, respec-
tively. The reader may find it instructive to follow the associated
curves in Fig. 2.

For 
 > 3/5 (see Figs. 2a, b), ω circulates and we find the
solutions previously described. Note that since 
 is conserved,
trajectories cannot gain access to the region of phase space with
x ≤ 
 (or analogously, with |cos I | ≥ 
1/2). The phase space
available is therefore inversely related to the value of 
. Vari-
ations in e and I are limited to a small range and ω increases
monotonically (Figs. 3a and 4a).

For 
 ≤ 3/5 (see Figs. 2c, 2d, and 2e, 2f for 
 = 0.50 and
0.25, respectively), the phase space is now divided into regions
in which the argument of perijove ω circulates, and zones in
which ω librates about ±90◦. All solutions started with ω0 = 0◦

still circulate, only now the presence of a librating island forces
the eccentricities to reach maxima when ω0 = ±90◦; thus e can
be quite close to 1 for small values of 
. For the same value of 
,
the maximum value of the eccentricity for circulating solutions
is always greater than the maximum eccentricity of any librat-
ing solution. The constancy of 
 requires (1 − e2

0) cos2 I0 =
(1 − e2

max) cos2 Imin, where Imin is ≤ sin−1(2/5)1/2. Yet, as can
be seen from Fig. 2 (or Fig. 5 below), the bottom of the libra-
tion island occurs at less than I = 39.2◦ (or cos Imin > 3/5).
For circulating solutions, it then follows that

emax ≥ [1 − 5 cos2 I0/3]1/2 (10)

for e0 � 1. For example, for 
 = 0.25 (Figs. 2e, f) and I0 =
60◦ (or 120◦), Eq. (10) predicts emax = 0.76, or xmin = 0.42, for
small e0. Figure 2e shows that in fact xmin = 0.32, or emax = 0.82,
so Eq. (10) is rather conservative. This is confirmed by Figs. 3b,
3d, 4b, and 4d. For smaller values of 
, the libration island
protrudes to smaller I , and consequently, the value of emax at
ω = ±90◦ is bigger. Such large eccentricities may lead the body
to penetrate the region of the regular satellites where close en-
counters can scatter it out of the system.

For ω0 = ±90◦, particles can now librate or circulate, depend-
ing on initial conditions. If the particle librates, changes in eccen-

tricity are limited to a fixed range. It should, however, be pointed
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FIG. 2. Plots of x = 1 − e2 vs ω and I vs ω derived from numerical solutions of Eqs. (7) for 
 = 0.70 (Figs. a, b), 0.50 (Figs. c, d), 0.25 (Figs. e, f ). Since
the solutions are symmetrical around ω = 180◦, we do not show the results for ω = 180 → 360◦. Curves are labelled by the initial eccentricity (at ω = 0◦ for
circulating solutions, and at ω = 90◦ for librating solutions). The diamonds in the middle of the libration zone locate the fixed points (dg/dt = 0 for g = ±90◦);
the asterisks in Figs. c and f represent the minimum possible values of x (maximum of e) and I for librating solutions similar positions can be found in Figs. d
and f. For 
 > 0.60 (top panels), the libration island disappears and only circulating solutions are possible. The presence of the libration island for smaller values
of 
 forces any circulating particle to reach larger values of maximum eccentricity when ω = 90◦. The fixed points (eF , IF ) are (0.295, 42.26◦) for 
 = 0.50 and
(0.595, 51.51◦) for 
 = 0.25.
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FIG. 3. Plots of e, I , and ω for 
 = 0.70 (Fig. a) (where only circulating solutions are possible, and we choose ω0 = 0◦), and for 
 = 0.50 (Figs. b and c)
and 0.25 (Figs. d and e) (circulating (ω0 = 0◦) and librating solutions (ω0 = 90◦) for e0 = 0.1). Since 
 is a conserved quantity, the maximum of the eccentricity
corresponds to the minimum of the inclination and vice versa. For 
 > 0.6, only circulating solutions are possible (ω goes from 0 to 360◦) and variations in
eccentricity and inclination cover a limited range. For 
 < 0.6, both circulating and librating solutions are possible: due to the presence of the libration island,

circulating solutions (ω0 = 0◦) experience a somewhat wider range of variation in e and I than do librating solutions (ω0 = ±90◦), which is smaller for orbits
closer to the libration points, with larger initial eccentricity.
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FIG. 4. Same as for Fig. 3, but for e0 = 0.4. Note that the librating solutions are closer to the fixed points and thus have a more limited range of variations in

e and I than those in Fig. 3.
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out that this is rigorously true only within the assumptions of
the averaged model. Numerical simulations by Holman et al.
(1997) show that trajectories close to the separatrix are actually
chaotic. Real trajectories near the separatrix may swap back and
forth from circulation to libration. The period of libration is in-
versely proportional to the distance from the separatrix, closer
orbits having longer libration periods. Figs. 3c, 3e, 4c, and 4e
show that test particles on librating orbits whose initial condi-
tions are closer to the fixed points, i.e., at larger eccentricities
for smaller �, have a more restricted range of variation in e
than the corresponding particles on circulating orbits. They can
therefore be “protected” from having their pericenters brought
into the region of the regular satellites.

We represent these histories in an alternative way in Fig. 5. For
a = 0.12 AU, we show plots of constant � in the e–I plane. For

� ≥ 3/5, only circulating solutions are possible (green lines).

For � ≤ 3/5, librating and circulating solutions are both per-

FIG. 5. Plots of � = const. In the e–I plane for a = 0.12 AU; numbers along the x-axis identify � values. The red curve for � = 0.6 separates the region
where librating solutions are possible from the region where they are not. The black line indicates the edge of the libration island, while the red line with diamonds
connects the fixed points for different �. Superimposed on the lines of constant � we plot the range of variations in e and I for the orbits shown in Figs. 3 and 4.

ditions (which is zero for particles started at the fixed point).
The first plot shows circulating solutions for e0 = 0.1, the second circulating solu
and e0 = 0.4, respectively.
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mitted. The librating solutions must, however, lie within the
libration island, so they range in eccentricity from 0 to a maxi-
mum value (black curve in the figure, determined numerically).
These solutions are roughly symmetrical about the fixed points
(red diamonds), which are located at

cos I =
(

3�

5

)1/4

, (11a)

and

e =
√

1 −
(

5�

3

)1/2

. (11b)

They move with an amplitude that depends on the initial con-
tions for e0 = 0.4, while the third and fourth give librating solutions for e0 = 0.1
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Superimposed on the lines of constant angular momentum, we
plot the range of variations in e and I of the solutions shown
in Figs. 3 and 4. Particles with e0 = 0.4 and ω0 = 90◦ oscillate
around the fixed point, so that the maximum value of their ec-
centricity is smaller than the corresponding value for circulating
solutions.

The situation is more complicated if we consider the effects
of perturbations from the other jovian planets or even if we
address the nonaveraged problem with eJ �= 0. Results of nu-
merical simulations for this case are discussed in the following
section.

IV. NUMERICAL SIMULATIONS OF SOLAR AND
PLANETARY PERTURBATIONS ON INCLINED ORBITS

The explanation based on the Kozai oscillations given above
partially accounts for the inclination distribution of the known
irregular satellites. The model we developed in the previous
section is, however, based on an approximate (O(r2/r2

�)) version
of the disturbing function and does not include the effect of
perturbations from the other jovian planets. To further explore
the dynamics of the system, we performed numerical simulations
that include the full perturbations of the Sun and incorporate the
other giant planets.

Long-term numerical integrations for the jovian retrograde
satellites have been carried out most recently by Whipple and
Shelus (1993) for 105 years and by Saha and Tremaine (1993)
for 2 × 106 years. Several earlier studies are referenced in these
works and by Kovalevsky and Sagnier (1977). Saha and
Tremaine (1993) used the fourth-order, mixed-variable symplec-
tic algorithm of Wisdom and Holman (1991) with a typical step-
size of 0.04 years. The integration included the Sun and the four
giant planets, but not the terrestrial planets, Galilean satellites,
Jupiter’s oblateness, or relativistic effects.

Our first integrations to follow the orbital histories of the irreg-
ular satellites of Jupiter applied the WHM integrator of Wisdom
and Holman (1991) as implemented in Duncan et al. (1998). Our
time-step was 3.65 days, we integrated for 100 years, and os-
culating elements were output every year. We accounted for the
Sun (augmented by the masses of the terrestrial planets), Jupiter
(with the Galilean satellite masses added), and the other giant
planets; we do not include Jupiter’s flattening nor relativistic ef-
fects. Our starting conditions were taken from the Jet Propulsion
Laboratory (JPL) Horizons ephemeris.

A typical satellite history (Fig. 6), that of retrograde Pasiphae
for a hundred years, shows fairly smooth drifts of ω and � with
time (ω̃ is defined as �-ω for retrograde satellites). This full
solution can be compared against the secular solution for sim-
ilar circumstances, albeit for a prograde path (cf. Fig. 4a); the
small wiggles for a in Fig. 6 correspond to tidal forcing as the
satellite takes two years to orbit Jupiter, whose 12-year orbital
period is readily visible. The periods ω and � take to precess

fully are about 70 and 75 years, respectively, agreeing well with
our secular prediction of 65 years from Eq. (8) and the 81 years
ET AL.

FIG. 6. The joviocentric orbit of retrograde Pasiphae, starting at J2000.
The reference frame is the J2000 ecliptic and equinox. For a retrograde satel-
lite, � is defined as �-ω. The small wiggles in a, not present in the secular
problem (Fig. 4a, prograde case), are due to tidal forcing. Note also the fre-
quency associated with Jupiter’s period (12 years).

listed on the JPL–SSD website. The long-term oscillations of e
and I : (i) occur at about twice this frequency (like the tidal term
itself), (ii) are substantial, and (iii) are in-phase, as expected for
a retrograde satellite. Our results for the temporal character and
amplitudes of this moon’s orbital perturbations compare favor-
ably to those of Whipple and Shelus (1993). By conducting a
simulation over 300,000 years, we were able to replicate the re-
sults of Whipple and Shelus’s (1993) identification of a secular
resonance between Pasiphae’s perijove e and Jupiter’s perihe-
lion. We have also checked that our numerical results for the
classical jovian irregulars duplicate the integrations of Jacobson
(2001) over the same interval (1000 years).

Figure 7 shows the results for integrations of test particles
with the same initial conditions as those used for solving the
secular problem (Fig. 4), with e0 = 0.4 (results are analogous
for e0 = 0.1 and are not shown). The dominant features seen
in Fig. 4—orbital precession at about tsec associated with sub-
stantial oscillations in e and I —are quite evident. Now, in ad-
dition, high-frequency oscillations with periods of 6 years are
visible; these result from the elliptical motions of the satellite
and Jupiter that are, of course, not present in the secular problem
(plus perturbations from the other jovian planets). Oscillations
in e and I are still in antiphase, but Jupiter’s orbit eccentricity

and perturbations by the other jovian planets cause variations in
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FIG. 7. Full numerical solution for the same problem whose secular solutions are plotted in Fig. 4. Osculating e, I , and ω histories are shown over 100 years
for direct jovian satellites that start with a0 = 0.12 AU and e0 = 0.4. Note the oscillations in orbital elements with a period of 12 years, which are due to Jupiter’s

eccentric orbit. The particle with � = 0.5 and ω0 = 90◦, which was librating in the secular problem (Fig. 4c), is now circulating. Figure a shows the circulating
solution for � = 0.70, Figs. b and c show the circulating and librating solutions for � = 0.50, and Figs. d and e display the two cases for � = 0.25.
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the extrema for eccentricity and inclination, which now differ
from cycle to cycle. The most striking difference from the sec-
ular problem is, however, for the particle in a librating orbit for
� = 0.5 (Fig. 4c), which, according to the results of the numer-
ical simulation (Fig. 7c), is now circulating. As discussed in the
previous section, particles close to the separatrix can be pushed
by perturbations from the Sun or the other planets across that
line and become circulating. Inspection of Fig. 5 shows that this
librating solution was very near the maximum allowed value
of e0. We will discuss this phenomenon in more detail while
reporting other results of our long-term simulations.

Having tested our integrator against the previously determined
histories of the tabulated irregular jovian satellites and guided
by the results of our secular model, we considered the orbital
evolution of an array of hypothetical objects over times as long
as 109 years. The starting orbits of these bodies range in a from
0.08 AU to 0.20 AU, spaced at intervals of 0.02 AU. (Most
known retrograde jovian satellites have semimajor axes slightly
less than 0.16 AU, while the typical prograde satellite is at about
0.08 AU. For Jupiter, RH = 0.355 AU). Our test particles had
initial eccentricities e0 of either 0.10 or 0.20 (the secular model
predicts that the maximum eccentricity for circulating particles,
reached at ω = ±90◦, is not strongly dependent on e0, and is
least for small values of e0). Initial inclinations were in the range
between 35 and 70◦, and between 110 and 145◦, separated by
5◦ (objects between 70 and 110◦ should have their pericenters
forced into the region of the regular stellites, according to the
secular theory (cf. Eq. (10)), so we do not consider them in
our numerical simulations). This corresponds to values of �0

(we use the initial value of � because for the problem with full
perturbations from the Sun and the other jovian planets, � is no
longer a conserved quantity) between 0.11 and 0.66 for e0 = 0.1,
and between 0.12 and 0.64 for e0 = 0.2. Thus, we have investi-
gated a total of (8 initial inclinations) × (2 orbital directions) ×
(7 semimajor axes) × (2 initial eccentricities) = 224 cases. We
took random values of �0, since this angle circulates with a typ-
ical period of ∼80 years, and ω0 = 0◦, corresponding to circulat-
ing solutions (for these solutions, ω will cover the full range 0–
360◦). As discussed in the secular problem, for circulating parti-
cles the initial eccentricity is the minimum value, while the initial
inclination is a maximum (minimum for retrograde particles).

We integrated these test particles over 109 years using a longer
time-step—15 days—and plotted osculating orbital elements
smoothed with a running window with a period of 1000 years
and a shift of 100 years. Particles are considered to be lost once
they penetrate a sphere having twice the planet’s radius and to
have escaped once their distance from Jupiter exceeds the radius
of the Hill sphere (Eq. (1)). The end states of the individual par-
ticles are shown for e0 = 0.1 (Fig. 8) and for e0 = 0.2 (Figs. 9
and 10). These integrations indicate that many orbits are grad-
ually lost due to the interaction of periodic and secular pertur-
bations over longer time spans. Most lost particles escape to

heliocentric orbits. As integrations were extended, particle or-
bits were more likely to become highly eccentric, paralleling
ET AL.

FIG. 8. The final fate of 112 jovian test particles with e0 = 0.1 and ω0 = 0◦.
The orbits of the known jovian satellites are shown as lines with squares (cf.
Fig. 1). The dashed straight lines separate high-I behaviors from low-I ones in
the secular problem, while the dashed parabola encloses the zone of avoidance
according to Eq. (10). Dots correspond to objects that escaped from Jupiter in
105 years; asterisks took between 105 and 107 years to die; open circles were
lost in less than 1 Byr. Filled circles indicate particles that remained stable over
more than a Byr.

results for asteroidal orbits near the many resonances that per-
meate the main belt (Wisdom 1983, Morbidelli and Nesvorný
1999, Murray et al. 1998). Thus the zone of instability grows
as orbital integration times increase, and with our longest inte-
grations (109 years), we observe that almost all the (a, I ) space
where irregular satellites are missing turns out to be unstable.
We anticipate that even longer integrations (t → 4.5 × 109 years)
would disclose that many of the remaining niches for circulating
satellites lose stability as well. (The wood stability is intended
in the sense of effective stability, as described in Giorgilli and
Skokos 1997 and Skokos and Dokoumetzidis 2001).

Other satellites may be destabilized by interactions with the
Galilean satellites. Gravitational assists during fly-bys of
Galileans can easily boost orbital energies sufficiently to release
these objects from Jupiter’s gravitational grasp (when at high
eccentricities, the retrograde irregular satellites have typical or-
bital velocities relative to Jupiter at aphelia that are only a few
hundred m/s. Thus, a relatively small disturbance at the nodes
of the Galilean satellites’ orbits can dislodge previously trapped
objects). Gravity assists by the Galilean satellites approach the
surface escape velocity or 1–2 km/sec. Figure 10 displays the
pericenter evolution of a particle that eventually collides with
Jupiter. This particle pierced deeply into the realm of Galilean
satellites (whose semimajor axes are shown in the plot) and could

have easily experienced a close encounter, or even a collision,
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FIG. 9. The final fate of 112 jovian test particles with e0 = 0.2 and ω0 = 0◦.
The orbits of the known jovian satellites are shown as lines with squares
(cf. Fig. 1). The dashed straight lines separate high-I behaviors from low-I
ones in the secular problem, while the dashed parabola gives the zone of avoid-
ance according to Eq. (10). Dots correspond to objects that escaped from Jupiter
in 105 years; asterisks took between 105 and 107 years to die; open circles were
lost in less than 1 Byr. Filled circles indicate particles that remained stable over
more than a Byr.

FIG. 10. Pericenter distance for a particle started with a0 = 0.14 AU,

e0 = 0.2, and I0 = 110◦. The semimajor axes of the Galilean satellites are the
horizontal lines at the bottom of the plot. This particle hit Jupiter at 2840 years.
VIAN IRREGULAR SATELLITES 445

if it passed by the nodes of its orbits with those of the regular
satellites at the right time.

We notice that particles are stripped away once their initial
orbits extend out to a significant fraction of the Hill sphere, in
agreement with the original numerical results of Hénon (1970).
It also appears, in accordance with the same paper and with
Hamilton and Burns (1991) and Hamilton and Krivov (1997),
that objects on retrograde orbits are somewhat more stable than
prograde ones at the same semimajor axis. A similar dichotomy
is visible among the extant jovian satellites but is not apparent
within Saturn’s retinue (Gladman et al. 2001). Even though our
grid is fairly coarse, we believe that our simulations provide a
meaningful survey of the stability of the outer regions of the Hill
sphere. Saha and Tremaine (1993) have determined that orbits
in this vicinity are chaotic with Lyapunov timescales of about
5000 years. Thus, it is not surprising to see that the outcomes
of our simulations are not uniform, with occasional islands of
relative stability.

To investigate whether stable librating solutions might exist
in the complete problem, we started particles with initial condi-
tions that lie within the libration island of the secular problem
(ω0 = 90◦ and �0 < 0.6). As discussed in the previous section,
�0 = (1 − e2

0) cos2 I0 is a conserved quantity in the secular prob-
lem. For our simulations, we choose particles with the same
value of �0 and increasing values of eccentricity (e = 0.1–0.9,
when possible). Figure 11 shows on e–I plots lines of constant
�0 containing our grid of initial conditions. We also plot a line
showing orbits whose pericenter is closer to Jupiter than Callisto.
This does not necessarly mean that those particles can experi-
ence a close encounter with that satellite, since in order to do
that they need to be at the nodes of their orbits with Callisto’s at
the same time as the Galilean satellite. We found that this was,
however, a useful first-order criterion to distinguish orbits that
actually can be gravitationally scattered from those that cannot.
Particles whose initial conditions are in the upper region of li-
brating orbits can also interact with Callisto; all these are most
likely to be lost on short timescales. We carried out integrations
across a grid of 73 particles in e and I , for five different distances
from Jupiter—a = 0.06, 0.09, 0.12, 0.15, and 0.18 AU—for both
prograde and retrograde particles. Results of our integrations for
three cases (prograde and retrograde particles, and results of an
integration over 100 Myr) for a = 0.12 AU are shown in Fig. 11.
Particles at a = 0.18 AU were all lost in less than 3000 years.

Due to short-period perturbations from the Sun and the other
jovian planets, orbits that were librating in the secular prob-
lem can escape from the libration island and begin circulating,
as indicated by stars in Fig. 11. Because fully perturbed orbits
are not obliged to follow the results of the secular model very
closely, in Fig. 12 we report the result of a numerical simulation
for � = 0.25 and e0 = 0.4 (a = 0.12 AU), superimposed on the
secular solutions of Eqs. (7) for the same initial conditions (cf.
Figs. 4e and 7e). The orbit jumps back and forth in the neighbor-
hood of the secular solution but remains bounded by the sepa-

ratrix (i.e., the particle stays trapped in the Kozai resonance).
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FIG. 11. Lines of constant angular momentum � = (1 − e2) cos2 I in the e–I plane for a = 0.12 AU, both prograde and retrograde cases (first and second
panels, respectively). The lower line with asterisks represents the lower limit of the libration island; particles with initial e and I below that line can only circulate,
while above both circulating and librating solutions are possible. The line with diamonds locates the libration points, while the vertical line on the right indicates
the eccentricity needed by particles at that distance from Jupiter to have its q equal to Callisto’s a. Of course, particles whose initial conditions are in the upper
region of librating orbits that can interact with Callisto are most likely going to be lost on short timescales. We indicate the boundary for such orbits with a black
line with triangles. We report the fate of 73 particles for each value of a (for both the prograde and retrograde cases). Filled circles are particles that were stable
over 10 Myr; small black dots are particles that were lost (either they escaped from the Hill sphere of Jupiter or they crashed into the planet); and stars are particles
not bound to the libration island (they crossed the separatrix during the course of the integration and became circulating particles). For a = 0.12 AU, prograde

case, we extended the simulation to 100 Myr (third panel); open circles are particles lost over this longer timescale. This longer simulation and previous results for

o
circulating particles suggest that at least some particles not locked into the librati

Particles whose initial conditions approach the separatrix can
eventually leave the libration island.

Librating particles are most stable for values of e0 and I0

close to those of the fixed points. Prograde particles with a value
of �0 near 0.6, the limiting value for the existence of librating
solutions, are not confined to the libration island, and as can
be inferred from the results of previous simulations on circu-
lating particles, they are probably lost over longer timescales

9
(10 years). This seems to be confirmed by an integration for
a = 0.12 AU over 100 Myr in which several of the particles that
n island should be unstable over timescales longer than 10 Myr.

were circulating in a previous integration of 10 Myr escaped or
crashed into Jupiter. Results are similar for particles started in
the second libration island at ω = 270◦. Prograde librating par-
ticles are stable for large values of I , and strangely enough, the
fates of particles with the same �0, above and below the fixed
point, are not the same. Retrograde particles with �0 ≤ 0.3 at
a = 0.09 and 0.12 AU are all unstable within 10 Myr, while this
is not the case for prograde particles. Some of the retrograde par-

ticles are stable for very large values of e (>0.7), and particles
symmetric around the fixed point tend to share the same fate.
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FIG. 12. The result of a numerical simulation for �0 = 0.25 and e0 = 0.4
(a = 0.12 AU) over 100 yrs, with a sampling time of 30 days, superimposed on
the phase plane solutions of Eqs. (7) for the same initial conditions.

Moreover, particles with values of �0 close to 0.6 do not
circulate for the retrograde case: the shape of the libration island
for the case in which perturbations from the jovian planets are
considered seems to be no longer symmetrical, as was the case
for the averaged three-body model.

Figure 13 presents the results of simulations in the a–I plane
(e = 0.1, 0.3, and 0.5). These figures are analogous to Figs. 8
and 9 used to show results of circulating particles. In contrast
to the case of circulating particles, librating particles with larger
values of (e0 =∼ 0.5), which have initial conditions closer to the
libration point, tend to be more stable than the analogous parti-
cles with lower eccentricity. Also, in contrast to the circulating
case, prograde particles tend to be stable for larger values of
initial inclination than the analogous retrograde ones. Although
our simulations cover only a limited interval of time (10 Myr),
we think they give valuable hints about the actual shape of the
phase space region where librating particles can be stable. The
results of the longer simulation seem to indicate that particles
with the smaller values of �0 (0.20–0.25 for the prograde case,
0.25–0.35 for the retrograde case) are lost on longer timescales,
which roughly translates into a loss of objects at higher inclina-
tions. While this paper was under revision, we became aware of
an analogous study by D. N. Nesvorný et al. (personal commu-
nication, 2002). In their work, Nesvorný et al. integrated 8281
test orbits around Jupiter for the circulating (ω0 = 0◦) and li-
brating (ω0 = 0◦) cases, with random values of � and M and

values of e0 of 0, 0.25, 0.5, and 0.75, over 0.5 Myr. In agreement
with what we found in this work, Nesvorný et al.’s results show
VIAN IRREGULAR SATELLITES 447

FIG. 13. The final fate of librating particles with e0 = 0.1, 0.3, and 0.5.

Lines and symbols have the same meaning as in Fig. 9. Stars represent particles
not bound to the libration island.
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that librating particles with high values of eccentricity (0.5 or
0.75) can be stable for values of i0 up to 65–70◦.

V. LIBRATING SATELLITES: ESTIMATES
ON THEIR POPULATION

Since our simulations suggest that irregular satellites in the
prograde and retrograde libration islands can be stable for at least
10 Myr, we now estimate the number of possible satellites in that
region, assuming that all available phase space was uniformly
populated initially. To achieve this goal, we need to estimate
three quantities:

1. The fraction of the libration island over which orbits are
stable = f1.

2. The portion of phase space for � < 0.6 occupied by the
libration island = f2.

3. The ratio between the phase space where libration islands
are possible (� < 0.6) and the phase space where only circulat-
ing orbits are allowed = f3.

We can approximate the first quantity from our simulations
that provide the number of stable particles in the libration island
compared to the total number of particles (73) for each value
of the semimajor axis that we studied (a = 0.06, 0.09, 0.12,
and 0.15 AU). In this region, 26% (= f1) of the test particles
were stable over the 10-Myr integrations. We then computed the
fraction of phase space covered by the libration island (� < 0.6)
by determining the fraction of the (g, G) phase space occupied
by the libration island for different values of H (= (µa�)1/2).
Since G = (µa(1 − e2))1/2 = (µax)1/2, this fraction would be
given by:

f2 =
∑

i

[
4(90◦ − g(i))�x(i)1/2

]

360◦(1 − �1/2
) , (12)

where g is computed from 0 to 90◦, �x1/2 is the corresponding
interval in x1/2 (the factor 4 accounts for the other half of the li-
bration island and for the other libration island at ω = 270◦). The
available phase space goes from �1/2 to 1, since H is conserved.
This result is independent of the semimajor axis. Figure 14 plots
the fraction f2 of phase space occupied by the libration island as
a function of H/(µa)1/2; the average value of f2 for that interval
was 7%. Finally, we have to compute f3: we have seen that the
total phase space available is given by:

Vphase Space = 360◦√(µa)(1 −
√

�). (13)

After integrating Eq. (13) over the range of � for which li-
brating solutions are possible (0.0–0.6) and for the values that
allow only circulating solutions (0.6–0.1), we take the ratio of
the results to determine that f3 equals 6.72, independent of a.
Assuming that all the circulating phase space is stable, and that

circulating solutions are not stable in the librating region (which
is rather pessimistic, since our simulations with circulating par-
ET AL.

FIG. 14. The fraction of phase space occupied by the libration island as a
function of H/(µa)1/2.

ticles show that a region of stability exists for � ≤ 0.6), then
the fraction of stable librating orbits compared to the stable cir-
culating solutions is given by

f4 = f1 f2 f3 = 0.122;

that is, the libration islands occupy 12.2% of the phase space
available to circulating solutions. Therefore, with the assump-
tion that circulating solutions in the librating region are not sta-
ble, stable librating orbits occupy 12.2/(12.2 + 100) = 10.8%
of the available stable phase space. We assume that the available
stable phase space was uniformly populated (which may be far
from the truth, since it is dependent on the capture mechanism:
gas drag, for example, should preferentially capture particles
with small eccentricity (e < 0.2); this would exclude most of the
stable librating satellites we found in our simulations that had
e > 0.3). Thus, we would expect to find approximately 10% of
the satellites in librating orbits at high inclinations. Since only
one-quarter of Jupiter’s Hill’s sphere has been searched so far (B.
Gladman, private communication, 2001), if we assume a total
number of jovian irregular moons larger than 1 km in diameter
of ∼100, this would suggest that there can be up to 10 objects
in librating orbits that await discovery.

VI. CONCLUSIONS

We have described how the distinctive inclination distribution
of the known irregular satellites may result from various dynam-

ical processes. In particular, we have shown that, considering
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just secular solar perturbations, highly inclined orbits (70◦ <

I < 110◦; i.e., those nearly normal to the planet’s heliocentric
orbit) are unlikely to be long-lived. The eccentricities of such
orbits become large, periodically plunging the particles down to
regions where collisions with the planet or gravitational scatter-
ing by regular satellites can occur. Rather, and more frequently,
particles on such orbits are pulled away from the Hill sphere
of the planet due to solar perturbations. We then demonstrated,
through 109-years numerical integrations of hypothetical irreg-
ular objects about Jupiter, that planetary and solar perturbations
substantially widen this region (to ∼55◦ < I < ∼130◦) for cir-
culating particles.

On the other hand, some satellites librating in the Kozai res-
onance can be stable for 10 Myr or more. They have higher
values of inclinations than those on stable circulating orbits. We
estimate that ∼10% of the irregular satellites of Jupiter could
be Kozai resonators, if the capture process uniformly populated
the phase space around the planet.
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