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Abstract

The history of the construction, organisation and publication of
factor tables from 1660 to 1817, in itself a fascinating story, also
touches upon many topics of general interest for the history of math-
ematics. The considerable labour involved in constructing and cor-
recting these tables has pushed mathematicians and calculators to
organise themselves in some network. Around 1660 J. Pell was the
first to motivate others to calculate a large factor table, for which he
saw many applications, not only in Diophantine analysis but also in
arithmetic and even philosophy. Some hundred years later (1770), J.H.
Lambert launched a table project that would engage many computers
and mathematicians to (re)produce Pell’s table and extend it. Impor-
tantly, Lambert also pointed out that a theory of numbers, of divisors
and factoring methods was still lacking. Lambert’s ideas were taken
up by his colleagues at the Berlin Academy, and indirectly by L. Eu-
ler in St Petersburg. Finally, the many number-theoretical essays that
were written in the context of Lambert’s table project contributed im-
portantly to the birth of higher arithmetic around 1800, starting with
A.-M. Legendre’s and C.F. Gauss’s work.

Une histoire des Tables des Diviseurs, avec des Notes sur la Nais-
sance de la Théorie des Nombres 1657–1817

L’histoire de la fabrication, l’organisation et la publication des ta-
bles de diviseurs, de 1600 à 1817, offre en et pour soi une histoire
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fascinante, mais elle enveloppe aussi beaucoup de thèmes d’importance
plus générale pour l’histoire des mathématiques. Le travail qu’implique
la fabrication et la correction de ces tables était considérable et a
poussé les mathématiciens et calculateurs à s’organiser dans un réseau
scientifique. Autour de 1660 J. Pell était le premier à motiver d’autres
mathématiciens à produire une large table de diviseurs, pour laquelle
il voyait une grande utilité, non seulement dans l’analyse Diophanti-
enne, mais aussi dans l’arithmétique et même dans la philosophie.
Quelque cent ans plus tard (1770), J.H. Lambert lança un projet de
tables qui engagerait beaucoup de calculateurs et de mathématiciens
afin de (re)construire la table de Pell et de l’étendre. Lambert indi-
quait aussi qu’il manquait une théorie des nombres, des diviseurs et des
méthodes de factorisation. Ces idées étaient reprises par les collègues
de Lambert à l’Académie de Berlin, et, indirectément, par L. Euler
à St.-Petersbourg. Finalement, ces textes sur la théorie des nombres,
écrits dans le contexte du projet tabulaire de Lambert, contribuaient
de manière importante à la naissance de l’arithmétique transcendante
autour de 1800, dans les travaux de A.-M. Legendre et C.F. Gauss.

2000 Mathematics Subject Classification: 01A45; 01A50; 11A51; 11N35;
11Y05; 11Y11
Mots clés: Tables des diviseurs, théorie des nombres, Pell, Lambert, Euler,
Gauss
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1 Introduction

Like other scientific experts, the makers of tables which list prime numbers
or factors of positive integers have cultivated the memory of the work of
their forerunners. In the case of factor tables, there is also a more specific
reason to consult existing tables, because for tables where the interpolation
of entries is impossible, comparison is the only way to test a newly produced
table. The most complete list of prime and/or factor tables compiled before
the twentieth century can be found in Dickson [1919–1927, I, pp. 347–356];
the most extensive comment and analysis was provided by Glaisher [1878],
in a companion essay to his Factor Table for the Fourth Million.

A topic closely connected with the construction of factor tables is the
development of primality tests and factoring algorithms. Since the advent of
the digital computer and especially since the invention of RSA-encryption,
primality tests and factoring algorithms are considered as an important re-
search field for mathematics and its applications. Before 1945, however, the
topic mainly figured in research on and construction of tables in number the-
ory. The history of primality tests and factoring algorithms has already been
well documented by Dickson [1919–1927, I, pp. 357–374] and more recently
been reappraised by Williams and Shallit [1994] and Mollin [2002].

The aim of the present paper is to show how a proper historiographical
appraisal of the construction of factor tables may yield insights which go con-
siderably beyond a mere chronology of computational techniques and of the
production of tables. We will first show that the circumstances of production
of the earliest prime and factor tables provide insight into the way in which
mathematicians and calculators organised themselves in communities or net-
works in the 17th and 18th centuries. Further, the use and production of
factor tables were gradually embedded in an emerging theoretical framework
of its own. It will be shown how this theoretical framework played an essen-
tial role, next to Pythagorean, Diophantine and Fermatian problems, for the
emergence of number theory, culminating in A.-M. Legendre’s Essai (1798)
and C.F. Gauss’s seminal Disquisitiones Arithmeticae (1801). Indeed, the
birth of higher arithmetic or number theory is in fact partly constituted by
its differentiation from Diophantine analysis. The theories and methods that
provide the theoretical background for factor tables are one of the sources
that complement the classical tradition in the process of forming number
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theory.1

2 Anatomia Numerorum

The oldest and smallest factor and/or prime tables stem from the early 17th
century and were constructed by Cataldi, Guldin and van Schooten. Cataldi
[1603] gave a list of the factors of all numbers to 750 (in a supplement to 800).
As the title of Cataldi’s treatise indicates, the table was used in connection
with perfect numbers, numbers that are equal to the sum of their divisors
(including 1 but excluding the number itself). Cataldi proved with the help
of his table that 217 − 1 and 219 − 1 (known as Mersenne numbers) were
prime, hence 216(217 − 1) and 218(219 − 1) were perfect numbers. Cataldi’s
claim that the exponents 23, 29, 31, 37 also generated perfect numbers, could
not be checked against his small table and was later proven false, except for
31, by Fermat and Euler [Dickson 1919–1927, I, pp. 10–19]. Paul Guldin
[1641, pp. 383–401] made a factor table to 10000 in the fourth book of his
series De Centro Gravitatis.2

Finally, Frans van Schooten [1657, pp. 393–403] published a table of
primes to 9979.3 Van Schooten’s Exercitationes Mathematicae consisted of
five books. The first four books contained geometrical problems, problems
from Euclid’s Elements, from Apollonius’s works and showed how Descartes’s
calculus geometricus might be applied to these. The fifth and last book con-
tained “Miscellaneous Problems” and may be situated in the then newly

1On the role of the Pythagorean, Diophantine and Fermatian problems for the forma-
tion of number theory, see [Weil 1984, Chap. IV] and [Shanks 1993, Chap. 1]. On the
shaping of this discipline after the publications of Gauss and Legendre we would like to
refer to the rewarding collection of essays in [Goldstein et al. 2007].

2Guldin’s table is missing in [Dickson 1919–1927]. The context of Guldin’s table is
unclear, his own explanation for his Tabula ultima is not really satisfying. In his second
book of De Centro Gravitatis the table is announced while defining what a non-divisible
number is. The name Tabula ultima only refers to the fact that it is the last table in the
last book of Guldin’s four volume work.

3[van Schooten 1657] was published two years later in a Dutch version, viz. [van
Schooten 1659]. The syllabus numerorum primorum is there reprinted as Tafel der eerste
getallen, with a correction. In the table of the latin version 809 was dropped by accident
in the process of printing, this error is corrected in the Dutch version. Jacques Ozanam
[1697, pp. 30–32] put van Schooten’s table in another format and reprinted it (with the
809 error) in his Récreations mathématiques et physiques. In discussing van Schooten’s
Exercitationes mathematicae we will refer of the Dutch version.
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emerging tradition of books on recreational mathematics. Quite a lot of
these miscellaneous problems were arithmetic problems. They were mainly
derived from Michael Stifel’s edition of Christoph Rudolff’s Coss [1553] and
Claude-Gaspard Bachet de Méziriac’s edition of Diophantus’s arithmetic
books [1621]. Although the problems were seemingly disconnected, van
Schooten often inserted programmatic remarks on the excellence of algebra
and especially Descartes’s analysis for solving these problems.4 The Exercita-
tiones Mathematicae may therefore be seen as an early attempt in developing
a (general) method to attack problems with numbers. In this (Cartesian) con-
text we find the list of the primes under 10000. Van Schooten recommends
it as a useful for solving problems of parts and divisors, for avoiding frac-
tions, for finding the roots of equations, for calculating logarithms, actually,
“helpful for nearly all kind of calculation”.5

2.1 John Pell’s Table of Incomposits

The first factor table that took more effort and time than a day well spent
on calculation was published by J.H. Rahn (1622–1676) in his Teutsche Al-
gebra (1659). It gives only the smallest factors of the numbers less than
24.000 which are not divisible by 2 and 5.6 The subsequent English transla-
tion of Rahn’s book, An Introduction to Algebra published 1668, was begun
by Thomas Brancker (1633–1676) in 1665. Through the mediation of John
Collins, John Pell (1611–1685) was involved in reading, correcting and sup-
plementing the translation, in the end nearly replacing half of Rahn’s text
with his own [Malcolm 2004, pp. 250–252].7 For this translation, Brancker

4E.g., van Schooten remarked that contrary to Stifel’s opinion algebra is useful for
finding amicable numbers (numbers that are equal to the sum of the divisors of a friend-
number and vice versa) [van Schooten 1659, pp. 390–391]. Similarly, van Schooten showed
how algebra could solve a rather disconnected collection of 15 problems with one and the
same trick [van Schooten 1659, pp. 459–462].

5Original full quote:“Hier by komt, dat dese getallen mede niet weynig tottet minderen
der gebroocke getallen, in ’t delen der AEquatien of Vergelijckingen, en in hare wortelen
te soecken, gelijck oock in het vinden der Logarithmi of Reden-tallen, en eyndelijck by-na
in alle reeckeningen behulpsaem zijn.” [van Schooten 1659, p. 365].

6According to [Malcolm and Stedall 2005, p. 200] it was a student of Pell, Balthasar
Keller, who calculated the table; Rahn only copied and published it.

7As H. M. Pycior [1997] showed, this English translation was one of the attempts, on
the insistence of John Collins, to provide the English with a current English Algebra book.
Pell added pages 79–82 and 100–192.
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had calculated the factor table afresh up to 100.000, following Pell’s direc-
tions. The authorship of this book has been a matter of debate, but it is
by now certain that Rahn was a student of Pell in Zürich and mainly used
Pell’s lectures to write his book.8 Already in 1668 the book has therefore
been known as Pell’s Algebra, and the Table of Incomposits has likewise been
known as Pell’s Table, though Keller and Brancker, independently, calculated
it. Both the Algebra and the Table are products of Pell’s particular mind
set and the details of their execution should be set in the context of Pell’s
general philosophy and should also be interpreted as part of a dialogue that
Pell (indirectly) took up with van Schooten’s Exercitationes.

Pell9 entertained particular ideas on mathematics and of the organisation
and transmission of knowledge. As his Idea on Mathematicks (1638) shows,
Pell was supportive of a reorganisation of knowledge, as professed in Hartlib’s
circle and inspired by or close to Comenius’s ideas.10 In this compression and
presentation of mathematical knowledge, due place was given to “the use-
fullest Tables and the Precepts for their use, in solving all Problems” [Pell
1638/1650, p. 40], amongst them a table of sines/logarithms to solve higher
equations that Pell often mentioned, but never published. Samuel Hartlib
had characterised Pell as a man who “vrges mainly a perfect Enumeration
of all things” (1639)11 and this emphasis on complete enumeration is in-
deed a recurring theme in Pell’s work. In this context, Pell happened upon
the idea (or rather powerful metaphor) that knowledge could be organised
through combining “prime truths” [Malcolm and Stedall 2005, pp. 263–5].
This idea of tables, prime and factor tables especially, in connection with a
(re)organisation of knowledge will prove to be quite persistent into the 18th
century, though altering its modes.

Some general characteristics of Pell’s Algebra fit within this ideology.
Pell had developed a “method” to present his algebra which an anonymous

8Already Kästner [1786, pp. 555-56] found this translation of a German algebra book
most curious and suspected Rahn might have been a student of Pell. More recently Scriba
[1974] and Malcolm [2000; 2004], on the basis of new unpublished correspondence, have
removed nearly any doubt that Rahn’s original text owes much, certainly its innovations,
to Pell’s teachings.

9A extensive biographic and scientific portrait of Pell, detailing his life phases, was
recently published by Malcolm and Stedall [2005].

10See [Malcolm and Stedall 2005, Parts I and II]. Yates [1972, p. 233] also suspects
a strong influence of John Dee, and of course, the project is close in time and spirit to
Bacon’s proposal for the advancement of science, and the foundation of the Royal Society.

11Quoted after [Malcolm and Stedall 2005, p. 63].
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reviewer in the Philosophical Transactions12 characterised as follows:

the Method is such, that most of the Book, if not all, may be un-
derstood by those not vers’d in the English tongue, that are vers’d
in Specious Algebra, most of the Questions being propounded
in Symbols, and the progress of the work so described by the
Marginal quotations, that for those exercised in Algebra, that
would transcribe a Problem in this Method, it were sufficient,
only to take the Margent, omitting the work it self, till farther
leisure is afforded to perform it.13 [Phil. Trans. 3 (1668), 689]

This is the essence of Pell’s tri-column method. From right to left one had
per line three columns: 1) the text and its algebraic transliteration; 2) a
numbering of the line; 3) a summary of the operations that led to that line
using the numberings, e.g., 3*7 means: line 3 times line 7.14 This near
tabular arrangement in Pell’s Algebra not only depended on the complete
and consecutive numbering of the lines, but it also opened up the book
for a variety of readers. It became accessible to non-English-speakers, and
had moreover the pedagogic advantage that one could choose one’s style of
reading (a quick glance or detailed).

If one takes a closer look at the specific parts that Pell added to Brancker’s
translation (pp. 79–82 and 100–192), one sees that Pell had added an addi-
tional layer to the book. All additions belong to indeterminate or Diophan-
tine analysis. Pell had been interested in Diophantine problems since the
1640s. He had corresponded with Father Mersenne (1639–40) and had given
lectures on Diophantine problems in Amsterdam (1644–46), with Vossius in
the audience, and later in Zürich to Rahn (1654–58).15 Pell had often an-
nounced or promised an edition of Diophantus (in his own tri-column style)
but as so many of Pell’s projects, nothing was ever published [Malcolm and
Stedall 2005, p. 289–290 et passim]. It seems that Pell took advantage of the

12Actually Collins according to Malcolm and Stedall [2005, p. 205].
13Cfr. ”a sequence of marginal annotations summarizing the working out of the problem

in the text“ [Malcolm 2000, p. 287].
14More on the tri-column method in [Stedall 2002, pp. 137–138] and in general on Pell’s

mathematical style, that is close to “a mechanisation of unit steps”, [Malcolm and Stedall
2005, pp. 235–319].

15See [Malcolm 2000, p. 276] on Mersenne plus the references there; [Kästner 1786,
p. 555] on Vossius; and [Malcolm 2004, p. 253] on Rahn, see also Malcolm and Stedall
[2005], keyword Diophantus.
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occasion and used his involvement in the English translation of Rahn’s book
to make up, at least in part, for the missed edition or commentary of Dio-
phantus. Instead of going for a general treatment, however, Pell suspended
his considerations from a set of particular problems. Problems XV and XVI
dealt with Pythagorean triangles and allowed Pell to give a small exposition
on what exactly constitutes an indeterminate problem. All further problems
(XXVII–XXXI) were problems which

Bachet [...] left obscure; and [...] the celebrated DesCartes and
Van Schooten have left doubtful, as not being by them throughly
understood. [Phil. Trans. 3 (1668), 689]

Indeed, Pell’s problem XXVII–XXVIII corresponds to Diophantus V.19 and
van Schooten’s Problem XIII; Pell’s XXIX–XXXI to van Schooten’s XII.16

Likewise, the Table of Incomposits corresponds to van Schooten’s V (the
syllabus numerorum primorum) and pages 194 to 195 (“XXIX different ex-
amples of a Composit”) to van Schooten’s III and IV. In the process of writing
his own solutions to these indeterminate problems, Pell used up 83 pages,
van Schooten 4 pages.

It may be clear from this list that Pell seems to engage into a discussion
with van Schooten’s Exercitationes mathematicae, if not with its underlying
Cartesianism in things mathematical. Pell’s main criticism on the solutions
presented in van Schooten (solutions by Bachet, van Ceulen and Descartes)
was that these mathematicians had failed to appreciate the indeterminate
nature of these problems. Namely, Van Schooten’s sources had given only one
(or two) answer(s) to the problems, whereas they are “capable of innumerable
answers” [Rahn 1668, pp. 80; 116; 138]. Pell adapted the methods so as
to produce innumerable answers and then added a “review” of the list of
solutions.17 This “review” is actually an analysis of the order of the solutions.
For Problem XXVII this “review” states:

16Unfortunately, Stedall’s essay on Pell’s mathematics [Malcolm and Stedall 2005,
pp. 247–328] somewhat neglects Pell’s work on Diophantine problems. In the case of
problem XXIX the comment is restricted to “A further problem [...] fills most of the
remaining sixty pages” (p. 311). The sources and solutions to problem XXIX are dis-
cussed in [Costabel 1950, Hofmann and Costabel 1952], an analysis of Pell’s treatment is
unfortunately lacking as Costabel [1986, p. 324] later acknowledged.

17This “review” can be found pp. 121–128 for Problem XXVII, pp. 142–174 for Problem
XXIX. The solutions are actually integer triangles and thus consist of three numbers
(a, b, c), Pell’s “review” focuses mainly on the hypotenuse of the triangle.

9



this Pattern shews you a disorderly mixture of Answers in Great
Numbers amongst Smaller Numbers. [...] So that here is need of
another Rule for the orderly selecting of values of b and c, apt to
lead us, in order, to Answers falling under any prescribed limit
[as for example 100,000] that so we may not be cumbted with
huge Numbers, when there are many smaller ones fit to answer
the Question. [Rahn 1668, p. 142]

This disorder displays “inverted repetitions” (i.e. (a, b, c) and (c, b, a)) and
“confused Anticipations” (smaller hypotenuses before larger ones). Near the
end of the “review” Pell can say that

In the two preceding Pages you have some Solutions of Probl.
XXIX proposed p. 131, which was declared capable of innumer-
able Answers. And therefore I prescribed a Limit [No side greater
than 100,000] Pag. 152, I required that the Enumeration of them
should be orderly, pag. 159. I declared that I would have that
Enumeration Complete, giving All the answers that do not exceed
100,000 in their greatest side. [Rahn 1668, p. 168]

This conclusion sums up the aspects that are particular to Pell’s take on
Diophantine problems: Methods to generate an orderly and complete enu-
meration of answers.18 Finally, after the “review”, Pell gives another way of
solution where the disentanglement of the disorder in the answers is easier.19

The crucial tools in the “review” of van Schooten’s methods and the list
of solutions were tables.20 For both Problems XXVII and XXIX Pell used

18Two remarks pertaining more to the philosophy of mathematics may be added here.
First, one can wonder if Pell’s “orderly and complete Enumeration” is connected in any
way to Regula VII of Descartes’s Regulae ad directionem ingenii where a “sufficienti et
ordinata enumeratione complecti” [Descartes 1701, p. 18] is demanded. Although this
requirement is absent in Descartes’s Discours de la Méthode (1637) and the Regulae were
only published posthumously, Pell may have had knowledge of Descartes’s manuscript
during his years in the Low Countries. Second, in the analysis of the sources of Problem
XXIX Pierre Costabel and J. E. Hofmann both remarked that there is “une impuissance
[...] à pousser les questions de théorie des nombres jusqu’aux considérations exhaustives et
au point de vue existentiel” [Hofmann and Costabel 1952, p. 326] in the 17th century, with
the notable exception of Pierre de Fermat’s work. One should add Pell as an exception.

19These are Problems XXVIII for XXVII and XXX for XXIX (pp. 131 and 174–188).
20It is informative to compare Pell’s approach to number problems with Frenicle de

Bessy’s methods as analysed in [Goldstein 2001].
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a table of squares21 and the Table of Incomposits.22 More specifically, the
Table of Incomposits was pivotal in establishing Pell’s orderly enumeration.
It was used to find the greatest common divisor of three numbers (which is
easier with the help of a table than with a repeated Euclidean algorithm).
Now, to avoid the “inverted repetition” it was mandatory to divide by the
greatest common divisor at a certain point in the solution method (p. 147)
and to reorder the “confused anticipation” one had to restructure the list of
solutions according to their greatest common divisors (p. 152 ff.).

Mathematically, it seems that Diophantine problems and specifically the
generation of solutions in the right order indeed stimulated Pell to calculate
auxiliary tables. Both Brancker’s Table of Incomposits and Pell’s own Table
of Squares are instances of these, directly linked with specific problems. Both
tables also have the same upper limit (100,000) and fulfill the condition that
all numbers in the table should be in natural order without gaps. This
substratum clarifies the philosophical importance Pell ascribed to a table of
“prime truths”, since such a table would not only combinatorially generate all
composed truths, but would also be able to generate them without gaps, in
the right order, and could be used to show the non-existence (i.e. falsehood)
of a composed statement.

Of course, as already van Schooten had pointed out, the Table of Incom-
posits has many possible applications. The announcement of the book in the
Philosophical Transactions listed some of these:

Thirdly, as to the Table of Incomposits, no Book but this ex-
tends it to above Ten thousands, some of the uses whereof are
declared in the Title [i.e. “factors or coefficients”], others in the
Book; and even in Common Arithmetick, it is of excellent Use for
the Abbreviation of Fractions, and for giving of all the aliquot
parts of a Number proposed, useful for the Depression and Re-
sulotion of AEquations, as is taught by Albert Gerard [sic], and
van Schooten. [Phil. Trans. 3 (1668), p. 689]

The reduction of a fraction to its least denominator was indeed mentioned
p. 34 and taken up again in the explanation of the Table.

Pell’s Table is arranged in 21 columns indicating the hundreds, and 40

21See p. 130; 148. In 1668 Pell used Paul Guldin’s table of squares [Guldin 1635, post
p. 228], later he calculated a square table of his own [Pell 1672].

22See pp. 129; 147; 152–153.

11



rows containing the unities. Numbers divisible by 2 and 5 (though not 3) are
excluded and only the least factor is given. The result is:

a complete and orderly enumeration of all incomposits between 0
and 100000 [Rahn 1668, p. 193]

Little is said of the actual calculation of this Table of Incomposits. Brancker
wrote that Pell had taught him methods of calculating and extending the
table, but no theoretical details are given.23

He [Pell] shewed me the way of making the Table of Incomposits,
of examining it, and of continuing as far as I would. He encour-
aged me to extend it to 100 thousand. [Rahn 1668, non-pag.
preface]

More even, Brancker himself nearly despairs at the correctness of the table:

I was very sensible of the bad effects of perfunctoriness in Sup-
putating, Transcribing or Printing of it [the Table]. My care
therefore was not small, yet pag. 198 is almost filled with Errata,
and I dare not warrant that non have escaped unseen. [Rahn
1668, non-pag. preface]

Page 198 contains a list of 96 errors, some of them printing errors. During the
publication process of the Algebra (Jan.-Feb. 1667), organiser John Collins
had written to John Wallis (1616–1703) regarding the translation. In a letter
to Collins that arrived after the publication, Wallis gave a list of 145 errata
in the Table, at least 10 of which Brancker had not spotted. Collins commu-
nicated the list to Pell, who in his turn communicated it to Brancker, who
in the meanwhile had found 19 errors more.24 This slow process of control
led Brancker to conclude: ”I yet doubt its exactness”.

Wallis published his ”Catalogue of Errors” some years later in A Discourse
on Combinations, Alternations and Aliquot Parts [Wallis 1685a, pp. 135–136]
appended to his Treatise of Algebra [Wallis 1685b].25 Wallis claimed to have
examined the whole table ”in the same method and with the same pains as
if I were to Compute it anew”, and listed 30 additional errors or misprints.
More convinced than Brancker, Wallis added:

23But compare to earlier work of Pell on factoring, by way of summing up the digits in
[Malcolm and Stedall 2005, pp. 256–7].

24All letters in July 1668, [Beeley and Scriba 2005, II, pp. 469–470; 525–528; 533–535].
25This text, including the error list, is also reprinted in the Latin translation of the

Treatise in [Wallis 1693, p. 483ff.].
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Figure 1: A specimen of Brancker’s Table of Incomposits
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the Table will then be very accurate; and (I think) without any
Error [Wallis 1685a, p. 135]

Wallis mentioned the table in connection with the problem of decompos-
ing compound numbers in their aliquot parts, presenting the problem both
in a numeric (1123) and a coefficient/literal (aabc) notation. This was in
line with van Schooten’s Problem III and IV. Historically, Wallis’s Treatise
and Discourse both helped to strengthen an ”arithmetic approach to alge-
bra” [Pycior 1997, p. 125]. This approach had already been announced by
Oughtred and Pell26, but Wallis explictly advocated the use of the more pow-
erful and universal methods of algebra and arithmetic in demonstrations over
the geometric approach [Pycior 1997, pp. 118–134].

The Table of Incomposits was often recycled. It was first reprinted by
John Harris in his Lexicon Technicum, following the entry Incomposite Num-
bers [Harris 1707 & 1710, II, Incomposite]. Harris’s entry was a near word
for word repetition of Brancker’s description of the Table (i.e., [Rahn 1668,
pp. 193 and 196]) and gave the table, correcting the errors given by Brancker
but not those given by Wallis, exactly as printed in the Algebra.27

Pell’s Table was also reprinted as an appendix to volume XIII (1765) of
the famous Encyclopédie ou Dictionnaire raisonné des sciences, des arts et
des métiers.28 The table is described in the lemma premiers, nombres.

A l’occasion des nombres premiers, nous insérons, à la fin de ce
volume, une table qui nous parôıt assez bien étendue, & qui est
tirée d’un livre anglois d’algebre assez ancien & assez peu connu
[Diderot and D’Alembert 1751–1765, XIII, p. 289]

As in Harris’s Lexicon, the table was reprinted with Brancker’s corrections,
but not Wallis’s.29

26On Pell’s influence on Wallis’s work see [Stedall 2002, pp. 141–153] and [Malcolm and
Stedall 2005, pp. 313–20].

27The second edition of Harris’s Lexicon dropped the table but kept the description.
28Dickson [1919–1927, I, p. 349] consulted a later edition of the Encyclopédie (1780, vol.

II) and failed to note this is a reprint of Pell’s table.
29A superficial inspecting revealed that, e.g., the entry for 99443 is changed to 77 in

Harris’s table according to Brancker’s instructions. In the Encyclopédie, it has been cor-
rectly changed to 277. However, it seems unlikely that a new recalculation was done, since
the errors Wallis indicated went unnoticed and in 1770 Lambert found 60 more errors
(see 3.1). It is quite probable that Rallier des Ourmes contributed the entry to the En-
cyclopd́ie, since he published a small article on factor tables later that year [Rallier des
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2.2 German Reception in the early 18th Century

The endeavours of Brancker would remain unbeaten for over a century, but
his table to 100,000 was also hard to get hold of. Whereas, e.g., Wallis’s Trea-
tise on Algebra and its Latin translation was rather accessible in continental
Europe, the book by Rahn, Brancker and Pell was not.30 Only the inclusion
of the table in the Encyclopédie in 1765 made it accessible for a larger public.
However, many knew of Pell’s table, mainly through the mediation of Wallis.
The most ironic part then of the history of factor tables in the 18th century
is that many interested in mathematics knew that Pell’s table existed, but
were unable to obtain a copy, and thus had to calculate the table again. This
was the case of Poetius and Lambert.

The reception of 17th century English algebra on the continent, and es-
pecially in the German-speaking, protestant countries, was a complex and
multi-faceted process in which many personalities and media figured, but that
has so far not been adequately described and/or studied. Our treatment will
therefore be rather short and will focus mainly on some developments that
are important for the history of factor tables. It is, however, important to
keep in mind that this history has to be situated in the more general context
of the transmission of ideas between England and protestant Germany.

G.W. Leibniz (1646–1717) was one of the persons who were rather well
informed of the doings of the British algebraists through his correspondence
with the secretary of the Royal Society, Henry Oldenburg, who was of Ger-
man origin. Oldenburg, and indirectly Collins who made up drafts for Old-
enburg’s letters, had started the correspondence with Leibniz in 1670, a cor-
respondence that lasted until 1679 [Gerhardt 1849–1863, I, pp. 11–168]. In
1673 Leibniz also visited London and met with Hooke, Boyle, but also Pell.31

When Wallis’s Treatise on Algebra appeared in 1785, Leibniz wrote a re-

Ourmes 1768]. Perhaps in this process did Rallier des Ourmes correct some entries while
adapting the Lexicon-reprint of Pell’s table for inclusion in the Encyclopédie.

30E.g., Poetius, Lambert, Kästner and Lagrange knew the book by hearsay, but none
of them was ever able to inspect a copy. Rahn’s German version seems to have been even
rarer. All four, however, know Wallis’s work, Poetius and Kästner often quoting it.

31In this context, consider Leibniz’s letter to Abbé Galloys from December 1678. Leibniz
claimed to have a method to resolve all Diophantine problems, giving all solutions in proper
order or showing its impossibility, after a discourse on the use of tables in literal algebra
[Gerhardt 1849–1863, I, p. 185]. The words of this letter very nearly match up with Pell’s
own statements though Leibniz’s letter does not mention Pell.
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view for the Acta Eruditorum [Leibniz 1686].32 In 1695 Leibniz started a
correspondence with Wallis that lasted until 1700 [Gerhardt 1849–1863, IV,
pp. 1–82].

Whereas in England Wallis had to defend his algebraic/arithmetic ap-
proach in mathematics against the attacks of Hobbes and Barrow, who, in
line with the new empiricist philosophy, preferred geometric, sense-based
demonstration33, Wallis’s reception in Germany was in this respect less bi-
ased.34 Through Leibniz’s mediation there was a considerable reception of
English algebra in the German states. When Augustinus Vagetius sollicited
Leibniz’s opinion on how to write a textbook on algebra in 1696, Leibniz
[1923–2006, III, 6, pp. 780-81] replied that algebra and arithmetic (letters
and numbers) should best be explained at the same time, an idea rather
close to Wallis’s. Johann Michael Poetius is also one of the writers who drew
largely on Wallis in writing a textbook, and Christian August Hausen (1693–
1743), mathematics professor in Leipzig, was one of the first to introduce the
English style of algebra in Germany, using Newton’s Universal Arithmetick in
his courses [ADB, 15, pp. 440–441]. One of Hausen’s students was Abraham
Gotthelf Kästner (1719–1800), who would later become mathematics profes-
sor in Göttingen and write influential textbooks that stressed the need to
base arithmetic on the concept of number [Kästner 1758, non-pag. Vorrede].
Another irony of history then is that Wallis’s arithmetic approach to math-
ematics got more or less lost in England, but was developed in a different
variety in 18th century Germany.

As mentioned, one of Wallis’s readers was J.M. Poetius35, who followed
Wallis’s work in writing his Anleitung zu[r] arithmetischen Wissenschaft,
vermittelst einer parallelen Algebra (1728).36 Poetius wrote this arithmetic
and algebra textbook following a hint by Leibniz.37

I will in this book follow Mr. Leibniz’s proposition, and conju-

32Later, Leibniz also reviewed I. Newton’s Arithmetica Universalis [Leibniz 1708].
33This debate had a political-religious undertone, Wallis and Pell were connected to

Cromwell’s puritan movement, whereas Hobbes and Barrow were royalists, see [Pycior
1997, pp. 135ff.]. (The Restauration is in 1660)

34In France, the Cartesian heritage probably blocked an unbiased reception of Wallis.
35Unfortunately, we have been unable to find any biographical information on Poetius

so far.
36The dependence is clear by the content, but also by the many references. Poetius,

however, quotes many authors, e.g., also Oughtred, French textbooks and of course many
German writers.

37The reference is to Leibniz’s letter to Vagetius.
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gate common arithmetic as much as possible with literal calcu-
lus [i.e. algebra], but I will set this latter part apart through a
smaller print, so that the beginners may skip it by a first read-
ing if they want. In this way, one will have on the one hand the
main rules and examples of the operations, on the other hand one
will comprehend the reasons, from which these rules spring, and
consequently learn to understand the modus procedendi through
proofs. [Poetius 1728 & 1738, p. 54]38

Indeed, Poetius subscribed to a programme Christian Wolff (1679–1754) had
started. In the introduction to Auszug aus den Anfangs=Gründen aller
mathematischen Wissenschaften Wolff [1717] had argued for the introduc-
tion of arithmetic into general education, on the one hand because of its
practical use, on the other, because of its logical order and structure, both
aspects working together for the Enlightenment of common sense.39 This
implied two changes to the in Germany prevalent tradition of Rechenbücher :
A multi-layered text was given, appealing to both beginning and advanced
students, and all rules were proven to emphasize the order and structure.
Poetius implemented both requirements, but contrary to Wolff, did not rely
on Euclidean proofs with definitions and logical deductions, but endorsed
the development started by the British algebra writers and used algebraic
demonstrations. This is the meaning of arithmetic in parallel with algebra:
Poetius gives the proofs of the arithmetic rules through algebraic translation.

The construction and structure of numbers was a major topic in Poetius’s
book, in line not only with the English tradition, but also with Leibniz’s and
Wolff’s philosophy of cognitia symbolica, knowing through signs. Knowledge
of how (numerical) signs are structured enhances the use of these signs to
know and investigate the world.40 In an introductory chapter Poetius [1728 &

38Original: “Ich werde hierinne dem Vorschlag des Hernn von Leibniz folgen, und die
Buchstaben=Rechnung mit der gemeinen Rechnung so viel mglich conjungiren, jedoch
jene bey dieser vermittelst des kleinern Drucks a parte setzen, damit die Anfnger, oder
auch diejenige, so sich vor der Algebra scheuen, sie nach Gefallen im ersten Druchle-
sen auch bergehen knnen. denn also wird man dennoch eines Theils die Haupt=Reguln
und Exempel zu denen Operationen haben, andern Theils aber wird man die Grnde,
woraus dieselben Reguln entsprungen, verstehen, und einfolglich den Modum procedendi
per Demonstrationes begreiffen lernen.”

39We should add that Erhard Weigel (1625–1699), professor in Jena and one of Leibniz’s
influences, was the first to launch these ideas, see also [Vleeschauwer 1932].

40For a good introduction into 18th century semiotics see [Meier-Oeser 1998], and espe-

17



1738, p. 13] stressed the Indian provenance of the Hindu-arabic numerals41,
and devoted 4 pages to the explication of number systems to a different
base.42 The conclusion of this introductory chapter was:

In this way, one needs but few signs and names to designate
expressions of both the largest and smallest numbers. [Poetius
1728 & 1738, p. 13]43

In this context the first German factor table appeared.
Appended to Poetius’s book was an Anatomia Numerorum, Oder Zer-

gliederung der Zahlen Von 1 bis 10000. It lists all factors of all numbers to
1000, of all odd numbers not divisible by 5 and 3 between 1000 and 10,000.
In the introduction Poetius referred to Pell’s table to 100,000, mentioned in
Wallis. Since Poetius had been unable to find a copy, he had calculated a
(smaller) table by himself to 10,000 [Poetius 1728 & 1738, pp. 39–40]. This
anatomy of numbers was followed by a Practicam, a section on the advan-
tages and uses of this table: The manipulation of fractions, arithmetic and
geometric series. Diophantine problems are not mentioned. As far as the
construction of the table is concerned, Poetius referred back to the main
text on arithmetic, where he had explained the “Kenn-Zeichen” of the prime
numbers, or the “Symbolum primi geneticum” [Poetius 1728 & 1738, p. 141].
A first class of these characteristics were under the heading “Division”, where
the rules are given to determine whether a number is divisible by 2, 3, 4, 5,
7, 9 and 11. These rules were standard in nearly all textbooks on arithmetic,
and were generally called the “Kenn-Zeichen” of the numbers, so, e.g., in the
classic Demonstrative Rechenkunst by Clausberg [1732], who devoted some

cially for the semiotics within mathematics [Knobloch 1998].
41This was a matter of dispute between the Treatise by Wallis [1685b, p. 8] and John

Gerard Vossius’s De scientiis mathematicis (Amsterdam 1650).
42The references mentioned by Poetius are Erhard Weigel’s Tetractys [Weigel 1672];

[Leibniz 1703/1720] on dyadic; Dangicoure in the Misc. Berol. (1710) on quaternic;
Wiedeburg’s Dissertation (1718); Pelecanus (1712) on triadic; and Weidler’s Computo
Duodecadico on duodecimal number systems. We quote the references to show the popular-
ity of the topic in Germany. Leibniz [1703/1720, p. 226]. thought that the dyadic/binary
numeration system might provide a way to find a law behind the progression of prime
numbers, see [Mahnke 1912/13, Zacher 1973].

43Original: “Auf solche Art hat man zu den Expressionen so wohl der größten, als auch
der kleinsten Zahlen nicht viele Zeichen und Nahmen von nöthen.” Authorities quoted at
this point are Wolff (Elem. Math. Univ. Arithm.) and Christian August Hausen’s De
mathesi semiotica (1716).
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60 pages to these “Kenn-Zeichen”. Poetius turned these characteristics into
tools that were useful for the construction of factor tables. A second class of
factoring auxiliaries could be found in the section on powers:

To find whether a number with large aliquot parts has factors, or
if it is a prime number?
We treated of this problem in §397, and this problem also belongs
to the use of square tables.
One subtracts the given number (if it is not a square) from the
next greater square, until the remainder is a perfect square, then
the greater root + the smaller root give the larger factor, and the
greater root – the smaller root the smaller factor. [Poetius 1728
& 1738, p. 299]44

With a table of squares at hand, this elementary method can indeed help to
determine the factors. Poetius was thus the first factor table maker who had
explicitly indicated the methods used in the construction. Curiously enough,
Eratosthenes’s sieve procedure was not mentioned at all45, but only methods
to factor single numbers, surely a more tedious method.

Poetius’s factor table was later reprinted in the Vollständiges mathema-
tisches Lexicon [Wolff and Richter 1734/1742, II, pp. 530ff.], originally edited
by Christian Wolff (1716), later reworked and extended against Wolff’s will
by G.F. Richter, who inserted the table in Volume II (1742).46 Some years
later, a Nürnberger military, Peter Jäger, calculated a list of primes to the
full 100,000 (actually to 100,999) and offered his complete table for sale at the
expensive price of 2000 Thalers. Halle’s professor of medecine, J.G. Krüger

44Original: “Zu finden, ob eine ungrade schwehrtheilige Zahl einige Factores hat, oder
ob sie eine Prim-Zahl ist?
Hiervon ist schon oben im 397 §gedacht worden, und gehört dieses Problema auch mit zur
Nutzung der Quadrat-Taffeln.
Man subtrahiere die vorgegebene Zahl, (so sie nicht selbst eine Quadratzahl ist,) von
denen nechstfolgenden grössern Quadraten, so lange biß der Rest ein vollkommen Quadrat,
so giebt des grösseren Wurtzel + des kleinern Wurtzel den grössern Factorem, und des
grössern Wurtzel – des kleinern wurtzel, des kleinern Factorem.”

45As Verdonk [1966, p. 167] has shown, the original descriptions of the cribrum
Erasthostenis in Nichomachus and Boethius seem to have been rather badly known in
the 16th century. This seems to have persisted in the 17th century. Only in the 18th
century did Rallier des Ourmes [1768] publish a description and did Horsley [1772] edit
both text excerpts.

46See [Kästner 1786, pp. 556-57] for the publication history.
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[1746], however, published the table without paying. Apparently without
knowing of Pell or Poetius, H. Anjema of Franeker (Netherlands) also under-
took the calculation of all factors of numbers under 100,000, but died when
he was at 10,000.47 After his death, the editors Sam. and Joh. Luchtmanns
published the extant part. Anjema’s table consisted of 302 pages, because
he not only indicated all factors for all numbers, but also included 1 and the
number itself in the list [Kästner 1786, pp. 558-59].

3 Johann Heinrich Lambert’s Table Project

“It seems that calculation and the construction of tables have become Mr
Lambert’s second nature, as it seems to cost him no more time and effort

than plain writing.”48

This was the state of the art regarding factor tables anno 1770, the year
in which J.H. Lambert published several appeals for tables in general, factor
tables in particular, an event that will dramatically change the history of
factor tables and leave a mark deep into the 19th century. Johann Heinrich
Lambert (1728–1777) was born in Mulhouse (Alsace) from poor parents, but
through private study and determination he became a philosopher, physicist,
linguist and mathematician of importance. In 1748 Lambert became tutor of
the children of the Swiss confederation president von Salis in Chur. In this
way, Lambert did not only became acquainted with many works in the rich
library of the Salis familiy, but 1756-58 also visited Göttingen, Hannover,
Utrecht, Leiden, Turin with his pupils. This voyage connected him with
various centers and persons of learning in Europe. Among the mathematical
books Lambert read quite early are Wolff’s Anfangsgründe and Poetius’s
Anleitung.

As recorded in the Monatsbuch (his scientific diary) Lambert started
thinking about the divisors of integers in June 1756. An essay by G.W. Krafft

47Some biographic detail can be found in [Mathematical Tables and other Aids to Com-
putation 3 (24), (Oct. 1948), pp. 331–332].

48Original: “Wenigstens muß das Rechnen und das Tabellenmachen dem H. Lambert
schon so zur andern Natur worden seyn, daß es ihm nicht mehr Zeit und Mühe kostet,
als gemeine Schrift.” (review of Lambert’s Beyträge zum Gebrauche der Mathematik und
deren Anwendung, Band II (1770), in: Allgemeine Deutsche Bibliothek 14 (2), p. 322,
1771.)
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(1701–1754) in the St Petersburg Novii Commentarii seems to have trig-
gered Lambert’s interest [Bopp 1916, p. 17, 40]. The physicist, astronomer
and mathematician Krafft was Euler’s colleague in St Petersburg and had
already published on perfect and amicable numbers. His [Krafft 1751/1753]
was a survey of known facts and techniques to factor large integers. Krafft
referred to van Schooten’s list of primes and Poetius’s factor table and in-
dicated some errors in the latter table. Then he went on to discuss the
“prime-formula” 6n± 1 (due to Jacob Bernoulli and Leibniz [1678]) and ex-
plained how versions of Fermat’s little theorem (ap − a is divisible by p, p
odd) may be used for factoring, referring to Euler [1732/1738].49

3.1 Simple Ideas, Prime Numbers and Tables

From 1760 to 1765 Lambert worked on his major philosophical works [Bopp
1916, p. 47] in which he merged Wolff’s cognitia symbolica with Locke’s
anatomy of concepts [Locke 1690]. Lambert wanted a reformation of phi-
losophy where the basic principles would not be rather arbitrary definitions
(Wolff) but would be acquired through an anatomy of the concepts avail-
able (Locke). A kind of philosophy that had a scientific method, though not
Wolff’s Euclidean method, but rather an algebraic method. This reform plan
should enable philosophy to make progress, just as science did (Bacon). The
scientific method50 is explained in the Neues Organon [Lambert 1764], not
by accident referring to Bacon’s project, the anatomy of some basic concepts
in Anlage zur Architectonic [Lambert 1771].51

For carrying out this anatomy of concepts and for re-combining simple
concepts (“das Chaos auseinander lesen”), tables were of great value to Lam-
bert. Lambert often used a topical table as a heuristic tool in his investiga-
tions, be they philosophical or scientific:

A topical system, which would be the abstraction of what can be

49It must be remarked that Euler’s paper only contained a statement of Fermat’s little
theorem, not a proof. Euler proved the theorem in 1736 (published 1741) and showed in
1747 (publ. 1750) how to use it for factoring. Krafft did not refer to those later papers,
but must have known their contents as he gave a proof and application of Fermat’s little
theorem.

50Amongst the plurality of the methods proposed by Lambert are an algebraic calculus
for logical deduction (part 1); an algebraic view on language (part 3) and an algebraic
calculus to determine the degree of verisimilitude of historical accounts (part 4).

51This work was published 1771, but already finished in 1765.
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thought, determined, researched for any object [...] an inventory,
a form of all things [...] that one can use when one wants to know
something, both the thing in itself as in its relationships to other
things. [Lambert Briefe 1781–1787, I, pp. 284–85]52

Lambert saw the anatomy of a number system as an instance of such a topical
table:

The architecture of numbers is the abstraction of all things, where
one calculates with numbers or discrete quantities. It is a gen-
eral type, a form, and the relationships and transformations of
numbers have arithmetic as their own theory. [Ibid.]53

In this analogy, it need not surprise that a table of factors becomes the
metaphor for a philosophy having a table of simple concepts at its disposi-
tion.54

[In this anatomy of concepts] one takes a concept and looks up
its inner determinations, which are more or less like its factors
and prime numbers. [Lambert Briefe 1781–1787, I, p. 24]55

The Anatomia Numerorum or Arithmetic, not only the title of Poetius’s
table but also in the title of [Lambert 1769], was therefore a theory of utmost
importance to Lambert.

Reform of philosophy meant for Lambert also reform of the organisation
of knowledge. In 1765 Lambert became a member of the Berlin Academy,
a position he kept until his death in 1777. During this Berlin period he

52Original: “Ein topisches System, welches ein Abstractum wäre, von allem was sich bey
einem jeden Objecte gedenken, betrachten, bestimmen, untersuchen läßt [...] ein Inventar-
ium, ein Formular etc. von allem [...], was bey jeder Sache, wenn sie an sich und nach ihren
Verhältnissen erschöpft werden sollte, zu suchen ist.” (Lambert an Holland, 15.8.1768)
Lambert’s topical table was published in Nova Acta Eruditorum [Lambert 1768].

53Original: “Nun ist das Zahlengebäude gleichsam das Abstractum alles dessen, wo man
mit Zahlen rechnet oder aller Discreten-Quantitäten. Es ist ein allgemeiner Typus, ein For-
mular davon, und die Verhältnisse und Verwandlungen der Zahlen haben die Arithmetik
als ihre eigene Theorie.”

54To our knowledge Lambert must have come upon this metaphor independently of John
Pell (see 2.1).

55Original: “[Bey dieser Anatomie der Begriffe] hält man sich schlechthin an den Begriff
selbst, und sucht seine inneren Bestimmungen auf, welche gleichsam seine Factores und
numeri primi sind.” (Lambert an Holland, 21.04.1765)
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devoted himself to the dissemination and advancement of sciences in general,
to the editing of tables in particular. From 1770 onwards, two extensive table
projects absorbed nearly all of Lambert’s time. The first one, supported
by the Academy and in collaboration with his colleagues Bernoulli, Schulze,
Lagrange and Bode, was a collection of astronomical tables.56 The aim was to
bring together all useful and necessary astronomical tables in one collection so
that they would be accessible to the individual astronomer and would contain
(through comparison and recalculation) no more printing and calculation
errors. In this way, Lambert claimed, it was possible:

if all the best astronomical tables [...] would get lost, they could
be reconstructed from our collection [Lambert Briefe 1781–1787,
V, p. 154]57

In 1770 Lambert started up a similar kind of compilation.

There are numbers, proportions, formulae and calculations that
deserve to be done and written down once and for all, because
they occur very often, so as to avoid the trouble to find or calcu-
late them over and over again. This is the reason why in all parts
of mathematics one has tried to put everything in tables that can
possibly be put in tables. [Lambert 1770, p. 1]58

The publication of the Zusätze zu den logarithmischen und trigonometrischen
Tafeln [Lambert 1770] was a personal project of Lambert (without the sup-
port of the Academy). Therefore, at the same time, Lambert launched an
urgent appeal to the general public for helping him to extend this collection
of tables.

Prominently featuring in Lambert’s table collection is a table of factors
and primes, filling pages 2–117 of the 210 pages with tables. As Lambert
recounted in the introduction to the Zusätze, Poetius’s table to 10,000 was
the first factor table he saw and although Poetius referred to Pell’s table,

56These are the Sammlung astronomischer Tafeln in 3 volumes, published 1776 in Berlin.
57Original: “Wenn die besten astronomischen Tafeln [...] sollten verlohren gehen, so

würden sie aus unserer Sammlung wieder hergestellt werden können.”
58Original: “[es gibt] Zahlen, Verhältnisse, Formeln und Rechnungen, die eben daher,

daß sie öfters vorkommen, ein für allemahl gemacht und aufgezeichnet zu werden verdienen,
damit man der Mühe, sie immer von neuen zu finden oder zu berechnen, überhoben seyn
könne. Dieses ist der Grund, warum man in allen Theilen der Mathematick, was sich in
Tabellen bringen liesse, in Tabellen zu bringen gesucht hat.”
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Figure 2: A specimen of Lambert’s Table of Divisors, with C.F. Gauss’s
hand written correction

24



Lambert had been unable to find a copy. At first, Lambert wanted to use
Poetius’s table for his collection:

I satisfied myself with the table calculated by Poetius, and just
brought it in a more flexible order.59 I occasionally showed my
table, before its printing, to Mr de la Grange. He did not know of
any other tables similar to it, and thus he wished to have copies
of the table once it would be printed, to send them to his corre-
spondents. As the printing was delayed, Mr de la Grange looked
if he could not find more of these tables. He did not search in
vain. Pell’s table, indeed to 100,000 und thus 10 times further
than Poetius or Anjema, could be found in the Dictionnaire en-
cyclopédique and in Harris’s Lexicon of Arts and Sciences. As
I thereupon looked into Wallis’s Opera, I found the 30 printing
errors Wallis had indicated in Pell’s tables and Pell himself had
missed, all just as Poetius mentions. [Lambert 1770, pp. 4–5]60

Lambert used Poetius’s table, Pell’s table in the two reprint versions and
Wallis’s corrections to check the table before publication. After Pell’s table,
Lambert excluded numbers divisible by 2 and 5 and only noted the smallest
factor, but he also excluded the numbers divisible by 3 and likewise changed
the arrangement of the table. As Lambert had largely expounded in [Lambert
1765-1772, II, pp. 42–53] the regularities of the decimal system could be
used for checking the table and he advised the following arrangement. The
hundreds still figure over the columns, but not in counting progression but

59This specimen, a factor table to 10,200 was printed in [Lambert 1765-1772, II, pp. 52–
53].

60Original: “[ich ließ] es bey der von Poetius berechneten Tafel bewenden, und begnügte
mich sie in eine geschmeidigere Ordnung zu bringen. Ich zeigte hierauf meine Tafel, ehe sie
abgedrückt wurde, gelegentlich dem Herrn de la Grange. Es war ihm ebenfalls weiter nichts
davon bekannt, und so bezeugte er ein Verlangen, die Tafel, wenn sie einmal abgedrückt
wäre, zu haben, und selbst an seine Correspondenten Exemplarien davon zu verschicken.
Da es sich inzwischen mit dem Abdrucke verzögerte, so suchte der Herr de la Grange,
ob er nichts weiteres von solchen Tafeln finden könne. Er suchte auch nicht vergebens.
Pells Tafel, die in der That biß auf 100000, und demnach 10mal weiter als die von Poetius
und Anjema geht, findet sich sowohl in dem Dictionaire encyclopedique als in des Harris
Lexicon der Künste und Wissenschaften. Und da ich daraufhin noch in den operibus
Wallisi nachsuchte, so fand ich darinn auch die von Poetius erwähnte 30 Druckfehler, die
Wallis in Pells Tafel angemerkt hat, und die sich unter den von Pell selbst angemerkten
nicht fanden.”
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in three separate progressions (3n, 3n + 1, 3n + 2), the unities are still in
the rows but excluded are those divisible by 2, 3 and 5. In this way, there
are 3000 numbers per page, and some regularities are easier noted – Lambert
noted over 60 errors more than Wallis [Lambert 1770, p. 5].

3.2 Lambert’s Contributions to a Theory of Composite
and Incomposite Numbers

Lambert did not only deliver the factor table, but also noted the absence of
any coherent theory on prime numbers and divisors. This was of use in finding
primality criteria and factoring tests, but for Lambert it was also an instance
of a fragmentary theory which needed philosophical and mathematical efforts
to become mature.

To this aim [prime recognition] and others I have looked into
the theory of prime numbers, and I did find some pieces, but
singular and incomplete, without the apparence that these could
be assembled quickly and could build a formal system. Euclid has
few, Fermat singular but mostly unproven theorems, Euler single
fragments, that anyway are far removed from the elementary level
and between them and the elementary results are many gaps.
[Lambert 1770, p. 20]61

This lack of theory was much regretted by Lambert. In a comprehensive
discussion on the structure and acquirement of scientific knowledge in his
Neues Organon [Lambert 1764, I, pp. 386–450], Lambert had given many
tools and strategies for finding and repairing the gaps in a theory, for building
a theory and making it more complete. The theory of numbers seemed to
Lambert a domain that badly needed such a treatment.

In an essay on decimal periodic fractions, Lambert had already con-
structed some primality tests and had found a new criterium for primality.62

61Original: “Ich habe mich zu diesem Ende [der Primzahlerkennung] so wie auch zu
andern Absichten um die Theorie der Primzahlen näher umgesehen, und da fand ich
freylich nur einzelne abgebrochne Stücke, ohne sonderlich Anschein, daß dieselbe so bald
sollten zusammengehängt und zum förmlichen System gemacht werden können. Euclid hat
wenig, Fermat einzelne meistens unbewiesene Sätze, Euler einzelne Fragmente, die ohnehin
von den ersten Anfängen weiter entfernet sind und zwischen sich und den Anfängen Lücken
lassen.”

62On decimal fractions and Lambert’s essay, see [Bullynck 2008].
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In this way, there are for any given prime a progressions
1, m, m2, m3, m4, etc.
for which a period of a − 1 members is produced, which never
happens in the case of composite numbers. It is obvious, that
this criterium for prime numbers can be checked. [Lambert 1769,
pp. 127–128]63

This criterium, however, is hardly efficient in practice, since its worst case
amounts to a divisions of length a in a numerical positional systems.

In 1770 Lambert presented two sketches of what would be needed in such
a theory of numbers. The first one mainly dealt with factoring methods [Lam-
bert 1765-1772, II, pp. 1–41], the second one gave a more axiomatic treatment
[Lambert 1770, pp. 20–48]. In the first essay, Lambert explained how Eratos-
thenes’s sieve worked, and how it could be optimised through exclusions of
test divisors if one factors numbers with small factors. For larger factors, ap-
promixation from above, starting from the square root of the tested number
p, was more advantageous.64 For both methods, Lambert advised the use of
tables: Tables of primes for the sieve, a table of the last digits of a square
and a table of repeated division for the large factor method. The second
essay had more theoretical bearings. Lamberts rephrased Euclid’s theorems
for use in factoring, included the greatest common divisor algorithm, and
put the idea of relatively prime numbers to good use. He also noted that
binary notation, because of the often occurring symmetries, could be helpful.
Finally, Lambert also discovered Fermat’s little theorem as a good though
not infallible criterium for primality, ”but the negative example is very rare”
[Lambert 1770, p. 43].

Through Lambert’s efforts, the topic of factoring got discussed in the
Berlin Academy. J.-L. Lagrange (1736–1813) showed firm interest in factor

63Original: “Sic et pro quovis numero primo a dantur progressiones
1,m, m2,m3,m4, etc.
quae periodum producant a− 1 membrorum, quod cum de numeris compositis nunquam
locum habeat, patet, et hinc peti posse numerorum primorum criterium.” This criterium
comes down to the statement that every prime number has a primitive root, or alternately,
that there exists a number system to a base m for which 1

p will have a period of length
p− 1.

64One should bear in mind that Lambert’s range of tested numbers is between 1 and
some millions, say, up to 10-digit-numbers. Since this upper limit is nowadays much
higher, the methods fall into 3 categories: small, middle and large.
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tables65, and Johann III Bernoulli (1744–1807), pursuing Lambert’s method
of factoring with decimal periods, also regretted the absence of a theory
[Bernoulli 1771/1773, p. 318]. In this atmosphere, Academy member Niko-
laus von Beguelin (1716–1789), the former tutor of the Prussian crown prince,
wrote some essays on factoring. To this end, Beguelin devised a new number
system that combined the conveniences of algebraic and numeric notation.

Although the science of numbers is of geometric necessity, based
on the principle of contradiction, we know that the number signs
& and the methods of expressing the various combinations are
not of absolute necessity. [...] It is evident that the more we
diminish the numbers of primitive elements the more the arith-
metical operations will be simplified, & the sooner also we can
hope to see the nature of numbers & their mutual relationships
in their expressions. [von Beguelin 1772, p. 296]66

Though the 18th century had proven Leibniz wrong to expect that the binary
notation would reveal the mysteries of prime numbers, other notations could
be helpful in finding factors, as Lambert had pointed out, providing examples
of binary numbers that can be factorised at sight. Beguelin applied his
principle of sufficient reason (”raison suffisante”) to this problem of finding
an optimal notation. The binary system would be the best, if it would not,
as Beguelin remarked, have two disadvantages: The numbers become too
long and one cannot transpose the digits at will as one can in literal algebra.
His solution was a mixture of systems: He notated the powers of a binary
number, thus 0.2.4. (or 4.0.2. etc.) means 19 or 10101 in binary notation
[von Beguelin 1772, p. 297].

Using the advantages of his notation, Beguelin constructed formulae for
numbers with 2, 3 and 4 factors that show the skeleton of the notation to be
expected. In this way, Beguelin had an approach that mechanised Lambert’s

65See the introduction to Lambert’s Zusätze [Lambert 1770, p. 4], Lambert’s correspon-
dence [Lambert Briefe 1781–1787, V, pp. 51–52; 120–121; 194] and Lagrange’s correspon-
dence [Lagrange 1867-1892, XIII, p. 193].

66Original: “Quoique la science des nombres soit de nécessité géométrique, fondée sur le
princip de contradiction, on fait que les signes des nombres, & les méthodes d’en exprimer
les diverses combinaisions ne sont pas d’une nécessité absolue. C’est une affaire de choix,
ou de convention. [...] Il est évident que plus le nombre des élémens primitifs, plus
les operations arithmétiques seront simplifiées, & plutôt aussi on pourra se promettre
d’appercevoir la nature des nombres & leurs rapports mutuels dans leur expression.”
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remarks on binary numbers. Instead of manipulating the binary number
to find symmetries, Beguelin could look them up in a table of formulae.
Unfortunately, Beguelin soon found out that the problem was thus reduced
to the combinatory problem of excerption, i.e., writing a number as a sum
of certain other numbers having a specific form. For most forms, Beguelin’s
approach reduced factoring to an at least as difficult problem in additive
number theory. For numbers that in Beguelin’s notation had no gaps (i.e.
contain all exponents starting from 0), numbers of the form 2n−1 (Mersenne
numbers), or have many gaps, 2n + 1, von Beguelin [1777] tediously deduced
formulae. Beguelin’s essays again show the connection between a rational
philosophy of cognitia symbolica and the research done on number systems.

Finally, it should be remarked that in 1773 and 1775 Lagrange published
his Recherches d’arithmétique in the Mémoires of the Berlin Academy, bring-
ing Euler’s and his own results on quadratic forms together, giving the first
general treatment of reduction and equivalence (in modern terms) of binary
quadratic forms. In his preface, he explicitly referred to the use of this theory
for factoring numbers:

These studies are devoted to numbers that can be represented by
the formula Bt2 + Ctu + Du2 [...] First I will give a way to find
the different forms the divisors of these numbers can have; then I
will give a method to reduce these forms to a minimal set; I will
show how to set up tables for practice, and I will show how to use
these tables in the search for factors of numbers.[Lagrange 1773
and 1775, p. 265]67

Lagrange had tabulated the linear divisors of a certain family of quadratic
forms. These were useful as a tool in finding particular forms of prime num-
bers, or forms that exclude them. Lagrange closed his paper with an applica-
tion, showing how to factor 10001, 10003 and 100003 with the help of these
tables, and with list of divisibility criteria.68

67Original: “Ces Recherches ont pour objet les nombres qui peuvent être représentées
par la formule Bt2 + Ctu + Du2 [...] Je donnerai d’abord la manière de trouver toutes les
différentes formes dont les diviseurs de ces sortes de nombres sont susceptibles; je donnerai
ensuite une méthode pour réduire ces formes au plus petit nombre possible; je montrerai
comment on en peut dresser des Tables pour la pratique, et je ferai voir l’usage de ces
Tables dans la recherche des diviseurs des nombres.”

68The tables are in pp. 311–312 (1773); pp. 329–330; 332–333 (1775), or also in [Lagrange
1867-1892, III, p. 695] on pages 757–758, 766–767 & 769–770. The theorems on divisibility
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3.3 Lambert’s Appeal for Factor Tables

Lambert’s first public appeal for the production of mathematical tables was
advertised in the 2nd part of his Beyträge zum Gebrauch der Mathematik
(1770). In the description of his first specimen of a factor table (to 10,200),
Lambert had encouraged other mathematical practitioners to extend the ta-
ble. To all calculators that wanted to join his project, Lambert had promised
honour if not scientific immortality just like Napier, Briggs, etc. had earned:

I would like to remark that I specifically publish this [factor]
table, so that the flexible arrangement of the table would motivate
someone to add 9 more, or if he wants real immortal fame, 99
more [i.e. to 1,020,000] [Lambert 1765-1772, II, p. 49]69

In the introduction to the table collection, the Zusätze (1770), Lambert elab-
orated his argument. He deplored that the factor table had at least been cal-
culated four times already (Pell/Brancker, Poetius, Anjema, Krüger/Jäger),
but that those duplicate efforts had not advanced the table in any way.

I said, that in the future these tables will be calculated from
scratch again. [...] Because it is a tedious labour, to calculate
the table of all divisors of the numbers from 1 to 102000 again,
I have a plea for the journalists and other writers who will see
this work. Viz., they will act out of humanity and serve the
mathematical sciences if they contribute as much as possible to
the advertisement of this work. Because if someone in the future
feels like calculating such tables, he will better spend his time [...]
on extending the table, instead of recalculating it again.[Lambert
1765-1772, II, pp. 8–9]70

on pp. 345–349 (1775) resp. pp. 783–788. The divisibility criteria had been announced
two years before by Johann III Bernoulli [1771/1773, p. 321].

69Original: “Vielmehr werde ich anmerken, daß ich die Tabelle vorzüglich deswegen
durch den Druck bekannt mache, daß etwann jemand durch die so geschmeidige Ein-
richtung derselben sich bewegen lasse, noch 9 andere, oder wenn er sich einen recht un-
sterblichen Namen machen will, noch 99 andere beyzufügen. [d.h. bis 1020000]”

70Original: “Ich sagte erst, daß solche [Faktoren- und Prim-]Tafeln auch künftig noch
von neuem werden berechnet werden. [...] Da es indessen eine langwierige Arbeit ist,
die Tafeln der Theiler der Zahlen von 1 biß 102000 von neuem zu berechnen, so werde
ich an die Herren Journalisten und an jede andere Schriftsteller, denen dieses Werckchen
vorkommen wird, eine Bitte thun. Sie werden nemlich aus Menschenliebe handeln, und den
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Here again, we see Lambert’s vision on science at work: Science should ad-
vance, not stabilise, and its results should be known and accessible to every-
one.

In 1771 and 1772 two updates on the table project are given. Since a few
people joined in Lambert’s table project, some table desiderata had become
obliterate, therefore, it was of importance to announce the progress, so that
duplicate efforts would be avoided. Lambert inserted a note in the widely
read review journal Allgemeine Deutsche Bibliothek (1771, vol. 14, nr. 1,
pp. 305–306), communicating that one person (Oberreit) had calculated the
factor table to 150,000 and planned to proceed to 200,000, and that another
(Wolfram) had calculated hyperbolic logarithms. He also repeated that ev-
eryone was invited to complete his system of tables. Lambert concluded
with:

My address is:
A Monsieur Monsieur [sic!] Lambert, Professeur Royal, Membre
de l’Acad. R. de Berlin et diverses Academies et Sociétés des
Sciences, à Berlin.

Parallel to this public appeal, Lambert had also inserted a standard appeal
at the end of all letters he sent during the years 1770–1771.

Every now and then there are lovers of mathematics who like
to calculate. And I have reason to hope that my invitation [...]
will not be in vain. If you would, dear sir, find someone in your
surroundings, who would like to undertake such calculations, it
would be very agreeable to me. [Lambert Briefe 1781–1787, I,
pp. 367–368]71

mathematischen Wissenschaften einen guten Dienst thun, wenn sie zur Bekanntmachung
dieses Werkchens so viel möglich beytragen. Denn wer nur auch künftig Lust hat, solche
Tafeln zu berechnen, der wird dann immer besser seine Zeit darauf verwenden [...] [die
Tabelle] weiter [zu führen], als das bereits berechnete nochmals [zu berechnen]”

71Original: “Es gibt hin und wieder Liebhaber der Mathematik, die gerne rechnen.
Und ich habe Ursache zu hoffen, daß die Einladung [...] nicht ohne Frucht seyn werde.
Sollten Sie, mein Herr, in dortigen Gegenden jemand finden, der zu solchen Berechnungen
Lust hätte, so würde es mir sehr angenehm seyn.” (Lambert to Kant). Cfr. Bernoulli’s
footnote on this page. In this context, it is also interesting to note that Lambert proposed
to Röhl (Sept. 1771) that the calculation of tables might be good topics for PhD students!
Lambert Briefe [1781–1787, II, p. 391–392]
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A last publicly printed update of the table project appeared in the last volume
of Lambert’s Beyträge (1772). It included a four page list of errors in the
factor table which the officer Wolfram had found and a list of tables that
Lambert had already received or calculated himself, amongst them a factor
table to 339000 [Lambert 1765-1772, III, non-pag. Vorrede]. Most of the
organisation of the table project had been through letters.

everything else can be easily adjusted in a written correspondence
[A.D.B. 14 (1), p. 305]

This correspondence with about a dozen of people comprises most of parts IV
and V in Lambert’s Deutscher Gelehrter Briefwechsel, posthumously edited
by Johann III Bernoulli from 1782 to 1787.

4 Calculators in Correspondence

4.1 Early Answers to Lambert’s Appeal

One year after the publication of the Zusätze the first contributions arrived
in Lambert’s hands. All in all, between 1770 and 1777, the year of his death,
Lambert entertained a correspondence with 11 persons on tabular topics, 6 of
whom were working on factor tables.72 Restricting ourselves to factor tables,
the contributions occurred in two quite different phases: A first one 1770–
1776 (Wolfram, Oberreit, von Stamford, Rosenthal) and a second one 1776–
1777 (Felkel, Hindenburg). It is remarkable how differenciated the social
provenance of Lambert’s collaborators was: Wolfram was an artillery officer,
Oberreit an accountant, von Stamford an engineer, Rosenthal a baker, Felkel
a teacher and Hindenburg a student and later professor. This list already
gives a hint why the first phase is different from the second; Felkel and
Hindenburg were near professionals, thinking in career moves, whereas the
others were amateurs.

As already mentioned, Isaac Wolfram had contributed a list of errors
to the factor table in Lambert’s Zusätze, his other main contributions to the

72These are Wolfram, Oberreit, von Stamford, Rosenthal, Felkel, Hindenburg on factor
tables; Schönberg and Röhl on square and cube tables; Baum on sine tables; Schulze
and Eißenhardt on issues of publication. The correspondences are in [Lambert Briefe
1781–1787, II, IV & V].
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table project were logarithms.73 Oberreit had devoted himself solely to factor
tables. He had calculated to 150,000 in 1770, to 260,000 in the Summer of
1771 and to 339,000 in 1772 [Lambert 1765-1772, II, non-pag. Vorrede]. In
1774–5 Lambert had received the factor table to 500,000 from Oberreit, but
also the announcement that professional problems made further calculations
quite impossible. Acting on this problem, Lambert found von Stamford
willing to calculate the part 504,000 to 1 million, but seeing the work did not
advance quickly enough, he divided the work between von Stamford (504,000
to 750,000) and Rosenthal (750,000 to 1 million).74 In the end, two tables
were finished, the one by Oberreit to 504,000 and the one by Rosenthal
750,000 to 1 million, unfortunately neither of them were published. J.K.
Schulze, who was designated to continue Lambert’s table project after 1777,
could dispose of Lambert’s table-related Nachlass.75 He published Wolfram’s
logarithms and Röhl’s squares and cubes in [Schulze 1778], but he never got to
publish Oberreit’s table.76 After Lambert’s death, Rosenthal sent his table to
the professor J.G. Kästner of the Göttingen University, but the gap between
500,000 and 750,000 hindered a publication [Kästner 1786, pp. 564–565].77

Being practically oriented, Lambert had a clear plan for publishing these
tables. He repeatedly promised his correspondents they would get their “pa-
per and ink” paid back when it came to a publication, and that he would take
care of finding a publisher [Lambert Briefe 1781–1787, V, p. 61]. Of course,
publishers were mostly rather unwilling to invest in a hard-to-print and hard-
to-sell volume of tables. Intimately knowing the mechanisms of the printing
trade of his days, Lambert even devised strategies to find a publisher:

I have to find various ways, to gradually publish [these tables]. I
thought the Leipziger Buchmesse would offer the best opportu-
nity to find a publisher, in particular those publishers who can-
not find enough manuscripts because they live in remote places.

73Some biographic details and a thorough survey of Wolfram’s contributions in
[Archibald 1950].

74The respective correspondence with Oberreit, von Stamford and Rosenthal in [Lam-
bert Briefe 1781–1787, II, pp. 366–382 & V, pp. 10–23 & V, 24–33], a summary of the
content of these letters is given by Glaisher [1878, pp. 111–113].

75The rest, letters and unpublished essays, was at the disposition of Johann III Bernoulli.
76See Bernoulli’s footnote [Lambert Briefe 1781–1787, I, p. 368].
77In a letter to Z. Dase [1856, pp. 76–77] (dated 1850), C.F. Gauss wrongly described

this table as a factor table for numbers between 500,000 and 750,000, probably a slightly
confused recollection of Kästner’s lectures and books, which Gauss had read some 50 years
before writing this letter. Cfr. [Glaisher 1878, p. 113].
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From time to time one can easily convince a publisher, who had
a bad experience with a supposedly trendy book, to speculate
more on the durability of sales than on the often failing rapidity.
That has indeed always been my best argument. [Lambert Briefe
1781–1787, V, p. 313]78

A more unfortunate result of Lambert’s appeal was the case of J. Neumann,
who, upon reading the 2nd part of the Beyträge, had decided to extend and
correct Lambert’s small table (to 10,200) to 100,100. Working on his own
without contact with Lambert, Neumann [1785] finished and published his
table in Dessau. His table lists all factors, not only the smallest one. At
the time of publication, his table was unfortunately already superseded by
Lambert’s own table to 102,000 in the Zusätze, although, as Kästner [1786,
pp. 562–3] remarked, it could be used for control. Incidentally, Vega [1797,
I, pp. 1–86] used exactly this factor table for his collection of mathematical
tables.

4.2 Mechanising the Production of Factor Tables: The
Felkel-Hindenburg Priority Battle

January 1776 the Vienna-based teacher Anton Felkel (1740–1800?) announced
to Lambert that he had found an apparatus, consisting of rods, that could
mechanically find the divisors of all integers. He had come upon this device
by reading Lambert’s Zusätze, especially the remarks on the best arrange-
ment of a table. Felkel’s device was a mechanisation of factor table making,
based on Eratosthenes’s sieve. In his letter, Felkel had inserted an short an-
nouncement of his method, of a soon-to-be-published table to 144,000, and
of a promise to extend it to 1,000,000. Felkel’s idea was that Lambert would
publish the announcement in a journal to help him find financial support (and
to deter other competitors) [Lambert Briefe 1781–1787, V, pp. 41–44]. Lam-
bert inserted Felkel’s circular in the Leipziger Neue Zeitungen von gelehrten

78Original: “[ich] muß auf verschiedene Mittel bedacht seyn, sie nach und nach her-
auszugeben. Ich dächte inzwischen, daß sich auf der Leipziger Messe die beste Gelegenheit
anbieten sollte, Verleger zu finden, zumal solche die, weil sie an abgelegenen Orten wohnen,
in ihrer Gegend nicht immer genug Manuscripte aufbringen können. Zuweilen läßt sich
ein Buchhändler, dem ein Mode=Buch fehlgeschlagen, leicht bereden, mehr auf die Dauer-
haftigkeit als auf die meistens sehr mißliche Schnelligkeit des Verkaufs zu setzen. Dieses
war auch in der That immer mein bester Beweggrund.” (Lambert to von Schönberg)
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Figure 3: The frontispice of Felkel’s 1776 Factor Table, depicting him with
a book by Lambert in his hand, his machine at his table
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Sachen (L.G.Z., nr. 63, 5 August 1776, pp. 507–510), but advised Felkel to
collaborate with the other calculators and start the second million. End of
March 1776, however, Felkel wrote back to Lambert with a change of plan.
Constrained by the design of his machine, processing 240 numbers per hour,
on the one hand, and encouraged by his patrons in Vienna, on the other
hand, Felkel had decided to play cavalier seul. He now announced a table
from 1 to 2,016,000, the numbers arranged in a way differing from Lambert’s
set-up [Lambert Briefe 1781–1787, V, pp. 62–70]. Felkel held back with de-
tails on his method and machine, to avoid the danger of “seeing my own
work thwarted” [Lambert Briefe 1781–1787, V, p. 67]. Felkel’s ensuing let-
ters of June and July kept insisting that Lambert would convince the other
calculators to stop their work [Lambert Briefe 1781–1787, V, pp. 70–80].

Lambert’s reaction was irritation and silence vis à vis Felkel, though
he aired his disappointment to Rosenthal [Lambert Briefe 1781–1787, V,
p. 30]. In the meantime, triggered by Felkel’s announcement in the L.G.Z.,
the publisher S.L. Crusius had a note inserted in the same Zeitung (L.G.Z.,
nr. 64, 8 August 1776, pp. 515–522). The note said that also the Magister
Carl Friedrich Hindenburg (1741–1808) from Leipzig had since considerable
time (i.e. 1774) found a mechanism for producing factor and other tables,
and now planned to publish a description of the mechanism and a factor
table to the 5th million [Hindenburg 1776b]. Also Hindenburg’s mechanism
was a continuation of Lambert’s ideas:

This advantageous artifice is for the greater part the result of a
careful study of the decimal number system structure, and is in
itself so considerable that it surpasses everything what one could
hope and wish for, because it changes the tedious looking up of
divisors into a near immediate finding, and produces the prime
numbers in their natural order without searching and without loss
of time. The method is, as would be suspected, totally mechanic
and so secure that that it becomes impossible to make errors
that would not immediately be betrayed by a contradiction: a
circumstance that takes away the danger of the usual, unavoid-
able miscalculations with so many numbers. [Hindenburg 1776b,
pp. 144–45]79

79Original: “Dieser Vortheil ist größtentheils das Resultat einer sehr sorgfältigen Un-
tersuchung des Decimalzahlengebäudes, und ist in seiner Art so beträchtlich, daß es alles
übertrifft, was man nur wünschen und hoffen konnte, indem er das mühsame Aufsuchen
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Upon the publication of the announcement, Hindenburg opened his corre-
spondence with Lambert, forwarding him this text from the L.G.Z. (August
1776). Trying to save the collaborative spirit, Lambert immediately wrote to
all his factor table correspondents August 13th. He informed all his collab-
orators of Felkel’s and Hindenburg’s plans, adding complaints when writing
to his older correspondents, and adding an insistent request in the letters
to Felkel and Hindenburg to divide amongst them the 2nd and 3rd million
[Lambert Briefe 1781–1787, V, pp. 81–82 & 151–154]. To Rosenthal, Lambert
wrote:

These Gentlemen apparently want to be ahead one of the other,
instead of the better option, to start where the other stops. The
first one praises his machine, the second his method. Time will
show what they are worth. [Lambert Briefe 1781–1787, V, p. 30]80

Instead of the scientific collaboration that Lambert so vividly promoted, a
series of disputes, (unfulfilled) promises and discussions ensued.81

Felkel’s reaction on Hindenburg’s announcement was immediate. In Septem-
ber he published a more extensive, though not more informative, announce-
ment of his plans, promising now a table to 10 million, to assert his priority in
mechanising the production of factor tables [Felkel 1776a]. As Crusius had
antedated Hindenburg’s announcement to May 1776, Felkel did the same,
antedating to June 1776. Hindenburg meanwhile had prepared a manuscript
for Lambert and Kästner that described his method, and although nearly
all presses were busy during the Leipziger Messe, he succeeded in publishing
his Beschreibung end of 1776 [Hindenburg 1776a]. By that time, Felkel, in
his turn, had printed a first specimen of his table to 144,000 [Felkel 1776b].
Both sent their work to Lambert, Felkel included an error list for his table
[Lambert Briefe 1781–1787, V, pp. 112–113].

der Theiler, in ein fast augenblickliches Finden verwandelt, und selbst die Primzahlen, in
ihrer natürlichen Ordnung nach einander, ohne sie zu suchen, und also ohne allen Zeitver-
lust, giebt. Das Verfahren hierbey ist, wie man leicht vermuthen wird, ganz mechanisch,
und so zuverläßig, daß es unmöglich wird einen Fehler zu begehen, der sich nicht sogleich
auf der Stelle durch einen Widerspruch verrathen sollte: ein Umstand, der das gewöhn-
liche, bey einer so großen Menge Zahlen, ganz unvermeidliche Verrechnen nicht befürchten
läßt.”

80Original: “Diese Herren wollen, wie es scheint, einander zuvorkommen, anstatt dass
unstreitig besser wäre, wenn der eine da anfienge, wo der andere aufhöret. Der eine rühmt
seine Maschine, der andere seine Methode. Die Zeit muss lehren, was an beiden ist.”

81See also [Glaisher 1878, pp. 113–118] for an account of the priority discussion.
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Following this series of announcements and publications, Lambert pre-
sented the plans of Felkel and Hindenburg to the Berlin Academy. In this
matter, he closely communicated with Lagrange, who acted as a kind of sec-
ond referee on Felkel’s and Hindenburg’s pretentions and productions.82 The
ordeal was in favour of Hindenburg, because his procedure was so to say
‘open source’, whereas Felkel spent 2 long pages describing his mechanism
without being all too clear. Lambert made up for this obscure description
and explained it himself in a posthumously published review of both Felkel’s
and Hindenburg’s books [Lambert 1778]. In this review, Lambert also men-
tioned a serious drawback of Felkel’s table: It grouped numbers not in groups
of 3n + 0, 1, 2 as Lambert had done, but in groups of 30n + . . .83 and it used
letters as abbreviations for the factors, which made any connection with
previous (and later) work quite difficult.

After Lambert’s death in 1777, the dispute did not stop, but Felkel trav-
elled in the Autumn of 1783 to Leipzig to discuss the case with Hindenburg
[Lambert Briefe 1781–1787, V, pp. 487-88]. The conflict was, however, not
resolved, and both issued a new announcement, Felkel a circular in Halle
[Felkel 1784], Hindenburg an announcement of his table to the million in
the Leipziger Messkatalog. The tables to the n-th million they promised
were never printed. Felkel though had calculated a table to the second mil-
lion during the years 1775–1776. The first part to 144,000 was printed (i.e.
[Felkel 1776b]) and two additions up to 408,000 were issued. These would
later be used by Vega [1797, I, pp. 87–128] for his list of primes.84 Most copies
of these additions did not get sold and were unfortunately destroyed and/or
lost during the Austro-Turkish War (1787–1791) – the paper of Felkel’s table
was recycled for gunpowder cartridges. From 1793 to 1794 Felkel occupied
himself with finding methods to reduce the large extent of the tables to 5 or
10 millions. He finally took refuge to other bases of numeration than the deci-
mal one, a topic Felkel had pursued while studying periodic decimal fractions

82The subcorrespondence with Lagrange over Felkel’s first circular, Felkel’s table and
Hindenburg’s Beschreibung can be found in [Lambert Briefe 1781–1787, V, pp. 51–52 &
120–121 & 194].

83This ordering is similar to Euler’s plan, see 5.1.
84A description of Felkel’s 1776 tables to 408,000 and their arrangement is given by

Glaisher [1878, pp. 106–108]. Remark that in [Glaisher 1873/1874] there still reigns some
confusion regarding the original 1770 and the latin 1798 edition of Lambert’s Zusätze,
Glaisher seems to have seen only the 1798 edition, thus getting the data slightly meddled
up sometimes.
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[Felkel 1785]. Felkel considered 15 bases for the tables to 24 million, 65 were
needed for a table to 100 million. In 1798 Felkel reappears with a latin trans-
lation of Lambert’s Zusätze, commissioned and published by the Academy of
Sciences in Lisbon [Felkel 1798]. The introduction recounted his story, the
book contained a table to 102,000 though not in Lambert’s but in Felkel’s
arrangement [Glaisher 1878, pp. 119–122]. Hindenburg, as J. Bernoulli con-
firmed [Lambert Briefe 1781–1787, I, pp. 386–87 & V, 242], had prepared the
manuscript for the first two millions, but just as his Primtariffe85 they never
appeared in print.

4.3 A Short Description of the Sieve Mechanisms

Both Felkel’s and Hindenburg’s contrivances86, as well as a third one proposed
by Lambert, are mechanisations of multipication, based on the simple idea
that every multiple of n in natural order is n units removed from the next and
from the preceding multiple. The most expensive step then in Eratosthenes’s
sieve, checking the multiples of already known prime numbers, is simplified
by these devices. They all use Lambert’s remark in the Beyträge, that a well
chosen arrangement of a table displays certains patterns. E.g., the multiples
of 7 can be discerned by the eye in Lambert’s arrangement. Such patterns
allows to check certain n-tuples and the consistency of the factor table.

Felkel’s mechanism, depicted on the frontispice of his Tafel (Figure 3),
is a variation on multiplication rods. Because Felkel based his device on a
step-30 procedure, there are 8 of these rods corresponding to resp. 30n +
1, 7, 11, 13, 17, 19, 23, 29 (the only forms 30n + a that are not divisible by 2,
3 or 5). On each rod are inscribed all integers 30n + a with n = 0 to 99,
but the digits of the thousands are dropped. If one now wants to find the
multiples of 47, one first has to calculate the multiples of 47 under 1000 by
hand, and then look these numbers up on the 8 rods. Then, one has to align
the rods so, that the multiples are all on a horizontal line. Now, one has
to calculate the first multiple of 47 over 1000, drop the 1 of the thousands
(but take it down on a sheet of paper), and look up the remaining digits
on the first rod. The numbers (on the other rods) that are horizontally
aligned with that number are the further multiples of 47. This procedure

85See [Bullynck 2008].
86Bischoff [1804/1990, pp. 73–83] contains detailed drawings and descriptions of Felkel’s

and Hindenburg’s devices.
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(with some slight improvements) can be repeated to find further multiples
[Lambert 1778, pp. 494–95].

As Lambert remarked, this mechanism has some disadvantages. First,
one has to take down the thousands manually, a possible source of errors;
second, the mechanism is limited by the limits of the rods, though one can
produce extra rods [Lambert 1778, p. 494] [Lambert Briefe 1781–1787, V,
pp. 120–121]. Hindenburg noticed one more inconvenience in a letter to
Lambert, viz., that the numbers that are found are on the rods and have to
be taken down (by dictation or by sight) on paper, “machine and journal are
separated” [Lambert Briefe 1781–1787, V, p. 204]. Lambert also noticed in
his review that this same mechanism can be brought in another form, viz.,
a cylinder with circular discs on it. On one disc the numbers 0 to 99 are
inscribed, on the other a segment is indicated, corresponding to a number
p whose multiples one wants to know. By turning this second disk over the
first one, one can find the last 2 digits of the desired multiples in natural
order; by counting how many complete circles have already been turned, one
can manually take down the other digits [Lambert 1778, p. 495]. This system
has, of course, the same disadvantages as Felkel’s system.

Hindenburg’s solution avoided the first and third disadvantages, and
adapted the procedure to printing practice, since it was an ink-and-paper
implementation of Erastosthenes’s sieve procedure. As the title of his work,
Beschreibung einer ganz neuen Art, nach einem bekannten Gesetze fortge-
hende Zahlen, durch Abzählen oder Abmessen bequem und sicher zu finden,
told, Hindenburg relied (as Felkel and Lambert) on the property of the deci-
mal positional system that every multiple of n in its order is n removed from
the next one. To use this property, he designed perforated cartridges that
fitted on a folio page with 10 times 30 cells on which were imprinted all odd
numbers from left to right, and were continued left to right in the next row.
The perforations were, relative to the grid on the folio, at a distance n from
each other. This cartridge method worked for 7, 11, 13, 17 and 1987 but
for larger numbers, Hindenburg conceived of a sizeable cartridge (see Figure
4). This sizeable cartridge is a frame of wood with various sliders in it that
can be adjusted and/or changed. The sliders cover exactly one row of 10
cells on the folio, except for one cell at position n (1 < n < 10). Thus, the
number 23 can be sieved using two sliders without holes and one with a hole

873 and 5 can be discerned by the eye because of the arrangement of the folio, viz., all
5-tuples were contained in two horizontal columns, all triples could be found be a diagonal.
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at position 3, followed by one slider without a hole and one with a hole at
position 6, etc. It is clear this arranging of sliders takes quite some time, but
the pattern repeats after every 23 folio pages (in our example that is), and
it is also possible to re-use one installment with a slight reshuffling after one
or two folios.

Using the cartridges for all prime numbers in their natural order, Hin-
denburg wrote the factor m and its “distance” n (which he called “Ord-
nungszahl”, index) in the measured cell, m.n making up the number of the
cell. The end product were many folios that only differed in one respect to
the to-be-printed tables, viz., they still contained the multiples of 3 and 5.88

Remarkably, Hindenburg from the beginning insisted on the fact that this
procedure could be used for constructing other tables. In his Beschreibung,
he explained how to use this device for making tables of squares, of trigonal
numbers, of remainders after division, and even how to use it for solving linear
Diophantine equations [Hindenburg 1776a, pp. 39–92 and 106–116].89 The
foundations of the later Combinatorial Analysis, as laid down in [Hindenburg
1781], sprang from this study of the positional number system [Hindenburg
1776a, pp. 92–104], as Hindenburg [1795b, p. 247] recounted.90 Hindenburg
recurred on the idea that it is remarkable how so many numbers can be
represented with such a small set of signs. By showing that it does not
matter if one uses hindu-arabic ciphers or letters, Hindenburg [1776a, pp. 96–
100] rediscovered the combinatory nature of positional number systems to
an arbitrary base.91 He also pointed out that a positional number system
essentially implicates the possibility of mechanisation. Referring to Leupold’s
encyclopaedic work on arithmetic instruments [Leupold 1727], Hindenburg
indicated how his system was affiliate to the abacus, to multiplication rods
and to many other devices of calculation [Hindenburg 1776a, pp. 101–104].

88Hindenburg later realised that his folios could be used directly for printing if he deleted
the multiples in his standard folios [Lambert Briefe 1781–1787, V, p. 178 note]. This
method of working has the advantage of minimising copying errors, but the disadvantage
that the folios cannot be used for other purposes such as tables of squares, of remainders
after division, etc., tables which figured in Hindenburg’s original plan.

89This last issue is theoretically pursued in [Hindenburg 1786].
90Cfr. Bernoulli’s remark in the Vorrede of [Lambert Briefe 1781–1787, V].
91Hindenburg referred in this context to Beguelin’s paper, p. 100.
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Figure 4: C.F. Hindenburg’s sizeable paper-and-ink prime sieve set up for
the number 23

42



5 Factor Tables and the Birth of Number The-
ory

“Most of the important classical theorems in number theory were discovered
as a by-product of the production and inspection of tables.”92

As Lambert had predicted, “this thing [i.e. the factor tables] may in the
future be an important part of the history of mathematics” [Lambert Briefe
1781–1787, II, p. 30]. Indeed, Johan III Bernoulli copiously documented the
whole history while editing the scientific correspondence of Lambert during
the years 1781–1787. Bernoulli addressed the involved calculators, asking not
only for their part of the correspondence, but also for notes and additions to
the letters. Also A.G. Kästner [1786, pp. 549–564], mathematics professor
in Göttingen, wrote extensively on the topic, but afterwards, partly through
external circumstances (the Napoleonic Wars), partly through internal cir-
cumstances (a new generation of mathematicians after 1800), the history of
Lambert’s project was largely forgotten.93 Indirectly, however, Lambert’s
project would stimulate the minds of some of the most important mathe-
maticians of the turn of the century, contributing importantly to the birth
of number theory as an independent discipline.

5.1 Euler commenting

During the time of the project (1770–1777), its reverberation within the at
that time small research community was considerable. As we noticed ear-
lier (p. 28), tables and factoring were a much discussed issue at the Berlin
Academy. Lagrange also made sure that a specimen of Lambert’s Tables were
sent to his correspondent d’Alembert [Lagrange 1867-1892, XIII, pp. 202–
203]. Next to the project of astronomical tables and the factor tables, there
was in this period a third collaborative project running at the Academy.
Following a wish of d’Alembert, Johann III Bernoulli began a French trans-
lation of Leonhard Euler’s Algebra, published 1770 in St Petersburg. He was
aided in this venture by J.L. Lagrangre who wrote his famous Additions on
indeterminate analysis that complemented Euler’s second volume. When the
French Élémens d’Algèbre appeared 1774, Bernoulli wrote in the foreword:

92[Lehmer 1969, p. 118].
93Though Glaisher [1878] rediscovered it in his account of producing factor tables.
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I will not say much of the notes I added to the first part [...]
they could clear up some points in the history of mathematics
& make lot of rather unknown subsidiary tables known. [Euler
1774, p. xvj]94

Indeed, in the subtext of Bernoulli’s translation one finds all tables listed
which Lambert had mentioned in the preface to his Zusätze and one also
finds a eulogy of Lambert’s own table work [Euler 1774, pp. 26–28].

Leonhard Euler (1707–1783) had left the Berlin Academy for the St Pe-
tersburg Academy in 1766, after a conflict with Frederick of Prussia over the
presidency of the Academy which was offered to d’Alembert (and declined)
and perhaps also after a conflict with Lambert on running the Academy [Bier-
mann 1985]. Euler has only a role in the margin of this history of tables, be
it a curious one. Though he corresponded on the topic with neither Lam-
bert nor Lagrange95, he did so with Johann III Bernoulli and Nikolaus von
Beguelin. Quite some of Euler’s contributions concerning factoring methods
were actually letters, presentations and papers that were initially conceived
as a response to their work, with the exception of one essay. This essay, pub-
lished 1774 in the Novi Commentarii of the Petersburg Academy, discussed
how to arrange a factor table to the first million in the best possible way
[Euler 1774/1775]. Without any reference to Lambert’s work, Euler argued
for the importance of factor tables and described a method of arrangement
that was based in the grouping into 30n+1, 7, 11, 13, 17, 19, 23, 29. Thinking
in quarto pages (not folio as most did), Euler constructed subsidiary tables
to facilitate the application of Eratosthenes’s sieve over the succession of dis-
tinct pages. At the end of his paper Euler delivered some (quite error-ridden)
samples of a factor table.96

Euler’s plan was known (i.e., its abstract in the Journal Encyclopédique
(1776) was read), but its influence was not considerable. Euler’s arrangement

94Original: “Je ne dirai rien non plus des notes que j’ai ajoutées à la premiere Partie; [...]
elles peuvent d’aillieurs répandre du jour sur différens points d’histoire des Mathématiques,
& faire connoitre un grand nombre de tables subsidiaires peu connues.”

95Euler’s last letter to Lagrange in 1775, that ends with a reference to [Euler 1774/1775],
is the sole exception [Euler 1911-..., IV, 5, pp. 244-45]. A letter from Lambert to Euler with
a specimen of the Zusätze from October 1771 received only a polite and short response of
Euler’s secretary [Juskevic et al. 1975, OO1419].

96Remark that the editors of [Euler 1907, X–XIII] give a short overview of the history
of factor tables from the perspective of Euler’s paper, only noticing in a footnote that
Lambert’s work occurred earlier.
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was essentially the same as Felkel’s, as Hindenburg remarked in a letter to
Lambert, differing only in the quarto and folio format, but Felkel claimed he
did not know of Euler’s paper [Lambert Briefe 1781–1787, V, pp. 204 & 501].
After 1800, Euler was often referred to in the introduction of factor tables,
but no one used his arrangement, all stuck to the one Lambert described.
There seems to have been only one exception, an unpublished table of primes
by the Swede Schenmark, which was presented to Lexell in Lund. Regarding
this table, Nikolas Fuss, Euler’s assistant, wrote to Joh. III Bernoulli in
December of 1781:

Mr. Lexell [...] has brought from Lund a table of prime numbers
in manuscipt, ready to 1 million after the plan Euler gave and
constructed by Mr. Schenmark and some other calculators under
his direction. We talked about publishing at the expense of the
Academy, but we doubt, because since I communicated to Mr.
Euler what you have remarked to me considering Mr. Hinden-
burg, who has promised two millions before Easter. [Bernoulli
1781/1783, p. 31]97

Bernoulli advised not to publish Schenmark’s tables, defending at large his
friend Hindenburg’s work. Schenmark’s work was, however, conserved and
later used by Burckhardt for checking his tables.

Euler’s responses to the factoring methods developed by Bernoulli and
Beguelin were more momentous for the history of mathematics. These texts
announced important methods that soon would be secured theoretically by
C.F. Gauss. In a letter to Bernoulli regarding his publication on factoring
numbers of the form 10n ± 1, Euler presented a simple, necessary and suf-
ficient criterium to decide whether p divides either 102p+1 − 1 or 102p+1 − 1
(p prime) instead of the fragmentary collection of rules that Bernoulli had
assembled from Euler’s earlier papers [Euler 1772/1774b]. The result rested
upon Fermat’s theorem and on a theorem Euler did not enunciate, but de-
scribed as unproven, i.e., the law of quadratic reciprocity. Simultaneously to
this letter, Euler read at the St Petersburg Academy on the theory on which

97Original: “M. Lexell [...] a apporté de Lund, en manuscript, une Table des nombres
premiers, éxecutée jusqu’à un million d’après le plan que M. Euler a donné [...] par M.
Schenmark & quelques autres Calculateurs sous sa direction. On avoit parlé d’abord de
la faire imprimer aux dépens de l’Académie; mais on hésite depuis que j’ai communiqué à
M. Euler ce que Vous m’avez marqué touchant M. Hindenbourg, qui doit avoir promis 2
millions pour Pâques.”
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Berlin Academy Euler in St Petersburg Topic
J.H. Lambert, Zusätze zu
den logarithmischen und
trigonometrischen Tafeln (1770)

De tabula numerorum primorum
usque ad millionem et ultra con-
tinuanda (E467, 1774/1775)

manufacture of fac-
tor tables

Lambert to Euler, 18 October
1771
Jean III Bernoulli: Sur les
fractions décimales périodiques.
Suivi de: Recherches sur les di-
viseurs de quelques nombres très
grands (1771/1773)

Extrait de la correspondance de
M. Bernoulli (E461, 1772/1774)

periodic frac-
tions, quadratic
residues, instances
of quadratic reci-
procity

Demonstrationes circa residua
ex divisione potestatum (E449,
1772/1774)
Observationes circa divisionem
quadratorum; Disquitio accura-
tior circa residua etc. (E552 &
E554, 1772/1783)
Earlier work: E54, E134, E271 (Fermat’s little
theorem); E242, E262, (quadratic residues)
Later work: E557, E792

Nikolaus von Beguelin: Solution
particulière du Problème sur les
nombres premiers (1775)

Extrait d’une lettre de M. Euler
le père à M. Beguelin en mai 1778
(E498)

factorisation using
quadratic forms
with idoneal num-
bers

Extrait d’une lettre de M.
Fuss à M. Beguelin écrite de
Pétersbourg le 1920 juin 1778
Earlier work: E29, E164, E228, E241, E255,
E256, E272, E283, E369
Later work: E699, E708, E715, E718, E719, E725

J.L. de Lagrange: Recherches
arithmétiques (1773 and 1775)

De insigni promotione scientiae
numerorum (E598, 1775/1785)

theory of quadratic
forms

Earlier work: E29, E279, E323, E452, E454, E559
Later work: E610, E683, E744

Table 1: A tabular overview of the interactions between research at the Berlin

Academy and Euler’s research. Indicated are Euler’s previous work on the

same topics and Euler’s later (often posthumously published) work, using

the numbers of his papers in the Eneström-index.
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Bernoulli’s paper was built, i.e., on power residues and now introduced the
term “primitive root” [Euler 1772]. Later in the same year, Euler also read
on quadratic residues of powers, especially on criteria to decide whether ±1
is or is not a quadratic residue of a prime p. This way, Euler provided proofs
for specific instances of quadratic reciprocity [Euler 1772/1774a].

A similar pattern of interactions ensued some years later (1778) when
Euler reacted on an essay by von Beguelin [1775]. This essay had sprung
from Beguelin’s investigations on his new number system and proposed a
new method for factoring numbers. The idea was to isolate a particular
sequence of numbers, trigonal or square numbers for instance, and gradually
exclude elements until one or more were left.

it is only in determining the compound elements that one finds
the primitive elements98, through the gaps that result of this de-
termination, in the manner of Eratosthenes.[von Beguelin 1775,
p. 301]99

Beguelin relied for his exclusions on a result of Euler, viz., that the formula
ppxx + 1 contains all odd numbers, but only compound numbers can be
decomposed in more than one sum of squares a2 + b2. Beguelin’s procedure
had changed Euler’s method a little bit; through a certain arrangement of
lists, only one series of possible squares had to be checked instead of two [von
Beguelin 1775, p. 308].

Euler’s criterium that a prime number can only be expressed in one way
as the sum of two squares (or a square and certain multiples of a square,
a2 + nb2) was of course a special case of a more general law. In slightly
more modern terms, prime numbers can be expressed in only one way by
a binary quadratic form that has only one principal genus. Without this
theoretical luggage, Euler wrote exactly that to Beguelin, a list of all n for
which the form x2 + ny2 had only one principal genus [Euler 1776/1779].
These numbers were later coined idoneal numbers by Euler, but the letter to
Beguelin contained the first mention (without the name) of these numbers.
As Beguelin and Lagrange desired to know more details of this novel method,
Euler’s assistant N. Fuss compiled a resumé which was published somewhat
later in the Mémoires of the Berlin Academy [Fuss 1776/1779]. As was

98Primitive elements are here p’s that are prime, and generative to the elements of the
sequence, e.g., of the form ppxx + 1.

99Original: “ce n’est qu’en déterminant les élémens composés qu’on trouve les primitifs,
par les lacunes qui résultent de cette détermination, á la manière d’Erastosthene.”
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the case with the Bernoulli-paper, Euler used the occasion to write up some
papers about the topic of factoring large numbers using the idoneal numbers.
They only got published long after Euler’s death, between 1801 and 1806.100

Lastly, Euler also replied to Lagrange’s Recherches d’arithmétique (the
1773-part), though not in a letter but with a presentation to the St Peters-
burg Academy October 26, 1775 (published posthumously in the Opuscula
Analytica, 1785). Euler’s objective in that presentation was to make La-
grange’s overview more elegant and more complete (thus partly “anticipat-
ing” Lagrange’s 1775-part). Euler used the opportunity to point out that he
had found many of the results much earlier by induction, but that only the
joint efforts of Lagrange and himself had advanced this part of mathemat-
ics. According to Euler, Lagrange “ha[d] brought light into the science of
numbers, that ha[d] hitherto been enveloped in darkness” [Euler 1775/1785,
p. 163].101 Although Euler had occasionnally used the term “science of num-
bers” before102, this paper explicitly addressed this new science in its title103

and thus indirectly connected Lagrange’s and his own endeavours with Lam-
bert’s programme – announcing the official birth of number theory around
1800.

Euler’s contributions dealt mainly with theoretical aspects of produc-
ing factor tables, more specifically, were contributions to factoring. Though
these contributions often re-used (partial, often unproven) results Euler had
obtained earlier104, they now appeared in a different context, as reactions
to publications on factoring, publications that in their turn were instigated
by Lambert’s project. Although Euler never referred to this context, the
chronology of these papers is telling. So is Euler’s adaptation of results from
Diophantine problems to the problem of factoring (large numbers), a problem
that almost never appeared in his work before 1770.105 One of Euler’s most
important results in number theory, the idoneal numbers, were mentioned for

100These are E708, E715, E718, E719, E725 [Euler 1907, II, pp. 249–260 & 198–214 &
215–219 & 220–242 & 261–262].

101Original: “Eximia omnino sunt, quae La Grange [...] demonstravit, et maximam lucem
in scientia numerorum, quae etiamnunc tantis tenebris est involuta, accendunt.”.

102So in [Euler 1911-..., I, 2, p. 611].
103Viz., De insigni promotione scientiae numerorum.
104Some were mentioned in his correspondence with Christian Goldbach, some were pub-

lished in the Petersburg Commentarii, see [Dickson 1919–1927, I, pp. 360–1] and Table
I.

105Though the topic of finding large prime numbers did appear, factoring itself was not
a major topic.
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the first time exactly in this context of tables and factoring, current at the
Berlin Academy. Although Euler elaborated further on these results at the
St Petersburg Academy, they remained fragmentary and were often based
upon induction alone. Such was the case for the law of quadratic reciprocity,
for the genera of quadratic forms, for the idoneal numbers. Consequently,
a framework for these results, the theory Lambert had called for, was still
but fragmentary and lacking. However, just as the table of (in)composits
had emancipated itself from the context of Diophantine problems, so were
the papers written at the Berlin and Petersburg Academy stepping stones
towards a further emancipation of number-related problems, such as factor-
ing, from the Diophantine context. Not only a framework for these results,
but a new theory, the theory of numbers, was soon to be wrought by C.F.
Gauss in his Disquisitiones Arithmeticae (1801), and A.M. Legendre in his
Essai sur la théorie des nombres (1798) and its consequent editions.

5.2 Tables and the Distribution of Primes

The empirical law, 1st Version Though C.F. Hindenburg never re-
turned to the topic of factor tables later, one issue (vol. 2, nr. 2) of the
Leipziger Magazin für reine und angewandte Mathematik (1787), of which
Hindenburg was the editor, contained quite some essays on factoring. None
of these essays, however, went beyond what Hindenburg himself had de-
scribed much earlier (as he did not fail to note in his editorial comments).
With the exception of Karl Christian Friedrich Krause, nobody affiliated to
the Combinatorial School seems to have pursued the topic of prime num-
bers.106 Krause, better known as a philosopher, elaborated on one remark in
Hindenburg’s introduction to his Beschreibung :

I have neither time nor motivation, to tediously and strictly prove
or disprove a theorem that for my purpose is not useful at all,
since it rather satisfies a displaced curiosity than real use. [Hin-
denburg 1776a, p. 15]107

106Johann Christian Burckhardt, originally a student of Hindenburg, and Carl Friedrich
Gauss, quite familiar with Hindenburg’s work, should be treated seperately (see infra).

107Original:“Ich habe weder Zeit noch Lust, einen für meine Absicht völlig unbrauchbaren
Satz [wie sich die Primzahlen unter den Zahlen verteilen], der eher eine unzeitige Neugierde,
als einen reellen Nutzen zu befördern scheint, durch einen weitläufigen strengen Beweis a
priori zu unterstützen oder zu verwerfen.”
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The theorem in question is a determination of the distribution of primes.
Krause had written a dissertation at the university of Jena on this topic, De
inventione numerorum primorum (1801), probably under the supervision of
the Hindenburg-influenced professor D.M.C. Stahl. The manuscript is now
unfortunately lost [Riedel 1941].

In 1804 Krause published a factor table to 100,000 and returned to the
question of the distribution. Considering the successive application of the
sieve procedure, eliminating by and by all composites, Krause arrived at a
description of the “Primzahlgesetz”.

We have found the law [that gouverns the distribution of primes],
it is a law that is continuously changing with every series of
prime numbers; it is a infinite and multi-sided law, that speci-
fies through progression. That is why we will not trouble us any
further to find a finite algebraic law, where an infinite one rules.
[Krause 1804, p. 12]108

Krause considered the distribution of primes as an infinite process of elimi-
nating the doubles, triples, 5-tuples etc. and since the series of prime numbers
was infinite (with reference to Euclid) the obtained fractions formed an infi-
nite decreasing series, but since the rate of decrease was neither regular nor
rapidly decreasing itself, a finite algebraic formula was impossible [Krause
1804, p. 11].109 Of course, Krause had been anticipated by Euler. In a letter
from 1752 [Fuss 1843, I, p. 595], Goldbach had claimed he could prove that no
closed algebraic formula could generate only primes, the theorem was later
published and proven by Euler [Euler 1762/1763, p. 99].

Also in 1752 [Fuss 1843, I, p. 587] Euler had remarked to Goldbach that
the number of prime numbers relative to the number of integral numbers
(= x) converges to ln x without proof. Euler repeated this observation in
[Euler 1762/1763, p. 101]. Since Lambert’s project, however, various tables
of factors and primes had been printed, creating the opportunity to make
empirical observations about the distribution of primes. On being received

108Original: “Wir haben das Gesetz gefunden, es ist nehmlich ein beständig durch jede
Reihe der Primzahlen gesetzmäßig verändertes; es ist ein unendlich vielseitiges, bei immer
weiterem Fortschreiten weiter bestimmtes. Daher werden wir uns nicht weiter bemühen,
ein endliches, algebraisches Gesetz aufzufinden, wo ein unendliches waltet.”

109Most famous in connection with this finite algebraic formula for primes is Euler’s
41−x+xx, where the first 40 terms (for x = 0 to 39) are all prime numbers. This formula
was mentioned in his letter to Bernoulli [Euler 1772/1774b, p. 36].
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by the Duke of Braunschweig (1791), the young C.F. Gauss (1777–1856) got
Schulze’s Sammlung, somewhat later (1793), Lambert’s Zusätze and Hinden-
burg’s Beschreibung. In the margin of his copy of Hindenburg’s work, Gauss
had entered his objections to Hindenburg’s opinion on the law of prime dis-
tribution. Indeed, Gauss was among the first to make counts and draw up
a formula, though he never published it. According to a letter to Encke
(1849), Gauss had begun counting in Lambert’s and Schulze’s tables as early
as 1792–3, “even before I had occupied myself with subtler investigations
within higher arithmetic” [Gauss 1863–1929, II, p. 444]. In his scientific
diary, he had noted:

Comparationes infinitorum in numeris primis et factoribus cont[entorum]
[1796] 31. Mai G[ottingae]
Leges distributionis [1796] 19. Iun. G[ottingae] [Gauss 1863–
1929, X/I, pp. 493 & 495]

The formula in question was that the primes under a converge to [Gauss
1863–1929, X/1, pp. 11–16]

a

ln a

a result already conjectured by Euler. Using Vega’s list of primes (taken from
Felkel’s tables), Adrien-Marie Legendre (1753–1833) came up with a similar,
though slightly more accurate formula in the second edition of his Essai sur
la Théorie des nombres (1808):

x

log.x− 1.08566

With log.x being the hyperbolic logarithm (ln).

New Tables In 1811, Ladislas Chernac [1811], of Hungarian origin but
professor of mathematics in Deventer (Netherlands), published the Cribrum
Arithmeticum on his own account. His table, over 1000 pages, gave all factors
for the numbers not divisible by 2, 3 and 5. His introduction contained a
very complete lists of all factor tables until 1811, even mentioning a table
by Adolph Marci (Amsterdam, 1772) that was calculated in response to
Lambert’s appeal but that has hitherto been lost [Chernac 1811, pp. V–X;
IX]. Chernac did not tell how he constructed his table, except for a reference
to Nicomachus’s Arithmetic and the title Cribrum Arithmeticum, a title that

51



Figure 5: Gauss’s Table counting the primes in Lambert’s Zusätze & a
specimen of C.F. Gauss’s specially printed paper slips for counting primes

and composites for the first chiliad in Chernac’s Table
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seemed to denote both the method and the content of the table. Chernac’s
introduction closed with applications and examples: Logarithms, divisions
and several tricks where the factor table can be put to use, but no reference
at all to more abstract number problems.

Three years later, Johann Karl Burckhardt (1773–1825) published the
second million, in 1816 the third million (actually to 3,036,000) and in 1817
the first million, corrected and in the same format as the other two. For
this last edition, Burckhardt had compared Chernac’s table with Schen-
mark’s manuscript, had found some but few errors in Chernac’s table, many
in Schenmark’s and had checked each inconsistency through re-calculation
[Burckhardt 1814, p. i]. In his own words, Burckhardt undertook these cal-
culations while “one was occupied with comparing my moon tables with those
of Mr. Burg, a circumstance that made it impossible for me to begin other
astronomical studies.” [Burckhardt 1814, p. vij]110

Burckhardt’s career was a curious one. Burckhardt was born in Leipzig
and he had acquired an extensive knowledge of mathematics and astronomy
as a 15-year-old through private study before going to the Leipzig university
in 1792. There he had studied under C.F. Hindenburg and had become a
Magister in 1794 with a dissertation on the expression of continued fractions
through combinatoric signs.111 Through a scholarship and with Hindenburg’s
recommendation, Burckhardt had gone to the observatory in Gotha to work
and study under the astronomer Franz-Xaver von Zach, who was a central
figure in the internationalisation of astronomy [Brosche 2001]. With Zach’s
recommandation, Burckhardt then had gone to Paris in 1798 where the as-
tronomer Lalande had him hired as his assistent in the Bureau des Longitudes.
In the years 1800–1802, Burckhardt and Gauss had rivaled each other for the
best calculations of the courses of Ceres and Pallas. Burckhardt had also
translated Laplace’s Mécanique céleste in German (1800–1802, with lengthy
comments and added examples) and was known as a skilled and precise cal-
culator. After Lalande’s death in 1807, Burckhardt became the director of
the observatory of the Ecole Militaire. He died 1825 in Paris.112

The very accurate tables of Burckhardt were calculated with the stencil

110Original: “j’ai entrepris et fort avancé ce travail dans le tems qu’on s’occupait de
comparer mes Tables de la lune à celles de M. Burg, circonstance qui m’empêchait de
commencer d’autres recherches astronomiques.”

111Hindenburg [1795a, pp. 174–178] described Burckhardt’s procedure.
112His biography in [ADB, 3, pp. 571–72], where “Hindenburg” is consistently misspelled

as “Hindenberg”!
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method that would become a standard in the 19th and early 20th century
for the production of factor tables. Burckhardt described his method as an
improvement on Hindenburg’s method in the Beschreibung.113 First, Burck-
hardt immediately eliminated all numbers divisible by 3 and 5:

Half of the work [using Hindenburg’s method] is done in vain,
because in the printed tables, one omits all numbers divisible by
3 or 5, so one is obliged to copy that part of the work that one
wants to conserve in print. I have avoided these problems and
I have obtained the factors in the same way and time as in my
printed tables [Burckhardt 1814, p. v]114

To this aim, Burckhardt had let a copper plate be engraved in 81 horizontal
lines and 78 vertical ones, obtaining 80 times 77 little squares. Next to
the first horizontal line were engraved all numbers under 300 not divisible
by 2, 3 and 5, thus repeating the arrangement Lambert had advised and
Hindenburg had followed. Due to the 77 columns, the multiples of 7 and 11
could immediately be engraved on the plate.

With this plate, the individual sheets were printed, immediately reducing
the work to divisors above 11. For these larger divisors, e.g. 13, Burckhardt
took an empty, squared sheet, started cutting out the squares that were
multiples of 13 and stopped after the 13th column, since “this factor will
return in the same order [...] because of the distance” [Burckhardt 1814,
p. v].115 By putting together two sheets, three sheets etc. this procedure
could be expanded for larger divisors.

for divisors over 500, I have preferred to find the multiples by
successive additions [...] I have checked the last multiple by a
direct multiplication [Burckhardt 1814, p. vi]116

113As mentioned earlier, Hindenburg had made some of these improvements earlier, [Lam-
bert Briefe 1781–1787, V, p. 178 note].

114Original: “la moitié de l’ouvrage [est fait] en pure perte; car dans les Tables imprimées
on rejette les nombres divisibles par 3 ou par 5, ce qui oblige de copier au net la partie
de l’ouvrage qu’on conserve. J’ai évité ces deux inconvéniens et j’ai obtenu en même tems
que dans mes Tableaux imprimés les facteurs”

115Original: “ce facteur retournera dans le même ordre, puisque la distance d’une colonne
à l’autre est toujours de 300.”

116Original: “quant aux facteurs qui surpassent 500, j’ai préféré de trouver les multiples
par des additions successives. [...] le dernier multiple [...] a été vérifié par une multiplica-
tion directe.”
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This procedure of cutting out squares in a sheet of squared paper is essentially
the stencil method, not very much different from Hindenburg’s sieve, but
more practical.117

The empirical law, 2nd Version Using these new tables, Legendre had
checked his empirical formula again in 1830, for the third edition of his book
that was now simply entitled Théorie des Nombres. His comparison was
quite favorable for the formula [Legendre 1830, II, p. 65]. Gauss had pursued
his countings as well, at times together with Goldschmidt. Gauss had even
a kind of standard paper slips made to custom for counting the chiliads in
Chernac’s and Burckhardt’s tables. In a letter to Encke, Gauss corrected
and/or specified his formula for the distribution of primes. Gauss saw it in
inverse proportion to the integral∫

dn

ln.n

Gauss compared his integral with Legendre’s formula and found that his
integral approximated the distribution of primes better [Johnson 1884].

5.3 Introducing Number Theory

The birth of a new discipline is always accompanied by legitimation practices,
especially by a chronological series that presents a prehistory that leads up
to this present new science. The two works that were to found number
theory as a discipline in its own right, Gauss’s Disquisitiones Arithmeticae
(1801) and Legendre’s Essai sur la Théorie des nombres (1798), used their
prefaces exactly to do this, construct a historical lineage that culminated in
the present efforts.118 The lineage in both works was constructed in a similar

117C.F. Gauss reviewed both Chernac’s and Burckhardt’s tables [Gauss 1863–1929, II,
pp. 181–186], referring in Chernac’s review to Lambert’s project and describing at length
Burckhardt’s procedure, strangely enough with referring to Hindenburg. Also, Gauss sum-
marized the history of factor tables around 1800, most probably using Kästner’s account
[Kästner 1786, pp. 549–564] in Chernac’s review. Gauss repeated this same summary some
30 years later in a letter to Zacharias Dase [Dase 1856], stimulating Dase to undertake the
calculation of the missing millions. The 6th, 7th and 9th million were eventually calcu-
lated by Dase, the 4th and 5th were calculated (with lots of errors) by Leopold Crelle and
preserved at the Berlin Academy, cfr. [Crelle 1853].

118To complement our observations on the birth of number theory, [Goldstein and Schap-
pacher 2007] is essential reading. In general, see [Goldstein et al. 2007] for the development
of number theory after Gauss (and Legendre).
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way: Starting with Euclid’s Books VII and VIII, passing through Diophantus
and Fermat, and finally arriving at Euler and Lagrange.

The most immediate predecessor were Lagrange’s Recherches Arithmétiques.
Legendre explicitly referred to this text as the first general theory on inde-
terminate questions (“la Théorie de Lagrange”, [Legendre 1798, p. X]) and
Gauss may be said to have translated Lagrange’s title into his Disquisitiones
Arithmeticae [Weil 1984, pp. 319–320]. A second important impetus, how-
ever, had come from Euler’s De insigni promotione scientiae numerorum,
posthumously published in 1785. Legendre’s first publication on number the-
ory, that was to be an important part in his later book, was written exactly
to prove some of the theorems Euler had put forward in that paper [Legendre
1785, pp. 523–524]. Equally, it figured as one of the most frequently quoted
papers in Gauss’s work.

Legendre’s legitimation was a more tentative one, putting himself in the
tradition of Diophantus:

I do not make a disctinction between number theory and inde-
terminate analysis, and I regard these two parts as one and the
same branch of algebraic analysis. [Legendre 1798, p. xj]119

Gauss, on the contrary, explicitly addressed a new discipline, probably taking
up Lambert’s suggestion to fill in the gaps between elementary and advanced
arithmetic, and separated its content from mere Diophantine analysis.

The inquiries which this volume will investigate pertain to that
part of Mathematics which concerns itself with integers. [...] The
Analysis which is called indeterminate or Diophantine [...] is not
the discipline to which I refer but rather a special part of it, just
as the art of reducing and solving equations (Algebra) is a special
part of universal Analysis. [Gauss 1801, Preface]

For Gauss, arithmetic comprised ”all investigations on the general properties
and relations between numerical quantities”, so that ”integers are the sole
object of arithmetic”, containing both elementary arithmetic (reckoning) and
higher arithmetic (now called number theory).

Whereas Legendre proposed to present and expand Lagrange’s theory,
focussing on quadratic Diophantine problems, Gauss’s reference framework

119Original: “Je ne sépare point la Théorie des Nombres de l’Analyse indéterminée, et
je regarde ces deux parties comme ne faisant qu’une seule et même branche de l’Analyse
algébrique”
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was broader from the start. Euclid’s books VII & VIII, on composite and
incomposite numbers, constituted the basis of this new discipline according
to Gauss’s preface. In this respect, Gauss seemed to continue John Wallis’s
programme, of re-writing Euclid in arithmetical terms, thus founding mathe-
matics on numbers [Wallis 1657, pp. 14–20].120 Most probably, C. S. Remer’s
Demonstrativische Rechenkunst (1739), which the 8-year-old Gauss received
as gift and which he called his “liebes Büchlein” [Maennchen 1928, p. 17],
acquainted Gauss early on with such ideas. Remer, who often quoted Poetius
as one of his sources, dealt extensively with the topics of divisors, odd and
even numbers, prime and composite numbers and factoring methods, includ-
ing Eratosthenes’s sieve procedure [Remer 1739, pp. 232–321]. The book also
contained a large section on “the properties of numbers in relation to each
other”, discussing properties of the greatest common divisor process [Remer
1739, pp. 324–356].121

In Gauss’s original set-up (dating from 1796–7) for the Disquisitiones, sec-
tion V on quadratic forms was still rather modest in volume, and Gauss had
planned to conclude the book with his construction of the 17-sided polygon
and a treatise on the general solution of higher order congruences, the sec-
tion VIII which only got published posthumously [Merzbach 1981, Bachmann
1911, pp. 6–8]. During the later re-workings of his text, Gauss expanded sec-
tion V, building on his lecture of Euler’s, Lagrange’s and Legendre’s work,
which he had greedily read upon his arrival at Göttingen university from
Decembre 1795 to May 1796.122 As a consequence, the original focus and
section VIII disappeared in the ultimate publication.

However, turning to the older parts of the Disquitiones Arithmeticae,
sections II, III & VI, one notices their connection with the developments
from the period 1770–1800. Section VI was mainly concerned with factoring
methods, taking up Lagrange’s linear divisors of quadratic forms and Euler’s
idoneal numbers (for which the theorems are proven in section V). Section

120There was a copy of Wallis’s work in the library of the Collegium Carolinum where
Gauss studied [Küssner 1979, p. 37]. The idea of arithmetisation was discussed by e.g.
Poetius, Lambert and Kästner in protestant Germany. Of course, Lambert’s tentative
presentation of a theory of numbers in [Lambert 1770] is also along these lines and was
read by Gauss as a 16-year-old. Gauss’s Sections I and II may be called the more mature
equivalent of Lambert’s essay.

121Dr. Christian Siebeneicher (Bielefeld) most kindly drew my attention to Remer’s book
and pointed out its relevance for this topic.

122See his letters to Zimmermann, [Poser 1987, pp. 20 and 24].
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III (the theoretical part) and part of section VI (the application) treated
power residues (using Euler’s term “primitive root”) and decimal periods
(referring to Lambert’s, Bernoulli’s and Euler’s work).123 This rather hidden
sub-focus of the Disquitiones on factoring only becomes apparent in the
light of its prehistory, and more so, the Disquisitiones themselves, often
described as a book of wonders falling from the sky, becomes a phenomenon
that can be accounted for. It turns out to be the brilliant culmination of half a
century of research, started by Euler’s various texts and actively stimulated
by Lambert’s project on factor tables and his appeal for a coherent and
complete theory of numbers in general, of factoring specifically.

6 Conclusions

19th century mathematics is marked by a rapidly growing professionalisation,
due to the growing importance (and sometimes introduction) of mathemat-
ics in the university curriculum and the foundation of mathematical sem-
inars.124 As a consequence, in harmony with the industrial idea of labour
division, table-making became a rather mechanical job, for reckoners and less
talented mathematicians, and often got separated from academic mathemat-
ics. A prime example of this was de Prony’s logarithmic and trigonometric
table project in Paris, where the job was divided between Legendre, who
set up the formulae, and jobless haircutters, who calculated additions and
subtractions [Grattan-Guinness 1990b]. The factor tables of Burckhardt, cal-
culated in ‘spare time’, and of the reckoning wonder Zacharias Dase were also
typical exponents of this tendency. The reports of the British Committee on
Mathematical Tables [Glaisher 1873/1874, Cayley 1875/1876] constituted the
eventual outcomes of this evolution. They listed all existing tables so as to
produce the missing tables as efficiently as possible. Renowned mathemati-
cians such as Cayley and Stokes pointed out the most urgent tasks, J.W.L.
Glaisher executed and/or commissioned the missing tables.125

Before 1800 the picture is different. Important mathematicians as Pell,
Wallis, Lambert and Euler spent quite some time on factor tables, either
producing, correcting or promoting them. The main medium for the orga-

123For more detail on this part, see [Bullynck 2008].
124See e.g. [Jahnke 1990] for Germany, [Grattan-Guinness 1990a] for France.
125For the history of the Committee and its dissolution in the 1930ies that announced

the computer era, see [Thompson 1949].
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nization and promotion of these factor tables was private correspondence,
though scientific societies (Collins at the Royal Society and Lambert at the
Berlin Academy) acted as catalyzers in this scientific communication. Due
the expansion and vulgarization of written communication in the 18th cen-
tury, Lambert could also use popular journals and book publications for the
dissemination of his appeal, and could hope for non-professional, but well
educated amateurs to enter in on his plans.

Apart from its importance for the production and lay-out of factor tables,
Lambert’s appeal also had a considerable impact on the birth of number the-
ory. His scientific essays on tables and numbers put factoring on the academic
agenda and pointed out that a gapless and coherent theory of numbers was
a scientific desideratum. Through Lambert’s active propagation these ques-
tions spread not only in academic circles, inspiring contributions by Bernoulli,
Béguelin, Lagrange and Euler, but acquired an even wider public in the Ger-
man states. The popular professors Kästner (Göttingen), Karsten, Klügel
(Halle) and Hindenburg (Leipzig) often referred to Lambert’s project in their
textbooks and lectures, introducing a generation of university students to the
problem of tables, factoring and some kind of “theory of numbers”. This sci-
entific project is one of the influences on Gauss’s Disquisitiones Arithmeticae
that would ultimately found that missing discipline, the theory of numbers.
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tinuirlichen Brüche, in und außer der Ordnung, Archiv der reinen und
angewandten Mathematik, 1 (1 & 2), pp. 47–68 & 154–195.

— [1795b] Historisch-kritisches Verzeichniß aller die combinatorische Ana-
lytik nahe oder entfernt angehenden Schriften, Archiv der reinen und ange-
wandten Mathematik, 1 (2), pp. 242–253 (continued in Heft 3).

Hofmann, Joseph Ehrenfried and Costabel, Pierre [1952] A propos d’un
problème de Roberval, Revue d’histoire des sciences et de leurs applica-
tions, 5, pp. 312–333.

Horsley, Samuel [1772] KOΣKINON EPATOΣΘENOΥΣ or The Sieve
of Eratosthenes. Being an account of his method of finding all the Prime
Numbers, Philosophical Transactions of the Royal Society, 62, pp. 327–347.

Jahnke, Hans-Niels [1990] Mathematik und Bildung in der Humboldtschen
Bildungsreform, Göttingen: Vandenhoeck & Ruprecht.

Johnson, William Woolsey [1884] Mr. James Glaisher’s Factor Tables and
the Distribution of Primes, Annals of Mathematics, 1 (1), pp. 15–23.

Juskevic, Adolf P., Smirnov, Vladimir I. and Habicht, Walter (eds.)
[1975] Leonhardi Euleri Commercium Epistolicum. Descriptio commercii
epistolici, Leonhardi Euleri Opera Omnia, Series 4, Volume 1, Basel:
Birkhäuser.
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gen: Vandenhoek & Ruprecht.

66



Knobloch, Eberhard [1998] Zeichenkonzeptionen in der Mathematik von der
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