
THE RIEMANN HYPOTHESIS
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1. The Problem

The Riemann zeta function is the function of the complex variable s, defined in
the half-plane1 <(s) > 1 by the absolutely convergent series

ζ(s) :=
∞∑

n=1

1
ns
,

and in the whole complex plane C by analytic continuation. As shown by Riemann,
ζ(s) extends to C as a meromorphic function with only a simple pole at s = 1, with
residue 1, and satisfies the functional equation

(1) π−s/2Γ
(s

2

)
ζ(s) = π−(1−s)/2Γ

(
1− s

2

)
ζ(1− s).

In an epoch-making memoir published in 1859, Riemann [18] obtained an ana-
lytic formula for the number of primes up to a preassigned limit. This formula is
expressed in terms of the zeros of the zeta function, namely the solutions ρ ∈ C of
the equation ζ(ρ) = 0.

In this paper, Riemann introduces the function of the complex variable t defined
by

ξ(t) =
1
2
s(s− 1)π−s/2Γ

(s
2

)
ζ(s),

with s = 1
2 + it, and shows that ξ(t) is an even entire function of t whose zeros have

imaginary part between −i/2 and i/2. He further states, sketching a proof, that in
the range between 0 and T the function ξ(t) has about (T/2π) log(T/2π) − T/2π
zeros. Riemann then continues “Man findet nun in der That etwa so viel reelle
Wurzeln innerhalb dieser Grenzen, und es ist sehr wahrscheinlich, dass alle Wurzeln
reell sind,” which can be translated as “Indeed, one finds between those limits about
that many real zeros, and it is very likely that all zeros are real.”

The statement that all zeros of the function ξ(t) are real is the Riemann hypoth-
esis.

The function ζ(s) has zeros at the negative even integers −2,−4, . . . and one
refers to them as the trivial zeros. The other zeros are the complex numbers 1

2 + iα,
where α is a zero of ξ(t). Thus, in terms of the function ζ(s), we can state the

Riemann Hypothesis. The nontrivial zeros of ζ(s) have real part equal to 1
2 .

In the opinion of many mathematicians, the Riemann hypothesis, and its exten-
sion to general classes of L-functions, is probably the most important open problem
in pure mathematics today.

1We denote by <(s) and =(s) the real and imaginary part of the complex variable s. The use
of the variable s is already in Dirichlet’s famous work of 1837 on primes in arithmetic progression.
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2. History and Significance of the Riemann Hypothesis

For references pertaining to the early history of zeta functions and the theory of
prime numbers, we refer to Landau [13] and Edwards [6].

The connection between prime numbers and the zeta function, by means of the
celebrated Euler product

ζ(s) =
∏
p

(1− p−s)−1

valid for <(s) > 1, appears for the first time in Euler’s book Introductio in Analysin
Infinitorum, published in 1748. Euler also studied the values of ζ(s) at the even
positive and negative integers, and he divined a functional equation, equivalent to
Riemann’s functional equation, for the closely related function

∑
(−1)n−1/ns (see

the interesting account of Euler’s work in Hardy’s book [8]).
The problem of the distribution of prime numbers received attention for the first

time with Gauss and Legendre, at the end of the eighteenth century. Gauss, in a
letter to the astronomer Hencke in 1849, stated that he had found in his early years
that the number π(x) of primes up to x is well approximated by the function2

Li(x) =
∫ x

0

dt

log t
.

In 1837, Dirichlet proved his famous theorem of the existence of infinitely many
primes in any arithmetic progression qn+a with q and a positive coprime integers.

On May 24, 1848, Tchebychev read at the Academy of St. Petersburg his first
memoir on the distribution of prime numbers, later published in 1850. It contains
the first study of the function π(x) by analytic methods. Tchebychev begins by
taking the logarithm of the Euler product, obtaining3

(2) −
∑

p

log
(

1− 1
ps

)
+ log(s− 1) = log ((s− 1)ζ(s)) ,

which is his starting point.
Next, he proves the integral formula

(3) ζ(s)− 1− 1
s− 1

=
1

Γ(s)

∫ ∞

0

(
1

ex − 1
− 1
x

)
e−xxs−1dx,

out of which he deduces that (s− 1)ζ(s) has limit 1, and also has finite derivatives
of any order, as s tends to 1 from the right. He then observes that the derivatives
of any order of the left-hand side of (2) can be written as a fraction in which the
numerator is a polynomial in the derivatives of (s − 1)ζ(s), and the denominator
is an integral power of (s − 1)ζ(s), from which it follows that the right-hand side
of (2) has finite derivatives of any order, as s tends to 1 from the right. From this,
he is able to prove that if there is an asymptotic formula for π(x) by means of a
finite sum

∑
akx/(log x)k, up to an order O(x/(log x)N ), then ak = (k − 1)! for

k = 1, . . . , N − 1. This is precisely the asymptotic expansion of the function Li(x),
thus vindicating Gauss’s intuition.

A second paper by Tchebychev gave rigorous proofs of explicit upper and lower
bounds for π(x), of the correct order of magnitude. Here, he introduces the counting

2The integral is a principal value in the sense of Cauchy.
3Tchebychev uses 1 + ρ in place of our s. We write his formulas in modern notation.
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functions

ϑ(x) =
∑
p≤x

log p, ψ(x) = ϑ(x) + ϑ( 2
√
x) + ϑ( 3

√
x) + · · ·

and proves the identity4 ∑
n≤x

ψ
(x
n

)
= log[x]! .

From this identity, he finally obtains numerical upper and lower bounds for ψ(x),
ϑ(x) and π(x).

Popular variants of Tchebychev’s method, based on the integrality of suitable
ratios of factorials, originate much later and cannot be ascribed to Tchebychev.

Riemann’s memoir on π(x) is really astonishing for the novelty of ideas intro-
duced. He first writes ζ(s) using the integral formula, valid for <(s) > 1:

(4) ζ(s) =
1

Γ(s)

∫ ∞

0

e−x

1− e−x
xs−1dx,

and then deforms the contour of integration in the complex plane, so as to obtain
a representation valid for any s. This gives the analytic continuation and the
functional equation of ζ(s). Then he gives a second proof of the functional equation
in the symmetric form (1), introduces the function ξ(t) and states some of its
properties as a function of the complex variable t.

Riemann continues by writing the logarithm of the Euler product as an integral
transform, valid for <(s) > 1:

(5)
1
s

log ζ(s) =
∫ ∞

1

Π(x)x−s−1dx

where
Π(x) = π(x) +

1
2
π( 2
√
x) +

1
3
π( 3
√
x) + · · · .

By Fourier inversion, he is able to express Π(x) as a complex integral, and compute
it using the calculus of residues. The residues occur at the singularities of log ζ(s)
at s = 1 and at the zeros of ζ(s). Finally an inversion formula expressing π(x) in
terms of Π(x) yields Riemann’s formula.

This was a remarkable achievement that immediately attracted much attention.
Even if Riemann’s initial line of attack may have been influenced by Tchebychev
(we find several explicit references to Tchebychev in Riemann’s unpublished Nach-
lass5), his great contribution was to see how the distribution of prime numbers is
determined by the complex zeros of the zeta function.

At first sight, the Riemann hypothesis appears to be only a plausible interesting
property of the special function ζ(s), and Riemann himself seems to take that view.
He writes: “Hiervon wäre allerdings ein strenger Beweis zu wünschen; ich habe
indess die Aufsuchung desselben nach einigen flüchtigen vergeblichen Versuchen
vorläufig bei Seite gelassen, da er für den nächsten Zweck meiner Untersuchung
entbehrlich schien,” which can be translated as “Without doubt it would be desir-
able to have a rigorous proof of this proposition; however I have left this research

4Here [x] denotes the integral part of x.
5The Nachlass consists of Riemann’s unpublished notes and is preserved in the mathematical

library of the University of Göttingen. The part regarding the zeta function was analyzed in depth
by C.L. Siegel [22].
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aside for the time being after some quick unsuccessful attempts, because it appears
to be unnecessary for the immediate goal of my study.”

On the other hand, one should not draw from this comment the conclusion that
the Riemann hypothesis was only a casual remark of minor interest for him. The
validity of the Riemann hypothesis is equivalent to saying that the deviation of the
number of primes from the mean Li(x) is

π(x) = Li(x) +O
(√
x log x

)
;

the error term cannot be improved by much, since it is known to oscillate in both
directions to order at least Li(

√
x) log log log x (Littlewood). In view of Riemann’s

comments at the end of his memoir about the approximation of π(x) by Li(x), it
is quite likely that he saw how his hypothesis was central to the question of how
good an approximation to π(x) one may get from his formula.

The failure of the Riemann hypothesis would create havoc in the distribution of
prime numbers. This fact alone singles out the Riemann hypothesis as the main
open question of prime number theory.

The Riemann hypothesis has become a central problem of pure mathematics,
and not just because of its fundamental consequences for the law of distribution
of prime numbers. One reason is that the Riemann zeta function is not an iso-
lated object, rather it is the prototype of a general class of functions, called L-
functions, associated with algebraic (automorphic representations) or arithmetical
objects (arithmetic varieties); we shall refer to them as global L-functions. They
are Dirichlet series with a suitable Euler product and are expected to satisfy an ap-
propriate functional equation and a Riemann hypothesis. The factors of the Euler
product may also be considered as some kind of zeta functions of a local nature,
which also should satisfy an appropriate Riemann hypothesis (the so-called Ra-
manujan property). The most important properties of the algebraic or arithmetical
objects underlying an L-function can or should be described in terms of the location
of its zeros and poles, and values at special points.

The consequences of a Riemann hypothesis for global L-functions are important
and varied. We mention here, to indicate the variety of situations to which it can
be applied, an extremely strong effective form of Tchebotarev’s density theorem for
number fields, the non-trivial representability of 0 by a non-singular cubic form in
seven or more variables (provided it satisfies the appropriate necessary congruence
conditions for solubility, (Hooley, [9])), and Miller’s deterministic polynomial time
primality test. On the other hand, many deep results in number theory that are
consequences of a general Riemann hypothesis can be shown to hold independent
of it, thus adding considerable weight to the validity of the conjecture.

It is outside the scope of this article even to outline the definition of global L-
functions, referring instead to Iwaniec and Sarnak [10] for a survey of the expected
properties satisfied by them; it suffices here to say that the study of the analytic
properties of these functions presents extraordinary difficulties.

Already the analytic continuation of L-functions as meromorphic or entire func-
tions is known only in special cases. For example, the functional equation for the
L-function of an elliptic curve over Q and for its twists by Dirichlet characters is
an easy consequence of, and is equivalent to, the existence of a parametrization of
the curve by means of modular functions for a Hecke group Γ0(N); the real diffi-
culty lies in establishing this modularity. No one knows how to prove this functional
equation by analytic methods, but the modularity of elliptic curves over Q has been
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established directly, first in the semistable case in the spectacular work of Wiles
[28] and Taylor and Wiles [24] leading to the solution of Fermat’s Last Theorem,
and then in the general case in a recent preprint by Breuil, Conrad, Diamond and
Taylor.

Not all L-functions are directly associated to arithmetic or geometric objects.
The simplest example of L-functions not of arithmetic or geometric nature are
those arising from Maass waveforms for a Riemann surface X uniformized by an
arithmetic subgroup Γ of PGL(2,R). They are pull-backs f(z) to the universal
covering space =(z) > 0 of X, of simultaneous eigenfunctions for the action of the
hyperbolic Laplacian and of the Hecke operators on X.

The most important case is again the group Γ0(N). In this case one can intro-
duce a notion of primitive waveform, analogous to the notion of primitive Dirichlet
character, meaning that the waveform is not induced from another waveform for
a Γ0(N ′) with N ′ a proper divisor of N . For a primitive waveform, the action of
the Hecke operators Tn is defined for every n, and the L-function can be defined as∑
λf (n)n−s, where λf (n) is the eigenvalue of Tn acting on the waveform f(z). Such

an L-function has an Euler product and satisfies a functional equation analogous
to that for ζ(s). It is also expected to satisfy a Riemann hypothesis.

Not a single example of validity or failure of a Riemann hypothesis for an L-
function is known up to this date. The Riemann hypothesis for ζ(s) does not
seem to be any easier than for Dirichlet L-functions (except possibly for non-trivial
real zeros), leading to the view that its solution may require attacking much more
general problems, by means of entirely new ideas.

3. Evidence for the Riemann Hypothesis

Notwithstanding some skepticism voiced in the past, based perhaps more on the
number of failed attempts to a proof rather than on solid heuristics, it is fair to say
that today there is quite a bit of evidence in its favor. We have already emphasized
that the general Riemann hypothesis is consistent with our present knowledge of
number theory. There is also specific evidence of a more direct nature, which we
shall now examine.

First, strong numerical evidence.
Interestingly enough, the first numerical computation of the first few zeros of

the zeta function already appears in Riemann’s Nachlass. A rigorous verification of
the Riemann hypothesis in a given range can be done numerically as follows. The
number N(T ) of zeros of ζ(s) in the rectangle R with vertices at −1−iT, 2−iT, 2+
iT,−1 + iT is given by Cauchy’s integral

N(T )− 1 =
1

2πi

∫
∂R
−ζ

′

ζ
(s)ds,

provided T is not the imaginary part of a zero (the −1 in the left-hand side of
this formula is due to the simple pole of ζ(s) at s = 1). The zeta function and
its derivative can be computed to arbitrary high precision using the MacLaurin
summation formula or the Riemann–Siegel formula [22]; the quantity N(T ) − 1,
which is an integer, is then computed exactly by dividing by 2πi the numerical
evaluation of the integral, and rounding off its real part to the nearest integer (this
is only of theoretical interest, and much better methods are available in practice for
computing N(T ) exactly). On the other hand, since ξ(t) is continuous and real for
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real t, there will be a zero of odd order between any two points at which ξ(t) changes
sign. By judiciously choosing sample points, one can detect sign changes of ξ(t)
in the interval [−T, T ]. If the number of sign changes equals N(T ), one concludes
that all zeros of ζ(s) in R are simple and satisfy the Riemann hypothesis. In this
way, it has been shown by van de Lune, te Riele and Winter [15] that the first 1.5
billion zeros of ζ(s), arranged by increasing positive imaginary part, are simple and
satisfy the Riemann hypothesis.

The Riemann hypothesis is equivalent to the statement that all local maxima of
ξ(t) are positive and all local minima are negative, and it has been suggested that
if a counterexample exists, then it should be in the neighborhood of unusually large
peaks of |ζ( 1

2 + it)|. The above range for T is T ∼= 5× 108 and is not large enough
for |ζ( 1

2 + it)| to exhibit these peaks, which are known to occur eventually. Fur-
ther calculations done by Odlyzko [17] in selected intervals show that the Riemann
hypothesis holds for over 3 × 108 zeros at heights up to6 2 × 1020. These calcu-
lations also strongly support independent conjectures by Dyson and Montgomery
[16] concerning the distribution of spacings between zeros.

Computing zeros of L-functions is more difficult, but this has been done in
several cases, including examples of Dirichlet L-functions, L-functions of elliptic
curves, Maass L-functions and nonabelian Artin L-functions arising from number
fields of small degree. No exception to a generalized Riemann hypothesis has been
found in this way.

Second, it is known that hypothetical exceptions to the Riemann hypothesis
must be rare if we move away from the line <(s) = 1

2 .
Let N(α, T ) be the number of zeros of ζ(s) in the rectangle α ≤ <(s) ≤ 2,

0 ≤ =(s) ≤ T . The prototype result goes back to Bohr and Landau in 1914, namely
N(α, T ) = O(T ) for any fixed α with 1

2 < α < 1. A significant improvement of the
result of Bohr and Landau was obtained by Carlson in 1920, obtaining the density
theorem N(α, T ) = O(T 4α(1−α)+ε) for any fixed ε > 0. The fact that the exponent
here is strictly less than 1 is important for arithmetic applications, for example,
in the study of primes in short intervals. The exponent in Carlson’s theorem has
gone through several successive refinements for various ranges of α, in particular
in the range 3

4 < α < 1. Curiously enough, the best exponent known to date in
the range 1

2 < α ≤ 3
4 remains Ingham’s exponent 3(1 − α)/(2 − α), obtained in

1940. For references to these results, the reader may consult the recent revision by
Heath-Brown of the classical monograph of Titchmarsh [23], and the book by Ivič
[11].

Third, it is known that more than 40% of nontrivial zeros of ζ(s) are simple
and satisfy the Riemann hypothesis (Selberg [20], Levinson [14], Conrey [2]). Most
of these results have been extended to other L-functions, including all Dirichlet
L-functions and L-functions associated to modular forms or Maass waveforms.

4. Further Evidence: Varieties Over Finite Fields

It may be said that the best evidence in favor of the Riemann hypothesis derives
from the corresponding theory, which has been developed in the context of algebraic
varieties over finite fields. The simplest situation is as follows.

6The most recent calculations by Odlyzko, which are approaching completion, will explore
completely the interval [1022, 1022 + 1010].
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Let C be a nonsingular projective curve over a finite field Fq of characteristic p
with q = pa elements. Let Div(C) be the additive group of divisors on C defined
over Fq, in other words, formal finite sums a =

∑
aiPi with ai ∈ Z and Pi points

of C defined over a finite extension of Fq, such that φ(a) = a where φ is the
Frobenius endomorphism on C raising coordinates to the qth power. The quantity
deg(a) =

∑
ai is the degree of the divisor a. The divisor a is called effective if every

ai is a positive integer; in this case, we write a > 0. Finally, a prime divisor p is a
positive divisor that cannot be expressed as the sum of two positive divisors. By
definition, the norm of a divisor a is Na = qdeg(a).

The zeta function of the curve C, as defined by E. Artin, H. Hasse and F.K.
Schmidt, is

ζ(s, C) =
∑
a>0

1
Nas

.

This function has an Euler product

ζ(s, C) =
∏
p

(1−Np−s)−1

and a functional equation

q(g−1)sζ(s, C) = q(g−1)(1−s)ζ(1− s, C),

where g is the genus of the curve C; it is a consequence of the Riemann–Roch
theorem. The function ζ(s, C) is a rational function of the variable t = q−s, hence
is periodic7 with period 2πi/ log q and has simple poles at the points s = 2πim/ log q
and s = 1 + 2πim/ log q for m ∈ Z. Expressed in terms of the variable t, the zeta
function becomes a rational function Z(t, C) of t, with simple poles at t = 1 and
t = q−1. The use of the variable t, rather than q−s, is more natural in the geometric
case and we refer to Zeta functions, with a capital Z, to indicate the corresponding
objects.

The Riemann hypothesis for ζ(s, C) is the statement that all its zeros have real
part equal to 1

2 ; in terms of the Zeta function Z(t, C), which has a numerator of
degree 2g, has zeros of absolute value q−1/2.

This is easy to verify if g = 0, because the numerator is 1. For g = 1, a proof
was obtained by Hasse in 1934. The general case of arbitrary genus g was finally
settled by Weil in the early 1940s (see his letter to E. Artin of July 10, 1942, where
he gives a complete sketch of the theory of correspondences on a curve [25]); his
results were eventually published in book form in 1948 [26].

Through his researches, Weil was led to the formulation of sweeping conjectures
about Zeta functions of general algebraic varieties over finite fields, relating their
properties to the topological structure of the underlying algebraic variety. Here the
Riemann hypothesis, in a simplified form, is the statement that the reciprocals of
the zeros and poles of the Zeta function (the so-called characteristic roots) have
absolute value qd/2 with d a positive integer or 0, and are interpreted as eigenval-
ues of the Frobenius automorphism acting on the cohomology of the variety. After
M. Artin, A. Grothendieck, and J.-L. Verdier developed the fundamental tool of
étale cohomology, the proof of the corresponding Riemann hypothesis for Zeta func-
tions of arbitrary varieties over finite fields was finally obtained by Deligne [3], [4].
Deligne’s theorem surely ranks as one of the crowning achievements of 20th century

7Similarly, ζ(s) is almost periodic in any half-plane <(s) ≥ 1 + δ, δ > 0.
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mathematics. Its numerous applications to the solution of long-standing problems
in number theory, algebraic geometry, and discrete mathematics are witness to the
significance of these general Riemann hypotheses.

In our opinion, these results in the geometric setting cannot be ignored as not
relevant to the understanding of the classical Riemann hypothesis; the analogies
are too compelling to be dismissed outright.

5. Further Evidence: The Explicit Formula

A conceptually important generalization of Riemann’s explicit formula for π(x),
obtained by Weil [27] in 1952, offers a clue to what may still lie undiscovered behind
the problem.

Consider the class W of complex-valued functions f(x) on the positive half-line
R+, continuous and continuously differentiable except for finitely many points at
which both f(x) and f ′(x) have at most a discontinuity of the first kind, and at
which the value of f(x) and f ′(x) is defined as the average of the right and left
limits there. Suppose also that there is δ > 0 such that f(x) = O(xδ) as x → 0+
and f(x) = O(x−1−δ) as x→ +∞.

Let f̃(s) be the Mellin transform

f̃(s) =
∫ ∞

0

f(x)xs dx

x
,

which is an analytic function of s for −δ < <(s) < 1 + δ.
For the Riemann zeta function, Weil’s formula can be stated as follows. Let

Λ(n) = log p if n = pa is a power of a prime p, and 0 otherwise. We have

Explicit Formula. For f ∈ W we have

f̃(0)−
∑

ρ

f̃(ρ) + f̃(1) =
∞∑

n=1

Λ(n)
{
f(n) +

1
n
f

(
1
n

)}
+ (log 4π + γ)f(1)

+
∫ ∞

1

{
f(x) +

1
x
f

(
1
x

)
− 2
x
f(1)

}
dx

x− x−1
.

Here the first sum ranges over all nontrivial zeros of ζ(s) and is understood as

lim
T→+∞

∑
|=(ρ)|<T

f̃(ρ).

In his paper, Weil showed that there is a corresponding formula for zeta and
L-functions of number fields as well as for Zeta functions of curves over finite fields.
The terms in the right-hand side of the equation can be written as a sum of terms
of local nature, associated to the absolute values of the underlying number field, or
function field in the case of curves over a field of positive characteristic. Moreover,
in the latter case the explicit formula can be deduced from the Lefschetz fixed point
formula, applied to the Frobenius endomorphism on the curve C. The three terms
in the left-hand side, namely f̃(0),

∑
f̃(ρ), f̃(1), now correspond to the trace of

the Frobenius automorphism on the l-adic cohomology of C (the interesting term∑
f̃(ρ) corresponds to the trace on H1), while the right-hand side corresponds

to the number of fixed points of the Frobenius endomorphism, namely the prime
divisors of degree 1 on C.
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Weil also proved that the Riemann hypothesis is equivalent to the negativity of
the right-hand side for all functions f(x) of type

f(x) =
∫ ∞

0

g(xy)g(y)dy,

whenever g ∈ W satisfies the additional conditions∫ ∞

0

g(x)
dx

x
=

∫ ∞

0

g(x)dx = 0.

In the geometric case of curves over a finite field, this negativity is a rather easy
consequence of the algebraic index theorem for surfaces, namely,

Algebraic Index Theorem. Let X be a projective nonsingular surface defined
over an algebraically closed field. Then the self-intersection quadratic form (D ·D),
restricted to the group of divisors D on X of degree 0 in the projective embedding
of X, is negative semidefinite.

The algebraic index theorem for surfaces is essentially due to Severi8 in 1906 [21,
§2,Teo.I]. The proof uses the Riemann–Roch theorem on X and the finiteness of
families of curves on X of a given degree; no other proof by algebraic methods is
known up to now, although much later several authors independently rediscovered
Severi’s argument.

The algebraic index theorem for nonsingular projective varieties of even dimen-
sion over the complex numbers was first formulated and proved by Hodge, as a
consequence of his theory of harmonic forms. No algebraic proof of Hodge’s theo-
rem is known, and it remains a fundamental open problem to extend it to the case
of varieties over fields of positive characteristic.

The work of Montgomery [16], Odlyzko [17], and Rudnick and Sarnak [19] on
correlations for spacings of zeros of ξ(t) suggests that L-functions can be grouped
into a few families, in each of which the spacing correlation is universal; the conjec-
tured spacing correlation is the same as for the limiting distribution of eigenvalues
of random orthogonal, unitary or symplectic matrices in suitable universal families,
as the dimension goes to ∞. All this is compatible with the view expressed by
Hilbert and Pólya that the zeros of ξ(t) could be the eigenvalues of a self-adjoint
linear operator on an appropriate Hilbert space. It should also be noted that a
corresponding unconditional theory for the spacing correlations of characteristic
roots of Zeta functions of families of algebraic varieties over a finite field has been
developed by Katz and Sarnak [12], using methods introduced by Deligne in his
proof of the Riemann hypothesis for varieties over finite fields. Thus the problem
of spacing correlations for zeros of L-functions appears to lie very deep.

All this leads to several basic questions.
Is there a theory in the global case, playing the same role as cohomology does

for Zeta functions of varieties over a field of positive characteristic? Is there an
analogue of a Frobenius automorphism in the classical case? Is there a general
index theorem by which one can prove the classical Riemann hypothesis? We are
here in the realm of conjectures and speculation. In the adelic setting propounded

8Severi showed that a divisor D on X is algebraically equivalent to 0 up to torsion, if it has

degree 0 and (D · D) = 0. His proof holds, without modifications, under the weaker assumption
(D ·D) ≥ 0, which yields the index theorem.
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by Tate and Weil, the papers [1], [5], [7] offer glimpses of a possible setup for these
basic problems.

On the other hand, there are L-functions, such as those attached to Maass
waveforms, which do not seem to originate from geometry and for which we still
expect a Riemann hypothesis to be valid. For them, we do not have algebraic and
geometric models to guide our thinking, and entirely new ideas may be needed to
study these intriguing objects.
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