
 

A Toolkit for Automatically Constructing Outdoor Radio Maps  
 

Kay Connelly, Yong Liu, Dan Bulwinkle, Adam Miller and Ian Bobbitt 
Computer Science Department 

Indiana University 
{connelly, yonliu, dbulwink, akmiller, ibobbitt}@cs.indiana.edu 

 
 

Abstract 
Outdoor location systems based on Wireless Access 
Point (WAP) signal strength must either know the 
exact location of the WAPs in order to use a 
triangulation algorithm, or must construct a radio-
map of the signal strengths. While the radio-map 
technique increases accuracy and can accommodate a 
wireless network that is not owned by any one entity, 
conventional methods for constructing a radio-map 
are labor-intensive and impractical in such 
environments. We introduce a toolkit for automatically 
constructing outdoor radio-maps. Our toolkit can 
easily be carried by delivery personnel and security 
guards during their normal work duties to obtain 
signal readings.  The scattered data readings are then 
fed into an interpolation algorithm to construct a more 
complete grid that can be used as the radio-map. 
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1. Introduction 

Location technologies have been widely examined 
in recent years. The location of a device or person 
enables location-aware applications such as obtaining 
directions, finding the nearest resource (be it a 
restaurant or a printer), and playing physical/virtual 
games [3].  Indeed, location is an essential input into 
many ubiquitous computing applications of the future. 
[6] 

Outdoor location systems tend to rely on GPS 
(Global Positioning System).  GPS uses satellite 
signals to determine location; thus, it does not work 
indoors and can be affected by such structures as tall 
buildings in urban areas. 

Outdoor location systems using wireless technology 
such as 802.11 (also known as Wi-Fi) have garnered 
recent attention for multiple reasons. First, there has 
been an explosion of wireless-enabled mobile devices.  
In response to high demand, many PDAs, smartphones 
and laptops come with built in wireless. GPS, 

however, rarely comes built-in to such general-purpose 
mobile devices.   

Second, GPS does not work indoors.  If one desires 
a location system both indoors and outdoors, GPS is 
not a complete solution.  Given enough wireless access 
points (WAPs), Wi-Fi location systems can work both 
inside and outside. 

Finally, there has been a dramatic increase in the 
number of deployed WAPs, resulting in wireless 
coverage that is dense enough to support outdoor Wi-
Fi location systems in many areas. For all of these 
reasons, Wi-Fi location systems are an attractive 
alternative to GPS in order to maximize the potential 
user base and integrate with indoor location 
technologies. 

The major problem with outdoor Wi-Fi location 
systems, however, is that they either have poor 
precision or a high overhead in building a radio-map.  
In this paper, we introduce a toolkit for automatically 
building a radio-map.  The essence of our approach is 
to combine a GPS unit with a wireless card in a few 
select devices which are carried around by people who 
frequently walk a specific area (such as a mailman or 
security guard).  This unit will automatically build a 
radio-map without knowledge of where the WAPs are 
located, and can update the radio-map even when 
WAPs are shut down, added or moved. 

In section 2, we discuss the current outdoor Wi-Fi 
location systems and their limitations.  In section 3 we 
introduce our approach.  We provide the technical 
details of our toolkit in section 4 and our technique for 
constructing the radio-map in section 5, our 
experimental results in section 6 and conclude in 
section 7. 
 
2. Wi-Fi Location Systems 

Techniques for locating mobile devices using 
wireless signal strength have been widely examined 
for indoor environments [1, 2, 4]. Location systems 
using such techniques can normally achieve a location 
accuracy up to 3 meters indoors. Some commercial 



 

systems (e.g. Ekahau [5]) can even get a 1 meter 
accuracy. 

Research into Wi-Fi location systems in open 
outdoor environments has only recently become of 
interest because of the necessary density of WAPs to 
make the approach feasible.  Within the last two years, 
many urban and academic settings have added WAPs 
at an enormous pace.  As of October, 2004, downtown 
Seattle had at least 3,162 access points and the Indiana 
University Bloomington campus had more than 400 
wireless access points within a few square miles. 

Wi-Fi location techniques can be divided into two 
categories: 1. model-based techniques and 2. radio-
map techniques.   

Model-based techniques make use of the locations 
of the detected access points and the radio frequency 
propagation model to triangulate the receiver's 
position. Model-based techniques are generally 
considered to have an advantage in outdoor 
environments since building the radio-map in such 
environments is a time consuming process. The major 
disadvantage of this type of location techniques is the 
lower position accuracy compared to the radio-map 
techniques. 

For example, Place Lab [8, 9] uses the strength of 
the wireless signals received at a device to locate the 
“Nearest Access Point” and look up the associated 
location of that WAP. This provides very coarse-
grained location information with an accuracy between 
20 and 30 meters. 

Rover, on the other hand, feeds the location of the 
WAPs into a modeling algorithm such as Minimum 
Triangulation and Curve Fitting [10]. This allows a 
location to be determined that uses multiple signal 
strengths. Unfortunately, the paper does not give any 
measurements of accuracy. 

The problem with the model-based approach is that 
it requires the exact location of all access points.  
Given the separate ownership and administration of 
most WAPs, obtaining this information is not trivial.  
Additionally, without further infrastructure for 
updating the databases (which are often located on the 
mobile devices), this approach does not respond well 
to the dynamic nature of the wireless network with 
WAPs being added, moved and removed at any time. 

The radio-map approach constructs a radio-map by 
measuring the signal strength of WAPs at multiple 
points. Radio-map techniques typically require two 
phases of working. In the offline phase, the signal 
strengths received from the access points at a set of 
pre-defined mesh points are gathered and recorded 
using a database. In the online phase, the currently 
received signal strengths are compared to the radio-
map and the “best” match is returned as the estimated 

user location. Depending on the density of the 
network, radio-map techniques can obtain an accuracy 
of as little as three meters indoors [1]. 

While this approach does not require the location of 
the WAPs, current techniques for taking the data 
points are labor-intensive. Current radio-map 
approaches also suffer under a dynamic network, 
requiring the entire map to be re-constructed when 
WAPs move, join or leave the area. 

  
3. Our Approach 

We propose a toolkit that can automatically 
construct an outdoor radio-map. By equipping a 
relatively small-number of people with our toolkit, an 
outdoor radio-map can be updated daily, thereby 
handling the dynamism encountered by today’s 
wireless networks.  Ideal candidates for carrying our 
toolkit are nomadic in their daily activities (i.e. 
delivery personnel, such as mailmen and college 
students who have classes in many buildings). 

 Figure 1 shows our wide area Wi-Fi location 
platform.  It consists of four major components: 

1. Signal collection toolkit  
2. Radio-map manager  
3. Signal database 
4. Location client 
The signal collection toolkit equips a PDA with 

both GPS and a wireless access card. As a person 
carries the toolkit, it records the wireless signal 
strengths along with the GPS coordinates 
automatically.  The person carrying the toolkit does not 
need to interact with the system in any way.  They act 
as data collectors for the wide area Wi-Fi location 
system in the offline phase.  

The frequency of the signal readings can be 
tailored.  The accuracy of our constructed radio-map is 
primarily limited by the resolution of the GPS module, 
which is 1 meter.  This allows our radio-map approach 
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Figure 1. Wi-Fi location platform architecture



 

to have a much higher resolution than existing model-
based Wi-Fi location approach. 

The radio map manager is in charge of building the 
comprehensive radio map for a specific area from a set 
of signal strength readings and their associated 
locations.  The radio-map manager feeds the newly 
generated radio map to the signal database. For every 
location reading, the signal database holds a set of 
signal strengths: one signal strength for each WAP that 
can be detected at that location.   

In order to determine their location, devices 
equipped with a wireless access card may use the 
location client.  The location client reads all available 
signal strengths and submits the set to the database, 
which can then retrieve a location based on the nearest 
point in the radio-map.  

 
Figure 2 shows how to scale our approach. Similar 

to the GSM network in which there are cells of 
coverage, a large area can be split into multiple cells.  
Each cell would have its own radio-map managers and 
signal databases.  When a mobile device comes into a 
place where the coverage of two or more signal 
databases overlaps (such as area A, B, C, and D in 
Figure 2), the location client may connect to any of the 
databases to retrieve its current location data. 

 
4. Signal Collection Toolkit 

Our signal collection toolkit is implemented on an 
iPAQ 4155 handheld device running Windows Mobile 
2003. This toolkit includes two major components:  

• Wi-Fi signal strength reading collection 
• GPS reading collection  
In the Wi-Fi signal strength reading collection 

component, Microsoft Windows CE’s Network Driver 
Interface Specification (NDIS) is used to implement a 
low level call to Device IO Control to obtain the MAC 

address and signal strength for each WAP in range. 
The GPS unit collects standard NMEA 1  sentences.  
Our GPS reading collection component parses the 
$GPGGA sentences to obtain the latitude and 
longitude.  

The data collected by the GPS unit, paired with the 
wireless signal strengths and MAC address readings, is 
stored in a file until the PDA is synched with the 
desktop.  Once synched, the data is automatically sent 
to the radio map manager. The radio-map manager 
periodically re-builds the comprehensive radio map for 
the entire area based on the readings inputted by the 
toolkit and keeps updating the database.  

For our current implementation, the frequency of 
Wi-Fi and GPS readings are set to 1 reading per 
second. In our implementation, we pair the latest GPS 
reading with the current Wi-Fi reading. Thus, it is 
important to note that the current implementation of 
this toolkit targets pedestrians.  

 
5. Signal Strength Interpolation  

Current approaches for constructing radio-maps 
collect data at specifics points (i.e. a 1-meter grid).  
While our system greatly reduces the labor involved in 
data collection, we cannot easily collect data at pre-
defined locations because of its automated nature. As 
we have no control over where the data collectors will 
walk, we have to be able to handle holes in the data. 

To deal with the non-uniform distribution of data 
points, we utilize a data interpolation method called 
inverse distance weighting (IDW) [7] to build the 
comprehensive radio-map.  In this way, we use our 
collected scatter points to interpolate a value for every 
point on the grid.  This interpolated grid of points is 
then used in a normal radio-map algorithm. 

 

 The inverse distance weighting method is based on 
the assumption that the interpolation points should be 
influenced most by their nearest neighbors and less by 
the more distant points. The interpolating surface is a 
weighted average of the scatter points and the weight 
assigned to each scatter point diminishes as the 
distance from the interpolation point to the scatter 
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point increases. Figure 3 illustrates this method in a 
conceptual level.   

A simple function used to compute the 
interpolating surface using the inverse distance 
weighting method is as the following: 
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where n is the size of the scatter point set, fi is the 

value corresponding to each scatter point, and wi is the 
weight assigned to each scatter point. The weight of 
each scatter point can be calculated using the following 
formula: 
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where p is the power parameter (an arbitrary 

positive integer, typically p=2) and hi is the distance 
from the scatter point to the interpolation point.  By 
definition, the sum of all the weights is 1. 

A major limitation of using the IDW method with 
the scattered data points as the only input is that the 
interpolating surface is a simple weighted average of 
the data values of the scatter points and is constrained 
to lie between the extreme values in the data set. For 
outdoor Wi-Fi signal strength reading collection, this 
means the signal strengths of all the interpolated points 
will be at least equal to the lowest collected signal 
strength. But since the Wi-Fi signal coverage is 
typically 100 meters, at any point with a distance to the 
access point larger than 100 meters, the received signal 
strength should obviously be close to 0.  

Our toolkit, however, only reports detected signal 
strengths.  Thus, we must adjust our computation by 
introducing artificially generated data points that 
correspond to no signal being detected. The weakest 
signal strength our wireless card can detect is -97 
dBm2.  Thus, for every point in the database, if a signal 
strength is not recorded for a particular WAP, we set it 
to be -100 dBm. 

Further, since a Wi-Fi signal does not travel more 
than 100 meters, it does not make sense to include a 
reading which is very distant from the point that is 
being interpolated.  This greatly slows the computation 
for a point which will have a weight approaching zero.  
Thus, we define a radius, r, which is used to determine 
if a measured location will be used to compute a point 
in the radio map. Only when a mesh point is within the 

                                                           
2 The strongest signal strength we recorded was -55 
dBm.  Signal strength about 1 meter away from the 
WAP can be as good as -20 dBm. 

radius of the signal reading will the reading be used in 
the IDW algorithm for that point.  For our 
experiments, we set r to 50 meters. 

Figure 4 shows how we apply the improved IDW 
algorithm to generate the comprehensive radio-map for 
a target area. In Figure 4, a radio map grid with 9 by 
12 points is generated for a single access point.  The 
access point is denoted by an orange point near (3, I) 
in the figure. In this target area, nine Wi-Fi signal 
readings have been gathered for this access point 
during preliminary signal collection. The locations at 
which these readings are collected are denoted by 
orange + symbols in the figure. The larger the symbol 
is, the stronger the signal detected at this point is. The 
black x symbols denote the locations at which we 
generate the artificial signal readings of -100 dBm. 

In the figure, we have drawn the radius around 
three points near: (4, F), (6, L) and (7, E). When 
computing the green point at (6, G), the signal reading 
near (6, L) does not contribute to its strength 
computation since this reading is too far away from the 
green point.  

 In the wide area Wi-Fi location platform, the signal 
strength interpolation for a specific area is conducted 
periodically. When new access points are detected, 
they will be automatically folded in during the 
interpolation process. In addition, an aging algorithm 
can be introduced to help purge those old access points 
which are not active any more. The Wi-Fi signal 
database is then updated readily with little effort. 
 
6. Experiment Results 

In our experiments, we collect 13,657 raw Wi-Fi 
signal and GPS reading pairs on the Indiana University 
Bloomington campus using the Wi-Fi signal collection 
toolkit. All of the data was collected within a 10,000 

1 
 
2 
 
3 
 
4 
 
5 
 
6 
 
7 
 
8 
 
9 

A      B      C       D      E       F      G      H       I        J       K      L 

Figure 4. Illustration of improved IDW algorithm 



 

square-meter area on campus in which 11 academic 
and student activity buildings are located. An aerial 
photo of this area is shown in Figure 5. 

The total time spent in data collection was two 
hours. During this time, a researcher carried the signal 
collection toolkit and walked along the paths among 
the buildings several times. There was a total of 78 
wireless access points detected. Signals from these 
access points covered most of the area, except for a 
few places in the woods surrounded by the buildings. 
In Figure 5, the positions of the readings are denoted 
with different colored and shaped symbols indicating 
different WAPs. 

 

 
 
 
 

 After the data collection was complete, we used 
the improved IDW algorithm to generate the 
interpolation points from the collected signal readings. 
It took 134 minutes to generate a 1.1 meter grid.   

Figure 6 shows a sample signal strength 
interpolation for a single access point. The x-axis 
denotes longitude and the y-axis denotes latitude. The 
z-axis denotes the strength of the received Wi-Fi signal 
with dBm as the unit. The red points in the figure are 
the initial scatter points which were collected using the 
signal collection toolkit. The black points on the x-y 
plane are the artificially generated scatter points, which 
help to improve the interpolation results. In this sample 
interpolation process, the granularity of the artificially 
generated points was 10 meters. From experiments, we 
found a finer granularity of these fake points did not 
improve the interpolation results. On the contrary, it 
significantly slowed down the interpolation process. 

Based on the initial scatter points and the 
artificially generated points, a fine-grained 
interpolation surface is generated by applying the 

improved IDW algorithm. The granularity of the 
surface in our experiments is 1 meter.  

 
 
 

From Figure 6, we can see an interpolation surface 
is generated only for a limited area near the initial 
scatter points. This is because the signal strength at the 
interpolated points outside this area falls below a 
threshold, which is -90 dBm in our experiments, and 
hence they are deleted from the database.  

We performed a cross-validation study to examine 
the interpolation accuracy from the initial scatter 
points. We divided the entire set of signal strength 
readings for a specific access point into 100 subsets. 
During each iteration of the cross validation, we use 
one subset as the test set and the remaining 99 subsets 
as training sets. After computing the interpolated 
points with the training sets, we examined the locations 
of our test set and compared the actual signal strengths 
to the interpolated values.  We repeated this process 
100 times and computed the error rate for each 
iteration. 

 
 

The average interpolation error is 0.98 dB. Since 
the outdoor Wi-Fi signal strength detected in our 
experiment ranges from -55 dBm to -97 dBm, the 
relative interpolation error is only 2%.  Figure 7 shows 
the error distribution of our sample signal strength 

Figure 5. An aerial photo marked with Wi-Fi 
signal readings 

Figure 6. Interpolation points for a single WAP 

Figure 7. Interpolation error distribution 



 

interpolation. The x-axis is the error in dBm, and the y-
axis is the number of interpolated points.  From this 
figure we see that the majority (52%) of the 
interpolation errors are within 0.4 dB.  
 When determining a location, multiple WAPs are 
typically used, which can offset the few points with 
poor interpolation results.  For our experiment, when 
the grid resolution is set to 1 meter, we had a total of 
3700 points with Wi-Fi readings and 331 points with 
no WAP within range.  On average, 2.65 WAPs were 
detected per reading, with as many as 9 WAPs.  

  

 We performed a test on the accuracy of our 
generated radio map based on the number of WAPs in 
range.  Figure 8 gives the average, minimum and 
maximum error for 1-6 detected WAPs, using 10 
locations each.  As the figure shows, detecting at least 
4 WAPs provides an average error of less than 5 
meters and a maximum error of 10.4 meters. Detecting 
2-3 WAPs gives an error less than the Place Lab 
algorithm on average. Further, the worst error 
computed with 3 WAPs is also better than Place Lab. 
At locations where only a single WAP is detected, the 
location accuracy is similar to the accuracy of a 
“Nearest Access Point” location system. 
 The test result clearly shows that the higher the 
density of WAPs in an area, the smaller the error will 
be. Thus, the number of detected WAPs could be used 
to provide an application or end-user with a confidence 
value of the predicted location. 
 
7. Conclusion 

Radio-map approaches for outdoor location system 
based on wireless signal strength have not previously 
been pursued because of the cost in constructing the 
map. In this paper, we introduce a toolkit for 
automatically collecting the signal strengths, without 
any human intervention. While our toolkit is labor-
free, it can only gather scattered data points.  We 
introduce an interpolation technique that can handle 

scattered points to build a comprehensive radio-map. 
We performed cross-validation on our data set and 
show an average error of less than 1 dB.   

Further, we analyzed the accuracy of our radio-map 
predictions based on the number of WAPs in range, 
and showed that the higher the density of WAPs, the 
smaller the error.  Our results can be used to inform the 
end user or location-based application of the 
confidence of the current location prediction. 

In the next phase, we plan on deploying a working 
wide area Wi-Fi location system with a set of location-
aware applications supported on Indiana University 
Bloomington campus. We believe this wide area 
location system will greatly enhance the user 
experience for various location-aware applications. 
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Figure 8. Error based on # of WAPs 
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