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ABSTRACT The origin of salamanders and their interrelationships to the two other modern
amphibian orders (frogs and caecilians) are problematic owing to an 80–100 million year gap in the
fossil record between the Carboniferous to the Lower Jurassic. This is compounded by a scarcity of
adult skeletal characters linking the early representatives of the modern orders to their stem-group
in the Paleozoic. The use of ontogenetic characters can be of great use in the resolution of these
questions. Growth series of all ten modern salamander families (a 120 cleared and stained larvae)
were examined for pattern and timing of vertebral elements chondrification and ossification. The
primitive pattern is that of the neural arches developing before the centra, while the reverse
represents the derived condition. Both the primitive and derived conditions are observed within the
family Hynobiidae, whereas only the derived condition is observed in all other salamanders. This
provides support to the claims that Hynobiidae is both the most basal of modern families and
potentially polyphyletic (with Ranodon and Hybobius forming the most basal clade and
Salamandrella being a part of the most derived clade). This provides insight into a unique event
in salamander evolutionary history and suggests that the developmental pattern switch occurred
between the Triassic and the mid-Jurassic before the last major radiation. J. Exp. Zool. (Mol. Dev.
Evol.) 312B:1– 29, 2009. r 2008 Wiley-Liss, Inc.
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Salamanders are common model-organisms for
fields ranging from developmental genetics (Torok
et al., ’98) to ecology and toxicology (Welsh and
Droege, 2001). Despite modern families being well
studied and understood (Petranka, ’98), their
origins and relationships to the two other living
groups of amphibians, frogs (Anura) and caecilians
(Gymnophiona), remain controversial (Carroll
et al., ’99; Schoch and Carroll, 2003). The problem
stems from the complete absence of fossils
attributable to the modern orders in the late
Permian, the time period when they are most
likely to have differentiated (Milner, ’93; Carroll,
2001). This, combined with the fact that repre-
sentatives of the modern orders look essentially
modern when they appear in the Early and Middle

Jurassic (Ivachnenko, ’78; Rocek, 2000), leads one
to search for other alternatives than adult char-
acters for the resolution of lissamphibian relation-
ships.

Ontogenetic characters and transformation
series are increasingly used in phylogenetic
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reconstructions and have been proved not only to
add a new source of information but also to
uncover sequence heterochronies (Steyer, 2000).
As a part of a larger project to describe ontogenetic
characters to be used in the reconstruction
of a ‘‘total evidence’’ tree for the resolution of
lissamphibian interrelationships, vertebral
development in modern and Paleozoic amphibians
was studied by Carroll et al. (’99). Preliminary
studies of cleared and stained material of the
hynobiid salamander Ranodon tsinpaensis
contradicted Carroll et al.’s claim that all
salamanders developed their vertebral centra
first and their neural arches later. To understand
if this otherwise very conserved character (Carroll
et al., ’99) was consistent within Urodela and if
vertebral development pattern is, indeed, a phylo-

genetically significant character, 29 growth
series or isolated individuals from all ten living
families were cleared, stained and described.
The two resulting patterns of vertebral develop-
ment were mapped on two recent phylogenies
to understand their distributions and suggest
which pattern is most likely to be primitive
for salamanders. This research shows that a
character change from neural arches developing
before centra to centra developing before
arches occurred early in the diversification
of salamanders. It gives insight into a unique
event that most likely occurred between the
Triassic and the mid-Jurassic (Milner, ’83; Gao
and Shubin, 2003) and it gives insight into the
dispersal patterns of stem-urodeles before their
last diversification event.

Fig. 1. The primitive pattern of vertebral development is shown by (A) the hynobiid Ranodon tsinpaensis. The derived
developmental pattern of centra developing before arches is shown by all other salamanders: (B) the hynobiid Salamandrella
keyserlingii; (C) the cryptobranchid Cryptobranchus alleganiensis alleganiensis; (D) the sirenid Siren intermedia nettingi; (E)
the proteid Necturus maculosus; (F) the salamandrid Notophtalmus viridescens; (G) the dicamptodontid Dicamptodon
tenebrosus; (H) the ambystomatid Ambystoma; (I) the ryacotritonid Rhyacotriton; (J) the amphiumid Amphiuma means; (K) the
plethodontid Desmognathus fuscus fuscus. Boxed areas are enlarged for each individual. All scale bars 5 5 mm.
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MATERIALS AND METHODS

A series of Ambystoma maculatum (RM ]
4524–4544) was obtained from eggs on Mont
St-Hilaire, near Montréal (permit issued to Martin
Ouellet, number 2001 03 30 111 16 S F) and raised
in the lab. The eggs hatched between 30/05/2002
and 12/06/2002 and were then transferred to an
aquarium aerated by a water bubbler, at a
temperature varying between 20 and 231C. The
larvae were fed live brine shrimps every other day.
The larvae were sacrificed between 05/06/2002 and
17/07/2002 by transferring them to a solution of
MS222 (Tricaine methane sulfonate, an anaes-
thetic). Most of the material for this study was
provided by the following institutions: California
Academy of Sciences, Canadian Museum of
Nature, Chicago Natural History Museum, Florida
Museum, Field Museum of Natural History,
Museum of Comparative Zoology, Redpath
Museum, University of Florida, University of
Michigan Museum of Zoology. All the larvae
were fixed in formaldehyde before clearing and
staining according to procedures derived from
Dingerkus and Uhler (’77) and Taylor and Van
Dyke (’85).

Specimens were examined and described using a
Spencer microscope under refracted and direct
light. They were then photographed with a Leica
R8 camera with a 100 mm macroscopic lens
mounted on extension tubes. For the smallest
specimens, extra magnification was provided by
mounting the camera to a microscope.

Additional data about vertebral development in
modern and fossil salamanders were taken from
the literature (Fox, ’59; Schmalhausen, ’68;
Vorobyeva and Antipenkova, 2002; Gao and
Shubin, 2003), and the developmental patterns
were mapped on two recent phylogenies as in
Nishikawa (2000). The phylogeny of salamander
families of Wiens et al. (2005) (Fig. 2A) was chosen
because it combines molecular and morphological
characters for members of all ten living families
and takes into account the effects of paedomorph-
ism, while being well supported and well resolved.
As the goal of this research is to interpret the
results within an evolutionary context, the phylo-
geny of extant and extinct amphibians of Ander-
son et al. (2008) was chosen to illustrate the
breadth of developmental data in the fossil record.
This helps put the results into perspective as well
as to polarize characters.

RESULTS AND DISCUSSION

Developmental sequence of element
formation and patterns

The development of hemal arches, ribs and
spinous processes can be generalized for members
of all families. Haemal arches follow the develop-
ment of caudal centra and they start chondrifying
when most, if not all caudal centra have chon-
drified and ossify in a similar manner, forming
almost simultaneously to centra as development
proceeds posteriorly. Ribs follow the chondrifica-
tion and ossification of trunk centra and arches,

Fig. 2. (A) Vertebral development patterns mapped on Wiens et al. (2005)’s phylogeny of salamander relationships. (B)
Vertebral development of extant and extinct amphibians mapped on a phylogeny simplified from Anderson et al. (2008) showing
the primitive development pattern for Batrachia and Gymnophiona.
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beginning to chondrify when all the trunk vertebrae
have chondrified and only finishing ossification
toward the end of the animal’s development. The
spinous processes follow the development of the
neural arches, only starting to chondrify when all
the trunk arches have done so and developing
almost simultaneously to the neural arches toward
the end of the tail. They start to ossify when all the
trunk arches have done so. As the development of
those vertebral elements is linked to that of centra
or other vertebral elements, they do not provide
phylogenetically significant information about se-
quence heterochronies as the relative timing of
centra and arches do, which is why the rest of this
article will focus on the latter.

Salamanders, as all other tetrapods (Carroll
et al., ’99), develop their vertebral column in an
anterior to posterior direction. In the specimen of
hynobiid salamander R. tsinpaensis studied here,
all neural arches are chondrified but there is no
sign of developed centra (Fig. 1A, detail, Fig. 2 and
Table 5b). This suggests that the arches develop
first and well in advance of the centra. This
assumption is confirmed by the observation of this
pattern in the hynobiids R. sibericus (Vorobyeva
and Antipenkova, 2002), Hynobius maculosus
(Fox, ’59) and in an incompletely ossified fossilized
larvae recently discovered in the Middle Jurassic
of China (Gao and Shubin, 2003). This ‘‘small
larval Cryptobranchoid’’ (superfamily including
the Hynobiidae and Cryptobranchidae) has not
been identified to the family level, but is most
likely to be a basal member of the Hynobiidae on
the basis of cranial morphology. In contrast, the
centra of the hynobiid Salamandrella keyserlingii
(Fig. 1B, Fig. 2 and Table 5a) chondrify first and it
is only after several centra have chondrified that
the arches begin to appear. This lag between the
appearance of centra and arches shortens and
disappear as the centra finish chondrifying at the
end of the tail, allowing the arches to ‘‘catch up.’’
The first centra start ossifying when most, if not
all, vertebrae have finished chondrifying and the
arches start ossifying when at least a few centra
are already ossified. The latter is a general rule for
the nine other salamander families (Figs. 1C–K, 2,
Tables 1–4, 6–10). There is some degree of
variation in the timing of centra and arches
development across families, ranging from a very
long delay between the ossification of arches and
centra in Amphiumidae (Figs. 1J, 2 and Table 2) to
an almost simultaneous chondrification and ossi-
fication of the centra and arches in Plethodontidae
(Fig. 1K, 2 and Table 6).

Primitive developmental pattern and
lissamphibian relationships

Until very recently, the common consensus on
lissamphibians (frogs, salamanders and caecilians)
was that they formed a monophyletic group and
that they were a sister-group to the Paleozoic
amphibian group Temnospondyli (Milner, ’93;
Ahlberg and Milner, ’94; Ruta et al., 2003).
However, a recent phylogeny including a transi-
tional stem amphibian shows that salamanders
and frogs (Batrachia) are closely related to
temnospondyls, whereas caecilians are more clo-
sely related to ‘‘lepospondyls’’ and reptiliomorphs,

TABLE 2. Vertebral development in amphiumid salamanders

Each numbered rectangle in the tables represents a vertebra. Notes in
parentheses indicate the beginning of each section of the vertebral
column. Coding: no shading 5 unchondrified and unossified; grey
shading 5 chondrified; black 5 ossified.
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TABLE 5. Vertebral development in hynobiid salamanders

Each numbered rectangle in the tables represents a vertebra. Notes in parentheses indicate the beginning of each section of the vertebral column.
Coding: no shading 5 unchondrified and unossified; grey shading 5 chondrified; black 5 ossified.
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supporting the hypothesis of a diphyletic origin of
lissaphibians (Fig. 2B). The sister-relationship of
caecilians and microsaurs (Carroll and Currie, ’75;
Carroll, 2000) and that of Batrachia with temnos-
pondyls (Milner et al., ’86; Trueb and Cloutier,
’91) had been supported before but the divergence
time of those groups was unclear. Despite the
different sister-group relationships of caecilians
and Batrachia, the monophyly of lissamphibia was
still compatible as long as these groups formed a
clade excluding amniotes. Anderson et al. (2008)
show that this is not the case and estimate that
caecilians and batrachians diverged at the split
between temnospondyls and ‘‘lepospondyls’’ in the
late Carboniferous (328–335 Myr ago).

Divergences in vertebral development pattern
can be seen between those two major groups when
mapped on a simplified version of Anderson et al.’s
(2008) phylogeny (Fig. 2B). Data about extant
salamanders were taken from this study, whereas
the pattern of arches first in frogs was studied by
Carroll et al. (’99) from growth series and
immature individuals of the following families:
Ascaphidae, Pipidae, Dendrobatiae, Hylidae, Mi-

crohylidae, Leptodactylidae. The centra of caeci-
lians developing first was discovered in
Epicrionops and the caeciliid Schistometopum by
Marvalee and David Wake (Wake and Wake, ’86,
2000) and reported by Carroll et al. (’99). Thanks
to many growth series and incompletely ossified
individuals, vertebral development pattern of
Palaeozoic amphibians is available for most groups
and is stable enough within each group to be
generalized from data at hand.

Amphibamidae develop their arches first as seen
in a grown series of Amphibamus lyelli (Carroll
et al., ’99). Micromelerpetontidae display the same
developmental pattern in a growth series of
Micromelerpeton credneri (Boy, ’72; Witzmann
and Pfretzschner, 2003). Many growth series are
known for Brachiosauridae and they all show the
‘‘arches first’’ pattern as seen in the growth series
of Branchiosaurus salamandroides (Carroll et al.,
’99). There are no larval or immature postcrania
known for the olsoniforms Ecolsonia and Achelo-
ma used in this phylogeny, a question mark is
therefore used on Figure 2B. A juvenile specimen
of Balanerpeton (Carroll, 2001) as well as the

TABLE 8. Vertebral development in rhyacotritonid salamanders

Each numbered rectangle in the tables represents a vertebra. Notes in parentheses indicate the beginning of each section of the vertebral column.
Coding: no shading 5 unchondrified and unossified; grey shading 5 chondrified; black 5 ossified.
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TABLE 10. Vertebral development in sirenid salamanders
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Erypoid temnospondyl Onchiodon (a much smal-
ler but close relative to Eryops) develop their
arches first (Schoch, 2002) exemplifying the con-
dition for stem temnospondyls. The primitive
pattern for all temnospondyls is therefore that of
arches first and it is retained in modern frogs and
is the primitive pattern for salamanders.

Reptiliomorphs, caecilians (Gymnophiona) and
‘‘lepospondyls’’ all display the reverse develop-
mental pattern. There are no postcranial growth
series of Proterogyrinus known, the only embolo-
mere represented in Anderson et al.’s (2008)

phylogeny and neither are there for Limnoscelis,
the only Diadectomorph included in the phylo-
geny. However, the pattern of centra developing
first can clearly be seen in representatives of the
other groups. A larva of Gephyrostegus (Carroll,
’70), immature remains attributed to Seymouria
sanjuanensis (Klembara et al., 2001) as well as a
juvenile of Utegenia shpinari display this develop-
mental pattern for Seymouriamorpha. The micro-
saur Hyloplesion (Carroll et al., ’99), an
adelogyrinid not assigned to genus (Carroll et al.,
’99) as well as nectridians (Carroll, ’99), develop

TABLE 10. Continued
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centra before arches. It therefore seems to be the
primitive developmental pattern for anthraco-
saurs, reptiliomorphs and ‘‘lepospondyls’’ and is
inherited by all caecilians and amniotes (Carroll
et al., ’99).

Given the fact that there are no known juvenile
or growth series for the Devonian tetrapod
Acanthostega it is difficult to say which develop-
mental pattern is likely to be primitive for all
tetrapods. One can look at vertebral development
sequences of the tetrapodomorph fish Eusthenop-
teron (closely related to tetrapods), but the authors
of the study suggest that its complex and non
antero-posterior development is likely to be
derived (Cote et al., 2002). All tetrapods develop

their vertebral column in an anterior to posterior
direction, after the expression of Hox genes. This
is not the case for Eusthenopteron where develop-
ment of vertebral elements begin with the ossifica-
tion of neural arches at the anterior base of the
tail, progressing posteriorly into the tail and
anteriorly into the trunk until development is
halted at the level of the second dorsal fin. The
development of trunk neural arches is terminated
when the centra (developing in an antero-poster-
ior direction) have ossified. This suggests that
centra (intercentra) ossify before neural arches
but the authors argue that, as arches are first to
appear in evolution, the primitive developmental
pattern for tetrapods would be that or arches first

TABLE 10. Continued

Each numbered rectangle in the tables represents a vertebra. Notes in parentheses indicate the beginning of each section of the vertebral column.
Coding: no shading 5 unchondrified and unossified; grey shading 5 chondrified; black 5 ossified.
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(Cote et al., 2002). In the absence of developmental
data for the earliest tetrapods, either (a) the
primitive development pattern for all tetrapods
is that of arches first and a switch occurred in the
ancestor of anthracosaurs1‘‘lepospondyls, (b) the
primitive development pattern for all tetrapods is
that of centra first and a switch occurred in the
ancestor of temnospondyls or (c) each major group
inherited their development pattern from tetra-
pods that had adopted a different development
pattern. This would mean that there is no
primitive tetrapod development pattern, just two
different solutions to developing a vertebral
column as a tetrapod. Either way, vertebral
development pattern is a very conserved character
in tetrapods and switches in state are exceedingly
rare. The switch observed in modern salamanders
is a unique event in recent tetrapod evolution.

Salamander relationships

Current salamander phylogenies present three
congruence problems with regard to the distribu-
tion of vertebral ossification patterns: the
monophyly of Hynobiidae, the monophyly of
Cryptobranchoidea (Hynobiidae1Cryptobranchi-
dae) and, in some phylogenies, the basal position
of Sirenidae. As presented above, the apparently
primitive ossification pattern of arches before
centra occurs among living salamanders exclu-
sively in a subset of Hynobiidae: Ranodon and
Hynobius, but not Salamandrella. Cryptobran-
chids, sirenids and all other salamanders show the
derived pattern. Because of this, each of the
aforementioned three phylogenetic statements
necessitates an additional switch between primi-
tive and derived modes of vertebral ossification.
The only phylogenetic pattern that would allow a
least homoplasic distribution of vertebral ossifica-
tion patterns is to have a paraphyletic Hynobiidae
at the base of the salamanders, with Ranodon and
Hynobius as sister-groups to Salamandrella1all
other salamanders. This has recently been sup-
ported by a phylogenetic analysis based on the
mitochondrial genome of all members of Hynobii-
dae (Zhang et al., 2006).

Sireniids are placed as the sister-group of all
other salamanders in some recent phylogenies
(Duellman and Trueb, ’86; Larson and Dimmick,
’93) but others place Hynobiidae, alone or with
other families, in that position (Gao and Shubin,
2001; San Mauro et al., 2005; Wiens et al., 2005).
Data from vertebral development gives support to
the basal position of Hynobiidae (Noble, ’31; Sato,

’43). As for the interrelationships of hynobiids,
Hynobiidae has often been hypothesized to be one
of the few salamander families to be paraphyletic
(Milner, ’83; Zhao et al., ’88; Trueb and Cloutier,
’91). Notwithstanding the current phylogenetic
consensus, there is thus some reason to believe
that Hynobiidae may form a paraphyletic basal
group of living salamanders, and that only a single
switch in the pattern of vertebral ossification has
occurred during salamander evolution. If this were
true, it would imply that the superfamily Crypto-
branchoidea (Hynobiidae1Cryptobranchidae) is
not a valid taxon. The fossil record of hynobiid
and cryptobranchid salamanders (Gao and Shubin,
2003), paleogeographical isolation events (Milner,
’83) and divergence times based on molecular
evolution (San Mauro et al., 2005), suggest that
this unique switch in vertebral development would
have taken place between the Triassic and the mid-
Jurassic in Asia.

CONCLUSIONS

The retention of the primitive development
pattern by some members of Hynobiidae provides
support for their position as the most primitive
member of the modern order, but raises questions
about its monophyly. Some genera included in
Hynobiidae may be the sister-taxa to all other
modern salamanders and that others may be the
sister-taxa to Cryptobranchidae. Consequently,
Crypobranchoidea (Hynobiidae1Cryptobranchi-
dae) may not be a valid taxon. The relationships
of the members of those clades should be reas-
sessed using a large species and character sample
to elucidate this problem.

This study of vertebral development patterns in
all modern families of salamanders has shown
that, as in all other tetrapod taxa (Carroll et al.,
’99; Wake and Wake, 2000), vertebral develop-
ment pattern is a robust character with phyloge-
netic significance that can be used in future
reconstructions including ontogenetic data. The
primitive pattern is that of the development of the
arches before the centra and is retained by a
putative hynobiid from the mid-Jurassic of China
and the modern genera Ranodon and Hynobius. A
switch in the developmental pattern most likely
occurred within stem-urodeles between the Trias-
sic and the mid-Jurassic in Asia. This occurred
after the group ancestral to the modern genera
Ranodon and Hynobius had evolved, but before
the radiation of the group later giving rise to
Salamandrella and all other salamander families.

SALAMANDER VERTEBRAL DEVELOPMENT 27

J. Exp. Zool. (Mol. Dev. Evol.)



The retention of two vertebral development
patterns in modern salamanders provides a un-
ique opportunity to explore the causes of a switch
in such a robust phylogenetically character.
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