DIO

Aubrey Diller Legacies

Ptolemy GEOGRAPHY Book 8
Diller's 1984 Establishment of
The First Critical Edition
DIO's Numbered Catalog of Book 8's 360 Sites
With Tabular Correlation to Data of Books 2-7

Plus 2009's Unexpected Confirmation of
The Diller Pioneer 1934 Proof of Spherical Trigonometry's 130 BC Use by Hipparchos

To Aubrey Diller (1903-1985), the $20^{\text {th }}$ century's ultimate devoted philologist of ancient geographical mss, who honored DIO by leaving to us the manuscript of his last work: the pioneer completion of two centuries of scholars' scrupulous cumulative labors towards establishment of a reliable text of $2^{\text {nd }}$ century AD mathematician-astrologer Claudius Ptolemy's famous Geographical Directory (GD), popularly known as the Geography or Geographia, and said to be the most-written-of work in all the history of geography.

The frustrations of non-completion steadily increased following the series of scholarly but invariably unfinished GD editions by Wilberg \& Grashof 1838-1845, Müller 1883\&1901, \& Renou 1925 (which collectively took the project up through Book 7), culminating in Diller's 1984 achievement of establishing the text of the GD's finale: Book 8.

The project of making the $G D$ readily accessible continued with the valuable English edition of Berggren \& Jones 2000 [henceforth B\&J] of all the work's textual parts. (Diller translated only Book 8's preface.) DR's original findings in this field (Rawlins 1985G, Rawlins 2008S, \& within at \S D3) would never have occurred absent the shoulders of Diller 1984 (Book 8) \& B\&J. DR's GD researches continue below at fnn $64 \& 68$ - now upon the additional shoulders of the monumental work (in German) of Stückelberger \& Graßhoff 2006 (henceforth S\&G), which finally brought all eight books of the GD together in one gorgeous publication, for which all scholars of ancient geography are grateful.

Diller's 1984 typescript was accomplished at age 82 at DR's behest, while he was Professor Emeritus of Classics at Indiana University at Bloomington. It was done from index cards of Book 8 data which Diller had been compiling for years - data he generously shared with DR right from our $1^{\text {st }}$ meeting (1982/8/4), data which were of crucial use to the researches that went into DR's presentation at the 1984 Longitude Zero Symposium at Greenwich celebrating the centenary of the Greenwich meridian's 1884 establishment. Diller's full Book 8 data might have been lost at his 1985 death had he not created the typescript from the cards and sent it to DR a year earlier, in time for use in the final published version (Rawlins 1985G) of the Greenwich paper.

Every page of Diller's complete original 1984 typescript 1 is (thanks to DIO Editor Dennis Duke) posted on the DIO website, available through, e.g., www.dioi.org/gad.htm or www.dioi.org/diller8/diller8.htm.

Aubrey Diller's most enduring discovery, his 1934 proof that Hipparchos used spherical trig and found an accurate obliquity, is also discussed within at $\S \mathrm{D}$, where we announce (§D3 [7]) the 2009/4/1 finding of Diller's final vindication. With greater perception or intensity, DR could have discovered this capper decades ago; so, the pleasure of vindication is mingled with a touch of regret, since Diller (and Hugh Thurston, who would have so enjoyed this) both passed away before the controversy's ultimate resolution could be shared with them. Let us hope that belated appreciation of Diller's 75^{y} old discovery will now atone for all of the shortcomings of our generation's scholarly heirs to his brilliance.

Dennis Rawlins DIO 2009

The results of DR's 3 decades (1979-2009) of original investigations in ancient geography appear in Rawlins 2008S (DIO 14 §3 pp.33-58 - online at www.dioi.org/vols/we0.pdf) and the present issue (www.dioi.org/w50.pdf), a cheekier summation of which may be found at www.dioi.org/cot.htm\#dmfe. Downloadable booklet PDFs for printshop-creating paper copies: www.dioi.org/bk/de0.pdf and d50.pdf For Rawlins 2008S in HTML, see www.dioi.org/gad.htm, which includes Nobbe's illustration of Ptolemy's $1^{\text {st }}$ projection of the ekumene (known world). The anciently intended ${ }^{2}$ neat projection is reconstructed with rigorous precision via raw Postscript at Rawlins 2008S §M Fig.1.
${ }^{1}$ As explained at Rawlins 2008S fn 1, the standard Greek accents of the original Diller typescript are not relayed here. (This anti-anachronism has been adopted with his explicit assent.)
${ }^{2}$ Perfect illustrations of the conventional version are found at, e.g., B\&J p. 86 or S\&G pp.122-123. (The clear explanations \& diagrams at both places are must reading for students of the field.) The key to the difference in DR's rendering at Rawlins 2008S Fig. 1 is explained in ibid fn 51.

Aubrey Diller: Ptolemy GEOGRAPHY Book 8 \&
 Proof of Spherical Trigonometry's Early Use

A Aubrey Diller's Legacy to Historians of Geography \& Mathematics

A1 The 2 purposes of the present $D I O$ are: [1] To present (§A2 etc) Aubrey Diller's Greek text and English translation of the opening portions of the crucial final Book 8 of Ptolemy's Geographical Directory (GD), followed by a full tabulation of both traditions of the GD Book 8 data which Diller so thoroughly established for the $1^{\text {st }}$ time in history. [2] To reveal (§D) the sudden 2009 final redemption of Diller's long cult-loathed (fn 22) but now copper-fastened proof of Hipparchos' use of spherical trig in the $2^{\text {nd }}$ century BC.
A2 The GD Book 8 data comprise the locations of 360 "important cities" ${ }^{1}$ throughout the known world (ekumene), entirely in time-coordinates, listed on the righthand pages of Tables 1-26, below: longest-day M in hours (instead of latitude L in degrees), and longitude A in hours west (plus-sign) or east (minus-sign) of Alexandria. (This is astronomers' signconvention for geographical longitude.)
A3 As another pioneering part of this project, we will number the 360 cities of $G D 8$ (in the order of the least corrupt tradition, that of the XZ mss), using the prefix "D" so that city $\mathrm{D} x$ is the $x^{\text {th }}$ site in this $\S \mathrm{G}$ tabulation: Tables 1-26 (pp.18-40).
A4 DR has long contended (Rawlins 1985G, Rawlins 2008S) that this type of data formed the geographical grid-network underlying ${ }^{2}$ the positioning of the more famous bulk

[^0]of the $G D$ (Books 2-7), 8000 cities' latitudes L in degrees, \& longitudes B in degrees east of the Blest Isles (BI). (No signs are necessary for B, since no B is west of the BI.) ${ }^{3}$
A5 Rawlins 2008S was $1^{\text {st }}$ to reveal that the Blest Isles were the Cape Verde Islands. (Contra a long \& hitherto unexplained ${ }^{4}$ tradition of suggesting that the BI $=$ the Canaries.) Compare any modern map to GD 4.6 .34 or the GD's $4^{\text {th }}$ map of Asia (S\&G p.838) or world map (S\&G pp.748\&750, or either volume's inside front cover).
A6 Book 8 ($G D$ 8.15.10) places the BI at $4^{\text {h }}$ west of Alexandria, while Book 4 ($G D$ 4.5.9) places Alexandria $60^{\circ} 1 / 2$ east of the BI. (A pretty consistent distance, given $G D 8$'s rounding roughness.) So sites' longitudes in Book 8 show a systematic difference of nearly 4^{h} versus those of Books 2-7. But since sign-conventions here for our two longitudes are opposite (A positive to the west, B positive to the east), the equation that will hold for all sites (despite generally minuscule local irregularities) is $A^{\mathrm{h}}+B^{\circ} /\left(15^{\circ} /\right.$ hour $) \doteq 4^{\mathrm{h}}$, or:
\[

$$
\begin{equation*}
A+B / 15 \doteq 4 \tag{1}
\end{equation*}
$$

\]

B The Manuscripts' Lineages

B1 The earliest of the surviving mss are from c. 1300 AD , thus considerably later in time (from Ptolemy ${ }^{5}$ and his prime immediate geographical source, Marinos ${ }^{6}$ of Tyre) than the oldest mss of Ptolemy's other famous compilation, the Almajest - and the key GD mss are much less consistent with each other.
B2 There are several descending traditions of $G D$ mss, but Diller knew that there were two distinct main families, so he established not one GD 8 text but two: "XZ" and "UNK", separately arranged \& paginated. (See original Diller typescript via www.dioi.org/gad.htm.) The XZ tradition is generally and rightly considered less tampered-with ${ }^{7}$ (that was Diller's opinion and is that of B\&J pp.43f: see also Rawlins 2008S fnn 7\&12), its data being less precisely accordant with GD 2-7 than UNK's. Which suggests that if $G D 8$ (or its forebears) much earlier generated (via eq.2) some of GD 2-7's key-city latitudes, the XZ tradition mss are nearer in time to the era when such semi-hypothetical transformation (discussed in Rawlins 1985G \& Rawlins 2008S) occurred. Bear in mind that the precision of agreement between GD 2-7 and the UNK tradition can obscure realization that both traditions suffer from an accuracy whose mean pre-longitude-expansion error (Rawlins 2008S §D1, fn 13,
klimata: 36° based on using eq. 3 (the obliquity ϵ which we know was that of Eratosthenes \& Ptolemy) in eq. 2 , or $35^{\circ} 11 / 12$ from instead using eq. 4 (Hipparchos’ $1^{\text {st }}$ value) with it. As with Elephantine Island and Syene (Rawlins 1985G n.6) we may have multiple listing of what is effectively a single site, each based on one of these two competing ϵ values. (Since, at GD 6.7.7 Pseudokelis' $L=12^{\circ} 1 / 2$ fits $G D 8.22 .7$ via eq. 2 better than Okelis' $L=12^{\circ}$, one can wonder if D281 is yet another double site. See fn 24.) The suggestion is that Marinos and thus Ptolemy inherited traditional compilations (and were convinced of their data's accuracy from their sheer handed-down-ness [GD 2.1.2]: a classic error of scholarship) - from at least two post-Hipparchos hands. (See tables of major GD cities at Rawlins 1985G p.262: involving the same two obliquities just cited.) Each of the ultimate sources had computed key (network-basis) sites' latitudes L from typically (fn 19, Rawlins 1985G pp.260f, Rawlins 2008 S §D) discrete-interval-rounded klimata M, via eq. 2 - but using the disparate obliquities noted here.
${ }^{3}$ See eq.1. The six Blest Isles ($G D$ 4.6.34) are listed with B equal to 0° or 1° (Nobbe 1843-5 1:274, Wilberg \& Grashof 1838-1845 p.298, Müller 1883\&1901 p.754; contra S\&G 1:454\&456) the unweighted mean of which is $1^{\circ} / 2$. Is that related to the oddity that the B of Alexandria (4^{h} east of the Blest Isles: $G D 8.15 .10$) is $60^{\circ} 1 / 2(G D 4.5 .9)$, not 60° ?
${ }^{4}$ Rawlins 2008S asks: did error originate from one of the Blest Isles being named "Kanaria Nesos"?
${ }^{5}$ By least-squares analysis of Almajest 7.3's star declinations, the GD (cited in Almajest 2.13 as imminent) has been dated to no earlier than their epoch, c. 160 AD: Rawlins 1994L Table 3 \& fn 45.
${ }^{6}$ Marinos is dated to c. 140 AD in Rawlins 2008S $\S \mathrm{I}$, but may be as late as c. 160 AD .
${ }^{7}$ Note hint at fn 66. However, as one moves east in $G D 8$, the S data of XZ sometimes seem more precisely arranged than UNK's.
\& §L3) is shockingly ${ }^{8}$ large: ordmag 1°. Thus, XZ's larger $G D$ 8-vs-GD 2-7 disconnect may carry a trace of the crudity of the old klimata tables that originally (a millennium prior to our earliest mss) caused the GD's gross inaccuracies in latitude.
B3 The UNK tradition's data are not only more internally consistent ${ }^{9}$ (GD 8-vs-GD 2-7) but are less subject to scribal errors (e.g., §B4). And, in much of Greece (where GD latitudes are generally too low), M values tend to be a few timemin higher in UNK than in XZ, suggesting mass shifts by a later hand. This may have been intended to improve accord with reality, ${ }^{10}$ while (fn 9) inadvertently obscuring original data. And what original data that remain can be revealing, e.g., XZ's disparate A values omitted by S\&G for, e.g., Miletos (D181) \& Europos (D269) appear to provide (via eq.1) residual reflections of an earlier tradition ${ }^{11}$ in which the B of Alexandria (D149) was set at 60°, not the curious $60^{\circ} 1 / 2$ value whose patently-touched-up ${ }^{12}$ precision ${ }^{13}$ is naïve in context, a value that eventually (via the proposed archetype of B\&J p.42?) became standard. ${ }^{14}$ The discrepancies of the former and Java (D357) may be miscomputations, but it is at least as likely that they once had different longitudes, e.g., Java B seems (for XZ's $A=7^{\text {h }} 2 / 3$ east: omitted by $\mathrm{S} \& \mathrm{G}$ pp. $900-901$) to have been at $B=175^{\circ}$ before ending up at 167° ($G D$ 7.2.29 congruent with UNK's A).
B4 Still, at least some of the UNK corrections are valid contributions even to manuscript restoration. E.g.: [a] Undoing ${ }^{15}$ the accidental switch of the M data between D79\&80 (corrections we adopt below and typically mark with "r" in the XZ column for these two sites' M). [b] Not maintaining the needless identities in XZ's $G D 8$ coordinates for D171\&174, D211\&212, D255\&256, D274\&275. [c] Not mixing-up the A for D240\&241, as XZ did. [d] Generally not being misled ${ }^{16}$ by cases where an editor (usually XZ and outside areas of high western civilization) mistakenly took ${ }^{17} \Sigma$ for B on an ancient majuscule ms.
${ }^{8}$ For why such laxity requires explaining, see Rawlins 2008S $\S D 6$; for the explanation itself, see ibid \& Rawlins 1985G, or briefly here at §A4.
${ }^{9}$ UNK's editor(s) evidently went to much trouble to check out consistency, specially recomputing M via sph trig (eq.2) to ensure its match to L - which is why the great majority of UNK data marked "eggista" ("nearly") are M. This labor is admirable in its intent but unfortunate since, again, both M and L are generally in such poor accord with reality (and M so nearly useless, except to astrologers) that this was essentially just a purely mathematical exercise, which has accomplished little except to make it harder for us to trace the M values that originally distorted ancient geography so disastrously.
${ }^{10}$ E.g., if not operating independently, perhaps UNK's editors realized that XZ's poor M of Termessos (D202) had been based on a klimata table with over-rough $1^{\mathrm{h}} / 2$ intervals. (The identification of XZ's D202 with the Termessos of $G D$ 5.5.6 [rather than of $G D$ 5.3.2's out-of-order Telmessos] is indicated by XZ's A value.) Similar case: the A of Busra (D250).
${ }^{11}$ And UNK may use eq. 1 's 60° precisely to generate A, e.g., Persepolis (D271) \& Kabul (D322)
${ }^{12}$ Akin to a modern over-precision fret discussed at DIO 10 fn 67 .
${ }^{13}$ Precision varies throughout the $G D$; e.g., the $B \& L$ of Gaul are expressed only to degree-sixths (not twelfths) with the sole exception of Pytheas' famous L for Marseilles. See similarly for Vietnam (degree-quarters) at Rawlins 2008S §K10.
${ }^{14}$ Ptolemy preferred round parameters, so if he accepted a $60^{\circ} 1 / 2$ home longitude (questionable), it must have been Marinos' value. Particularly precise XZ examples of A computed from setting Alexandria's B at $60^{\circ} 1 / 2$, are those of Little Armenia's Nıколодıs (D208) \& Susa (D263). The identity of the Nicopolis datum with the UNK value suggests the possibility that it leaked into XZ from UNK; but that explanation does not work for the precise and disparate Susa value.
${ }^{15}$ The implication that XZ was known to those who created the UNK edition is not mere speculation. The number of cases (e.g., D259, D292, \& twice at D297) in which a UNK datum is identical to XZ's, but the word "eggista" is added, is way above chance. It seems that when the later editors checked XZ and found good but not highly precise agreement, they sometimes just indicated the imperfection (via the comment) but made no change otherwise.
${ }^{16}$ Ancients perhaps over-doing restoration (if AD's reading is right): for an instance where it seems that UNK's editors may've replaced majuscule B with Σ when the true reading was actually B, see Kossura (D140). Case correctly dealt with by S\&G (pp.824-825).
${ }^{17}$ E.g., XZ's Vid (D47), Oppidon (D126), Tabarka (D129), Thusdros (D138), Ankara (D196), Belkis (D201), [possibly Gagra (D216)], Astaxata (D227) [twice], Ashkelon (D244), Bostra (D250) [UNK:

C Correlative Tabulation

C1 In the extended facing-page tabulations to follow (Tables 1-26), we will list the two GD 8 traditions' hour-data side-by-side on the right page and list on the left page (lined-up in the same row, for each city) the corresponding $G D$ 2-7's longitude B (BI-based) \& latitude L, both in degrees. (Details at \S G3.)
C2 Such correlation has not been previously done for the entire GD 8, though two tables (for a few sample cities) were published at Rawlins 1985G p. 262 - and there analysed for mathematical connexions (discussed also in Rawlins 2008S, e.g., §D) via the obliquities of Eratosthenes and Hipparchos, since M and L are related by a spherical trig equation:

$$
\begin{equation*}
\cos (15 M / 2)=-\tan L \tan \epsilon \quad \text { or } \quad \epsilon=\arctan [-\cos (15 M / 2) / \tan L] \tag{2}
\end{equation*}
$$

where obliquity ϵ was usually taken to be that of Eratosthenes-Ptolemy (eq.3) or nearby $23^{\circ} 5 / 6$, or one of Hipparchos' two values (eqs.4\&6), the latter $\left(23^{\circ} 2 / 3\right)$ being the exclusive and totally unexpected discovery of Diller 1934.
C3 The Rawlins 1985G tables discovered that numerous major cities' $L \& M$ did indeed correlate with either the obliquity of Eratosthenes,

$$
\begin{equation*}
\epsilon_{\mathrm{E}}=23^{\circ} 51^{\prime} 20^{\prime \prime} \tag{3}
\end{equation*}
$$

or the early Hipparchos obliquity (Rawlins 1982C pp.367-368)

$$
\begin{equation*}
\epsilon_{\mathrm{H} 1}=23^{\circ} 11 / 12=23^{\circ} 55^{\prime} \tag{4}
\end{equation*}
$$

C4 Rawlins 1985G p.262's tables showed:
[a] The cities correlated with Eratosthenes' eq. 3 (or its common rounding: $23^{\circ} 5 / 6$) included Babylon, Korinth, Kyrene, \& Meroë, all related to Eratosthenes’ birth or writings.
[b] The cities correlated with Hipparchos' eq. 4 included Arbela, Athens, Carthage, Nicaea, \& Rhodos - all known to have been related to Hipparchos' birth, life, or geography.
C5 Since correlations $\S \mathbf{C 4}$ [a] were found via sph trig (eq.2), we have here (also Rawlins 1982 N n.11) a shaky hint that possibly sph trig was known in the $3^{\text {rd }}$ century BC. (Contra this tenuous possibility, keep in mind: eq.3's earliest firmly-known use [§D1] was subsequent to Eratosthenes, who appears to have used the term "klima" without longest-day implication.) If so, it was probably nascent at that time. (Otherwise, the simple doublesunset Earth-measure method [which requires sph trig for exact results in the general case] would ${ }^{18}$ presumably have led Eratosthenes to speak openly of the large disagreement between the lighthouse method's 256000 -stades (likely known before him: Rawlins 1982N p. 215 \& Rawlins 2008Q §I1) vs the sunset method's 180000 -stades. (The latter being the Poseidonios-Marinos-Ptolemy value which eventually became dominant. Conversion discussed in Rawlins 2008Q \& Rawlins 2008S. The resulting stretch [discovered by P.Gosselin] of longitude-degrees (which preserved world E-W distances in stades fairly accurately) is discussed in Rawlins 1985G \& Rawlins 2008S \S L3, but it is most effectively illustrated by the nice diagram at $S \& G 1: 47$.)
independently of XZ], Orchoe (D258), Nineveh (D260), Badeo (D278), Sabe (D289) Sapphara (D290), Auzakis (D313). (In these cases, we tend to reconstruct $1 / 2$ to $1 / 6$, usually in accord with S\&G.)
${ }^{18}$ If Eratothenes knew of both methods, he would have had to face Earth-size estimates differing by a giant factor: close to $36 / 25$ or 1.44 (the square of $6 / 5$). Did such a hypothetical conflict lead him into his ruminations (Strabo 1.3.11, Rawlins 2008Q $\S \S H 1 \& K 2$) on possible variability of sea-curvature "even in places that lie close together" (emph added)? (If using the Pharos for both methods, the directions over the Mediterranean would differ.) This passage may be an early hint of a central ancient conflict over whether to use 256000 or 180000 stades (for Earth-circumference), a conflict of which we found (Rawlins 2008Q §K3) that no detailed account survives, though Strabo 1.4.1 notes that Eratosthenes' large circumference came under fire from other scholars.

Table 0: Hipparchan Klimata Fits: Princetitute vs Diller-DR
Table 0: Hipparchan Klimata Fits: Princetitute vs Diller-DR

Klima	Longest Day M	Hipparchos- Strabo L [Data]	Princetitute- Muffia L [Babylonian]	A.Diller- DR L [Greek]
Cinnamon	$12^{\mathrm{h}} 3 / 4$	8800	10200	8800
Meroë	13^{h}	11600	12800	11600
Syene	$13^{\mathrm{h}} 1 / 2$	16800	17600	16800
Lower Egypt	14^{h}	21400	21800	21400
Phoenicia	$14^{\mathrm{h}} 1 / 4$	23400	23700	23400
Rhodos	$14^{\mathrm{h}} 1 / 2$	25400	25500	25400
Hellespont	15^{h}	28800	28800	28800
Massalia	$15^{\mathrm{h}} 1 / 4$	30300	30300	30300
Pontus	$15^{\mathrm{h}} 1 / 2$	31700	31600	31700
Borysthenes	16^{h}	34100	34100	34100
Tanais	17^{h}	38000	38000	38000
S.Little Britain	18^{h}	40800	40800	40800
N.Little Britain	19^{h}	42800	42800	42800

D Cultists vs Scientists: Bad News \& Glad News

D1 We don't need \S C4 item [b] to tell us sph trig (eq.2) was surely known to Hipparchos, as Diller 1934 was $1^{\text {st }}$ to prove. (An array of evidences for dating sph trig's use in Hipparchos' century is brought together for the $1^{\text {st }}$ time at www.dioi.org/cot.htm\#mmsz.) D2 Strabo gives a data-pool of Hipparchan latitudes L in stades for his klimata, ${ }^{19}$ which we list in the middle column of Table 0 (same as Neugebauer 1975 p. 1313 except for Meroë: §D3 [7]). In 1934 Diller discovered that, using Hipparchos' scale

$$
\begin{equation*}
1^{\circ}=700 \text { stades } \tag{5}
\end{equation*}
$$

(Strabo 2.5.7\&34 or Neugebauer 1975 p. 305 n .27), each L was computed from a discrete klima's M ($2^{\text {nd }}$ column in Table 0) via eq. 2 , using ${ }^{20}$ the unattested but impressively accurate obliquity:

$$
\begin{equation*}
\epsilon_{\mathrm{H} 2}=23^{\circ} 2 / 3=23^{\circ} 40^{\prime} \tag{6}
\end{equation*}
$$

[^1]This Diller discovery proved: [a] use of sph trig in $2^{\text {nd }}$ century BC science, \& [b] Hipparchos' late adoption of a carefully observed and accurate obliquity ϵ (eq.6) - error c.3', far better than any other obliquity-value knowably used in antiquity. Both of these crucial discovery-contributions to our knowledge of ancient mathematics \& science were $\mathbf{1}^{\text {st }}$ proved by Aubrey Diller, a non-member of the possessively seething clique which (seeing outsiders as just bad-news for its own grantsmanship) reflexively claims they're merely doing "incompetent work in [our] realm". ${ }^{21}$ [Thorough exam of cultism vs Diller: DIO 16.]
D3 Diller 1934 made an extremely powerful case (alone totally convincing to any balanced, mathematically able reader). And its validity has since been put beyond all (but hyper-cultist) dispute by an impressive array of confirmations. (Note, too, that DR independently made Diller's discovery in 1979 [reporting his vindication to him by phone 1979/11/26], which tells us that the logic of the discovery did not depend on one person's perception. $)^{22}$ These confirmations come from information unknown to Diller at the time, a remarkable serial-demonstration of his solution's fruitfulness:
[1] Rawlins 1982C p. 368 found that eq. 6 was the ϵ underlying Pliny's "circuli" klimata: a perfect fit with minimal reconstruction. (Genuinely fun details: DIO $16 \ddagger 3 \mathrm{fn} 50$.)
[2] The statistical analyses of Rawlins 1982C (pp.367-368, eq.28) found that the northern stars of Hipparchos’ Ancient Star Catalog are consistent with his adoption of the Diller-discovered Hipparchan obliquity: $23^{\circ} 2 / 3$ - eq. 6 again.
[3] Nadal \& Brunet 1984's statistical investigation of Hipparchos Comm found (§D5) that its hundreds of stellar phenomena were computed via obliquity $23^{\circ} 2 / 3$: eq.6. Again.
[4] DR found (DIO 4.2 p.56) that Hipparchos' 19^{h} klima (North Little Britain), though unknown to Diller, nonetheless fit his theory: predictivity, again.
[5] DR found (ibid) that if we assume all L computed by Hipparchos from eqs. $2 \& 6$ had been (ere conversion to stades) rounded by him to 5^{\prime} or $1 / 12$ of a degree (klimata's precision at Almajest $2.6 \& G D$ 1.23), this converted two of Diller 1934's 3 near-hits into spot-on hits, creating a virtually unanimous fit for the entire klimata table, as the number of non-fits went from 3 to merely 1: the $13^{\text {h }}$ Meroë klima ${ }^{23}$ (resolved at [7], below).
[6] In 2002, DR found (DIO 11.1 p. 26 fn 1) that one more hitherto unnoticed Hipparchos-Strabo klima (for $12^{\mathrm{h}} 3 / 4$: Cinnamon Country) ${ }^{24}$ fit Diller's thesis perfectly

[^2]- while its disagreement with the competing Neugebauer theory (Table 0) was Neugebauer's worst failure: by 1400 stades or 2 full degrees of latitude. The superiority of fit (Diller-DR vs Neugebauer) is obvious from the 2002-revised DIO 4.2 p. 56 [1994] table, reproduced here as Table 0 , with a single alteration which is the subject of our item [7]:
[7] On 2009/4/1, DR realized that while Meroë city was at 11800 stades (hitherto the one non-fit in the DIO 4.2 p. 56 Table 1), Hipparchos' Meroë klima was at 11600 stades, ${ }^{25}$ perfectly fitting the Diller-DR solution, leaving Table 0 with a pristine 13-for-13 score.
D4 Ere Meroë-resolution, even without 100 stade rounding: the root-mean-square fit (rms) of the Diller-DR theory (to the Hipparchos-Strabo klimata data) was 9 times better than the Princetitute fit. With Meroë re-solved this ratio rises to 22 times better. Rounding the calculated klimata to the same 100 stade precision Strabo's data displays, the ratio becomes ∞ since all 13 results fit perfectly now. Very, very seldom in ancient astronomy history does such compelling evidence appear, backed by such a hit-after-hit-after-hit lock-on.
D5 The validity of Diller's eq. 6 was independently confirmed by scientists Nadal \& Brunet 1984 (p. 231 \& n.17). DR had the privilege of being first to relay him the glad news. D6 Finally, despite 68^{y} of embarrassingly uncomprehending Muffia abuse (or just systematic non-citation) of Diller's greatest discovery, justice overcame cult-think in 2002, when his finding was honored by the eminent mathematician Hugh Thurston in the world's leading history of science journal, Isis (Thurston 2002 p. 67 \& n.18) - thanks to Editor Margaret Rossiter's refusal to be bound by political pressure. And no paper subject to nonfake ${ }^{26}$ refereeing has since questioned the finding. So we may take it that Diller's discovery of Hipparchos' use of sph trig (eq.2) with accurate obliquity (eq.6) is now a permanently established part of our scholarly heritage.

In pace requiescat, Aubrey.
klimata-based, as were Hipparchos' and Ptolemy's. Marinos' adducement of Okelis (D281) appears to tilt the balance in favor of a positive answer to the question. (See also his Aromata at $M=12^{\mathrm{h}} 1 / 4$: B\&J n.53.) Unfortunately. Note that Pseudokelis (also GD 6.7.7) has a latitude of $12^{\circ} 1 / 2$, which is nearer real Okelis (Turbah, $12^{\circ} 41^{\prime} \mathrm{N}$) than D281 and is consistent (fn 2) with the latitude of the Cinnamon Country klima ($M=12^{\mathrm{h}} 3 / 4$), computed via eq. 2 for Hipparchos' $1^{\text {st }}$ obliquity $\epsilon_{\mathrm{H} 1}$ (eq.4) or Eratosthenes' ϵ_{E} (eq.3). Regarding Okelis, see also Rawlins 2008S $\S \mathrm{H}$ \& fn 30.
${ }^{25}$ The key is Strabo's mixing-up of city \& klima for Alexandria, Carthage, \& Meroë. All his Meroë citations are to the city, except Strabo 2.5.36, his sole mention of the $13^{\text {h }}$ "Meroë" klima, obviously for huge Meroë "Island" (not city, as Pliny 6.220 \& Almajest 2.6 knew, most klimata being big regions): a confused passage - like nearby 2.5.38, as rightly noted in part at JHA 33:15-19 (2002) p. 18 n .9 , though missing that the alleged shadow ratios ($7: 5 \& 11: 7$) for cities Alexandria \& Carthage are just longest:shortest-day ratios $M: m$ for the Alexandria \& Carthage klimata (Neugebauer 1975 p. 336 n .29 , Rawlins 1985 G n .17) where $M=14^{\mathrm{h}} \& 14^{\mathrm{h}} 2 / 3$ (Neugebauer $1975 \mathrm{pp} .722-732$), resp. Strabo 2.5.36 places the Meroë klima 1800 stades further from the Equator than from "Alexandria", which Strabo 2.5 .38 's equation (of Alexandria \& 7:5) lets us take as the Alexandria 14^{h} KLIMA at $L=21400$ stades (Table 0), thus placing Meroë's klima at 11600 stades, just the figure predicted all along by the Diller-DR sph trig theory: 11600 stades was right in Diller 1934 (p.267), $75^{\text {y }}$ ago.
${ }^{26}$ Which exempts JHA 33.1:15-19 [2002]. (On JHA refereeing, see www.dioi.org/fff.htm\#ccff.) No serious referee could miss pp.15\&16's innocence of Almajest 1.12's use of solstitial not equinoctial data for finding $\epsilon \& L$, resp, as Thurston was $1^{\text {st }}$ to note, in parallel shock at non-citation of Rawlins 1985G \& esp. DIO 4.2 p. 55 n .6 (producing 11-hits-out-of-12: p. 56 Table 1) which by 2002 had been on the published record [DIO 4.2 p.56] for 8^{y}. See §D3 [5] for how (with [4], [6], \& [7]) it now elevates Diller's hit-score from 8 -for-11 success (Diller 1934) to 13 -for- 13 perfection. None of the JHA-proposed deus-ex-machination tampering with the table's data produces an ϵ that matches Diller's eq. 6 in either roundness or a single subsequent vindication. Much less 3 such: §D3 [1]-[3]. Hist.astron pols' decades of rejection of Diller 1934 is a phenomenon not of scholarship but of grant-Svengalism. Ancient astronomy's old-guard has taken decades to (Rawlins 2008R §A) learn almost nothing about how ancients founded theory upon empirical data and can hardly be taken seriously by able scientists while lockstep-adding to a $3 / 4$ century disgrace during which we have thus far vainly waited for even one of its Trilbys (DIO $9.3 \ddagger 6 \mathrm{fn} 70$) to surprise by rising above the herd (www.dioi.org/che.htm\#crbh) and admitting merely the POSSIBLE value of Diller's important, now septuply-vindicated (§D3) \& flawless ([7]) contribution to the history of mathematics. As at DIO $1.3 \ddagger 10$: "The search continues."

E Preface to Book 8: Greek Text Established by Aubrey Diller

[English translation follows at §F.]
 оонєvךร;
 $\sigma v \nu \varepsilon \chi \varepsilon \sigma \tau \varepsilon \rho \alpha \varsigma ~ \alpha \kappa \rho \imath \beta \omega \sigma \varepsilon \omega \varsigma^{27} \tau \omega \nu \tau \alpha \varsigma \varepsilon \kappa \tau \varepsilon \tau о \pi \sigma \mu \varepsilon v \alpha \varsigma \eta \mu \omega v \chi \omega \rho \alpha \varsigma \pi \varepsilon \rho \varepsilon \varepsilon \lambda \theta о \nu \tau \omega v$

 $\omega \sigma \pi \varepsilon \rho \varepsilon \pi \iota$ кєழ $\alpha \lambda \alpha l o v ~ \delta ı \alpha ~ \tau ı v \omega v ~ \tau о \pi \omega v ~ \varepsilon \kappa \alpha \sigma \tau о \varsigma ~ \gamma \rho \alpha \varphi \varepsilon \tau \alpha \iota ~ \tau \omega v ~ \varepsilon v \tau \alpha \sigma \sigma о \mu \varepsilon v \omega v ~ \tau \eta ~$ $\kappa \alpha \tau \alpha \gamma \rho \alpha \varphi \eta \pi \alpha \rho \alpha \lambda \lambda \eta \lambda \omega \nu \eta \kappa \alpha l \mu \varepsilon \sigma \eta \mu \beta o \imath \nu \omega v, \mu \eta \kappa \alpha l \quad \gamma \varepsilon \lambda o l o v \eta \pi \alpha \nu \tau \omega \nu \alpha \pi \lambda \omega \varsigma$
 $\varepsilon \chi \circ v \tau \omega v \tau \alpha \varsigma \varepsilon \pi \sigma \alpha \alpha \varsigma \tau \omega v \delta ı \alpha \nu \tau \omega v \gamma \rho \alpha \varphi о \mu \varepsilon v \omega v \pi \alpha \rho \alpha \lambda \eta \lambda \lambda \omega v \tau \varepsilon \kappa \alpha \imath \mu \varepsilon \sigma \eta \mu \beta \rho ı \nu \omega v$.

 $\delta \varepsilon \pi \alpha \rho \varepsilon \lambda \kappa \varepsilon เ \nu \alpha \pi о \rho ı \alpha \tau \omega v \varepsilon \gamma \gamma \rho \alpha \varphi \eta \sigma о \mu \varepsilon \omega v$.
 $\tau \varepsilon \mu \varepsilon \tau \rho \alpha \kappa \alpha \downarrow \tau \alpha \sigma \chi \eta \mu \alpha \tau \alpha \tau \omega v \chi \omega \rho \omega v$ vло $\tau \omega v \pi \imath v \alpha \kappa \omega v \alpha v \tau \omega v \omega \sigma \pi \varepsilon \rho \kappa \alpha \iota \mu \eta v \pi о$

 $\pi \varepsilon \lambda \alpha \gamma \circ \varsigma \mu \varepsilon \tau \alpha \tau \eta \nu$ Т $\alpha \pi \rho \circ \beta \alpha \nu \eta \nu \varepsilon \pi \imath \tau \alpha \varsigma \alpha \rho \kappa \tau \circ \nu \varsigma \alpha \pi \varepsilon \sigma \tau \rho \varepsilon \psi \alpha \nu \varepsilon \nu \sigma \tau \alpha \nu \tau \circ \varsigma \alpha v \tau \circ \iota \varsigma$

 $\varepsilon \pi \imath \tau \eta \nu \mu \varepsilon \sigma \mu \beta \rho \iota \alpha v^{34} \delta ı \alpha \sigma \tau \alpha \sigma \iota v \varepsilon \tau \varepsilon \iota \mu \eta \delta \varepsilon^{35} \varepsilon \nu \tau \alpha \nu \theta \alpha \tau 0$ $\tau \eta \varsigma \varepsilon \nu \tau \circ \varsigma \Lambda \imath \beta \nu \eta \varsigma \beta \alpha \theta$ оऽ η

 $\alpha \sigma v \sigma \tau \alpha \tau 0 v$ ı $\sigma \tau 0 \rho 1 \alpha v$.

[^3]

 $\pi ı \alpha \kappa \kappa \nu \varepsilon \varepsilon \rho v \chi \omega \rho ı \alpha \varsigma$.
8.1.5. Ov $\pi \alpha \rho \alpha \pi о \lambda v \delta \varepsilon \varepsilon \sigma \tau \alpha \downarrow \tau \eta \varsigma \alpha \lambda \eta \theta \varepsilon ı \alpha \varsigma, \kappa \alpha \theta \alpha \pi \varepsilon \rho \varepsilon v \alpha \rho \chi \eta \tau \eta \varsigma \sigma v v \tau \alpha \xi \varepsilon \omega \varsigma$

 $\mu \varepsilon \tau \alpha \xi v \pi \rho \circ \varsigma \tau о \varepsilon \tau \varepsilon \rho \circ \vee \tau \omega v \pi \varepsilon \rho \alpha \tau \omega v$.

 $\delta 1 \alpha \sigma \eta \mu \omega v \pi о \lambda \varepsilon \omega v \tau \alpha \mu \varepsilon v \varepsilon \xi \alpha \rho \mu \alpha \tau \alpha \mu \varepsilon \tau \varepsilon 1 \lambda \eta \mu \mu \varepsilon v \alpha \varepsilon ⿺ \varsigma \tau \alpha \mu \varepsilon \gamma \varepsilon \theta \eta \tau \omega v \varepsilon v \alpha v \tau \alpha 1 \varsigma$
 $\mu \varepsilon \sigma \eta \mu \beta \rho ı v o v \delta \delta \alpha \sigma \tau \alpha \sigma \varepsilon ı \varsigma \eta \tau \circ 1 \pi \rho \circ \varsigma \alpha v \alpha \tau о \lambda \alpha \varsigma \eta \pi \rho о \varsigma \delta v \sigma \mu \alpha \varsigma \mu \varepsilon \gamma \varepsilon \theta \varepsilon \sigma \iota \tau \omega v \varepsilon \gamma \eta \sigma \tau \alpha$

8.2.2. Пробє $\because \eta \kappa \alpha \mu \varepsilon \nu \delta \alpha \nu \kappa \alpha \imath \tau \imath v \alpha \tau \omega \nu \alpha \pi \lambda \alpha v \omega v \varepsilon \chi о v \sigma ı v \varepsilon \pi \imath \tau \omega \nu \kappa \alpha \tau \alpha \kappa о \rho v \varphi \eta \nu$

[^4]

 $\pi \lambda \varepsilon ı 0 \cup \varsigma \kappa \alpha \tau \tau \varsigma \eta$ тıveऽ.

[^5]
F Preface to Book 8: Diller's English Translation of $\S \mathbf{E}$

8.1. With what project must division of the ecumene be made by maps?
8.1.1. What ought to be put into the Geographical Guide [Directory] from the increasing accuracy of those who have visited our outlying regions and from the design of the maps for both convenience and relevance I think is clear enough. For to add summarily as those before us have done through what points each parallel or even meridian shown on the map passes may be absurd, since for all the points, even those that do not lie on the circles presented, the positions of their parallels and meridians are available.
8.1.2. Now that we have seen what rendering of the whole ecumene in a single map would be suitable, the next thing is to set out the summary outlines to be if we divide it into several maps in order to put in the actual data in full and in scale for clarity. For in a single drawing where we must keep the proportion of the parts of the ecumene to each other it is necessary for some of the parts to be crowded because of the wealth of the data being shown and for others to be wasted for lack of data to be shown.
8.1.3. To evade this most were forced by the maps themselves, but not by the matter, to distort the sizes and shapes of the countries extensively. Thus those who allotted the greatest part of the map to Europe in both longitude and latitude for the wealth of data being shown, and the least part in longitude to Asia and in latitude to Libya for the contrary. For this reason they turned the Indian ocean beyond Taprobane northward as the map prevented their extending it eastward while they had nothing to put in against Scythia lying to the north, and they turned the western ocean eastward as the map prevented their extending it southward while here too the depth of interior Libya and of India did not have anything to be put in to continue the western coast. In this way the notion of the whole earth surrounded by ocean began from errors in drawing and ended in unproved doctrine.
8.1.4. In the division by maps, however, would escape this result if we made the divisions so that the map would take the richest countries either single or few together with large distances between the the circles while the meagre and undistinguished would be contained whole with several like them in one map with lesser distances between the circles. For the maps need no more be all in proportion to each other but only the parts in each need to keep the ratio to each other as when we sketch a head alone the parts of the head only or a hand alone the parts of the hand only but no more the parts of the head to the parts of the hand unless we do the whole man in one figure. But just as nothing prevents now enlarging now reducing the whole so the parts also when they are by themselves, according to the space of the respective map.
8.1.5. It will not be far from the truth, as we said in the beginning of work ([Geogr Dir] II 1.10), if we make straight lines instead of circles at least on the partial maps, and moreover the meridians not converging but them also parallel to each other. For in the whole ecumene the lines of latitude and longitude taken at large intervals produce considerable changes at the ends of the circles but not on the several maps. Therefore we say the comparisons in degrees must be made in the ratio between the parallels dividing the map in half and the greatest circle in order not to reckon the reduction on the whole breadth of the map but only that on the distance from the middle to one off the margins.
8.2. What is suitable in an outline for each map?
8.2.1. Pursuing the divisions in this project we have made ten maps of Europe, four of Libya [Africa], and twelve of greater Asia. We have set out the outlines for each, prefacing what continent the map belongs to and it number in order and what countries it contains and the ratio of the parallel through the middle to the meridian and what bounds the whole map, and subjoining for the outstanding cities in each country their latitude converted into the length of their longest day and their positions in longitude converted into distances from the meridian of Alexandria either east or west in number of equinoctial hours and for those
that lie under the zodiac whether the sun touches zenith once or twice and how it stands to the solstices.
8.2.2. We would have added what fixed star they have at zenith if they [stars] appeared to keep their [declination vis-a-vis] the equator, that is, if they moved always along the same parallel. We have shown in our mathematical work ([Alm] VII 2-3) that the sphere of the fixed stars also moves backward in relation to the tropical and equinoctial signs and not around the poles of the equator but around those of the zodiac, as do those [the spheres] of the planets also, and for this reason the same stars cannot always touch zenith to the same points but must shift some north some south. So I thought this addition to the outline superfluous, since with the stellar sphere [which] I have made for this purpose we can, by setting it at the proper position for a given time in relation to the circle through the two [equatorial] poles and turning it along the graduated edge of the fixed meridian, not the point on it as many degrees from the equator as the parallel through the given place and thus perceive easily whether no star at all passes through that point or one or more and which one or ones.
8.2.3. With these preliminaries settled we must begin the rest of the project.

Remarks by DR: letters (e.g., X, U, etc.) are used here to signify the key manuscript families, which are catalogued and discussed in Diller's preface to the modern reprint of Nobbe's pioneering 1843-1845 first complete (semi-critical) edition of the Geogr Dir.

Diller's own judicious note regarding variants: "Variae lectiones XZ UNK. Only conjunctive variants are reported; variants in only one manuscript are omitted as insignificant."

G First Full GD 2-7 \& GD 8 Joint Tabulation

G1 Now to our tables ${ }^{64}$ for displaying Diller Book 8's data. Almost all $G D$ data are found in S\&G, but we include some which S\&G have dropped; ${ }^{65}$ thus, the present catalog will help complete the available $G D$ record ${ }^{66}$ And every so often our listed data differ ${ }^{67}$ from S\&G. But providing these differences \& occasional extra data and alternate interpretations ${ }^{68}$ here

[^6]is in no way meant to be a denigration of Stückelberger \& Graßhoff 2006: a magnificent, accurate (99.99% + flawless tabulation), conscientiously ${ }^{69}$ and judiciously accomplished, epochal achievement - which has earned eternal credit for its team of dedicated authors and the University of Bern. (One of the two main authors, Gerd Graßhoff, has recently been granted DIO's R.R.Newton Award.)
G2 As mentioned above (§A3) and in Rawlins 2008S, each Book 8 site is here numbered in our Tables 1-26 (below) with a prefix "D" which indicates its order: ${ }^{70}$ calling Athens by the label D109, means that this is the $109^{\text {th }}$ city in Diller's XZ typescript and in our tables. G3 Each of our GD tables is spread over two facing pages:
The leftmost column is the site's order, D\# (as just explained). Just to the right of that is the "Site" column, for either the site's modern name or (for famous ancient cities) the original one in modern garb. Following that, we have the Greek name of the same site as listed in the $G D$. The next two columns are Books 2-7's $B \& L$, respectively, in degrees, as listed according to $S \& G$'s best selective judgement. The final column gives the location of said $B \& L$ in GD 2-7. (The book's \# is at the column's head, marked ' G ', and the chapter c \& section s are found in the column, in the form: c.s ; the sole exception, Doumetha [D277], is G5.19.7.) In the righthand page facing the foregoing data, each row merely continues that which is directly to its left on the lefthand page: the righthand-page's $1^{\text {st }}$ column gives the chapter c in Book 8 in the form 8.c at the head and section s in the column. In the next four columns over, we find Book 8's M and A data, first for Diller's XZ typescript, then for his UNK typescript. (Every digit of this, Diller's final work, is reproduced, with the exception of a few reconstruction-speculations. These are marked "r" to the datum's right: Diller's original value may be checked in his typescript via www.gad.htm.) The final two

1903, Yugoslavia's inventor\&king 1934.)
The linchpin error of fusing Malay \& Sumatra has misled geographers for centuries. (Also Rawlins 2008S.) A key adjacent GD 7 error is the Malay Peninsula's false shortening (\& fattening). Another: the successive sign-errors (latitude \& "Landlubber") which hugely moved \& rotated Vietnam, macromixups already unravelled at Rawlins 2008S $\S \S$ K $5 \& 10$, resp. Results of DR's 2009 investigation:
Marëoura (D352; GD 7.2.24) = Rangoon (Burma).
Sabara \& Sabarakos Gulf (GD 7.2.4) = Phuket (Malay) \& Malacca Strait (between Malay \& Sumatra). Golden Peninsula $(G D 7.2 .5)=$ Sumatra.
Takola (D347; GD 7.2.5) = Banda Akeh (NW tip of Sumatra).
Zabai (D348; GD 7.2.6) = Singapore. (I see that R.Hennig has earlier suggested this: S\&G p. 93 n .93 .) M $\varepsilon \gamma \alpha \lambda$ ov ко $\lambda \pi$ ov [Great Bay] (GD 7.2.7) = Gulf of Thailand
Tomara (GD 7.2.24) = Bangkok [Krung Thep] (Siam [Thailand])
Aspithra (D354; GD 7.3.5) = Chanthaburi (also Siam).
Thinai (D355; GD 7.3.34) = Phnom Penh (Cambodia [Kampuchea])
No $\tau \iota v \alpha \kappa \rho \circ v$ [South cape] $(G D 7.3 .2)=$ S.tip of Vietnam.
Kattigara (D356; GD 7.3.3) = Saigon [Ho Chi Minh City] (Vietnam).
So, along Vietnam's coast, Saigon was (contra Rawlins 2008S) Alexandros' farthest probe east: after 20^{d} sail from Phuket (mostly along SW-facing Sumatran coast) to Singapore, then a few days more "crossing" from there (past revealingly-named "SouthCape" cited just above) to Saigon (GD 1.14.1-6). This take on GD's Map 25 (Asia 11) will be grafted into future printings of Rawlins 2008S at $\S \S \mathrm{K} 8-11$. Its latitude residuals for the nine precise sites of our foregoing list are all under $5^{\circ}\left(\mathrm{rms} 3^{\circ} .2\right)$, vs S\&G p. 18 's tentative suggestions that Zabai $=$ Saigon \& Kattigara $=$ Hanoi: errors $6^{\circ} \& 12^{\circ} 1 / 2$, resp.
${ }^{69}$ Perhaps too conscientiously with respect to the length of the stade, which is ambiguously defined (at, e.g., S\&G pp. 47 \& 71 n .35) as $1 / 8$ or $2 / 15$ of the $1481 \mathrm{ml} / 2$ Roman mile (i.e., 185 m or $197 \mathrm{ml} / 2$, resp) - even as the evidence for $1 / 8$'s correctness has lately been proceeding monotonically to a point beyond reasonable doubt. The latest evidence is displayed in Rawlins 2008Q eqs.11\&25-28, whose cascade of ultimate fits are based upon the standard 185 m Greek stade
${ }^{70}$ S\&G has nearly the same order as ours but follows that of Nobbe \& the UNK mss, which here \& there has minor differences from that of the XZ mss. See sites D120-122, D191-192, D236-237, D294-296, D318-319, D328-329, \& D354-359. No publication previous to DIO has numbered the 360 cities of Book 8 consecutively. Not all cities are listed in both traditions, so our list is a merge. For itemization of the very few cities omitted by the merges of Nobbe or Diller, see Rawlins 2008S fn 3.
columns appear only for those tables which include the tropics, and are for both traditions' S data (solar-orbit noon-trans-Equator semi-arc: §G6) as described in §G6.
G4 For the $G D 2-7$ columns 71 of $L \& B$, we use $\mathrm{S} \& G$. 72 For $G D 8$, we have drawn the $M, A \& S$ from Diller's ms.
G5 We have put marks next to uncertain data: "c" with all data marked "nearly" $[\varepsilon \gamma \gamma \iota \sigma \tau \alpha]$ in the ms , " r " with all that are reconstructed; and occasionally " x " for some data that appear to be scribal errors, and " n " for the subclass of such instances which can perhaps be explained by an ancient editor's dropping of negative-signs ${ }^{73}$ (or similar slips).
G6 For tropical sites there is an extra pair of columns (XZ \& UNK) at the far right for the semi-arc S of the path of the Sun during the period when it is north ${ }^{74}$ of the zenith at said site's local apparent noon. (All Book $8 S$ values are less than 90°, since no Book 8 site lies on the Equator.) S is related to L by the equation: ${ }^{75}$

$$
\begin{equation*}
S=\arccos [\sin L / \sin \epsilon] \tag{7}
\end{equation*}
$$

G7 Each of the 26 tables that follow is associated with a $G D$ map. (Convenient reconstructions of which are found with, e.g., S\&G vol. 2 or (for Books 2-5) Müller's little-known 1901 map volume. The S\&G maps are especially helpful for those interested in Book 8, since all $G D 8$ sites are highlight-marked by \odot.) Both $G D$ 2-7 and $G D 8$ are divided according to the same 26 maps with the following breakdown (www.dioi.org/gad.htm\#dsqy): 10 maps of Europe, with 118 GD 8 sites; 4 maps of Africa, with 52 GD 8 sites; 12 maps of Asia, with $190 G D 8$ sites. Our geographical headers for the tables provided here are not meant to be all-inclusive, being intended merely to provide modern readers a familiar rough ${ }^{76}$ idea of the location of the table and thus the corresponding GD map.

[^7]| Table 1：Europe 1 | | | Brittania | | |
| :---: | :---: | :---: | :---: | :---: | :---: |
| D\＃ | Site | $G D$ Name | B | L | G2 |
| 1 | Shetlands | $\theta 0 v \lambda \eta$ | 29° | 63° | 3.32 |
| 2 | Limerick | Iovepvis | 11° | $58^{\circ} 1 / 6$ | 2.10 |
| 3 | Rheban | P $\alpha 1 \beta \alpha$ | 12° | $59^{\circ} 3 / 4$ | 2.10 |
| 4 | London | Lov | 20° | 54° | 3.27 |
| 5 | York | Еßороког | 20° | $57^{\circ} 1 / 3$ | 3.17 |
| 6 | Catterick | K $\alpha \tau о$ рок兀ovıov | 20° | 58° | 3.16 |
| 7 | Pinnata Castra | Птєрато⿱ | $27^{\circ} 1 / 4$ | $59^{\circ} 1 / 3$ | 3.13 |
| 8 | Lewis | Δ оv $\mu \vee \alpha$ | 30° | 61° | 3.31 |
| 9 | Isle of Wight | Oоךк兀ıs | $19^{\circ} 1 / 3$ | $52^{\circ} 1 / 3$ | 3.33 |

	Table 1：Europe 1	Brittania		
G8．3	M_{XZ}	A_{XZ}	M_{UNK}	A_{UNK}
3	20^{h}	2^{h}	20^{h}	2^{h}
4	18^{h}	$3^{\mathrm{h}} 1 / 4 \mathrm{r}$	18^{h}	$3^{\mathrm{h}} 1 / 4$
5	$18^{\mathrm{h}} 7 / 12$	$3^{\mathrm{h}} 1 / 5$	$18^{\mathrm{h}} 1 / 2$	$3^{\mathrm{h}} 1 / 5$
6	17^{h}	$2^{\mathrm{h}} 2 / 3$	17^{h}	$2^{\mathrm{h}} 2 / 3$
7	$17^{\mathrm{h}} 5 / 6$	$2^{\mathrm{h}} 1 / 3$		
8	18^{h}	$2^{\mathrm{h}} 2 / 3$	18^{h}	$2^{\mathrm{h}} 2 / 3$
9	$18^{\mathrm{h}} 1 / 2$	$2^{\mathrm{h}} 1 / 6 \mathrm{r}$	$18^{\mathrm{h}} 1 / 2$	$2^{\mathrm{h}} 1 / 6$
10	19^{h}	2^{h}	19^{h}	2^{h}
11	$16^{\mathrm{h}} 2 / 3$	$2^{\mathrm{h}} 2 / 3$	$16^{\mathrm{h}} 2 / 3$	$2^{\mathrm{h}} 2 / 3$

Table 2：Europe 2			Iberia		
D\＃	Site	$G D$ Name	B	L	G2
10	Cáceres	$\mathrm{N} \omega \rho \beta \alpha \mathrm{K} \alpha \iota \sigma \alpha \rho \varepsilon \iota \alpha$	$7^{\circ} 5 / 6$	$39^{\circ} 11 / 12$	5.8
11	Mérida	Аvүоvб的 Н $\mu \varepsilon \rho ı \tau \alpha$	8°	$39^{\circ} 1 / 2$	5.8
12	Seville	I $\sigma \pi \alpha \lambda 1 \zeta$	$7^{\circ} 1 / 4$	$37^{\circ} 5 / 6$	4.14
13	Córdoba	Ko $\rho \delta v \beta \eta$	$9^{\circ} 1 / 3$	$38^{\circ} 1 / 12$	4.11
14	Astorga		$9^{\circ} 1 / 2$	44°	6.36
15	Cartagena	N $\varepsilon \alpha$ K $\alpha \rho \chi \eta \delta \omega \nu$	$12^{\circ} 1 / 4$	$37^{\circ} 11 / 12$	6.14
16	Tarragona	Т $\alpha \rho \rho \alpha \kappa \omega \vee \eta$	$16^{\circ} 1 / 3$	$40^{\circ} 2 / 3$	6.17
17	Peñalba deCas．	K λ ovvi α	11°	42°	6.56
18	Zaragoza	K $\alpha \downarrow \sigma \alpha \rho \varepsilon ı \alpha$ Av	$14^{\circ} 1 / 4$	$41^{\circ} 1 / 2$	6.63
19	Cadiz	$\Gamma \alpha \delta \varepsilon 1 \rho \alpha$	$5^{\circ} 1 / 6$	$36^{\circ} 1 / 6$	4.16

Table 2：Europe 2				
Iberia				
G8．4	M_{XZ}	A_{XZ}	M_{UNK}	A_{UNK}
3	$14^{\mathrm{h}} 11 / 12$	$3^{\mathrm{h}} 1 / 2$	$14^{\mathrm{h}} 11 / 12 \mathrm{c}$	$3^{\mathrm{h}} 1 / 2$
3	$14^{\mathrm{h}} 5 / 6$	$3^{\mathrm{h}} 1 / 2$	$14^{\mathrm{h}} 5 / 6$	$3^{\mathrm{h}} 1 / 2$
4	$14^{\mathrm{h}} 2 / 3$	$3^{\mathrm{h}} 11 / 20$	$14^{\mathrm{h}} 2 / 3$	$3^{\mathrm{h}} 1 / 15 \mathrm{x}$
4	$14^{\mathrm{h}} 2 / 3$	$3^{\mathrm{h}} 2 / 5$	$14^{\mathrm{h}} 2 / 3$	$3^{\mathrm{h}} 2 / 5 \mathrm{r}$
5	15^{h}	$3^{\mathrm{h}} 2 / 5$	$15^{\mathrm{h}} 5 / 12 \mathrm{c}$	$3^{\mathrm{h}} 2 / 5$
5	$14^{\mathrm{h}} 2 / 3$	$3^{\mathrm{h}} 1 / 5$	$14^{\mathrm{h}} 2 / 3$	$3^{\mathrm{h}} 1 / 6$
5	$15^{\mathrm{h}} \mathrm{c}$	3^{h}	$15^{\mathrm{h}} \mathrm{c}$	$2^{\mathrm{h}} 11 / 12$
5	$15^{\mathrm{h}} 2 / 3$	$3^{\mathrm{h}} 1 / 3$	$15^{\mathrm{h}} 1 / 8$	$3^{\mathrm{h}} 1 / 4$
5	$15^{\mathrm{h}} 1 / 12$	$3^{\mathrm{h}} 2 / 3$	$15^{\mathrm{h}} 1 / 12$	$3^{\mathrm{h}} 1 / 15$
5	$14^{\mathrm{h}} 1 / 2$	$3^{\mathrm{h}} 2 / 3$	$14^{\mathrm{h}} 1 / 2$	$3^{\mathrm{h}} 2 / 3$

Table 3：Europe 3			Gaul		
D\＃	Site	$G D$ Name	B	L	G2
20	Saintes	Me δ ı $\lambda \alpha v ı \sim$ Aк．	$17^{\circ} 2 / 3$	$46^{\circ} 3 / 4$	7.7
21	Bordeaux	Bov $\delta \delta \gamma \alpha \lambda \lambda \alpha$	18°	45°	7.8
22	Autun	Avjovo兀o	$23^{\circ} 2 / 3$	$46^{\circ} 1 / 2$	8.17
23	Lyon	রоvvסovvos	$23^{\circ} 1 / 4$	$45^{\circ} 5 / 6$	8.17
24	Boulogne	Гךоорıккоv	$22^{\circ} 3 / 4$	$53^{\circ} 1 / 2$	9.3
25	Reims	Δ оvрокоттороขr	$23^{\circ} 3 / 4$	$48^{\circ} 1 / 2$	9.12
26	Marseilles	M $\alpha \sigma \sigma \alpha \lambda_{1} \alpha$	$24^{\circ} 1 / 2$	$43^{\circ} 1 / 12$	10.8
27	Narbonne	N $\alpha \rho \beta$ \％	21°	43°	10.9
28	Vienne	Ovievva	23°	45°	10.11
29	Nimes	N $\varepsilon \mu \alpha 0 \sigma 0 \varsigma$	22°	$44^{\circ} 1 / 2$	10.10

Table 3：Europe 3						Gaul
G8．5	M_{XZ}	A_{XZ}	M_{UNK}	A_{UNK}		
3	$15^{\mathrm{h}} 3 / 4$	$2^{\mathrm{h}} 2 / 3$	$15^{\mathrm{h}} 3 / 4$	$2^{\mathrm{h}} 5 / 6$		
4	$15^{\mathrm{h}} 1 / 2$	$2^{\mathrm{h}} 5 / 6 \mathrm{r}$	$15^{\mathrm{h}} 1 / 2 \mathrm{r}$	$2^{\mathrm{h}} 5 / 6$		
5	$15^{\mathrm{h}} 2 / 3$	$2^{\mathrm{h}} 1 / 2$	$15^{\mathrm{h}} 3 / 4$	$2^{\mathrm{h}} 5 / 12$		
5	$15^{\mathrm{h}} 1 / 2$	$2^{\mathrm{h}} 1 / 2$	$15^{\mathrm{h}} 2 / 3$	$2^{\mathrm{h}} 1 / 2 \mathrm{c}$		
6	$16^{\mathrm{h}} 1 / 2$	$2^{\mathrm{h}} 1 / 2$	$16^{\mathrm{h}} 1 / 2$	$2^{\mathrm{h}} 5 / 12$		
6	16^{h}	$2^{\mathrm{h}} 1 / 2$	16^{h}	$2^{\mathrm{h}} 5 / 12$		
7	$15^{\mathrm{h}} 1 / 4$	$2^{\mathrm{h}} 2 / 5$	$15^{\mathrm{h}} 1 / 4$	$2^{\mathrm{h}} 5 / 12$		
7	$15^{\mathrm{h}} 1 / 4$	$2^{\mathrm{h}} 1 / 2$	$15^{\mathrm{h}} 1 / 4$	$2^{\mathrm{h}} 7 / 12$		
7	$15^{\mathrm{h}} 1 / 2$	$2^{\mathrm{h}} 1 / 2$	$15^{\mathrm{h}} 1 / 2$	$2^{\mathrm{h}} 1 / 4$		
7	$15^{\mathrm{h}} 5 / 12$	$2^{\mathrm{h}} 1 / 2$	$15^{\mathrm{h}} 1 / 2 \mathrm{c}$	$2^{\mathrm{h}} 1 / 2$		

Table 4：Europe 4			Germany		
D\＃	Site	$G D$ Name	B	L	G2
30	Amisia	A $\mu \alpha \sigma \varepsilon 1 \alpha$	$31^{\circ} 1 / 2$	51°	11.28
31	Lippstadt	Λ оvллı α	$34^{\circ} 1 / 2$	$52^{\circ} 3 / 4$	11.28
32	Embrun	Eßovpodovvov	39°	48°	11.30
33	Sweden	$\Sigma \kappa \alpha \nu \delta 1 \alpha \vee \eta \sigma 0 \varsigma$	45°	58°	11.34

Table 4：Europe 4	Germany			
G8．6	M_{XZ}	A_{XZ}	M_{UNK}	A_{UNK}
3	$16^{\mathrm{h}} 1 / 2$	2^{h}	$16^{\mathrm{h}} 1 / 2$	$2^{\mathrm{h}} \mathrm{c}$
3	$16^{\mathrm{h}} 7 / 12$	$1^{\mathrm{h}} 3 / 4$	$16^{\mathrm{h}} 5 / 6$	$1^{\mathrm{h}} 2 / 3$
3	$15^{\mathrm{h}} 11 / 12$	$1^{\mathrm{h}} 1 / 3$	$15^{\mathrm{h}} 11 / 12$	$1^{\mathrm{h}} 1 / 3$
4	18^{h}	$1^{\mathrm{h}} 1 / 15$	18^{h}	1^{h}

Table 5：Europe 5			Western Balkans		
D\＃	Site	$G D$ Name	B	L	G2
34	Bregenz	Bpı χ^{\prime}	30°	46°	12.5
35	Augsburg	Avүovб $\frac{\text { Ovev }}{}$	$32^{\circ} 1 / 2$	$46^{\circ} 1 / 3$	12.8
36	Pöchlarn	A $\rho \varepsilon \lambda \alpha \tau \eta$	35°	47°	13.3
37	Zuglio	Iov λ ıov K $\alpha \rho$ vıкои	$34^{\circ} 1 / 2$	$45^{\circ} 1 / 4$	13.4
38	Ptuj	Потоßıо⿱	$37^{\circ} 2 / 3$	$45^{\circ} 1 / 2$	14.4
39	Sopron	$\Sigma \kappa \alpha \rho \beta \alpha \nu \tau \iota \alpha$	$39^{\circ} 1 / 2$	47°	14.5
40	Ljubljana	H $\mu \omega v \alpha$	$36^{\circ} 1 / 2$	$45^{\circ} 1 / 3$	14.7
41	Bosanska Grad．	इep β ¢ τ וov	$42^{\circ} 1 / 3$	$46^{\circ} 1 / 2$	15.6
42	Osijek		$43^{\circ} 1 / 2$	$45^{\circ} 3 / 4$	15.8
43	SremskaMitrov．	$\Sigma i \rho \mu i o v$	$44^{\circ} 5 / 6$	45°	15.8
44	Zadar	$\mathrm{I} \alpha \delta \varepsilon \rho \Lambda ı \beta$ о ρ vı α ¢	42°	$43^{\circ} 3 / 4$	16.3
45	Sidrona	$\Sigma \mathrm{l} \delta \rho \omega \mathrm{vi} \mathrm{\alpha}$	$43^{\circ} 1 / 2$	$44^{\circ} 1 / 6$	16.10
46	Solin	$\Sigma \alpha \lambda \omega v \alpha ı \Delta \alpha \lambda \mu \alpha \tau$.	$43^{\circ} 1 / 3$	$43^{\circ} 1 / 6$	16.4
47	Vid	N $\alpha \rho \omega \nu \alpha$	$44^{\circ} 1 / 3$	$42^{\circ} 3 / 4$	16.12
48	Scardona	$\Sigma \kappa \alpha \rho \delta$ о $\alpha \vee \eta \sigma о \varsigma$	$40^{\circ} 2 / 3$	$43^{\circ} 2 / 3$	16.13

Table 5：Europe 5				Western Balkans
G8．7	M_{XZ}	A_{XZ}	M_{UNK}	A_{UNK}
3	$15^{\mathrm{h}} 2 / 3$	2^{h}	$15^{\mathrm{h}} 2 / 3$	2^{h}
4	$15^{\mathrm{h}} 2 / 3$	$1^{\mathrm{h}} 17 / 30$	$15^{\mathrm{h}} 3 / 4 \mathrm{c}$	$1^{\mathrm{h}} 5 / 6$
5	$15^{\mathrm{h}} 5 / 6$	$1^{\mathrm{h}} 2 / 3$	$15^{\mathrm{h}} 5 / 6$	$1^{\mathrm{h}} 2 / 3$
5	$15^{\mathrm{h}} 1 / 2$	$1^{\mathrm{h}} 11 / 15$	$15^{\mathrm{h}} 1 / 2$	$1^{\mathrm{h}} 2 / 3$
6	$15^{\mathrm{h}} 17 / 30$	$1^{\mathrm{h}} 1 / 2$	$15^{\mathrm{h}} 7 / 12$	$1^{\mathrm{h}} 1 / 2$
6	$15^{\mathrm{h}} 5 / 6$	$1^{\mathrm{h}} 2 / 5$	$15^{\mathrm{h}} 5 / 6$	$1^{\mathrm{h}} 1 / 3$
6	$15^{\mathrm{h}} 5 / 6$	$1^{\mathrm{h}} 2 / 3$	$15^{\mathrm{h}} 1 / 2$	$1^{\mathrm{h}} 17 / 30$
7	15^{h}	$1^{\mathrm{h}} 1 / 6$	$15^{\mathrm{h}} 3 / 4 \mathrm{c}$	$1^{\mathrm{h}} 1 / 6$
7	$15^{\mathrm{h}} 7 / 12$	$1^{\mathrm{h}} 1 / 8$		
7	$15^{\mathrm{h}} 1 / 2$	$1^{\mathrm{h}} 1 / 15$	$15^{\mathrm{h}} 1 / 2$	1^{h}
8	$15^{\mathrm{h}} 1 / 3$	$1^{\mathrm{h}} 1 / 5$	$15^{\mathrm{h}} 1 / 3$	$1^{\mathrm{h}} 1 / 5$
8	$15^{\mathrm{h}} 5 / 12$	$1^{\mathrm{h}} 1 / 8$	$15^{\mathrm{h}} 5 / 12$	$1^{\mathrm{h}} 1 / 8$
8	$15^{\mathrm{h}} 1 / 4$	$1^{\mathrm{h}} 1 / 8$	$15^{\mathrm{h}} 1 / 4$	$1^{\mathrm{h}} 1 / 8$
8	$15^{\mathrm{h}} 1 / 6 \mathrm{r}$	$1^{\mathrm{h}} 1 / 15$	$15^{\mathrm{h}} 1 / 4 \mathrm{c}$	$1^{\mathrm{h}} 1 / 15$
9	$15^{\mathrm{h}} 1 / 3$	$1^{\mathrm{h}} 4 / 15$	$15^{\mathrm{h}} 1 / 3$	$1^{\mathrm{h}} 1 / 4$

Table 6：Europe 6					
D\＃	Site	GD Name	B	L	G3
49	Rome	P $\omega \mu \eta$	$36^{\circ} 2 / 3$	$41^{\circ} 2 / 3$	1.61
50	Nice	Nıк $<1 \alpha$	28°	$43^{\circ} 5 / 12$	1.2
51	Terracina	T $\alpha \rho \rho \alpha \kappa ı \nu \alpha ı$	$37^{\circ} 3 / 4$	$41^{\circ} 1 / 4$	1.5
52	Naples	N $\varepsilon \alpha \pi 0 \lambda 1 \zeta$	40°	$40^{\circ} 1 / 2$	1.6
53	Tarentum	T $\alpha \rho \alpha \sigma$	$42^{\circ} 1 / 6$	40°	1.12
54	Brindisi	B $\rho \varepsilon v \delta \varepsilon \sigma ı \nu$	$42^{\circ} 1 / 2$	$39^{\circ} 2 / 3$	1.14
55	Ancona	A $\gamma \kappa \omega \nu$	$36^{\circ} 1 / 2$	$43^{\circ} 2 / 3$	1.21
56	Ravenna	Poovevv α	$34^{\circ} 2 / 3$	44°	1.23
57	Aquileia	Aкоv入ךı α	34°	45°	1.29
58	Benevento	Ovعvعßยvסо丂	41°	$41^{\circ} 1 / 3$	1.67
59	Capua	К $\alpha \pi v \eta$	40°	$41^{\circ} 1 / 6$	1.68
60	Aleria	A $\lambda \varepsilon \rho 1 \alpha$	$31^{\circ} 1 / 2$	$40^{\circ} 1 / 12$	2.5
61	La Canonica	M $\alpha \rho ı \alpha \nu \eta$	$31^{\circ} 1 / 3$	$40^{\circ} 2 / 3$	2.5

Table 6：Europe 6						Italy
G8．8	M_{XZ}	A_{XZ}	M_{UNK}	A_{UNK}		
3	$15^{\mathrm{h}} 1 / 2 \mathrm{x}$	$1^{\mathrm{h}} 5 / 8$	$15^{\mathrm{h}} 1 / 12$	$1^{\mathrm{h}} 5 / 8$		
3	$15^{\mathrm{h}} 1 / 4$	$2^{\mathrm{h}} 1 / 8$	$15^{\mathrm{h}} 1 / 4$	$2^{\mathrm{h}} 1 / 8$		
3	$15^{\mathrm{h}} 1 / 12$	$1^{\mathrm{h}} 1 / 2$	$15^{\mathrm{h}} 1 / 15$	$1^{\mathrm{h}} 1 / 2$		
4	$14^{\mathrm{h}} 2 / 3$	$1^{\mathrm{h}} 1 / 3$	$14^{\mathrm{h}} 11 / 12$	$1^{\mathrm{h}} 1 / 3$		
4	$14^{\mathrm{h}} 11 / 12$	$1^{\mathrm{h}} 4 / 15$				
4	$14^{\mathrm{h}} 5 / 6$	$1^{\mathrm{h}} 1 / 5$	$14^{\mathrm{h}} 5 / 6$	$1^{\mathrm{h}} 1 / 6$		
5	$15^{\mathrm{h}} 1 / 3$	$1^{\mathrm{h}} 1 / 2$	$15^{\mathrm{h}} 1 / 3$	$1^{\mathrm{h}} 17 / 30$		
5	$15^{\mathrm{h}} 5 / 12$	$1^{\mathrm{h}} 11 / 15$	$15^{\mathrm{h}} 5 / 12 \mathrm{c}$	$1^{\mathrm{h}} 2 / 3$		
6	$15^{\mathrm{h}} 1 / 2$	$1^{\mathrm{h}} 11 / 12 \mathrm{x}$	$15^{\mathrm{h}} 5 / 12 \mathrm{c}$	$1^{\mathrm{h}} 3 / 4 \mathrm{r}$		
6	$15^{\mathrm{h}} 1 / 12$	$1^{\mathrm{h}} 4 / 15$	$15^{\mathrm{h}} 1 / 12 \mathrm{c}$	$1^{\mathrm{h}} 1 / 4$		
6	$15^{\mathrm{h}} 1 / 12$	$1^{\mathrm{h}} 1 / 3$	$15^{\mathrm{h}} 1 / 12$	$1^{\mathrm{h}} 1 / 3$		
7	$14^{\mathrm{h}} 7 / 12$	2^{h}	$14^{\mathrm{h}} 11 / 12$	$2^{\mathrm{h}} \mathrm{c}$		
7	15^{h}	2^{h}	$15^{\mathrm{h}} \mathrm{c}$	$2^{\mathrm{h}} \mathrm{c}$		

Table 7: Europe 7			Sardinia \& Sicily		
D\#	Site	$G D$ Name	B	L	G3
62	Sulci	Σ ¢ λ коı	$30^{\circ} 3 / 4$	$35^{\circ} 5 / 6$	3.3
63	Susaleus		$31^{\circ} 11 / 12$	$36^{\circ} 2 / 3$	3.4
64	Cagliari	K $\alpha \rho \alpha \lambda \lambda 1 \varsigma$	$32^{\circ} 1 / 2$	36°	3.4
65	Porto Torres	Порүоऽ $\Lambda ı \beta ı \sim \sigma \nu$.	$30^{\circ} 1 / 4$	$38^{\circ} 5 / 6$	3.5
66	Cuglieri		$30^{\circ} 1 / 2$	$37^{\circ} 1 / 3$	3.7
67	Lilybaeum	$\Lambda ı \lambda \cup \beta \alpha 10 v$	37°	36°	4.5
68	Syracuse	Σ горкоขбоı	$39^{\circ} 1 / 2$	$37^{\circ} 1 / 4$	4.9
69	Messina Sic.	Mعбךvך	$39^{\circ} 1 / 2$	$38^{\circ} 1 / 2$	4.9
70	Centuripe		$38^{\circ} 1 / 2$	$37^{\circ} 3 / 4$	4.13
71	Segesta	$\Sigma \varepsilon \gamma \varepsilon \sigma \tau \alpha$	$37^{\circ} 1 / 6$	$36^{\circ} 1 / 2$	4.15
72	Catania	$K \alpha \tau \alpha \nu \eta$	$39^{\circ} 7 / 12$	$37^{\circ} 2 / 3$	4.9

Table 7: Europe 7				Sardinia \& Sicily	
G8.9	$M_{\text {XZ }}$	$A_{\text {XZ }}$	$M_{\text {UNK }}$	$A_{\text {UNK }}$	
3	$14^{\mathrm{h}} 1 / 2$	2^{h}	$14^{\mathrm{h}} 7 / 12$	$1^{\mathrm{h}} 9 / 10$	
3	$14^{\mathrm{h}} 7 / 12$	$1^{\mathrm{h}} 9 / 10$	$14^{\mathrm{h}} 7 / 12$	$1^{\mathrm{h}} 9 / 10$	
3	$14^{\mathrm{h}} 1 / 2$	$1^{\mathrm{h}} 13 / 15$	$14^{\mathrm{h}} 1 / 2$	$1^{\mathrm{h}} 5 / 6$	
3	$14^{\mathrm{h}} 3 / 4$	2^{h}	$14^{\mathrm{h}} 3 / 4$	$2^{\mathrm{h}} \mathrm{c}$	
3	$14^{\mathrm{h}} 2 / 3$	2^{h}	$14^{\mathrm{h}} 5 / 8$	$1^{\mathrm{h}} 23 / 24$	
4	$14^{\mathrm{h}} 1 / 2$	$1^{\mathrm{h}} 17 / 30$	$14^{\mathrm{h}} 1 / 2$	$1^{\mathrm{h}} 17 / 30$	
4	$14^{\mathrm{h}} 7 / 12 \mathrm{r}$	$1^{\mathrm{h}} 2 / 5$	$14^{\mathrm{h}} 5 / 8$	$1^{\mathrm{h}} 2 / 5$	
4	$14^{\mathrm{h}} 3 / 4$	$1^{\mathrm{h}} 2 / 5$	$14^{\mathrm{h}} 3 / 4$	$1^{\mathrm{h}} 2 / 5$	
4	$14^{\mathrm{h}} 2 / 3$	$1^{\mathrm{h}} 11 / 24$	$14^{\mathrm{h}} 2 / 3$	$1^{\mathrm{h}} 11 / 24$	
4	$14^{\mathrm{h}} 1 / 2$	$1^{\mathrm{h}} 17 / 30$	$14^{\mathrm{h}} 1 / 2$	$1^{\mathrm{h}} 17 / 30$	
4			$14^{\mathrm{h}} 2 / 3$	$1^{\mathrm{h}} 2 / 5$	

Table 8: Europe 8			Ukraine		
D\#	Site	$G D$ Name	B	L	G3
73	Tamyrake	Тоцטрокп	$59^{\circ} 1 / 3$	$48^{\circ} 1 / 2$	5.8
74	Navaron	N α ט α ¢ov	$58^{\circ} 1 / 2$	50°	5.27
75	Berislav, Dnepr		57°	49°	5.28
76	Feodosija	Єعoбoбı α	$63^{\circ} 1 / 3$	$47^{\circ} 1 / 3$	6.3
77	Kerch	$\Pi \alpha \nu \tau \kappa \alpha \pi \alpha \alpha^{\alpha}$	64°	$47^{\circ} 11 / 12$	6.4

Table 8: Europe 8				Ukraine
G8.10	M_{XZ}	A_{XZ}	M_{UNK}	A_{UNK}
3	16^{h}	$0^{\mathrm{h}} 1 / 15$	16^{h}	$0^{\mathrm{h}} 1 / 15$
3	$16^{\mathrm{h}} 1 / 4$	$0^{\mathrm{h}} 1 / 8$	$16^{\mathrm{h}} 1 / 3$	$0^{\mathrm{h}} 1 / 8$
3	$16^{\mathrm{h}} 1 / 12$	$0^{\mathrm{h}} 1 / 5$	$16^{\mathrm{h}} 1 / 12$	$0^{\mathrm{h}} 1 / 5$
4	$15^{\mathrm{h}} 5 / 6$	$-0^{\circ} 1 / 5$	$15^{\mathrm{h}} 5 / 6$	$-0^{\circ} 1 / 5$
4	$15^{\mathrm{h}} 11 / 12$	$-0^{\circ} 1 / 4$	$15^{\mathrm{h}} 11 / 12$	$-0^{\circ} 1 / 4$

Table 9: Europe 9			Eastern Balkans		
D\#	Site	$G D$ Name	B	L	G3
78	Bormanon		$43^{\circ} 2 / 3$	$48^{\circ} 1 / 4$	7.2
79	Salinai	$\Sigma \alpha \lambda \imath v \alpha \iota$	$49^{\circ} 1 / 4$	$47^{\circ} 1 / 6$	8.7
80	Hunedoara	Z $\alpha \pi \mu \iota v \sigma$ обоv $\alpha \alpha$	$47^{\circ} 5 / 6$	$45^{\circ} 1 / 4$	8.9
81	Arčar	P $\alpha 1 \tau 1 \alpha \rho ı \alpha$	49°	$43^{\circ} 1 / 3$	9.4
82	Skopje	гкоขлоı	$48^{\circ} 1 / 2$	$42^{\circ} 1 / 2$	9.6
83	Varna	O $¢ \eta \sigma \sigma \alpha$	$54^{\circ} 5 / 6$	45°	10.8
84	Gigen	Оıбкац	51°	44°	10.10
85	Enez	Alvos	$53^{\circ} 1 / 6$	$41^{\circ} 1 / 2$	11.2
86	Sozopol	А π о $\lambda \lambda \omega \nu 1 \alpha$ Поv τ.	$54^{\circ} 5 / 6$	$44^{\circ} 1 / 3$	11.4
87	Byzantium	В $৩ \zeta \alpha v \tau 10 v$	56°	$43^{\circ} 1 / 12$	11.5
88	MarmaraEreğl.	ПгрıvӨоऽ	$54^{\circ} 5 / 6$	$42^{\circ} 1 / 3$	11.6
89	Goce Delčev	Nıколо ${ }^{\text {¢ }}$ ¢ σ	$51^{\circ} 3 / 4$	$42^{\circ} 1 / 3$	11.13
90	Lysimachia	$\Lambda v \sigma 1 \mu \alpha \chi 1 \alpha$	$54^{\circ} 1 / 6$	$41^{\circ} 1 / 2$	11.13
91	Marmara Island	Прокоขךооऽ	$55^{\circ} 1 / 2$	42°	11.14
92	Alçitepe	E入人iovs	$54^{\circ} 1 / 2$	$40^{\circ} 3 / 4$	12.3
93	Yalikavat	$\Sigma \varepsilon \sigma \tau \circ \varsigma$	$54^{\circ} 11 / 12$	$41^{\circ} 1 / 4$	12.4

Table 9: Europe 9				
G8.11	$M_{\text {XZ }}$	A_{XZ}	M_{UNK}	A_{UNK}
3	16^{h}	$1^{\mathrm{h}} 1 / 8$	$16^{\mathrm{h}} \mathrm{c}$	$1^{\mathrm{h}} 1 / 12$
4	$15^{\mathrm{h}} 1 / 2 \mathrm{x}$	$0^{\mathrm{h}} 2 / 5$	$15^{\mathrm{h}} 5 / 6$	$0^{\mathrm{h}} 11 / 15$
4	$15^{\mathrm{h}} 1 / 2 \mathrm{r}$	$0^{\mathrm{h}} 5 / 6$	$15^{\mathrm{h}} 1 / 2$	$0^{\mathrm{h}} 5 / 6$
5	$15^{\mathrm{h}} 1 / 4$	$0^{\mathrm{h}} 2 / 3$	$15^{\mathrm{h}} 1 / 2$	$0^{\mathrm{h}} 3 / 4$
5	$15^{\mathrm{h}} 1 / 4$	$0^{\mathrm{h}} 19 / 24$	$15^{\mathrm{h}} 1 / 6$	$0^{\mathrm{h}} 3 / 4$
6	$15^{\mathrm{h}} 1 / 2$	$0^{\mathrm{h}} 1 / 15$	$15^{\mathrm{h}} 1 / 2$	$0^{\mathrm{h}} 1 / 3$
6	$15^{\mathrm{h}} 3 / 8$	$0^{\mathrm{h}} 5 / 8$	$15^{\mathrm{h}} 3 / 8$	$0^{\mathrm{h}} 7 / 12$
7	$15^{\mathrm{h}} 1 / 12$	$0^{\mathrm{h}} 11 / 24$	$15^{\mathrm{h}} 1 / 12$	$0^{\mathrm{h}} 11 / 24$
7	$15^{\mathrm{h}} 5 / 12$	$0^{\mathrm{h}} 2 / 5$	$15^{\mathrm{h}} 5 / 12$	$0^{\mathrm{h}} 1 / 3$
7	$15^{\mathrm{h}} 1 / 4$	$0^{\mathrm{h}} 2 / 5$	$15^{\mathrm{h}} 1 / 4$	$0^{\mathrm{h}} 1 / 4$
7	$15^{\mathrm{h}} 1 / 2$	$0^{\mathrm{h}} 2 / 5$	$15^{\mathrm{h}} 1 / 6$	$0^{\mathrm{h}} 1 / 3$
7	$15^{\mathrm{h}} 1 / 6$	$0^{\mathrm{h}} 2 / 3$	$15^{\mathrm{h}} 1 / 6$	$0^{\mathrm{h}} 17 / 30$
7	$15^{\mathrm{h}} 1 / 8$	$0^{\mathrm{h}} 2 / 5$	$15^{\mathrm{h}} 1 / 12$	$0^{\mathrm{h}} 2 / 5$
8	$15^{\mathrm{h}} 1 / 2$	$0^{\mathrm{h}} 2 / 3$	$15^{\mathrm{h}} 1 / 8$	$0^{\mathrm{h}} 1 / 3 \mathrm{c}$
9	15^{h}	$0^{\mathrm{h}} 2 / 5$	15^{h}	$0^{\mathrm{h}} 1 / 3$
10	$15^{\mathrm{h}} 1 / 12$	$0^{\mathrm{h}} 1 / 3$	$15^{\mathrm{h}} 1 / 8$	$0^{\mathrm{h}} 1 / 3$

Table 10: Europe 10			Greece \& Crete		
D\#	Site	$G D$ Name	B	L	G3
94	Durrës	$\Delta v \rho \rho \alpha \chi 10 v$	45°	$40^{\circ} 5 / 6$	13.3
95	Thessalonika		$49^{\circ} 5 / 6$	$40^{\circ} 1 / 3$	13.14
96	Amfipolis	А $\mu \phi 1 \pi 0 \lambda 1 \varsigma$	50°	$41^{\circ} 1 / 2$	13.31
97	Bitola	Нроклє1 α М $<\kappa$.	$47^{\circ} 2 / 3$	$40^{\circ} 2 / 3$	13.33
98	Edessa	E $\delta \varepsilon \sigma \sigma \alpha$	$48^{\circ} 3 / 4$	$40^{\circ} 1 / 3$	13.39
99	Pella	$\Pi \varepsilon \lambda \lambda \alpha$	$49^{\circ} 1 / 3$	$40^{\circ} 1 / 12$	13.39
100	Larisa	$\Lambda \alpha \rho ı \sigma \sigma \alpha$ Пع $\lambda \alpha \sigma \gamma$.	50°	$39^{\circ} 1 / 6$	13.42
101	Nea Potidea	K $\alpha \sigma \alpha v \delta \rho \varepsilon 1 \alpha$	$51^{\circ} 1 / 12$	40°	13.13
102	Lemnos	$\Lambda \eta \mu \nu$ оऽ	$52^{\circ} 1 / 3$	$40^{\circ} 11 / 12$	13.47
103	Nicopolis	Nıколо入ıऽ	$47^{\circ} 7 / 12$	$37^{\circ} 11 / 12$	14.5
104	Arta	А $\mu \beta \rho \alpha \kappa \iota \alpha$	48°	$38^{\circ} 1 / 3$	14.6
105	Corfu	Кєркоро	$45^{\circ} 2 / 3$	$37^{\circ} 3 / 4$	14.11
106	Kefallinia	K $\varepsilon \phi \alpha \lambda \eta \nu 1 \alpha$	$47^{\circ} 2 / 3$	$37^{\circ} 1 / 6$	14.12
107	Thebes Gr.	Boı $\omega \tau 1 \alpha 1$ Өך $\beta \alpha_{1}$	$52^{\circ} 2 / 3$	$37^{\circ} 2 / 3$	15.20
108	Megara	Мع $<\alpha \rho \alpha$	52°	$37^{\circ} 5 / 12$	15.21
109	Athens	A $\theta \eta \sim \alpha$	$52^{\circ} 3 / 4$	$37^{\circ} 1 / 4$	15.22
110	Mavromati	Мєббпทך	$49^{\circ} 1 / 4$	$35^{\circ} 1 / 4$	16.8
111	Corinth	KopıvӨos	$51^{\circ} 1 / 4$	$36^{\circ} 11 / 12$	16.17
112	Tegea	Tع $\gamma \varepsilon \alpha$	$49^{\circ} 5 / 6$	$36^{\circ} 1 / 3$	16.19
113	Argos	Арүоऽ	$51^{\circ} 1 / 3$	$36^{\circ} 1 / 4$	16.20
114	Sparta	$\Lambda \alpha \kappa \varepsilon \delta \alpha 1 \mu \omega \nu$	$50^{\circ} 1 / 4$	$35^{\circ} 1 / 2$	16.22
115	Chalkis Eub.	X $\alpha \lambda \kappa 1 \zeta$	$53^{\circ} 1 / 2$	38°	15.24
116	Karystos	K $\alpha \rho v \sigma \tau \circ \varsigma$	$54^{\circ} 1 / 2$	$37^{\circ} 2 / 3$	15.24
117	Gortyna	Гортvv α	$54^{\circ} 1 / 4$	$34^{\circ} 5 / 6$	17.10
118	Knossos	Kv $\omega \sigma \sigma 0 \varsigma$	$54^{\circ} 3 / 4$	35°	17.10

Table 10 : Europe 10						Greece \& Crete
G8.12	$M_{\text {XZ }}$	$A_{\text {XZ }}$	$M_{\text {UNK }}$	$A_{\text {UNK }}$		
3	15^{h}	1^{h}	15^{h}	1^{h}		
4	$14^{\mathrm{h}} 11 / 12$	$0^{\mathrm{h}} 11 / 15$	$14^{\mathrm{h}} 11 / 12$	$0^{\mathrm{h}} 2 / 3$		
5	$15^{\mathrm{h}} 1 / 8$	$0^{\mathrm{h}} 11 / 15$	$15^{\mathrm{h}} 1 / 12$	$0^{\mathrm{h}} 2 / 3$		
6	$15^{\mathrm{h}} 1 / 8$	$0^{\mathrm{h}} 19 / 24$	$15^{\mathrm{h}} \mathrm{c}$	$0^{\mathrm{h}} 5 / 6$		
7	$14^{\mathrm{h}} 14 / 15$	$0^{\mathrm{h}} 11 / 24$				
8	$14^{\mathrm{h}} 5 / 6$	$0^{\mathrm{h}} 11 / 15$	$14^{\mathrm{h}} 11 / 12 \mathrm{c}$	$0^{\mathrm{h}} 3 / 4 \mathrm{c}$		
9	$14^{\mathrm{h}} 3 / 4$	$0^{\mathrm{h}} 7 / 10$	$14^{\mathrm{h}} 3 / 4 \mathrm{c}$	$0^{\mathrm{h}} 2 / 3$		
10	$14^{\mathrm{h}} 5 / 6$	$0^{\mathrm{h}} 5 / 8$	$14^{\mathrm{h}} 11 / 12 \mathrm{c}$	$0^{\mathrm{h}} 7 / 12$		
11	15^{h}	$0^{\mathrm{h}} 8 / 15$	15^{h}	$0^{\mathrm{h}} 1 / 2$		
12	$14^{\mathrm{h}} 5 / 8$	$0^{\mathrm{h}} 13 / 15$	$14^{\mathrm{h}} 2 / 3$	$0^{\mathrm{h}} 5 / 6$		
13	$14^{\mathrm{h}} 3 / 4$	$0^{\mathrm{h}} 5 / 6$	$14^{\mathrm{h}} 3 / 4 \mathrm{c}$	$0^{\mathrm{h}} 5 / 6 \mathrm{c}$		
14	$14^{\mathrm{h}} 5 / 8$	1^{h}	$14^{\mathrm{h}} 2 / 3$	1^{h}		
15	$14^{\mathrm{h}} 7 / 12$	$0^{\mathrm{h}} 7 / 9$	$14^{\mathrm{h}} 5 / 8$	$0^{\mathrm{h}} 5 / 6$		
16	$14^{\mathrm{h}} 5 / 6$	1^{h}	$14^{\mathrm{h}} 2 / 3$	$0^{\mathrm{h}} 1 / 2$		
17	$14^{\mathrm{h}} 5 / 8$	$0^{\mathrm{h}} 17 / 30$	$14^{\mathrm{h}} 5 / 8$	$0^{\mathrm{h}} 17 / 30$		
18	$14^{\mathrm{h}} 7 / 12$	$0^{\mathrm{h}} 1 / 2$	$14^{\mathrm{h}} 5 / 8$	$0^{\mathrm{h}} 1 / 2 \mathrm{c}$		
19	$14^{\mathrm{h}} 5 / 12$	$0^{\mathrm{h}} 5 / 12$	$14^{\mathrm{h}} 5 / 12$	$0^{\mathrm{h}} 11 / 15$		
20	$14^{\mathrm{h}} 7 / 12$	$0^{\mathrm{h}} 5 / 8$	$14^{\mathrm{h}} 7 / 12$	$0^{\mathrm{h}} 5 / 8$		
21	$14^{\mathrm{h}} 1 / 2$	$0^{\mathrm{h}} 7 / 10$	$14^{\mathrm{h}} 1 / 2$	$0^{\mathrm{h}} 2 / 3$		
22	$14^{\mathrm{h}} 1 / 2$	$0^{\mathrm{h}} 5 / 6$	$14^{\mathrm{h}} 1 / 2$	$0^{\mathrm{h}} 5 / 8$		
23	$14^{\mathrm{h}} 1 / 2$	$0^{\mathrm{h}} 2 / 3$	$14^{\mathrm{h}} 5 / 12 \mathrm{c}$	$0^{\mathrm{h}} 2 / 3$		
24	$14^{\mathrm{h}} 3 / 4$	$0^{\mathrm{h}} 1 / 2$	$14^{\mathrm{h}} 2 / 3$	$0^{\mathrm{h}} 1 / 2$		
24	$14^{\mathrm{h}} 5 / 8$	$0^{\mathrm{h}} 2 / 5$	$14^{\mathrm{h}} 2 / 3$	$0^{\mathrm{h}} 11 / 30$		
25	$14^{\mathrm{h}} 3 / 8$	$0^{\mathrm{h}} 5 / 12$	$14^{\mathrm{h}} 1 / 3$	$0^{\mathrm{h}} 2 / 5$		
25	$14^{\mathrm{h}} 5 / 12$	$0^{\mathrm{h}} 2 / 5$	$14^{\mathrm{h}} 1 / 3$	$0^{\mathrm{h}} 1 / 3$		

Table 11: Africa 1 \# Site			Northwest Africa		
			B	L	G4
119	Tangiers	Tıүүıऽ K $\alpha ı \sigma \alpha \rho \varepsilon ı \alpha$	$6^{\circ} 1 / 2$	$35^{\circ} 11 / 12$	1.5
120	Asilah	Z $1 \lambda 1 \alpha$	$6^{\circ} 1 / 2$	$35^{\circ} 1 / 6$	1.13
121	Larache	$\Lambda \mathrm{l} \xi$	$6^{\circ} 3 / 4$	$34^{\circ} 11 / 12$	1.13
122	Walila	Ovo Oov $_{1} \lambda 1$ ¢	$8^{\circ} 1 / 4$	$33^{\circ} 2 / 3$	1.14
123	Ténès	K $\alpha \rho \tau \iota \nu \alpha$	$14^{\circ} 1 / 2$	$33^{\circ} 2 / 3$	2.4
124	Cherchell	$\mathrm{I} \omega \lambda \mathrm{K} \alpha \iota^{\prime} \alpha \rho \varepsilon \iota^{\alpha}$	17°	$33^{\circ} 1 / 3$	2.5
125	Bougie	$\Sigma \alpha \lambda \delta \alpha \downarrow$	22°	$32^{\circ} 1 / 2$	2.9
126	Ksar el-Kebir	O π 佂 δ ıov Neov	16°	$32^{\circ} 2 / 3$	2.25
127	Miliana	Zov $\alpha \beta \alpha \rho \rho$ ı	$16^{\circ} 5 / 6$	$32^{\circ} 2 / 3$	2.25
128	Tiklat	Tovßovбovл兀oऽ	$23^{\circ} 3 / 4$	$31^{\circ} 1 / 3$	2.31

Table 11: Africa 1						Northwest Africa
G8.13	M_{XZ}	A_{XZ}	M_{UNK}	A_{UNK}		
3	$14^{\mathrm{h}} 1 / 2$	$3^{\mathrm{h}} 7 / 12$	$14^{\mathrm{h}} 1 / 2$	$3^{\mathrm{h}} 7 / 12$		
4	$14^{\mathrm{h}} 1 / 2$	$3^{\mathrm{h}} 1 / 2$	$14^{\mathrm{h}} 5 / 12$	$3^{\mathrm{h}} 11 / 12$		
5	$14^{\mathrm{h}} 5 / 12$	$3^{\mathrm{h}} 1 / 2$	$14^{\mathrm{h}} 1 / 3$	$3^{\mathrm{h}} 17 / 30$		
6	$14^{\mathrm{h}} 1 / 3$	$3^{\mathrm{h}} 1 / 2$	$14^{\mathrm{h}} 1 / 4$	$3^{\mathrm{h}} 1 / 2 \mathrm{c}$		
7	$14^{\mathrm{h}} 1 / 3$	3^{h}	$14^{\mathrm{h}} 1 / 4$	3^{h}		
8	$14^{\mathrm{h}} 1 / 4$	$2^{\mathrm{h}} 2 / 3$	$14^{\mathrm{h}} 1 / 4$	$2^{\mathrm{h}} 11 / 12$		
9	$14^{\mathrm{h}} 1 / 6$	$2^{\mathrm{h}} 1 / 2$	$14^{\mathrm{h}} 1 / 6$	$2^{\mathrm{h}} 17 / 30$		
10	$14^{\mathrm{h}} 1 / 6 \mathrm{r}$	3^{h}	$14^{\mathrm{h}} 1 / 12$	$2^{\mathrm{h}} 11 / 12 \mathrm{r}$		
11	$14^{\mathrm{h}} 1 / 5$	$2^{\mathrm{h}} 3 / 4$	$14^{\mathrm{h}} 1 / 5$	$2^{\mathrm{h}} 9 / 10$		
12	$14^{\mathrm{h}} 1 / 8$	$2^{\mathrm{h}} 1 / 2$	$14^{\mathrm{h}} 1 / 8$	$2^{\mathrm{h}} 5 / 12$		

Table 12: Africa 2			North Africa		
D\#	Site	$G D$ Name	B	L	G4
129	Tabarka	$\Theta \alpha \beta \rho \alpha \kappa \alpha$	$31^{\circ} 1 / 4$	$32^{\circ} 1 / 3$	3.5
130	Utica	I $\tau \cup \kappa \eta$	$33^{\circ} 2 / 3$	$32^{\circ} 3 / 4$	3.6
131	Carthage	$K \alpha \rho \chi \eta \delta \omega \nu$	$34^{\circ} 5 / 6$	$32^{\circ} 2 / 3$	3.7
132	Souse	А δ коข $\mu \eta \tau$ ¢	$36^{\circ} 2 / 3$	$32^{\circ} 2 / 3$	3.9
133	Lebda	Мع $<\alpha \lambda \eta$ К $\varepsilon \pi \tau \iota \zeta$	42°	$31^{\circ} 2 / 3$	3.13
134	Constantine	$\mathrm{K} 1 \rho \tau \alpha \operatorname{Iov} \lambda 1 \alpha$	$26^{\circ} 5 / 6$	$31^{\circ} 1 / 3$	3.28
135	El-Kef	$\Sigma 1 \kappa \alpha$ Ovevepı α	$30^{\circ} 1 / 2$	$30^{\circ} 5 / 6$	3.30
136	Hammam Dar.	Bov $\lambda \lambda \alpha$ P $\dagger \gamma \alpha \sim$	$30^{\circ} 2 / 3$	$31^{\circ} 1 / 2$	3.30
137	Oudna	Ovөiv α	$34^{\circ} 1 / 4$	$31^{\circ} 1 / 3$	3.34
138	El-Djem	$\Theta \cup \sigma \delta \rho \circ \varsigma$	$37^{\circ} 5 / 6$	$32^{\circ} 1 / 6$	3.39
139	Djerba	M $\downarrow \nu \downarrow \boldsymbol{\gamma} \boldsymbol{\xi}$	$39^{\circ} 1 / 2$	$31^{\circ} 1 / 3$	3.45
140	Pantelleria	Kоббט α	$37^{\circ} 1 / 3$	$34^{\circ} 1 / 3$	3.47
141	Malta	$\mathrm{M} \varepsilon \lambda 1 \tau \eta$	$38^{\circ} 3 / 4$	$34^{\circ} 2 / 3$	3.47

Table 12: Africa 2	North Africa			
G8.14	$M_{\text {XZ }}$	$A_{\text {XZ }}$	M_{UNK}	A_{UNK}
3	$14^{\mathrm{h}} 1 / 6 \mathrm{r}$	2^{h}	$14^{\mathrm{h}} 1 / 6$	$2^{\mathrm{h}} \mathrm{c}$
4	$14^{\mathrm{h}} 1 / 5$	$1^{\mathrm{h}} 3 / 4$	$14^{\mathrm{h}} 1 / 5$	$1^{\mathrm{h}} 3 / 4$
5	$14^{\mathrm{h}} 1 / 4$	$1^{\mathrm{h}} 3 / 4$	$14^{\mathrm{h}} 1 / 5$	$1^{\mathrm{h}} 2 / 3$
6	$14^{\mathrm{h}} 1 / 5$	$1^{\mathrm{h}} 5 / 6$	$14^{\mathrm{h}} 1 / 5$	$1^{\mathrm{h}} 7 / 12$
7	$14^{\mathrm{h}} 1 / 8$	$1^{\mathrm{h}} 1 / 4$	$14^{\mathrm{h}} 1 / 8$	$1^{\mathrm{h}} 1 / 5$
8	$14^{\mathrm{h}} 1 / 12$	$2^{\mathrm{h}} 1 / 4$	$14^{\mathrm{h}} 1 / 12$	$2^{\mathrm{h}} 1 / 4$
9	$14^{\mathrm{h}} 1 / 12$	2^{h}	14^{h}	$2^{\mathrm{h}} \mathrm{c}$
10	$14^{\mathrm{h}} 1 / 12$	2^{h}	$14^{\mathrm{h}} 1 / 12$	$2^{\mathrm{h}} \mathrm{c}$
11	$14^{\mathrm{h}} 1 / 12$	$1^{\mathrm{h}} 3 / 4$	$14^{\mathrm{h}} 1 / 12$	$1^{\mathrm{h}} 3 / 4$
12	$14^{\mathrm{h}} 1 / 6 \mathrm{r}$	$1^{\mathrm{h}} 1 / 2$	$14^{\mathrm{h}} 1 / 8$	$1^{\mathrm{h}} 1 / 2$
13	$14^{\mathrm{h}} 1 / 12$	$1^{\mathrm{h}} 2 / 5$	$14^{\mathrm{h}} 1 / 12$	$1^{\mathrm{h}} 2 / 5$
14	$14^{\mathrm{h}} 1 / 3$	$1^{\mathrm{h}} 17 / 30$	$14^{\mathrm{h}} 1 / 3$	$1^{\mathrm{h}} 1 / 6$
15	$14^{\mathrm{h}} 1 / 4$	$1^{\mathrm{h}} 11 / 24$	$14^{\mathrm{h}} 1 / 3$	$1^{\mathrm{h}} 11 / 24$

Table 13: Africa 3						
G8.15	$M_{\text {XZ }}$	A_{XZ}	$M_{\text {UNK }}$	A_{UNK}	S_{XZ}	$S_{\text {UNK }}$
3	$14^{\mathrm{h}} 1 / 15 \mathrm{r}$	$0^{\text {h }} 13 / 15$	$14^{\text {h }} 1 / 12$	$0^{\mathrm{h}} 5 / 6$		
4	$14^{\mathrm{h}} 1 / 12$	$0^{\mathrm{h}} 3 / 4 \mathrm{r}$	$14^{\text {h }} 1 / 12$	$0^{\text {h }} 11 / 15$		
5	$14^{\mathrm{h}} 1 / 8$	$0^{\mathrm{h}} 3 / 4$	$14^{\mathrm{h}} 1 / 12$	$0^{\text {h }} 3 / 4$		
6	$14^{\mathrm{h}} 1 / 8$	$0^{\mathrm{h}} 2 / 3$	$14^{\mathrm{h}} 1 / 8$	$0^{\mathrm{h}} 2 / 3$		
7	$14^{\text {h }} 1 / 12$	$0^{\mathrm{h}} 2 / 3$	$14^{\text {h }} 1 / 12$	$0^{\mathrm{h}} 2 / 3$		
8	$14^{\text {h }}$	$0^{\text {h }} 17 / 30$	$14^{\mathrm{h}} 1 / 8$	$0^{\text {h }} 17 / 30$		
9	$14^{\mathrm{h}} 1 / 12$	$0^{\mathrm{h}} 1 / 4$	$14^{\mathrm{h}} 1 / 12$	$0^{\text {h }} 1 / 4$		
10	$14^{\mathrm{h}} 1 / 15 \mathrm{r}$	$0^{\text {h }}$	$14^{\text {h }} 1 / 12$	$0{ }^{\text {h }}$		
11	$14^{\mathrm{h}} 1 / 15 \mathrm{r}$	$-0^{\mathrm{h}} 1 / 5$	$14^{\text {h }} 1 / 12$	$-0^{\mathrm{h}} 1 / 5$		
12	$14^{\text {h }}$	$-0^{\text {h }} 1 / 12$	$13^{\text {h }} 19 / 20$	$-0^{\mathrm{h}} 1 / 8$		
13	$13^{\text {h }} 3 / 4$	$-0^{\text {h }} 1 / 12$	$13^{\text {h }} 43 / 60$	$-0^{\mathrm{h}} 1 / 8$		
14	$13^{\mathrm{h}} 5 / 8$	$-0^{\text {h }} 1 / 12$	$13^{\text {h }} 5 / 8$	$-0^{\text {h }} 1 / 8$		
15	$13^{\mathrm{h}} 1 / 2$	$-0^{\text {h }} 1 / 12$	$13^{\text {h }} 1 / 2$	$-0^{\mathrm{h}} 1 / 8$	0°	0°
16	$13^{\text {h }} 5 / 6$	$-0^{\mathrm{h}} 1 / 3$	$13^{\text {h }} 5 / 6$	$-0^{\mathrm{h}} 1 / 3$		
17	$13^{\text {h }} 2 / 3$	$-0^{\text {h }} 1 / 15$	$13^{\text {h }} 2 / 3$	$-0^{\text {h }} 1 / 15$		
18	$13^{\text {h }} 3 / 4$	$-0^{\mathrm{h}} 1 / 4$	$13^{\text {h }} 3 / 4$	- $0^{\mathrm{h}} 1 / 4$		
19	$13^{\mathrm{h}} 1 / 2$	$-0^{\mathrm{h}} 1 / 4$	$13^{\text {h }} 1 / 2$	$-0^{\mathrm{h}} 1 / 4$	0°	0°

Table 14: Africa 4			nterior Africa		
D\#	Site	GD Name	B	L	G4
159	Autolalai	Av \quad ¢ $\lambda \alpha \lambda \alpha ı$	10°	$23^{\circ} 5 / 6$	6.24
160	Iarzeitha	$\mathrm{I} \alpha \rho \zeta \varepsilon 1 \theta \alpha$	10°	$15^{\circ} 1 / 2$	6.6
161	Thaondokana	$\Theta \alpha \mu о$ обок α 人	23°	17°	6.28
162	Geira	$\Gamma \varepsilon ı \rho \alpha$	36°	18°	6.31
163	Djerma	$\Gamma \alpha \rho \alpha \mu \eta$	43°	$21^{\circ} 1 / 2$	6.30
164	Gebel Barkal	$\mathrm{N} \alpha \pi \alpha \tau \alpha \mathrm{Al}$.	63°	$20^{\circ} 1 / 4$	7.19
165	Meroë	Мєроך	$61^{\circ} 1 / 2$	$16^{\circ} 5 / 12$	7.21
166	PtolemyLodge	$\Pi \tau \bigcirc \lambda \varepsilon \mu \alpha ı \varsigma \Theta \eta \rho \omega v$	66°	$16^{\circ} 5 / 12$	7.7
167	Massawa	A	67°	$11^{\circ} 1 / 3$	7.8
168	Ras Siyan	$\Delta \eta \rho \eta$	$74^{\circ} 1 / 2$	11°	7.9
169	Ras Antarah	Moбoviov	79°	9°	7.10
170	CapeGuardafui	А $\rho 0 \mu \alpha \tau \alpha$	83°	6°	7.10

G8.16	$M_{\text {XZ }}$	A_{XZ}	$M_{\text {UNK }}$	$A_{\text {UNK }}$	$S_{\text {XZ }}$	$S_{\text {UNK }}$
3	$13^{\text {h }} 1 / 2$	$3^{\text {h }} 1 / 3$	$13^{\mathrm{h}} 1 / 2$	$3^{\text {h }} 1 / 3$	0°	0°
5	$12^{\mathrm{h}} 11 / 12$	$3^{\text {h }} 1 / 3$	$12^{\mathrm{h}} 11 / 12$	$3^{\text {h }} 1 / 3$	$48^{\circ} 2 / 3$	$43^{\circ} 2 / 3$
5	$13^{\text {h }}$	$2^{\text {h }} 1 / 2$	$13^{\text {h }}$	$2^{\text {h }} 1 / 2$	$43^{\circ} 2 / 3$	43°
6	$13^{\mathrm{h}} 1 / 15 \mathrm{r}$	$1^{\text {h }} 5 / 8$	$13^{\text {h }} 1 / 12$	$1^{\mathrm{h}} 5 / 8$	$40^{\circ} 1 / 3 \mathrm{r}$	$40^{\circ} 1 / 3$
7	$13^{\text {h }} 1 / 4$	$0^{\text {h }} 1 / 6$	$13^{\text {h }} 1 / 4$	$0^{\text {h }} 1 / 6$	25°	25°
8	$13^{\mathrm{h}} 1 / 4$	- $0^{\text {h }} 1 / 6$	$13^{\text {h }} 1 / 4$	$-0^{\text {h }} 1 / 6$	$31^{\circ} 1 / 6$	30°
9	$13^{\text {h }}$	- $0^{\text {h }} 1 / 15$	$13^{\text {h }}$	$-0^{\mathrm{h}} 1 / 15$	$45^{\circ} 2 / 3$	45°
10	$13^{\text {h }}$	$-0^{\mathrm{h}} 1 / 5$	$13^{\text {h }}$	$-0^{\mathrm{h}} 2 / 5$	$45^{\circ} 1 / 3$	45°
11	$12^{\mathrm{h}} 1 / 4$	$-0^{\mathrm{h}} 13 / 30$	$12^{\text {h }} 2 / 3 \mathrm{r}$	$-0^{\mathrm{h}} 11 / 24$	60°	$62^{\circ} \mathrm{c}$
12	$12^{\mathrm{h}} 7 / 12$	- $0^{\mathrm{h}} 11 / 12$	$12^{\mathrm{h}} 2 / 3$	$-1^{\text {h }}$	$62^{\circ} 3 / 4$	$63^{\circ} 3 / 4$
13	$12^{\mathrm{h}} 1 / 2$	$-1^{\text {h }} 1 / 4$	$12^{\mathrm{h}} 1 / 2$	$-1^{\text {h }} 1 / 3 \mathrm{c}$	$68^{\circ} 1 / 8$	$68^{\circ} 3 / 4$
14	$12^{\mathrm{h}} 1 / 3$	$-1^{\mathrm{h}} 1 / 2$	$12^{\mathrm{h}} 11 / 24$	$-1^{\mathrm{h}} 1 / 2$	75°	76°

Table 15: Asia 1 Asia Minor								Table 15: Asia 1		Asia Minor
D\#	Site	$G D$ Name	B	L	G5	G8.17	$M_{\text {XZ }}$	A_{XZ}	$M_{\text {UNK }}$	$A_{\text {UNK }}$
171	Chalcedon	Х $\alpha \lambda \kappa \eta \delta \omega \nu$	$56^{\circ} 1 / 12$	$43^{\circ} 1 / 12$	1.2	3	$15^{\mathrm{h}} 1 / 4$	$0^{\mathrm{h}} 1 / 4$	$15^{\mathrm{h}} 1 / 4$	$0^{\mathrm{h}} 1 / 4$
172	Nicomedia		$57^{\circ} 1 / 3$	$42^{\circ} 1 / 2$	1.3	4	$15^{\mathrm{h}} 1 / 6$	$0^{\mathrm{h}} 1 / 4$	$15^{\mathrm{h}} 1 / 4$	$0^{\mathrm{h}} 1 / 6$
173	ApameiaBithyn.	А $\pi \alpha \mu \varepsilon 1 \alpha$	$56^{\circ} 11 / 12$	42°	1.4	5	$15^{\mathrm{h}} 1 / 12$	$0^{\text {h }} 1 / 4$	$15^{\mathrm{h}} 1 / 8$	$0^{\text {h }} 1 / 6$
174	Ereğli		59°	$43^{\circ} 1 / 2$	1.7	6	$15^{\mathrm{h}} 1 / 4$	$0^{\mathrm{h}} 1 / 4$	$15^{\mathrm{h}} 1 / 3$	$0^{\mathrm{h}} 1 / 10$
175	Nicaea > Iznik		58°	$42^{\circ} 1 / 4$	1.14	7	$15^{\mathrm{h}} 1 / 8$	$0^{\text {h }} 1 / 4$	$15^{\mathrm{h}} 1 / 8$	$0^{\text {h }} 1 / 7$
176	Kyzikos	Кvちıкоऽ	56°	$41^{\circ} 1 / 2$	2.2	8	$15^{\mathrm{h}} 1 / 12 \mathrm{r}$	$0^{\mathrm{h}} 1 / 4 \mathrm{r}$	$15^{\text {h }} 1 / 12$	$0^{\text {h }} 1 / 4$
177	AlexandriaTroas	А $\lambda \varepsilon \xi \% \alpha v \delta \rho \varepsilon 1 \alpha \mathrm{~T} \rho \omega \alpha \varsigma$	$55^{\circ} 5 / 12$	$40^{\circ} 2 / 3$	2.4	9	$15^{\text {h }}$	$0^{\mathrm{h}} 1 / 3$	$15^{\mathrm{h}} \mathrm{c}$	$0^{\mathrm{h}} 1 / 3$
178	Bergama	Пєрү $\alpha \mu$ о	$57^{\circ} 5 / 12$	$39^{\circ} 3 / 4$	2.14	10	$14^{\mathrm{h}} 5 / 6$	$0^{\text {h }} 1 / 5$	$14^{\mathrm{h}} 7 / 8$	$0^{\text {h }} 1 / 5$
179	Smyrna/Izmir	$\Sigma \mu v \rho v \alpha$	$58^{\circ} 5 / 12$	$38^{\circ} 7 / 12$	2.7	11	$14^{\mathrm{h}} 3 / 4$	$0^{\text {h }} 1 / 5$	$14^{\mathrm{h}} 3 / 4$	$0^{\text {h }} 1 / 8$
180	Ephesos	Ефع σ оऽ	$57^{\circ} 2 / 3$	$37^{\circ} 2 / 3$	2.8	12	$14^{\mathrm{h}} 2 / 3$	$0^{\mathrm{h}} 1 / 5$	$14^{\mathrm{h}} 2 / 3$	$0^{\mathrm{h}} 1 / 6$
181	Miletos>Balat	Min \dagger ¢Oऽ	58°	37°	2.9	13	$14^{\mathrm{h}} 5 / 6$	$0^{\text {h }} 1 / 8$	$14^{\mathrm{h}} 7 / 12$	$0^{\text {h }} 1 / 6$
182	Knidos $>$ Datça	Kvidos	$56^{\circ} 1 / 4$	36°	2.10	14	$14^{\mathrm{h}} 1 / 2$	$0^{\mathrm{h}} 1 / 4$	$14^{\mathrm{h}} 1 / 2$	$0^{\text {h }} 1 / 4$
183	Sardis>Sart	$\Sigma \alpha \rho \delta \varepsilon ı \zeta$	$58^{\circ} 2 / 3$	$38^{\circ} 1 / 4$	2.17	15	$14^{\mathrm{h}} 3 / 4$	$0^{\text {h }} 1 / 8$	$14^{\mathrm{h}} 3 / 4 \mathrm{c}$	$0^{\mathrm{h}} 1 / 8$
184	Magn.Maeander	M $\alpha \gamma v \eta \sigma 1 \alpha \mathrm{M} \alpha ı \sim \nu$.	$58^{\circ} 1 / 2$	$37^{\circ} 5 / 6$	2.19	16	$14^{\mathrm{h}} 2 / 3$	$0^{\text {h }} 1 / 8$	$14^{\mathrm{h}} 2 / 3$	$0^{\text {h }} 1 / 8$
185	Dinar	А $\tau \alpha \mu \varepsilon 1 \alpha \mathrm{Kı}^{1} \beta \omega \tau$ ¢	$61^{\circ} 1 / 6$	$38^{\circ} 11 / 12$	2.25	17	$14^{\mathrm{h}} 2 / 3$	$0^{\text {h }} \mathrm{c}$	$14^{\mathrm{h}} 2 / 3$	$0^{\mathrm{h}} \mathrm{c}$
186	Gölhisar	$\mathrm{K} 1 \beta \cup \rho \alpha$	$60^{\circ} 1 / 6$	$38^{\circ} 11 / 12$	2.26	18	$14^{\mathrm{h}} 2 / 3$	$0^{\text {h }} \mathrm{c}$	$14^{\mathrm{h}} 2 / 3$	$0^{\text {h }}$
187	Mitilini		$55^{\circ} 2 / 3$	$39^{\circ} 2 / 3$	2.29	19	$14^{\mathrm{h}} 5 / 6$	$0^{\text {h }} 1 / 3$	$14^{\text {h }} 5 / 6$	$0^{\text {h }} 1 / 3$
188	Chios	Xıos	$56^{\circ} 1 / 3$	$38^{\circ} 7 / 12$	2.30	20	$14^{\mathrm{h}} 3 / 4$	$0^{\text {h }} 1 / 4$	$14^{\mathrm{h}} 3 / 4$	$0^{\text {h }} 1 / 4$
189	Ielysos,Rhodos	Poठos	$58^{\circ} 1 / 3$	36°	2.34	21	$14^{\mathrm{h}} 1 / 2$	$0^{\mathrm{h}} 1 / 8$	$14^{\mathrm{h}} 1 / 2$	$0^{\text {h }} 1 / 8$
190	Gelemiş	$\Pi \alpha \tau \alpha \rho \alpha$	$60^{\circ} 1 / 2$	36°	3.3	22	$14^{\mathrm{h}} 1 / 2$	$0^{\text {h }}$	$14^{\mathrm{h}} 1 / 2$	$0^{\text {h }}$
191	Kale	Av δ рi $\alpha \kappa \eta$	$60^{\circ} 3 / 4$	$36^{\circ} 5 / 12$	3.3	24	$14^{\mathrm{h}} 7 / 12$	$-0^{\text {h }} \mathrm{c}$	$14^{\mathrm{h}} 1 / 2$	$-0^{\text {h }} \mathrm{c}$
192	Demre	Мv $\rho \alpha$	61°	$36^{\circ} 2 / 3$	3.6	23			$14^{\mathrm{h}} 7 / 12$	$-0^{\text {h }} \mathrm{c}$
193	Turinçova	$\Lambda \mu \nu \rho \alpha$	$61^{\circ} 5 / 12$	$36^{\circ} 7 / 12$	3.6	25	$14^{\mathrm{h}} 7 / 12$	$-0^{\text {h }} \mathrm{c}$		
194	Sinope	$\Sigma \imath v \omega \pi \eta$	$63^{\circ} 5 / 6$	44°	4.3	26	$15^{\mathrm{h}} 3 / 8$	$-0^{\mathrm{h}} 1 / 4$	$15^{\mathrm{h}} 1 / 3$	$-0^{\text {h }} 1 / 4$
195	Amisos	A μ וбоб	65°	$43^{\circ} 1 / 12$	4.3	27	$15^{\mathrm{h}} 1 / 4$	$-0^{\mathrm{h}} 1 / 3$	$15^{\mathrm{h}} 1 / 4$	$-0^{\text {h }} 1 / 3$
196	Ankara	А $\gamma \kappa \cup \rho \alpha$	$62^{\circ} 2 / 3$	42°	4.8	28	$15^{\mathrm{h}} 1 / 6 \mathrm{r}$	$-0^{\text {h }} 1 / 8$	$15^{\mathrm{h}} 1 / 8$	$-0^{\mathrm{h}} 1 / 6$
197	Sivrihisar	Гє¢ μ	$61^{\circ} 1 / 2$	42°	4.7	29	$15^{\mathrm{h}} 1 / 8$	$-0^{\text {h }} \mathrm{c}$	$15^{\mathrm{h}} 1 / 8$	$-0^{\mathrm{h}} \mathrm{c}$
198	Ballihisar	Пعббıvovs	61°	$41^{\circ} 1 / 2$	4.7	30	$15^{\mathrm{h}} 1 / 12 \mathrm{r}$	$-0^{\text {h }} \mathrm{c}$	$15^{\mathrm{h}} 1 / 12$	$-0^{\text {h }} \mathrm{c}$
199	Selimiya	$\Sigma 1 \delta \eta$	$63^{\circ} 5 / 12$	$36^{\circ} 2 / 3$	5.2	31	$14^{\mathrm{h}} 1 / 2$	$-0^{\mathrm{h}} 1 / 5$	$14^{\mathrm{h}} 1 / 2$	$-0^{\mathrm{h}} 1 / 5$
200	Aksu	$\Pi \varepsilon \rho \gamma \eta$	$62^{\circ} 1 / 4$	$36^{\circ} 11 / 12$	5.7	32	$14^{\mathrm{h}} 7 / 12$	$-0^{\text {h }} 1 / 12$	$14^{\mathrm{h}} 7 / 12$	$-0^{\mathrm{h}} 1 / 8$
201	Belkis	Аблєv $<$ оऽ	$62^{\circ} 1 / 4$	$36^{\circ} 3 / 4$	5.7	33	$14^{\mathrm{h}} 7 / 12$	$-0^{\text {h }} 1 / 6 \mathrm{r}$	$14^{\mathrm{h}} 7 / 12$	$-0^{\mathrm{h}} 1 / 8$
202	Termessos		$62^{\circ} 1 / 6$	$37^{\circ} 1 / 4$	5.6	34	$14^{\mathrm{h}} 1 / 2$	- $0^{\text {h }} 1 / 9$	$14^{\mathrm{h}} 5 / 8$	$-0^{\mathrm{h}} 1 / 8$
203	Trabzon	Тралє弓оטऽ	$70^{\circ} 3 / 4$	$43^{\circ} 1 / 12$	6.5	35	$15^{\mathrm{h}} 1 / 4$	$-0^{\mathrm{h}} 2 / 3$	$15^{\mathrm{h}} 1 / 4$	$-0^{\text {h }} 2 / 3$
204	Gümenek		67°	$41^{\circ} 1 / 2$	6.9	36	$15^{\mathrm{h}} 1 / 8$	$-0^{\mathrm{h}} 2 / 5$	$15^{\mathrm{h}} 1 / 12$	$-0^{\mathrm{h}} 11 / 24$
205	Kayseri	M $\alpha \zeta \alpha \kappa \alpha$ K $\alpha 1 \sigma$.	$66^{\circ} 1 / 2$	$39^{\circ} 1 / 2$	6.15	37	$14^{\text {h }} 5 / 6$	$-0^{\mathrm{h}} 2 / 5$	$14^{\text {h }} 5 / 6$	$-0^{\mathrm{h}} 2 / 5$
206	Şar	Kо $\mu \alpha \nu \alpha$ K $\alpha \pi \pi$.	68°	38°	7.7	38	$14^{\mathrm{h}} 3 / 4 \mathrm{r}$	$-0^{\mathrm{h}} 1 / 2$	$14^{\mathrm{h}} 3 / 4 \mathrm{c}$	$-0^{\mathrm{h}} 1 / 2$
207	Malatya	Мє $\lambda ı \tau \eta \sim \eta$	71°	$39^{\circ} 1 / 2$	7.5	39	$14^{\mathrm{h}} 5 / 6$	$-0^{\mathrm{h}} 7 / 10$	$14^{\text {h }} 5 / 6$	$-0^{\mathrm{h}} 3 / 4$
208	Pürk	Nıкололıऽ M.А $¢$.	69°	$41^{\circ} 2 / 3$	7.3	40	$15^{\mathrm{h}} 1 / 8$	-0 ${ }^{\text {h }} 17 / 30$	$15^{\mathrm{h}} 1 / 8$	$-0^{\mathrm{h}} 17 / 30$
209	Sadağ	$\Sigma \alpha \tau \alpha \lambda \alpha$ M.А $\rho \mu \varepsilon \nu$.	$69^{\circ} 1 / 2$	$42^{\circ} 1 / 6$	7.3	41	15^{h}	$-0^{\mathrm{h}} 1 / 2$	$15^{\mathrm{h}} 1 / 8$	$-0^{\mathrm{h}} 5 / 8$
210	Silinti	$\Sigma \varepsilon \lambda ı \mathrm{vovs}$	$64^{\circ} 1 / 3$	$36^{\circ} 3 / 4$	8.2	42	$14^{\mathrm{h}} 7 / 12$	$-0^{\mathrm{h}} 1 / 4$	$14^{\mathrm{h}} 7 / 12$	$-0^{\mathrm{h}} 1 / 4$
211	Viranşehir		$67^{\circ} 1 / 4$	$36^{\circ} 2 / 3$	8.4	43	$14^{\mathrm{h}} 7 / 12$	$-0^{\text {h }} 1 / 2$	$14^{\mathrm{h}} 7 / 12$	$-0^{\text {h }} 1 / 2 \mathrm{c}$
212	Mallos	М $\alpha \lambda \lambda$ оऽ	$68^{\circ} 1 / 2$	$36^{\circ} 1 / 2$	8.4	44	$14^{\mathrm{h}} 7 / 12$	$-0^{\text {h }} 1 / 2$	$14^{\mathrm{h}} 17 / 30$	$-0^{\mathrm{h}} 1 / 2$
213	Tarsus	T $\alpha \rho \sigma$ ¢	$67^{\circ} 2 / 3$	$36^{\circ} 5 / 6$	8.7	45	$14^{\mathrm{h}} 7 / 12$	$-0^{\mathrm{h}} 1 / 2$	$14^{\mathrm{h}} 7 / 12$	$-0^{\mathrm{h}} 1 / 2$
214	Adana	A $\delta \alpha \nu \alpha$	$68^{\circ} 1 / 4$	$36^{\circ} 3 / 4$	8.7	46	$14^{\mathrm{h}} 7 / 12$	$-0^{\mathrm{h}} 1 / 2$	$14^{\mathrm{h}} 7 / 12$	$-0^{\mathrm{h}} 1 / 2$

Table 16: Asia 2			Southern Russia		
D\#	Site	$G D$ Name	B	L	G5
215	Akçaabat	Ep $\mu \omega v \alpha \sigma \sigma \alpha$	65°	$47^{\circ} 1 / 2$	9.8
216	Gagra	Oıv $\alpha v \theta 1 \alpha$	$69^{\circ} 2 / 3$	$47^{\circ} 1 / 4$	9.9
217	Tanaïs $>$ Don	T $\alpha \sim \alpha<\leqslant$	67°	$54^{\circ} 2 / 3$	9.16
218	Stanitsa Peresyp	Тข $\rho \alpha \mu \beta \eta$	$69^{\circ} 2 / 3$	$49^{\circ} 5 / 6$	9.4
219	Rostov	N $\alpha v \alpha \rho ı \zeta$	70°	55°	9.16

	Table 16: Asia 2	S.Russia		
G8.18	M_{XZ}	A_{XZ}	M_{UNK}	A_{UNK}
3	$15^{\mathrm{h}} 5 / 6$	$-0^{\mathrm{h}} 1 / 3$	$15^{\mathrm{h}} 5 / 6$	$-0^{\mathrm{h}} 1 / 3$
4	$16^{\mathrm{h}} 1 / 6 \mathrm{rn}$	$-0^{\mathrm{h}} 5 / 6$	$15^{\mathrm{h}} 5 / 6 \mathrm{c}$	$-0^{\mathrm{h}} 2 / 3 \mathrm{c}$
5	17^{h}	$-0^{\mathrm{h}} 5 / 6$	$17^{\mathrm{h}} 1 / 6$	$-0^{\mathrm{h}} 13 / 30$
6	$16^{\mathrm{h}} 1 / 3$	$-0^{\mathrm{h}} 2 / 3$	$16^{\mathrm{h}} 1 / 3$	$-0^{\mathrm{h}} 2 / 3 \mathrm{c}$
7	$17^{\mathrm{h}} 1 / 4$	$-0^{\mathrm{h}} 2 / 3$	$17^{\mathrm{h}} 1 / 4$	$-0^{\mathrm{h}} 2 / 3$

Table 17: Asia 3			Armenia		
D\#	Site	$G D$ Name	B	L	G5
220	Sukhumi	Δ ıобкоирı $\alpha \sigma$	$71^{\circ} 1 / 6$	$46^{\circ} 3 / 4$	10.2
221	Poti	Ф $\alpha \sigma 15$	$72^{\circ} 1 / 2$	$44^{\circ} 3 / 4$	10.2
222	Urbnisi	A $\rho \tau \alpha \nu 1 \sigma \sigma \alpha$	$75^{\circ} 2 / 3$	46°	11.3
223	Tsitsamuri	Ар $\chi^{\alpha}<\tau \iota \alpha$	75°	$44^{\circ} 3 / 4$	11.3
224	Baku	$\Gamma \alpha \gamma \gamma \alpha \rho \alpha$	$79^{\circ} 1 / 2$	45°	12.2
225	Alvan	A $\lambda \beta \alpha \nu \alpha$	$81^{\circ} 2 / 3$	$45^{\circ} 5 / 6$	12.2
226	Saki	Обıк α	$77^{\circ} 1 / 2$	$44^{\circ} 3 / 4$	12.5
227	Artashat	A $\rho \tau \alpha \xi \alpha \tau \alpha$	78°	$42^{\circ} 2 / 3$	13.12
228	Armavir	A $\rho \mu \alpha 0 v \rho 1 \alpha$	$76^{\circ} 2 / 3$	$42^{\circ} 3 / 4$	13.12
229	Van	$\Theta \omega \sigma \pi \iota \alpha$	$74^{\circ} 1 / 3$	$39^{\circ} 5 / 6$	13.19
230	Edremit	A $\rho \tau \varepsilon \mu \tau \tau \alpha$ A $\mu \mu \varepsilon v$.	$78^{\circ} 2 / 3$	$40^{\circ} 1 / 3$	13.21
231	Haraba	А $\rho \sigma \alpha \mu$ о $\sigma \alpha \tau \alpha$	73°	$38^{\circ} 1 / 3$	13.19

Table 17: Asia 3				
Armenia				
G8.19	M_{XZ}	A_{XZ}	M_{UNK}	A_{UNK}
3	$15^{\mathrm{h}} 3 / 4$	$-0^{\mathrm{h}} 11 / 15$	$15^{\mathrm{h}} 3 / 4$	$-0^{\mathrm{h}} 11 / 15$
4	$15^{\mathrm{h}} 1 / 2$	$-0^{\mathrm{h}} 19 / 24$	$15^{\mathrm{h}} 1 / 2$	$-0^{\mathrm{h}} 5 / 6$
5	$15^{\mathrm{h}} 7 / 12$	-1^{h}	$15^{\mathrm{h}} 2 / 3$	$-1^{\mathrm{h}} 1 / 30$
6	$15^{\mathrm{h}} 5 / 12 \mathrm{r}$	-1^{h}	$15^{\mathrm{h}} 1 / 2 \mathrm{c}$	-1^{h}
7	$15^{\mathrm{h}} 1 / 2$	$-1^{\mathrm{h}} 1 / 4$	$15^{\mathrm{h}} 1 / 2$	$-1^{\mathrm{h}} 1 / 4$
8	$15^{\mathrm{h}} 5 / 6$	$-1^{\mathrm{h}} 2 / 5$	$15^{\mathrm{h}} 2 / 3$	$-1^{\mathrm{h}} 13 / 30$
9	$15^{\mathrm{h}} 1 / 8$	$-1^{\mathrm{h}} 1 / 8$		
10	$15^{\mathrm{h}} 1 / 6 \mathrm{r}$	$-1^{\mathrm{h}} 1 / 6 \mathrm{r}$	$15^{\mathrm{h}} 1 / 6$	$-1^{\mathrm{h}} 1 / 6$
11			$15^{\mathrm{h}} 1 / 4 \mathrm{c}$	$-1^{\mathrm{h}} 1 / 10$
12	$14^{\mathrm{h}} 11 / 12$	-1^{h}	$14^{\mathrm{h}} 7 / 8 \mathrm{r}$	$-1^{\mathrm{h}} \mathrm{c}$
13	$14^{\mathrm{h}} 5 / 12$	$-1^{\mathrm{h}} 1 / 5$	$14^{\mathrm{h}} 11 / 12$	$-1^{\mathrm{h}} 1 / 4$
14	$14^{\mathrm{h}} 3 / 4$	$-0^{\mathrm{h}} 5 / 6$		

D\#	Site	$G D$ Name	B	L	G5
232	Paphos	Пофоऽ	$64^{\circ} 1 / 3$	$35^{\circ} 1 / 6$	14.1
233	Limassol	А $\mu \alpha \theta$ оvs	$65^{\circ} 3 / 4$	35°	14.2
234	Ammokhostos	$\Sigma \alpha \lambda \alpha \mu ı \zeta$	$66^{\circ} 2 / 3$	$35^{\circ} 1 / 2$	14.3
235	Latakia	$\Lambda \alpha 0 \delta 1 \kappa \varepsilon 1 \alpha$	$68^{\circ} 1 / 2$	$35^{\circ} 1 / 12$	15.3
236	Antioch	Av $\tau 10 \chi \varepsilon 1 \alpha$	69°	$35^{\circ} 1 / 2$	15.16
237	Membidj	I $\varepsilon \rho \alpha \pi \sigma \lambda 1 \varsigma$	$71^{\circ} 1 / 4$	$36^{\circ} 1 / 4$	15.13
238	Apamea	А $\pi \alpha \mu \varepsilon 1 \alpha$	70°	$34^{\circ} 3 / 4$	15.19
239	Tadmur	$\Pi \alpha \lambda \mu v \rho \alpha$	$71^{\circ} 1 / 2$	34°	15.24
240	Baalbek	Нع $\lambda ı 0 v \pi \rho \lambda ı \varsigma \Sigma v \rho$.	$68^{\circ} 2 / 3$	$33^{\circ} 2 / 3$	15.22
241	Banias	К $\alpha 1 \sigma \alpha \rho . \Pi \alpha v ı \alpha \varsigma$	$67^{\circ} 2 / 3$	33°	15.21
242	Damascus	$\Delta \alpha \mu \alpha \sigma \kappa о \varsigma$	69°	33°	15.22
243	Caesarea	K $\alpha ı \sigma \alpha \rho \varepsilon ı \alpha$	$66^{\circ} 1 / 4$	$32^{\circ} 1 / 2$	16.2
244	Ashkelon	А $\sigma \kappa \alpha \lambda \omega v$	65°	$31^{\circ} 2 / 3$	16.2
245	Teveryah		$67^{\circ} 1 / 4$	$32^{\circ} 1 / 12$	16.4
246	Nablus	N $\varepsilon \alpha \pi \sigma \lambda 1 \varsigma \Sigma \alpha \mu \alpha \rho$.	$66^{\circ} 5 / 6$	$31^{\circ} 5 / 6$	16.5
247	Jerusalem	Ігробо入v $\alpha /$ Aı $\lambda \mathrm{K}$	66°	$31^{\circ} 2 / 3$	16.8
248	Wadi Musa	$\Pi \varepsilon \tau \rho \alpha$	$66^{\circ} 3 / 4$	$30^{\circ} 1 / 3$	17.5
249	Medaba	$\mathrm{M} \eta \delta \alpha \sim \alpha$	$68^{\circ} 1 / 2$	$30^{\circ} 3 / 4$	17.6
250	Busra	Boo $\tau \rho \alpha$	$69^{\circ} 3 / 4$	$31^{\circ} 1 / 2$	17.7
251	Urfa	E $\delta \varepsilon \sigma \sigma \alpha$ М $\varepsilon \sigma о \pi$.	$72^{\circ} 1 / 2$	$37^{\circ} 1 / 2$	18.10
252	Neşibin	NıбıßıS	$75^{\circ} 1 / 6$	$37^{\circ} 1 / 2$	18.11
253	Raqqa	Nıкпфорıо	$73^{\circ} 1 / 12$	$35^{\circ} 1 / 3$	18.6
254	Qalaat Sergat	$\Lambda \alpha \beta \beta \alpha \nu \alpha$	$77^{\circ} 5 / 6$	$36^{\circ} 1 / 2$	18.9
255	Seleucia	$\Sigma \varepsilon \lambda \varepsilon v \kappa \varepsilon 1 \alpha$	$79^{\circ} 1 / 3$	$35^{\circ} 2 / 3$	18.8
256	Babylon>Hillah	B $\alpha \beta v \lambda$ v	79°	35°	20.6
257	Birs Nimrud	Ворбך $\tau \alpha$	$78^{\circ} 3 / 4$	$34^{\circ} 1 / 3$	20.6
258	Warka	Oр χ П	$78^{\circ} 1 / 2$	$32^{\circ} 2 / 3$	20.7
259	Basra	T $\varepsilon \rho \eta \delta \omega \nu$	80°	$31^{\circ} 1 / 6$	20.5

Table 18: Asia 4						Middle East
G8.20	$M_{\text {XZ }}$	$A_{\text {XZ }}$	$M_{\text {UNK }}$	$A_{\text {UNK }}$		
3	$14^{\mathrm{h}} 1 / 2$	$-0^{\mathrm{h}} 1 / 4$	$14^{\mathrm{h}} 5 / 12$	$-0^{\mathrm{h}} 1 / 4$		
4	$14^{\mathrm{h}} 2 / 3$	$-0^{\mathrm{h}} 1 / 3$	$14^{\mathrm{h}} 5 / 12 \mathrm{c}$	$-0^{\mathrm{h}} 2 / 5$		
5	$14^{\mathrm{h}} 1 / 2$	$-0^{\mathrm{h}} 2 / 5$	$14^{\mathrm{h}} 1 / 2 \mathrm{c}$	$-0^{\mathrm{h}} 11 / 24$		
6	$14^{\mathrm{h}} 5 / 12$	$-0^{\mathrm{h}} 1 / 2$	$14^{\mathrm{h}} 5 / 12$	$-0^{\mathrm{h}} 17 / 30$		
7	$14^{\mathrm{h}} 1 / 2$	$-0^{\mathrm{h}} 17 / 30$	$14^{\mathrm{h}} 1 / 2 \mathrm{c}$	$-0^{\mathrm{h}} 7 / 12$		
8	$14^{\mathrm{h}} 1 / 2$	$-0^{\mathrm{h}} 3 / 4$	$14^{\mathrm{h}} 1 / 2$	$-0^{\mathrm{h}} 3 / 4$		
9	$14^{\mathrm{h}} 5 / 12$	$-0^{\mathrm{h}} 5 / 8$	$14^{\mathrm{h}} 5 / 12 \mathrm{c}$	$-0^{\mathrm{h}} 2 / 3$		
10	$14^{\mathrm{h}} 1 / 3$	$-1^{\mathrm{h}} 1 / 2$	$14^{\mathrm{h}} 1 / 3 \mathrm{c}$	$-0^{\mathrm{h}} 3 / 4$		
11	$14^{\mathrm{h}} 1 / 4$	$-0^{\mathrm{h}} 1 / 2$	$14^{\mathrm{h}} 1 / 4$	$-0^{\mathrm{h}} 17 / 30$		
12	$14^{\mathrm{h}} 1 / 4$	$-0^{\mathrm{h}} 17 / 30$	$14^{\mathrm{h}} 1 / 4 \mathrm{c}$	$-0^{\mathrm{h}} 1 / 2$		
13	$14^{\mathrm{h}} 1 / 4$	$-0^{\mathrm{h}} 17 / 30$	$14^{\mathrm{h}} 1 / 4 \mathrm{c}$	$-0^{\mathrm{h}} 7 / 12$		
14	$14^{\mathrm{h}} 1 / 6$	$-0^{\mathrm{h}} 2 / 5$	$14^{\mathrm{h}} 1 / 5$	$-0^{\mathrm{h}} 2 / 5$		
15	$14^{\mathrm{h}} 1 / 6 \mathrm{r}$	$-0^{\mathrm{h}} 5 / 12$	$14^{\mathrm{h}} 1 / 8 \mathrm{c}$	$-0^{\mathrm{h}} 1 / 3$		
16	$14^{\mathrm{h}} 1 / 6 \mathrm{r}$	$-0^{\mathrm{h}} 5 / 12$				
17	$14^{\mathrm{h}} 1 / 8$	$-0^{\mathrm{h}} 5 / 12$				
18	$14^{\mathrm{h}} 1 / 8$	$-0^{\mathrm{h}} 2 / 5$	$14^{\mathrm{h}} 1 / 8 \mathrm{c}$	$-0^{\mathrm{h}} 2 / 5$		
19	14^{h}	$-0^{\mathrm{h}} 2 / 5$	14^{h}	$-0^{\mathrm{h}} 13 / 30$		
20	$14^{\mathrm{h}} 1 / 12$	$-0^{\mathrm{h}} 1 / 2$	14^{h}	$-0^{\mathrm{h}} 17 / 30$		
21	$14^{\mathrm{h}} 1 / 8$	$-0^{\mathrm{h}} 1 / 2$	$14^{\mathrm{h}} 1 / 6 \mathrm{r}$	$-0^{\mathrm{h}} 2 / 3 \mathrm{c}$		
22	$14^{\mathrm{h}} 2 / 3$	$-0^{\mathrm{h}} 3 / 4$	$14^{\mathrm{h}} 5 / 8$	$-0^{\mathrm{h}} 5 / 6$		
23	$14^{\mathrm{h}} 2 / 3$	-1^{h}	$14^{\mathrm{h}} 5 / 8$	-1^{h}		
24	$14^{\mathrm{h}} 5 / 12$	$-1^{\mathrm{h}} 1 / 5 \mathrm{n}$	$14^{\mathrm{h}} 7 / 12 \mathrm{x}$	$-0^{\mathrm{h}} 5 / 6$		
25	$14^{\mathrm{h}} 1 / 2$	$-1^{\mathrm{h}} 1 / 6 \mathrm{r}$	$14^{\mathrm{h}} 1 / 2$	$-0^{\mathrm{h}} 5 / 6 \mathrm{x}$		
26	$14^{\mathrm{h}} 5 / 12$	$-1^{\mathrm{h}} 1 / 4$	$14^{\mathrm{h}} 1 / 2 \mathrm{c}$	$-1^{\mathrm{h}} 1 / 4$		
27	$14^{\mathrm{h}} 5 / 12$	$-1^{\mathrm{h}} 1 / 4$	$14^{\mathrm{h}} 5 / 12$	$-1^{\mathrm{h}} 1 / 4$		
28	$14^{\mathrm{h}} 1 / 4$	$-1^{\mathrm{h}} 1 / 4$	$14^{\mathrm{h}} 1 / 3$	$-1^{\mathrm{h}} 1 / 4 \mathrm{c}$		
29	$14^{\mathrm{h}} 1 / 6 \mathrm{r}$	$-1^{\mathrm{h}} 1 / 4$	$14^{\mathrm{h}} 1 / 6$	$-1^{\mathrm{h}} 1 / 5$		
30	$14^{\mathrm{h}} 1 / 12$	$-1^{\mathrm{h}} 1 / 3 \mathrm{r}$	$14^{\mathrm{h}} 1 / 12 \mathrm{c}$	$-1^{\mathrm{h}} 1 / 3$		

Table 19：Asia $5 \quad \mathrm{~B}$			Babylonia \＆Persia		
D\＃	Site	$G D$ Name	B	L	G6
260	Nineveh	Nivos	78°	$36^{\circ} 2 / 3$	1.3
261	Arbela＞Irbil	A $\rho \beta \eta \lambda \alpha$	80°	$37^{\circ} 1 / 4$	1.5
262	Ktesiphon	Kıп ${ }^{\text {c }}$	80°	35°	1.3
263	Susa＞Shush	Σ 上vod	84°	$34^{\circ} 1 / 4$	3.5
264	Tarsiana	T $\alpha \rho \sigma \iota \alpha \nu \alpha$	82°	$32^{\circ} 1 / 2$	3.5
265	Dschabul	П $\alpha \sigma$ vov X $\alpha \rho \alpha \xi$	$81^{\circ} 2 / 3$	31°	3.2
266	Kyropolis	Кขроло入ıऽ	$85^{\circ} 1 / 2$	$41^{\circ} 1 / 2$	2.2
267	Ekbatana	Екß $\alpha \tau \alpha \vee \alpha$	88°	$37^{\circ} 3 / 4$	2.14
268	Arsakia	Арбокı α	88°	$36^{\circ} 1 / 2$	2.16
269	Europos	Еvрюлоऽ Мךб．	$93^{\circ} 2 / 3$	$36^{\circ} 2 / 3$	2.17
270	Axima	A $\xi \underline{\mu} \mu$	$87^{\circ} 3 / 4$	$33^{\circ} 5 / 6$	4.4
271	Persepolis	Пгрооло入1ऽ	91°	$33^{\circ} 1 / 3$	4.4
272	Marrasion	M $\alpha \rho \rho \alpha \sigma$ оv	$92^{\circ} 1 / 2$	$34^{\circ} 1 / 2$	4.4
273	Taoke	Т $\alpha о к \eta$	89°	$30^{\circ} 1 / 3$	4.7
274	Hekatonpylos	Еко兀о $\mu \pi v \lambda$ оऽ	96°	$37^{\circ} 5 / 6$	5.2
275	Ambrodax	А $\mu \beta \rho \omega \delta \alpha \xi$	$94^{\circ} 1 / 2$	$38^{\circ} 1 / 3$	5.2
276	Artakana	А $\rho \tau \alpha \kappa \alpha \nu \alpha$	96°	$34^{\circ} 1 / 2$	5.4

Table 19：Asia 5				
G8．21	$M_{\text {XZ }}$	A_{XZ}	M_{UNK}	A_{UNK}
3	$14^{\mathrm{h}} 7 / 12$	$-1^{\mathrm{h}} 1 / 6 \mathrm{r}$	$14^{\mathrm{h}} 7 / 12$	$-1^{\mathrm{h}} 1 / 4 \mathrm{x}$
3	$14^{\mathrm{h}} 5 / 8 \mathrm{r}$	$-1^{\mathrm{h}} 1 / 3$	$14^{\mathrm{h}} 5 / 8$	$-1^{\mathrm{h}} 1 / 3$
4	$14^{\mathrm{h}} 1 / 2$	$-1^{\mathrm{h}} 1 / 3$	$14^{\mathrm{h}} 7 / 12 \mathrm{c}$	$-1^{\mathrm{h}} 1 / 3$
5	$14^{\mathrm{h}} 1 / 3$	$-1^{\mathrm{h}} 17 / 30$	$14^{\mathrm{h}} 1 / 3$	$-1^{\mathrm{h}} 7 / 12$
6	$14^{\mathrm{h}} 1 / 6$	$-1^{\mathrm{h}} 1 / 3 \mathrm{x}$	$14^{\mathrm{h}} 1 / 6$	$-1^{\mathrm{h}} 1 / 2 \mathrm{c}$
7	$14^{\mathrm{h}} 1 / 12$	$-1^{\mathrm{h}} 1 / 3$		
8	$15^{\mathrm{h}} 1 / 3$	$-1^{\mathrm{h}} 2 / 3$	15^{h}	$-1^{\mathrm{h}} 2 / 3$
9	$14^{\mathrm{h}} 2 / 3$	$-1^{\mathrm{h}} 2 / 3$	$14^{\mathrm{h}} 2 / 3$	$-1^{\mathrm{h}} 5 / 6$
10	$14^{\mathrm{h}} 1 / 2$	$-1^{\mathrm{h}} 5 / 6$	$14^{\mathrm{h}} 7 / 12$	$-1^{\mathrm{h}} 5 / 6$
11	$14^{\mathrm{h}} 7 / 12$	$-2^{\mathrm{h}} 1 / 5$	$14^{\mathrm{h}} 7 / 12$	$-2^{\mathrm{h}} 1 / 4$
12	$14^{\mathrm{h}} 1 / 4$	$-1^{\mathrm{h}} 3 / 4$	$14^{\mathrm{h}} 1 / 3$	$-1^{\mathrm{h}} 5 / 6$
13	$14^{\mathrm{h}} 1 / 3$	-2^{h}	$14^{\mathrm{h}} 1 / 4$	$-2^{\mathrm{h}} 1 / 15$
14	$14^{\mathrm{h}} 1 / 3$	$-2^{\mathrm{h}} 1 / 6 \mathrm{r}$	$14^{\mathrm{h}} 1 / 3$	$-2^{\mathrm{h}} 1 / 6$
15	14^{h}	$-1^{\mathrm{h}} 5 / 6$	14^{h}	$-2^{\mathrm{h}} \mathrm{c}$
16	$14^{\mathrm{h}} 2 / 3$	$-2^{\mathrm{h}} 1 / 3$	$14^{\mathrm{h}} 2 / 3$	$-2^{\mathrm{h}} 2 / 5$
17	$14^{\mathrm{h}} 2 / 3$	$-2^{\mathrm{h}} 1 / 3$	$14^{\mathrm{h}} 3 / 4 \mathrm{c}$	$-2^{\mathrm{h}} 1 / 3$
18	$14^{\mathrm{h}} 5 / 12$	$-2^{\mathrm{h}} 1 / 3$	$14^{\mathrm{h}} 3 / 8$	$-2^{\mathrm{h}} 2 / 5$

Table 20：Asia 6 Arabia Felix						
G8．22	$M_{\text {XZ }}$	A_{XZ}	$M_{\text {UNK }}$	$A_{\text {UNK }}$	$S_{\text {XZ }}$	$S_{\text {UNK }}$
3	$13^{\mathrm{h}} 11 / 12$	$-1^{\text {h }}$				
4	$13^{\text {h }} 1 / 4$	$-0^{\mathrm{h}} 2 / 3$	$13^{\text {h }} 1 / 4$	$-0^{\text {h }} 1 / 3 \mathrm{x}$	$31^{\circ} 1 / 6 \mathrm{r}$	30°
5	$13^{\text {h }}$	$-0^{\mathrm{h}} 3 / 4$	$13^{\text {h }}$	$-0^{\text {h }} 5 / 6$	$45^{\circ} 1 / 3$	$44^{\circ} 2 / 3$
6	$12^{\mathrm{h}} 3 / 4$	$-1^{\text {h }}$	$12^{\text {h }} 5 / 6$	$-1^{\text {h }} \mathrm{c}$	$53^{\circ} 1 / 4$	$54^{\circ} 1 / 3$
7	$14^{\mathrm{h}} 1 / 4 \mathrm{x}$	$-1^{\text {h }}$	$12^{\mathrm{h}} 3 / 4 \mathrm{c}$	$-1^{\text {h }}$	58°	$61^{\circ} 1 / 4$
8	$12^{\mathrm{h}} 2 / 3$	$-1^{\mathrm{h}} 1 / 3$	$12^{\mathrm{h}} 2 / 3$	$-1^{\text {h }} 1 / 3$	$59^{\circ} 1 / 2$	$62^{\circ} 1 / 3$
9	$12^{\mathrm{h}} 3 / 4$	$-0^{\mathrm{h}} 17 / 30$	$12^{\mathrm{h}} 3 / 4$	$-0^{\mathrm{h}} 3 / 5$	59°	$60^{\circ} 3 / 4$
10	$13^{\text {h }} 1 / 2$	$-0^{\mathrm{h}} 2 / 3$	$13^{\text {h }} 1 / 2 \mathrm{c}$	$-0^{\mathrm{h}} 1 / 3$	0°	$4^{\circ} 1 / 3$
11	$13^{\text {h }} 1 / 8$	$-1^{\text {h }}$	$13^{\text {h }} 1 / 8$	$-1^{\mathrm{h}} 1 / 15$	39°	$37^{\circ} 1 / 2$
12	$13^{\text {h }} 1 / 4$	$-1^{\mathrm{h}} 3 / 4$	$13^{\mathrm{h}} 13 / 60$	$-1^{\mathrm{h}} 1 / 5 \mathrm{c}$	$33^{\circ} 1 / 3$	32°
13	$13^{\text {h }}$	$-1^{\text {h }}$	$13^{\text {h }}$	$-1^{\mathrm{h}} 1 / 20$	$45^{\circ} 1 / 3$	45°
14	$13^{\text {h }}$	$-1^{\mathrm{h}} 1 / 3$	13^{h}	$-1{ }^{\text {h }} 1 / 8$	$45^{\circ} 1 / 3$	45°
15	$12^{\mathrm{h}} 3 / 4$	$-1^{\text {h }}$	$12^{\mathrm{h}} 47 / 60$	$-1^{\mathrm{h}} 1 / 15$	$56^{\circ} 1 / 6 \mathrm{r}$	58°
16	$12^{\mathrm{h}} 11 / 12$	$-1^{\mathrm{h}} 1 / 6 \mathrm{r}$	$12^{\mathrm{h}} 7 / 8$	$-1^{\text {h }} 26 / 30$	$53^{\circ} 1 / 4$	$52^{\circ} 1 / 2$
17	$12^{\mathrm{h}} 1 / 2$	$-1^{\mathrm{h}} 3 / 4$	$12^{\mathrm{h}} 2 / 3 \mathrm{x}$	$-1^{\mathrm{h}} 2 / 3 \mathrm{x}$	$68^{\circ} 1 / 2$	$62^{\circ} 1 / 2$
18	$13^{\text {h }} 1 / 12$	$-2^{\text {h }} 1 / 4$	$13^{\mathrm{h}} 1 / 12 \mathrm{c}$	$-2^{\text {h }} 4 / 15$	42°	41°
19	$13^{\mathrm{h}} 1 / 2 \mathrm{x}$	$-1^{\text {h }} 2 / 5$				
21	$13^{\text {h }} 1 / 2$	$-2^{\text {h }} 1 / 3$	$13^{\text {h }} 1 / 2 \mathrm{c}$	$-2^{\text {h }} 3 / 10$	0°	3°
22	$13^{\mathrm{h}} 5 / 12$	$-2^{\text {h }} 2 / 3$	$13^{\text {h }} 5 / 12$	$-2^{\text {h }} 2 / 3 \mathrm{c}$	$17^{\circ} 2 / 3$	10°
20	$13^{\mathrm{h}} 11 / 12$	$-2^{\text {h }} 2 / 3$	$13^{\text {h }} 7 / 8$	$-2^{\text {h }} 2 / 3$		
23	$13^{\mathrm{h}} 1 / 8$	$-2^{\text {h }} 3 / 4$	$13^{\text {h }} 1 / 8 \mathrm{c}$	$-2^{\mathrm{h}} 4 / 5$	40°	$40^{\circ} \mathrm{c}$

Table 21: Asia 7			Southern USSR		
D\#	Site	GD Name	B	L	G6
298	Hyrkania		$98^{\circ} 1 / 2$	40°	9.7
299	Amarua	А $\mu \alpha \rho о v \sigma \alpha$	95°	40°	9.7
300	Mary	Av $\downarrow \iota \circ \chi \varepsilon 1 \alpha \mathrm{M} \alpha \rho \gamma$.	106°	$40^{\circ} 2 / 3$	10.4
301	Nisaea	Nı $\sigma \alpha 1 \alpha$	$105^{\circ} 1 / 4$	$39^{\circ} 1 / 6$	10.4
302	Katracharta	X $\alpha \tau \rho \alpha \chi \alpha \rho \tau \alpha$	110°	$44^{\circ} 1 / 6$	11.7
303	Waziradad	Z $\alpha \rho ı \alpha \sigma \pi \alpha$	115°	44°	11.7
304	Balkh	В $\alpha \kappa \tau \rho \alpha$	116°	41°	11.9
305	Samarkand	М $\alpha \rho \alpha \kappa \alpha \nu \delta \alpha$	112°	$39^{\circ} 1 / 4$	11.9
306	Oxeiana	$\Omega \xi \varepsilon ı \alpha \nu \alpha$	$117^{\circ} 1 / 2$	$44^{\circ} 2 / 3$	12.5
307	Maruka	М $<$ оокк α	$117^{\circ} 1 / 4$	$43^{\circ} 2 / 3$	12.5
308	Drepsa	$\Delta \rho \varepsilon \psi \alpha$	120°	45°	12.6
309	Iskander	A $\lambda \varepsilon \xi \alpha \sim \delta \rho \varepsilon 1 \alpha \mathrm{E} \sigma \chi$.	122°	41°	12.6
310	Aspabota	А $\sigma \pi \alpha \beta \omega \tau \alpha$	$102{ }^{\circ}$	44°	14.2
311	Dauaba	$\Delta \alpha v \alpha \beta \alpha$	104°	45°	14.14

Table 21: Asia 7						S . USSR
G8.23	M_{XZ}	A_{XZ}	M_{UNK}	A_{UNK}		
3	$14^{\mathrm{h}} 11 / 12$	$-2^{\mathrm{h}} 17 / 30$	$14^{\mathrm{h}} 11 / 12$	$-2^{\mathrm{h}} 17 / 30$		
4	$14^{\mathrm{h}} 11 / 12$	$-2^{\mathrm{h}} 2 / 3 \mathrm{x}$	$14^{\mathrm{h}} 7 / 8$	$-2^{\mathrm{h}} 2 / 5$		
5	15^{h}	-3^{h}	$15^{\mathrm{h}} \mathrm{c}$	$-3^{\mathrm{h}} 1 / 15$		
6	$14^{\mathrm{h}} 5 / 6$	-3^{h}	$15^{\mathrm{h}} 1 / 9 \mathrm{n}$	-3^{h}		
7	$15^{\mathrm{h}} 3 / 8$	$-3^{\mathrm{h}} 1 / 3$	$15^{\mathrm{h}} 5 / 12 \mathrm{c}$	$-3^{\mathrm{h}} 1 / 3$		
8	$15^{\mathrm{h}} 2 / 3$	$-3^{\mathrm{h}} 2 / 3$	$15^{\mathrm{h}} 3 / 8$	$-3^{\mathrm{h}} 2 / 3$		
9	15^{h}	$-3^{\mathrm{h}} 2 / 3$	15^{h}	$-3^{\mathrm{h}} 11 / 15$		
10	$14^{\mathrm{h}} 5 / 6$	$-3^{\mathrm{h}} 1 / 2$	$14^{\mathrm{h}} 5 / 6$	$-3^{\mathrm{h}} 1 / 2 \mathrm{c}$		
11	$15^{\mathrm{h}} 5 / 6 \mathrm{x}$	$-3^{\mathrm{h}} 1 / 8 \mathrm{x}$	$15^{\mathrm{h}} 1 / 2 \mathrm{c}$	$-3^{\mathrm{h}} 5 / 6 \mathrm{c}$		
12	$15^{\mathrm{h}} 1 / 3$	$-3^{\mathrm{h}} 3 / 4$	$15^{\mathrm{h}} 1 / 3 \mathrm{c}$	$-3^{\mathrm{h}} 3 / 4 \mathrm{c}$		
13	$15^{\mathrm{h}} 1 / 2$	-4^{h}	$15^{\mathrm{h}} 1 / 2$	-4^{h}		
14	$14^{\mathrm{h}} 3 / 4 \mathrm{x}$	$-4^{\mathrm{h}} 1 / 10$	15^{h}	$-4^{\mathrm{h}} 1 / 8$		
15	$14^{\mathrm{h}} 5 / 12$	$-2^{\mathrm{h}} 3 / 4$	$14^{\mathrm{h}} 3 / 8$	$-2^{\mathrm{h}} 5 / 6 \mathrm{c}$		
16	$15^{\mathrm{h}} 1 / 2$	-3^{h}	$15^{\mathrm{h}} 1 / 2$	$-2^{\mathrm{h}} 9 / 10$		

Table 22: Asia 8			China		
D\#	Site	$G D$ Name	B	L	G6
312	Issedon Scyth.	I $\sigma \sigma \eta \delta \omega \nu \Sigma \kappa v \theta ı \kappa \eta$	150°	$48^{\circ} 1 / 2$	15.4
313	Auzakia	Аv弓 $\chi_{\kappa \iota \alpha}$	144°	$49^{\circ} 2 / 3$	15.4
314	Issedon Ser.	Iббךб人v $\Sigma \varepsilon \rho 1 \kappa \eta$	162°	45°	16.7
315	Drosake	$\Delta \rho \omega \sigma \alpha \chi \eta$	$167^{\circ} 2 / 3$	$42^{\circ} 1 / 2$	16.7
316	Ottorokora	Оттороко $\rho \alpha$	165°	$37^{\circ} 1 / 4$	16.8
317	Sian [Xi'an]	$\Sigma \varepsilon \rho \alpha$	$177^{\circ} 1 / 4$	$38^{\circ} 7 / 12$	16.8

Table 22: Asia 8						China
G8.24	M_{XZ}	A_{XZ}	M_{UNK}	A_{UNK}		
3	16^{h}	-6^{h}	16^{h}	-6^{h}		
4	$16^{\mathrm{h}} 1 / 6 \mathrm{r}$	$-6^{\mathrm{h}} 1 / 4$	$16^{\mathrm{h}} 1 / 4 \mathrm{c}$	$-5^{\mathrm{h}} 3 / 5$		
5	$15^{\mathrm{h}} 1 / 2$	$-6^{\mathrm{h}} 3 / 4$	$15^{\mathrm{h}} 1 / 2$	$-6^{\mathrm{h}} 5 / 6 \mathrm{c}$		
6	$15^{\mathrm{h}} 1 / 6$	$-7^{\mathrm{h}} 1 / 8$	$15^{\mathrm{h}} 1 / 6$	$-7^{\mathrm{h}} 1 / 6 \mathrm{c}$		
7	$14^{\mathrm{h}} 5 / 8$	-7^{h}	$14^{\mathrm{h}} 2 / 3 \mathrm{c}$	-7^{h}		
8	$14^{\mathrm{h}} 3 / 4$	$-7^{\mathrm{h}} 3 / 4$	$14^{\mathrm{h}} 3 / 4$	$-7^{\mathrm{h}} 5 / 6<8^{\mathrm{h}}$		

Table 23: Asia 9

G8.25	M_{XZ}	A_{XZ}	M_{UNK}	A_{UNK}	S_{XZ}	S_{UNK}
4	$14^{\mathrm{h}} 2 / 3$	$-2^{\mathrm{h}} 5 / 6$	$14^{\mathrm{h}} 2 / 3$	$-2^{\mathrm{h}} 11 / 12$		
3	$14^{\mathrm{h}} 5 / 12$	-3^{h}	$14^{\mathrm{h}} 5 / 12$	-3^{h}		
5	$14^{\mathrm{h}} 1 / 2$	$-3^{\mathrm{h}} 1 / 3$	$14^{\mathrm{h}} 1 / 2$	$-3^{\mathrm{h}} 1 / 3$		
6	$14^{\mathrm{h}} 1 / 2$	$-3^{\mathrm{h}} 3 / 4$	$14^{\mathrm{h}} 1 / 2 \mathrm{c}$	$-3^{\mathrm{h}} 5 / 6$		
7	$14^{\mathrm{h}} 1 / 3$	$-3^{\mathrm{h}} 1 / 2$	$14^{\mathrm{h}} 5 / 12$	$-3^{\mathrm{h}} 13 / 15$		
8	$14^{\mathrm{h}} 1 / 6 \mathrm{r}$	$-3^{\mathrm{h}} 1 / 3$	$14^{\mathrm{h}} 1 / 6$	$-3^{\mathrm{h}} 1 / 3$		
9	$14^{\mathrm{h}} 1 / 2$	$-3^{\mathrm{h}} 1 / 5$	$14^{\mathrm{h}} 5 / 6$	$-3^{\mathrm{h}} 1 / 4$		
10	$14^{\mathrm{h}} 1 / 12$	$-3^{\mathrm{h}} 17 / 30$	$14^{\mathrm{h}} 1 / 12$	$-3^{\mathrm{h}} 3 / 5$		
11	14^{h}	$-3^{\mathrm{h}} 5 / 6$	14^{h}	$-3^{\mathrm{h}} 13 / 15$		
12	$13^{\mathrm{h}} 3 / 4$	$-3^{\mathrm{h}} 1 / 4 \mathrm{r}$	$13^{\mathrm{h}} 5 / 6 \mathrm{c}$	$-3^{\mathrm{h}} 1 / 3$	$0^{\circ} \mathrm{x}$	
14	$13^{\mathrm{h}} 1 / 4$	-3^{h}	$13^{\mathrm{h}} 1 / 2 \mathrm{c}$	-3^{h}	30°	$0^{\circ} \mathrm{c}$
13	$13^{\mathrm{h}} 3 / 4$	$-3^{\mathrm{h}} 2 / 3$	$13^{\mathrm{h}} 3 / 4$	$-3^{\mathrm{h}} 2 / 3$		

Table 24: Asia 10 India					
D\#	Site	$G D$ Name	B	L	G7
330	Chaul	$\Sigma 1 \mu v \lambda \lambda \alpha$	110°	$14^{\circ} 3 / 4$	1.6
331	Cranganur	Моv弓ıрıs	117°	14°	1.8
332	Tranquebar	X $\alpha \beta \eta$ vis	$128^{\circ} 1 / 3$	$15^{\circ} 3 / 4$	1.13
333	Palura	$\Pi \alpha \lambda 0 \vee \rho \alpha$	$136^{\circ} 2 / 3$	$11^{\circ} 1 / 2$	1.16
334	Kaspeira	K $\alpha \sigma \pi \varepsilon 1 \rho \alpha$	127°	$31^{\circ} 1 / 4$	1.49
335	Bukephala	Воvкє $\phi \alpha \lambda \alpha$	$125^{\circ} 1 / 2$	33°	1.46
336	Patna	$\Pi \alpha \lambda 1 \mu \beta о \theta \rho \alpha$	143°	27°	1.73
337	Patala	$\Pi \alpha \tau \alpha \lambda \alpha$	$112^{\circ} 5 / 6$	21°	1.59
338	Barbarei	В $\alpha \rho \beta \alpha \rho \varepsilon ı$	$113^{\circ} 1 / 4$	$22^{\circ} 1 / 2$	1.59
339	Bharucha	B $\alpha \rho v \gamma \alpha \zeta \alpha$	$113^{\circ} 1 / 4$	$17^{\circ} 1 / 3$	1.62
340	Ujjain	O̧ŋvך	117°	20°	1.63
341	Paithan	$B \alpha 1 \theta \alpha \nu \alpha$	117°	$18^{\circ} 1 / 6$	1.82
342	Hippokura	І π локоข α	$119^{\circ} 3 / 4$	$19^{\circ} 1 / 6$	1.83
343	Tirukkarur	K $\alpha \rho о \cup \rho \alpha$	119°	$16^{\circ} 1 / 3$	1.86
344	Madurai	Moঠov α	125°	$16^{\circ} 1 / 3$	1.89
345	Uraiyar	Opөov α	130°	$16^{\circ} 1 / 3$	1.91
346	Pintida	$\Pi \iota \tau v \vee \delta \rho \alpha$	$135^{\circ} 1 / 2$	$12^{\circ} 1 / 2$	1.93

Table 24: Asia 10						
G8.26	M_{XZ}	A_{XZ}	M_{UNK}	A_{UNK}	S_{XZ}	S_{UNK}
3	$12^{\mathrm{h}} 3 / 4$	$-3^{\mathrm{h}} 1 / 3$	$12^{\mathrm{h}} 11 / 12 \mathrm{c}$	$-3^{\mathrm{h}} 1 / 3$	51°	$51^{\circ} 1 / 3$
4	$12^{\mathrm{h}} 5 / 6$	$-3^{\mathrm{h}} 3 / 4$	$12^{\mathrm{h}} 5 / 6$	$-3^{\mathrm{h}} 5 / 6$	$53^{\circ} 1 / 4$	$54^{\circ} 1 / 2$
5	$12^{\mathrm{h}} 11 / 12$	$-4^{\mathrm{h}} 5 / 6$	$12^{\mathrm{h}} 11 / 12 \mathrm{c}$	$-4^{\mathrm{h}} 7 / 12$	$49^{\circ} 1 / 2$	$47^{\circ} 3 / 5$
6	$12^{\mathrm{h}} 2 / 3$	$-5^{\mathrm{h}} 1 / 15$	$12^{\mathrm{h}} 103 / 150$	$-5^{\mathrm{h}} 1 / 9$	$61^{\circ} 5 / 6$	$62^{\circ} 1 / 2$
7	$14^{\mathrm{h}} 1 / 4 \mathrm{x}$	$-4^{\mathrm{h}} 5 / 12$	$14^{\mathrm{h}} 1 / 12 \mathrm{c}$	$-4^{\mathrm{h}} 1 / 2 \mathrm{c}$		
8	$14^{\mathrm{h}} 1 / 4$	$-4^{\mathrm{h}} 1 / 3$	$14^{\mathrm{h}} 1 / 4 \mathrm{c}$	$-4^{\mathrm{h}} 11 / 30$		
9	14^{h}	$-5^{\mathrm{h}} 1 / 2$	$13^{\mathrm{h}} 3 / 4 \mathrm{c}$	$-5^{\mathrm{h}} 8 / 15$		
10	$13^{\mathrm{h}} 5 / 12$	$-3^{\mathrm{h}} 1 / 2$	$13^{\mathrm{h}} 1 / 3 \mathrm{c}$	$-3^{\mathrm{h}} 1 / 2$	19°	$23^{\circ} 5 / 6$
11	$13^{\mathrm{h}} 1 / 3$	$-3^{\mathrm{h}} 1 / 2$	$13^{\mathrm{h}} 5 / 12$	$-3^{\mathrm{h}} 11 / 20$	$27^{\circ} 1 / 2$	$18^{\circ} 2 / 3$
12	$13^{\mathrm{h}} 1 / 12$	$-3^{\mathrm{h}} 1 / 2$	$13^{\mathrm{h}} 1 / 12 \mathrm{c}$	$-3^{\mathrm{h}} 11 / 20$	$42^{\circ} 1 / 2$	$41^{\circ} 2 / 3$
13	$13^{\mathrm{h}} 5 / 6$	$-3^{\mathrm{h}} 3 / 4$	$13^{\mathrm{h}} 1 / 4 \mathrm{c}$	-4^{h}	$32^{\circ} 1 / 4$	31°
14	$13^{\mathrm{h}} 1 / 8$	$-3^{\mathrm{h}} 3 / 4$	$13^{\mathrm{h}} 1 / 8 \mathrm{c}$	$-3^{\mathrm{h}} 5 / 6 \mathrm{c}$	$39^{\circ} 1 / 2$	$38^{\circ} 1 / 4$
15	$13^{\mathrm{h}} 1 / 6 \mathrm{r}$	-4^{h}	$13^{\mathrm{h}} 1 / 6$	$-4^{\mathrm{h}} \mathrm{c}$	$35^{\circ} 2 / 3$	$34^{\circ} 1 / 3$
16	13^{h}	$-3^{\mathrm{h}} 5 / 6$	13^{h}	$-3^{\mathrm{h}} 14 / 15$	46°	$45^{\circ} 1 / 3$
17	13^{h}	$-3^{\mathrm{h}} 1 / 4$	13^{h}	$-4^{\mathrm{h}} 1 / 3$	46°	$45^{\circ} 1 / 3$
18	13^{h}	$-4^{\mathrm{h}} 2 / 3$	13^{h}	$-4^{\mathrm{h}} 2 / 3$	46°	$45^{\circ} 1 / 3$
19	$12^{\mathrm{h}} 3 / 4$	-5^{h}	$12^{\mathrm{h}} 3 / 4$	$-5^{\mathrm{h} 1 / 30}$	$57^{\circ} 1 / 2$	60°

D\# ${ }^{\text {P }}$ Table 25: Asia 11			Southeast Asia		
			B	L	G7
347	Banda Akeh	T $\alpha \kappa \omega \lambda \alpha$	160°	$4^{\circ} 1 / 4$	2.5
348	Singapore	Z $\alpha \beta \alpha \downarrow$	$168^{\circ} 1 / 3$	$4^{\circ} 3 / 4$	2.6
349	Dhauli	T $\omega \sigma \alpha \lambda \varepsilon 1$	150°	$23^{\circ} 1 / 3$	2.23
350	Tugma	Tov $\gamma \mu \alpha$	$152^{\circ} 1 / 2$	$22^{\circ} 1 / 4$	2.23
351	Mandalay	T $\rho 1 \lambda i \gamma \gamma o v$	154°	18°	2.23
352	Rangoon	М $\alpha \rho \varepsilon о v \rho \alpha$	158°	$12^{\circ} 1 / 2$	2.24
353	Rhandamarta	Р $\alpha v \delta \alpha \mu \alpha \rho \kappa о \tau \tau \alpha$	172°	28°	2.23
354	Chanthaburi	А $\sigma \pi \imath \theta \rho \alpha$	$175^{\circ} 1 / 2$	$16^{\circ} 1 / 4$	3.5
355	Phnom Penh	$\Theta ı \sim \alpha$	180°	13°	3.6
356	Saigon	K $\alpha \tau \tau \iota \gamma \alpha \rho \alpha$	177°	$8^{\circ} 1 / 2 \mathrm{r}$	3.3
357	Batavia, Java	A $\rho \gamma \sim \rho \eta, \mathrm{I} \alpha \beta \alpha \delta i o v$	167°	$-8^{\circ} 1 / 2$	2.29

Table 25: Asia 11

G8.26	M_{XZ}	A_{XZ}	M_{UNK}	A_{UNK}	S_{XZ}	S_{UNK}
3	$12^{\mathrm{h}} 1 / 4$	$-6^{\mathrm{h}} 2 / 3$	$12^{\mathrm{h}} 1 / 4$	$-6^{\mathrm{h}} 2 / 3$	$79^{\circ} 1 / 2$	80°
4	$12^{\mathrm{h}} 1 / 4$	$-7^{\mathrm{h}} 1 / 5$	$12^{\mathrm{h}} 1 / 4$	$-7^{\mathrm{h}} 13 / 60$	$78^{\circ} 1 / 2$	$78^{\circ} 2 / 3$
5	$13^{\mathrm{h}} 1 / 2$	-6^{h}	$13^{\mathrm{h}} 1 / 2 \mathrm{c}$	-6^{h}	0°	$4^{\circ} 1 / 3 \mathrm{x}$
6	$13^{\mathrm{h}} 1 / 4$	$-6^{\mathrm{h}} 1 / 8$	$13^{\mathrm{h}} 5 / 12 \mathrm{c}$	$-6^{\mathrm{h}} 1 / 6$	$31^{\circ} 1 / 2$	13°
7	13^{h}	$-6^{\mathrm{h}} 1 / 4$	$13^{\mathrm{h}} 1 / 8 \mathrm{c}$	$-6^{\mathrm{h}} 4 / 15$	$43^{\circ} 3 / 4$	39°
8	$12^{\mathrm{h}} 3 / 4$	$-6^{\mathrm{h}} 1 / 2$	$12^{\mathrm{h}} 3 / 4$	$-6^{\mathrm{h}} 8 / 15$	$57^{\circ} 1 / 2$	60°
9	$13^{\mathrm{h}} 3 / 4$	$-7^{\mathrm{h}} 5 / 12$	$13^{\mathrm{h}} 5 / 6 \mathrm{c}$	$-7^{\mathrm{h}} 1 / 2 \mathrm{c}$		
11	$13^{\mathrm{h}} 1 / 8$	$-7^{\mathrm{h}} 2 / 3$	$13^{\mathrm{h}} \mathrm{c}$	$-7^{\mathrm{h}} 7 / 10$	$39^{\circ} 1 / 4$	$45^{\circ} 2 / 3$
12	$13^{\mathrm{h}} 5 / 8$	-8^{h}	$13^{\mathrm{h}} 3 / 4$	-8^{h}	$63^{\circ} 2 / 3$	58°
13	$12^{\mathrm{h}} 1 / 2$	$-7^{\mathrm{h}} 3 / 4$	$12^{\mathrm{h}} 3 / 4$	$-7^{\mathrm{h}} 13 / 15$	$68^{\circ} 3 / 4$	$70^{\circ} \mathrm{c}$
10	$12^{\mathrm{h}} 1 / 2$	$-7^{\mathrm{h}} 2 / 3$	$12^{\mathrm{h}} 1 / 2$	$-7^{\mathrm{h}} 49 / 360$	$68^{\circ} 3 / 4$	$70^{\circ} \mathrm{c}$

Table 26: Asia 12

D $\#$	Site	$G D$ Name	B	L	G7 7
358	Point Pedro	T $\alpha \lambda \alpha \kappa \omega \rho v$	$126^{\circ} 1 / 3$	$11^{\circ} 2 / 3$	4.7
359	Trincomalee	N $\alpha \gamma \alpha \delta 1 \beta \alpha$	129°	$8^{\circ} 1 / 2$	4.7
360	Minneriya	M $\alpha \alpha \gamma \rho \alpha \mu \mu \mu \circ \nu$	127°	$7^{\circ} 1 / 3$	4.10

Table 26: Asia 124

G8.26	M_{XZ}	A_{XZ}	M_{UNK}	A_{UNK}	S_{XZ}	S_{UNK}
4	$12^{\mathrm{h}} 2 / 3$	$-4^{\mathrm{h}} 5 / 12$	$12^{\mathrm{h}} 2 / 3$	$-4^{\mathrm{h}} 2 / 5$	60°	62°
3	$12^{\mathrm{h}} 1 / 2$	$-4^{\mathrm{h}} 17 / 30$	$12^{\mathrm{h}} 1 / 2$	$-4^{\mathrm{h}} 3 / 5$	$68^{\circ} 1 / 2$	$70^{\circ} \mathrm{c}$
5	$12^{\mathrm{h}} 11 / 12$	$-4^{\mathrm{h}} 5 / 12$	$12^{\mathrm{h}} 5 / 12$	$-4^{\mathrm{h}} 1 / 2 \mathrm{c}$	$71^{\circ} 1 / 2$	$72^{\circ} 2 / 3 \mathrm{c}$

References

Almajest. Compiled Ptolemy c. 160 AD. Eds: Manitius 1912-3; Toomer 1984
B \& J = J.L.Berggren \& A.Jones 2000. Ptolemy's Geography, Princeton. Aubrey Diller 1934. Klio 27:258.
$G D=$ Geographical Directory. Ptolemy c. 160 AD. B\&J. Complete eds: Nobbe; S\&G. Handy Tables. Compiled Ptol c. 170 AD. Eds: Halma 1822, Heiberg 1907, Tihon 1971f. J.Heiberg 1907, Ed. Claudii Ptolemaei Opera Astronomica Minora, Leipzig.

Hipparchos. Commentary on Aratos \& Eudoxos c. 130 BC. Ed: Manitius, Leipzig 1894.
Ernst Honigmann 1929. Sieben Klimata und die Подعıऽ E $\pi \iota \sigma \eta \mu 01$, Heidelberg U.
Karl Manitius 1912-3, Ed. Handbuch der Astronomie [Almajest], Leipzig.
C.Müller 1883\&1901. Claudii Ptolemai Geographia, Paris. (Bks.1-5 of GD, plus maps.) R.Nadal \& J.Brunet 1984. ArchiveHistExactSci 29:201.
O.Neugebauer 1975. History of Ancient Mathematical Astronomy (HAMA), NYC.
C.Nobbe 1843-5. Claudii Ptolemaii Geographia, Leipzig. Repr 1966, pref A.Diller.

Pliny the Elder. Natural History 77 AD. Ed: H.Rackham, LCL 1938-62.
D.Rawlins 1982C. Publications of the Astronomical Society of the Pacific 94:359.
D.Rawlins 1982N. ArchiveHistExactSci 26:211.
D.Rawlins 1985G. Vistas in Astronomy 28:255.
D.Rawlins 1991H. DIO $1.1 \ddagger 6$.
D.Rawlins 1994L. DIO $4.1 \ddagger 3$.
D.Rawlins 1999. DIO $9.1 \ddagger 3$. (Accepted JHA 1981, but suppressed by livid M.Hoskin.)
D.Rawlins 2002V. DIO $11.3 \ddagger 6$.
D.Rawlins 2008Q. DIO $14 \ddagger 1$
D.Rawlins 2008R. DIO $14 \ddagger 2$
D.Rawlins 2008S. DIO $14 \ddagger 3$

Louis Renou 1925. La Géographie de Ptolémée: l'Inde, Paris. (Bk.7.1-4.)
Strabo. Geography c. 20 AD. Ed: Horace Jones, LCL 1917-1932.
S\&G = A.Stückelberger \& G.Graßhoff 2006. Ptolemaios Handbuch Geographie, U.Bern. Hugh Thurston 2002. Isis 93.1:58.
Gerald Toomer 1984, Ed. Ptolemy's Almagest, NYC.
Friedrich Wilberg \& Carl Grashof 1838-1845. Claudii Ptolemai Geogr, Essen. (Bks.1-6.)

Acknowledgements: Besides (obviously!) Aubrey Diller, DR thanks Lucille Wehner \& Dave Buisseret of the Newberry Library (Univ Chicago) for 1983 assistance in obtaining for Diller a microfilm of the library's valuable photos of the Seraglio ms of the GD (which fortunately survived the 1204 \& 1453 sackings of Constantinople). Also, Dennis Duke, for his 2006 preparing \& posting of the original of the Diller 1984 typescript's first-ever establishment of the text of Book 8.

DIO

DIO: The International Journal of Scientific History [www.dioi.org] is published by DIO, Box 19935, Baltimore, MD 21211-0935, USA.
Telephone (answering machine always on): 410-889-1414. Fax: 410-889-4749.
Research \& university libraries may request permanent free subscription to DIO.
Each issue of DIO will be printed on paper which is certified acid-free. The ink isn't.
Editor: Dennis Duke, address below. Publisher: Dennis Rawlins (DR), address above.
$D I O$ is primarily a journal of scientific history \& principle. However, high scholarship and-or original analytical writing (not necessarily scientific or historical), from any quarter or faction, will be gladly received and considered for publication. Each author has final editorial say over his own article. If refereeing occurs, the usual handsome-journal anonymity will not, unless in reverse. No page charges. Each author receives 50 free offprints.

The circumstance that most DIO articles are written by scholars of international repute need not discourage other potential authors, since one of DIO's purposes is the discovery \& launching of fresh scholarly talent. Except for equity\&charity reply-space material, submissions will be evaluated without regard to the writer's status or identity. We welcome papers too original, intelligent, and-or blunt for certain handsome journals. (Dissent \& controversy are per se obviously no bar to consideration for DIO publication; but, please: spare us the creationist-level junk. I.e., non-establishment cranks need not apply.)

Other journals may reprint excerpts (edited or no) from any issue of DIO to date, whether for enlightenment or criticism or both. Indeed, excepting DIO vols.3\&5, other journals may entirely republish DIO articles (preferably after open, nonanonymous refereeing), so long as DIO's name, address, \& phone \# are printed adjacent to the published material - and to all comments thereon (then or later), noting that said commentary may well be first replied to (if reply occurs at all) in DIO's pages, not the quoting journal's.

DIO invites communication of readers' comments, analyses, attacks, and-or advice.
Written contributions are especially encouraged for the columns: Unpublished Letters, Referees Refereed, and regular Correspondence (incl. free errtime for opponents). Contributor-anonymity granted on request. Deftly or daftly crafted reports, on apt candidates for recognition in our occasional satirical J. for Hysterical Astronomy will of course also be considered for publication.

Free spirits will presumably be pleased (and certain archons will not be surprised) to learn that: at $D I O$, there is not the slightest fixed standard for writing style.

Contributors should send (expendable photocopies of) papers to one of the following DIO referees - and then inquire of him by phone in 40 days:
Dennis Duke [ancient astronomy, data analysis], Physics Dep't, Florida State University Tallahassee, FL 32306-4052; tel 850-644-0175.
Robert Headland [polar research \& exploration], Scott Polar Research Institute, University of Cambridge, Lensfield Road, Cambridge CB2 1ER, UK; tel (44) 1223-336540.
Charles Kowal [celestial discovery, asteroids], Johns Hopkins University Applied Physics Laboratory, Johns Hopkins Road, Laurel, MD 20707. Retired. Tel 360-985-0492.
Keith Pickering [navigation, exploration, computers, photography, science ethics],
10085 County Road 24, Watertown, MN 55388; tel 952-955-3179; fax 952-955-2398.
E. Myles Standish [positional \& dynamical astronomy], Jet Propulsion Laboratory 301-150, Cal Tech, 4800 Oak Grove Drive, Pasadena, CA 91109-8099. Ret. Tel 864-888-1301.
F. Richard Stephenson [ancient eclipses, ΔT secular behavior], Department of Physics, University of Durham, Durham DH1 3LE, UK; tel (44) 191-374-2153.
Christopher B. F. Walker [Mesopotamian astronomy], Dep't of Western Asiatic Antiquities, British Museum, Great Russell Street, London WC1B 3DG, UK; tel (44) 171-323-8382.
(C) 2009 DIO Inc.

ISSN 1041-5440.
This printing: $2010 \backslash 5 \backslash 3$.

A Fresh Science-History Journal: Cost-Free to Major Libraries

Tel: 410-889-1414.
Fax: 410-889-4749.

DIO - The International Journal of Scientific History.

Deeply funded. Mail costs fully covered. No page charges. Offprints free.

- Since 1991 inception, has gone without fee to leading scholars \& libraries
- Contributors include world authorities in their respective fields, experts at, e.g., Johns Hopkins University, Cal Tech, Cambridge University, University of London.
- Publisher \& journal cited (1996 May 9) in New York Times p. 1 analysis of his discovery of data exploding Richard Byrd's 1926 North Pole fraud. [DIO vol.4.] Full report co-published by University of Cambridge (2000) and DIO [vol.10], triggering History Channel 2000\&2001 recognition of Amundsen's double pole-priority. New photographic proof ending Mt.McKinley fake [DIO vol.7]: cited basis of 1998/11/26 New York Times p. 1 announcement. Nature 2000/11/16 cover article pyramid-orientation theory: DIO-corrected-recomputed, Nature 2001/8/16. Vindicating DR longtime Neptune-affair charges of planet-theft \& file-theft: Scientific American 2004 December credits DIO [vols.2-9].
- Journal is published primarily for universities' and scientific institutions' collections; among subscribers by request are libraries at: US Naval Observatory, Cal Tech, Cornell, Johns Hopkins, Oxford \& Cambridge, Royal Astronomical Society, British Museum, Royal Observatory (Scotland), the Russian State Library, the International Centre for Theoretical Physics (Trieste), and the universities of Chicago, Toronto, London, Munich, Göttingen, Copenhagen, Stockholm, Tartu, Amsterdam, Liège, Ljubljana, Bologna, Canterbury (NZ).
- New findings on ancient heliocentrists, pre-Hipparchos precession, Mayan eclipse math, Columbus' landfall, Comet Halley apparitions, Peary's fictional Crocker Land.
- Entire DIO vol. 3 devoted to $1^{\text {st }}$ critical edition of Tycho's legendary 1004-star catalog.
- Investigations of science hoaxes of the $-1^{\text {st }},+2^{\text {nd }}, 16^{\text {th }}, 19^{\text {th }}$, and $20^{\text {th }}$ centuries.

Paul Forman (History of Physics, Smithsonian Institution): "DIO is delightful!"
E. Myles Standish (prime creator of the solar, lunar, \& planetary ephemerides for the preeminent annual Astronomical Almanac of the US Naval Observatory \& Royal Greenwich Observatory; recent Chair of American Astronomical Society's Division on Dynamical Astronomy): "a truly intriguing forum, dealing with a variety of subjects, presented often with [its] unique brand of humor, but always with strict adherence to a rigid code of scientific ethics. . . . [and] without pre-conceived biases [an] ambitious and valuable journal."
B. L. van der Waerden (world-renowned University of Zürich mathematician), on DIO's demonstration that Babylonian tablet BM 55555 (100 BC) used Greek data: "marvellous." (Explicitly due to this theory, BM 55555 has gone on permanent British Museum display.)

Rob't Headland (Scott Polar Research Institute, Cambridge University): Byrd's 1926 latitude-exaggeration has long been suspected, but DIO's 1996 find "has clinched it."

Hugh Thurston (MA, PhD mathematics, Cambridge University; author of highly acclaimed Early Astronomy, Springer-Verlag 1994): "DIO is fascinating. With . . . mathematical competence, . . . judicious historical perspective, [\&] inductive ingenuity, ... [DIO] has solved . . . problems in early astronomy that have resisted attack for centuries"
Annals of Science (1996 July), reviewing DIO vol. 3 (Tycho star catalog): "a thorough work extensive [least-squares] error analysis . . . demonstrates [Tycho star-position] accuracy . . . much better than is generally assumed excellent investigation".

British Society for the History of Mathematics (Newsletter 1993 Spring): "fearless . . [on] the operation of structures of [academic] power \& influence . . . much recommended to [readers] bored with . . . the more prominent public journals, or open to the possibility of scholars being motivated by other considerations than the pursuit of objective truth."

[^0]: ${ }^{1}$ Similarly proportioned lists of "important cities" survive in the Handy Tables and in, e.g., the ancient mss published by Honigmann 1929 (see fn 19). DR has called Book 8 "the Handiest Tables" (fn 72), a play on the title of Ptolemy's similarly (Rawlins 2008S §D) astrologer-intended Handy Tables, reflecting DR's contention that Book 8 was (more than any other part of the $G D$) designed for astrologers' convenience. (See www.dioi.org/gad.htm\#sgch.) This factor may help explain [a] why the density of listings of cities in Book 8 (per Books 2-7 listings) is nearly $1 / 2$ again higher in Asia (where astrology has traditionally achieved greater mass-mental-bondage) than in Europe, and [b] why the $G D$ survived the Dark Ages. Note that the $G D$ draws from sources with some knowledge of regions only rarely if at all touched upon in other surviving ancient western literature
 ${ }^{2}$ As to the mystery of who was responsible for this grid and its scientifically fateful shortcomings: though DR has long wondered (based upon GD 1.4.2) about the degree of Hipparchos' involvement, there is a strong piece of evidence (see also DIO $16 \ddagger 3 \mathrm{fn} 18$) that he was at least not exclusively the culprit, namely, GD 5.2.34's latitudes for four sites on Rhodos Island, none of them explicitly Rhodos City, strangely. (A similar Ptolemy lapse: Almajest 7.3's concentration upon brightest Pleiad η Tauri vs. the four Catalog Pleiads' omission of same at Almajest 8.5.) S\&G 2:498 takes some liberties (similar to ours here for $\mathrm{D} 33=$ Scandinavia) in order to uncertainly reconstruct a $G D 5.2 .34$ match to D189 = Rhodos at $G D$ 8.17.21. Contra (esp. Lindos) previous editions (Nobbe 1843-5 2:16, Wilberg \& Grashof 1838-1845 p.342, Müller 1883\&1901 p.837). But the only GD site that is surely near Rhodos City and is virtually identical in latitude is Ielysos (I $\eta \lambda \cup \sigma 0 \varsigma$: old Rhodos City) just west of the famous later classical-era metropolis, so we opt to use it in Table 15 below. (Its great proximity to Rhodos City suggests that its choice was intended to unambiguously mark the latter's B\&L.) The sole possibly accurate site of the four is Panos Akra if (contra H.Kiepert) it is meant to be Cape Prassonesi (S tip of Rhodos Island), where Rawlins 1994L §E4 found that the southern section of the Ancient Star Catalog was observed by transit, equatorial data later transformed by sph trig (via eq.4) to ecliptical by assuming $L=35^{\circ} 5 / 6$. Most of the $G D 5.2 .34$ data's positionings are not so bad relative to each other, but the absolute values of at least two are awful. All of Hipparchos' work shows that he knew his latitude to c. 1^{\prime}. (See, e.g., Rawlins 1994L Table 3.) So it is unlikely that Hipparchos authored the mistaken data for Ielysos \& Kamiros. Since two of the four latitudes might have been meant to be at or near Rhodos city, we note that the actual city is at $L=36^{\circ} .4$, vs $G D 5.2 .34$'s $35^{\circ} 11 / 12$ (Panos Akra as the harbor's north cape?) or 36° (Ielysos). But both those two cited GD 5.2.34 listings could be merely $14^{\mathrm{h}} 1 / 2$

[^1]: ${ }^{19}$ Ancient astrologers (e.g., Hipparchos, Ptolemy) assigned the term "klima" (from which our word "climate" derives) for latitudes L corresponding (via eq.2) to longest day values M, usually at intervals of about $1 / 2$ or $1 / 4$ hour, e.g., Almajest $2.6 \& 8$. ($S \& G$ have helpfully ruled klimata every $1 / 4$ hour on their excellent maps.) We have occasionally suggested that this might have been done for reasons of sph-trig astrological-house-computing efficiency (Rawlins 2008S §A4 [2]). But perhaps the causes included a commercial factor: house tables sales could be juiced if geography were distorted to convince more-numerous big-city users that they lived right on a klima, a pseudo-circumstance which would obviate the need to interpolate between house tables. (These tables were computed of course only for discrete klimata. A common number of primary klimata for the whole ekumene was seven; see, e.g., Pliny 6.39.211-218, Honigmann 1929 ["The Seven Klimata and Important Cities"], Neugebauer 1975 pp.722f. So the interval-spacing and thus the associated crude rounding was large.) Conclusions: [a] The cause of latitudes' undeniable (fn 23) historical degradation was not scientific.
 [b] Thus astrology devastated the high-precision ancient geography of genuine scientists before its occultist-filtered remains reached us. A point thoroughly treated in Rawlins 1985G \& Rawlins 2008S. Two fresh evidences (found 2009 March) in favor of this hypothesis are provided in fn 23.
 ${ }^{20}$ We now see that Hipparchos switched to eq.6's $\epsilon_{\mathrm{H} 2}=23^{\circ} 40^{\prime}$ (dropping early $\epsilon_{\mathrm{H} 1}=23^{\circ} 55^{\prime}$: eq.4) after making a better outdoor determination - presumably during his also accurate (Rawlins 1991H §B2) observation of the time of the 135 BC S.Solstice.

[^2]: ${ }^{21}$ Neugebauer’s A.Aaboe to DR 1976/3/9. DIO $4.3 \ddagger 15$ §G9 [1994]; DIO $6 \ddagger 1$ §B5 \& $\ddagger 3$ §B2 [1996] ${ }_{22}$ The cementality of the Neugebauer cult, known here as the "Muffia" with due respect for the well-foundedness of its perceptions, is shown by the fact that Diller \& DR could independently discern the system behind the Hipparchos-Strabo data of Table 0 ; yet, when its 13 -for- 13 score (news which is gladdening the hearts of honest scholars) is placed as a gift before any Muffioso, he grumpily ashcans it as an impossibly opaque back-to-square-one enigma (www.dioi.org/fff.htm\#bsns). These are the same people who for decades (up to JHA 33:15-19 [2002]) accepted as gospel Neugebauer's laughably ill-fitting Princetitute theory (6-for-13: $4^{\text {th }}$ col. in Table 0), enthroning it even in the Dictionary of Scientific Biography. (Full history of eminent promos: DIO 4.2 p.55.) Similarly mote-beam: Muffiose Nobody's-Perfect defense of Ptolemy's shortcomings (spoofed at Rawlins 2002V p.70); yet, when evaluating outlander heretics even perfection (§D3 [7]) is insufficient. The spectacle of scholars pushily, robotically doing a Chauvin-to-the-last-ditch (without a glimmer of philosophy-of-science perception, for 75^{y} now) is as pathetic as the ineducable Cook-kooks vs photos (DIO 7.2-3\&9.2-3).
 ${ }^{23}$ Eratosthenes \& Hipparchos required (Strabo 2.5.7) that Alexandria, Syene, \& Meroë be symmetrically spaced at 5000 stade intervals: Alexandria city (not klima) was at latitude 21760 stades or $31^{\circ} 1 / 12$ (Rawlins 1982G; Honigmann 1929 p. 147 \#75), Syene at 16800 stades or 24°, Meroë (astronomically measured: Strabo 2.1 .20) at 11800 stades or $16^{\circ} 11 / 12$ (where solstitial-noon gnomon errors cancel), all these L being much more correct than those in the $G D$ (see Tables $13 \& 14$ below): $31^{\circ}, 23^{\circ} 5 / 6,16^{\circ} 5 / 12$, resp, vs $31^{\circ} 12^{\prime}, 24^{\circ} 05^{\prime}, 16^{\circ} 57^{\prime}$ in reality. Hipparchos-Strabo vs $G D$ rms errors for the 3 cities: 5^{\prime} vs 22^{\prime}, resp. This striking contrast and the equally hitherto-unremarked fact that the 3 sites really ARE symmetric in latitude (to 1^{\prime} precision! — note parallel to DIO $1.1 \ddagger 6 \mathrm{fn} 30$) provide yet further indicators that scientific geography existed in antiquity but was later lost: fn 19 .
 ${ }^{24}$ In effect, $G D$ 1.7.4 relates the latitude of Okelis ($G D$ 6.7.7, D281 of $G D 8.22 .7$) to the Cinnamon Country klima (the southern limit of Hipparchos' ekumene: Strabo 2.5.7), whose latitude Strabo 2.5.35 says equals α UMi’s NPD. Rawlins 2008S \S C wondered whether Marinos' prime latitudes were

[^3]: ${ }^{27} \alpha \kappa \rho \imath \beta \omega \varsigma \varepsilon \omega \varsigma U^{1}$ NK.
 ${ }^{28} \varepsilon \pi \iota ~ \delta \varepsilon \mathrm{X} \varepsilon \pi \varepsilon เ \delta \eta \mathrm{Z} \varepsilon \pi \varepsilon \iota \delta \eta$ UNK.
 ${ }^{29}$ vлоү $\alpha \varphi \eta \mathrm{X} \pi \alpha \rho \alpha \gamma \rho \alpha \varphi \eta \mathrm{Z}$.
 ${ }^{30} \varepsilon \sigma \tau \iota \mathrm{XU}^{1} \mathrm{~N}$.
 ${ }^{31} \pi 0 \lambda \lambda \alpha \delta \eta$ UNK.
 ${ }^{32}$ om. тo XZ.
 ${ }^{33} \varepsilon v \operatorname{o\tau } \alpha v \operatorname{\tau or} \varsigma \mathrm{U}^{1} \mathrm{~N}^{a} \mathrm{~K}$.
 ${ }^{34} \mu \varepsilon \sigma \eta \mu \beta \rho ı \nu \eta \nu$ XZN ${ }^{a}$.
 ${ }^{35} \varepsilon \pi \varepsilon \varepsilon \delta \eta \delta \varepsilon$ X $\varepsilon \pi \varepsilon 1 \mu \eta \delta \varepsilon \nu$ ZUK $\varepsilon \pi \varepsilon \varepsilon \delta \eta \mu \eta \delta \varepsilon \nu$ N
 ${ }^{36} \alpha v \tau \iota \pi \alpha \rho \alpha \sigma \tau \alpha \theta \eta v \alpha \iota$ UNK.
 ${ }^{37} \pi \alpha \rho \alpha \lambda_{1} \alpha \mathrm{~N}^{a} \mathrm{~K}$.
 ${ }^{38} \pi \varepsilon \rho \iota \omega \rho \iota \sigma \theta \alpha \iota \mathrm{U}^{1} \mathrm{~K} \pi \varepsilon \rho \iota \omega \rho \varepsilon \iota \sigma \theta \alpha ı \mathrm{~N}$
 ${ }^{39} \mu \varepsilon \nu$ XZK $\mu \varepsilon \tau \alpha \mathrm{U}^{1} \mathrm{~N}$.

[^4]: ${ }^{40} \pi \mathrm{I} v \alpha \kappa о \varsigma \mathrm{U}^{1} \mathrm{~K}$.
 ${ }^{41} \tau \eta \varsigma \delta \iota \alpha ı \rho \varepsilon \sigma \varepsilon \omega \varsigma \mathrm{U}^{1} \mathrm{NK}$.
 ${ }^{41} \tau \eta \varsigma \delta \alpha \alpha \rho \varepsilon \sigma \varepsilon \omega \varsigma \mathrm{U}^{1} \mathrm{NK}$
 ${ }^{42} \tau \eta \nu \kappa \varepsilon \varphi \alpha \lambda \eta \nu$ UNK.
 ${ }^{43} \pi \alpha \rho \alpha \gamma \rho \alpha \varphi \rho \mu \varepsilon \nu$ XUN.
 ${ }^{44} \varepsilon \kappa \alpha \sigma \tau \omega v$ UNK
 ${ }^{45}$ om. $-\delta \varepsilon$ UNK.
 ${ }^{46}$ om. $\tau \eta v \alpha \pi$ o X om. $\tau 0 \pi \alpha \rho \alpha \mathrm{Z}$.
 ${ }^{47} \eta \mu \varepsilon \rho \omega v \mu \varepsilon \gamma / \sigma \tau \omega \mathrm{V}$ Z om. $\mu \varepsilon \gamma / \sigma \tau \omega v$ UNK.
 ${ }^{48} \omega \rho \omega \nu \mathrm{XZ}^{m} \eta \mu \varepsilon \rho \omega \mathrm{Z} \mathrm{Z}^{t} \mathrm{U}^{1} \mathrm{NK}$.
 ${ }^{49} \tau \omega \nu \tau \circ \pi \omega \nu \mathrm{U}^{1} \mathrm{~N}$.
 ${ }^{50}{ }^{51} \delta 1 \alpha \mathrm{U}^{1} \mathrm{~N}^{1}$.
 ${ }^{51}$ om. $\tau \alpha \mathrm{U}^{1} \mathrm{NK}$.

[^5]: ${ }^{52} \zeta \omega \delta \alpha \alpha \kappa \omega v \kappa v \kappa \lambda \omega v \mathrm{U}^{1} \mathrm{NK}$.
 ${ }^{53}$ om. αl UNK.
 ${ }^{54} \tau \rho \circ \pi \circ \cup \varsigma \mathrm{U}^{a} \mathrm{~N}$
 ${ }_{5}^{55} \pi \alpha \rho \varepsilon \lambda \kappa о \nu \mathrm{U}^{1} \mathrm{NK}$.
 ${ }^{56} \varepsilon \delta \varepsilon \iota \xi \varepsilon v \mathrm{Z}^{a} \mathrm{~N}$.
 ${ }^{57} \varepsilon \xi \omega \nu \mathrm{U}^{1} \mathrm{NK}$.
 ${ }^{58} \pi \rho \circ \varsigma \tau \omega \nu \alpha \mu \varphi . \mathrm{U}^{1} \mathrm{NK}$.
 ${ }^{59} \kappa \alpha \theta \iota \sigma \tau \omega \nu \tau \alpha \varsigma \mathrm{U}^{1} \mathrm{NK}$.
 ${ }^{60} \delta เ \varepsilon \uparrow \rho \eta \mu \varepsilon \nu \eta \nu \mathrm{U}^{1} \mathrm{~N}$.
 ${ }^{61}$ к $\alpha \tau \alpha \lambda \alpha \mu \beta$ oveıv U^{1} NK.
 ${ }^{62} \varepsilon \varepsilon^{\varepsilon} \sigma \mathrm{U}^{1} \mathrm{NK}$.
 ${ }^{63} \delta \eta \mathrm{X} \eta \delta \eta$ ZUNK.

[^6]: ${ }^{64}$ For identifications of $G D$ sites with modern ones we have drawn freely, gratefully, and generally trustingly upon S\&G's. (We often use durable older non-ancient names, such as USSR, Ceylon, Sian, or Saigon, since [1] They lasted much longer than the recent ones have as yet. [2] Too often, altered appellatons prove ephemeral. (E.g., Cape Kennedy; Hadrian's vain Ailia Kapitolias for Jerusalem.) We do not claim greater preferability for most of our occasional differing identifications, except for: [a] The GD's zero-longitude, the Blest Isles, is the Cape Verde Islands group (Rawlins 2008S $\S \mathrm{F}$). [b] Alexandria Eschate (D309) is Iskander.
 [c] Kattigara (D357) is Saigon [presently Ho Chi Minh City], while S\&G (e.g., p.18) suggests it was Hanoi. DR now (contra orig. edition of Rawlins 2008S) realizes that the coast of Vietnam was not explored beyond Saigon. (Even aside from the huge L discrepancy between Kattigara \& Hanoi [fn 68]: if Hanoi were reached by direct sailing, mountainous Hainan would probably have been sighted; but no such feature is listed in the $G D$.)
 [d] "Java" is probably today's Java, and Sumatra was the Golden Peninsula which became mistakenly merged with the adjacent Malay Peninsula, while (idem) S\&G appear (e.g., p.18) to suppose that: the sailors never got near Java, but they went 100s of miles through the narrow Malacca Strait between Malay\&Sumatra without noting the existence of Sumatra (the huge, lengthy island to the SW). (It may also be implied that small "Java" [I $\alpha \beta \alpha \delta \delta 100]$ island, way to the SE , is Sumatra.)
 ${ }^{65}$ Usually XZ data, generally omitted for fitting poorly to corresponding data in GD 2-7. Occasional S\&G-dropped UNK data include, e.g., the A of Kattigara (D356).
 ${ }^{66}$ S\&G often drop $G D 8$ data that do not fit the corresponding GD 2-7 data. However, the omitted data may be clues to prior (now lost) editions of the $G D$ (which could have been nearer in time \& state to Marinos-Ptolemy's original). E.g., XZ's M for Mouza (D280) indicates that Mouza's L may once have been at $12^{\circ} 1 / 2$, right on the $4^{\text {th }}$ Almajest 2.6 klima - reflecting the crude-klima-intervals which may have corrupted the $G D$'s L. Mouza is probably the modern Arabian town of Mawshij (Yemen), of actual $L=c .13^{\circ} 2 / 3$. Which is a bit of evidence that XZ is the older version of the $G D$, since its L is $\mathrm{c} .1^{\circ}$ too far south, as is the Hipparchos-era latitude for nearby Okelis in all versions of GD 1.7.4.
 ${ }^{67}$ E.g., Jul Caesarea (D124), Garame (D164), Aromata (D170), Smyrna (D179), Miletos (D181), Turambe (D218), Osika (D226), Palmyra (D239), Caesarea (D243), Petra (D248), Medaba (D249), Ambrodax (D275), Doumetha (D277), Mouza (D280), Drosache (D315), Sera (D317), Koni (D327), Cabenis (D332). If these alternate data are useful to future scholars, all to the good. But, again: there is no implication that they are better than S\&G's.
 ${ }^{68}$ Our occasional GD 8 data-disagreements with S\&G are mostly from differing choices among variants: Diller vs S\&G. (Our tables of course adopted the former in what is, after all, a Diller issue of DIO!) We do not here list data-variants which Diller found in his researches, since they may be consulted in the two appendices to the original Diller typescript, via www.dioi.org/diller8/diller8.htm. For many sites, modern attempts at identification (especially far eastern) are some part guesswork. We have not bothered putting question-marks at any, since no hard boundary exists here between certain and uncertain; but be warned that fallibility in this game is taken for granted. Note: Much inspired by S\&G's grand opus (though, in the following exceptional cases, agreeing little with it) DR has fundamentally re-thought his 2006 identifications (www.dioi.org/gad.htm) in the Malay-Vietnam region, with (hopefully) some large-scale-clarifying improvements (check vs S\&G Map 25 [pp.902903] or our Table 25), mainly identifying Xpvøךऽ X $\varepsilon \rho \sigma 0 \vee \eta \sigma 0 v$ (Golden Peninsula)] as Sumatra, a large island (running close-in-parallel to the Malay Peninsula for hundreds of miles) mis-taken by the GD's SE Asia source, "Alexandros", to be Malay's extension. Confusing island \& peninsula is a common pioneer-explorer error (e.g., Schei "Island" \& Peary "Land"), but such errors are unlikely to survive repeated visits. So either [a] western ships had never achieved the Malacca Strait (from pirates, tides, or ancient topography?) or [b] the GD coastal profile from Phuket (south around Sumatra, and back north) to Singapore was based on a single voyage by a prototype for Sindbad (whose later legend did include reaching Sumatra) presumably though not certainly explorer (?) Alexandros himself who, like (doubly) Ptolemy, boasted an authoritative royal name. (In modern times, royals acquire no sure awe by donning the name Alexander. Even aside from the ill-fated fictional Man Who Would Be King, no less than three actual royal Alexanders have been assassinated: Russian czar 1881, Serb king

[^7]: ${ }^{71}$ Note that in some eastern regions, cities' degree-longitudes B are integral much more often than are the same cities' degree-latitudes L - suggesting that these L were manipulated independently of adjustments of the B data. (This should not be a surprise, if [as Rawlins 1985G \& Rawlins 2008S argue] the L were adjusted to klimata, while the B were simply expanded by $4 / 3$ or $7 / 5$.) A symptom of similar independence in Book 8: in some regions in the UNK tradition, while M is written numerically, the very same city's A datum is spelled out verbally.
 ${ }^{72}$ Compared to those for $G D 8$, the disagreements between the two $G D \mathrm{~ms}$ traditions appear to be relatively trivial for GD 2-7 - presumably because astrologers made much more use of Book 8, their ideal Handiest Tables (fn 1), and thus argued more over its editing. (See, e.g., fn 19.)
 ${ }^{73}$ A few XZ slips may have arisen from sign errors, indicating that some ancients dealt regularly with negatives. (See Rawlins 1999 §B5 for how ancient use of negatives greatly compacted their continued-fraction expressions - an unexpected reconstructive window into how ancient math was done by actual scientists, as against pedants. For another example of confusion caused by the latter, see Rawlins 2008R §C5.) E.g., Nikephorion (D253) where longitude east $A=1^{\mathrm{h}}-1 / 5$ was apparently read by XZ as east $1^{\mathrm{h}} 1 / 5$. [For Labbana (D254) it may be that XZ\&UNK reversed rôles in error. Or, perhaps the A of D253\&254 were reverse-misfiled.] Or see Gagra (D216) where perhaps $16^{\mathrm{h}}-1 / 6$ was doubly mis-read by XZ as $16^{\mathrm{h}}+1 / 2$. The most intriguing coincidence of the lot is the UNK data for Nisaia (D301), where one finds an inexplicably gross mistake. Or, during computation of M from L by eqs. $7 \& 3$, the \tan of $L=39^{\circ} 1 / 6$ was mis-interpolated: $1 / 6$ down from 40° instead of $1 / 6$ up from 39°, resulting in $M=15^{\mathrm{h}}-1 / 9$, whose sign was lost, leaving the UNK M of $15^{\mathrm{h}} 1 / 9$. (None of these postulated lost-negatives are restored in our tables but are simply marked " n " there.)
 ${ }^{74}$ Remarkably, the sole GD Book 8 site genuinely (Rawlins $2008 \mathrm{~S} \S \mathrm{~K} 5$) south of the Equator, is Java (D357), where S thus instead refers to the noon-Sun's appearances south of the zenith.
 ${ }^{75}$ The crawling evolution of data over the centuries is revealed by such cases as D290 (GD 8.22.16), where it is clear (eqs.7\&3) that XZ's S was computed from $L=14^{\circ}$; and UNK's S, from $L=14^{\circ} 1 / 4$ - yet $G D$ 6.7.41 lists the site's L as $14^{\circ} 1 / 2$. A weighted statistical study of all $G D S$ data could reveal the ϵ adopted for eq.7. It appears often to have been eq.3, suggesting Ptolemy as computer. Which is one lead-in to the question: was Book 8 the only part of the $G D$ he wrote? Why would he compose Books 2-7 based on the Blest Isles as zero-longitude? - when Almajest 2.13 predicts his $G D$ will (as in GD 8) use Alexandria for such, since Almajest astronomical tables are for Alexandria time
 ${ }^{76}$ For more exact descriptions of GD maps' geographical ranges, see Ptolemy's at S\&G pp.908-915; also S\&G’s Table of Contents (pp.5-6 or pp.476-477), thoughtfully printed at the start of each volume for the reader's convenience; and at each's endpapers is a helpful overview-quilt-key to all 26 maps.

