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Abstract
The quantum metrology triangle is a test of the consistency of three quantum electrical
standards: the single-electron tunnelling current standard, the Josephson voltage standard and
the quantum Hall resistance standard. This paper considers what is known about each of these
effects separately in terms of (1) theory, (2) empirical tests of universality and (3) ‘direct’ tests
involving fundamental constants. The current status of each of the three ‘legs’ of the triangle is
quite different, with the single-electron leg being the weakest by far. This leads to the
conclusion that a recent experimental result for the triangle should be interpreted primarily in
terms of corrections to the quantum of charge transferred by single-electron devices.

1. Introduction

A recent proposal [1] to redefine the kilogram, ampere and
other base units of the International System of Units (SI)
by choosing exact values for several fundamental constants
has offered a concrete vision of a future system of units that
one could rightly call a ‘Quantum SI’. From the standpoint
of electrical measurements, the key feature of this proposal
is that it defines exact values for both the Planck constant
h and the elementary charge e, which means that both the
Josephson constant KJ = 2e/h and the von Klitzing constant
RK = h/e2 have exactly defined values. Since practical
standards of voltage and resistance based on these quantum
effects have long surpassed the uncertainty of the best SI
realizations of the ampere and of derived electrical units, the
new SI will automatically simplify and improve the uncertainty
of precision electrical measurements. This is especially true
for measurements that involve both electrical and mechanical
units, such as electrostatic force balances used as primary
standards for forces below 10−4 N [2].

A key element of the proposed Quantum SI is the
assumption that the relations for KJ and RK are exact. There
are three types of arguments in support of this assumption;
each will be examined in detail below. Theoretically,
there are no current predictions for any correction terms.
Empirically, several experiments have shown that KJ and
RK are independent of device design, material, measurement
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setup, etc. This demonstration of universality is consistent with
the exactness of the relations, but does not prove it outright.
Finally, experimental data on fundamental constants can be
analysed independent of the assumptions KJ = 2e/h and
RK = h/e2 to test for discrepancies.

Given the important role that KJ and RK are likely to play
in any new SI (regardless of the details of its construction), it
is important to pursue further tests of their relations to h and e.
Of particular value are empirical tests that do not focus on the
universality of the effects but look directly for corrections to the
predicted relations. One such test, first proposed in 1985 [3]
and discussed in detail more recently [4, 5], is the quantum
metrology triangle (QMT), which combines the Josephson and
quantum Hall effects with a third quantum electrical effect,
single-electron tunnelling. The QMT, either the original form
or a closely related test [4,5], is being pursued by at least four
national measurement institutes (NIST in the USA, PTB in
Germany, LNE in France and NPL in the UK).

The purpose of this paper is to review the current status of
the QMT in detail, and in particular to examine each of its ‘legs’
separately. This provides a useful context in which to interpret
recent and forthcoming QMT experiments. Section 2 presents
the basic equations for the QMT, and section 3 considers the
quantum Hall, Josephson and single-electron tunnelling effects
separately. Section 4 applies the results of section 3 to the
interpretation of a recent QMT result from NIST and section 5
contains conclusions and an outlook for the future.
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Figure 1. Original version of the QMT proposed in 1985 [3]. It
links the Josephson effect (JVS), the quantum Hall effect (QHR)
and the single-electron tunnelling effect (SET) by using Ohm’s law.

2. The quantum metrology triangle

The QMT is illustrated in figure 1. It consists of quantum
electrical standards for voltage, resistance and current linked
by Ohm’s law to form a triangle. (See [6] for a comprehensive
review of the state of the art for each of these standards.)
The defining relations for the three quantum standards are as
follows.

(i) A Josephson voltage standard (JVS) driven at a frequency
fJ and operating on the nth step produces a voltage

UJVS = nfJ/KJ with KJ = 2e

h
(1 + εJ). (1)

(ii) A quantum Hall resistance (QHR) standard quantized on
the ith plateau has a resistance

RQHR = RK/i with RK = h

e2
(1 + εK). (2)

(iii) A single-electron tunnelling (SET) current standard driven
at a frequency fS produces a current

ISET = QSfS with QS = e(1 + εS). (3)

For each quantum standard, a possible deviation from the
expected relation involving h and/or e is parametrized by
ε. Combining equations (1), (2) and (3) using Ohm’s law
U = RI , and letting A1 represent all known scaling factors in
a real QMT experiment (such as bridge ratios), we have

nJfJ

KJ
= A1

RK

i
QSfS, (4)

nJi

A1

fJ

fS
= KJRKQS, (5)

1

2

nJi

A1

fJ

fS
= 1 + εJ + εK + εS, (6)

where the last expression relies on the fact that each ε term is
much less than 1.

In practice, the terms on the left side of equation (6) are
known with negligible uncertainty and can be chosen so that

the left side is equal to 1. Thus if there are no corrections to any
of the three quantum electrical standards, the QMT amounts
the relation 1 = 1. The result of an experimental realization
of the QMT can be written as

1 = 1 + �expt ± uexpt, (7)

where �expt is the measured deviation from the expected
relation 1 = 1 and uexpt is the relative standard uncertainty
of the result. If �expt is less than uexpt the result ‘closes’ the
QMT and provides evidence against corrections to the three
quantum standards larger than uexpt (neglecting for the moment
the possibility of cancellation between ε terms of opposite
sign). If an experiment were to show that the QMT did not
close, i.e. �expt was larger than uexpt, it would indicate that one
of the three quantum electrical standards does have a significant
correction term, but it would not indicate which one.

3. Status of the individual legs of the QMT

The discussion thus far considers the QMT to be a test
with binary outcomes of ‘pass’ or ‘fail’, and represents the
conventional view of the QMT found in the literature and
elsewhere. The uncertainty at which closing the QMT will
improve confidence in the quantum electrical standards is
generally said to be below about 1 part in 107. However, this
view ignores the fact that the current situation for each of the
three legs is quite different.

For each leg I will consider what is known about possible
corrections in three areas: theory, empirical tests of universality
and direct tests of the quantum relation for each leg. The third
area requires some explanation. A direct test means one in
which the expected relation between the quantum electrical
standard and h and/or e is not assumed. For example, a JVS
could be compared with a device that produces an SI volt to
obtain a measurement of KJ in SI units, and this could then
be compared with an SI value of the quantity 2e/h. Although
this is conceptually simple, two difficulties arise in practice.
First, realizing an SI volt (or ohm or ampere) with the required
uncertainty (below 1 × 10−6) generally requires both a clever
idea and a rather heroic effort. (An excellent example is
the realization of the SI volt described in [7].) Second, the
recommended values of fundamental constants are the result of
a least-squares adjustment that assumes the quantum relations
are valid [8] (for KJ and RK only; the relation for QS has
not entered the observational equations for any adjustments to
date). Thus one cannot simply use the recommended value of
2e/h in a test of KJ = 2e/h because this value is affected
by experiments involving the Josephson effect. What can
be done is to perform the least-squares adjustment with the
assumptions KJ = 2e/h and RK = h/e2 relaxed, and with
adjustable correction factors εJ and εK inserted into the relevant
observational equations. The adjustment then provides the
best values for εJ and εK consistent with a wide variety of
experiments. Such an analysis is described in appendix F of
the 2002 CODATA report on the adjustment of fundamental
constants [8]. An updated version based on the 2006 values of
the fundamental constants [9] has been performed recently [10]
and these results are summarized below.
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3.1. Quantum Hall leg

Soon after the discovery of the quantum Hall effect in
1980 [11], Laughlin presented a topological argument for
RK = h/e2 in an idealized two-dimensional electron gas
(2DEG) [12]. As described by Jeckelmann and Jeanneret
[13], various theories based on more realistic models of QHR
devices also support the ideal relation. It must be noted,
however, that real QHR devices show deviations of the Hall
resistance from the expected value due to a host of effects such
as temperature, measurement current and contact resistance
[13]. There is no quantitative theory that includes all of these
effects and the use of the QHR as a fundamental resistance
standard requires adherence to a lengthy set of guidelines [14].
Thus it is only the value of the QHR extrapolated to zero
longitudinal resistance (i.e. zero dissipation) that is found to be
exactly quantized, and even with this restriction the fact that
εK = 0 is generally viewed as ‘a continuing surprise’ [8].

Empirically, the extrapolated value of the QHR has been
shown to be independent of the particular device, the host
material for the 2DEG (GaAs heterostructure or Si MOSFET),
the growth technique for GaAs 2DEGs (MBE or MOCVD),
the plateau index i and the mobility of the 2DEG within a
relative standard uncertainty of 3 × 10−10 or less [13, 15]. A
new method involving four devices on the same chip in a bridge
configuration yields the deviation of one device from the three
others and promises a large improvement in sensitivity [16].
This work reports a relative deviation of 3 × 10−10 and a
statistical uncertainty of 8 × 10−11, but other uncertainties
that may explain the deviation have not yet been quantified.
As mentioned in the Introduction, these results do not prove
εK = 0, but they do put tight constraints on any correction
mechanism.

The direct test of RK = h/e2 based on the 2006 values of
the constants [10] found

εK = (20 ± 18) × 10−9. (8)

Thus the best estimate of εK when the assumptions KJ = 2e/h

and RK = h/e2 are relaxed is consistent with zero. It turns
out that in the case of RK one can arrive at essentially the
same result without the full least-squares adjustment, and
it is instructive to present this argument as a check on the
more rigorous but less intuitive analysis. Precise comparisons
of QHR standards with the SI ohm have been done with a
Thompson–Lampard calculable capacitor, a special resistor
having a calculable ac/dc difference, and a lengthy chain
of ac, quadrature and dc bridges (the example with the
smallest uncertainty is [17]). Concise summaries of these
experiments are given in [8, 18]. The weighted mean of five
such experiments gives the following value for RK in terms of
the SI ohm [8],

RK = 25 812.808 18(47) � [1.8 × 10−8]. (9)

(Here the number in parentheses is the standard uncertainty
referred to the last digits of the quoted value and the number
in square brackets is the relative standard uncertainty.) As for
the SI value of h/e2, it can be expressed in terms of the fine

structure constant α, the speed of light c and the magnetic
constant µ0 as

h

e2
= µ0c

2α
= 25 812.807 557(18) � [6.8 × 10−10], (10)

where the numerical value is the 2006 recommended value
[9]. Since c and µ0 are defined constants in the current
SI, h/e2 depends only on α. Although the experiments
involving calculable capacitors do give values of α that affect
the numerical value of h/e2 slightly, two other types of
experiments (based on the electron magnetic moment anomaly
in one case and photon recoil of atoms in the other) have
uncertainties so much smaller that the final value of α is
nearly independent of experiments involving the QHR. Thus a
fairly good test of RK = h/e2 can be done by comparing the
numerical values in equations (9) and (10). This gives

εK = (24 ± 18) × 10−9, (11)

which is in good agreement with the more rigorous value in
equation (8).

The status of the QHR leg of the QMT can be summarized
as follows. (1) There is no theoretical prediction that εK

is not zero, provided that the QHR value is extrapolated to
zero longitudinal resistance. However, the general topological
arguments for exact quantization apply only to ideal systems
and an explanation for the exactness observed in real devices
remains elusive. (2) There is considerable empirical evidence
that the QHR value, again extrapolated to zero longitudinal
resistance, is universal at the level of a few parts in 1010. (3) A
direct test of RK = h/e2 indicates that εK is smaller than a few
parts in 108. Although this is widely viewed as good enough
to allow the proposed redefinition of the SI to proceed, there
is considerable room for improvement since the experimental
uncertainty of modern QHR standards is a few parts in 109 [6].

3.2. Josephson leg

Several arguments for the exactness of KJ = 2e/h were given
around 1970 [19–22], all based on very general properties such
as gauge invariance and the requirement that the wavefunction
of the superconducting condensate be single valued. Unlike the
case of the quantum Hall effect, real JVS devices are believed
to satisfy quite well the conditions assumed in the theory. As
shown by Fulton [20], this fact can be seen as a consequence of
the exactness of flux conservation in superconductors of closed
geometry. Thus these theoretical arguments are generally
viewed as providing a solid reason to expect εJ = 0.

Empirically, the universality of the voltage from a JVS has
been established by numerous experiments. Quoting relative
standard uncertainties in all cases, arrays of the same type
of junction agreed within 2 × 10−17 [23], arrays of different
types of junctions agreed within a few parts in 1010 [24,25] and
an array of high-temperature superconductor junctions agreed
with a conventional array within 2 × 10−8 [26]. Also, a pair
of single junctions agreed within 3 × 10−19 [27].

The direct test of KJ = 2e/h based on the 2006 values of
the constants [10] found

εJ = (−77 ± 80) × 10−9. (12)
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Thus the best estimate of εJ when the assumptions KJ = 2e/h

and RK = h/e2 are relaxed is consistent with zero. However,
further analysis has revealed that this result is not as robust as
originally thought. It turns out that the value of εJ is determined
predominately by two different routes, i.e. two different types
of observational equations and input data. Mohr et al [10]
have performed the adjustment with certain input data deleted
to reveal the contribution of each route and found

Route 1: εJ = (−281 ± 95) × 10−9,

Route 2: εJ = (407 ± 143) × 10−9.
(13)

Thus the routes individually give values of εJ that differ
significantly from zero but have opposite sign. The result
in equation (12) must therefore be seen as fortuitous, and
confidence in the direct test of KJ = 2e/h cannot be said to
extend below a few parts in 107. The origins of the discrepancy
between the two routes can be traced to inconsistencies among
the input data that were already discussed in the 2002 CODATA
report. To find a result free of these inconsistencies, Mohr et al
also performed the adjustment with both sets of discrepant data
deleted [10] and found

εJ = (238 ± 720) × 10−9. (14)

Thus using only nondiscrepant data gives a result that is
consistent with zero but with an uncertainty of about 7 parts in
107. For all of the alternative tests just described, the value and
uncertainty of εK are essentially unchanged from the result of
equation (8).

Unlike the case described above for RK = h/e2, a
simplified version of the direct test of KJ = 2e/h is not
possible. This is not due to a lack of precise measurements
of KJ in terms of the SI volt. A watt balance combined with
the SI ohm from a calculable capacitor yields a value of KJ,
and the best result of this type to date has an uncertainty1

of about 2 × 10−8. The difficulty is rather that there is
no independent value of 2e/h with comparable precision.
Because the CODATA adjustment of fundamental constants
assumes KJ = 2e/h exactly, the 2006 recommended value of
2e/h is dominated by this same watt balance result. The best
value of 2e/h that does not assume KJ = 2e/h comes from
a measurement of the molar volume of Si. (This somewhat
unintuitive link can be seen by writing 2e/h = (8α/µ0ch)1/2

and taking h from equation (144) of [8].) Using the 2006
recommended values [9], this value of 2e/h has an uncertainty
of about 1 part in 107, but it must be noted that the discrepancy
between the molar volume of Si result and other results,
discussed at length in [8], remains unresolved in the 2006
recommended values.

The status of the JVS leg of the QMT can be summarized
as follows. (1) There is no theoretical prediction that εJ is
not zero, and the general arguments for exact quantization are
viewed as applicable to real devices. (2) There is considerable
evidence that the voltage produced by a JVS is universal at

1 The chain from the calculable capacitor to a resistance of 100 � has an
uncertainty of 2.4 × 10−8 [28], and the best watt balance result to date has
an uncertainty of 3.6 × 10−8 [29]. Combining these yields an uncertainty for
the SI watt of about 4 × 10−8, and half this uncertainty for the SI value of KJ
since power is proportional to voltage squared.

the level of 10−10, and possibly much lower. (3) A direct test
of KJ = 2e/h is complicated by discrepancies among the
input data for various fundamental constants. A conservative
test excluding discrepant input data indicates that εJ is smaller
than about 7 parts in 107, while other tests raise questions about
possible corrections at 3 or 4 parts in 107. As with the QHR
leg, this is well above the experimental uncertainty of modern
JVS systems, which is a few parts in 1010 [6].

3.3. Single-electron tunnelling leg

In remarkable contrast to the cases of the QHR and the JVS,
little attention has been paid to the question of whether the
relation QS = e is exact, either theoretically or otherwise.
This is probably due to the fact that SET standards are
not currently used for calibrations and intercomparisons in
electrical metrology, so there has been little practical reason to
worry about a correction in this case. In the area of current,
using resistance and voltage artefacts traceable to the QHR and
JVS is adequate for existing calibration needs and in fact this
may continue to be the preferred path even after adoption of
an SI in which h and e are defined constants. In the area of
capacitance, a prototype standard based on counting electrons
has been demonstrated [30] but it seems unlikely to rival the
performance of calculable capacitors in either uncertainty or
ease of use. Nevertheless, investigation of a correction to
QS = e remains an important fundamental question and it
is possible that a need for calibrations directly involving SET
standards of current or charge will arise in the future. This
seems particularly likely at the extremes of small currents
or charges, small voltages and high resistances. From the
perspective of the QMT, it is necessary to consider the status
of all three legs in order to interpret any experimental results.

What are the theoretical constraints on the charge
transferred through the tunnel junctions in an SET device?
Although some general properties of fractional charge have
been described [31, 32], it appears there has been no detailed
analysis of this question. Perhaps the following discussion
will show why there should be. Within a single conductor,
the transfer of charge between two points is not quantized at
all. One can imagine displacing the electron gas relative to the
lattice by an arbitrarily small amount, which will result in an
arbitrary charge on the surfaces. At the other extreme, charge
transfer between two completely isolated conductors is also
well understood. Since the charge on any isolated object is an
integer multiple of e, this is the smallest unit of charge that
can be transferred between objects (various aspects of charge
quantization and the neutrality of matter are reviewed in [33]).
The regime of SET is precisely at the crossover between the two
extremes just described: the very nature of a tunnel junction
is to provide partial isolation between the metal electrodes
on either side. Thus one is compelled to wonder whether it
is possible that QS might be slightly different from e in this
crossover regime.

One aspect of the middle ground occupied by SET is
understood, and may be a fruitful starting point for a detailed
analysis of possible corrections to QS = e. As illustrated
in figure 2(a), the conditions under which charge transfer
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Figure 2. The transition between discrete and continuous charge
transfer through a tunnel junction. (a) Schematic of an ‘electron
box’ measurement [34]. (b) Island charge Q versus charge induced
by the gate voltage Ug.

through a tunnel junction becomes discrete are twofold.
The charge Q of an island isolated by a tunnel junction,
and coupled to a voltage source and an electrometer by
capacitors [34], will show discrete steps when two sources of
fluctuations are suppressed. First, the single-electron charging
energy of the island, EC = e2/2Ctot where Ctot is the total
island capacitance, must be larger than the energy of thermal
fluctuations at temperature T , Eth = kT , where k is the
Boltzmann constant. Second, the junction must be opaque
enough that quantum fluctuations are suppressed, which can
be quantified as follows. The lifetime of the island charge
set by tunnelling is τisl ∼ RCtot. The timescale for quantum
fluctuations of the island charge is �E�t ∼ h/2π with
�E = EC. The island charge will be well defined, and
thus observable as discrete multiples of e, when τisl � �t ,
which occurs when R � h/e2 ≈ 26 k�. Thus the charge
measured by the electrometer as a function of the voltage Ug

will vary smoothly for R � h/e2 and show discrete steps for
R � h/e2, as illustrated in figure 2(b). (A rigorous treatment
of the conditions for observing discrete charge transfer in
tunnel junctions can be found in [35].)

Given this picture of the transition between continuous and
discrete charge transfer through a tunnel junction, one must
then ask whether it is necessarily the case that the amount
of charge transferred becomes exactly e at the same point
where it becomes discrete. In other words, is it possible that
for some regime of junction resistance (and/or temperature)
SET devices could transfer charge in discrete units that were
slightly different from e? It is tempting to say ‘No’ and take the
view that any deviation from a quantized island charge simply
reflects fluctuations in the number of quanta and not in their
value, but it would be reassuring to have a rigorous analysis to
support this intuitive view.

There have been no empirical tests of the universality of
the current or charge from an SET standard. This is clearly
an area that needs more attention [36], but to date progress
has been limited by the fact that few groups have been able to
operate SET current standards with the required accuracy.

Since there are currently no observational equations in
the CODATA analysis that involve QS, a direct test similar
to those done for the QHR and JVS legs has not been done.
There are two experiments that have measured the current
produced by an SET device with a calibrated commercial

ammeter [37, 38]. Both found agreement with the expected
value of I = ef within a relative standard uncertainty of about
1 × 10−4. However, these experiments could not distinguish
between two possible effects: failure of the SET device to
transfer any charge during some cycles (transfer errors) and a
deviation from QS = e for cycles that did transfer charge [36].
A conclusive test requires that transfer errors be measured
independently (a method for doing this is described in [39]).

The status of the SET leg of the QMT can be summarized
as follows. (1) There is no theoretical prediction that εS is
not zero, but the question of possible corrections has received
little attention. Furthermore, it is worrisome that SET devices
operate precisely in a regime where one might expect to find
subtle corrections. (2) The universality of SET standards has
not been tested at all. (3) The best direct tests of QS = e have
large uncertainty and do not rule out confounding effects. For
comparison, the measured error rate per cycle in a 7-junction
SET pump, which measures mistakes in transferring charge
quanta but not the value of the quanta, is of order 1 part in
108 [39, 40].

Given all this, it is remarkable that discussions of the QMT
have generally focused on what it can reveal about the JVS and
QHR legs when the SET leg is by far the weakest!

3.4. Implications for QMT experiments

In light of the very different status of the three legs of the
QMT, how should one interpret the results of an actual QMT
experiment? The current state of knowledge leads to various
thresholds in uncertainty at which different conclusions can
be drawn. A result at about 1 part in 106 or above should be
interpreted primarily in terms of the SET leg, since there is little
question about the QHR and JVS legs in this regime. A result
between about 7 parts in 107 and 3 parts in 108 would bear on
both the SET and JVS legs, but do little in terms of additional
confidence in the QHR leg. Absent a better understanding of
the SET leg, the possibility of offsetting corrections would be
important in this regime. A result below about 3 parts in 108

would bear on all three legs, and again offsetting corrections
would have to be considered.

4. Recent NIST result for the QMT

A first result for the QMT, with a relative standard uncertainty
slightly less than 1 part in 106, has recently been completed
at NIST. I will briefly describe the experiment and then use
the discussion above to draw conclusions from the result.
The experiment involves NIST’s first-generation Electron
Counting Capacitance Standard, ECCS-1, described in [30].
Although ECCS-1 was first demonstrated in 1998, it is only
recently that a full uncertainty budget for the comparison with
a calculable capacitor has been completed. This is due in
large part to recent progress in determining the frequency
dependence of the cryogenic capacitor used in the ECCS [41].
Reference [42] has a complete description of the uncertainty
budget and operational details of the ECCS.

The essential idea of the ECCS circuit is illustrated in
figure 3. An SET pump operated for N cycles transfers a
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Figure 3. Schematic diagram of the electron counting capacitance
standard.

charge NQS onto a capacitor C, causing a voltage change
�U , and from the definition of capacitance we have

C = NQS

�U
. (15)

The capacitor is measured in terms of the SI farad using a
capacitance bridge traceable to NIST’s calculable capacitor,
and we denote this value asC0. The voltage change is measured
with a voltmeter calibrated using a JVS and the value of KJ

adopted in 1990, KJ-90 ≡ 483 597.9 GHz V−1 [43]. Thus �U

is measured in terms of a ‘1990 volt’ V90, and the conversion
to SI volts is made via the defining relation

V90

V
≡ KJ-90

KJ
. (16)

Using the notation that a quantity X is the product of its
numerical value and its unit, X = {X}Y Y = {X}Y′ Y′, we
can write �U as

�U = {�U}SI V = {�U}90 V90 = {�U}90
KJ-90

KJ
V. (17)

Equation (15) then becomes

C0 = NQSKJ

{�U}90KJ-90 V
= CECCS(1 + εS)(1 + εJ), (18)

where CECCS is the value of NQS/�U assuming εS = 0
and εJ = 0. The comparison of the ECCS with a calculable
capacitor can then be expressed as a measurement of the ratio

C0

CECCS
= (1 + εS)(1 + εJ) ≈ 1 + εS + εJ. (19)

As described in section 3.1, calculable capacitors have
been linked to the QHR with an uncertainty of about 2×10−8.
In these experiments, the balance of reactive and resistive
impedances realized with a quadrature bridge gives

RQHR = A2

ωC0
, (20)

where A2 represents various known factors such as bridge
ratios. Using the defining expression for the QHR in
equation (2), C0 is then given by

C0 = A2i

ω

e2/h

1 + εK
. (21)

Combining this with equation (19) yields an expression similar
to that in equation (6), where again A2, i and ω can be chosen
such that we have

1 = 1 + εJ + εS + εK. (22)

Thus the comparison of an ECCS with a calculable capacitor,
combined with the link between the calculable capacitor2 and
the QHR, yields a QMT that provides the same test as the
original version described in section 2.

The mean of the three values obtained using NIST’s
ECCS-1 is [42]

C0

CECCS
− 1 = (−0.10 ± 0.92) × 10−6. (23)

According to the conventional view of the QMT, this result
closes the QMT with an uncertainty slightly below 1 part in
106, which is too large to provide any additional confidence in
the quantum standards. However, the discussion above shows
how we can say more than this. First, since the QHR leg is not
essential to this result (see equation (19)), we can immediately
narrow the discussion to εJ and εS only. Furthermore, since
even the largest values of εJ indicated by the tests of Mohr et al
(see equations (13) and (14)) are smaller than the uncertainty
of the ECCS-1 result, it is reasonable to exclude εJ also. Thus
the primary conclusion should be that the SET leg has been
tested at an uncertainty of 9 parts in 107 and found to have
no correction, i.e. the experiment shows εS < 9.2 × 10−7.
Given the lack of other experimental tests of εS to date, this is
a significant result.

5. Conclusions

Considering theory, universality and direct tests involving
fundamental constants, the current status of the individual legs
of the QMT is quite different. On all three counts, the SET
leg is currently much weaker than the other two. Further
investigation of both the theory of discrete charge transfer
through tunnel junctions and of the universality of SET devices
is needed to increase confidence in quantum standards of
current and charge. A particularly interesting study would
be measurements of the value of QS for a range of junction
resistance [36]. Any systematic dependence on resistance
would provide a clue to possible correction mechanisms, and
the absence of such a dependence would put a useful constraint
on such mechanisms. While today it seems entirely likely
that all three quantum electrical standards are indeed exact,
searching for the limits of these effects may yet lead to a better
fundamental understanding of them and possibly to entirely
new discoveries.

2 Note that the calculable capacitor is not an essential element of this test,
since the link between capacitance and resistance could be made using artifact
standards only. Here the calculable capacitor simply plays the role of a stable
reference that allows the ECCS to be linked to the QHR without repeating the
quadrature bridge chain.
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