
 

 

 
Abstract 

 
Most digital still color cameras use a single electronic 

sensor (CCD or CMOS) overlaid with a color filter array. 
At each pixel location only one color sample is taken, and 
the other colors must be interpolated using neighboring 
samples. This color plane interpolation is known as 
demosaicking, which is one of the important tasks in a 
digital camera pipeline. Demosaicked images possess 
spatially periodic inter-pixel correlation. In this paper, 
such correlation is expressed in a quadratic form, and 
Principal Component Analysis is applied to filter out 
intrinsic scene correlation. A decision mechanism using BP 
neural networks and a majority-voting scheme is designed 
to recognize demosaicking correlation and authenticate 
digital photos. Experiments show that, the proposed 
method can accurately classify images by demosaicking 
algorithms or source cameras, and it is effective to detect 
rendering forgeries. The sensitivity and robustness of the 
method are also verified. This algorithm-independent 
approach is especially useful when demosaicking 
algorithm is only available in form of binary code or 
integrated circuit without technical detail.1 
 

1. Introduction 
Due to the limitation of hardware, most digital still color 

cameras use a single electronic sensor (CCD or CMOS) 
overlaid with a Color Filter Array (CFA), in a way that each 
sample point captures only one sample of the color 
spectrum. 

The most frequently used CFA pattern is the Bayer CFA 
pattern [1], a schematic diagram of which is shown in 
Figure 1, where R, G, and B denote red, green and blue 
color filters, respectively. In this pattern, the red and blue 
pixels are sampled on rectilinear lattices, while the green 
pixels are sampled on a quincunx lattice. Typically, CFA 
pattern design is in accordance with the principle that the 
luminance channel (green) needs to be sampled at a higher 
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rate than the chrominance channels (red and blue). The 
choice for green as 'representative' of the luminance is due 
to the fact that the luminance response curve of the eye 
peaks at around the frequency of green light (around 550 
nm). 
 

 
Figure 1. The Bayer CFA pattern 

 
Since, at the location of each pixel, only one color 

sample is taken, the other colors must be interpolated from 
neighboring samples. This color plane interpolation is often 
referred to as demosaicking, which is one of the important 
tasks in a digital camera pipeline. If demosaicking is not 
performed appropriately, images suffer from highly-visible 
color artifacts. Therefore it is a key technology in most 
commercial camera systems. It has been extensively 
studied since the invention of the Bayer CFA pattern (see, 
for example, [2] and [3] for a survey). 

Demosaicked images possess spatially periodic 
inter-pixel correlation. In this paper, such correlation is 
expressed in a quadratic form, and Principal Component 
Analysis is applied to filter out intrinsic scene correlation. 
A decision mechanism using BP neural networks and a 
majority-voting scheme is designed for demosaicking 
correlation recognition. This method is another new 
approach using camera hardware characteristics as clues 
for digital photo authentication. 

Digital photo authentication is becoming increasing 
important. This is mainly due to the fact that, nowadays, 
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photo-editing techniques have been very mature (see [4-6] 
for example). Beside its positive side such as reducing 
production cost, boosting and diversifying content etc., 
photo-editing also brings out series problems: do 
photographs reflect the real situation in the past? This has 
consequently invalidated the legal potency of photographs. 
There have been various works for digital photo 
authentication, e.g. [7] utilizes various kinds of pixel 
defects caused by hardware; [8] proposed 34 features 
which could be used by a classifier to identify the source 
camera of an image in a blind manner. 

The rest of the manuscript is arranged as follows: 
Section 2 presents the proposed approach and its rationale 
analysis; Section 3 is the experimental results for 
categorizing both artificially demosaicked images and 
commercial digital cameras produced photos. Finally, 
Section 4 is the conclusion with some discussions. 

2. The Proposed Method 

2.1. Quadratic Pixel Correlation Model 
Denote I (·) as one of the red, green, or blue channels. If 

pixel (x,y) is correlated to some other pixels linearly, it can 
be expressed as a weighted sum of these pixels: 

1
( , ) ( , )

N

i i i
i

I x y I x x y yα
=

= + Δ + Δ∑                  (1) 

Where N is the number of correlated pixels, α i , Δxi and Δyi 
are the weight, x offset and y offset of the i th correlated 
pixel respectively. The set consisting of offset coordinates 
(Δxi,Δyi) for 1≤i≤N is referred to as correlated pixel set. 

As a result of demosaicking, one color sample is 
correlated to their neighboring samples. Because the color 
filters in a CFA are typically arranged in periodic pattern, 
such correlation should demonstrate periodicity. Based on 
this, we assume that the correlated pixel set and its 
correspondent weights α i  of every pixel in I (·) is identical. 

Certainly this hypothesis is unrealistic, because a 
channel independent linear model is overly simplistic when 
compared to the highly non-linear nature of most 
demosaicking algorithms. This means the left and right 
sides of Eq.(1) are usually unequal and may differ greatly. 
Regarding the right side of Eq.(1) as a filter F applied to I (·) 
(denoted as F(I (·))), and accumulating the Mean Square 
Error of the two sides over I (·) gives: 
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(2) 
Where W and H are the width and height of the image 
respectively. 

By adding a virtual correlated pixel with αN + 1=-1, 
ΔxN + 1 =ΔyN + 1=0, Eq.(2) becomes a more orderly form: 

1
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Expanding Eq.(3) gives a quadratic form with respect to 
X={α 1 ,  α 2 ,  . . . ,  αN + 1}T: 

( ( ( )), ( )) TMSE F I I X AX=i i                       (4) 
Where 

1 1
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Having noticed that, the coefficient matrix A contains 
complete information for determining the variable vector X, 
we do not try to obtain X. Instead, A is taken directly for 
further analysis. 
 

  Δ    
 Δ  Δ  Δ   

Δ Δ  ⊗  Δ  Δ  
 Δ  Δ  Δ   
  Δ    

Figure 2. Schematic of an empirically chosen correlated pixel set, 
where ⊗  denotes the pixel under consideration, and Δ  denotes 
correlated pixels. 
 

It is found empirically that, the correlated pixel set 
illustrated in Figure 2 gives good results. Thus N=12 and A 
is with dimension 13 by 13. 

2.2. Principal Components Analysis 
The numerical values of the elements of A are 

substantially large, and it is their variations and fluctuation 
that contains demosaicking characters and information. 
Thus the following operation is performed on A: 

*( , ) [ ( , ) ] / , (1 , 1)A i j A i j A A i j N= − ≤ ≤ +            (5) 
Where 

2
1 , 1

1 ( , )
( 1) i j N

A A i j
N ≤ ≤ +

=
+ ∑ . 

It is commonsense that, different images have different 
scenes and pixel intensity patterns. The actual inter-pixel 
correlation of an image is a combination of both scene 
correlation and demosaicking correlation. How to shake off 
the effects of the pre-existing correlation due to scene 
brightness away from the matrix A* is the major difficulty 
for demosaicking recognition. 

We discovered that, scene correlation generally 
distributes evenly over Principal Components Analysis 
(PCA) space of A* while demosaicking correlation clusters 
at dimensions corresponding to large eigenvalues. Figure 
3(a-b) compares the distribution spaces before and after the 
PCA transform. 

Naturally, this leads to the idea of performing PCA on 
A* and then analyzing its principal components: 

Represent the matrix A* as a N2 dimensional vector β. 
Assume there are L images to form a training set {β1, β2…, 
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βL}. The average vector is 
1

1 L

i
iL

β β
=

= ∑ , and the difference 

vectors are βi*=βi- β , i=1,2,…L. So the estimate of the 
covariance matrix can be written as C=[β1*, β2*…, 
βL*][β1*, β2*…, βL*]T/(L-1). 

 Compute the eigenvalues and eigenvectors of C, 
denoted as {λ1, λ2…, λL} and {ξ1, ξ2…, ξL} 
(ξ1≥ξ2…≥ξL-1≥ξL) respectively. Choose M eigenvectors 
with the M largest eigenvalues to form the feature vector 
V=[λ1, λ2…, λM]T. Experiments show that M=15 is enough. 
Finally, βi* (i=1,2,…L) is turned into Γi=Vβi* with reduced 
dimension. 

2.3. Neural-Network Design 
We also tried SVM (Support Vector Machine) as the 

classifier, however, the experimental results are far from 
that of neural networks, in respect of the fact that, the 
highly non-linear nature of demosaicking interpolation 
compels the SVM to quite high dimension for the sake of 
depicting such correlation. 

Basically 3-layer feed-forward BP neural networks are 
adopted as shown in Figure 4: The input layer has M=15 
neurons, the hidden layer has 50 neurons and the output 
layer has 1 neuron indicating the degree of difference 
between training vectors previously fed to the network and 
the current input vector. The sigmoid transfer function of 
the hidden layer is tansig(x)=2/(1+exp(-2x))-1 and that of 
the output layer is logsig(x)=1/(1+exp(-x)). The training 
algorithm is selected to be the Scaled Conjugate Gradient 
method [13]. 

The training set is {Γ1, Γ2…, ΓL}, and the target value is 0. 
L should be elaborately selected. According to experience 
from experiments, L=100 balances the contradiction 
between the computing cost for training and the network 
performance satisfactorily. 
 

 
Figure 4. Schematic of a 3-layer BP neural network 

 
Interestingly, the technical means used here is quite 

similar to face recognition with PCA and neural-networks, 
if regarding A* in Eq.(5) as a grayscale face image. 

2.4. Making Decisions 
Denote D as the set of all demosaicking algorithms. 

D*=D ∪ {∅}, where∅  denotes doing nothing, leaving the 
original I (·) intact. Demosaicking recognition is actually to 
find a d∈D*, which has the highest probability that has 
been performed on I (·). Or from the perspective of our 
training and simulating mechanism, demosaicking 
recognition is to attribute I (·) to one of the |D*| classes of 

Figure 3. 2D distribution plot of the 6 demosaicking algorithms in the experiments in Subsection 3.1, whrere black triangles, green 
circles, red forks, yellow squares, viridescent crosses, pink stars, and blue dots stand for no-demosaick (original image), bilinear, 
bicubic, constant hue-based, median filter, gradient-based, and TBVNG algorithms respectively. For display purpose, only the results 
of 10 images are randomly chosen and drawn among the 100 for each algorithm. (a) is the space of A(1,1) and A(1,2). (b) is the space 
of the two most significant principal components Γ1 and Γ2. Even in this reduced 2D space, these demosaicking algorithms are, to some 
extend, clearly separable in (b). 
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training images that is the closest to I (·) measured in the 
demosaicking characteristics space. 

Different classes of training images hereby should be fed 
to different networks. The following 2 points are taken for 
considering the number of networks to keep: 

(1) It is natural to store different networks for d1, d2∈D*, 
d1≠d2. 

(2) As seen in [2-3,9-12], in the same demosaicking 
algorithm, demosaicking operators performed on the 
luminance channel (green) and the chrominance ones (red 
and blue) differ greatly. Therefore it is necessary to store 
different networks for them. For better results, our 
experiments keep 3 networks, one for each channel. 

Thus we store weights and bias values of |D*|= |D|+1 
networks for each channel, and 3(|D|+1) totally. For 
expression convenience, these networks are represented as 
a 2-D array, in which network[d][c] stands for the network 
with training images demosaicked by algorithm d∈D* on 
color channel c. And network[d][c](I (·)) is the output value 
of this network when simulating I (·). 

For a given I (·) on color channel c, the larger the 
|network[d][c](I (·))| is, the less likely I (·) is demosaicked 
by d. And the final decision d satisfies that, for any other 
d’≠d, d’∈D*, |network[d][c](I (·))|<|network[d’][c](I (·))|. 

2.5. Combine Three Channels Together 
It is seen that our method in the previous 4 subsections is 

channel-independent i.e. a “relatively” independent 
classification judgment is made for each channel. However, 
it is inadequate to say “absolute” independence because 
cross-correlation between channels exists (see, for example, 
Section II-A of [14] where the degree of inter-channel 
correlation is quantified). 

Hence, it is feasible to employ the majority-voting 
scheme [15] to enhance the reliability of the classifier: An 
image is recognized as demosaicked by an algorithm, only 
if a consensus is reached among the 3 channels i.e. at least 2 
channels make the same judgment; otherwise a rejection is 
given. 

This scheme may be enhanced by assigning different 
weights to different channels according to their 
inter-channel correlation. 

3. Experiments 
To evaluate the proposed technique, it is applied on both 

artificially demosaicked images and digital photos. In both 
experiments, each network is trained by 100 images and 
simulated by other 100 images. Figure 5 displays some 
example images from our image database. 

For ease of notation, an indicator κ is defined for a given 
I (·) on color channel c demosaicked by algorithm dc: 

min{| [ ][ ]( ( )) | | * { }}
| [ ][ ]( ( )) |

c

c

network d c I d D d
network d c I

κ = ∈ −
−

i

i
         (6) 

κ > 0 means network[dc][c] is less than all other 
network[d][c] for d≠dc, and a correct classification decision 
is made by our method; otherwise, our method fails on this 
channel. Only if our method fails on at least 2 channels of 
an image, a misjudgment or a rejection is given by the 
major-voting scheme. The larger the κ is, the higher the 
confidence is. 
 

 
Figure 5. Some example images from our image database 

 

3.1. Artificially Demosaicked Images 
The bilinear, bicubic [2-3], constant hue-based [9], 

median filter [10], gradient-based [11], and TBVNG 
(Threshold-Based Variable Number of Gradients) [12] 
demosaicking algorithms are performed to demosaick the 
original images and results in 7 sets of images including the 
original image set. The results are shown in Figure 6(a). 
Because the bilinear and constant-hue based interpolation 
use exact the same algorithm on the green channel which 
are theoretically impossible to differentiate, their 
corresponding κ values are very close to 0. Nevertheless, 
this does not harm the final recognition results too much, 
since the majority voting scheme can neglect failure on a 
single channel. 

3.2. Photos Produced by Commercial Cameras 
We also test the efficacy of the proposed method on 

photos produced by 4 commercially available digital 
cameras: DEC U350, SONY P73, Kodak Z730 and 
Olympus IS5000. All cameras are set to store photos in 
uncompressed format. Besides, we add a class of cartoon 
images for comparison. Figure 6(b) lists the results, where 
the recognition rates and the confidence κ of our method 
on real cameras is obviously lower, compared to that on 
ideal demosaicking operators in Subsection 3.1. This is 
natural considering the fact that, noise induced in different 
stages of the image formation pipeline of a digital camera 
more or less corrupts the periodic inter-pixel correlation 
left by demosaicking. 

3.3. Sensitivity and Robustness 
It is important to quantify the sensitivity and robustness 

of a technique for practical use. Therefore the trained 
networks in Subsection 3.2 are simulated using images with 
typical distortions: (1) JPEG compression (2) additive 
white Gaussian noise (3) gamma correction (4) median 
filter smoothing. 
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The results are displayed in Figure 7(a-d): Our method is 
to some extend endurable to JPEG compression; and its 
recognition rates decline gracefully with decreasing SNR 
of Gaussian noise and increasing |γ-1| in gamma correction. 
Such decline on performance is expected, since noises 
distort inter-pixel correlations. Notably, our method is so 
sensitive to median filters that a 7x7 median filter can 
completely invalidate it. This is due to the fact that, a pixel 
value is very likely to be moved to its neighborhood during 
median filtering and thus pixel neighborhood correlation is 
utterly destroyed. 

3.4. Digital Photo Authentication 
The last of the experiments is to apply our technique to 

digital photo authentication. Figure 8(d-f) are images 
containing perceptually plausible forgeries created using 
Adobe Photoshop, with their suspicious regions cropped. 
For comparison purpose, their corresponding real photos 
taken by a DEC U350 camera are displayed as Figure 
8(a-c). The real photos, the tampered photos, and the 
cropped counterfeit regions are tested by our method with 
the neural networks of DEC U350 in Subsection 3.2. The 
results are listed in Table 1. 
 

 Fig. 8(a,d) Fig. 8(b,e) Fig. 8(c,f)
Original image 0.512 0.189 0.621 

 Tampered image 1.052 0.471 0.869 
Cropped region 1.327 2.539 1.921 

Table 1. The absolute values of the output of the networks DEC 
U350 (averaged on the 3 channels) 
 

 Fig. 9(a,d) Fig. 9(b,e) Fig. 9(c,f)
Original image 0.691 0.215 0.543 

 Tampered image 0.924 0.512 0.982 
Cropped region 1.510 2.346 1.832 

Table 2. The absolute values of the output of the networks SONY 
P73 (averaged on the 3 channels) 
 

 Fig. 10(a,d) Fig. 10(b,e) Fig. 10(c,f)
Original image 0.746 0.313 0.509 

 Tampered image 0.989 0.624 0.941 
Cropped region 1.537 1.883 2.036 

Table 3. The absolute values of the output of the networks Kodak 
Z730 (averaged on the 3 channels) 
 

 Fig. 11(a,d) Fig. 11(b,e) Fig. 11(c,f)
Original image 0.385 0.435 0.473 

 Tampered image 2.716 1.373 1.257 
Cropped region 1.742 1.932 2.039 

Table 4. The absolute values of the output of the networks 
Olympus IS5000 (averaged on the 3 channels) 
 
 For clarity, Figure 9(a-f), Figure 10(a-f) and Figure 
11(a-f) are organized in the format very similar to Figure 
8(a-f), and their real photos are taken by SONY P73, 

Kodak Z730 and Olympus IS5000 cameras respectively. 
And analogously, they are tested by the neural networks of 
SONY P73, Kodak Z730 and Olympus IS5000, trained in 
Subsection 3.2. The results are listed in Table 2-4. 

In Table 1-4, the network output indicates the difference 
between the tested images and the images used for training, 
and it is seen that, detection on a smaller suspicious region 
provides more evident clues to reveal forgeries rather than 
detection on the entire image. Besides, it is natural to think 
that the region to be detected should be large enough to 
statistically demonstrate inter-pixel demosaicking 
correlation periodicity. 

Having noticed this, we try to improve this method by 
refining the selected rectangular window for test to be a 
manually selected pixel set, i.e. a more precise shape 
enclosing the suspicious region rather than a rectangle. And 
this selected pixel set is then utilized for the sum operation 
in Eq.(4). But the improvement on the discernability from 
the network output between the original and the tampered 
images is almost negligible. Due to the limited space, the 
corresponding results are not listed. It is apprehensible, 
because the matrix A* is the outcome of statistical 
correlation, instead of the correlation of a few individual 
pixels. 

While effectively tackling the aforementioned rendering 
forgeries, our method is powerless to detect copy-move 
forgeries. With the Lazy Snapping tool [6], Figure 12(d) is 
synthesized from Figure 12(a,b),  which are both taken by a 
DEC U350 camera. No matter how to select the tested 
window in Figure 12(d) (within either foreground or 
background, or across their border), the network output 
shows no abrupt change. However, if the photos 
synthesized are taken by different cameras, for example, 
Figure 12(e) is synthesized from Figure 12(a,c) taken by a 
DEC U350 camera and a SONY P73 camera respectively. 
The network output of DEC U350 within foreground and 
background are 0.2-0.8 and 0.7-1.1 and that of SONY P73 
are 0.8-1.5 and 0.1-1.0 respectively, which is still 
differentiable to some degree. 

4. Conclusion 
Photos produced by most digital still color cameras are 

demosaicked. Because the color filters in a CFA are 
typically arranged in a periodic pattern, demosaicked 
images should demonstrate spatially periodic inter-pixel 
correlation. In this paper, we present a quadratic pixel 
correlation model, in which such correlation is expressed in 
a quadratic form. Based on this model, Principal 
Component Analysis is applied to filter out intrinsic scene 
correlation. A decision mechanism using BP neural 
networks and a majority-voting scheme is designed for 
demosaicking correlation recognition and digital photo 
authentication. Experimental results verify the validity and 
practicability of this method. If taking inter-channel 
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correlation ([14] provides some statistics) into 
consideration rather than using the majority-voting scheme 
to combine the 3 channels together, better results may be 
achieved. 

Our method is a general-purpose approach for 
demosaicking recognition, which does not depend on 
technical details of the demosaicking algorithms. So it is 
especially useful when the demosaicking algorithms to be 
detected are very complicated, or only available to be used 
without its technical detail released due to specific 
commercial or political reasons. 
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Figure 6. (a-b) Experimental results of Subsections 3.1 and 3.2, where each grid on the horizontal axis displays 3 colored strips for the 
results of the red, green, blue channels of a demosaicking algorithm/camera, the vertical axis is the average κ over 100 images. Recognition 
rate is labeled under the name of each demosaicking algorithm/camera. 
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Figure 7. (a-d) Recognition rates for different cameras as a function of JPEG quality, SNR (Signal-to-Noise Ratio) of white Gaussian noise, 
the γ value of gamma correction, radius of median filter respectively. Each data point corresponds to a recognition rate over 100 images. 
 

 
     (a)       (b)             (c)         (d)        (e)         (f) 
 
 
 
Figure 8. (a-c) 3 real images taken by a DEC U350 camera. (d) It is tampered from (a) in the following places: The kind of bald lawn 
becomes grass green; the lower part of the rope binding the tree in the middle portion of the photo is adhered to lichen; the street lamp is 
“lighted”; and the old pink wall of the two apartment buildings at both left and right parts of the photo is “repainted”. (e) The man is clothed 
with a black sweater, outside his stripped T-shirt originally in (b). (f) The curtain at the rear of the room in (c) is colored with brown yellow. 
The tested windows are suspicious and cropped for detection. 
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Figure 9. (a-c) 3 real images taken by a SONY P73 camera. (d) It is tampered from (a) with the green leaves of the tree faded with yellow. 
(e) The electric pole cropped is scorched. (f) The red leaves of one of the maples is turned into green color. 
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Figure 10. (a-c) 3 real images taken by a Kodak Z730 camera. (d) It is tampered from (a) with the bright sky darken. (e) The stone is 
attached with some lichen at its dimmest portion, it is not very noticeable though. (f) The pink exterior wall of the building is painted with 
a little bit deeper color. 
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Figure 11. (a-c) 3 real images taken by a Olympus IS5000 camera. (d) It is tampered from (a) with the sky darken. (e) The yellow flowers 
at the farthest becomes a little greenish. (f) The bottom part of the green grove is covered with emerald mist. 
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(d) (e)  

Figure 12. (a-b) 2 real images taken by a DEC U350 camera. (c) A real images taken by a SONY P73 camera. (d) The shorter person in (a) 
is extracted and synthesized with new background scene (b). (d) The person in (a) is synthesized with another background (c). 
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