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Abstract—This paper proposes an edge-directed interpolation
algorithm for natural images. The basic idea is to first estimate
local covariance coefficients from a low-resolution image and
then use these covariance estimates to adapt the interpolation at
a higher resolution based on the geometric duality between the
low-resolution covariance and the high-resolution covariance. The
edge-directed property of covariance-based adaptation attributes
to its capability of tuning the interpolation coefficients to match
an arbitrarily oriented step edge. A hybrid approach of switching
between bilinear interpolation and covariance-based adaptive
interpolation is proposed to reduce the overall computational
complexity. Two important applications of the new interpolation
algorithm are studied: resolution enhancement of grayscale
images and reconstruction of color images from CCD samples.
Simulation results demonstrate that our new interpolation
algorithm substantially improves the subjective quality of the
interpolated images over conventional linear interpolation.

Index Terms—Covariance-based adaptation, demosaicking, geo-
metric regularity, image interpolation.

I. INTRODUCTION

I MAGE interpolation addresses the problem of generating a
high-resolution image from its low-resolution version. The

model employed to describe the relationship between high-res-
olution pixels and low-resolution pixels plays the critical role
in the performance of an interpolation algorithm. Conventional
linear interpolation schemes (e.g., bilinear and bicubic) based
on space-invariant models fail to capture the fast evolving statis-
tics around edges and consequently produce interpolated images
with blurred edges and annoying artifacts. Linear interpolation
is generally preferred not for the performance but for computa-
tional simplicity.

Many algorithms [1]–[12] have been proposed to improve
the subjective quality of the interpolated images by imposing
more accurate models. Adaptive interpolation techniques
[1]–[4] spatially adapt the interpolation coefficients to better
match the local structures around the edges. Iterative methods
such as PDE-based schemes [5], [6] and projection onto convex
sets (POCS) schemes [7], [8], constrain the edge continuity and
find the appropriate solution through iterations. Edge-directed
interpolation techniques [9], [10] employ a source model
that emphasizes the visual integrity of the detected edges
and modify the interpolation to fit the source model. Other
approaches [11], [12] borrow the techniques from vector
quantization (VQ) and morphological filtering to facilitate the
induction of high-resolution images.
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In this paper, we propose a novel noniterative orientation-
adaptive interpolation scheme for natural-image sources. Our
motivation comes from the fundamental property of an ideal
step edge (known as geometric regularity [13]), i.e., that the
image intensity field evolves more slowlyalongthe edge orien-
tation thanacrossthe edge orientation. Geometric regularity has
important effects on the visual quality of a natural image such
as the sharpness of edges and the freedom from artifacts. Since
edges are presumably very important features in natural images,
exploiting the geometric regularity of edges becomes paramount
in many image processing tasks. In the scenario of image inter-
polation, an orientation-adaptive interpolation scheme exploits
this geometric regularity.

Previous approaches to orientation adaptation [1], [3], [9]
have proposed to explicitly estimate the edge orientation and
accordingly tune the interpolation coefficients. However, these
explicit approaches quantize the edge orientation into a finite
number of choices (e.g., horizontal, vertical or diagonal) which
affects the accuracy of the imposed edge model. In our previous
work on edge-directed prediction for lossless image coding [14],
we have shown that covariance-based adaptation is able to tune
the prediction support to match an arbitrarily oriented edge. In
this work, we extend the covariance-based adaptation method
into a multiresolution framework. Though the covariance-based
adaptation method dates back to two-dimensional (2-D) Kalman
filtering [15], its multiresolution extension has not been ad-
dressed in the open literature.

The principal challenge of developing a multiresolution co-
variance-based adaptation method is how to obtain the high-res-
olution covariance from the available low-resolution image. The
key in overcoming the above difficulty is to recognize the geo-
metric duality between the low-resolution covariance and the
high-resolution covariance which couple the pair of pixels along
the sameorientation. This duality enables us to estimate the
high-resolution covariance from its low-resolution counterpart
with a qualitative model characterizing the relationship between
the covariance and the resolution, as we shall describe in Sec-
tion II. With the estimated high-resolution covariance, the op-
timal minimum mean squared error (MMSE) interpolation can
be easily derived by modeling the image as a locally stationary
Gaussian process. Due to the effectiveness of covariance-based
adaptive models, the derived interpolation scheme is truly ori-
entation-adaptive and thus dramatically improves the subjective
quality of the interpolated images over linear interpolation.

In spite of the impressive performance, the increased
computational complexity of covariance-based adaptation
is prohibitive. As shown in Section II, the complexity of
covariance-based adaptive interpolation is about two orders
of magnitude higher than that of linear interpolation. With
the recognition of the fact that covariance-based adaptive
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interpolation primarily improves the visual quality of the
pixels around edges, we propose a hybrid approach to achieve
a better tradeoff between visual quality and computational
complexity. Covariance-based adaptive interpolation is only
employed for the pixels around edges (“edge pixels”). For the
pixels in the smooth regions (“nonedge pixels”), we still use
bilinear interpolation due to its simplicity. Since edge pixels
often consist of only a small fraction of pixels in the image,
the hybrid approach effectively alleviates the burden of the
computational complexity without sacrificing the performance.

We have studied two important applications related to image
interpolation: resolution enhancement of a grayscale image [16]
and reconstruction of a full-resolution color image from CCD
samples (so-called “demosaicking” problem [17]). Our new
edge-directed interpolation algorithm can be easily applied in
both applications. In particular, for the demosaicking problem,
we also consider the interpolation in the color-difference space
in order to exploit the dependency among the color planes as
suggested by [18], [19]. We use extensive simulation results to
demonstrate that new edge-directed interpolation significantly
improves the visual quality of the reconstructed images over
linear interpolation in both applications.

It is generally agreed that peak signal-to-noise ratio (PSNR)
does not always provide an accurate measure of the visual
quality for natural images except in the case that the only source
of degradation is additive white noise. Though there exist other
objective image quality metrics such as degradation-based
quality measures [20], we find that the artifacts related to the
orientation of edges (e.g., jaggy artifacts) are not predicted
by the degradation models considered in [20]. Though it is
possible to apply the fan filters to decompose an image into
different orientation bands and take the masking effect into
account by distinguishing in-band and out-of-band noise [21],
the overall vision model becomes too complicated and is out of
the scope of this paper. Therefore, we shall only rely on subjec-
tive evaluation to assess the visual quality of the interpolated
images in this paper. Fortunately, the improvements brought
by new edge-directed interpolation over linear interpolation
can often be easily observed when the interpolated images are
viewed at a normal distance.

The rest of this paper is organized as follows. Section II
presents the new edge-directed interpolation algorithm. Sec-
tion III studies two applications of the proposed interpolation
scheme. Simulation results are reported in Section IV and some
concluding remarks are made in Section V.

II. NEW EDGE-DIRECTED INTERPOLATION

Without the loss of generality, we assume that the low-reso-
lution image of size directly comes from of size
of , i.e., . We use the following basic
problem to introduce our new interpolation algorithm: How do
we interpolate the interlacing lattice from the lattice

. We constrain ourselves to the fourth-order linear
interpolation (refer to Fig. 1)

(1)

where the interpolation includes the four nearest neighbors
along the diagonal directions.

A reasonable assumption made with the natural image source
is that it can be modeled as a locally stationary Gaussian process.
According to classical Wiener filtering theory [22], the optimal
MMSE linear interpolation coefficients are given by

(2)

where and
are the local covariances at the high resolution (we call them
”high-resolution covariances” throughout this paper). For ex-
ample, is defined by , as shown in Fig. 1.
A practical approach to obtain the expectation is to average over
a collection of the observation data. However, since
is the missing pixel we want to interpolate, the following ques-
tion emerges naturally: is it possible to obtain the knowledge
of high-resolution covariances when we have access to only the
low-resolution image?

The answer is affirmative for the class of ideal step edges
that have an infinite scale (the case of other edge models with
a finite scale will be discussed later). We propose to estimate
the high-resolution covariance from its low-resolution counter-
part with a qualitative model characterizing the relationship be-
tween thecovarianceand theresolution. Let us start from an
ideal step edge model in the one-dimensional (1-D) case. We
denote the sampling distance at the low and the high resolution
by and respectively. Under the locally stationary Gaussian
assumption, the relationship between the normalized covariance
and the sampling distancecan be approximated by a function

. It follows that the high-resolution covariance
is linked to the low-resolution covariance by a quadratic-root
function . Asymptotically as the sampling
distance goes to 0, can be approximately replaced by

for the simplicity of computation.
For 2-D signals such as images,orientationis another impor-

tant factor for successfully acquiring the knowledge of high-res-
olution covariances. One of the fundamental property of edges is
the so-called “geometric regularity” [13]. Geometric regularity
of edges refers to the sharpness constraintacrossthe edge ori-
entation and the smoothness constraintalong the edge orienta-
tion. Such orientation-related property of edges directly affects
the visual quality around edge areas. It should be noted that the
local covariance structure contains sufficient information to de-
termine the orientation. However, we do not want to estimate the
orientation from the local covariances due to the limitations of
the explicit approaches described before. Instead, we propose to
estimate the high-resolution covariance from its low-resolution
counterpart based on their intrinsic “geometric duality.”

Geometric duality refers to the correspondence between the
high-resolution covariance and the low-resolution covariance
that couple the pair of pixels at the different resolution but along
the same orientation. Fig. 1 shows the geometric duality be-
tween the high-resolution covariance and the low-res-
olution covariance when we interpolate the interlacing
lattice from . Geometric duality facilitates the
estimation of local covariance for 2-D signals without the neces-
sity of explicitly estimating the edge orientation. Similar geo-
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Fig. 1. Geometric duality when interpolatingY from Y .

metric duality can also be observed in Fig. 2 when interpo-
lating the interlacing lattice from the lattice

. In fact, Figs. 1 and 2 are isomorphic up to
a scaling factor of and a rotation factor of .

As long as the correspondence between the high-resolution
covariance and the low-resolution covariance is established, it
becomes straightforward to link the existing covariance estima-
tion method and covariance-based adaptation method together.
The low-resolution covariance can be easily estimated
from a local window of the low-resolution image using the clas-
sical covariance method [22]

(3)

where is the data vector containing the
pixels inside the local window and is a data

matrix whose th column vector is the four nearest neighbors
of along the diagonal direction. According to (2) and (3), we
have

(4)

Therefore, the interpolated value of can be obtained
by substituting (4) into (1).

The edge-directed property of covariance-based adaptation
comes from its ability to tune the interpolation coefficients to
match an arbitrarily-oriented step edge. Detailed justification of
such orientation-adaptive property can be found in [14]. How-
ever, for the class of edge models with finite scales (e.g., tightly
packed edges that can be commonly found in the texture pat-
terns), frequency aliasing due to the downsampling operation
can affect the preservation of the true edge orientation. When
the scale of edges introduced by the distance between adja-
cent edges becomes comparable to the sampling distance,
the aliasing components significantly overlap with the original
components and might introduce phantom dominant linear fea-
tures in the frequency domain. Such phenomena will not affect
the visual quality of the interpolated image but will affect its fi-
delity to the original image.

The principal drawback with covariance-based adaptive in-
terpolation is its prohibitive computational complexity. For ex-
ample, when the size of the local window is chosen to be ,

Fig. 2. Geometric duality when interpolatingY (i+j = odd) fromY (i+
j = even).

the computation of (4) requires about 1300 multiplications per
pixel. If we apply covariance-based adaptive interpolation to all
the pixels, then the overall complexity would be increased by
about two orders of magnitude when compared to that of linear
interpolation. In order to manage the computational complexity,
we propose the following hybrid approach: covariance-based
adaptive interpolation is only applied to edge pixels (pixels near
an edge); for nonedge pixels (pixels in smooth regions), we
still use simple bilinear interpolation. Such a hybrid approach
is based on the observation that only edge pixels benefit from
the covariance-based adaptation and edge pixels often consist
of a small fraction of the whole image. A pixel is declared to
be an edge pixel if an activity measure (e.g., the local variance
estimated from the nearest four neighbors) is above a prese-
lected threshold . Since the computation of the activity mea-
sure is typically negligible when compared to that of covariance
estimation, dramatic reduction of complexity can be achieved
for images containing a small fraction of edge pixels. We have
found that the percentage of edge pixels ranges from 5% to 15%
for the test images used in our experiments, which implies a
speed-up factor of 7–20.

III. A PPLICATIONS

A. Resolution Enhancement of Grayscale Images

The new edge-directed interpolation algorithm can be used
to magnify the size of a grayscale image by any factor that is
a power of two along each dimension. In the basic case where
the magnification factor is just two, the resizing scheme con-
sists of two steps: the first step is to interpolate the interlacing
lattice from the lattice ; and the second step
is to interpolate the other interlacing lattice
from the lattice . The algorithm described in
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Section II can be directly applied to the first step. As we men-
tioned earlier, the second step (Fig. 2), if rotated by 45along
the counter-clockwise direction and scaled by a factor of 2,
becomes exactly the same as the first step (Fig. 1). Therefore,
the implementation of the second step is almost identical to that
of the first step except the labeling of the data matrixand the
data vector .

B. Demosaicking of Color CCD Samples

Another important industrial application of new edge-di-
rected interpolation is the so-called “demosaicking” problem
[17], i.e., the reconstruction of a full-resolution color image
from CCD samples generated by the Bayer color filter array
(CFA), as shown in Fig. 3. It is easy to see that our algorithm
easily lends itself to the demosaicking problem. Two-step
algorithm described in Section III-A can be directly used to
interpolate the missing red and blue pixels; and only the second
step is needed for the green pixels. However, the approaches
of treating (R,G,B) planes independently ignore the strong
dependency among the color planes and annoying artifacts
brought by the color misregistration are often visible in the
reconstructed color images.

Recent demosaicking methods [17]–[19] have shown that the
performance of CFA interpolation can be significantly improved
by exploiting the interplane dependency. In particular, [18] and
[19] advocate the interpolation in the color-difference space in-
stead of the original color space. More specifically, they con-
sider the color difference and during
the interpolation. For example, when interpolating the missing
green pixel at the location of a Red pixel (refer to Fig. 3), in-
stead of recovering it by the average of the four surrounding
green pixels, the color difference is interpolated from the
average of the four surrounding values at the green pixels
and then the Green pixel is recovered by . The
missing green pixels at the locations of the blue pixels can also
be recovered in a similar fashion and the interpolation of the
missing red and blue pixels follows the same philosophy.

The underlying assumption made by the interpolation in the
color-difference space is that the color difference is locally con-
stant. Though such an assumption is valid within the boundary
of an object, it often gets violated around edges in color images.
If linear interpolation is employed, the problem of color mis-
registration still exists around edges where the color difference
experiences a sharp transition. Our new edge-directed interpo-
lation effectively solves this problem by interpolating along the
edge orientation in the color-difference space. By avoiding the
interpolation across the edge orientation in the color-difference
space, we successfully get rid of the artifacts brought by the
color misregistration and further improve the subjective quality
of the reconstructed image. Such improvement can be clearly
seen from the simulation results reported in the next section.

IV. SIMULATION RESULTS

As mentioned in the introduction, most existing objective
metrics of image quality cannot take the visual masking ef-
fect around an arbitrarily-oriented edge into account. Therefore,

Fig. 3. Bayer color filter array pattern (U.S. Patent 3 971 065, issued 1976).

we shall only rely on subjective evaluation to assess the visual
quality of the interpolated images. We believe that the improve-
ments on visual quality brought by new edge-directed interpo-
lation can be easily observed when the images are viewed at a
normal distance.

We have used four photographic images: Airplane, Cap,
Motor, and Parrot as our benchmark images. The original 24-bit
color images are 768 512 (around 1 MB). Photographic im-
ages in this range (with the resolution of 0.25 M–1 M pixels)
are widely available in current digital camera products. Two
sets of experiments have been used to evaluate the effectiveness
of the proposed interpolation algorithm: one for grayscale
images and the other for color images.

In the first set of experiments with grayscale images, we use
the luminance components of the four color images. The new
edge-directed interpolation is compared with two conventional
linear interpolation methods: bilinear and bicubic. The low-res-
olution image (with the size of 384 256) is obtained by direct
downsampling the original image by a factor of two along each
dimension (aliasing is introduced). The implementations of bi-
linear and bicubic interpolation are taken from MATLAB 5.1
[23]. In our implementation of new edge-directed interpolation
algorithm, the window size and the threshold to declare an
edge pixel are both set to be 8. Figs. 4–7 include the compar-
ison of the portions of the interpolated images. We can observe
that annoying ringing artifacts are dramatically suppressed in
the interpolated images by our scheme due to the orientation
adaptation. In terms of complexity, the running time of linear
interpolation is less than 1 s; while the proposed edge-directed
interpolation requires 5–10 s, depending on the percentage of
edge pixels in the image. Therefore, the overall complexity of
our scheme even with the switching strategy is still over an order
of magnitude higher than that of linear interpolation.

In the second set of experiments, we implement three demo-
saicking schemes for color images: scheme 1 is based on linear
interpolation techniques in the original color space; scheme 2
uses linear interpolation techniques in the color-difference space
as does [19]; and scheme 3 employs new edge-directed interpo-
lation in the color-difference space. Figs. 8 and 9 shows the por-
tions of the interpolated color Parrot image and their close-up
comparisons. It can be observed that scheme 3 generates the
image with the highest visual quality. Interpolation in the color-
difference space suppresses the artifacts associated with color
misregistration, as we compare Figs. 9(b) and (c). But Fig. 9(c)
still suffers from noticeable dotted artifacts around the top of
the parrot where there is a sharp color transition. New edge-di-
rected interpolation better preserves the geometric regularity



LI AND ORCHARD: NEW EDGE-DIRECTED INTERPOLATION 1525

Fig. 4. Portions of (a) original Airplane image, (b) reconstructed image by
bilinear interpolation, (c) reconstructed image by bicubic interpolation, and (d)
reconstructed image by new edge-directed interpolation.

Fig. 5. Portions of (a) original Cap image, (b) reconstructed image by
bilinear interpolation, (c) reconstructed image by bicubic interpolation, and (d)
reconstructed image by new edge-directed interpolation.

around the color edges and thus generates interpolated images
with higher visual quality.

Fig. 6. Portions of (a) original Motor image, (b) reconstructed image by
bilinear interpolation, (c) reconstructed image by bicubic interpolation, and (d)
reconstructed image by new edge-directed interpolation.

Fig. 7. Portions of (a) original Parrot image, (b) reconstructed image by
bilinear interpolation in the, (c) reconstructed image by bicubic interpolation,
and (d) reconstructed image by new edge-directed interpolation.

V. CONCLUDING REMARKS

In this paper, we present a novel edge-directed interpolation
algorithm. The interpolation is adapted by the local covariance
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Fig. 8. Portions of (a) original Parrot image, (b) reconstructed image by
bilinear interpolation in the original color space, (c) reconstructed image by
bilinear interpolation in the color-difference space, and (d) reconstructed image
by new edge-directed interpolation in the color-difference space.

Fig. 9. Close-up comparison of (a) original Parrot image, (b) reconstructed
image by bilinear interpolation in the original color space, (c) reconstructed
image by bilinear interpolation in the color-difference space, and (d)
reconstructed image by new edge-directed interpolation in the color-difference
space.

and we provide a solution to estimate the high-resolution co-
variance from the low-resolution counterpart based on their geo-
metric duality. A hybrid scheme of combining bilinear interpo-

lation and covariance-based adaptive interpolation is proposed
to alleviate the burden of the computational complexity. We
have studied two important applications of our new interpola-
tion algorithm: resolution enhancement of grayscale images and
demosaicking of color CCD samples. In both applications, new
edge-directed interpolation demonstrates significant improve-
ments over linear interpolation on visual quality of the inter-
polated images.
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