

Presentation to House of Representatives Standing Committee on Industry and Resources

9 February 2006

Inquiry into Developing Australia's Non-fossil Fuel Energy

Case Study: The Strategic Importance of Australia's Uranium Resources

Dr. Michael Goldsworthy, CEO

Silex Systems Limited

Forward looking statements

Silex is a research and development company whose assets are its proprietary rights in technologies, including, but not limited to, the SILEX technology, Translucent technology and Fiberbyte technology. The company's technologies are in the development stage and have not been commercially deployed. Accordingly, the statements in this presentation regarding the future of the company's technologies and commercial prospects are forward looking and actual results could be materially different from those expressed or implied by such forward looking statements as a result of various factors. Some factors that could affect future results and prospects include, but are not limited to, results from the uranium enrichment development program and the stable isotopes program, the demand for enriched materials including uranium, silicon, oxygen, carbon and others, the outcomes of the company's interests in various semiconductor and photonics technologies, the time taken to develop various technologies and the development of alternative technologies.

MISSION

OUR MISSION :

to become a world leader in -

Isotopically Enriched Materials

- > Uranium
- ➢ Silicon

>Advanced Semiconductor Materials

- Optical Silicon Interconnects
- ➢ SOI and 'High-k' substrates

3

About Silex Systems

- Australian listed technology company (SLX:ASX), est. 1988.
- Market Cap ~ \$400M Shareholders ~5000.
- Historical background refer to website (www.silex.com.au).
- Employees ~ 40, including 12 PhD's, 11 Engineers
- Several technologies nearing commercialisation
- Seeking Uranium Enrichment partner for scale-up and commercialisation

Current Operations and Target Markets

1) SILEX TECHNOLOGY DIVISION (Sydney)	Estimated Total Market Size US\$
Uranium Enrichment (Nuclear Fuel Industry)	~ \$5,000M
Silicon Enrichment (Semiconductor Wafer Industry)	> \$1,000M
Carbon and Oxygen Enrichment (Medical Diagnostic Isotopes)	> \$100M

2) SEMICONDUCTOR TECHNOLOGY DIVISION	US\$
Optical Silicon (Translucent – Palo Alto, USA)	> \$3,000M
Advanced Electronic Materials (Translucent – Palo Alto, USA)	>\$1,000M
Fiberbyte (USB InSync & DAQ) (Adelaide & USA)	~ \$400M

5

The World Today.....

- Global electricity demand to double by 2030
 - Driven by industrial modernisation of China and India
- The vast majority of this growth will be supplied by COAL
- COAL is driving up atmospheric CO₂ levels:
 - 280ppm (pre-industrial 1850) \rightarrow 370ppm (2000)
- CO₂ is driving Global Climate Change: the greenhouse effect.
- Global Climate Change is already embedded will only get worse.
- World oil and gas reserves are depleting \rightarrow fossil fuel costs rising.

Conclusions - Our energy consumption habits are unsustainable - We must develop alternatives immediately

Potential Solutions

- Decrease Fossil Fuel consumption and CO₂ levels
- Increase reliance on Nuclear Power
- Increase reliance on Renewable Energies (Wind, Solar etc).
- Accelerate the Hydrogen Economy (via nuclear power).
- Improve Energy Efficiency
- An *integrated mix* of nuclear, renewables, hydrogen and energy efficiency measures is required, and inevitable.

The Australian Perspective

Vast coal reserves

 \rightarrow major global polluter \rightarrow need 'clean coal' technologies

• Vast uranium reserves

- \rightarrow withheld by political interference
- \rightarrow need to accelerate resource development
- Renewables and hydrogen
 - \rightarrow minimal political response
 - \rightarrow need to accelerate development

Conclusions:

- Australian has a 'golden' economic opportunity
- A bi-partisan energy strategy is urgently needed
- A unique opportunity for political leadership exists

Nuclear Power

A Global Nuclear Power Renaissance is Underway:

- Currently 17% of world's electricity supplied by nuclear power
- 440+ reactors currently operating
- 70+ being built / planned + accelerated development in Asia
- No greenhouse gas emissions → will not impact global climate
- Governments and Utilities around the world are re-assessing the nuclear power option.
- Public opinion is changing!

The Nuclear Issues

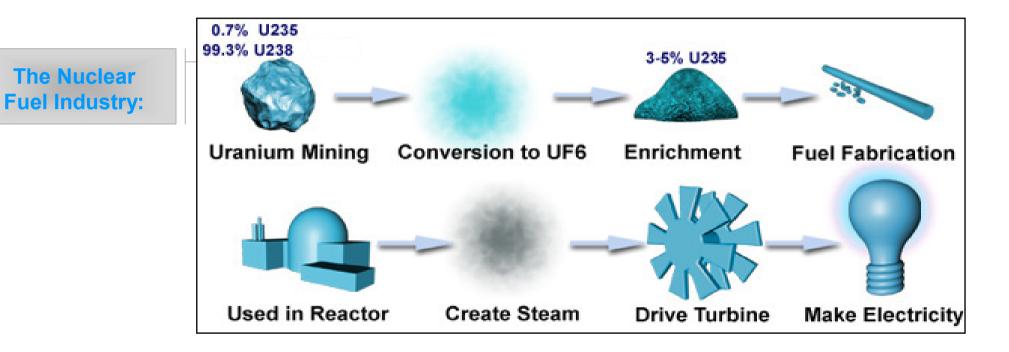
1. Uranium Enrichment and Non-Proliferation

2. Nuclear Power Reactor Safety

- Highest priority world's Best Practice
- Reactor Technology has matured
- 3rd and 4th generation reactors failsafe and human-proof
- 3. Nuclear Waste Remediation
 - Technology has matured borosilicate glass and Synroc
 - Permanent immobilisation in solid matrix and deep geological disposal.
 - Successful demonstrations (eg Sweden) and developments (eg US-Yucca Mtn).
 - Political issue (NIMBY) not a technical issue

Uranium Enrichment and Non-Proliferation

International:


- Significant international security issue (Iran, Nth Korea)
- Question of access to uranium enrichment technology
 US Government Proliferation Security Initiative (PSI).

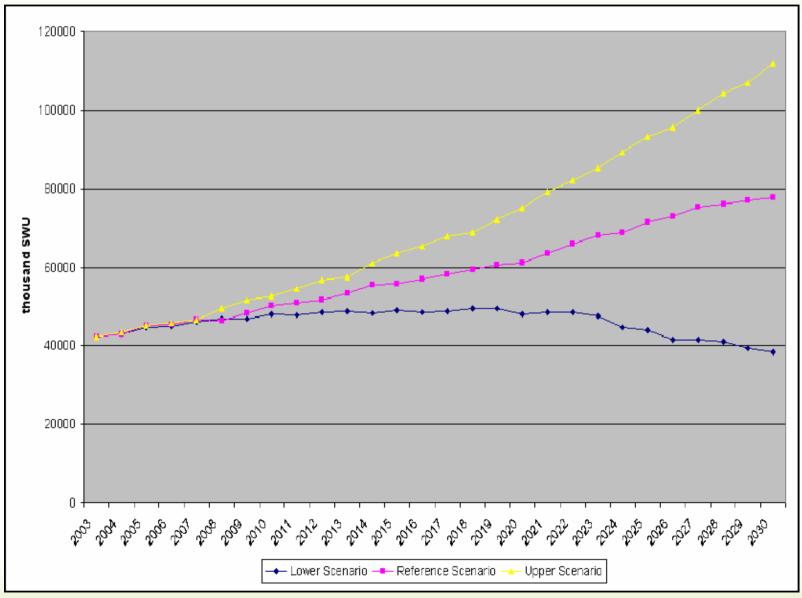
SILEX:

- Laser technology far more complex and sophisticated than centrifuge.
- Australia and US best equipped to safeguard SILEX Technology.
- Australia has track record for strongest non-proliferation policies.
- Signatory to IAEA NPT and a strict bi-lateral treaty regime.
- Special Aus-US Co-operation Agreement to safeguard SILEX.
- Silex is the most heavily regulated company in Australia
- SILEX Technology very effectively safeguarded for 15 years.

SILEX Uranium Enrichment

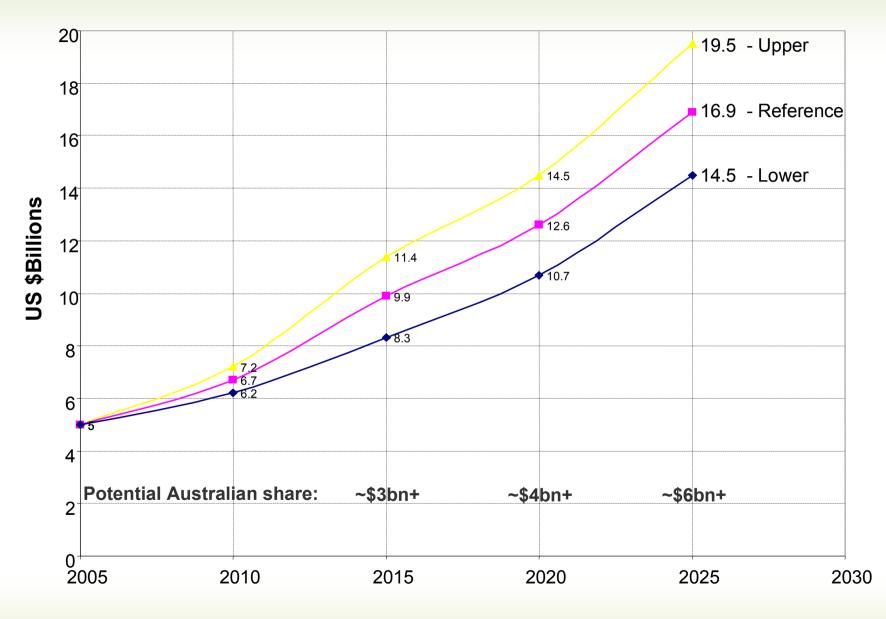
12

The Nuclear Fuel Industry


Nuclear Fuel Economics:

- Nuclear fuel costs are ~30% of total costs of nuclear power.
- Nuclear fuel costs approximate breakdown:

Uranium Ore	~ 35%
UF ₆ Conversion	~ 5%
Enrichment	~ 40%
Fuel Fabrication	~ 20%


- As uranium prices go up demand on enrichment increases (i.e. increasing the level of enrichment to produce lower tails assays decreases the amount of ore consumed).
- Uranium enrichment is key to nuclear fuel economics!

Uranium Enrichment Market Outlook

Source: The Global Nuclear Fuel Market, WNA, 2005

Uranium Enrichment Market Outlook

Estimated Enrichment Market Value

Uranium Enrichment Market Outlook

Supply & Demand Forecasts

	2005		20	10	2015		
	MSWU	%	MSWU	%	MSWU	%	
AREVA (GD)	9	20%	?	-	0	-	
USEC (GD)	7	16%	?	-	0	-	
USEC (HEU)	6	13%	6	12%	0	-	
URENCO (C)	7.5	17%	9	18%	10	18%	
TENEX (C)	12	26%	12	24%	12	22%	
AREVA (C)	0	-	2	4%	7.5	13%	
USEC (C)	0	-	2	4%	3.5	6%	
NEF (C)	0	-	2	4%	3	5%	
OTHER (C)	3.5	8%	4	8%	5	9%	
SUPPLY	45	<mark>100%</mark>	37	74%	41	73%	
DEMAND	45		50		56		
DEFICIT	0	0%	13	26%	15	27%	

GD - Gas Diffusion

HEU - Highly Enriched Uranium

C - Centrifuge

SILEX v Existing Technologies

	SILEX	CENTRIFUGE	GAS DIFFUSION	
DEVELOPED	2000's	1940's	1940's	
PROCESS	Laser Excitation	Mechanical ('centrifugal force')	Mechanical ('brute force')	
ENRICHMENT EFFICIENCY	2 to 20 ⁽¹⁾	1.25	1.004	
ESTIMATED COST PER UNIT (US\$)	\$30~\$40 ⁽²⁾	\$60~\$80	~\$100	
% OF EXISTING MARKET ⁽³⁾	0%	40%	45%	
STATUS	Under Development 3 rd Generation	Proven 2 nd Generation	Obsolete 1 st Generation	

- (1) Classified more detailed information not available
- (2) Indicative estimate only needs to be verified in Pilot Program.
- (3) Approximately 15% supplied via Russian HEU material

Outline of SILEX Technology

Key features of the SILEX Technology

- > very low energy requirements and low capital costs.
- \succ UF₆ process no materials engineering issues.
- viable engineering concepts
- Iaser technology can be industrialised
- SILEX Technology potentially has a clear commercial advantage over centrifuge
 - > The only 3rd generation laser technology under development today.

History of the SILEX Uranium Enrichment Technology

1988	Concept, Theory, Initial Experimental activities
1992	 Proof of Concept demonstration with stable isotopes (Mo, Cl, C etc)
1994	 Proof of Concept demonstration with Uranium (lab scale)
1996	 USEC Agreement signed – uranium project development partner.
2000	 Uranium Project Milestone I – macroscopic process physics demonstration. US – Australia Bi-Lateral Agreement for SILEX Technology signed
2001	 SILEX Technology officially Classified by the US and Australian Governments.
2002	 Full Uranium Enrichment demonstration via 'direct measurement' (gram scale with product extraction & independent assay analysis).
2003	 USEC withdraws from project after 6½ yrs & ~US\$40M expenditure. Silex continues to progress the technology solo.
2004	 Silex – USEC Termination Agreement. Facilities/team intact, project continues.
2005	 Direct Measurement Program (SWU/economics) successfully completed. Seeking an industry partner to fund Pilot Demonstration and Commercialisation.

SILEX Uranium Enrichment

Status of the Uranium Project:

- 'Direct Measurement' Enrichment Program successfully completed mid 2005.
- Classified Due Diligence by US companies delayed 6 months by US Gov't.
- Classified Due Diligence evaluations completed in January.
- Several companies (US and non-US) now in negotiations with Silex.
- Decision on commercialisation partner expected Q1, 2006.
- Silex remains quietly confident of commercialisation prospects.

SILEX Technology Development Plan

STEP	2006	2007	2008	2009	2010	2011	2012	2013
Scale-up & Optimisation / Test Loop								
Pilot Plant Design & Licence								
Pilot Plant Construction								
Pilot Plant Testing								
Commercial Plant Design & Licence								
Commercial Plant Construction 3MSWU								
Commercial Plant Start Up								

Lucas Heights Laboratories DM Laboratory

Lucas Heights Laboratories DM Laser Facility

A unique Australian company developing technology and advanced materials for the 21st Century

References/Sources:

- 1) WNA, 2005, The Global Nuclear Fuel Market
- 2) Smil. V, 2003, Energy at the Crossroads, Cambridge MA, MIT Press
- 3) Barry.R & Chorley.R, 2003, 8th Edition, Atmosphere, Weather and Climate, Routledge, UK
- 4) Deffeyes.K, 2005, 1st Edition, Beyond Oil, *The view from Hubbert's peak*, NY, Hill & Wang
- 5) Cassedy.E & Grossman.P, 1998, 2nd Edition, Introduction to Energy, Cambridge University Press, UK
- 6) Flannery. R, 2005, The Weather Makers, Test Publishing Co, Melbourne, Australia
- 7) Tietenberg. T, 2003, 6th Edition, Environmental & Natural Resource Economics, Addison Wesley, Pearson International Edition.