(Translated by https://www.hiragana.jp/)
Biomaterials - Books
The Wayback Machine - https://web.archive.org/web/20110614122130/http://www.azom.com/book-reviews.aspx?cat=6

Biomaterials Books

Featured Book Categories

Select from the links below to navigate through to books of that category or alternatively browse the Materials/Engineering Books A to Z page.

Materials/Engineering Books by Subject Matter

Biomaterials Books
The intention of this book was to provide the Reader, primarily graduate students and young researchers in materials engineering, bio(chem)physics, medical physics and biophysics, with a set of articles reviewing state-of-the art research and recent advancements in the field of photon-matter interaction for micro/nanomaterials synthesis and manipulation of properties of biological and inorganic materials at the atomic level. Photon-based nanoscience and related technologies have created exciting opportunities for the fabrication and characterization of nano(bio)material devices and systems, and it is expected to significantly contribute to the development of Nanobiophotonics and Nanomedicine.
Materials Research Innovations covers all areas of materials research including metals, polymers, ceramics, composites, electronic materials and biomaterials. Papers may be experimental or theoretical and may report on: new theories, synthesis, processing, characterisation, properties, or devices.

This issue contains the proceedings of the “Porous Ceramics: Novel Developments and Applications” and “Next Generation Bioceramics” symposia, which were held on January 24-29, 2010 at the Hilton Daytona Beach Resort and the Ocean Center in Daytona Beach, Florida, USA.

The Handbook of Materials for Medical Devices provides an in-depth review of the properties, processing, and selection of materials used in the environment of the human body-an environment that is surprisingly hostile and aggressive. Among the application areas described are orthopedics (hips, knees, and spinal and fracture fixation), cardiology (stents, heart valves, pacemakers), surgical instruments, and restorative dentistry. Materials discussed include metals and alloys, ceramics, glasses, and glass-ceramics, polymeric materials, composites, coatings, and adhesives and cements.
Electrospinning is a simple and highly versatile method for generating ultrathin fibres with diameters ranging from a few micrometres to tens of nanometres. Although most commonly associated with textile manufacturing, recent research has proved that the electrospinning technology can be used to create organ components and repair damaged tissues.
Novel injectable materials for non-invasive surgical procedures are becoming increasingly popular. An advantage of these materials include easy deliverability into the body, however the suitability of their mechanical properties must also be carefully considered. Injectable biomaterials covers the materials, properties and biomedical applications of injectable materials, as well as novel developments in the technology.

Bioactive materials play an increasingly important role in the biomaterials industry, and are used for a range of applications, including artificial organs, drug delivery systems, nanomedicine, and biosensors. Bioactive materials in medicine reviews the current status and ongoing development of bioactive materials for medical applications.

Volume 1 of the multi-volume reference, BioMEMS and Biomedical Nanotechnology, focuses on synthetic nanodevices and the synthesis of nanomaterials and the generation of nanoscale features. The nanomaterials include polymeric microspheres and nanostructures, carbon nanotubes, silicon, silicon dioxide, and iron oxide. There is also a chapter on the characterization of critical nanostructures for bio applications such as nanochannels and nanopores. The second part involves hybrid synthetic-biomolecular nanodevices that utilize the self assembly properties of both biomolecules and synthetic materials. There is a chapter discussing the structure-function relations between biomolecular (protein) and inorganic interfaces. The third part gives the theoretical underpinning of bio nanodevices covering computation methods, informatics, and mechanics. These fundamentals are critical in designing the next generation nanodevices and also understanding the interaction between nanodevices and biological systems to enable more efficient in vitro and in vivo bio applications.
Discover how to take full advantage of nanoscale materials in the design and fabrication of leading-edge biomedical devices. The authors introduce you to a variety of possible clinical applications such as drug delivery, diagnostics, and cancer therapy.
Handbook of biofuels production provides a comprehensive and systematic reference on the range of biomass conversion processes and technology. Part one reviews the key issues in the biofuels production chain, including feedstocks, sustainability assessment and policy development.

This publication provides readers with up-to-date information on current and emerging biomaterials and advanced therapies concerned with healing surgical and chronic wounds.

The surface modification of biomaterials plays a significant role in determining the outcome of biological-material interactions. With the appropriate modification a material’s surface can be tailored to improve biocompatibility, adhesion and cell interactions. Consequently surface modification is vital in the development and design of new biomaterials and medical devices. Surface modification of biomaterials reviews both established surface modifications and those still in the early stages of research and discusses how they can be used to optimise biological interactions and enhance clinical performance.
The worldwide demand for organ transplants far exceeds available donor organs. Consequently some patients die whilst waiting for a transplant. Synthetic alternatives are therefore imperative to improve the quality of, and in some cases, save people’s lives. Advances in biomaterials have generated a range of materials and devices for use either outside the body or through implantation to replace or assist functions which may have been lost through disease or injury. Biomaterials for artificial organs reviews the latest developments in biomaterials and investigates how they can be used to improve the quality and efficiency of artificial organs.
Nanobiotechnology of Biomimetic Membranes describes the current state of research and development in biomimetic membranes for nanobiotechnology applications. The application areas in nanobiotechnology range from novel nanosensors, to novel methods for sorting and delivering bio-active moleculres, to novel drug-delivery systems. The success of these applications relies on a good understanding of the interaction and incorporation of macromoleculres in membranes and the fundamental properties of the membrane itself.
Site Sponsors
  • Materials testing services for aerospace to automotives, pharmaceuticals to polymers
  • Goodfellow - Metals and Materials for Research and Industry
  • Brown McFarlane is the UK's Premier Quality Steel Plate Processor and Distributor
  • Handheld Thermo Scientific Niton XRF analyzers are engineered for portable elemental analysis
Site Sponsors
  • Superior Technical Ceramics - Custom Technical Ceramic Parts
  • The New D8 ADVANCE – the 1st truly all-purpose Diffraction Solution for X-ray Powder Diffraction
  • Malvern Morphologi G3 particle characterization system