

# Reactor Core Design principles AGR and HTR

B J Marsden

Nuclear Graphite Research Group

School of Mechanical, Aerospace and Civil Engineering, The University of Manchester.



## AGRs (two reactors at each site, with the exception of the prototype WAGR)

| Station                               | MW(t) per reactor | Channels | T1 °C   | T2°C    | Criticality | Graphite | Designer/Builder                     |
|---------------------------------------|-------------------|----------|---------|---------|-------------|----------|--------------------------------------|
| Windscale Advance Gas- cooled Reactor |                   |          |         |         |             |          |                                      |
| WAGR                                  | 100               | 253      | 250-325 | 500-575 | 1962        | PGA      | UKAEA                                |
| Hinkley Point B                       | 1493              | 308      | 292     | 645     | 1967        | AGL      | The Nuclear Power<br>Group           |
| Hunterston B                          | 1496              | 308      | 318     | 649     | 1977        | AGL      | The Nuclear Power<br>Group           |
| Dungeness B                           | 1485              | 465      | 320     | 675     | 1984        | AGL      | Atomic Power Construction Ltd        |
| Heysham 1                             | 1500              | 324      | 287     | 651     | 1984        | BAEL     | Babcock, English<br>Electric Nuclear |
| Hartlepool                            | 1500              | 324      | 286     | 675     | 1985        | BAEL     | Babcock, English<br>Electric Nuclear |
| Heysham 2                             | 1650              | 332      | 292     | 635     | 1988        | UCAR     | National Nuclear<br>Company          |
| Torness                               | 1650              | 332      | 298     | 635     | 1989        | UCAR     | National Nuclear<br>Company          |



#### **AGR Reactors**

- All graphite moderated
- CO<sub>2</sub> cooled
- Electricity generated by an indirect steam cycle
- Higher outlet gas temperature improved thermal efficiency (~42%) compared to ~30% for the Magnox
- Pre-stressed concrete pressure vessels
- Boilers inside pressure vessel
- Power density ~2.7MWs/m³ compared to ~0.7MWs/m³ for the Magnox
- Uranium dioxide fuel in stainless-steel 'pins' 36 pins per element;
- Approx 308 large channels instead of huge number of small ones (over 6000 in a Wylfa reactor) in Magnox design;
- 'Re-entrant flow' system keeps graphite core temperature below 450C avoiding any thermal oxidation in CO<sub>2</sub>;
- Radiolytic oxidation continues, and needs inhibitor added to coolant (methane, together with its decomposition produces hydrogen and water, are all inhibitors along with product carbon monoxide; note 'methane holes' in the graphite)



#### Hinkley Point B





#### **Schematic View of Advanced Gas Cooled Reactor**



Boilers inside prestressed concrete pressure vessels





Construction of Torness Core



Assembly





#### **AGR Brick Assembly Showing Flow Directions**

- The main coolant flow is upwards along the fuel sleeves around the fuel pin bungles
- Reverse interstitial flow:
  - between fuel stringer and brick
  - down arrow head passages
- Cross brick pressure drop in most cases (by design or accident)
- Methane holes provided to try and give access to the graphite coolant throughout the brick





The University of Manchester

### AGR Core Side Restraint





#### **AGR Brick Design**

- Four different basic designs
- All include methane holes
- All have sharp keyway corners
- Some are keyed 1/3 the length
- Others keyed the whole length but with location keys over the mid
   1/3 and filler keys over 2/3s the length
- Some cores include complex rocking features



The University of Mancher

# Hinkley Point B Hunterston B Fuel Brick





Hartlepool
Heysham 1
Fuel Brick

Keys only extend 1/3 the length of the brick







Dungeness B Fuel Brick



Heysham 2
Torness
Fuel Brick





## Cut away section of Hartlepool / Heysham 1 Fuel and moderator Bricks

- Eight fuel sleeves in a "stringer" suspended from tie rod (7 at Dungeness B (DNB))
- 36 pins (30 at DNB) held in 3 grids/braces
- Right double sleeve Mark 1 fuel sleeve design
- Left single sleeve Mark 2 fuel sleeve design





## Safety Shut-Down Features

#### **MAGNOX**

- Control rods containing B, Cd
- Additional 'hold-down' rods
- Secondary system of 'boron balls' (actually high-B steel) – recoverable
- Boron ball system in Calder Hall / Chapelcross
- Ultimate system blowing in 'boron dust' – actually boron oxide (Never used).

#### **AGR**

- Articulated Control rods containing B, Cd
- Additional 'hold-down' rods
- Secondary system of nitrogen injection
- Additional systems such as 'boron balls' are being considered as retrofit to satisfy the Nuclear Installations Inspectorate's concerns about core integrity and core restraint integrity



## **HTR Core Design**



#### **High Temperature Reactor**

- High gas output temperature, above 700°C
- Ceramic Fuel
  - Pyro-carbon and Silicon Carbide Coating
- Graphite Reflector
- Helium Gas Cooling
- Direct Gas Turbine or Indirect steam generation
- Prism or Pebble Bed configuration



#### **High Temperature Reactors**

| Danatan         | D         | 0             | Ocitica dita      | Shut-     | <b>T</b>              | B 41 A / / ( )   |
|-----------------|-----------|---------------|-------------------|-----------|-----------------------|------------------|
| Reactor         | Purpose   | Country       | Criticality       | down      | Туре                  | MW(t)            |
| Dragon          | Research  | OECD          | 1962              | 1976      | Prism                 | 20               |
| Peach<br>Bottom | Research  | US            | 1966              | 1974      | Prism                 | 115              |
| Fort St. Vrain  | Power     | US            | 1977              | 1992      | Prism                 | 842              |
| AVR             | Research  | Germany       | 1967              | 1988      | Pebble                | 49               |
| THTR            | Power     | Germany       | 1983              | 1989      | Pebble                | 750              |
| HTTR            | Research  | Japan         | 2003              | Operating | Prism                 | 30               |
| HTR-10          | Research  | China         | 2003              | Operating | Pebble                | 10               |
| HTR-PM          | Prototype | China         | Under Design      |           | Pebble                | two 250<br>units |
| PBMR            | Power     | South Africa  | Under Design      |           | Pebble                | 240              |
| GT-MHR          | Power     | International | Design<br>Concept |           | Prism                 | 600              |
| ACAICA          | Power     | NRG           | Design<br>Concept |           | Pebble                | 40               |
| NGNP            | Research  | US            | Under Design      |           | Pebble<br>or<br>Prism | 600              |



#### **Production of Coated Fuel Particles**

- Uranyl Nitrate droplets
- ADU Particles
- Calcined to Produce
- UO<sub>3</sub> Particles
- Sintering and coating to produce UO<sub>2</sub> Kernels





#### **HTR Prism Fuel Compact**

**Compacts** manufactured from crushed natural and artificial graphite in formaldehyde resin (baked)





Prism Fuel Compact

Pebble
Fuel
60 mm
diameter





#### **Fuel Design**





#### **Pebble Fuel**

#### **HTR Pebble Cross-section**

#### **Cut-away Coated Particle**





HTTR
Prism
Design



#### **HTTR Core Cross Section Prism Design**





#### **HTTR JAERI - OARAI**









#### **Fuel Blocks**













Fuel Handling Head



Horizontal assembly

### Seismic Assessment Rig

Vertical assembly

Scale components, metal insert to give density of fuel



#### **Waste Heat**





#### **HTR-10**





#### **Vertical Cross Section Through Reactor**





#### **Cross Section Through Reactor Core**







#### **Horizontal Cross Section**







# The University of Manchester

#### **Typical HTR Graphite Reflector Blocks HTR-10**





#### **Lower Core Structure**





#### **Lower Half of Hot Gas Chamber**





#### **Top Reflector**





# PBMR Design Features (Original Concept)

- Utilises direct-cycle gas turbine
- note central graphite reflector







- Demonstration Plant