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Abstract: This paper demonstrates the successful
autonomous classification of rotary laser scanner
data retrieved by an autonomous robot traversing
a sewer pipe system. Rotary laser scanner serve
dual purposes of fault detection and navigation.
The present aim was to devise a robust landmark
detection method for use in the robot’s navigation
system. A standard feed forward neural network with
6 hidden neurons was trained on the first 15 principle
components of the combined amplitudes of the
reflected signal and distance values data. The overall
system shows a 89% performance for the classification
for the validation data as opposed to 79% of a linear
neural network. These results demonstrate that the
appropriate application of conventional sensor feature
extraction, and classification methods may be used
to quickly build an effective and computationally
efficient landmark detection system for a mobile robot.
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1 Introduction

Recent research in service robotics has focused on the
development of autonomous sewer inspection robots
[1, 2, 3] and automatic fault detection systems [4, 5].
Hertzberg et. al. [6] give an introduction into conven-
tional inspection procedures, its drawbacks and show
the role artificial intelligence and information technol-
ogy approaches can play in offering solutions. With
regard to successful applications of innovative sensors
to multi sensor fusion in order to detect artefacts in
sewer pipes, an approach can be found in [7]. We con-
sider landmark detection for navigation purposes as
an important component of introducing autonomous
robotic systems for sewer pipe inspection.

In this paper, we present an implementation of au-
tonomous landmark detection on a mobile robot us-
ing a mounted rotary laser scanner, feature extraction,
and neural network-based classification. As opposed
to other common sensors used in robot navigation, e.g.
infrared and ultrasound sensors, the rotary laser scan-

ner combines several positive aspects: it is insensitive
to common artefacts in data aquisition, optical shades
and hues, and redundant signals due to reflection and
limited range. Furthermore, the data can be used for
multiple purposes: identification of artefacts in the
pipe, damage identification and deformation identifi-
cation.

2 System hardware

The system as shown in fig. 1 is based on the Kurt2
autonomous robotic platform, as introduced by Kirch-
ner et. al. [8]. It was developed by the Fraunhofer
Institute for Autonomous intelligent Systems (AiS),
Germany, as a first study for autonomous sewer in-
spection platforms. The control unit is a Pentium III
600 mhz processor, running under the linux operating
system, which contains the navigation, data retrieval
and processing software. Main sensor for the data re-
trieval task is a commercially available rotary laser
scanner, see table [1] for technical specifications. The
main feature of this rotary laser scanner is the fact
that it acquires both distance values and amplitudes
of the reflected signal. Furthermore, it rotates perpen-
dicular to the direction of motion, acquiring circular
scans of the pipe surface. Due to the limited rota-
tion speed of the rotary laser scanner, the travelling
velocity of the robot was set low enough to be able to
ignore the step size and treat all scans as belonging
to the same pipe section, see fig. 2 for a schematic
depiction.

All on board-sensors, motors of the robot, rotary
laser scanner and control unit are connected with via
the CAN bus system, described in [9], [10].

3 Experiments

We have conducted a series of experiments at the ex-
perimental site of AiS1. The test site consists of a sys-
tem of standard concrete pipes used in german sewer
systems. The robot system was employed into this
experimental sewer system for a series of 10 runs con-
sisting of a total of 5 hours running time. For easy

1courtesy of: Fraunhofer Institute for Autonomous intelli-
gent Systems, Schloß Birlinghoven, Germany



Figure 1: Kurt2 with mounted rotary laser scanner

Figure 2: Schematic depiction of step size

access, the pipe system is situated above ground. Fig.
3 shows two views on the experimental site. To the
left, the central intersection with manhole is depicted,
with an inlet visible. To the right, one of 3 curve
sections with manhole can be seen.

Figure 3: Test site at AiS, Germany: Example of Class
3/6 (Inlet) and Class 5 (pipe intersection & manhole)
(left) and Class 4 (curve section & manhole) (right)

4 Data analysis

In a learning phase, reference data is acquired in a
test environment. The test environment consists of
6 environmental states. These are defined in table
2: normal section, pipe joints, inlet to the left, curve
section with, pipe intersection with manhole and in-
let to the right. The goal of analysis is to process
the 939 scan samples of a single rotation, categorizing
with regard to the presence of different environmental
features. We take an unsupervised dimension reduc-
tion approach, applying principle components analy-
sis (PCA) for dimensionality reduction, collapsing the
signals onto the 15 largest axes of variance. Linear and
non-linear classifiers were then optimized for class pre-
diction using PCA scores as input. The final system is
implemented online efficiently as projection on a rel-

Table 1: Specification of the rotary laser scanner

Specification Value
rpm 60−120 rpm.
resolution 720 ppr. (0.5)
accuracy +/− 1 mm
fast response time 50 kHz max.
emitter 780 nm IR laser diode
optical power 8 mW max.
beam diameter 2.5 mm
beam deviation 0.5 mrad
power 5V, 5A DC and 12V , 2A DC
operating range 0 m to 20 m
output distance in inches or mm

amplitudes of the reflected signal

atively small set of orthogonal basis vectors, followed
by neural network simulation.

Table 2: Definition and frequency of classes

Class Description relevance
1 normal section 21%
2 pipe joints 16%
3 inlet to the left 13%
4 curve section & manhole 15%
5 pipe intersection & manhole 21%
6 inlet to the right 14%

4.1 Preprocessing

The original data consists of 6525 single scans. Each
scan yields distance values from the rotary laser scan-
ner to the sewer pipe wall as well as the amplitudes of
the reflected signal. Fig. 4 shows an exemplary sec-
tion of the data set, with amplitudes of the reflected
signal to the left and distance values on the right side.
The top section displays the data acquired passing a
manhole, whereas the anomaly in the lower part can
be attributed to an inlet. The large noise visible in
amplitudes of the reflected signal can be accounted
for due to the nonuniform surface structure of the con-
crete pipe surface, e.g. mold growth, decay or chipped
off parts. On the other hand, distance values display
a more coherent picture. The graduation is caused by
the eccentricity of the laser from pipe center. We ab-
stained from centring the data with respect to the pipe
center due to the non-uniform motion of the robot in
the pipe, caused by meandering motion an obstacles
such as stone and debris on the ground.

The distance values larger than an arbitrary value
of 450 mm for a pipe radius of 300 mm were set arbi-
trarily to 640 mm. This is valid for the cases when the
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Figure 4: Example scans of acquired data: amplitudes
of the reflected signal (left) and distance values (right)

robot passes intersections or manholes and the laser
beam is reflected by instead the pipe wall by either
the manhole lid or reaches its limit.

Secondly, the data set was classified manually into
the 6 most prominent features, see table [2]. Since
the feature ”normal section” was originally predomi-
nant with a relevance of 88%, the validation data set
was adjusted to offer approximately evenly distributed
classes. Fig. 5 shows examples for each of the classes.

Thirdly, we have created a data set of both the dis-
tance values and the amplitudes of the reflected signal
and presented it to the PCA schema.
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Figure 5: Class members for each class 1 - 6 from top
left to lower right: amplitudes of the reflected signal
for [1, 398[ and distance values for [399, 796[

4.2 Principle components analysis

By solving for the eigenvalues and eigenvectors of a
matrix, PCA determines an orthogonal linear trans-
formation that maximizes the explained variance in
as few variables as possible. It is a widely recognized
tool for data dimensionality reduction [11]. In this

case the first 15 principal components (PC) λi in fig.
6 describe 98% of the explained variance in the data,
see fig. 7.
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Figure 6: First four PCs λ1−4, contributing to λ1 =
0.8089, λ2 = 0.1090, λ3 = 0.0278, λ4 = 0.0149 per-
centage of the explained variance, amplitudes of the
reflected signal for [1, 398[ and distance values for
[399, 796[
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Figure 7: Accumulated explained variance of first 15
PCs:

∑
λi = 98%

4.3 Classifier

We tested linear and non-linear classifier systems. The
linear classifier system was implemented using a stan-
dard feed-forward methodology, with no hidden neu-
rons, and log-sigmoid transfer functions in the out-
put layer. This effectively implements linear logis-
tic regression, which is appropriate when the desired
outputs are class labels rather than variables. The
non-linear system was implemented using a similar
feed-forward architecture, using 8 neurons in the hid-
den layer, utilizing hyperbolic tangent sigmoid trans-
fer functions.

In both bases, the first 15 principle components
served as input to these feed forward backpropagation
networks. The output consisted of the six predicted
class probabilities. The training epochs were limited
to 50 steps. Model optimization was implemented us-
ing the Levenberg-Marquardt [12], [13] backpropaga-
tion algorithm.



4.4 Validation Method

We apply cross validation schema for performance
measure [14] and make use of its better performance
when used with small data sets as opposed to meth-
ods such as split-sample validation [15]. In our case,
the data is divided 10 times into 90% training and
10% validation subsets. The classifiers are trained
and validation 10 times, and the validation perfor-
mance summed. In the non-linear case the network
is trained 9 times, and the performance of the best
performing network considered.

5 Results

The non-linear classifier performed significantly better
than the linear classifier, with validation performances
of 89% and 79%, respectively. The classification in de-
tail for both the linear and nonlinear neural networks
are shown in tables 3 and 4. Displayed are absolute
figures of the sum of the classification results of the
best performing nonlinear neural network of 9 valida-
tion runs.

Table 3: Classification of the linear neural network
against the validation set, performance: 79%. Shown
are absolute values

Validation
Model Class 1 2 3 4 5 6

1 140 39 9 2 2 22
2 32 80 5 4 10 4
3 4 5 92 0 2 0
4 1 1 0 117 11 0
5 3 4 0 2 151 0
6 3 7 0 1 0 84∑

183 136 106 126 176 110

Table 4: Classification of the nonlinear neural network
against the validation set, performance: 89%. Shown
are absolute values

Validation
Model Class 1 2 3 4 5 6

1 161 22 2 0 3 4
2 14 94 0 1 6 0
3 4 5 104 0 1 0
4 1 0 0 124 7 0
5 2 4 0 1 159 0
6 1 11 0 0 0 106∑

183 136 106 126 176 110

In the first column of table 4 we note a false clas-

sification of 14 cases, which amounts to 7.6%, where
the model yielded a class 2 instead of correct class 1.
Fig. 8 shows one example of this false classification.
On the other hand for the expected class 2, the model
falsely classified 22 cases, which amounts to 16% of
all cases. This is shown with an example in fig. 9.
Thus, a large proportion of the model errors were in
distinguishing normal section and pipe joints. From
these figures it can be seen that the input data corre-
sponding to these cases bears a very high similarity.
It is likely that these classes may be effectively distin-
guished by considering the history information, incor-
porating consecutive scans for landmark detection.
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Figure 8: Example of falsely classified scans: identified
class 2 instead of expected class 1
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Figure 9: Example of falsely classified scans: identified
class 1 instead of expected 2

6 Discussion

With the present architecture, we classify single scans
as single entities without considering memory in data.
Possible improvements to landmark detection might
include bayesian approaches [16], [17] or Canonical
Correlation Analysis [18]. However, we have shown
in this paper that a simple instantaneous feature ex-
traction and classification scheme is effective for the
autonomous identification of most landmarks. These
results are similar to other research that has concen-
trated on the implementation of methods for real-time
online identification of landmarks [19], [20], [21] or
[22]. We consider the restrictions due to the slow ro-
tational speed of the rotary laser scanner imposed on
the travelling velocity of the robot as a special chal-
lenge. The introduction of a scanner with a faster ro-
tational speed would provide greater resolution in the
z dimension, allowing the effective detection of joint
features.
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