
Production of Large
Computer Programs
HERBERT D. BENINGTON

The paper is adapted from a presentation at a symposium on advanced programming methods for
digital computers sponsored by the Navy Mathematical Computing Advisory Panel and the Office of
Naval Research in June 1956. The author describes the techniques used to produce the programs for
the Semi-Automatic Ground Environment (SAGE) system.

Categories and Subject Descriptors: K. 2 [History of Computing]—SAGE, software, systems
General Terms: Design, Management
Additional Key Words and Phrases: Lincoln Laboratory

Editor's Note

When we all began to work on SAGE, we believed our own myths about software—that one can
do anything with software on a general-purpose computer; that software is easy to write, test, and
maintain; that it is easily replicated, doesn't wear out, and is not subject to transient errors. We
had a lot to learn.

As Herb Benington discusses in the following paper, we had already successfully written
quite a lot of software for experimental purposes. We were misled by the success we had had
with capable engineers writing programs that were small enough for an individual to understand
fully. With SAGE, we were faced with programs that were too large for one person to grasp
entirely and also with the need to hire and train large numbers of people to become
programmers—after all, there were only a handful of trained programmers in the whole world. We
were faced with organizing and managing a whole new art.

Bob Wieser (who led the software design and production effort at Lincoln) and his group
decided with great wisdom to build the tools needed for such an endeavor instead of trying to do
the whole job with the limited resources at hand. We paid a price—the schedule slipped by a
year—that the organization that was established really got on top of the job and stayed on top.

Much of what Herb and others created for the SAGE job was forgotten and had to be
relearned later by others when they faced similar problems. I confess to having a certain amount
of purely human pleasure at watching other organizations suffer through the problems of building
large programs—organizations that had been so critical of our own difficulties.

One thing not to forget is the challenge of putting so large and complex a program into a
limited computer capacity. The FSQ-7 was the largest machine we felt able to build in the early
1950s; its capacity is trivial by today's standards. One might think that with today's technology,
SAGE-like software would be easier to build. Unfortunately, this seems not to be so. There is a
kind of Parkinson's Law for software: it is infinitely expandable and swells up to exceed whatever
capacity is provided for it.

Foreword

The following paper is a description of the organization and techniques we used at MIT's Lincoln
Laboratory in the mid-1950s to produce programs for the SAGE air-defense system. The paper
appeared a year before the announcement of SAGE; no mention was made of the specific
application other than to indicate that the program was used in a large control system. The
programming effort was very large—eventually, close to half a million computer instructions.
About one-quarter of these instructions supported actual operational air-defense missions. The

remainder were used to help generate programs, to test systems, to document the entire process,
and to support those other managerial and analytic chores so essential to producing a good
computer program.

As far as I know, there was no comparable effort under way in the United States at the
time, and none was started for several years. Highly complex programs were being written for a
variety of mathematical, military, and intelligence applications, but these did not represent the
concerted efforts of hundreds of people attempting to produce an integrated program with
hundreds of thousands of instructions and highly related functionality. In a letter to me on April 23,
1981, Barry W. Boehm, director of software research and technology at TRW, says of the paper,
"I wish I had known of it a couple of years ago when I wrote [a]paper indicating how many of
today's software engineering hot topics had already been understood in 1961 in Bill Hosier's IRE
article. Your paper predates much of that understanding by another five years."

By chance, the paper was presented in Washington, D.C., in June 1956 at a symposium
on advanced programming methods for digital computers, sponsored by the Navy Mathematical
Computing Advisory Panel and the Office of Naval Research. The paper was given there
because Wes Melahn (soon to become president of System Development Corporation, and now
at the MITRE Corporation) was deeply concerned with the programming of an air-defense
system, as well as with the theory and mathematics of advanced digital computing at universities.
All the other papers at the symposium were presented from the perspective of either universities
or the nascent computing industry. The hot topics were machine organization, development of
algorithms, and the development of higher-order languages. The common goal was to produce
instructions that cost less than $1 per line. The audience was somewhat chilled to hear that we
could not do better than $50 per instruction in our particular effort—and that we were talking
about tens of thousands of pages of documentation.

I lost interest in the subject until several years ago, when I joined the MITRE Corporation
and became interested in what had happened to data processing in the ensuing 20-25 years. I
showed the paper to a number of colleagues, some of whom knew nothing of the SAGE
development and some of whom had been deeply involved with it. Generally speaking, they were
surprised that we had developed or used techniques with SAGE that today are considered
essential to the effective production of large computer programs. (We did omit a number of
important approaches, which I will say a little more about below.)

It is easy for me to single out the one factor that I think led to our relative success: we
were all engineers and had been trained to organize our efforts along engineering lines. We had
a need to rationalize the job; to define a system of documentation so that others would know what
was being done; to define interfaces and police them carefully; to recognize that things would not
work well the first, second, or third time, and therefore that much independent testing was needed
in successive phases; to create development tools that would help build products and test tools
and to make sure they worked; to keep a record of everything that really went wrong and to see
whether it really got fixed; and, most important, to have a chief engineer who was cognizant of
these activities and responsible for orchestrating their interplay. In other words, as engineers,
anything other than structured programming or a top-down approach would have been foreign to
us.

Between the early 1950s and the mid-1960s, thousands of computer programmers
participated in the design, testing, installation, or maintenance of SAGE. They learned the system
well, and as a result, the chances are reasonably high that on a large data-processing job in the
1970s you would find at least one person who had worked with the SAGE system. The initial
SAGE prototype program slipped its initial schedule by about one year. After that, dozens of
major modifications were installed at dozens of sites with slips of at most several weeks. The
disciplined approach, which had started at MIT's Lincoln Laboratory, persisted for over 15 years
at SDC. Why is it, then, that there are so many tales of computer-program projects whose

schedule slippages were much greaterthan SAGE's and whose overruns are often horrendous?
There are three major reasons.

First,the industry went through a phase where we decided that computer programming
and the computer programmer were "different." They could not work and would not prosper under
the rigid climate of engineering management. Just a few years ago, I heard with amazement the
executive vice-president of one of our very largest information-system firms say, "Herb, you have
to realize the programmers are different; they have got to get special treatment." I almost ran out
to sell his stock short, but then I discovered that his more realistic middle management had
realized the failure of this nostalgic view of the computer programmer.

Second, if anything, the pendulum has swung too far in the other direction. Many of our
government procurement documents act as if one produces software in the same way that one
manufactures spacecraft or boots. When I got back into the computer programming business
several years ago, I read a number of descriptions of top-down programming. The great majority
seemed to espouse the following approach: we must write the initial top-down specification (for
example, the A Spec), then the next one (typically, the B Spec), so we will know precisely what
our objectives are before we produce one line of code. This attitude can be terribly misleading
and dangerous. To stretch an analogy slightly, it is like saying that we must specify the
characteristics of a rocket engine before measuring the burning properties of liquid hydrogen.
Generally, software is the most complex component of a system. Twice as much software can
improve the performance of a system by 1 percent or by 500 percent. The percentage can only
be determined if a great deal of detailed analysis (including coding) is undertaken to understand
the "burning properties" of software. I do not mention it in the attached paper, but we undertook
the programming only after we had assembled an experimental prototype of 35,000 instructions
of code that performed all of the bare-bone functions of air defense. Twenty people understood in
detail the performance of those 35,000 instructions; they knew what each module would do, they
understood the interfaces, and they understood the performance requirements. People should be
very cautious about writing top-down specs without having this detailed knowledge, so that the
decision-maker who has the "requirement" can make the proper trade-offs between performance,
cost, and risk.

To underscore this point, the biggest mistake we made in producing the SAGE computer
program was that we attempted to make too large a jump from the 35,000 instructions we had
operating on the much simpler Whirlwind I computer to the more than 100,000 instructions on the
much more powerful IBM SAGE computer. If I had it to do over again, I would have built a
framework that would have enabled us to handle 250,000 instructions, but I would have
transliterated almost directly only the 35,000 instructions we had in hand on this framework. Then
I would have worked to test and evolve a system. I estimate that this evolving approach would
have reduced our overall software development costs by 50 percent.

The third reason that we keep seeing missed schedules was pointed out to me by the
editor of one of our best computing journals, who says he has concluded that producing large
computer programs is like raising a family. You ean observe your neighbors and see all of the
successes and failures in their children. You can reflect on the experiences you had as one
member of a large family. You can observe all the proper maxims of life and society. You can
even study at length the experiences of many others who have raised families. In the final
analysis, however, you have to start out and do it on your own, learn the unique options you
have, see what unexpected problems arise, and, with reasonable luck, perform about as well as
those who have been doing it forever.

The latter observation may be reassuring to the new program manager, but there have
been numerous significant advances in the techniques for producing large computer programs
since we did the SAGE job over 25 years ago. A few that strike me as most important are:

• We now use higher-order languages in virtually all situations.

• Almost all software development and unit testing are done interactively at consoles in
a timesharing mode.

• We have developed a large family of tools that allow us to do much precise design
and flow analysis before coding. (I still say that we should use these techniques
before we start finalizing our top-down requirements.)

• We have developed organizational approaches that improve or at least guarantee the
quality of the systems much earlier in the game. These include some of the
structured languages, code reviews, walk-throughs, etc.

For further progress, I would stress the following.

• Since the SAGE effort, we have talked about the need to invest in tools that help
produce programs—that is, in tools for coding, editing, testing and debugging,
configuration management, consistency checking, structural analysis, etc. I believe
too little effort has been spent on thinking through such tools and standardizing them
so that they can become analogous to the relatively few higher-order languages that
we use with great facility.

• Finally, there remains a tremendous range and ability among computer programmers
to do different jobs. Some are good gem-cutters for any kind of stone. Some can play
very special roles—for example, where fastidious approaches are needed. Some are
brilliant and articulate conceptualizers and leaders. Some should not be allowed near
a computer. We must learn to recognize these types, to use them in their right place,
and to set higher standards for not using people even though the market seems
insatiable.

—Herbert D. Benington

Introduction

At the 1955 Eastern Joint Computer Conference, Jay W. Forrester suggested that the evolution of
electronic digital computers might be roughly divided into five-year periods, each period with its
paramount significance.

1945-1950 was the period of electronic design. From 1950-1955, attention has been
focused on the solution of scientific and engineering problems. 1955-1960 will
encompass the upswing in the commercial data-processing applications 1960-1965
will probably mark the shift of major attention to the use of digital computers as the
central elements in real-time control systems.

With respect to this last period, Forrester continues:

General purpose digital computers, as outlined in [recent news] releases, are to be the
nerve centers for tying together the flow of information in our forthcoming new air defense
system. This type of control system, we can assume, will develop further into a high-
speed automatic control and regulation of future civilian air traffic. …

[Or,] consider the chemical plants and oil refineries. … In the last 30 years the
automatic controls in an oil refinery have risen ... to some 15 percent of the investment in
a refinery [or often about] $15,000 worth of automatic controls. I believe we will see digital
computers as controllers and monitors of operation in these plants to permit closer
control, higher-speed chemical reactions, larger outputs, and a better product.

During the past five years, we have seen developments in automatic programming where

the emphasis has paralleled Forrester's first three periods. We can compare the electronic-design
phase with the development of basic programming techniques of translation, compilation, and
interpretive routines. Scientific and engineering calculations have been assisted by the PACT and
A-2 compiling systems, and commercial data processing by BIOR and B-0 (to name but a few).

More important, our colleagues who build computers have come to realize that a computer is not
useful until it has been programmed, and that programming is an expensive job that requires both
machine assistance and human sympathy.

This paper looks ahead at some programming problems that are likely to arise during
Forrester's 1960-1965 period of real-time control applications. At first glance, these are problems
that will result from the need for very large, very efficient programs, where one program
(consisting of over 100,000 machine instructions) may be used in several machines during
periods of months or years. On closer inspection, we realize that these are problems that must be
faced whenever the need arises for the systematic preparation and operation of large, integrated
programs, whether these programs are used for commercial processing, scientific calculation, or
program preparation itself.

During the past several years at the Lincoln Laboratory, several system programs

containing over 30,000 machine instructions each have been prepared. These programs are used
for data processing and control in real-time systems. Production of these programs is briefly
described here, particularly in terms of cost and organization. Four problem areas are stressed.

The first problem is computer operation. Computer time is at a premium when a large

program is being prepared by relatively inexperienced programmers, when the machine and its
terminal equipment are being shaken down, and when the machine-program system requires
inordinate testing and debugging. The only answer is highly systematic, highly mechanized
program preparation and computer operation. A Lincoln Utility System of service routines
containing 40,000 instructions has been prepared to ease this
problem.

The second problem is program or system reliability. Needless to say, a large program is
distressingly prone to all types of design and coding errors, including some very subtle ones. In
spite of this tendency, it must be extremely reliable if it is to control effectively a system involving
extensive equipment or manpower. This is true not only in a real-time system, but also in
commercial applications unless equipment engineers can outvote lawyers. Reliability is also a
major factor in the preparation of ambitious automatic programming systems—how many
unreliable programs have been produced with supposedly well-tested compilers?

Next, there is the problem of supporting programs. It has been the experience of the

Lincoln Laboratory that a system of service programs equal in size to the main system program
must be maintained to support preparation, testing, and maintenance of the latter.

Finally, there is the problem of documentation. In the early days of programming, you could call
up the programmer if the machine stopped. You seldom modified another person's program—you
wrote your own. Although present automatic programming technology has done much to make
programs more communicable among programmers, there is a long way to go before we can take
an integrated program of 100,000 instructions and make it "public property" for the user, the
coder, the tester, the evaluator, and the on-site maintenance programmer. The only answer
seems to be the documentation of the system on every level from sales brochures for
management to instruction listings for maintenance engineers. Such documentation will require
the development of new methods and new languages; more significantly, it will require a much
more extensive use of the computer to assist in program production, documentation, and
maintenance.

At the last ONR symposium on automatic programming held two years ago, the most
popular theme was simplifying program input through the use of symbolic inputs, machine
compilation and generation, algebraic translation, etc. Very little was said about checkout or
debugging, training, or operation. I suspect that for many the past two years have been a period
of realizing that automatic programming concepts must go beyond the input process into these
other areas.

Large Programs for Control and Processing

Before considering these problems in more detail, consider some rudiments of large systems and
large programs. Figure 1 represents a broad flowchart of a typical control and processing system
such as might be used for air-traffic control, industrial-plant control, or commercial applications.
The area inside the dashed line represents the control system; the area outside is the
environment to be controlled. In general, control consists of a manual and an automatic
component. Manual in-out data could use voice phones or
radios, teletypes, meters, etc. Typical automatic inputs and outputs might be teletype data or
high-bandwidth digital data from or to analog-to-digital converters.

Figure 1. Typical control system. In general, a typical control system uses automatic and manual
elements. The automatic portion consists of a centralized digital computer, terminal equipment
communicating with the environment, and a computer program incorporating system memory and standard
operational procedures.

The central control is a high-speed, general-purpose, digital machine that includes in-out
terminal equipment and is controlled itself by the system program. Depending on the degree of
system automation, manual control and processing might range anywhere from one half-awake
computer operator (who will be awakened by an alarm) to a staff of several hundred operators
and supervisors, each of whom must communicate directly with the computer. The machine can
signal the man through indicator lights and alarms, cathode-ray displays, or printed data; the man

can respond with digital keyboard inputs or a variety of analog-to-digital devices. Periodically, the
computer records data for later analysis of system performance.

From the computer's point of view, then, the system consists of a wide variety of inputs

and outputs, each with different data characteristics—peak rate, average rate, reliability, coding,
etc. The system program must perform a wide variety of tasks.

1. It must remember the state of environment. Depending on the application, this may

require from 100,000 to many billions of bits of information stored on drums, tapes, or
photographic plates.

2. It must sample each input either periodically or on demand, translate the data, test for

reasonableness (usually in terms of the present state of the environment), and either revise its
memory content accordingly or transmit the data for further processing.

3. It must, either periodically or on demand, calculate, monitor, correlate, predict, control,

summarize, record, and decide.

4. It must encode and transmit outputs to all terminal devices.

5. Finally, the program must control the frequency and sequence with which it performs

each input, output, processing, or bookkeeping task.

In order to give these features some physical meaning, let us attach rough numbers to a

typical control problem. Figure 2 shows the organization of a typical 100,000-instruction program
that contains 80 component subprograms. In other words, each subfunction requires a logically
distinct subprogram containing an average of 1250 instructions. In the figure, each box (e.g., I12)
represents a subprogram; they are grouped as follows.

Figure 2. Static program organization. A system program of 100,000 instructions is organized into
programming groups for input, output, etc. Each group contains several subprograms and requires both
isolated and central tables.

1. There are four major input channels (e.g., punched cards, teletype, audio-bandwidth
data link, and manual keyboards) designated by program groups I1 to I4. For each channel,
several different types or sources of data are received by the control element. For example, I3
requires seven subprograms, I31 to I37.

2. There are four major processing functions, which require a total of 24 component
subprograms. In an air-traffic-control application, a typical process might be: first, review all
aircraft landing at all airports; next, monitor these with respect to airspace assignment and
sudden trouble situations; finally, prepare a revised space assignment.

3. A third group of 15 subprograms are required for program bookkeeping. These

programs coordinate communications between all other programs, monitor system load, and
prepare summary data for output.

4. The output makeup programs use three channels—for example, cathode-ray display,

audio-bandwidth data link, and teletype. Fourteen subprograms are required to scan the system
memory and make up properly coded output messages.

5. Finally, seven control subprograms are required to control the timing, sequencing, and

operation of all other subprograms.

The 100,000 instructions represent standing operational procedures for the system; they
do not change as the system operates. The system memory, which is stored separately in system

tables, can be broken down into two blocks: isolated tables, which store information required by
one program group only (e.g., I2), and central tables, which store data shared by two or more
program groups. In measuring the complexity of the table structure, the total table memory
required by tables is not nearly so important as the number of items. In this sense, an item is
defined as one unique type of information. A single item may be represented once in the tables
(e.g., "process I42 is being performed"), or the item may be represented 1 million times (e.g.,
"customer account number").

In the example given, 1000 items each are required for the isolated and central tables.
For 10 of the central items, the program groups which set or use the item are shown; for example,
the first item is used by I1, I4, O3, B2, C1, C2, P2, and P4. If 1000 such lines were drawn, the dot
matrix would measure the communications (and complexity) within the program. Figure 3 shows
how the component subprograms time-share the machine to perform the control and processing
functions (only a small portion of the complete program sequence is shown). Each component
subprogram requires its isolated tables, pertinent portions of the control tables, and certain
control subprograms. Eighty programs must time-share the machine. In general, some
subprograms will operate unconditionally in a fixed sequence but at different frequencies; other
programs will operate on demand.

Figure 3. Dynamic program operation. Component subprograms (Figure 2) time-share the control
computer. Each component program requires isolated and central tables; a control program, which remains
permanently in storage, directs sequence and frequency of operation of component subprograms.

Large-Program Systems—Centralized versus Decentralized

At this stage, we can consider the effect of program size and integration on the design, testing,
and operation of the program. To date, there have been several programming systems of over
50,000 machine instructions prepared for business and scientific applications. For the most part,
however, these programs have been what might be called large decentralized programs; that is,
the data-processing function has been divided into a dozen or so parts, and the communication
between these parts has used blocks of data stored on magnetic tape or punched cards.

Usually, the format and coding (i.e., the structure) of these blocks can be unequivocally
defined with relative ease. This considerably simplifies the design problem; after the blocks have
been documented, groups of programmers can be assigned to each part with the assurance that
little communication between these programmers will be necessary. If the fullest decentralization
is desired, the component programs will not share machine storage or machine time. (In some
applications, even different machines are used.)

Control of data processing in a decentralized system is primarily manual. Tape reels and
programs are changed by computer operators (and even shipped to remote locations). If an
unexpected result develops, an engineer or accountant or supervisor can print out intermediate
data and decide after the fact what course should be taken. Efficient use of computer time need
not be closely monitored, since there are no real-time constraints.

In testing or debugging one part of the system, data produced by other parts are not

required until the very last moment that the system is put into operation. (Probably many of the
decentralized systems currently in operation still contain many minor errors which are being
compensated for daily by users who have become accustomed to these minor idiosyncrasies.)

The important point is that one can write a large programming system and still maintain a

high degree of decentralization. Like most decentralizations, this course produces a system that
contains semantic inconsistencies, ambiguities, and errors; operating inefficiencies result from
duplication and wasted motion.

Real-time control systems have presented the first computer application where a very
large program is required to perform all assigned functions, and yet where the disadvantages of
decentralization cannot be tolerated. Success or failure of the system usually depends on efficient
use of computer operating time. Internal control of the real-time program must be highly
organized if efficient time and storage allocation are to be achieved, if the many in-out devices
are to be adequately sampled, and if automatic decisions are to be made when unusual
conditions develop within the program or from the external environment.

The control program must be centralized. This complicates design and coding since

communication between component subprograms must have a high bandwidth. The use of each
of the thousands of central table items must be coordinated between 100 or so component
subprograms. Organized, readable specifications for the design and coding phase accomplish
part of this task. Even then, only the most thorough testing of the entire program ensures that
system threads have been carefully worked out, that incompatibilities are discovered, and that all
contingencies are accounted for.

Preparation of a System Program

Figure 4 indicates the nine phases used at the Lincoln Laboratory in preparing a large system
program. First, an operational plan defines broad design requirements for the complete control
system consisting of the machine, the operator, and the system program. This plan must be
prepared jointly by the computer systems engineers and the eventual user of the system.

Figure 4. Program production. Production of a large-program system proceeds from a general operational plan
through system evaluation; for example, assembly testing verifies operational and program specifications.

From this plan, detailed operational specifications are prepared that precisely define the "transfer
function" of the control system. In this representation, the computer, its terminal equipment, and
the system program are treated as a black box. On the other hand, this description is sufficiently
detailed that programmers can later prepare the system program using only operational
specifications correspond to the equations the scientist gives a programmer; numerical analysis
has yet to be performed.

Program specifications outline implementation of the operational black box by the system
program. These specifications organize the program into component subprograms and tables,
indicate main channels of program intracommunication, and specify time- and storage-sharing of

the machine by each subprogram. Continuing the analogy, program specifications correspond to
a broad flowchart of the solution.

After the operational and program specifications have been completed, detailed coding
specifications are prepared that define the transfer function of each component subprogram in
terms of the processing of central and isolated items. From these specifications, it is possible to
predict precisely the output of the subprogram for any configuration of input items. The coding
specifications also describe all storage tables.

Each component subprogram is coded using the coding specifications. Ideally, this phase
would be a simple mechanical translation; actually, detailed coding uncovers inconsistencies that
require revisions in the coding specifications (and occasionally in the operational specifications).

After coding, each component subprogram is parameter tested on the machine by itself.
This testing phase uses an environment that simulates pertinent portions of the system program.
Each test performed during this phase is documented in a set of test specifications that detail the
environment used and the outputs obtained. In the figure, the dashed line indicates that
parameter testing is guided by the coding specifications instead of by the coded program; in other
words, a programmer must prove that he satisfied his specifications, not that his program will
perform as coded. (Actually, test specifications for one subprogram can be prepared in parallel
with the coding.)

As parameter testing of component subprograms is completed, the system program is

gradually assembled and tested using first simulated inputs and then live data. For each test
performed during this period, assembly test specifications are prepared that indicate test inputs
and recorded outputs. Assembly testing indicates that a system program satisfies the operational
and program specifications.

When the completed program has been assembled, it is tested in its operational

environment during shakedown. At the completion of this phase, the program is ready for
operation and evaluation.

Figure 5 indicates reasonable production costs that might be expected in preparing a system
program of 100,000 instructions. Considering the present technology of program preparation, our
experience does estimates. The estimates shown do not include training of programmers,
preparation of ancillary programs, development of control-systems techniques, or overhead
supporting activity. They include only engineering manpower required to produce the system
program. Let us assume an overhead factor of 100 percent (for supporting programs,
management, etc.), a cost of $15,000 per engineering man-year (including overhead), and a cost
of $500 per hour of computer time (this is probably low since a control computer contains
considerable terminal equipment). Assuming these factors, the cost of producing a 100,000-
instruction system program comes to about $5,500,000 or $55 per machine instruction. In other
words, the time and cost required to prepare a system program are comparable with the time and
cost of building the computer itself.

Figure 5. Production cost. Using present techniques, the production cost for a 100,000-instruction
program can easily require $55 per instruction.

The Lincoln Utility System

In order to simplify the preparation and operation of all programs, the Lincoln Laboratory has
prepared a set of service routines called the Lincoln Utility System. This system was designed to
assist all programmers in using the machine; its present size—40,000 machine instructions—is
indicative of the importance attached to its role. The Lincoln system does not provide automatic-
coding facilities in the conventional sense. Compared with systems that have been developed at
computing centers where scientific and engineering calculations predominate, the Lincoln system
has concentrated more on systematizing computer operation and program debugging than on
developing automatic translation of programmer language into machine language. Design of the
system followed these ground rules.

1. At the Lincoln Laboratory, most programs are prepared by relatively inexperienced
programmers. As many features as possible were included to help them, yet no features were
used that were so complicated that only experienced programmers could use them with facility.
Also, programmers do not operate the machine during debugging; they are required to plan and
document their operations beforehand.

2. Computer time for parameter testing, assembly testing, and system shakedown is

scarce. A large effort has been devoted to systematizing and mechanizing computer operations in
order to use minimum computer time.

3. The Lincoln Utility System includes several features that assist programmers in

communication and documentation problems encountered during the design and testing phases
of system program production.

4. The Lincoln Utility System contains extensive debugging features including facilities for

remote, flexible card control of the computer and programs to be tested.

5. Programs are prepared in machine language because automatic coding techniques

developed to date do not guarantee the efficient programming required for a real-time system. (In
retrospect, this ground rule seems very shaky.)

6. The Lincoln Utility System, which is quite large, has not been so centralized that its

initial production was delayed or that its revision and improvement are difficult.

With the Lincoln Utility System, programmers code in floating address using some subroutine
requests, particularly for card input and printed outputs. When programs are compiled, they are
stored on a magnetic-tape library with their full input structure; that is, the library copy contains
program identity, a relative-address binary copy, assigned memory locations, a floating-address
tag table, subroutine requests, etc. Storage in this form has several advantages. First,
modifications to a program can be expressed in the floating-address input structure; for
recompilation, the compiler does not require a complete program copy. Second, all postmortems
during and after program operation are retranslated into input language; programmers do not
write programs in symbolic form and receive fixed-address outputs. Third, major modifications in
storage addresses and locations can be made to a checked-out program at the time the program
is read into the machine because system design parameters are stored in a central
communication pool (see Figure 6).

Figure 6. Program input process. With the Lincoln Utility System, compiled programs are stored with the
programmer's full input structure; at read-in time, the program is finally converted to machine binary
language. Even at this time the symbolic input structure is available to other service routines.

In order to debug programs, a "checker" facility is used. This is a service program of
10,000 instructions that allows the program to be tested—the checkee—to be operated either
interpretively or noninterpretively under control of a pseudoprogram of executive instructions.

When the checkee is operated in the interpretive mode, the checker automatically detects loops,
arithmetic alarms, illegal in-out sequences, and illegal instructions. It stores a history of program
operation including branches, change-registers, and in-out transfers. In the interpretive mode, the
checkee cannot cause a machine halt; when alarm conditions are detected, the checker
automatically generates special outputs and moves on to another job. The checker provides a
wide variety of outputs including instruction-by-instruction printouts, dynamic change-register
printouts, and alarm printouts. Using the executive instructions, a programmer can set machine
registers or memory registers to test values; he can start and stop the checkee at selected
locations; he can request different outputs for different regions of the program; he can request
alarm outputs if the checkee transfers control outside a fixed region or if a loop of more than n
cycles is performed; he can indicate the use of different executive subprograms depending on the
results of checkee operation; he can indicate which portions of his program are to be performed
noninterpretively. From a programmer's point of view, the checker is a special-purpose, checkout
computer; it is a stored-program machine with highly flexible input, output, and control sections.
(See Figure 7 for a sample executive program.)

Figure 7. Sample executive program. The Lincoln checker is controlled by pseudoinstructions. The
executive program shown indicates regions of the checkee to be performed noninterpretively (01 NI),
alternate executive instructions in case of checkee alarm (02 AL), maximum-length loops (03 LP), legal
regions of checkee operation (04 LR), checkee output mode (05 TR), etc.

All utility programs are controlled by utility control cards. Before a machine run, a deck of
binary cards, checker executive cards, etc., is prepared. The operator places the cards in the
reader, pushes one button, and the rest of the computer operation is automatic.

A final feature of the utility system is the use of a large communication pool of numerical

parameters shared by all programmers. Each programmer can specify that constants or
addresses in his program should be taken from the pool. Numbers in this pool are expressed
symbolically by the programmer in both his coding specifications and his coded copy; the
machine supplies proper numerical values at read-in time. These values may be unknown to the
programmer and even changed from day to day. For example, communication tags are used for
extracting information (usually table items) that is packed into a full word. The programmer need

not know the exact location of the word in memory, nor the position of the information bits within
the word. Communication tags are even used to indicate the location in memory of the program
itself. A program-design group assigns specific numerical values to the tag pool from day to day,
in some cases long after component subprograms have been debugged. Since numerical values
are assigned only when the program is read into the machine, it is possible for system designers
to move programs and tables within drum and core memory merely by changing constants in this
pool. Only one central document needs to be revised, and minimum testing on the computer is
required. Figure 8 indicates the allocation of the 40,000 instructions in the utility system.

Figure 8. Utility system. The Lincoln Utility System requires over 40,000 instructions as indicated.

Testing

It is debatable whether a program of 100,000 instructions can ever be thoroughly tested—that is,
whether the program can be shown to satisfy its specifications under all operating conditions.
Considering the size and complexity of a system program, it is certain that the program will never
be subjected to all possible input conditions during its lifetime. For this reason, one must accept
the fact that testing will be sampling only.

On the other hand, many sad experiences have shown that the program-testing effort is
seldom adequate. When the program is delivered for operation, its performance must be highly
reliable because the control system is a critical part of a much larger environment of men and
machines. One error per 100,000 operations of the entire program can easily be intolerable.

As a result of facing this problem for some time at the Lincoln Laboratory, the following
principles have evolved to govern our testing. First, parameter testing (i.e., testing of individual
component subprograms in a simulated environment) cannot be too thorough. This phase must
discover all errors internal to the program and its individual coding specifications. Even if

parameter testing were perfect (which it never is!), many errors in system design would remain to
be discovered during subsequent assembly testing.

Second, initial assembly testing should be performed using completely simulated inputs.
There are several reasons. First, only in this way can all test inputs be carefully controlled and all
tests be reproducible. Second, when errors are discovered with a new program using live inputs,
there will always be a question whether the program or the machine is at fault. Integration of the
system program with terminal equipment should not be attempted until the assembled program
has been well tested.

A third principle is that the testing facility used during the assembly test phase must
contain extensive, flexible facilities for recording both system outputs and intermediate outputs
(i.e., subprogram
intercommunications). Without this facility, rapid and reliable diagnosis of system errors is
impossible. After a test has been conducted and errors found, it should be possible to correct the
error before the program is put on the machine again.

The need for comprehensive simulated inputs and recorded outputs can be satisfied only
if the basic design of the system program includes an instrumentation facility. In the same way
that marginal-checking equipment has become an integral part of some large computers, test
instrumentation should be considered a permanent facility in a large program.

Figure 9 illustrates the role of test instrumentation in a system program. Each of the live

inputs can be individually simulated; this allows simultaneous testing with both live and simulated
data. In addition, the input instrumentation allows easy setting of initial conditions for system
memory; this feature is performed by a special-purpose translation program that converts
alphanumeric card data into system tables. The output instrumentation "probes" both internal
data (for diagnosis) and external data (for simpler verification).

Figure 9. Test instrumentation. Proper testing of a control system requires an automatic facility for simulating
inputs and monitoring outputs. With this facility, extensive testing can be performed and outputs produced for either
diagnosis of system errors or verification of proper system performance.

One final principle should govern system-program testing: All successful parameter and
assembly tests must be reproducible throughout the life of the system program. These tests must
be documented in test specifications that detail the reasons for the tests, required inputs,
operating procedures, and expected outputs.

The original reason for this requirement stemmed from the problem of revising the

program once it was operational. The slightest modification to a program can be successful under
limited testing conditions and yet still cause critical errors for other operations. Since it is
desirable to retest the program thoroughly after each modification, a large battery of test inputs
must be available. We have discovered two other incidental advantages of detailed test
documentation. First, a programmer's tests tend to be more organized and more exhaustive if he
must document them. Second, if machine-versus-program reliability is ever questioned, retesting
is possible. If a known program and a known test fail, the machine is at fault.

Supporting Programs

The utility and test-instrumentation programs discussed are only part of the complete set of
supporting programs. In addition, special programs, which assist preparation of the system
program, are used to generate routine data blocks, perform special translation of alphanumeric
data into parameter tables, assemble program-sequence and timing parameters, etc.

Operational instrumentation programs are used during system shakedown and
evaluation. They contain simulation and recording facilities that are far more realistic and
operationally oriented than the test instrumentation. System recorded data are analyzed with a
battery of data-reduction programs (Figure 10).

Figure 10. Production of a system program. Supporting programs whose total size equals the system
program may be required to simplify production and testing of the system program.

Documentation—Design and Revision

As indicated earlier, documentation of the system program is an immense, expensive job. The
output will run to tens of thousands of pages of specifications, charts, and listings. At the Lincoln
Laboratory, these currently include the following.

Operational specifications
Program specifications
Coding specifications
Detailed flowcharts

Coded program listings
Parameter test specifications
Assembly test specifications
System operating manuals
Program operating manuals

The need for this battery of documents is obvious. The system and its program must be learned
and used by management, operational-design engineers, system-operating personnel, training
personnel, program-design engineers, programmers, program-test engineers, evaluation
personnel, and, if more than one system is maintained, on-site maintenance programmers. Each
of these users has very different needs.

Consider the problem of revising the system once the program is operational in the field.
A minor change in the operational specifications is proposed. First, the cost and effects of this
change must be evaluated in terms of the program, the operators, and, often, the machine. In
order to make the change, several hundred revisions may be required in the specifications. If the
change is approved, these documents must be changed, operating manuals revised, and the
program modified and thoroughly tested. The wave of changes must be coordinated smoothly.

Digital computers are often sold to management on the basis of their programmed
flexibility. We have said, "If your doctrine or procedure changes, no messy, expensive, time-
consuming equipment changes will be required." In reality, this is not true today. The cost of the
documentation mentioned is only a symptom of the design-coordination problem in large
systems.

How can we reduce this cost? Obviously, as we have done already, by more extensive

use of the computer. (At the laboratory, we have partially gone in this direction through the use of
punched cards for storing all central design data. Decks are easily revised, fed into the system
program, or listed for the user.) We must systematize design, production, and documentation
both in the small and in the large. By "in the small," I mean what is already being done in
automatic programming. Instead of an algebraic translator, we need a unified "bookkeeping-
logical-processing-algebraic translator." Before we get this, we will surely need much more
research on coding languages and representations. Eventually, programming should become a
two-way conversation between the imprecise human language and the precise, if unimaginative,
machine. The programmer will say, "Do this," and the machine will answer, "OK, but what
happens if … ?" The smallest gain of such a system would be the elimination of the coding,
parameter testing, and parameter test-specification phases. Unfortunately, these phases
represent only one quarter of the system cost.

Documentation "in the large" poses a bigger challenge.

1. What integrated set of documents are required to design and describe a large system?
2. What language should these documents use?
3. How should they be cross-referenced?
4. Can we eventually store them on magnetic tape and let the computer analyze, print, and code?

Summary

The techniques that have been developed for automatic programming over the past five years
have mostly aimed at simplifying the part of programming that, at first glance, seems toughest—
program input, or conversion from programmer language to machine code. As a result of
progress in this area (and a growing number of experienced programmers), we find that large
programs can now be produced; unfortunately, they are difficult to test and document. If the
newest very-high-speed, large-memory computers are to be fully utilized, we must develop
automatic programming procedures so that they allow cheap production of highly reliable, easily
revised, well-documented system programs.

	Editor's Note
	Large Programs for Control and Processing
	Preparation of a System Program
	Testing
	Summary

