"Development Status of BGL-Gasification"

Report of *Dipl.-Ing. Frank Kamka, Dipl.-Ing. Andreas Jochmann* SVZ Schwarze Pumpe, Germany

Speaker: Dipl.-oec. Lutz Picard

International Freiberg Conference on IGCC & XtL Technologies June 16-18, 2005

SEKUNDÄRROHSTOFF VERWERTUNGSZENTRUM SCHWARZE PUMPE

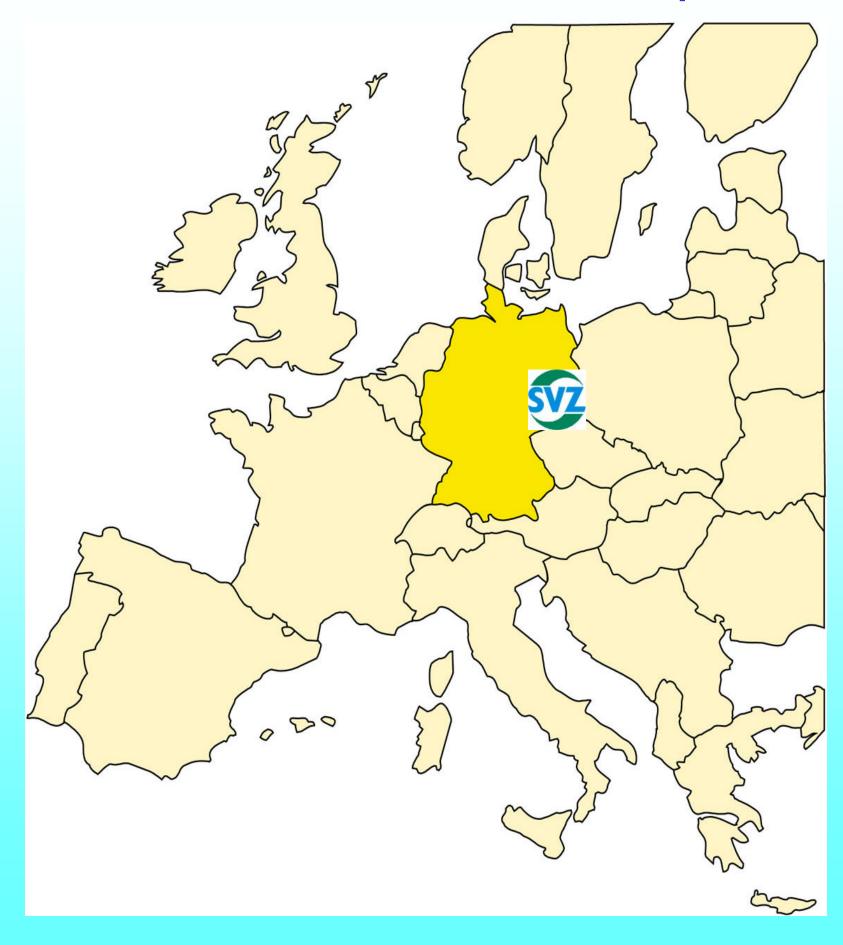
Is one of the largest german plants for the utilization of several solid and fluid kinds of waste. Installed capacities:

<u>400,000 tpy solids</u>		50,000 tpy fluids		
among them:	waste plastics municipal waste sewage sludge shredder residues	among them:	oils tars sol	
processed to:	synthesis gas methanol	gypsum power	ste	

Is the technology leader of the material use of waste by gasification and methanol synthesis

Is a large scale operator of three types of gasifiers :

entrained flow	GSP
slagging	BGL
rotating grate	FDV (Lurgi)


SEKUNDÄRROHSTOFF VERWERTUNGSZENTRUM SCHWARZE PUMPE

S rs lvents

eam

Favourable Location in the Heart of the New Europe

History of Schwarze Pumpe **Construction of the Coal Refining Company**

- **Opening of the site** 1955
- Commissioning of the first briquetting factory and the 1959 first power station
- Commissioning of the town gas plant 1964
- 1969 **Commissioning of the cokery**

In total	four power stations	(1.500 MW)
	three briquetting factories	10 Mio. t/ye
	one cokery	1.5 Mio. t/ye
	one town gas plant	5.3 bill. m³/
	additional plants, workshops et	t C.

Input lignite per year : 30,000 000 tonnes Employees 1990: 13,500

SEKUNDÄRROHSTOFF VERWERTUNGSZENTRUM SCHWARZE PUMPE

ear

'ear

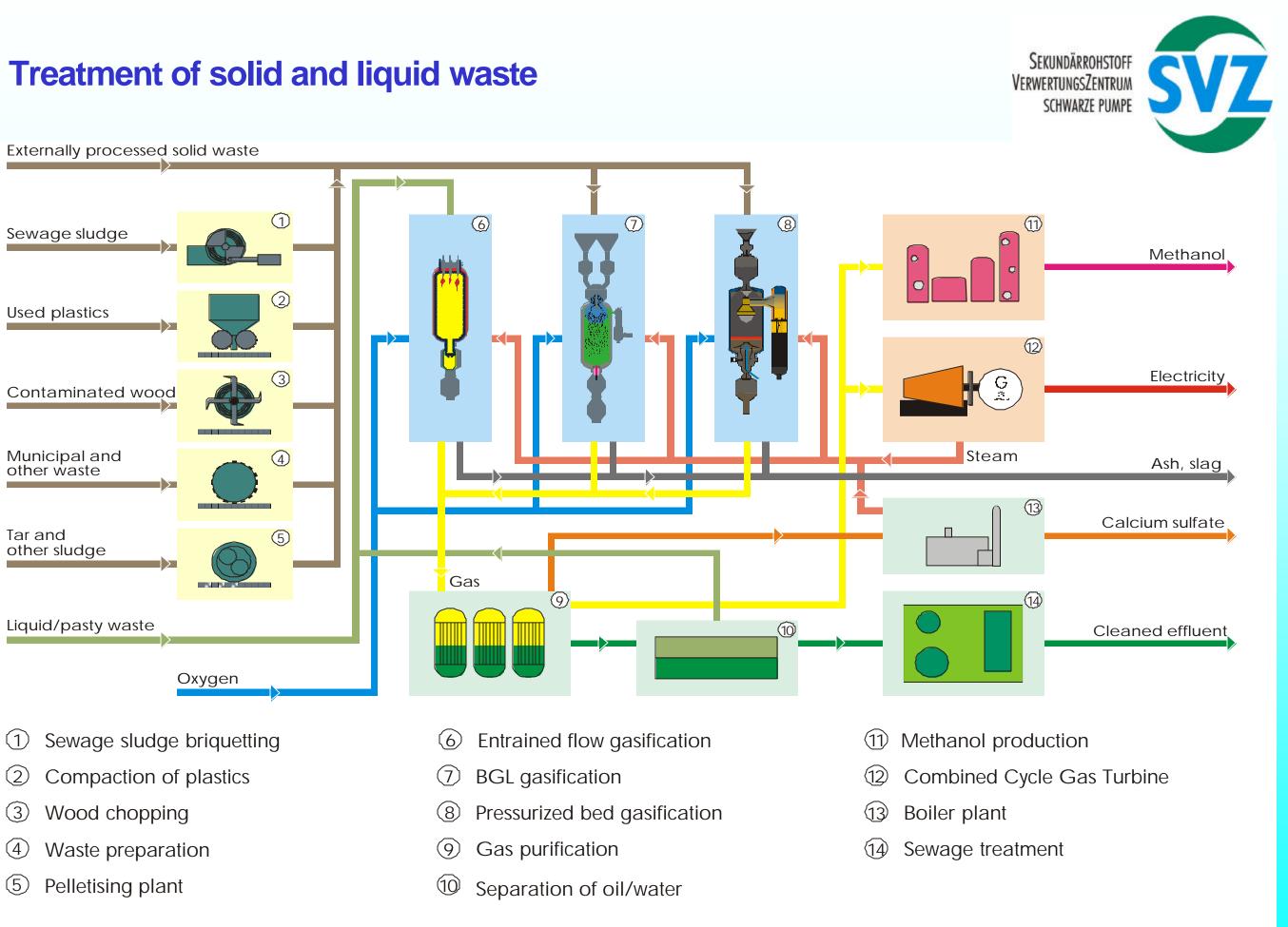
/year

Historical View on Schwarze Pumpe Site

History of the Gasification Plant Schwarze Pumpe

1964	Start up of the first fixed bed gasifier in the gasific Schwarze Pumpe (production of town gas out of light
1969	Finishing of the town gas plant (largest lignite gas worldwide) with 24 gasifiers, production 5.3 billion 85 % of gas demand of eastern part of Germany (for
from 1990	Re-united Germany: conversion process from town gas to natural gas s town gas market in the new federal states quickly o
from 1992	New concept for the gasification plant: waste gasi large scale tests
from 1995	Investment: methanol plant, power station, several plants
2000	Start up of the new BGL-Gasifier
2003	Projects for further extension are applied
2004	Running operation under insolvency proceedings
2005	Negotiations with Sustec Group, Switzerland, to hand over the operative business on July 1 st

Sekundärrohstoff VerwertungsZentrum schwarze pumpe



cation plant ignite briquettes)

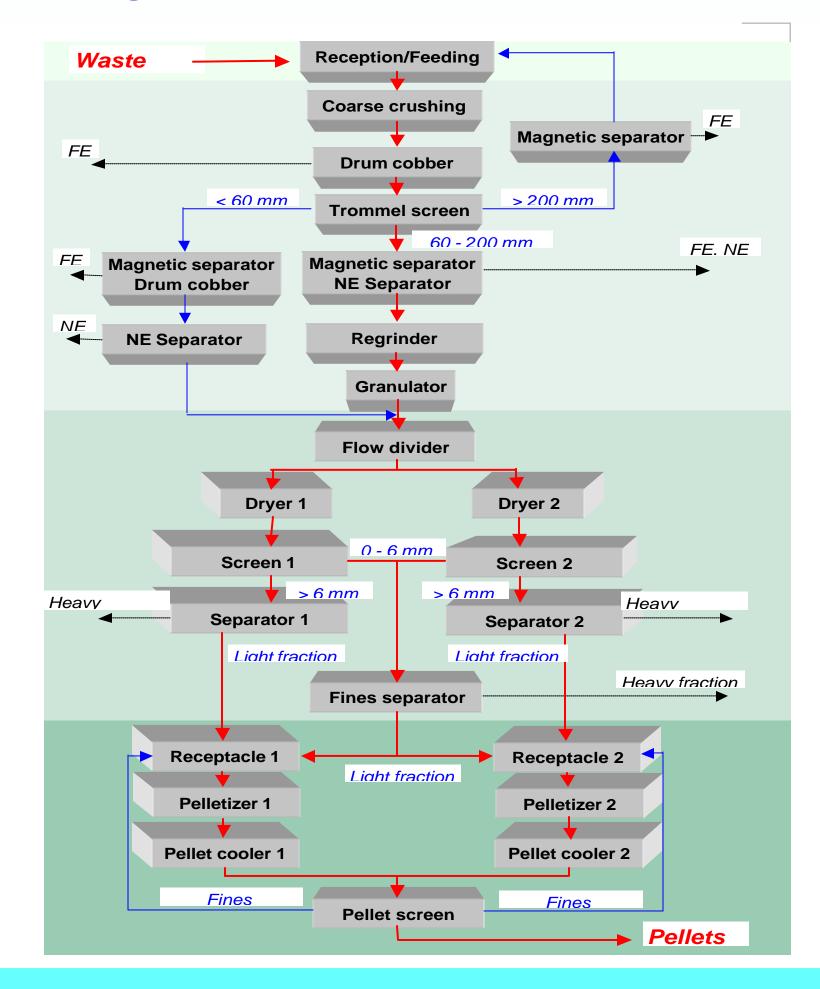
sification plant n m³/year, former GDR)

- started, declined
- sification,

al preparation

Agglomeration Technologies at SVZ

•	Extrusion plant for waste plastics	25,000 tpy
•	Briquetting plant for sewage sludges	80,000 tpy
•	Municipal waste pelletizing plant	120,000 tpy
•	Sewage sludge and tar sludge (from "tar lakes") pelletizing plant	120,000 tpy
•	Chopping plant for wood (stand-by)	20,000 tpy


Quality of Waste Pellets

- Size requirement: approx. 20 x 80 mm, fine particles < 6 mm: to be minimized</p>
- Suitable for transportation and handling
 - Thermal stability up to gasification temperatures

Waste Pelletizing

Utilization of Solid Waste Maximum Concentration of Pollutants

Arsenik	mg/kg	2 00
Lead	mg/kg	10 0
Cadmium	mg/kg	1 00
Chromium	mg/kg	20 0
Copper	mg/kg	100 0
Nickel	mg/kg	5 00
Mercury	mg/kg	200
Zink	mg/kg	100 0
Tin	mg/kg	10 0
Cyanide	mg/kg	500
Polychlorated biphenyls	mg/kg	500
Chlorine/ Halogene	mass%	10
Dioxins/ Furans	µg TU/kg	50

Sekundärrohstoff VerwertungsZentrum schwarze pumpe

Waste materials processed at SVZ (From June 1992 until May 2005)

<u>Solids</u>

Used plastics	900,000 t
Sewage sludge	120,000 t
Contaminated wood	225,000 t
Treated domestic waste (RDF)	295,000 t
Pellets from tar and sewage sludge	160,000 t
Shredder residue	20,000 t
Others	95,000 t

<u>Fluids</u>

Contaminated oils, Oil-/water mixtures	1,300,000 t
Mixtures from solvents	

Gasification Plant

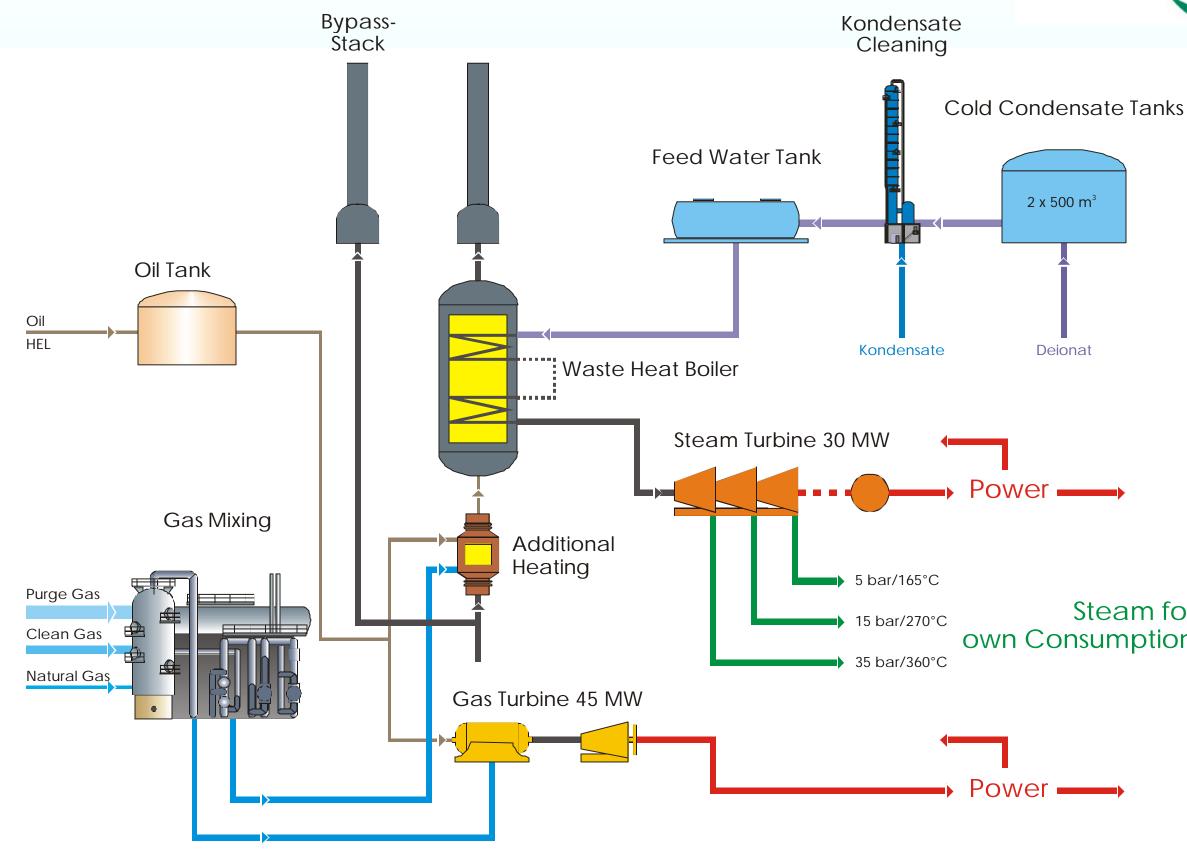
Chemical Reactions of Gasification

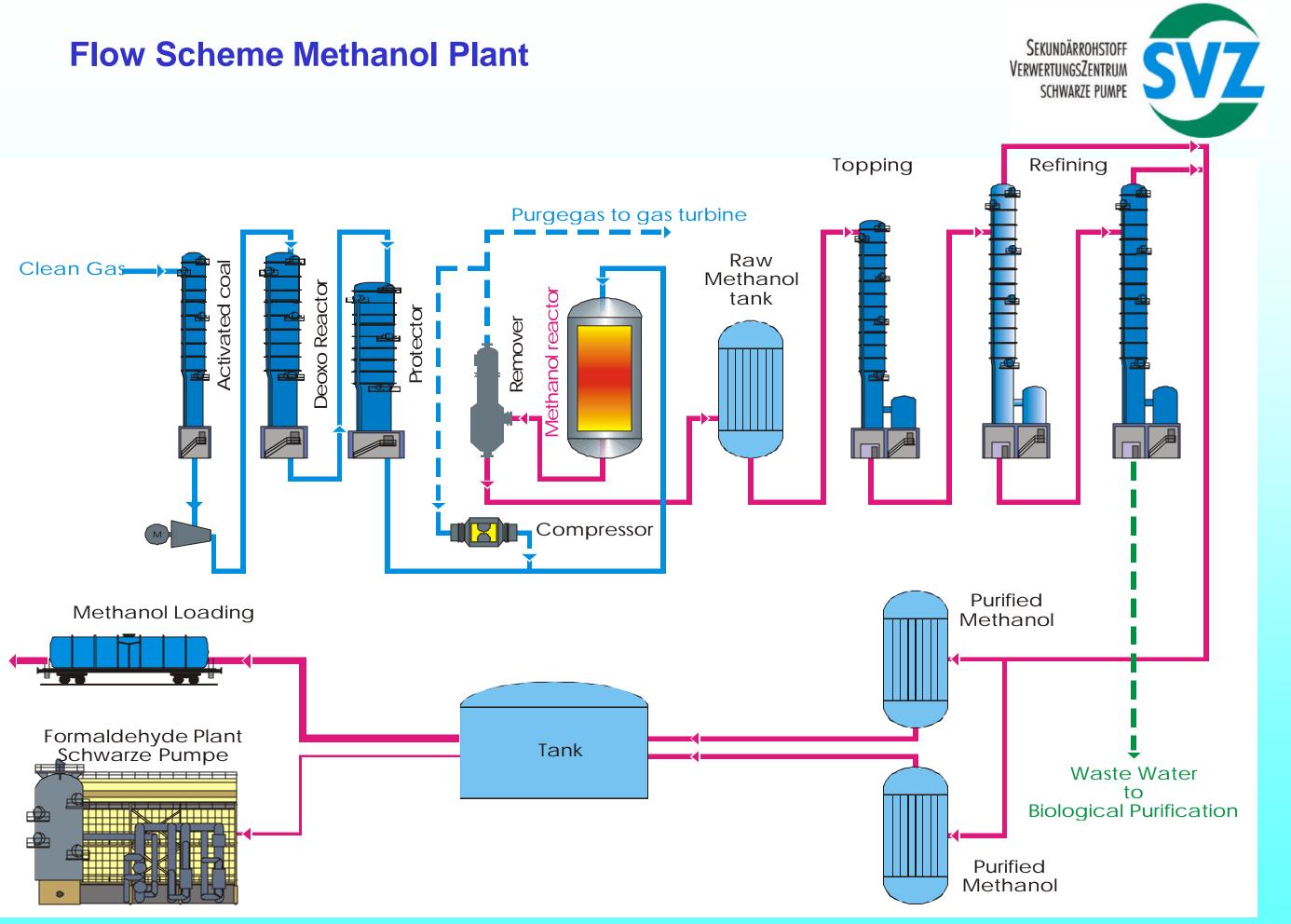
2C	+ 0 ₂ 2CO		osition of er Gas Clea
H ₂ O	+ C CO+H ₂	H ₂ CO	64,1 19,6
2H ₂ O	+ C CO ₂ +2H ₂	CO_2 CH_4 N_2	6,3 8,4 1,4
С	+ 2H ₂ CH ₄	O_2 C_n Hm	0,06 0,12
		H_2S	<0,05

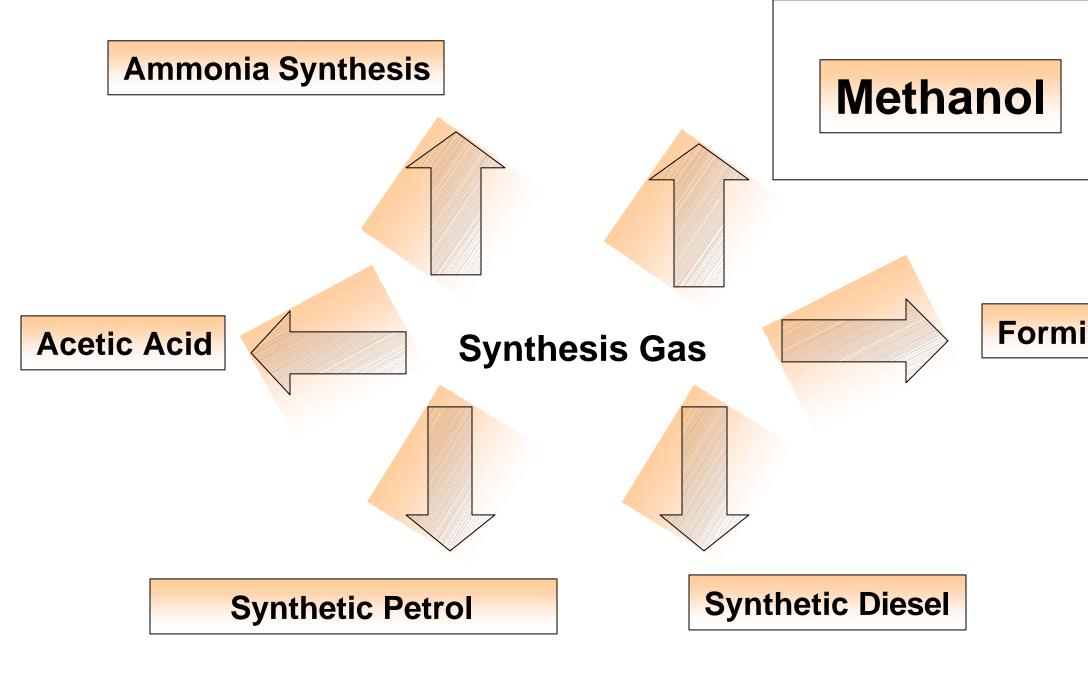
Chemical Reactions of Methanol Synthesis $2H_2$ + $CO = CH_3OH$ 3H₂ $+ CO_2 CH_3OH+H_2O$

Heating value 12.000 - 15.000 kJ/Nm³

SEKUNDÄRROHSTOFF VERWERTUNGSZENTRUM SCHWARZE PUMPE

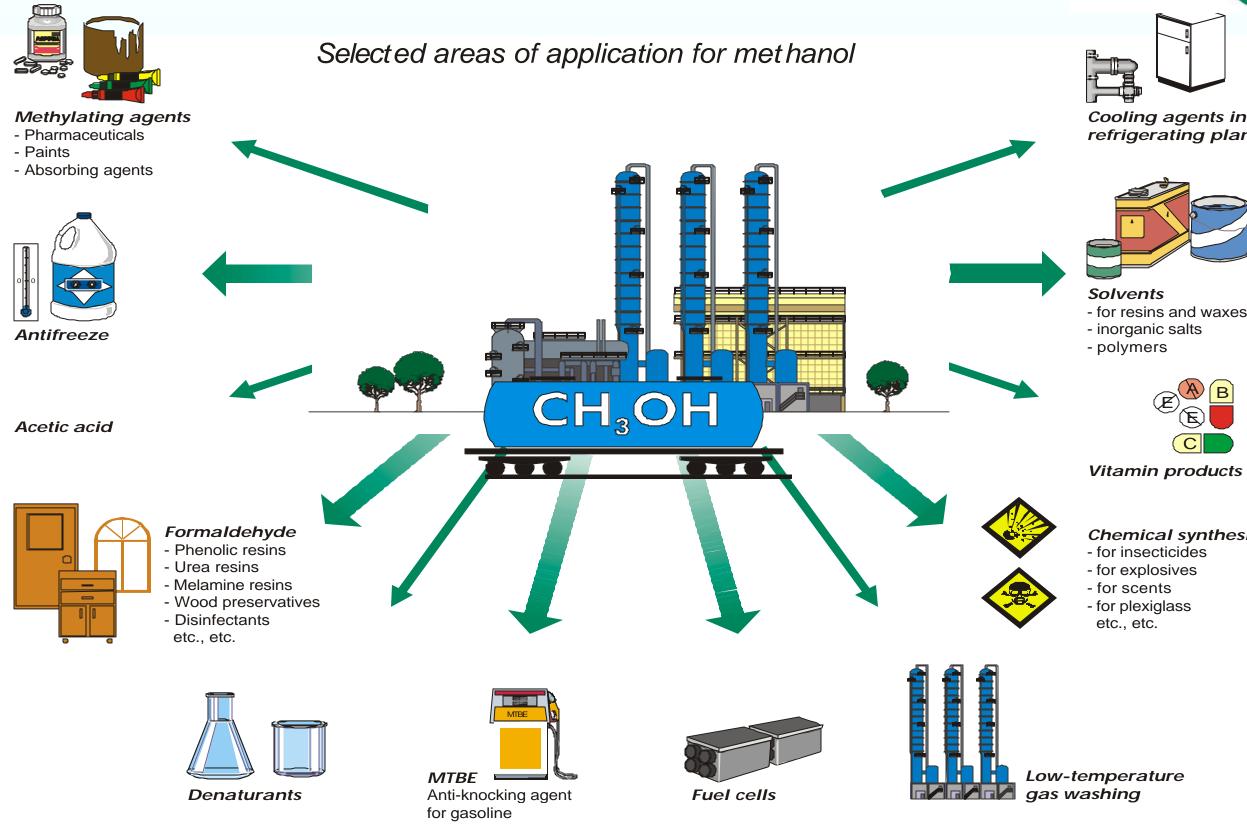

Gas Cleaning, Methanol Plant, Power Station


Flow Scheme Power Station

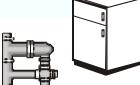

Sekundärrohstoff VerwertungsZentrum SCHWARZE PUMPE

Steam for own Consumption

Opportunities for the Use of the Synthesis Gas



Sekundärrohstoff VerwertungsZentrum schwarze pumpe


Formic Acid

Application of Methanol

SEKUNDÄRROHSTOFF VERWERTUNGSZENTRUM SCHWARZE PUMPE

Cooling agents in refrigerating plants

- for resins and waxes

Chemical synthesis

- for insecticides
- for explosives
- for plexiglass

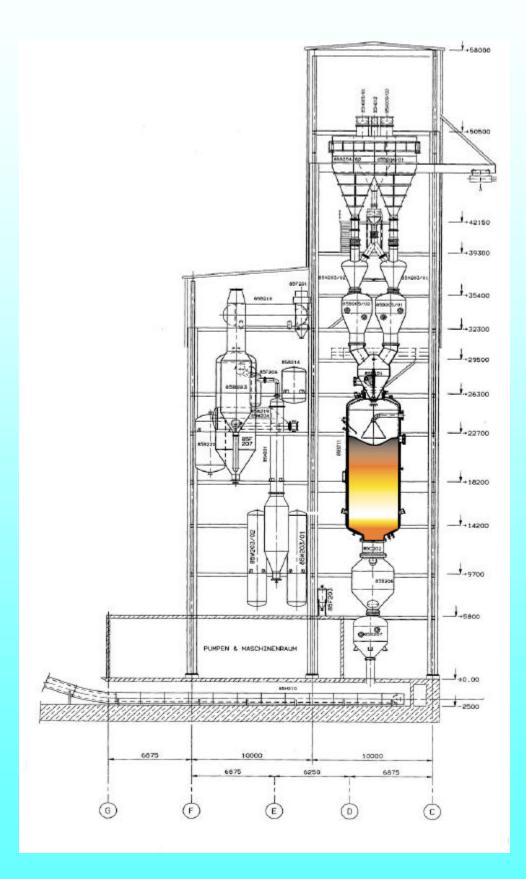
SVZ-Methanol Quality

The quality of the methanol produced by SVZ meets international standards (ASTM, IMPCA). Grade AA- Methanol, Highest purity > 99,9 %

> SVZ-Methanol is used by DaimlerChrysler (Fuel Cell Car)

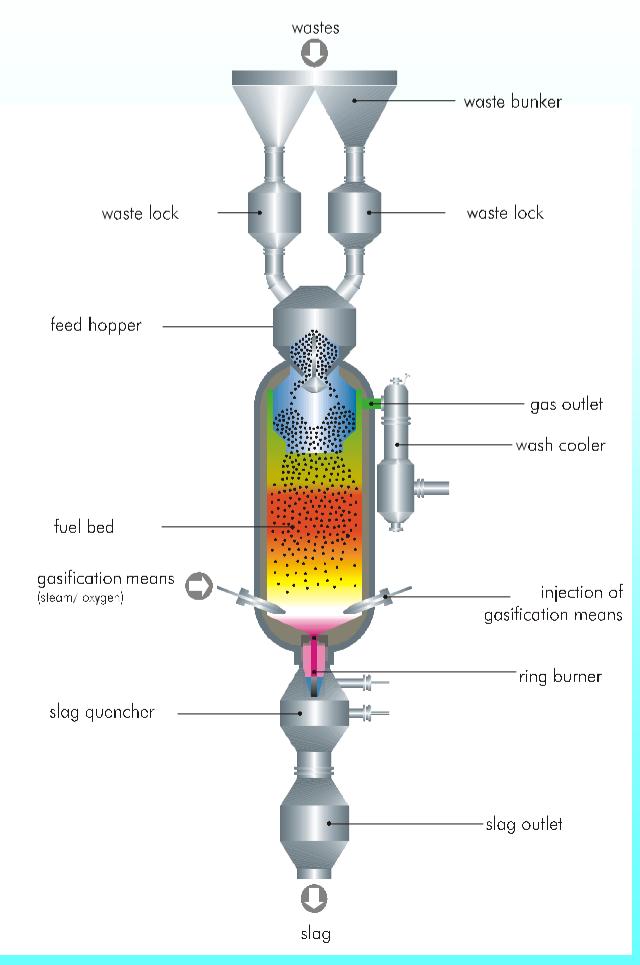
Results of Waste Treatment

	Heating value	Water	Ash	Methanol output	Reduced CO ₂ Emmissions (compared with incineration)	Energy efficiency	Power surplus
	MJ/kg	Mass %	Mass %	Kg per ton waste	%	%	MWhr
Used plastics	33,7	1,5	7,8	596	32	47,5	0,23
Contaminated wood	16,8	1	11	357	34	50,4	0,21
Domestic Waste (RDF)	18	4,5	20	392	31,5	46,6	0,23
Shredded material	11	7,5	43,8	211	24	38	0,04
Sewage sludge	11	8	43,5	160	21	35	0,03


SVZ-Process -**Ecological Advantages**

- Waste gasification to produce methanol and energy saves 1 fossil fuels and materials
- 2 As a result of recycling activities we get substantial reduction of waste volumes and savings of landfill space
- 3 High temperatures of gasification (1,450 °C till 1,800°C) destroy organic pollutants (dioxines and furanes)
- Heavy metals or other hazardous materials of the several kinds of waste 4 are contained in the gasifier slag
- 5 The slag can be used as material for road construction or as additive for special materials
- In comparison to incineration the feedstock-recycling contributes to the 6 CO₂-reduction by integration of the carbon contents of the waste into methanol

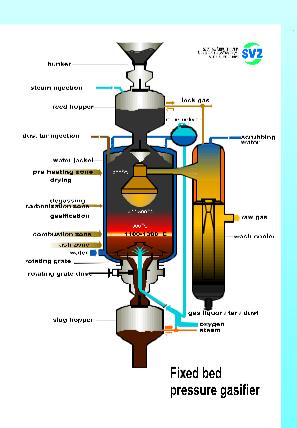
SEKUNDÄRROHSTOF VERWERTUNGSZENTRUM


BGL-Gasifier at SVZ

Slagging Gasifier BGL

•British Gas - Lurgi Gasification (BGL)

- -System datas •Diameter 3.6 m •Pressure 25 bar •Double jacket water cooled Inlet of gasification mean by jets •Fluid slag outlet with quenching system
- -Operation datas •Throuhgput •Series of input •Gas quantity •Temperature •Oxygen •Steam •Slag •Gas outlet •temperature after scrubbing < 200 °C



SEKUNDÄRROHSTOFF VERWERTUNGSZENTRUM SCHWARZE PUMPE

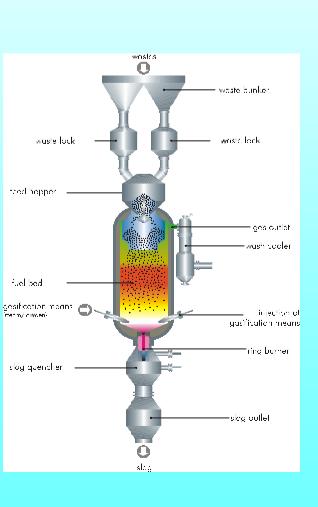
35 t/h 6 - 9 /h 35,000 Nm³/hr 1,600 °C 6,000 Nm³/hr 6-9 t/hr £ 7.5 t/hr 500-700 °C

Commons and Differences between Fixed Bed Gasifier and BGL-Gasifier

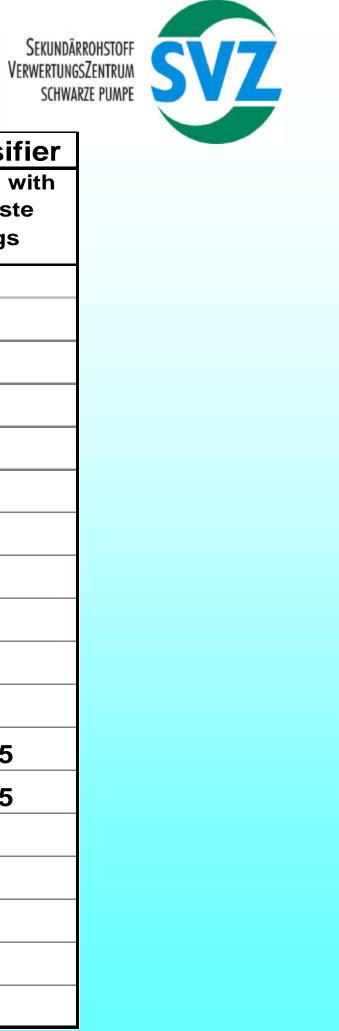
In Schwarze Pumpe since 1964 fixed bed gasifiers with rotating grate have been in operation: during peak periods 24 pieces for coal gasification and town gas production with a high degree of reliability. Until 1995 seven gasifiers were adapt to waste gasification. Nevertheless 1995 SVZ decided to errect a new BGL-Gasifier to use the advatages of the new technology.

Differences:

- Reduced steam consumption of BGL
- •Vitrified slag of BGL (Fixed Bed: sintered ash)
- •Higher temperatures of BGL
- •Higher specific throughput of BGL
- •Differences in gas composition


Commons:

•Originally designed for coal gasification •Countercurrent flow of gas and solid fuels •Input of fuel through lock system •Gasification agent: steam and oxygen


- •Internal diameter 3,6 m
- •Pressure 25 bar

SEKUNDÄRROHSTOFF VERWERTUNGSZENTRUM SCHWARZE PUMPE

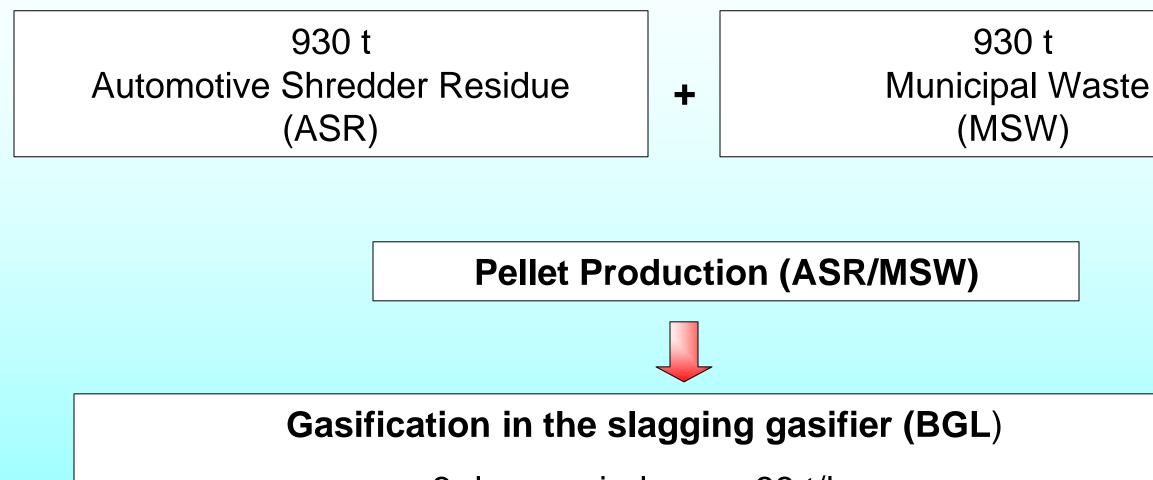
Gas Composition

		BGL-G	FDV-Gasifie	
		Operation with high waste addings	Operation with coal (Start up)	Operation wit high waste addings
H ₂	Vol%	18,0	28,0	26,0
со	Vol%	33,5	56,0	11,0
CO ₂	Vol%	16,0	2,8	39,6
CH₄	Vol%	18	6,0	14
N2	Vol%	10	6,0	2
O 2	Vol%	0,3	0,1	0,2
C ₂ H ₆	Vol%	2,2	0,4	4,0
C ₂ H ₄	Vol%	0,6	0,1	1,5
C ₃ H ₈	Vol%	0,3	<0,05	0,4
C ₃ H ₆	Vol%	0,4	<0,05	0,5
i-C4H10	Vol%	< 0,05	<0,01	< 0,05
n-C₄H₁₀	Vol%	< 0,05	<0,01	< 0,05
H ₂ S	Vol%	0,2	0,3	0,2
BTEX-Flavours	Vol%	0,5	0,3	0,6
Density	kg/Nm³	1,1	0,9	1,2
Calorific Value	MJ/Nm ³	15,8	13,0	14,4

Operational Datas II

Typical admixing rates of several kinds of waste:

Plastics	5 50 %	MSW Pellets	5 50 %
Tar-Sludge Pellets	s 5 25 %	Contam. Wood	5 15 %
Special Inputs (WEEE, Pellets fro	5 10 %		


 admixing rate (part of waste in the total input) 	until 80 %
ash-content in the total input	between 10 25 %
•total troughput (depending from performance and input material)	until 36 t/hr
 crude gas quantities 	between 25,000 35,000 Nm³dr
 range of capacity 	between 4,000 and 6,000 m³ O₂/

Large Scale Test 2003 Material Recycling of Shredder Residue

3 days period, max. 33 t/hr 50 wt.-% ASR/MSW-Pellets, 30 wt.-% mixed plastics, 20 wt.-% coal that means: Shredder Residue 25 wt.-% (8,25 t/hr)

crude gas output: 32,000 Nm³/hr

Official Status as material recycler

Sekundärrohstofi VERWERTUNGSZENTRUN SCHWAR7E PUMP

Large Scale test 2005, Material Recycling of WEEE

 admixing rate in WEEE/MSW-Pellets: 	32,5%
- admixing rate in BGL-gasifier:	about 50 wt% WEEE/MSW-P (that means 15 wt -% WEEE)
- stable run of the plant	
- troughput BGL-Gasifier:	26 t/hr
	among them 13 t/hr WEEE/MS

- crude gas output:

about 25,000 m³ /hr

Sekundärrohstoff VerwertungsZentrum schwarze pumpe

/-Pellets E)

MSW - Pellets

Further Developments to Improve the Aviability

Problem	Solution
 Cloggings of the slag water cooler 	 New design and manufacturing of larger s coolers
 Cloggings at the slag outlet 	 Decreasing of heat losses by installation of at the slag outlet nozzle and optimization of
	Installation to pick out metals from the loa
 Edge life of the nozzles for the gasification agent 	Double coating of the nozzle heads with survey resistant material
Stability of the fill-in shaft	 New design of the fill-in shaft and installat thermostable material to improve the mech thermal stability
 Loading problems (rolling of material) 	 Changes in the outlet-geometry of the feed and control optimization of the waste/coal
Range of capacity of the plant	 Improvement of the control and adaption to oxygen input to the requirements of the co operation
 Additions of coke-like material in the upper part of the gasifier (specially on the crude gas outlet) 	 Cooling of the upper part by specific water

Sekundärrohstoff VerwertungsZentrum schwarze pumpe

slag water

of SiC-cone of coolings

ading belts

suitable wear

ition of chanical and

ed hopper al input

to the compound

er jets

SVZ Future Prospects and Visions

Rising oil and gas prices and worlwide interest in stability and reliability of energy supply will lead to a revival of coal chemical industry.

Schwarze Pumpe has best conditions for technological leadership in this field because of the long standing experience and the large scale operation.

The Sustec Group as the probable new owner of SVZ has announced financial restructuring and extensive investments on the Schwarze Pumpe site:

- installation of a new coal gasification (based on GSP-process)
- extension of the methanol production

The aim is to demonstrate the competiteveness and the technology leadership in coal and waste gasification.

SEKUNDÄRROHSTOF VERWERTUNGSZENTRUM

Thank you for your kind attention

My Colleagues and I are available to further discussions.

For more and detailled information about SVZ and BGL operation we recommend the

Technical Tour to Schwarze Pumpe. (Saturday, 18th of June 2005)

