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Overview about the Content of the
CrypTool Script

In this script accompanying the program CrypTool you will find predominantly mathematically
oriented information on using cryptographic procedures. Also included are many sample code
pieces written in the computer algebra system Sage (see appendix A.5). The main chapters
have been written by various authors (see appendix A.2) and are therefore independent from
one another. At the end of most chapters you will find references and web links.

The first chapter explains the principles of symmetric and asymmetric encryption and
describes shortly the current decryption records of modern symmetric algorithms.

Because of didactic reasons the second chapter gives an exhaustive overview about paper
and pencil encryption methods.

Big parts of this script are dedicated to the fascinating topic of prime numbers (chap. 3).
Using numerous examples, modular arithmetic and elementary number theory (chap. 4)
are introduced and applied in an exemplary manner for the RSA procedure.

By reading chapter 5 you’ll gain an insight into the mathematical ideas and concepts behind
modern cryptography.

Chapter 6 gives an overview about the status of attacks against modern hash algorithms
and is then shortly devoted to digital signatures, which are an essential component of e-
business applications.

Chapter 7 describes elliptic curves: they could be used as an alternative to RSA and in
addition are extremely well suited for implementation on smartcards.

The last chapter Crypto2020 discusses threats for existing cryptographic methods and in-
troduces alternative research approaches to achieve long-term security of cryptographic schemes.

Whereas the e-learning program CrypTool motivates and teaches you how to use cryptogra-
phy in practice, the script provides those interested in the subject with a deeper understanding
of the mathematical algorithms used – trying to do it in an instructive way. If you are already
a little bit familiar with this field of knowledge you can gain a fast overview about the functions
delivered by CrypTool looking at the menu tree (see appendix A.1).

The authors would like to take this opportunity to thank their colleagues in the company
and at the universities of Frankfurt, Gießen, Siegen, Karlsruhe and Darmstadt.

As with the e-learning program CrypTool, the quality of the script is enhanced by your
suggestions and ideas for improvement. We look forward to your feedback.
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Preface to the 10th Edition of the
CrypTool Script

Starting in the year 2000 this script became part of the CrypTool v1 package. It is designed to
accompany the program CrypTool by explaining some mathematical topics in more detail, but
still in a way which is easy to understand.

In order to also enable developers/authors to work together independently the topics have
been split up and for each topic an extra chapter has been written which can be read on its own.
The later editorial work in TeX added cross linkages between different sections and footnotes
describing where you can find the according functions within the CrypTool v1 program (see
menu tree in appendix A.1). Naturally there are many more interesting topics in mathematics
and cryptography which could be discussed in greater depth – therefore this is only one of many
ways to do it.

The rapid spread of the Internet has lead to intensified research in the technologies involved,
especially within the area of cryptography where a good deal of new knowledge has arisen.

This edition completely updated the TeX sources of the document, and of course the content
of the script was corrected, amended and updated with some topics, e.g.:

• the largest prime numbers (chap. 3.4), new factorization records (chap. 4.11.4),

• progress in cryptanalysis of AES (chap. 1.1.1) and

• the list of movies or novels, in which cryptography or number theory played major role
(see appendix A.3); and where primes are used as hangers (see curiouses in 3.8.5).

• Newly added are e.g. the section about Benford’s law and primes (chap. 3.8.2), and the
appendix A.5 about using the computer algebra system Sage. Sage becomes more and
more the standard open-source CAS system. Accordingly all samples written before in
Pari-GP and Mathematica have been substituted with Sage code. Thanks to Nguyen and
Massierer, a lot of new code samples could be added (see also chap. 7.9.2).

The first time the document was delivered with CrypTool was in version 1.2.01. Since then
it has been expanded and revised in almost every new version of CrypTool.

I am deeply grateful to all the people helping with their impressive commitment who have
made this global project so successful. Thanks also to the readers who sent us feedback.

I hope that many readers have fun with this script and that they get out of it more interest
and greater understanding of this modern but also very ancient topic.

Bernhard Esslinger

Frankfurt (Germany), January 2010
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Introduction – How do the Script
and the Program Play together?

This script

This document is delivered together with the open-source program CrypTool.

The articles in this script are largely self-contained and can also be read independently of
CrypTool.

Chapters 5 (Modern Cryptography) and 7 (Elliptic Curves) require a deeper knowledge in
mathematics, while the other chapters should be understandable with a school leaving certifi-
cate.

The authors have attempted to describe cryptography for a broad audience – without being
mathematically incorrect. We believe that this didactic pretension is the best way to promote
the awareness for IT security and the readiness to use standardized modern cryptography.

The program CrypTool

CrypTool is an educational program with a comprehensive online help enabling you to use
and analyse cryptographic procedures within a unified graphical user interface.

CrypTool is used world-wide for training in companies and teaching at schools and univer-
sities worldwide, and several universities are helping to further develop the project.

Acknowledgment

At this point I’d like to thank explicitly the following people who particularly contributed
to CrypTool. They applied their very special talents and showed really great engagement:

• Mr. Henrik Koy
• Mr. Jörg-Cornelius Schneider
• Mr. Florian Marchal
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• Staff of Prof. Claudia Eckert, Prof. Johannes Buchmann and Prof. Torben Weis.

Also I want to thank all the many people not mentioned here for their hard work (mostly carried
out in their spare time).

Bernhard Esslinger
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Chapter 1

Encryption Procedures

(Bernhard Esslinger, Joerg-Cornelius Schneider, May 1999; Updates Dec. 2001, Feb. 2003,
June 2005, July 2007, January 2010)

Saying from India:
Explain it to me, I will forget it.
Show it to me, maybe I will remember it.
Let me do it, and I will be good at it.

This chapter introduces the topic in a more descriptive way without using too much math-
ematics.

The purpose of encryption is to change data in such a way that only an authorized recipient
is able to reconstruct the plaintext. This allows us to transmit data without worrying about it
getting into unauthorized hands. Authorized recipients possess a piece of secret information –
called the key – which allows them to decrypt the data while it remains hidden from everyone
else.

One encryption procedure has been mathematically proved to be secure, the One Time Pad.
However, this procedure has several practical disadvantages (the key used must be randomly
selected and must be at least as long as the message being protected), which means that it
is hardly used except in closed environments such as for the hot wire between Moscow and
Washington.

For all other procedures there is a (theoretical) possibility of breaking them. If the proce-
dures are good, however, the time taken to break them is so long that it is practically impossible
to do so, and these procedures can therefore be considered (practically) secure.

The book of Bruce Schneier [Schneier1996] offers a very good overview of the different
algorithms. We basically distinguish between symmetric and asymmetric encryption procedures.
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1.1 Symmetric encryption1

For symmetric encryption sender and recipient must be in possession of a common (secret) key
which they have exchanged before actually starting to communicate. The sender uses this key
to encrypt the message and the recipient uses it to decrypt it.

All classical methods are of this type. Examples can be found within the program CrypTool,
in chapter 2 (“Paper and Pencil Encryption Methods”) of this script or in [Nichols1996]. Now
we want to consider more modern mechanisms.

The advantages of symmetric algorithms are the high speed with which data can be en-
crypted and decrypted. One disadvantage is the need for key management. In order to commu-
nicate with one another confidentially, sender and recipient must have exchanged a key using a
secure channel before actually starting to communicate. Spontaneous communication between
individuals who have never met therefore seems virtually impossible. If everyone wants to com-
municate with everyone else spontaneously at any time in a network of n subscribers, each
subscriber must have previously exchanged a key with each of the other n − 1 subscribers. A
total of n(n− 1)/2 keys must therefore be exchanged.

The most well-known symmetric encryption procedure is the DES-algorithm. The DES-
algorithm has been developed by IBM in collaboration with the National Security Agency
(NSA), and was published as a standard in 1975. Despite the fact that the procedure is relatively
old, no effective attack on it has yet been detected. The most effective way of attacking consists
of testing (almost) all possible keys until the right one is found (brute-force-attack). Due to
the relatively short key length of effectively 56 bits (64 bits, which however include 8 parity
bits), numerous messages encrypted using DES have in the past been broken. Therefore, the
procedure can now only be considered to be conditionally secure. Symmetric alternatives to the
DES procedure include the IDEA or Triple DES algorithms.

Up-to-the-minute procedure is the symmetric AES standard. The associated Rijndael algo-
rithm was declared winner of the AES award on October 2nd, 2000 and thus succeeds the DES
procedure.

More details about the AES algorithms and the AES candidates of the last round can be
found within the online help of CrypTool2.

1.1.1 New results about cryptanalysis of AES

Below you will find some results, which have recently called into question the security of the
AES algorithm – from our point of view these doubts practically still remain unfounded .
The following information is based on the original papers and the articles [Wobst-iX2002] and
[Lucks-DuD2002].

AES with a minimum key length of 128 bit is still in the long run sufficiently secure against
brute-force attacks – as long as the quantum computers aren’t powerful enough. When an-
nounced as new standard AES was immune against all known cryptanalytic attacks, mostly
based on statistical considerations and earlier applied to DES: using pairs of clear and cipher

1With CrypTool you can execute the following modern symmetric encryption algorithms (using the menu path
Crypt \ Symmetric (modern)):
IDEA, RC2, RC4, DES (ECB), DES (CBC), Triple-DES (ECB), Triple-DES (CBC), MARS (AES candidate),
RC6 (AES candidate), Serpent (AES candidate), Twofish (AES candidate), Rijndael (official AES algorithm).

2CrypTool online help: The index head-word AES leads to the 3 help pages: AES candidates, The AES
winner Rijndael and The Rijndael encryption algorithm.

2



texts expressions are constructed, which are not completely at random, so they allow conclusions
to the used keys. These attacks required unrealistically large amounts of intercepted data.

Cryptanalysts already label methods as “academic success” or as “cryptanalytic attack” if
they are theoretically faster than the complete testing of all keys (brute force analysis). In the
case of AES with the maximal key length (256 bit) exhaustive key search on average needs 2255

encryption operations. A cryptanalytic attack needs to be better than this. At present between
275 and 290 encryption operations are estimated to be performable only just for organizations,
for example a security agency.

In their 2001-paper Ferguson, Schroeppel and Whiting [Ferguson2001] presented a new
method of symmetric codes cryptanalysis: They described AES with a closed formula (in the
form of a continued fraction) which was possible because of the ”relatively” clear structure of
AES. This formula consists of around 1000 trillion terms of a sum - so it does not help concrete
practical cryptanalysis. Nevertheless curiosity in the academic community was awakened. It
was already known, that the 128-bit AES could be described as an over-determined system
of about 8000 quadratic equations (over an algebraic number field) with about 1600 variables
(some of them are the bits of the wanted key) – equation systems of that size are in practice
not solvable. This special equation system is relatively sparse, so only very few of the quadratic
terms (there are about 1,280,000 are possible quadratic terms in total) appear in the equation
system.

The mathematicians Courtois and Pieprzyk [Courtois2002] published a paper in 2002, which
got a great deal of attention amongst the cryptology community: The pair had further developed
the XL-method (eXtended Linearization), introduced at Eurocrypt 2000 by Shamir et al., to
create the so called XSL-method (eXtended Sparse Linearization). The XL-method is a heuristic
technique, which in some cases manages to solve big non-linear equation systems and which was
till then used to analyze an asymmetric algorithm (HFE). The innovation of Courtois and
Pieprzyk was, to apply the XL-method on symmetric codes: the XSL-method can be applied to
very specific equation systems. A 256-bit AES could be attacked in roughly 2230 steps. This is
still a purely academic attack, but also a direction pointer for a complete class of block ciphers.
The major problem with this attack is that until now nobody has worked out, under what
conditions it is successful: the authors specify in their paper necessary conditions, but it is not
known, which conditions are sufficient. There are two very new aspects of this attack: firstly
this attack is not based on statistics but on algebra. So attacks seem to be possible, where only
very small amounts of ciphertext are available. Secondly the security of a product algorithm3

does not exponentially increase with the number of rounds.

Currently there is a large amount of research in this area: for example Murphy and Robshaw
presented a paper at Crypto 2002 [Robshaw2002a], which could dramatically improve crypt-
analysis: the burden for a 128-bit key was estimated at about 2100 steps by describing AES
as a special case of an algorithm called BES (Big Encryption System), which has an especially
”round” structure. But even 2100 steps are beyond what is achievable in the foreseeable future.
Using a 256 bit key the authors estimate that a XSL-attack will require 2200 operations.

More details can be found at:

3A ciphertext can be used as input for another encryption algorithm. A cascade cipheris build up as a compo-
sition of different encryption transformations. The overall cipher is called product algorithm or cascade cipher
(sometimes depending whether the used keys are statistically dependent or not).
Cascading does not always improve the security.
This process is also used within modern algorithms: They usually combine simple and, considered at its own,
cryptologically relatively insecure single steps in several rounds into an efficient overall procedure. Most block
ciphers (e.g. DES, IDEA) are cascade ciphers.
Also serial usage of the same cipher with different keys (like with Triple-DES) is called cascade cipher.
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http://www.cryptosystem.net/aes
http://www.minrank.org/aes/

So for 256-AES the attack is much more effective than brute-force but still far more away
from any computing power which could be accessible in the short-to-long term.

The discussion is very controversial at the moment: Don Coppersmith (one of the inventors
of DES) for example queries the practicability of the attack because XLS would provide no
solution for AES [Coppersmith2002]. This implies that then the optimization of Murphy and
Robshaw [Robshaw2002b] would not work.

In 2009 Biryukov und Khovratovich [Biryukov2009] published another theoretical attack on
AES. This attack uses different methods from the ones described above. They applied methods
from hash function cryptanalysis (local collisions and boomerang switching) to construct a
related-key attack on AES-256. I. e. the attacker not only needs to be able to encrypt arbitrary
data (chosen plain text), in addition he needs to be able to manipulate the unknown key
(related-key).

Based on those assumptions, the effort to find a AES-256 key is reduced to 2119 time and
277 memory. In the case of AES-192 the attack is even less practical, for AES-128 the authors
do not provide an attack.

1.1.2 Current status of brute-force attacks on symmetric algorithms (RC5)

The current status of brute-force attacks on symmetric encryption algorithms can be explained
with the block cipher RC5.

Brute-force (exhaustive search, trial-and-error) means to completely examine all keys of the
key space: so no special analysis methods have to be used. Instead, the ciphertext is decrypted
with all possible keys and for each resulting text it is checked, whether this is a meaningful
clear text. A key length of 64 bit means at most 264 = 18,446,744,073,709,551,616 or about 18
trillion (GB) / 18 quintillion (US) keys to check4.

Companies like RSA Security provide so-called cipher challenges in order to quantify the
security offered by well-known symmetric ciphers as DES, Triple-DES or RC55. They offer prizes
for those who manage to decipher ciphertexts, encrypted with different algorithms and different
key lengths, and to unveil the symmetric key (under controlled conditions). So theoretical
estimates can be confirmed.

It is well-known, that the “old” standard algorithm DES with a fixed key length of 56 bit
is no more secure: This was demonstrated already in January 1999 by the Electronic Frontier
Foundation (EFF). With their specialized computer Deep Crack they cracked a DES encrypted
message within less than a day6.

The current record for strong symmetric algorithms unveiled a key 64 bit long. The algorithm
used was RC5, a block cipher with variable key size.

The RC5-64 challenge has been solved by the distributed.net team after 5 years7. In total

4With CrypTool you can also try brute-force attacks of modern symmetric algorithms (using the menu path
Analysis \ Symmetric Encryption (modern)): here the weakest knowledge of an attacker is assumed, he
performs a ciphertext-only attack. To achieve a result in an appropriate time with a single PC you should mark
not more than 20 bit of the key as unknown.

5http://www.rsasecurity.com/rsalabs/challenges/secretkey/index.html

In May 2007 RSA announced that they will not confirm the correctness of the not yet solved RC5-72 challenge.
6http://www.rsasecurity.com/rsalabs/challenges/des3/index.html
7http://distributed.net/pressroom/news-20020926.html
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331,252 individuals co-operated over the internet to find the key8. More than 15 trillion (GB)
/ 15 quintillion (US) keys were checked, until they found the right key.

This makes clear, that symmetric algorithms (even if they have no cryptographic weakness)
using keys of size 64 bit are no more appropriate to keep sensible data private.

There are also cipher challenges for asymmetric algorithms (please see chapter 4.11.4)9 .

1.2 Asymmetric encryption10

In the case of asymmetric encryption each subscriber has a personal pair of keys consisting of
a secret key and a public key. The public key, as its name implies, is made public, e.g. in a key
directory on the Internet.

If Alice11 wants to communicate with Bob, then she finds Bob’s public key in the directory
and uses it to encrypt her message to him. She then sends this ciphertext to Bob, who is then
able to decrypt it again using his secret key. As only Bob knows his secret key, only he can
decrypt messages addressed to him. Even Alice who sends the message cannot restore plaintext
from the (encrypted) message she has sent. Of course, you must first ensure that the public key
cannot be used to derive the private key.

Such a procedure can be demonstrated using a series of thief-proof letter boxes. If I have
composed a message, I then look for the letter box of the recipient and post the letter through
it. After that, I can no longer read or change the message myself, because only the legitimate
recipient has the key for the letter box.

The advantage of asymmetric procedures is the easy key management. Let’s look again at a
network with n subscribers. In order to ensure that each subscriber can establish an encrypted
connection to each other subscriber, each subscriber must possess a pair of keys. We therefore
need 2n keys or n pairs of keys. Furthermore, no secure channel is needed before messages are
transmitted, because all the information required in order to communicate confidentially can
be sent openly. In this case, you simply have to pay attention to the accuracy (integrity and
authenticity) of the public key. Disadvantage: Pure asymmetric procedures take a lot longer to
perform than symmetric ones.

The most well-known asymmetric procedure is the RSA algorithm12, named after its devel-
opers Ronald Rivest, Adi Shamir and Leonard Adleman. The RSA algorithm was published
in 1978. The concept of asymmetric encryption was first introduced by Whitfield Diffie and
Martin Hellman in 1976. Today, the ElGamal procedures also play a decisive role, particularly
the Schnorr variant in the DSA (Digital Signature Algorithm).

8An overview of current distributed computing projects can be found here:
http://distributedcomputing.info/

9A wide spectrum of simple and complex crypto riddles are included in the “Mystery Twister C3” challenge.
10With CrypTool you can execute RSA encryption and decryption (using the menu path Crypt \ Asymmetric).

In both cases you must select a RSA key pair. Only in the case of decryption the secret RSA key is necessary:
so here you are asked to enter the PIN.

11In order to describe cryptographic protocols participants are often named Alice, Bob, . . . (see [Schneier1996,
p. 23]). Alice and Bob perform all 2-person-protocols. Alice will initiate all protocols and Bob answers. The
attackers are named Eve (eavesdropper) and Mallory (malicious active attacker).

12The RSA algorithm is extensively described in chapter 4.10 and later within this script. The RSA cryptosystem
can be executed in many variations with CrypTool (using the menu path Individual Procedures \ RSA
Cryptosystem \ RSA Demonstration). The topical research results concerning RSA are described in chapter
4.11.
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1.3 Hybrid procedures13

In order to benefit from the advantages of symmetric and asymmetric techniques together,
hybrid procedures are usually used (for encryption) in practice.

In this case the bulk data is encrypted using symmetric procedures: The key used for this
is a secret session key generated by the sender randomly14 that is only used for this message.

This session key is then encrypted using the asymmetric procedure, and transmitted to the
recipient together with the message.

Recipients can determine the session key using their private keys and then use the session
key to encrypt the message.

In this way, we can benefit from the easy key management of asymmetric procedures (using
public/private keys) and we benefit from the efficiency of symmetric procedures to encrypt large
quantities of data (using secret keys).

13Within CrypTool you can find this technique using the menu path Crypt \ Hybrid: There you can follow the
single steps and its dependencies with concrete numbers. The variant with RSA as the asymmetric algorithm
is graphically visualized; the variant with ECC uses the standard dialogs. In both cases AES is used as the
symmetric algorithm.

14An important part of cryptographically secure techniques is to generate random numbers. Within CrypTool
you can check out different random number generators using the menu path Indiv. Procedures \ Generate
Random Numbers. Using the menu path Analysis \ Analyze Randomness you can apply different test
methods for random data to binary documents.
Up to now CrypTool has concentrated on cryptographically strong pseudo random number generators. Only the
integrated Secude generator involves a ”pure” random source.
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IETF15:
There is an old saying inside the US National Security Agency (NSA):
”Attacks always get better; they never get worse.”

1.4 Ciphers and cryptanalysis for educational purposes

Compared to public-key ciphers based on mathematics like RSA, the structure of AES, and
most other modern symmetric ciphers, is very complex and cannot be explained as easily as
RSA.

So some simplified variants of modern symmetric ciphers like DES, IDEA or AES were devel-
oped for educational purposes in order to allow beginners to perform encryption and decryption
by hand and gain a better understanding of how the algorithms work in detail. These simplified
variants also help to understand and apply the according cryptanalysis methods.

One of these variants is e.g. S-AES (Simplified-AES) by Prof. Ed Schaefer and his students
[Musa-etal2003]16. Another one is Mini-AES [Phan2002] (see chapter 1.6.1 “Mini-AES”):

• Edward F. Schaefer: A Simplified Data Encryption Standard Algorithm [Schaefer1996].

• Raphael Chung-Wei Phan: Mini Advanced Encryption Standard (Mini-AES): A Testbed
for Cryptanalysis Students [Phan2002].

• Raphael Chung-Wei Phan: Impossible differential cryptanalysis of Mini-AES [Phan2003].

• Mohammad A. Musa, Edward F. Schaefer, Stephen Wedig: A simplified AES algorithm
and its linear and differential cryptanalyses [Musa-etal2003].

• Nick Hoffman: A SIMPLIFIED IDEA ALGORITHM [Hoffman2006].

• S. Davod. Mansoori, H. Khaleghei Bizaki: On the vulnerability of Simplified AES Algo-
rithm Against Linear Cryptanalysis [Mansoori-etal2007].

1.5 Further details

Beside the information you can find in the following chapters, in many other books and on a
good number of websites, the online help of CrypTool also offers very many details about the
symmetric and asymmetric encryption methods.

15http://tools.ietf.org/html/rfc4270
16See the two articles with the same title “Devising a Better Way to Teach and Learn the Advanced Encryption

Standard” at the university’s news at
- http://math.scu.edu/~eschaefe/getfile.pdf
- http://www.scu.edu/cas/research/cryptography.cfm
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1.6 Appendix: Examples using Sage

Below is Sage source code related to contents of the chapter 1 (“Encryption Procedures”).

Further details concerning cryptosystems within Sage (e.g. S-DES) can be found e.g. in the
thesis of Minh Van Nguyen [Nguyen2009].

1.6.1 Mini-AES

The Sage module crypto/block cipher/miniaes.py supports Mini-AES to allow students to
explore the working of a modern block cipher.

Mini-AES, originally described at [Phan2002], is a simplified variant of the Advanced En-
cryption Standard (AES) to be used for cryptography education.

How to use Mini-AES is exhaustively described at the Sage reference page:
http://www.sagemath.org/doc/reference/sage/crypto/block_cipher/miniaes.html.

The following Sage code from the release tour of Sage 4.117 calls the implementation of the
Mini-AES.

Further example code for Mini-AES can be found in [Nguyen2009, chap. 6.5 and appendix
D].

17See http://mvngu.wordpress.com/2009/07/12/sage-4-1-released/
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Sage sample 1.1 Encryption and decryption with Mini-AES
# We can encrypt a plaintext using Mini-AES as follows:

sage: from sage.crypto.block_cipher.miniaes import MiniAES

sage: maes = MiniAES()

sage: K = FiniteField(16, "x")

sage: MS = MatrixSpace(K, 2, 2)

sage: P = MS([K("x^3 + x"), K("x^2 + 1"), K("x^2 + x"), K("x^3 + x^2")]); P

[ x^3 + x x^2 + 1]

[ x^2 + x x^3 + x^2]

sage: key = MS([K("x^3 + x^2"), K("x^3 + x"), K("x^3 + x^2 + x"), K("x^2 + x + 1")]); key

[ x^3 + x^2 x^3 + x]

[x^3 + x^2 + x x^2 + x + 1]

sage: C = maes.encrypt(P, key); C

[ x x^2 + x]

[x^3 + x^2 + x x^3 + x]

# Here is the decryption process:

sage: plaintxt = maes.decrypt(C, key)

sage: plaintxt == P

True

# We can also work directly with binary strings:

sage: from sage.crypto.block_cipher.miniaes import MiniAES

sage: maes = MiniAES()

sage: bin = BinaryStrings()

sage: key = bin.encoding("KE"); key

0100101101000101

sage: P = bin.encoding("Encrypt this secret message!")

sage: C = maes(P, key, algorithm="encrypt")

sage: plaintxt = maes(C, key, algorithm="decrypt")

sage: plaintxt == P

True

# Or work with integers n such that 0 <= n <= 15:

sage: from sage.crypto.block_cipher.miniaes import MiniAES

sage: maes = MiniAES()

sage: P = [n for n in xrange(16)]; P

[0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15]

sage: key = [2, 3, 11, 0]; key

[2, 3, 11, 0]

sage: P = maes.integer_to_binary(P)

sage: key = maes.integer_to_binary(key)

sage: C = maes(P, key, algorithm="encrypt")

sage: plaintxt = maes(C, key, algorithm="decrypt")

sage: plaintxt == P

True
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http://www.cryptool.org
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Chapter 2

Paper and Pencil Encryption
Methods

(Christine Stötzel, April 2004; Updates: B.+C. Esslinger, June 2005; Updates Minh Van Nguyen
and B. Esslinger, November 2009 and June 2010)

Edgar Allan Poe: A Few Words on Secret Writing, 1841
Few persons can be made to believe that it is not quite an easy thing to invent a method of
secret writing which shall baffle investigation. Yet it may be roundly asserted that human
ingenuity cannot concoct a cipher which human ingenuity cannot resolve.

The following chapter provides a broad overview of paper and pencil methods1 each with
references to deeper information. All techniques that people can apply manually to en- and
decipher a message are embraced by this term. These methods were and still are especially
popular with secret services, as a writing pad and a pencil – in contrast to electronic aids – are
totally unsuspicious.

The first paper and pencil methods already arose about 3000 years ago, but new procedures
were developed during the past century, too. All paper and pencil methods are a matter of
symmetric methods. Even the earliest encryption algorithms use the basic principles such as
transposition, substitution, block construction and their combinations. Hence it is worthwhile
to closely consider this “ancient” methods especially under didactic aspects.

Methods to be successful and wide-spread had to fulfill some attributes which are equally
required for modern algorithms:

• Exhaustive description, almost standardization (including special cases, padding, etc.).

• Good balance between security and usability (because methods being too complicated
were error-prone or unacceptably slow).

1The footnotes to this chapter describe how the methods can be performed using CrypTool CrypTool 1. Addi-
tionally the last sub chapter (2.5) contains example code using the computer algebra system Sage.
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2.1 Transposition ciphers

Encrypting a message by means of transposition does not change the original characters of this
message, only their order is modified (transposition = exchange)2.

2.1.1 Introductory samples of different transposition ciphers

• Rail Fence3 [Singh1999]: The characters of a message are alternately written in two (or
more) lines, creating a zigzag pattern. The resulting ciphertext is read out line by line.
This is more a children’s method.

Plaintext4: an example of transposition

n x m l o t a s o i i n
a e a p e f r n p s t o

Table 2.1: Rail Fence cipher

Ciphertext5: NXMLO TASOI INAEA PEFRN PSTO

• Scytale6 [Singh1999]: This method was probably used since 600 B.C. – a description of
how it operated is not known from before Plutarch (50-120 B.C.).
A long strip of paper is wrapped around a wooden cylinder and then the message is written
along the length of this strip. The ciphertext is produced by unwinding the strip.

• Grille [Goebel2003]: Both parties use identical stencils. Line by line, their holes are filled
with plaintext that is read out column by column to produce the ciphertext. If there is
plaintext left, the procedure is repeated7.

• Turning grille [Savard1999]: The German army used turning grilles during WW18. A
square grille serves as a stencil, a quarter of its fields being holes. The first part of the
message is written on a piece of paper through these holes, then the grille is rotated by

2Another name used for transposition is permutation.
3This method can directly be found in CrypTool at the menu item Encrypt/Decrypt \ Symmetric (classic) \
Scytale / Rail Fence. You can simulate this method also under the menu Encrypt/Decrypt \ Symmetric
(classic) \ Permutation: For a Rail Fence with 2 lines use as key “B,A” and accept the default settings (only
one permutation, where your input is done line-by-line and the output is taken column-by-column). Using the
key “A,B” would start the zigzag pattern below in the way, that the first letter is written into the first line instead
of the second line.

4If the alphabet only uses 26 letters, we write the plaintext in small letters and the ciphertext in capital letters.
5The letters of the cleartext are – as used historically – grouped within blocks of 5 letters. It does not matter if
the (constant) block length is different or no blank is inserted.

6This method can directly be found in CrypTool at the menu item Encrypt/Decrypt \ Symmetric (classic)
\ Scytale / Rail Fence. As this method is a special case of a simple columnar transposition, you also can
simulate it in CrypTool under the menu Encrypt/Decrypt \ Symmetric (classic) \ Permutation: For
the Scytale within the dialog box only the first permutation is used. If the wood has e.g. 4 angles use as key
“1,2,3,4”. This is equivalent to write the text horizontally in blocks of 4 letters in a matrix and to read it out
vertically . Because the key is in an in ascending order, the Scytale is denoted as an identical permutation. And
because writing and read-out is done only once it is a simple (and no double) permutation.

7This method cannot be simulated with a pure column transposition.
8The turning grille was already invented in 1881 by Eduard Fleissner von Wostrowitz.
A good visualization can be found under www.turning-grille.com.
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90 degrees and the user can write down the second part of the message, etc. But this
method does only work, if the holes are chosen carefully: Every field has to be used, and
no field may be used twice, either. The ciphertext is read out line by line.

In the example for a turning grille in the following table you can write 4 times 16 characters
of the cleartext on a piece of paper:

O - - - - O - -
- - - O O - - O
- - - O - - O -
- - O - - - - -
- - - - O - - -
O - O - - - O -
- O - - - - - O
- - - O O - - -

Table 2.2: 8x8 turning grille

2.1.2 Column and row transposition9

• Simple columnar transposition [Savard1999]: First of all, a keyword is chosen, that
is written above the columns of a table. This table is filled with the text to be encrypted
line by line. Then the columns are rearranged by sorting the letters of the keyword alpha-
betically. Afterwards the columns are read out from left to right to build the ciphertext10.

Plaintext: an example of transposition

K E Y
a n e
x a m
p l e
o f t
r a n
s p o
s i t
i o n

Table 2.3: Simple columnar transposition

Transposition key: K=2; E=1; Y=3.
Ciphertext: NALFA PIOAX PORSS IEMET NOTN

• AMSCO [ACA2002]: The characters of the plaintext are written in alternating groups
of one respectively two letters into a grille. Then the columns are swapped and the text
can be read out.

9Most of the following methods can be simulated in CrypTool under the menu Encrypt/Decrypt \ Symmetric
(classic) \ Permutation.

10Using CrypTool: Choose a key for the 1st permutation, input line by line, permute and output column by column.
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• Double column transposition [Savard1999] : Double columnar transposition was fre-
quently used during WW2 and during the Cold War. Two simple columnar transpositions
with different keys are executed successively11.

• Column transposition, General Luigi Sacco [Savard1999]: The columns of a table
are numbered according to the letters of the keyword. The plaintext is entered line by
line, in the first line up to column number one, in the second line up to column number
two, etc. Again, the ciphertext is read out in columns.

Plaintext: an example of transposition

C O L U M N
1 5 2 6 3 4
a
n e x
a m p l e
o f t r a n
s p
o s i t
i o n

Table 2.4: Columnar transposition (General Luigi Sacco)

Ciphertext: ANAOS OIEMF PSOXP TINLR TEAN

• Column transposition, French army in WW1 [Savard1999]: After executing a simple
columnar transposition, diagonal rows are read out.

• Row transposition [Savard1999]: The plaintext is divided into blocks of equal length
and a keyword is chosen. Now the letters of the keyword are numbered and permutation
is done only within each block according to this numbering12.

2.1.3 Further transposition algorithm ciphers

• Geometric figures [Goebel2003]: Write the message into a grille following one pattern
and read it out using another.

• Union Route Cipher [Goebel2003]: The Union Route Cipher derives from Civil War.
This method does not rearrange letters of a given plaintext, but whole words. Particularly
sensitive names and terms are substituted by codewords which are recorded in codebooks
together with the existing routes. A route determines the size of a grille and the pattern
that is used to read out the ciphertext. In addition, a number of filler words is defined.

• Nihilist Transposition [ACA2002]: Insert the plaintext into a square grille and write
the same keyword above the columns and next to the lines. As this keyword is sorted

11Using CrypTool: Choose a key for the 1st permutation, input line by line, permute and output column by column.
Then choose a (different) key for the 2nd permutation, input line by line, permute and output column by column.

12Using CrypTool: Choose a key for 1st permutation, input line by line, permute column by column and output
line by line.
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alphabetically, the contents of the grille are rearranged, too. Read out the ciphertext line
by line.

Plaintext: an example of transposition

W O R D S D O R S W
W a n e x a D s p o i s
O m p l e o O e p l o m
R f t r a n R a t r n f
D s p o s i S n i o - t
S t i o n - W x n e a a

Table 2.5: Nihilist transposition13

Ciphertext: SPOIS EPLOM ATRNF NIOTX NEAA

• Cadenus [ACA2002]: Cadenus is a form of columnar transposition that uses two key-
words.
The 1st keyword is used to swap columns.
The 2nd keyword is used to define the initial letter of each column: this 2nd keyword
is a permutation of the used alphabet. This permutation is written on the left of the
first column. Afterwards, each column is moved (wrap-around) so that it begins with the
letter, which is in the same line as the key letter of the first keyword within the second
keyword. Ciphertext is read out line by line. See table 2.6.

Plaintext: cadenus is a form of columnar transposition using a keyword

Ciphertext:
SAASR PIFIU LONNS KTGWN EDOOA TDNNU IISFA OMYOC ROUCM AERRS

2.2 Substitution ciphers

2.2.1 Monoalphabetic substitution ciphers

Monoalphabetic substitution assigns one character of the ciphertext alphabet to each plaintext
character. This mapping remains unchanged during the whole process of encryption.

• General monoalphabetic substitution / Random letter pairs15 [Singh1999]: The
substitution occurs by a given assignment of single letters.

• Atbash16 [Singh1999]: Replace the first letter of the alphabet by the last letter of the
alphabet, the second one by the last but one, etc.

13After filling the matrix with the cleartext you get the left block. After switching rows and columns you get the
right block

14Within the 2nd block of three chars those chars are printed bold which are at the top of the 3rd block after
applying the 2nd key word.

15This cipher can be simulated in CrypTool under the menu Encrypt/Decrypt \ Symmetric (classic) \
Substitution / Atbash.

16This cipher can be simulated in CrypTool under the menu Encrypt/Decrypt \ Symmetric (classic) \
Substitution / Atbash.
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K E Y E K Y E K Y
A c a d a c d s a a
D e n u n e u s r p
X s i s i s s i f i
K a f o f a o u l o
C r m o m r o n n s
W f c o c f o k t g
N l u m u l m w n e
S n a r a n r d o o
Y t r a r t a a t d
E n s p s n p n n u
D o s i s o i i i s
T t i o i t o f a o
U n u s u n s m y o
B i n g n i g c r o
R a k e k a e u c m
G y w o w y o a e r
H r d - d r - r s -

Table 2.6: Cadenus14

• Shift cipher, for example Caesar cipher17 [Singh1999]: Plaintext alphabet and ci-
phertext alphabet are shifted against each other by a determined number of letters. Using
the Caesar cipher means shifting letters about three positions.

Plaintext: three positions to the right

Ciphertext: WKUHH SRVLWLRQV WR WKH ULJKW

• Affine cipher: This is a generalization of the shift cipher. A plaintext character is first
substituted for another character and then the result is encrypted using the shift cipher.
The affine cipher is so named because its encryption and decryption functions are affine
or linear functions.

• Substitution with symbols [Singh1999], for instance the so-called “freemason cipher”:
Each letter is replaced with a symbol.

• Variants: Fill characters, intentional mistakes [Singh1999].

• Nihilist Substitution18 [ACA2002]: Insert the alphabet into a 5x5-matrix to assign each
letter the number built from row and column number. A keyword is chosen and placed
above the columns of a second matrix (grille). The plaintext is written row by row into the
grille. The ciphertext results from adding the numbers of the plaintext and the numbers
of the keyword. Numbers between 100 and 110 are transformed to numbers between 00
and 10, so that each letter is represented by a two-digit number.

17In CrypTool this method can be found at three different places in the menu tree:
- Encrypt/Decrypt \ Symmetric (classic) \ Caesar / ROT13
- Analysis \ Symmetric Encryption (classic) \ Ciphertext only \ Caesar
- Indiv. Procedures \ Visualization of Algorithms \ Caesar.

18An animation of this Nihilist method can be found in CrypTool at the menu item Indiv. Procedures \
Visualization of Algorithms \ Nihilist.

19



See table 2.7.

Plaintext: an example of substitution

Matrix

1 2 3 4 5
1 S U B T I
2 O N A C D
3 E F G H K
4 L M P Q R
5 V W X Y Z

Table

K E Y
(35) (31) (54)

a n e
(58) (53) (85)

x a m
(88) (54) (96)

p l e
(78) (72) (85)

o f s
(56) (63) (65)

u b s
(47) (44) (65)

t i t
(49) (46) (68)

u t i
(47) (55) (69)

o n
(56) (53)

Table 2.7: Nihilist substitution

Ciphertext: 58 53 85 88 54 96 78 72 85 56 63 65 47 44 65 49 46 68 47 55 69 56 53

• Coding [Singh1999]: In the course of time, codebooks were used again and again. A
codebook assigns a codeword, a symbol or a number to every possible word of a message.
Only if both parties hold identical codebooks and if the assignment of codewords to
plaintext words is not revealed, a successful and secret communication can take place.

• Nomenclature [Singh1999]: A nomenclature is an encryption system that is based upon
a ciphertext alphabet. This alphabet is used to encrypt the bigger part of the message.
Particularly frequent or top-secret words are replaced by a limited number of codewords
existing besides the ciphertext alphabet.

• Map cipher [ThinkQuest1999]: This method constitutes a combination of substitution
and steganography19. Plaintext characters are replaced by symbols which are arranged in
a map following certain rules

19Instead of encrypting a message, pure steganography tries to conceal its existence.
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• Straddling Checkerboard [Goebel2003]: A 3x10 matrix is filled with the letters of
the used alphabet and two arbitrary digits or special characters as follows: The different
letters of a keyword and the remaining characters are written into the grille. The columns
are numbered 0 to 9, the second and the third line are numbered 1 and 2. Each plaintext
character is replaced by the corresponding digit, respectively the corresponding pair of
digits. As “1” and “2” are the first digits of the possible two-digit-numbers, they are not
used as single digits.

See table 2.8.

Plaintext: an example of substitution

0 1 2 3 4 5 6 7 8 9
K - - E Y W O R D A

1 B C F G H I J L M N
2 P Q S T U V X Z . /

Table 2.8: Straddling checkerboard with password “Keyword”

Ciphertext: 91932 69182 01736 12222 41022 23152 32423 15619

Besides, “1” and “2” are the most commonly used digits, but this feature is removed by
the following technique.

It is ostentatious, how often the numbers 1 and 2 appear, but this will be fixed with the
following version.

• Straddling Checkerboard, variant [Goebel2003] : This variant of the straddling
checkerboard was developed by Soviet spies during WW2. Ernesto (Ché) Guevara and
Fidel Castro allegedly used this cipher for their secret communication. A grille is filled
with the alphabet (number of columns = length of keyword), and two arbitrary digits are
chosen as reserved to indicate the second and third line of a 3x10-matrix (see above). Now
the grille is traversed column by column and the single letters are transferred row by row
into the matrix: For a faster encryption, the eight most common letters (ENIRSATO)
are assigned the digits from 0 to 9, the reserved 2 digits are not assigned. The remaining
letters are provided with combinations of digits one after another and are inserted into
the grille.

See table 2.9.

Plaintext: an example of substitution

Ciphertext: 04271 03773 33257 09343 29181 34185 4

– Ché Guevara Cipher: A special variant is the cipher used by Ché Guevara (with
an additional substitution step and a slightly changed checkerboard):

∗ The seven most frequent letters in Spanish are distributed in the first row.
∗ Four instead of three rows are used.
∗ So one could encrypt 10 ∗ 4− 4 = 36 different characters.
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Grille

K E Y W O R D
A B C F G H I
J L M N P Q S
T U V X Z . /

Matrix

0 1 2 3 4 5 6 7 8 9
A T E - N O R - I S

3 K J B L U Y C M V W
7 F X G P Z H Q . D /

Table 2.9: Variant of the straddling checkerboard

• Tri-Digital [ACA2002]: A keyword with ten letters is used to create a numeric key by
numbering its letters corresponding to their alphabetical order. This key is written above
the columns of 3x10-matrix. This matrix is filled line by line with the alphabet as follows:
The different letters of a keyword are inserted first, followed by the remaining letters. The
last column is left out. Plaintext characters are substituted with numbers, the number of
the last column is used to separate words.

• Baconian Cipher [ACA2002]: Assign a five-digit binary code to every letter and to 6
numbers or special characters (for example 00000 = A, 00001 = B, etc.) and replace the
plaintext characters with this binary code. Now use a second, unsuspicious message to
hide the ciphertext inside of it. This may happen by upper and lower case or italicized
letters: e.g. all letters of the unsuspicious message below a binary “1” are capitalised.

See table 2.10.

message F I G H T
ciphertext 00101 01000 00110 00111 10011

unsuspicious message itisw arman thesu nissh ining
Baconian Cipher itIsW aRman thESu niSSH IniNG

Table 2.10: Baconian cipher

2.2.2 Homophonic substitution ciphers

Homophonic methods constitute a special form of monoalphabetic substitution. Each character
of the plaintext alphabet is assigned several ciphertext characters.

• Homophonic monoalphabetic substitution20 [Singh1999]: Each language has a typ-
ical frequency distribution of letters. To conceal this distribution, each plaintext letter
is assigned several ciphertext characters. The number of ciphertext characters assigned
depends on the frequency of the letter to be encrypted.

20This cipher can be simulated in CrypTool under the menu Encrypt/Decrypt \Symmetric (classic)\
Homophone.
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• Beale cipher [Singh1999]: The Beale cipher is a book cipher that numbers the words of
a keytext. These numbers replace the cleartext letters by the words’ initial letters.

• Grandpré Cipher [Savard1999]: A square grille with 10 columns (other layouts are
possible, too) is filled with ten words. The initial letters should result in an eleventh
word. As columns and rows are numbered from 0 to 9, letters can be replaced by two-
digit numbers. It is obvious that with the table having a hundred fields, most letters can
be represented by more than one number. You should keep in mind that those ten words
have to contain all letters of the plaintext alphabet.

• Book cipher: The words of a message are substituted by triples “page-line-position”.
This method requires a detailed agreement of which book to use, especially regarding the
edition (layout, error correction, etc.).

2.2.3 Polygraphic substitution ciphers

Polygraphic techniques do not work by replacing single characters, but by replacing whole
groups of characters. In most cases, these groups are diagrams, trigrams or syllables.

• “Great Chiffre” [Singh1999]: This cipher was used by Louis XIV. and was not solved
until the end of the nineteenth century. Cryptograms consisted of 587 different numbers,
every number representing a syllable. The inventors of the “Great Chiffre” (Rossignol,
father and son) constructed additional traps to increase security. For example, a number
could assign a different meaning to or delete the preceding one.

• Playfair21 [Singh1999]: A 5x5-matrix is filled with the plaintext characters. For example,
the different letters of a keyword are inserted first, followed by the remaining letters. The
plaintext is divided into pairs, these digraphs are encrypted using the following rules:

1. If both letters can be found in the same column, they are replaced by the letters
underneath.

2. If both letters can be found in the same row, take the letters to their right.
3. If both letters of the digraph are in different columns and rows, the replacement

letters are obtained by scanning along the row of the first letter up to the column
where the other letter occurs and vice versa.

4. Double letters are treated by special rules, if they appear in one digraph. They can
be separated by a filler, for example.

See table 2.11.

Plaintext: plaintext letters are x encrypted in pairs

Ciphertext: SHBHM UWUZF KUUKC MBDWU DURDA VUKBG PQBHC M

• Trigraphic Playfair: A 5x5-matrix is filled with the alphabet (see above) and the plain-
text is divided into trigraphs. Trigraphs are encrypted according to the following rules:

1. Three equal letters are substituted by three equal letters. It is the letter on the right
underneath the original letter.

21In CrypTool you can call this method under the menu Encrypt/Decrypt \ Symmetric (classic) \ Playfair.
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K E Y W O
R D A B C
F G H I L
M N P Q S
T U V X Z

Table 2.11: 5x5 Playfair matrix

2. A trigraph with two different letters is encrypted like a digraph in Playfair.

3. If a trigraph contains three different characters, very complex rules come into effect.
See [Savard1999]

• Substituting digraphs by symbols [Savard1999]: Giovanni Battista della Porta, 15th
century. He created a 20x20-matrix that contained one symbol for every possible combi-
nation of letters (his alphabet did not comprise more than twenty letters).

• Four square cipher [Savard1999]: This method is similar to Playfair, because it is based
on a system of coordinates whose four quadrants are each filled with the alphabet. The
layout of letters can differ from quadrant to quadrant. To encipher a message, act in
the following way: Look up the first plaintext letter in the first quadrant and the second
one in the third quadrant. These two letters are opposite corners of a rectangle and the
ciphertext letters can be found in quadrant number two and four.

See table 2.12.

Plaintext: plaintext letters are encrypted in pairs

d w x y m E P T O L
r q e k i C V I Q Z
u v h p s R M A G U
a l b z n F W Y H S
g c o f t B N D X K
Q T B L E v q i p g
Z H N D X s t u o h
P M I Y C n r d x y
V S K W O b l w m f
U A F R G c z k a e

Table 2.12: Four square cipher

Ciphertext: MWYQW XQINO VNKGC ZWPZF FGZPM DIICC GRVCS

• Two square cipher [Savard1999]: The two square cipher resembles the four square
cipher, but the matrix is reduced to two quadrants. Are both letters of the digraph part
of the same row, they are just exchanged. Otherwise, the plaintext letters are considered
as opposite corners of a rectangle and substituted by the other vertices. Quadrants can
be arranged horizontal and vertical.
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• Tri square cipher [ACA2002]: Three quadrants are filled with the same alphabet. The
first plaintext letter is looked up in the first quadrant and can be encrypted with every
letter of that column. The second plaintext letter is looked up in the second quadrant
(diagonally across) and can be encrypted with every letter of that row. Between these
two ciphertext characters, the letter at the intersection point is set.

• Dockyard Cipher [Savard1999]: Used by the German navy during WW2.

2.2.4 Polyalphabetic substitution ciphers

Concerning polyalphabetic substitution, the assignment of ciphertext characters to plaintext
characters is not static, but changes during the process of encryption (depending on the key).

• Vigenère22 [Singh1999]: Each plaintext character is encrypted with a different ciphertext
alphabet that is determined by the characters of a keyword (the so-called Vigenère-Tableau
serves auxiliary means). If the plaintext is longer than the key, the latter is repeated.

See table 2.13.

Plaintext: the alphabet is changing
Key: KEY KEYKEYKE YK EYKEYKEY

Ciphertext: DLC KPNREZOX GC GFKRESRE

- A B C D E F G H I J K L M N O P Q R S T U V W X Y Z
A A B C D E F G H I J K L M N O P Q R S T U V W X Y Z
B B C D E F G H I J K L M N O P Q R S T U V W X Y Z A
C C D E F G H I J K L M N O P Q R S T U V W X Y Z A B
D D E F G H I J K L M N O P Q R S T U V W X Y Z A B C
E E F G H I J K L M N O P Q R S T U V W X Y Z A B C D
F F G H I J K L M N O P Q R S T U V W X Y Z A B C D E
G G H I J K L M N O P Q R S T U V W X Y Z A B C D E F
H H I J K L M N O P Q R S T U V W X Y Z A B C D E F G
I I J K L M N O P Q R S T U V W X Y Z A B C D E F G H
J J K L M N O P Q R S T U V W X Y Z A B C D E F G H I
K K L M N O P Q R S T U V W X Y Z A B C D E F G H I J
... ... ...

Table 2.13: Vigenère tableau

– Interrupted key: The key is not repeated continuously, but starts again with every
new word of the message.

– Autokey [Savard1999]: After using the agreed key, use the message itself as a key.
See table 2.14.

– Progressive key [Savard1999]: The key changes during the process of encryption.
With every repetition, the characters of the keyword are shifted about one position.
“KEY” becomes “LFZ”.

22In CrypTool you can call this method under the menu Encrypt/Decrypt \ Symmetric (classic) \ Vigenère.
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Plaintext: the alphabet is changing
Key: KEY THEALPHA BE TISCHANG

Ciphertext: DLC TSTHLQLT JW VPSPNIAM

Table 2.14: Autokey

– Gronsfeld [Savard1999]: Variant of Vigenère that uses a numeric key.

– Beaufort [Savard1999]: Variant of Vigenère, the key is subtracted, not added. The
ciphertext alphabets may be written backwards.

– Porta [ACA2002]: Variant of Vigenère with only 13 alphabets. As a consequence,
two letters of the keyword are assigned the same ciphertext alphabet and the first
and the second half of the alphabet are reciprocal.

– Slidefair [ACA2002]: This method can be used as a variant of Vigenère, Gronsfeld
or Beaufort. Slidefair does encrypt digraphs according to the following rules: Look
up the first letter in the plaintext alphabet above the tableau. Then look up the
second one in the row belonging to the corresponding keyword letter. These two
letters make up opposite corners of an imaginary rectangle. The letters at the two
remaining corners substitute the digraph.

• Superposition

– Book cipher: A keytext (for example out of a book) is added to the plaintext.

– Superposition with numbers: A sequence or a number of sufficient length (for
example pi) is added.

• Phillips [ACA2002]: The alphabet is filled into a square table with 5 columns. Seven
more tables are generated by first shifting the first row one position towards the bottom,
then shifting the second row towards the bottom. The plaintext is divided into blocks of
five which are encrypted with one matrix each. Letters are substituted by the ones on
their right and underneath.

• Ragbaby [ACA2002]: Construct an alphabet with 24 characters. Then number the
plaintext characters, starting the numeration of the first word with “1”, the numeration
of the second one with “2” and so forth. Number 25 corresponds to number 1. Each letter
of the message is encrypted by shifting it the corresponding positions to the right.

alphabet: KEYWORDABCFGHILMNPSTUVXZ

Plaintext: t h e a l p h a b e t i s c h a n g i n g
Numbering: 1 2 3 2 3 4 5 6 7 8 9 3 4 4 5 6 7 8 9 10 11
Ciphertext: U L O C P V P I M C O N X I P I Z T X Y X

Table 2.15: Ragbaby
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2.3 Combining substitution and transposition

In the history of cryptography one often comes across combinations of the previous mentioned
methods.

• ADFG(V)X23 [Singh1999]: ADFG(V)X-encryption was developed in Germany during
WW1. The alphabet is filled into a 5x5 or 6x6 matrix, and columns and rows are marked
with the letters ADFGX and V, depending on the size of the grille. Each plaintext
character is substituted by the corresponding pair of letters. Finally, a (row-) transposition
cipher is performed on the resulting text.

• Fractionation [Savard1999]: Generic term for all kinds of methods that encrypt one
plaintext character by several ciphertext characters and then apply a transposition cipher
to this ciphertext so that ciphertext characters originally belonging to each other are
separated.

– Bifid/Polybius square/checkerboard [Goebel2003]: Bifid encryption is the basic
form of fractionation. A 5x5 matrix is filled with the plaintext alphabet (see Playfair
encryption), rows and columns are numbered, so that each cleartext character can
be substituted by a pair of digits. Mostly the plaintext is divided into blocks of equal
length. The length of blocks (here 5) is another configuration parameter of this
cipher. Block-by-block all line numbers are read out first, followed by all numbers
naming the columns. To obtain the ciphertext, the digits are pairwise transformed
into letters again. The numbers can be any permutation of (1,2,3,4,5), which is
one key of configuration parameter of this cipher. Instead of numbering rows and
columns, a keyword can be used, too.
See table 2.16.

2 4 5 1 3
1 K E Y W O
4 R D A B C
2 F G H I L
3 M N P Q S
5 T U V X Z

Plaintext: combi nings ubsti tutio nandt ransp ositi
Rows: 41342 32323 54352 55521 34345 44333 13252

Columns: 33211 41443 41321 24213 45442 25435 33121

Table 2.16: Bifid

41342 32323 54352 55521 34345 44333 13252 33211 41443 41321 24213 45442 25435
33121

Ciphertext: BNLLL UPHVI NNUCS OHLMW BDNOI GINUR HCZQI

23In CrypTool you can call this method under the menu Encrypt/Decrypt \ Symmetric (classic) \
ADFGVX.
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– Trifid [Savard1999]: 27 characters (alphabet + 1 special character) may be repre-
sented by a triple consisting of the digits 1 to 3. The message to be encrypted is
divided into blocks of three and the relevant triple is written underneath each plain-
text character as a column. The resulting numbers below the plaintext blocks are
read out line by line and are substituted with the corresponding characters.

• Bazeries [ACA2002]: The plaintext alphabet is filled into a 5x5-matrix column by col-
umn, a second matrix is filled line by line with a keyword (a number smaller than a
million) followed by the remaining letters of the alphabet. Then the message is divided
into blocks of arbitrary length and their characters’ order is inverted. Finally, each letter
is substituted – according to its position in the original matrix – by its counterpart in the
second matrix.

See table 2.17.

Plaintext: combining substitution and transposition
Keyword: 900.004 (nine hundred thousand and four)

a f l q v N I E H U
b g m r w D R T O S
c h n s x A F B C G
d i o t y K L M P Q
e k p u z V W X Y Z

com bini ngs ub stitu tiona ndt ran sposi ti on
moc inib sgn bu utits anoit tdn nar isops it no
TMA LBLD CRB DY YPLPC NBMLP PKB BNO LCMXC LP BM

Table 2.17: Bazeries

• Digrafid [ACA2002]: To substitute digraphs, the following table is used (to simplify
matters, the alphabet is used in its original form). Look up the first letter of the digraph
in the horizontal alphabet and write down the column number. Then look up the second
letter in the vertical alphabet and write down the corresponding line number. Between
these two numbers, the number at the intersection point is set. Afterwards, the triple
are written vertically underneath the digraphs that are arranged in groups of three. The
three digit numbers arising horizontally are transformed back into digraphs.

Remark: This cipher only works with complete blocks of 3 pairs of cleartext characters.
For a complete description, it is necessary to explain how sender and receiver handle texts
which fill in the last block only 1-5 characters. The possibilities range from ignoring a last
and incomplete block to padding it with random characters or with characters predefined
in advance.

See table 2.18.
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1 2 3 4 5 6 7 8 9
A B C D E F G H I 1 2 3
J K L M N O P Q R 4 5 6
S T U V W X Y Z . 7 8 9

A J S 1
B K T 2
C L U 3
D M V 4
E N W 5
F O X 6
G P Y 7
H Q Z 8
I R . 9

co mb in in gs ub st it ut io na nd tr an sp os it io
3 4 9 9 7 3 1 9 3 9 5 5 2 1 1 6 9 9
2 4 2 2 3 7 9 3 9 2 4 4 8 2 8 6 3 2
6 2 5 5 1 2 2 2 2 6 1 4 9 5 7 1 2 6
LI KB FN .C BY EB SU I. BK RN KD FD BA HQ RP X. FT AO

Table 2.18: Digrafid

• Nicodemus [ACA2002]: First of all, a simple columnar transposition is carried out.
Before reading out the columns, the message is encrypted additionally by Vigenère (all
letters of a column are enciphered with the corresponding keyword letter). The ciphertext
is read out in vertical blocks.

See table 2.19.

Plaintext: combining substitution and transposition

Ciphertext: SMRYX MLSCC KLEZG YSRVW JSKDX RLBYN WMYDG N

2.4 Further methods

• “Pinprick encryption” [Singh1999]: For centuries, this simple encryption method has
been put into practice for different reasons (actually steganography). During the Victo-
rian Age, for example, small holes underneath letters in newspaper articles marked the
characters of a plaintext, as sending a newspaper was much more cheaper than the postage
on a letter.

• Stencil: Stencils (Cardboard with holes) are also known as “Cardinal-Richelieu-Key”.
Sender and receiver have to agree upon a text. Above this text, a stencil is laid and the
letters that remain visible make up the ciphertext.

• Card games [Savard1999]: The key is created by means of a pack of cards and rules that
are agreed upon in advance. All methods mentioned in this paragraph are designed as
paper and pencil methods, i.e. they are applicable without electronic aid. A pack of cards
is unsuspicious to outsiders, shuffling the deck provides a certain amount of coincidence,
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K E Y E K Y E K Y
c o m o c m S M K
b i n i b n M L L
i n g n i g R S E
s u b u s b Y C Z
s t i t s i X C G
t u t u z t Y J R
i o n o i n S S L
a n d n a d R K B
t r a r t a V D Y
n s p s n p W X N
o s i s o i W Y G
t i o i t o M D N

Table 2.19: Nicodemus

cards can be transformed into numbers easily and a transposition cipher can be carried
out without any further aid.

– Solitaire (Bruce Schneier)24 [Schneier1999]: Sender and receiver have to own a
deck of cards shuffled in the same manner. A key stream is generated that has to
consist of as many characters as the message to be encrypted.
The algorithm to generate the key is based on a shuffled deck of 54 cards (Ace, 2 -
10, jack, queen, king in four suits and two jokers). The pack of cards is held face up:

1. Swap the first joker with the card beneath it.
2. Move the second joker two cards down.
3. Now swap the cards above the first joker with those below the second one.
4. Look at the bottom card and convert it into a number from 1 to 53 (bridge

order of suits: clubs, diamonds, hearts, spades; joker = 53). Write down this
number and count down as many cards starting with the top card. These cards
are swapped with the remaining cards, only the bottom card remains untouched.

5. Look at the top card and convert it into a number, too. Count down as many
cards starting with the top card.

6. Write down the number of the following card. This card is converted into your
first keystream character. As we need numbers from 1 to 26 to match the letters
of our alphabet, clubs and hearts correspond to the numbers 1 to 13, diamonds
and spades to 14 to 26. If your output card is a joker, start again.

For each keystream character you like to generate, these six steps have to be carried
out. This procedure is – manually – very lengthy (4 h for 300 characters, dependant
on your exercise) and requires high concentration.
Encryption takes place by addition modulo 26. Encryption is relatively fast com-
pared to the key stream generation.

– Mirdek (Paul Crowley) [Crowley2000]: Even though this method is quite com-
plicated, the author provides a very good example to illustrate the procedure.

24In CrypTool you can call this method under the menu Encrypt/Decrypt \ Symmetric (classic) \ Solitaire.
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– Playing Card Cipher (John Savard) [Savard1999]: This algorithm uses a shuffled
deck of 52 cards (no joker). Separate rules describe how to shuffle the deck. A
keystream is created via the following steps:

1. The pack of cards lies in front of the user, top down. Cards are turned up and
dealt out in a row until the total of the cards is 8 or more.

2. If the last card dealt out is a J, Q or K, write down its value, otherwise write
down the sum of the cards dealt out (a number between 8 and 17). In a second
row, deal out that number of cards.

3. The remaining cards are dealt out in rows under the second row. The first one
ends under the lowest card of the top row, the second one under the next lowest
card, and so on. If there are two identical cards, red is lower than black.

4. The cards dealt out under step 3 are collected column by column, starting with
the column under the lowest card. The first card that is picked up becomes the
bottom card (face up).

5. The cards dealt out in step 1 and 2 are picked up, beginning with the last card.
6. The deck is turned over, the top card is now the bottom card (face down).

Afterwards, steps 1 to 6 are repeated twice.

To generate a keystream character, write down the first card not being J, Q or K.
Count down that number of cards. The card selected has to be between 1 and 10.
Now repeat these steps beginning with the last card. These two numbers are added
and the last digit of the sum is your keystream character.

• VIC cipher [Savard1999]: This is a highly complicated but relatively secure paper and
pencil method. It has been developed and applied by Soviet spies. Amongst other things,
the user had to create ten pseudo-random numbers out of a date, the first words of a
sentence and any five-digit number. A straddling checkerboard is part of the encryption,
too. A detailed description can be found under [Savard1999].

31



2.5 Appendix: Examples using Sage

In the following section some classic ciphers are implemented using the open source computer
algebra system Sage25 . The code was tested with Sage version 4.2. All ciphers are explained
in chapter 2 (“Paper and Pencil Encryption Methods”).

To make the sample code26 easier to understand, we used the structure and the naming con-
ventions shown in the graphics below:

• Encryption consists of the two steps encoding and enciphering.

– Encoding adapts the letters in the given plaintext P to the case defined in the given
alphabet, and all non-alphabet characters are filtered out.

– Enciphering creates the ciphertext C.

• Decryption also consists of two steps: deciphering and decoding.

– Decoding is only necessary if the symbols in the alphabet are not ASCII characters.

D
EC

RY
PT

IO
N

EN
CR

YP
TI

O
N

Plaintext P

Message msg

Ciphertext C

Decrypted Ciphertext DC

encoding
(get rid of non-alphabet
characters)

enciphering

deciphering

Decoded Decrypted
Ciphertext DDC

decoding

Figure 2.1: Structure and naming convention of the Sage cipher code examples

25A first introduction to the CAS Sage can be found in the appendix A.5.
26Further examples with Sage concerning classic crypto methods can be found e.g.:

- at http://www.sagemath.org/doc/constructions/linear_codes.html#classical-ciphers

- in the thesis of Minh Van Nguyen [Nguyen2009]
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2.5.1 Transposition ciphers

Transposition ciphers are implemented in the Sage class

sage.crypto.classical.TranspositionCryptosystem

To construct and work with a transposition cipher, we first need to determine the alphabet that
contains the symbols used to build the space of our plaintext and ciphertext. Typically, this
alphabet will be the upper-case letters of the English alphabet, which can be accessed via the
function

sage.monoids.string_monoid.AlphabeticStrings

We then need to decide on the block length of a block permutation, which is the length of the
row vector to be used in the simple columns transposition. This row vector is our key, and it
specifies a permutation of a plaintext.

The following first example of transposition ciphers has block length 14, and the key is build
in a way, that every letter in the plaintext is shifted to the right by two characters, with wrap
around at the end of the block. That is the encryption process. The decryption process is
shifting each letter of the ciphertext to the left by 14− 2 = 12.

Sage sample 2.1 Simple Transposition by shifting (key and inverse key explicitly given)
sage: # transposition cipher using a block length of 14

sage: T = TranspositionCryptosystem(AlphabeticStrings(), 14)

sage: # given plaintext

sage: P = "a b c d e f g h i j k l m n"

sage: # encryption key

sage: key = [3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 1, 2]

sage:

sage: # encode plaintext (get rid of non-alphabet chars, convert lower-case to upper-case)

sage: msg = T.encoding(P)

sage: # encrypt plaintext by shifting to the left by 2 letters (do it in two steps)

sage: E = T(key)

sage: C = E(msg); C

CDEFGHIJKLMNAB

sage:

sage: # decrypt ciphertext by shifting to the left by 12 letters

sage: keyInv = [13, 14, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12]

sage: D = T(keyInv)

sage: D(C)

ABCDEFGHIJKLMN

sage:

sage: # Representation of key and inverse key as permutations

sage: E

(1,3,5,7,9,11,13)(2,4,6,8,10,12,14)

sage: D

(1,13,11,9,7,5,3)(2,14,12,10,8,6,4)
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The second example of transposition ciphers is also a simple shifting column transposi-
tion. But now the code is a little bit more automated: The keys are generated from the shift
parameter.

Sage sample 2.2 Simple Transposition by shifting (key and inverse key constructed with
(“range”
sage: # transposition cipher using a block length of 14, code more variable

sage: keylen = 14

sage: shift = 2

sage: A = AlphabeticStrings()

sage: T = TranspositionCryptosystem(A, keylen)

sage:

sage: # construct the plaintext string from the first 14 letters of the alphabet plus blanks

sage: # plaintext = "A B C D E F G H I J K L M N"

sage: A.gens()

(A, B, C, D, E, F, G, H, I, J, K, L, M, N, O, P, Q, R, S, T, U, V, W, X, Y, Z)

sage: P=’’

sage: for i in range(keylen): P=P + " " + str(A.gen(i))

....:

sage: P

’ A B C D E F G H I J K L M N’

sage:

sage: # encryption key

sage: # key = [3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 1, 2]

sage: key = [(i+shift).mod(keylen) + 1 for i in range(keylen)]; key

[3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 1, 2]

sage:

sage: # encode plaintext (get rid of non-alphabet chars)

sage: msg = T.encoding(P)

sage: # encrypt plaintext by shifting to the left by 2 letters (do it in one step)

sage: C = T.enciphering(key, msg); C

CDEFGHIJKLMNAB

sage:

sage: # decrypt ciphertext by shifting to the left by 12 letters

sage: # keyInv = [13, 14, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12]

sage: shiftInv=keylen-shift;

sage: keyInv = [(i+shiftInv).mod(keylen) + 1 for i in range(keylen)]; keyInv

[13, 14, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12]

sage: DC = T.enciphering(keyInv, C); DC

ABCDEFGHIJKLMN

sage:

sage: # decryption using the "deciphering method with key" instead of "enciphering with keyInv"

sage: # using the deciphering method requires to change the type of the variable key

sage: DC = T.deciphering(T(key).key(), C); DC

ABCDEFGHIJKLMN

sage:

sage: # representation of key and inverse key as permutations

sage: T(key)

(1,3,5,7,9,11,13)(2,4,6,8,10,12,14)

sage: T(key).key()

(1,3,5,7,9,11,13)(2,4,6,8,10,12,14)

sage: T(keyInv)

(1,13,11,9,7,5,3)(2,14,12,10,8,6,4)
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In the third example of transposition ciphers we use an arbitrary permutation as key in
the encryption and decryption processes in order to scramble the characters within each block
(block length = number of columns in a simple column transposition). If the block length is
n, then the key must be a permutation on n symbols. The following example uses the method
random_key() of the class TranspositionCryptosystem. Each call to random_key() produces
a different key. Note that therefore your results (key and ciphertext) may be different from the
following example.

Sage sample 2.3 Simple Column Transposition with randomly generated (permutation) key
sage: # Remark: Enciphering here requires, that the length of msg is a multiple of keylen

sage: keylen = 14 # length of key

sage: A = AlphabeticStrings()

sage: T = TranspositionCryptosystem(A, keylen); T

Transposition cryptosystem on Free alphabetic string monoid on A-Z of block length 14

sage:

sage: P = "a b c d e f g h i j k l m n o p q r s t u v w x y z a b"

sage: key = T.random_key(); key

(1,2,3,13,6,5,4,12,7)(11,14)

sage: msg = T.encoding(P); msg

ABCDEFGHIJKLMNOPQRSTUVWXYZAB

sage: C = T.enciphering(key, msg); C

BCMLDEAHIJNGFKPQAZRSOVWXBUTY

sage: # decryption using the "deciphering method with key" instead of "enciphering with keyInv"

ssage: DC = T.deciphering(key, C); DC

ABCDEFGHIJKLMNOPQRSTUVWXYZAB

sage:

sage: # Just another way of decryption: Using "enciphering" with the inverse key

sage: keyInv = T.inverse_key(key); keyInv

(1,7,12,4,5,6,13,3,2)(11,14)

sage: DC = T.enciphering(keyInv, C); DC

ABCDEFGHIJKLMNOPQRSTUVWXYZAB

sage:

sage: # Test correctness of decryption

sage: msg == DC

True
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The fourth example of transposition ciphers additionally shows the key space of a simple
column transposition.

Sage sample 2.4 Simple Column Transposition (showing the key space)
sage: keylen = 14 # length of key

sage: A = AlphabeticStrings()

sage: T = TranspositionCryptosystem(A, keylen); T

Transposition cryptosystem on Free alphabetic string monoid on A-Z of block length 14

sage: T.key_space()

Symmetric group of order 14! as a permutation group

sage: # Remark: The key space is not quite correct as also permutations shorter than keylen are counted.

sage:

sage: P = "a b c d e f g h i j k l m n o p q r s t u v w x y z a b"

sage: key = T.random_key(); key

(1,2,7)(3,9)(4,5,10,12,8,13,11)(6,14)

sage: msg = T.encoding(P); msg

ABCDEFGHIJKLMNOPQRSTUVWXYZAB

sage:

sage: # enciphering in one and in two steps

sage: C = T.enciphering(key, msg); C

BGIEJNAMCLDHKFPUWSXBOAQZRVYT

sage:

sage: enc = T(key); enc.key()

(1,2,7)(3,9)(4,5,10,12,8,13,11)(6,14)

sage: C = enc(msg); C

BGIEJNAMCLDHKFPUWSXBOAQZRVYT

sage:

sage: # deciphering

sage: DC = T.deciphering(key, C); DC

ABCDEFGHIJKLMNOPQRSTUVWXYZAB
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2.5.2 Substitution ciphers

Substitution cryptosystems are implemented in Sage in the class

sage.crypto.classical.SubstitutionCryptosystem

The following code sample uses Sage to construct a substitution cipher with a random key. A
random key can be generated using the method random_key() of the class SubstitutionCryp-
tosystem. Different keys determine different substitution ciphers. So each call to random_key()
returns different results.

Sage sample 2.5 Monoalphabetic Substitution with randomly generated key
sage: # plaintext/ciphertext alphabet

sage: A = AlphabeticStrings()

sage: S = SubstitutionCryptosystem(A)

sage:

sage: P = "Substitute this with something else better."

sage: key = S.random_key(); key

INZDHFUXJPATQOYLKSWGVECMRB

sage:

sage: # method encoding can be called from A or from T

sage: msg = A.encoding(P); msg

SUBSTITUTETHISWITHSOMETHINGELSEBETTER

sage: C = S.enciphering(key, msg); C

WVNWGJGVGHGXJWCJGXWYQHGXJOUHTWHNHGGHS

sage:

sage: # We now decrypt the ciphertext to recover our plaintext.

sage:

sage: DC = S.deciphering(key, C); DC

SUBSTITUTETHISWITHSOMETHINGELSEBETTER

sage: msg == DC

True
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2.5.3 Caesar cipher

The following example uses Sage to construct a Caesar cipher.

Sage sample 2.6 Caesar (substitution by shifting the alphabet; key explicitly given, step-by-
step approach)
sage: # plaintext/ciphertext alphabet

sage: A = AlphabeticStrings()

sage: P = "Shift the alphabet three positions to the right."

sage:

sage: # construct Caesar cipher

sage: S = SubstitutionCryptosystem(A)

sage: key = A([3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, \

....: 20, 21, 22, 23, 24, 25, 0, 1, 2])

sage:

sage: # encrypt message

sage: msg = A.encoding(P); msg

SHIFTTHEALPHABETTHREEPOSITIONSTOTHERIGHT

sage: encrypt = S(key); encrypt

DEFGHIJKLMNOPQRSTUVWXYZABC

sage: C = encrypt(msg); C

VKLIWWKHDOSKDEHWWKUHHSRVLWLRQVWRWKHULJKW

sage:

sage: # Next, we recover the plaintext.

sage: # decrypt message

sage: keyInv = A([23, 24, 25, 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, \

....: 14, 15, 16, 17, 18, 19, 20, 21, 22])

sage: decrypt = S(keyInv); decrypt

XYZABCDEFGHIJKLMNOPQRSTUVW

sage: DC = decrypt(C); DC

SHIFTTHEALPHABETTHREEPOSITIONSTOTHERIGHT

sage: msg == DC

True
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The second Caesar sample does the same, but the code is more sophisticated/automated/flexi-
ble.

Sage sample 2.7 Caesar (substitution by shifting the alphabet; substitution key generated)
sage: # plaintext/ciphertext alphabet

sage: A = AlphabeticStrings()

sage: keylen = len(A.gens()); keylen

26

sage: shift = 3

sage: P = "Shift the alphabet three positions to the right."

sage:

sage: # construct Caesar cipher

sage: S = SubstitutionCryptosystem(A)

sage: S

Substitution cryptosystem on Free alphabetic string monoid on A-Z

sage: # key = A([3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, \

sage: # 20, 21, 22, 23, 24, 25, 0, 1, 2])

sage: key = [(i+shift).mod(keylen) for i in range(keylen)];

sage: key = A(key); key

DEFGHIJKLMNOPQRSTUVWXYZABC

sage: len(key)

26

sage:

sage: # encrypt message

sage: msg = A.encoding(P); msg

SHIFTTHEALPHABETTHREEPOSITIONSTOTHERIGHT

sage: C = S.enciphering(key, msg); C

VKLIWWKHDOSKDEHWWKUHHSRVLWLRQVWRWKHULJKW

sage:

sage: # Next, we recover the plaintext.

sage: # decrypt message

sage: # keyInv = A([23, 24, 25, 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, \

sage: # 14, 15, 16, 17, 18, 19, 20, 21, 22])

sage: shiftInv=keylen-shift;

sage: keyInv = [(i+shiftInv).mod(keylen) for i in range(keylen)];

sage: keyInv = A(keyInv); keyInv

XYZABCDEFGHIJKLMNOPQRSTUVW

sage: DC = S.enciphering(keyInv, C); DC

SHIFTTHEALPHABETTHREEPOSITIONSTOTHERIGHT

sage:

sage: # Just another way of decryption: Using "deciphering" with the key

sage: DC = S.deciphering(key, C); DC

SHIFTTHEALPHABETTHREEPOSITIONSTOTHERIGHT

sage:

sage: msg == DC

True
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2.5.4 Shift cipher

The shift cipher can also be thought of as a generalization of the Caesar cipher. While the
Caesar cipher restricts us to shift exactly three positions along an alphabet, the shift cipher
allows us to shift any number of positions along the alphabet.

In the above samples we applied the SubstitutionCryptosystem and build Caesar as a
special kind of substitution. In contrast here Caesar can be build as a special kind of the shift
cipher.

The shift cipher is implemented directly in the Sage class

sage.crypto.classical.ShiftCryptosystem

In the following example, we construct a shift cipher over the capital letters of the English
alphabet. We then encrypt a plaintext P by shifting it 12 positions along the alphabet. Finally,
we decrypt the ciphertext C and make sure that the result (DC) is indeed the original plaintext.
Shifting is a special way of substitution.

Sage sample 2.8 A shift cipher over the upper-case letters of the English alphabet
sage: # construct Shift cipher directly

sage: shiftcipher = ShiftCryptosystem(AlphabeticStrings()); shiftcipher

Shift cryptosystem on Free alphabetic string monoid on A-Z

sage: P = shiftcipher.encoding("Shift me any number of positions."); P

SHIFTMEANYNUMBEROFPOSITIONS

sage: key = 12 # shift can be any integer number

sage:

sage: # shift the plaintext by 12 positions to get the ciphertext

sage: C = shiftcipher.enciphering(key, P); C

ETURFYQMZKZGYNQDARBAEUFUAZE

sage:

sage: # decrypt the ciphertext and ensure that it is the original plaintext

sage: DC = shiftcipher.deciphering(key, C); DC

SHIFTMEANYNUMBEROFPOSITIONS

sage: DC == P

True

The Caesar cipher is simply a shift cipher whose shifting key is 3. In the next example, we
use the shift cipher to create a Caesar cipher over the capital letters of the English alphabet.

Sage sample 2.9 Constructing the Caesar cipher using the shift cipher
sage: # create a Caesar cipher

sage: caesarcipher = ShiftCryptosystem(AlphabeticStrings())

sage: P = caesarcipher.encoding("Shift the alphabet by three positions to the right."); P

SHIFTTHEALPHABETBYTHREEPOSITIONSTOTHERIGHT

sage:

sage: key = 3 # shift the plaintext by exactly 3 positions

sage: C = caesarcipher.enciphering(key, P); C

VKLIWWKHDOSKDEHWEBWKUHHSRVLWLRQVWRWKHULJKW

sage:

sage: # decrypt the ciphertext and ensure that it is the original plaintext

sage: DC = caesarcipher.deciphering(key, C); DC

SHIFTTHEALPHABETBYTHREEPOSITIONSTOTHERIGHT

sage: DC == P

True
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2.5.5 Affine cipher

The affine cipher is implemented in the Sage class

sage.crypto.classical.AffineCryptosystem

In the following example, we construct an affine cipher with key (3, 13) and use this key to
encrypt a given plaintext P. The plaintext is then decrypted and the result DC is compared to
the original plaintext.

Sage sample 2.10 An affine cipher with key (3, 13)
sage: # create an affine cipher

sage: affineCipher = AffineCryptosystem(AlphabeticStrings()); affineCipher

Affine cryptosystem on Free alphabetic string monoid on A-Z

sage: P = affineCipher.encoding("The affine cryptosystem.")

sage: P

THEAFFINECRYPTOSYSTEM

sage:

sage: # encrypt the plaintext using the key (3, 13)

sage: a, b = (3, 13)

sage: C = affineCipher.enciphering(a, b, P)

sage: C

SIZNCCLAZTMHGSDPHPSZX

sage:

sage: # decrypt the ciphertext and make sure that it is equivalent to the original plaintext

sage: DC = affineCipher.deciphering(a, b, C)

sage: DC

THEAFFINECRYPTOSYSTEM

sage: DC == P

True

We can also construct a shift cipher using the affine cipher. To do so, we need to restrict
keys of the affine cipher be of the form (1, b) where b is any non-negative integer. For instance,
we can work through Sage example 2.8 on page 40 as follows:

Sage sample 2.11 Constructing a shift cipher using the affine cipher
sage: # construct a shift cipher

sage: shiftcipher = AffineCryptosystem(AlphabeticStrings()); shiftcipher

Affine cryptosystem on Free alphabetic string monoid on A-Z

sage: P = shiftcipher.encoding("Shift me any number of positions.")

sage: P

SHIFTMEANYNUMBEROFPOSITIONS

sage:

sage: # shift the plaintext by 12 positions to get the ciphertext

sage: a, b = (1, 12)

sage: C = shiftcipher.enciphering(a, b, P)

sage: C

ETURFYQMZKZGYNQDARBAEUFUAZE

sage:

sage: # decrypt the ciphertext and ensure that it is the original plaintext

sage: DC = shiftcipher.deciphering(a, b, C); P

SHIFTMEANYNUMBEROFPOSITIONS

sage: DC == P

True
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We can also use the affine cipher to create the Caesar cipher. To do so, the encryp-
tion/decryption key must be (1, 3). In the next example, we work through Sage example 2.9 on
page 40 using the affine cipher.

Sage sample 2.12 Constructing the Caesar cipher using the affine cipher
sage: # create a Caesar cipher

sage: caesarcipher = AffineCryptosystem(AlphabeticStrings())

sage: P = caesarcipher.encoding("Shift the alphabet by three positions to the right.")

sage: P

SHIFTTHEALPHABETBYTHREEPOSITIONSTOTHERIGHT

sage:

sage: # shift the plaintext by 3 positions

sage: a, b = (1, 3)

sage: C = caesarcipher.enciphering(a, b, P)

sage: C

VKLIWWKHDOSKDEHWEBWKUHHSRVLWLRQVWRWKHULJKW

sage:

sage: # decrypt the ciphertext and ensure that it is the original plaintext

sage: DC = caesarcipher.deciphering(a, b, C)

sage: DC

SHIFTTHEALPHABETBYTHREEPOSITIONSTOTHERIGHT

sage: DC == P

True
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2.5.6 Substitution with symbols

In the following Sage example the symbols are from the binary number system. A monoal-
phabetic substitution cipher with a binary alphabet has very little security: Because the plain-
text/ciphertext alphabet has only the two elements 0 and 1, there are only two keys possible:
(0 1) and (1 0).
Remark: The key of a general substitution cipher contains all symbols of the alphabet exactly
once.

Sage sample 2.13 Monoalphabetic substitution with a binary alphabet
sage: # the plaintext/ciphertext alphabet

sage: B = BinaryStrings()

sage: # substitution cipher over the alphabet B; no keylen argument possible

sage: S = SubstitutionCryptosystem(B); S

Substitution cryptosystem on Free binary string monoid

sage: # To get a substitute for each symbol, key has always the length of the alphabet

sage: key = S.random_key(); key

10

sage: len(key)

2

sage: P = "Working with binary numbers."

sage: # encryption

sage: msg = B.encoding(P); msg

01010111011011110111001001101011011010010110111001100111001000000111011101101\

00101110100011010000010000001100010011010010110111001100001011100100111100100\

1000000110111001110101011011010110001001100101011100100111001100101110

sage: C = S.enciphering(key, msg); C

10101000100100001000110110010100100101101001000110011000110111111000100010010\

11010001011100101111101111110011101100101101001000110011110100011011000011011\

0111111001000110001010100100101001110110011010100011011000110011010001

sage: # decryption

sage: DC = S.deciphering(key, C); DC

01010111011011110111001001101011011010010110111001100111001000000111011101101\

00101110100011010000010000001100010011010010110111001100001011100100111100100\

1000000110111001110101011011010110001001100101011100100111001100101110

sage: msg == DC

True

Remark: Currently S has no attribute key, and I found no way to transform the binary
sequence DC back to ASCII.

43



The second sample of a monoalphabetic substitution with symbols uses a larger alphabet
as plaintext/ciphertext space as the first sample. Here the hexadecimal number system is used
as substitution alphabet.

Sage sample 2.14 Monoalphabetic substitution with a hexadecimal alphabet (and decoding
in Python)
sage: A = HexadecimalStrings()

sage: S = SubstitutionCryptosystem(A)

sage: key = S.random_key(); key

2b56a4e701c98df3

sage: len(key)

16

sage: # Number of possible keys

sage: factorial(len(key))

20922789888000

sage: P = "Working with a larger alphabet."

sage:

sage: msg = A.encoding(P); msg

576f726b696e6720776974682061206c617267657220616c7068616265742e

sage: C = S.enciphering(key, msg); C

47e375e9e1efe75277e17ae052eb52e8eb75e7e47552ebe872e0ebe5e47a5f

sage: DC = S.deciphering(key, C); DC

576f726b696e6720776974682061206c617267657220616c7068616265742e

sage: msg == DC

True

sage:

sage: # Conversion hex back to ASCII:

sage: # - AlphabeticStrings() and HexadecimalStrings() don’t have according methods.

sage: # - So we used Python directly.

sage: import binascii

sage: DDC = binascii.a2b_hex(repr(DC)); DDC

’Working with a larger alphabet.’

sage:

sage: P == DDC

True
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2.5.7 Vigenère cipher

The Vigenère cipher is implemented in the Sage class

sage.crypto.classical.VigenereCryptosystem

For our ciphertext/plaintext space, we can work with the upper-case letters of the English
alphabet, the binary number system, the octal number system, or the hexadecimal number
system. Here is an example using the class AlphabeticStrings, which implements the English
capital letters.

Sage sample 2.15 Vigenère cipher
sage: # construct Vigenere cipher

sage: keylen = 14

sage: A = AlphabeticStrings()

sage: V = VigenereCryptosystem(A, keylen); V

Vigenere cryptosystem on Free alphabetic string monoid on A-Z of period 14

sage:

sage: # alternative could be a given key: key = A(’ABCDEFGHIJKLMN’); key

sage: key = V.random_key(); key

WSSSEEGVVAARUD

sage: len(key)

14

sage:

sage: # encoding

sage: P = "The Vigenere cipher is polyalphabetic."

sage: len(P)

38

sage: msg = V.encoding(P); msg # alternative: msg = A.encoding(P); msg

THEVIGENERECIPHERISPOLYALPHABETIC

sage:

sage: # encryption [2 alternative ways (in two steps or in one): both work]

sage: # encrypt = V(key); encrypt

sage: # C = encrypt(msg); C

sage: C = V.enciphering(key, msg); C

PZWNMKKIZRETCSDWJAWTUGTALGBDXWLAG

sage:

sage: # decryption

sage: DC = V.deciphering(key, C); DC

THEVIGENERECIPHERISPOLYALPHABETIC

sage: msg == DC

True
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2.5.8 Hill cipher

The Hill [Hill1929, Hill1931] or matrix cipher is more mathematically sophisticated than other
ciphers mentioned in this chapter. The encryption/decryption key of this cipher is an invertible
square matrix, and the plaintext/ciphertext is processed also as a matrix. The encryption and
decryption processes use matrix operations modulo 26. The Hill cipher is implemented in the
Sage class

sage.crypto.classical.HillCryptosystem

In the following example our plaintext/ciphertext space is the capital letters of the English
alphabet. In the Hill cipher, each letter of this alphabet is assigned a unique integer modulo
26. The size of matrix (also called its dimension) is not restricted by the cipher.

Remark: Comparing the Hill implementation in CrypTool v1.4.30 and in Sage v4.2.1:

• Sage offers fast commandline operations; CrypTool offers its functionality within a GUI.

• Sage offers any dimension; CrypTool is restricted to a matrix size between 1 and 10.

• Sage always sets the first alphabet character to 0; and it uses the multiplication variant
plaintext row vector * key matrix: C = P*M.

• CrypTool offers to choose also 1 as value for the first alphabet character; and it offers to
use a reverse multiplication variant too.

Figure 2.2: Hill dialog in CrypTool with the operations and options available
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Sage sample 2.16 Hill cipher
sage: # construct a Hill cipher

sage: keylen = 19 # keylen = 3 # Alternative key length with non-random small key

sage: A = AlphabeticStrings()

sage: H = HillCryptosystem(A, keylen); H

Hill cryptosystem on Free alphabetic string monoid on A-Z of block length 19

sage:

sage: # To create key non-randomly, HKS is necessary [even H.key_space() is not enough].

sage: # HKS = H.key_space()

sage: # key = HKS([[1,0,1],[0,1,1],[2,2,3]]); key

sage:

sage: # Random key creation

sage: key = H.random_key(); key

[10 7 5 2 0 6 10 23 15 7 17 19 18 2 9 12 0 10 11]

[23 1 1 10 4 9 21 1 25 22 19 8 17 22 15 8 12 25 22]

[ 4 12 16 15 1 12 24 5 9 13 5 15 8 21 23 24 22 20 6]

[ 5 11 6 7 3 12 8 9 21 20 9 4 16 18 10 3 2 23 18]

[ 8 22 14 14 20 13 21 19 3 13 2 11 13 23 9 25 25 6 8]

[24 25 8 24 7 18 3 20 6 11 25 5 6 19 7 24 2 4 10]

[15 25 11 1 4 7 11 24 20 2 18 4 9 8 12 19 24 0 12]

[14 6 2 9 11 20 13 4 10 11 4 23 14 22 14 16 9 12 18]

[12 10 21 5 21 15 16 17 19 20 1 1 15 5 0 2 23 4 14]

[21 15 15 16 15 20 4 10 25 7 15 4 7 12 24 9 19 10 6]

[25 15 2 3 17 23 21 16 8 18 23 4 22 11 15 19 6 0 15]

[14 23 9 3 18 15 10 18 7 5 12 23 11 9 22 21 20 4 14]

[ 3 6 8 13 20 16 11 1 13 10 4 21 25 15 12 3 0 11 18]

[21 25 14 6 11 3 21 0 19 17 5 8 5 4 9 2 23 19 15]

[ 8 11 9 11 20 15 6 1 3 18 18 22 16 17 6 3 15 11 2]

[21 15 5 22 2 9 0 4 22 10 2 10 19 19 17 19 1 21 4]

[ 7 17 9 2 15 5 14 3 6 9 12 12 22 15 8 4 21 14 19]

[19 14 24 19 7 5 22 22 13 14 7 18 17 19 25 2 1 23 6]

[ 2 6 14 22 17 7 23 6 22 7 13 20 0 14 23 17 6 1 12]

sage:

sage: # encoding and encryption

sage: P = "Hill or matrix cipher uses matrix operations."

sage: len(P)

45

sage: # implementation requires: Length of msg is a multiple of matrix dimension (block_length)

sage: msg = H.encoding(P); msg

HILLORMATRIXCIPHERUSESMATRIXOPERATIONS

sage: len(msg)

38

sage:

sage: # encryption

sage: C = H.enciphering(key, msg); C

CRWCKPRVYXNBRZTNZCTQWFWSDWBCHABGMNEHVP

sage:

sage: # decryption

sage: DC = H.deciphering(key, C); DC

HILLORMATRIXCIPHERUSESMATRIXOPERATIONS

sage: msg == DC

True

sage:

sage: # alternative decryption using inverse matrix

sage: keyInv = H.inverse_key(key); keyInv

[ 6 23 1 23 3 12 17 22 6 16 22 14 18 3 1 10 21 16 20]

[18 23 15 25 24 23 7 4 10 7 21 7 9 0 13 22 5 5 23]

...

[10 11 12 6 11 17 13 9 19 16 14 24 4 8 5 16 18 20 1]

[19 16 16 21 1 19 7 12 3 18 1 17 7 10 24 21 7 16 11]

sage: DC = H.enciphering(keyInv, C); DC

HILLORMATRIXCIPHERUSESMATRIXOPERATIONS
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Chapter 3

Prime Numbers

(Bernhard Esslinger, May 1999; Updates Nov. 2000, Dec. 2001, June 2003, May 2005, March
2006, June 2007, January 2010)

Albert Einstein1:
Progress requires exchange of knowledge.

3.1 What are prime numbers?

Prime numbers are whole, positive numbers greater than or equal to 2 that can only be divided
by 1 and themselves. All other natural numbers greater than or equal to 2 can be formed by
multiplying prime numbers.

The natural numbers N = {1, 2, 3, 4, · · · } thus comprise

• the number 1 (the unit value)

• the primes and

• the composite numbers.

Prime numbers are particularly important for 3 reasons:

• In number theory, they are considered to be the basic components of natural numbers,
upon which numerous brilliant mathematical ideas are based.

• They are of extreme practical importance in modern cryptography (public key cryptog-
raphy). The most common public key procedure, invented at the end of the 1970’s, is
RSA encryption. Only using (large) prime numbers for particular parameters can you
guarantee that an algorithm is secure, both for the RSA procedure and for even more
modern procedures (digital signature, elliptic curves).

• The search for the largest known prime numbers does not have any practical usage known
to date, but requires the best computers, is an excellent benchmark (possibility for de-
termining the performance of computers) and leads to new calculation methods on many
computers
(see also: http://www.mersenne.org/prime.htm).

1Albert Einstein, German physicist and Nobel Prize winner, Mar 14, 1879 − Apr 14, 1955.
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Many people have been fascinated by prime numbers over the past two millennia. Ambition to
make new discoveries about prime numbers has often resulted in brilliant ideas and conclusions.
The following section provides an easily comprehensible introduction to the basics of prime
numbers. We will also explain what is known about the distribution (density, number of prime
numbers in particular intervals) of prime numbers and how prime number tests work.

3.2 Prime numbers in mathematics

Every whole number has a factor. The number 1 only has one factor, itself, whereas the number
12 has the six factors 1, 2, 3, 4, 6, 12. Many numbers can only be divided by themselves and by
1. With respect to multiplication, these are the “atoms” in the area of numbers. Such numbers
are called prime numbers.

In mathematics, a slightly different (but equivalent) definition is used.

Definition 3.2.1. A whole number p ∈ N is called prime if p > 1 and p only possesses the
trivial factors ±1 and ±p.

By definition, the number 1 is not a prime number. In the following sections, p will always
denote a prime number.

The sequence of prime numbers starts with

2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 37, 41, 43, 47, 53, 59, 61, 67, 71, 73, 79, 83, 89, 97, · · · .

The first 100 numbers include precisely 25 prime numbers. After this, the percentage of primes
constantly decreases. Prime numbers can be factorized in a uniquely trivial way:

5 = 1 · 5, 17 = 1 · 17, 1, 013 = 1 · 1, 013, 1, 296, 409 = 1 · 1, 296, 409.

All numbers that have 2 or more factors not equal 1 are called composite numbers. These
include

4 = 2 · 2, 6 = 2 · 3

as well as numbers that look like primes, but are in fact composite:

91 = 7 · 13, 161 = 7 · 23, 767 = 13 · 59.

Theorem 3.2.1. Each whole number m greater than 1 possesses a lowest factor greater than
1. This is a prime number p. Unless m is a prime number itself, then: p is less than or equal
to the square root of m.

All whole numbers greater than 1 can be expressed as a product of prime numbers — in
a unique way. This is the claim of the 1st fundamental theorem of number theory (=
fundamental theorem of arithmetic = fundamental building block of all positive integers).

Theorem 3.2.2. Each element n of the natural numbers greater than 1 can be written as the
product n = p1 · p2 . . . pm of prime numbers. If two such factorizations

n = p1 · p2 · · · · · pm = p′1 · p′2 · · · p′m′

are given, then they can be reordered such that m = m′ and for all i: pi = p′i.
(p1, p2, . . . , pm are called the prime factors of n).
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In other words: each natural number other than 1 can be written as a product of prime
numbers in precisely one way, if we ignore the order of the factors. The factors are therefore
unique (the expression as a product of factors is unique)! For example,

60 = 2 · 2 · 3 · 5 = 22 · 31 · 51.

And this — other than changing the order of the factors — is the only way in which the number
60 can be factorized. If you allow numbers other than primes as factors, there are several ways
of factorizing integers and the uniqueness is lost:

60 = 1 · 60 = 2 · 30 = 4 · 15 = 5 · 12 = 6 · 10 = 2 · 3 · 10 = 2 · 5 · 6 = 3 · 4 · 5 = · · · .

The following section is aimed more at those familiar with mathematical logic: The 1st
fundamental theorem only appears to be obvious . We can construct numerous other sets of
numbers (i.e. other than positive whole numbers greater than 1), for which numbers in the set
cannot be expressed uniquely as a product of the prime numbers of the set: In the set M =
{1, 5, 10, 15, 20, · · · } there is no equivalent to the fundamental theorem under multiplication.
The first five prime numbers of this sequence are 5, 10, 15, 20, 30 (note: 10 is prime, because 5 is
not a factor of 10 in this set — the result is not an element of the given basic set M). Because
the following applies in M :

100 = 5 · 20 = 10 · 10

and 5, 10, 20 are all prime numbers in this set, the expression as a product of prime factors is
not unique here.

3.3 How many prime numbers are there?

For the natural numbers, the primes can be compared to elements in chemistry or the elementary
particles in physics (see [Blum1999, p. 22]).

Although there are only 92 natural chemical elements, the number of prime numbers is
unlimited. Even the Greek, Euclid2 knew this in the third century B.C.

Theorem 3.3.1 (Euclid3). The sequence of prime numbers does not discontinue. Therefore,
the quantity of prime numbers is infinite.

His proof that there is an infinite number of primes is still considered to be a brilliant
mathematical consideration and conclusion today (proof by contradiction ). He assumed
that there is only a finite number of primes and therefore a largest prime number. Based on
this assumption, he drew logical conclusions until he obtained an obvious contradiction. This
meant that something must be wrong. As there were no mistakes in the chain of conclusions,
it could only be the assumption that was wrong. Therefore, there must be an infinite number
of primes!

2Euclid, a Greek mathematician of 4th and 3rd century B.C. He worked at the Egyptian academy of Alexandria
and wrote “The Elements”, the most well known systematically textbook of the Greek mathematics.

3The common usage of the term does not denote Euclid as the inventor of the theorem rather; the true inventor
is merely not as prominent. The theorem has already been distinguished and proven in Euclid’s Elements (Book
IX, theorem 20). The phraseology is remarkable due to the fact that the word infinite is not used. The text reads
as followed

Oί π%ω̃τoι ὰ%ιϑµoὶ πλείoυς εὶσὶ παντ òς τoυ̃ π%oτεϑέντoς πλήϑ oυς π%ώτων ὰ%ιϑµω̃ν,

the English translation of which is: the prime numbers are more than any previously existing amount of prime
numbers.

52



Euclid’s proof by contradiction goes as follows:

Proof
Assumption: There is a finite number of primes.

Conclusion: Then these can be listed p1 < p2 < p3 < · · · < pn, where n is the (finite)
number of prime numbers. pn is therefore the largest prime. Euclid now looks at the number
a = p1 · p2 · · · pn + 1. This number cannot be a prime number because it is not included in
our list of primes. It must therefore be divisible by a prime, i.e. there is a natural number i
between 1 and n, such that pi divides the number a. Of course, pi also divides the product
a− 1 = p1 · p2 · · · pn, because pi is a factor of a− 1. Since pi divides the numbers a and a− 1, it
also divides the difference of these numbers. Thus: pi divides a− (a− 1) = 1. pi must therefore
divide 1, which is impossible.

Contradiction: Our assumption was false.

Thus there is an infinite number of primes (Cross-reference: overview under 3.9 of the
number of prime numbers in various intervals). �

Here we should perhaps mention yet another fact which is initially somewhat surprising.
Namely, in the prime numbers sequence p1, p2, · · · , gaps between prime numbers can have
an individually determined length n. It is undeniable that under the n succession of natural
numbers

(n+ 1)! + 2, · · · , (n+ 1)! + (n+ 1),

none of them is a prime number since in order, the numbers 2, 3, · · · , (n + 1) are comprised
respectively as real divisors. (n! means the product of the first n natural numbers therefore
n! = n ∗ (n− 1) ∗ · · · ∗ 2 ∗ 1).

3.4 The search for extremely large primes

The largest prime numbers known today have several millions digits, which is too big for us
to imagine. The number of elementary particles in the universe is estimated to be “only” a
80-digit number (See: overview under 3.11 of various orders of magnitude / dimensions).

3.4.1 The 20+ largest known primes (as of July 2009)

The following table contains the current record primes and a description of its particular number
type4:

4An up-to-date version can be found in the internet at http://primes.utm.edu/largest.html and at http:

//primes.utm.edu/mersenne/index.html.
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Definition Decimal Digits When Description
1 243,112,609 − 1 12,978,189 2008 Mersenne, 47th known
2 242,643,801 − 1 12,837,064 2009 Mersenne, 46th known
3 237,156,667 − 1 11,185,272 2008 Mersenne, 45th known
4 232,582,657 − 1 9,808,358 2006 Mersenne, 44th known
5 230,402,457 − 1 9,152,052 2005 Mersenne, 43rd known
6 225,964,951 − 1 7,816,230 2005 Mersenne, 42nd known
7 224,036,583 − 1 7,235,733 2004 Mersenne, 41st known
8 220,996,011 − 1 6,320,430 2003 Mersenne, 40th known
9 213,466,917 − 1 4,053,946 2001 Mersenne, M-39
10 19, 249 · 213,018,586 + 1 3,918,990 2007 Generalized Mersenne5

11 27, 653 · 29,167,433 + 1 2,759,677 2005 Generalized Mersenne
12 28, 433 · 27,830,457 + 1 2,357,207 2004 Generalized Mersenne
13 26,972,593 − 1 2,098,960 1999 Mersenne, M-38
14 5, 359 · 25,054,502 + 1 1,521,561 2003 Generalized Mersenne
15 4, 847 · 23,321,063 + 1 999,744 2005 Generalized Mersenne
16 3 · 23,136,255 − 1 944,108 2007 Generalized Mersenne
17 23,021,377 − 1 909,526 1998 Mersenne, M-37
18 22,976,221 − 1 895,932 1997 Mersenne, M-36
19 222, 361 · 22,854,840 + 1 859,398 2006 Generalized Mersenne
20 1, 372, 930131,072 + 1 804,474 2003 Generalized Fermat6

21 1, 361, 244131,072 + 1 803,988 2004 Generalized Fermat
22 1, 176, 694131,072 + 1 795,695 2003 Generalized Fermat
23 342, 673 · 22,639,439 − 1 794,556 2007 Generalized Mersenne

Table 3.1: The 20+ largest known primes and its particular number types (as of July 2009)
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The largest known prime is a Mersenne prime, found by the GIMPS project(chapter 3.4.2).

Within the largest known primes there are also numbers of the type generalized Mersenne
number (chapter 3.6.2) and generalized Fermat numbers (chapter 3.6.5).

3.4.2 Special number types – Mersenne numbers and Mersenne primes

Almost all known huge prime numbers are special candidates, called Mersenne numbers7 of the
form 2p − 1, where p is a prime. Not all Mersenne numbers are prime:

22 − 1 = 3 ⇒ prime
23 − 1 = 7 ⇒ prime
25 − 1 = 31 ⇒ prime
27 − 1 = 127 ⇒ prime

211 − 1 = 2, 047 = 23 · 89 ⇒ NOT prime!

Even Mersenne knew that not all Mersenne numbers are prime (see exponent p = 11). A
prime Mersenne number is called Mersenne prime number.
However, he is to be thanked for the interesting conclusion that a number of the form 2n − 1
cannot be a prime number if n is a composite number:

Theorem 3.4.1 (Mersenne). If 2n − 1 is a prime number, then n is also a prime number.

Proof
The theorem of Mersenne can be proved by contradiction. We therefore assume that there
exists a composite natural number n (with real factorization) n = n1 · n2 , with the property
that 2n − 1 is a prime number.

From

(xr − 1)((xr)s−1 + (xr)s−2 + · · ·+ xr + 1) = ((xr)s + (xr)s−1 + (xr)s−2 + · · ·+ xr)
−((xr)s−1 + (xr)s−2 + · · ·+ xr + 1)

= (xr)s − 1 = xrs − 1,

we conclude
2n1n2 − 1 = (2n1 − 1)((2n1)n2−1 + (2n1)n2−2 + · · ·+ 2n1 + 1).

Because 2n − 1 is a prime number, one of the above two factors on the right-hand side must be
equal to 1. This is the case if and only if n1 = 1 or n2 = 1. But this contradicts our assumption.

6This number was found within the distributed computing project “Seventeen or Bust” (SoB) (http://www.
seventeenorbust.com) at March 26, 2007. While the well known GIMPS project (chapter 3.4.2) searches for
bigger and bigger of the infinitely many primes, there is a chance, that the SoB project could have been completed
its task sometime.

The SoB project tries to prove computationally, that the number k = 78, 557 is the smallest Sierpinski number
(John Selfridge proved in 1962, that 78, 557 is a Sierpinski number).

The famous Polish mathematician Waclaw Sierpinski (1882 to 1969) proved in 1960, that there exist infinitely
many odd integers k, which fulfill the following property: For all Sierpinski numbers k it is true: All numbers
N = k·2n+1 are composite for all integers n >= 1 (Sierpinski’s Composite Number Theorem, http://mathworld.
wolfram.com/SierpinskisCompositeNumberTheorem.html).

When the project started in 2002 there have been 17 possible candidates < 78557 (this is the reason for the
project’s name “Seventeen or Bust”). It is sufficient to find one single counter-example, to exclude a candidate
k, which means to find a single n >= 1, where N = k · 2n + 1 is prime. So it is only a byproduct of this task that
this also generates new monster primes.

6Generalized Fermat number: 1, 372, 930131,072 + 1 = 1, 372, 930(217) + 1
7Marin Mersenne, French priest and mathematician, Sep 08, 1588 − Sep 01, 1648.
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Therefore the assumption is false. This means that there exists no composite number n, such
that 2n − 1 is a prime. �

Unfortunately this theorem only applies in one direction (the inverse statement does not
apply, no equivalence): that means that there exist prime exponent for which the Mersenne
number is not prime (see the above example 211 − 1, where 11 is prime, but 211 − 1 not).

Mersenne claimed that 267 − 1 is a prime number. There is also a mathematical history
behind this claim: it first took over 200 years before Edouard Lucas (1842-1891) proved that
this number is composite. However, he argued indirectly and did not name any of the factors.
Then Frank Nelson Cole8 showed in 1903 which factors make up this composite number:

267 − 1 = 147, 573, 952, 589, 676, 412, 927 = 193, 707, 721 · 761, 838, 257, 287.

He admitted to having worked 20 years on the factorization (expression as a product of prime
factors)9 of this 21-digit decimal number!

Due to the fact that the exponents of the Mersenne numbers do not use all natural numbers,
but only the primes, the experimental space is limited considerably. The currently known
Mersenne prime numbers have the exponents10

2; 3; 5; 7; 13; 17; 19; 31; 61; 89; 107; 127; 521; 607; 1, 279; 2, 203; 2, 281; 3, 217;
4, 253; 4, 423; 9, 689; 9, 941, 11, 213; 19, 937; 21, 701; 23, 207; 44, 497; 86, 243; 110, 503;

132, 049; 216, 091; 756, 839; 859, 433; 1, 257, 787; 1, 398, 269; 2, 976, 221; 3, 021, 377;
6, 972, 593; 13, 466, 917; 20, 996, 011; 24, 036, 583; 25, 964, 951; 30, 402, 457;

32, 582, 657; 37, 156, 667; 43, 112, 609; 42, 643, 801.

Thus 47 Mersenne prime numbers are currently known.

The 19th number with the exponent 4, 253 was the first with at least 1, 000 digits in decimal
system (the mathematician Samual Yates coined the expression titanic prime for this; it was
discovered by Hurwitz in 1961); the 27th number with the exponent 44, 497 was the first with
at least 10, 000 digits in the decimal system (Yates coined the expression gigantic prime for this.
These names are now long outdated).

For the first 39 Mersenne prime numbers we know that this list is complete. The exponents
until the 40th Mersenne prime number have not yet been checked completely11.

M-37 – January 1998

The 37th Mersenne prime,
23,021,377 − 1

8Frank Nelson Cole, American mathematician, Sep. 20, 1861 − May 26, 1926.
9Using CrypTool you can factorize numbers in the following way: menu Indiv. Procedures \ RSA Cryp-
tosystem \ Factorization of a Number.
CrypTool can factorize in a reasonable time numbers no longer than 250 bit. Numbers bigger than 1024 bits are
currently not accepted by CrypTool.
The current factorization records are listed in chapter 4.11.4.

10The following page from Landon Curt Noll contains all Mersenne primes including its date of discovery and its
value as number and as word: http://www.isthe.com/chongo/tech/math/prime/mersenne.html

Also see: http://www.utm.edu/.
11The current status of the check can be found at: http://www.mersenne.org/status.htm.

Hints, how the primality of a number can be checked, are in chapter 3.5, prime number tests.

56

http://www.isthe.com/chongo/tech/math/prime/mersenne.html
http://www.utm.edu/
http://www.mersenne.org/status.htm


was found in January 1998 and has 909,526 digits in the decimal system, which corresponds to
33 pages in the newspaper!

M-38 – June 1999

The 38th Mersenne prime, called M-38,

26,972,593 − 1

was discovered in June 1999 and has 2, 098, 960 digits in the decimal system (that corresponds
to around 77 pages in the newspaper).

M-39 – December 2001

The 39th Mersenne prime, called M-39,

213,466,917 − 1,

was published at December 6, 2001 – more exactly, the verification of this number, found at
November 14, 2001 by the Canadian student Michael Cameron, was successfully completed.
This number has about 4 million decimal digits (exactly 4,053,946 digits). Trying only to print
this number

(924947738006701322247758 · · · 1130073855470256259071)

would require around 200 pages in the Financial Times.

Right now (July 2009) all prime exponents smaller than 18, 000, 989 have been tested and
double-checked12: So we can be certain, that this is really the 39th Mersenne prime number
and that there are no smaller undiscovered Mersenne primes (it is common usage to use the
notation M-nn not until it is proven, that the nn-th known Mersenne prime is really the nn-th
Mersenne prime).

GIMPS

The GIMPS project (Great Internet Mersenne Prime Search) was founded in 1996 by George
Woltman to search for new largest Mersenne primes (http://www.mersenne.org). Further
explanations about this number type can be found under Mersenne numbers and Mersenne
primes.

Right now the GIMPS project has discovered 13 largest Mersenne primes so far, including
the largest known prime number at all.

The following table contains these Mersenne record primes13,14:

Dr. Richard Crandall discovered the advanced transform algorithm used by the GIMPS
program. George Woltman implemented Crandall’s algorithm in machine language, thereby
producing a prime-search program of unprecedented efficiency, and that work led to the suc-
cessful GIMPS project.

12See home page of the GIMPS project: http://www.mersenne.org/report_milestones.
13An up-to-date version can be found in the internet at http://www.mersenne.org/history.htm.
14Always, when a new record is published in the respective forums the same and often ironic discussions start:

Does this kind of research have a deeper sense? Can this result be applied for anything useful? The answer is,
that we don’t know it yet. In fundamental research one cannot see at once whether and how it brings mankind
forward.
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Definition Decimal Digits When Who
243,112,609 − 1 12,978,189 August 23, 2008 Edson Smith
242,643,801 − 1 12,837,064 April 12, 2009 Odd Magnar Strindmo
237,156,667 − 1 11,185,272 September 6, 2008 Hans-Michael Elvenich
232,582,657 − 1 9,808,358 September 4, 2006 Curtis Cooper/Steven Boone
230,402,457 − 1 9,152,052 December 15, 2005 Curtis Cooper/Steven Boone
225,964,951 − 1 7,816,230 February 18, 2005 Martin Nowak
224,036,583 − 1 7,235,733 May 15, 2004 Josh Findley
220,996,011 − 1 6,320,430 November 17, 2003 Michael Shafer
213,466,917 − 1 4,053,946 November 14, 2001 Michael Cameron
26,972,593 − 1 2,098,960 June 1, 1999 Nayan Hajratwala
23,021,377 − 1 909,526 January 27, 1998 Roland Clarkson
22,976,221 − 1 895,932 August 24, 1997 Gordon Spence
21,398,269 − 1 420,921 November 1996 Joel Armengaud

Table 3.2: The largest primes found by the GIMPS project (as of July 2009)

On June 1st, 2003 a possible Mersenne prime was reported to the GIMPS server, which was
checked afterwards as usual, before it was to be published. Unfortunately mid June the initiator
and GIMPS project leader George Woltman had to tell, that two independent verification runs
proved the number was composite. This was the first false positive report of a client in 7 years.

Now more than 130,000 volunteers, amateurs and experts, participate in the GIMPS project.
They connect their computers into the so called “primenet”, organized by the company entropia.

3.4.3 Challenge of the Electronic Frontier Foundation (EFF)

This search is also spurred on by a competition started by the non-profit organization EFF
(Electronic Frontier Foundation) using the means of an unknown donor. The participants are
rewarded with a total of 500,000 USD if they find the longest prime number. In promoting this
project, the unknown donor is not looking for the quickest computer, but rather wants to draw
people’s attention to the opportunities offered by cooperative networking
http://www.eff.org/awards/coop

The discoverer of M-38 received 50,000 USD from the EFF for discovering the first prime
with more than 1 million decimal digits.

For the next prize of 100,000 USD offered by EFF for a proven prime with more than 10
million decimal digits, Edson Smith qualified, who found the number 243,112,609 − 1 within the
GIMPS project.

According to the EFF rules for their prizes they offer in the next stage 150,000 USD for a
proven prime with more than 100 million decimal digits.

Edouard Lucas (1842-1891) held the record for the longest prime number for over 70 years
by proving that 2127 − 1 is prime. No new record is likely to last that long.
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3.5 Prime number tests15

In order to implement secure encryption procedures we need extremely large prime numbers (in
the region of 22,048, i.e. numbers with 600 digits in the decimal system!).

If we look for the prime factors in order to decide whether a number is prime, then the
search takes too long, if even the smallest prime factor is enormous. Factorizing numbers
using systematic computational division or using the sieve of Eratosthenes is only feasible using
current computers for numbers with up to around 20 digits in the decimal system. The biggest
number factorized into its 2 almost equal prime factors has 200 digits (see RSA-200 in chapter
4.11.4).

However, if we know something about the construction of the number in question, there are
extremely highly developed procedures that are much quicker. These procedures can determine
the primality attribute of a number, but they cannot determine the prime factors of a number,
if it is compound.

In the 17th century, Fermat16 wrote to Mersenne that he presumed that all numbers of the
form

f(n) = 22n
+ 1

are prime for all whole numbers n ≥ 0 (see below, chapter 3.6.4).

As early as in the 19th century, it was discovered that the 29-digit number

f(7) = 227
+ 1

is not prime. However, it was not until 1970 that Morrison/Billhart managed to factorize it.

f(7) = 340, 282, 366, 920, 938, 463, 463, 374, 607, 431, 768, 211, 457
= 59, 649, 589, 127, 497, 217 · 5, 704, 689, 200, 685, 129, 054, 721

Despite Fermat was wrong with this supposition, he is the originator of an important theorem
in this area: Many rapid prime number tests are based on the (little) Fermat theorem put
forward by Fermat in 1640 (see chapter 4.8.3).

Theorem 3.5.1 (“little” Fermat). Let p be a prime number and a be any whole number, then
for all a

ap ≡ a mod p.

This could also be formulated as follows:
Let p be a prime number and a be any whole number that is not a multiple of p (also a 6≡
0 mod p), then ap−1 ≡ 1 mod p.

If you are not used to calculate with remainders (modulo), please simply accept the theorem
or first read chapter 4 “Introduction to Elementary Number Theory with Examples”. What is
important here is that this sentence implies that if this equation is not met for any whole number
a, then p is not a prime! The tests (e.g. for the first formulation) can easily be performed using
the test basis a = 2.

15With the educational tool for number theory NT you can apply the tests of Fermat and of Miller-Rabin: See
learning units 3.2 and 3.3, pages 3-11/11.
NT can be called in CrypTool via the menu path Indiv. Procedures \ Number Theory Interactive \
Learning Tool for Number Theory. See appendix A.4.

16Pierre de Fermat, French mathematician, Aug 17, 1601 – Jan 12, 1665.
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This gives us a criterion for non-prime numbers, i.e. a negative test, but no proof that a
number a is prime. Unfortunately Fermat’s theorem does not apply — otherwise we would
have a simple proof of the prime number property (or to put it in other words, we would have
a simple prime number criterion).

Pseudo prime numbers

Numbers n that have the property

2n ≡ 2 mod n

but are not prime are called pseudo prime numbers (i.e. the exponent is not a prime). The first
pseudo prime number is

341 = 11 · 31.

Carmichael numbers

There are pseudo prime numbers n that pass the Fermat test

an−1 ≡ 1 mod n

with all bases a which are relatively prime to n [gcd(a, n) = 1], despite these numbers n are not
prime: These numbers are called Carmichael numbers. The first of these is

561 = 3 · 11 · 17.

Sample: The number to be tested is 561. Because 561 = 3 · 11 · 17 it is:
The test condition a560 mod 561 = 1 is satisfied for a = 2, 4, 5, 7, · · · ,
but not for a = 3, 6, 9, 11, 12, 15, 17, 18, 21, 22, · · · .
This means the test condition must not be satisfied for multiples of the prime factors 3, 11 or
17.
The test applied for a = 3 results in: 3560 mod 561 = 375.
The test applied for a = 5 results in: 5560 mod 561 = 1.

Strong pseudo prime numbers

A stronger test is provided by Miller/Rabin17: it is only passed by so-called strong pseudo
prime numbers. Again, there are strong pseudo prime numbers that are not primes, but this is
much less often the case than for (simple) pseudo prime numbers or for Carmichael numbers.
The smallest strong pseudo prime number base 2 is

15, 841 = 7 · 31 · 73.

17In 1976 an efficient probabilistic primality test was published by Prof. Rabin, based on a number theoretic result
of Prof. Miller from the year before.
Prof. Miller worked at the Carnegie-Mellon University, School of Computer Science. Prof. Rabin, born in 1931,
worked at the Harvard and Hebrew University.
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If you test all 4 bases, 2, 3, 5 and 7, you will find only one strong pseudo prime number up to
25 · 109, i.e. a number that passes the test and yet is not a prime number.

More extensive mathematics behind the Rabin test delivers the probability that the number
examined is prime (such probabilities are currently around 10−60).

Detailed descriptions of tests for finding out whether a number is prime can be found on
Web sites such as:

http://www.utm.edu/research/primes/mersenne.shtml
http://www.utm.edu/research/primes/prove/index.html

3.6 Overview special number types and the search for a formula
for primes

There are currently no useful, open (i.e. not recursive) formulae known that only deliver prime
numbers (recursive means that in order to calculate the function the same function is used with
a smaller variable). Mathematicians would be happy if they could find a formula that leaves
gaps (i.e. does not deliver all prime numbers) but does not deliver any composite (non-prime)
numbers.

Ideally, we would like, for the number n, to immediately be able to obtain the n-th prime
number, i.e. for f(8) = 19 or for f(52) = 239.

Ideas for this can be found at
http://www.utm.edu/research/primes/notes/faq/p_n.html.

Cross-reference: the table under 3.10 contains the precise values for the nth prime numbers
for selected n.

For “prime number formulae” usually very special types of numbers are used. The following
enumeration contains the most common ideas for “prime number formulae”, and what our
current knowledge is about very big elements of the number series: Is their primality proven?
If their are compound numbers could their prime factors be determined?

3.6.1 Mersenne numbers f(n) = 2n − 1 for n prime

As shown above, this formula seems to deliver relatively large prime numbers but - as for n = 11
[f(n) = 2, 047] - it is repeatedly the case that the result even with prime exponents is not prime.
Today, all the Mersenne primes having less than around 4,000,000 digits are known (M-39):

http://perso.wanadoo.fr/yves.gallot/primes/index.html

3.6.2 Generalized Mersenne numbers f(k, n) = k · 2n ± 1 for n prime and k
small prime / Proth numbers18

This first generalization of the Mersenne numbers creates the so called Proth numbers. There
are (for small k) extremely quick prime number tests (see [Knuth1981]). This can be performed
in practice using software such as the Proths software from Yves Gallot:

18Their names come from the French farmer Franois Proth (1852-1879). More famous as the Proth primes is the
related Sierpinski problem: Find all numbers k, so that k ∗ 2n + 1 is composite for all n ¿ 0. See table 3.1.
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http://www.prothsearch.net/index.html.

3.6.3 Generalized Mersenne numbers f(b, n) = bn ± 1 / The Cunningham
project

This is another possible generalisation of the Mersenne numbers. The Cunningham project
determines the factors of all composite numbers that are formed as follows:

f(b, n) = bn ± 1 for b = 2, 3, 5, 6, 7, 10, 11, 12

(b is not equal to multiples of bases already used, such as 4, 8, 9).

Details of this can be found at:
http://www.cerias.purdue.edu/homes/ssw/cun

3.6.4 Fermat numbers19 f(n) = 22n
+ 1

As mentioned above in chapter 3.5, Fermat wrote to Mersenne regarding his assumption, that
all numbers of this type are primes. This assumption was disproved by Euler (1732). The prime
641 divides f(5)20.

f(0) = 220
+ 1 = 21 + 1 = 3 7→ prime

f(1) = 221
+ 1 = 22 + 1 = 5 7→ prime

f(2) = 222
+ 1 = 24 + 1 = 17 7→ prime

f(3) = 223
+ 1 = 28 + 1 = 257 7→ prime

f(4) = 224
+ 1 = 216 + 1 = 65,537 7→ prime

f(5) = 225
+ 1 = 232 + 1 = 4,294,967,297 = 641 · 6,700,417 7→ NOT prime!

f(6) = 226
+ 1 = 264 + 1 = 18,446,744,073,709,551,617

= 274,177 · 67,280,421,310,721 7→ NOT prime!
f(7) = 227

+ 1 = 2128 + 1 = (see page 59) 7→ NOT prime!

Within the project “Distributed Search for Fermat Number Dividers” offered by Leonid
Durman there is also progress in finding new monster primes:

http://www.fermatsearch.org/
This website links to other web pages in Russian, Italian and German.

The discovered factors can be compound integers or primes.

On February 22, 2003 John Cosgrave discovered

• the largest composite Fermat number to date and

• the largest prime non-simple Mersenne number so far with 645,817 decimal digits.

The Fermat number
f(2, 145, 351) = 2(22,145,351) + 1

19The Fermat prime numbers play a role in circle division. As proven by Gauss a regular p-edge can only be
constructed with the use of a pair of compasses and a ruler, when p is a Fermat prime number.

20Surprisingly this number can easily be found by using Fermat’s theorem (see e.g. [Scheid1994, p. 176])
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is divisible by the prime
p = 3 ∗ 22,145,353 + 1

At that time this prime p was the largest known prime generalized Mersenne number and the
5th largest known prime number at all.

This work was done using NewPGen from Paul Jobling’s, PRP from George Woltman’s,
Proth from Yves Gallot’s programs and also the Proth-Gallot group at St. Patrick’s College,
Dublin.

More details are in
http://www.fermatsearch.org/history/cosgrave_record.htm/

3.6.5 Generalized Fermat numbers21 f(b, n) = b2n
+ 1

Generalized Fermat numbers are more numerous than Mersenne numbers of a equal size and
many of them are waiting to be discovered to fill the big gaps between the Mersenne primes
already found or still undiscovered. Progress in number theory made it possible that numbers,
where the representation is not limited to the base 2, can be tested at almost the same speed
than a Mersenne number.

Yves Gallot wrote the program Proth.exe to investigate generalized Fermat numbers.

Using this program at February 16, 2003 Michael Angel discovered the largest of them till
then with 628,808 digits, which at that time became the 5th largest known prime number:

b2
17

+ 1 = 62, 722131,072 + 1.

More details are in
http://primes.utm.edu/top20/page.php?id=12

3.6.6 Carmichael numbers

As mentioned above in chapter 3.5 not all Carmichael numbers are prime.

3.6.7 Pseudo prime numbers

See above in chapter 3.5.

3.6.8 Strong pseudo prime numbers

See above in chapter 3.5.

21The base of this power is no longer restricted to 2. Even more generic would be: f(b, c, n) = bc
n

± 1
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3.6.9 Idea based on Euclid’s proof p1 · p2 · · · pn + 1

This idea is based on Euclid’s proof that there are infinite many prime numbers.

2·3 + 1 = 7 7→ prime
2·3·5 + 1 = 31 7→ prime
2·3·5·7 + 1 = 211 7→ prime
2·3· · ·11 + 1 = 2, 311 7→ prime
2 · 3 · · · 13 + 1 = 59 · 509 7→ NOT prime!
2 · 3 · · · 17 + 1 = 19 · 97 · 277 7→ NOT prime!

3.6.10 As above but −1 except +1: p1 · p2 · · · pn − 1

2 · 3− 1 = 5 7→ prime
2 · 3 · 5− 1 = 29 7→ prime
2 · 3 · · · 7− 1 = 11 · 19 7→ NOT prime!
2 · 3 · · · 11− 1 = 2, 309 7→ prime
2 · 3 · · · 13− 1 = 30, 029 7→ prime
2 · 3 · · · 17− 1 = 61 · 8, 369 7→ NOT prime!

3.6.11 Euclidean numbers en = e0 · e1 · · · en−1 + 1 with n ≥ 1 and e0 := 1

en−1 is not the (n− 1)th prime number, but the number previously found here. Unfortunately
this formula is not open but recursive. The sequence starts with

e1 = 1 + 1 = 2 7→ prime
e2 = e1 + 1 = 3 7→ prime
e3 = e1 · e2 + 1 = 7 7→ prime
e4 = e1 · e2 · e3 + 1 = 43 7→ prime
e5 = e1 · e2 · · · e4 + 1 = 13 · 139 7→ NOT prime!
e6 = e1 · e2 · · · e5 + 1 = 3, 263, 443 7→ prime
e7 = e1 · e2 · · · e6 + 1 = 547 · 607 · 1, 033 · 31, 051 7→ NOT prime!
e8 = e1 · e2 · · · e7 + 1 = 29, 881 · 67, 003 · 9, 119, 521 · 6, 212, 157, 481 7→ NOT prime!

Also e9, · · · , e17 are composite, which means that this formula is not particularly useful.

Comment:
However, what is special about these numbers is that any pair of them does not have a common
factor other than 122. Therefore they are relatively prime.

22This can easily be shown via the following rule for the greatest common divisor gcd
with gcd(a, b) = gcd(b− bb/ac · a, a).
We have for i < j:
gcd(ei, ej) ≤ gcd(e1 · · · ei · · · ej−1, ej) = gcd(ej − e1 · · · ei · · · ej−1, e1 · · · ei · · · ej−1) = gcd(1, e1 · · · ei · · · ej−1) = 1.
See page 145.
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3.6.12 f(n) = n2 + n + 41

This sequence starts off very promisingly, but is far from being a proof.

f(0) = 41 7→ prime
f(1) = 43 7→ prime
f(2) = 47 7→ prime
f(3) = 53 7→ prime
f(4) = 61 7→ prime
f(5) = 71 7→ prime
f(6) = 83 7→ prime
f(7) = 97 7→ prime
...
f(33) = 1, 163 7→ prime
f(34) = 1, 231 7→ prime
f(35) = 1, 301 7→ prime
f(36) = 1, 373 7→ prime
f(37) = 1, 447 7→ prime
f(38) = 1, 523 7→ prime
f(39) = 1, 601 7→ prime
f(40) = 1681 = 41 · 41 7→ NOT prime!
f(41) = 1763 = 41 · 43 7→ NOT prime!

The first 40 values are prime numbers (which have the obvious regularity that their difference
starts with 2 and increases by 2 each time), but the 41th and 42th values are not prime numbers.
It is easy to see that f(41) cannot be a prime number: f(41) = 412 +41+41 = 41(41+1+1) =
41 · 43.

3.6.13 f(n) = n2 − 79 · n + 1, 601

This function23 delivers prime numbers for all values from n = 0 to n = 79. Unfortunately
f(80) = 1, 681 = 11 · 151 is not a prime number. To this date, no function has been found
that delivers more prime numbers in a row. On the other hand, each prime occurs twice (first
in the decreasing then in the increasing sequence), which means that the algorithm delivers
a total of 40 different prime values (these are the same ones as delivered by the function in
chapter 3.6.12)24.

23See chapter 3.14 “Appendix: Examples using Sage” for the source code to compute the table using Sage.
24Another quadratic polynom, which delivers these primes, is: f(n) = n2 − 9 · n+ 61.

Among the first 1000 sequence elements more than 50% are prime (See chapter 3.14 “Appendix: Examples using
Sage”.).
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f(0) = 1.601 7→ prim f(26) = 223 7→ prim
f(1) = 1.523 7→ prim f(27) = 197 7→ prim
f(2) = 1.447 7→ prim f(28) = 173 7→ prim
f(3) = 1.373 7→ prim f(29) = 151 7→ prim
f(4) = 1.301 7→ prim f(30) = 131 7→ prim
f(5) = 1.231 7→ prim f(31) = 113 7→ prim
f(6) = 1.163 7→ prim f(32) = 97 7→ prim
f(7) = 1.097 7→ prim f(33) = 83 7→ prim
f(8) = 1.033 7→ prim f(34) = 71 7→ prim
f(9) = 971 7→ prim f(35) = 61 7→ prim
f(10) = 911 7→ prim f(36) = 53 7→ prim
f(11) = 853 7→ prim f(37) = 47 7→ prim
f(12) = 797 7→ prim f(38) = 43 7→ prim
f(13) = 743 7→ prim f(39) = 41 7→ prim
f(14) = 691 7→ prim f(40) = 41 7→ prim
f(15) = 641 7→ prim f(41) = 43 7→ prim
f(16) = 593 7→ prim f(42) = 47 7→ prim
f(17) = 547 7→ prim f(43) = 53 7→ prim
f(18) = 503 7→ prim · · ·
f(19) = 461 7→ prim f(77) = 1.447 7→ prim
f(20) = 421 7→ prim f(78) = 1.523 7→ prim
f(21) = 383 7→ prim f(79) = 1.601 7→ prim
f(22) = 347 7→ prim f(80) = 41 · 41 7→ NOT prim!
f(21) = 383 7→ prim f(81) = 41 · 43 7→ NOT prim!
f(22) = 347 7→ prim f(82) = 1.847 7→ prim
f(23) = 313 7→ prim f(83) = 1.933 7→ prim
f(24) = 281 7→ prim f(84) = 43 · 47 7→ NOT prim!
f(25) = 251 7→ prim

3.6.14 Polynomial functions f(x) = anx
n + an−1x

n−1 + · · · + a1x
1 + a0 (ai in Z,

n ≥ 1)

There exists no such polynomial that for all x in Z only delivers prime values. For a proof of
this, please refer to [Padberg1996, p. 83 f.], where you will also find further details about prime
number formulae.

This means there is no hope in looking for further formulae (functions) similar to that in
chap. 3.6.12 or chap. 3.6.13.
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3.6.15 Catalan’s conjecture25

Catalan conjectured that C4 is a prime:

C0 = 2,
C1 = 2C0 − 1,
C2 = 2C1 − 1,
C3 = 2C2 − 1,
C4 = 2C3 − 1, · · ·

(see http://www.utm.edu/research/primes/mersenne.shtml under “Conjectures and Unsol-
ved Problems”).

This sequence is also defined recursively and increases extremely quickly. Does it only consist
of primes?

C(0) = 2 7→ prime
C(1) = 22 − 1 = 3 7→ prime
C(2) = 23 − 1 = 7 7→ prime
C(3) = 27 − 1 = 127 7→ prime
C(4) = 2127 − 1 = 170, 141, 183, 460, 469, 231, 731, 687, 303, 715, 884, 105, 727 7→ prime

It is not (yet) known whether C5 and all higher elements are prime, but this is not very likely.
In any case, it has not been proved that this formula delivers only primes.

3.7 Density and distribution of the primes

As Euclid discovered, there is an infinite number of primes. However, some infinite sets are
denser than others.

Within the set of natural numbers, there is an infinite number of even, uneven and square
numbers. How to compare the “density” of two infinite sets is shown with even and square
numbers.

The following proves that the even numbers are distributed more densely than square ones:26

• the size of the nth element:
The nth element of the even numbers is 2n; the nth element of the square numbers is n2.
Because for all n > 2: 2n < n2, the nth even number occurs much earlier than the nth
square number.

• the numbers of values that are less than or equal to a certain maximum value x in R are:
There are bx/2c such even numbers and b

√
xc square numbers. Because for all x > 6 the

value bx/2c is greater than the largest integer smaller or equal to the square root of x,
the even numbers are distributed more densely.

25Eugene Charles Catalan, Belgian mathematician, May 5, 1814−Feb 14, 1894.
After him the so-called Catalan numbers A(n) = (1/(n+ 1)) ∗ (2n)!/(n!)2

= 1, 2, 5, 14, 42, 132, 429, 1430, 4862, 16796, 58786, 208012, 742900, 2674440, 9694845, ... are named.
26Whereas in colloquial language you often can hear, that “there are more” even numbers than square ones,

mathematicians say, that from both there are infinitely many, that their sets are equivalent to N (so both are
infinite and countable, i.e. one can assign to each even number and to each square number an integer), but that
the set of even numbers is denser than the set of square numbers.
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The value of the n-th prime P (n)

Theorem 3.7.1. For large n: The value of the n-th prime P (n) is asymptotic to n · ln(n), i.e.
the limit of the relation P (n)/(n · lnn) is equal to 1 if n tends to infinity.

For n > 5, P (n) lies between 2n and n2. This means that there are fewer prime numbers
than even natural numbers but more prime numbers than square numbers27.

The number of prime numbers PI(x)

The definition is similar for the number of prime numbers PI(x) that do not exceed the
maximum value x:

Theorem 3.7.2. PI(x) is asymptotic to x/ln(x).

This is the prime number theorem. It was put forward by Legendre28 and Gauss29 but
not proved until over 100 years later.

Cross-reference: The overview under 3.9 shows the number of prime numbers in various
intervals.

These formulae, which only apply when n tends to infinity, can be replaced by more precise
formulae. For x ≥ 67:

ln(x)− 1, 5 < x/PI(x) < ln(x)− 0, 5

Given that we know PI(x) = x/ lnx only for very large x (x tending towards infinity), we can
create the following overview:

x ln(x) x/ln(x) PI(x)(counted) PI(x)/(x/ln(x))
103 6.908 144 168 1.160
106 13.816 72, 386 78, 498 1.085
109 20.723 48, 254, 942 50, 847, 534 1.054

For a binary number30 x of the length of 250 bits (2250 is approximately = 1.809251 ∗ 1075)
it is:

PI(x) = 2250/(250 · ln 2) is approximately = 2250/173.28677 = 1.045810 · 1073.

We can therefore expect that the set of numbers with a bit length of less than 250 contains
approximately 1073 primes (a reassuring result?!).

We can also express this as follows: Let us consider a random natural number n. Then the
probability that this number is prime is around 1/ ln(n). For example, let us take numbers in
the region of 1016. Then we must consider 16 · ln 10 = 36, 8 numbers (on average) until we find
a prime. A precise investigation shows: There are 10 prime numbers between 1016 − 370 and
1016 − 1.

Under the heading How Many Primes Are There at
http://www.utm.edu/research/primes/howmany.shtml

27Please refer to the table 3.10
28Adrien-Marie Legendre, French mathematician, Sep 18, 1752 − Jan 10, 1833.
29Carl Friedrich Gauss, German mathematician and astronomer, Apr 30, 1777−Feb 23, 1855.
30Number written in the binary system consists only of the digits 0 and 1.
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you will find numerous other details.

Using the following Web site:
http://www.math.Princeton.EDU/~arbooker/nthprime.html

you can easily determine PI(x).

The distribution of primes31 displays several irregularities for which no “system” has yet
been found: On the one hand, many occur closely together, like 2 and 3, 11 and 13, 809 and
811, on the other hand large gaps containing no primes also occur. For example, no primes lie
between 113 and 127, 293 and 307, 317 and 331, 523 and 541, 773 and 787, 839 and 853 as well
as between 887 and 907.
For details, please see:

http://www.utm.edu/research/primes/notes/gaps.html

This is precisely part of what motivates mathematicians to discover its secrets.

Sieve of Eratosthenes

An easy way of calculating all PI(x) primes less than or equal to x is to use the sieve of
Eratosthenes. In the 3rd century B.C., he found an extremely easy, automatic way of finding
this out. To begin with, you write down all numbers from 2 to x, circle 2, then cross out all
multiples of 2. Next, you circle the lowest number that hasn’t been circled or crossed out (3)
and again cross out all multiples of this number, etc. You only need to continue until you reach
the largest number whose square is less than or equal to x.32

Apart from 2, prime numbers are never even. Apart from 2 and 5, prime numbers never
end in 2, 5 or 0. So you only need to consider numbers ending in 1, 3, 7, 9 anyway (there are
infinite primes ending in these numbers; see [Tietze1973, vol. 1, p. 137]).

You can now find a large number of finished programs on the Internet - often complete with
source code - allowing you to experiment with large numbers yourself (see chapter 3.6). You also
have access to large databases that contain either a large number of primes or the factorization
of numerous composite numbers.

Further interesting topics regarding prime numbers
This chapter 3 didn’t consider other number theory topics such as divisibility rules, modulus
calculation, modular inverses, modular powers, modular roots, Chinese remainder theorem,
Euler Phi function or perfect numbers. Some of these topics are considered in the next chapter
(chapter 4).

31Some visualizations (plots) of the quantity of primes in different number dimensions can be found in chapter 3.13
“Appendix: Visualization of the quantity of primes in higher ranges”.

32With the educational tool for number theory NT you can apply the sieve of Eratosthenes in a computer-aided
and guided way: Enter you own number and do the sieving step by step: See learning unit 1.2, pages 6/21 and
7/21.
NT can be called in CrypTool via the menu path Indiv. Procedures \ Number Theory Interactive \
Learning Tool for Number Theory. See appendix A.4.
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3.8 Notes about primes

The following notes list some interesting theorems, conjectures and open questions about primes,
but also some quaint things and overviews.

3.8.1 Proven statements / theorems about primes

• For each number n in N there are n consecutive natural numbers that are not primes. A
proof of this can be found in [Padberg1996, p. 79].

• Paul Erdös33 proved: Between each random number not equal to 1 and its double, there
is at least one prime. He was not the first to prove this theorem, but proved it in a much
simpler manner than those before him.

• There is a real number a such that the function f : N→ Z where n 7→ ba3nc only delivers
primes34 for all n (see [Padberg1996, p. 82]). Unfortunately, problems arise when we try
to determine a (see chapter 3.8.4).

• There are arithmetic prime sequences of arbitrary length.35,36

In 1923 the famous British mathematician Godfrey Harold Hardy37 compiled the conjec-
ture, that there are arithmetic sequences of arbitrary length, which consist of primes only.
This conjecture was proven in 2004 by two young American mathematicians.

At some point every school child learns about arithmetic number series. These are se-
quences of numbers, for which the difference between any 2 consecutive numbers is equal
or constant (an arithmetic sequence must have at least three elements but can also have
indefinitely many). In the sample sequence 5, 8, 11, 14, 17, 20 the difference between the
series’s elements is 3 and the length of the sequence is 6.

Arithmetic series have been known for millennia and one would think they have no more
secrets. They get more interesting again, if we impose additional constraints on the series
elements - as the prime example shows.

E.g. 5, 17, 29, 41, 53 is an arithmetic prime series which consists of 5 elements and the
difference between the elements is always 12.

The sequence is not extendable - the next would be 65, but 65 is not prime (65 is the
product of 5 and 13).

How many elements are possible within an arithmetic prime number sequence? Around
1770 the French Joseph-Louis Lagrange and the British Edward Waring investigated this

33Paul Erdös, Hungarian mathematician, Mar 26, 1913−Sep 20, 1996.
34The Gauss bracket bxc of a real number x is defined via: bxc is the next integer less or equal x.
35Sources:

- http://users.cybercity.dk/~dsl522332/math/aprecords.htm Original source
- http://primes.utm.edu/glossary/page.php?sort=ArithmeticSequence Original source
- http://en.wikipedia.org/wiki/Primes_in_arithmetic_progression
- http://en.wikipedia.org/wiki/Problems_involving_arithmetic_progressions
- http://en.wikipedia.org/wiki/Cunningham_chain
- German magazine GEO 10 / 2004: “Experiment mit Folgen”
- http://www.faz.net “Hardys Vermutung – Primzahlen ohne Ende” by Heinrich Hemme (July 06, 2004)

36Arithmetic sequences with k primes are called prime arithmetic progressions and therefore their abbreviation is
PAP-k or AP-k.

37Godfrey Harold Hardy, British mathematician, Feb 7, 1877−Dec 1, 1947.
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question. In 1923 the famous British mathematician Godfrey Harold Hardy and his col-
league John Littlewood theorized, that there is no upper limit for the number of elements.
But they could not prove this. In 1939 more progress was achieved: The Dutch mathemati-
cian Johannes van der Corput was able to prove that there are infinitely many different
arithmetic prime number sequences with exactly three elements. Two examples are 3, 5,
7 and 47, 53, 59.

The longest arithmetic prime number sequence known today contains 25 elements. The ta-
ble 3.3 lists the longest currently known arithmetic prime number sequences with minimal
difference38.

As a team, the two young39 mathematicians Ben Green and Terence Tao, were able in
2004 to prove Hardy’s conjecture, which had puzzled mathematicians for over 80 years:
It states, that for any arbitrary length there exists an arithmetic prime number series.
Additionally they managed to prove, that for any given length there are infinitely many
different series.

Green and Tao intended to proof that there are infinitely many arithmetic sequences of
length four. For this they considered sets of numbers consisting of primes and so called
“near primes”. These are numbers with a small set of divisors like numbers which are the
product of two primes - these numbers are called “half primes”. Thus they managed to
considerably simplify their work because about near primes there already existed a lot of
useful theorems. Finally they discovered that the results of their theorem were far more
reaching than they had assumed and so they were able to prove Hardy’s conjecture.

Any one who believes that it is easy to use Green’s and Tao’s 49 page proof to compute
arithmetic prime number series of arbitrary length will soon become disappointed, because
the proof is non-constructive. It is a so called proof of existence. This means that these
mathematicians have shown “only” that these series exist, but not how to find them in
practice.

This means that in the set of the natural numbers there is e.g. a series of one billion
primes, which all have the same distance; and there are infinitely many of them. But
these sequences lie extremely far beyond the numbers we usually use (“far outside”).

38In the opposite, in http://en.wikipedia.org/wiki/Primes_in_arithmetic_progression are the ”largest
known AP-k” listed. Therefore, there the last sequence element is a prime as big as possible. However, here are
the sequences listed which have the smallest known difference for a given length.

39Hardy wrote in his memoirs in 1940, that mathematics - more than all other arts and sciences - is an activity for
young people.
At that time 27-years-old Ben Green from the University of British Columbia in Vancouver and 29-year-old
Terence Tao from the University of California in Los Angeles seem to confirm Hardy.
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Elements First element Distance When Discovered by
Digits

3 3 2
1

4 5 6
2

5 5 6
2

6 7 30 1909 G. Lenaire
3

7 7 150 1909 G. Lenaire
3

.......

21 28,112,131,522,731,197,609 9,699,690 2008 Jaroslaw Wroblewski
= 19# 20

22 166,537,312,120,867 96,599,212,710 2006 Markus Frind
= 9,95919# 15

23 403,185,216,600,637 2,124,513,401,010 2006 Markus Frind,
= 9,52323# 15

24 515,486,946,529,943 30,526,020,494,970 2008 Raanan Chermoni,
= 136,83123# 16 Jaroslaw Wroblewski

25 6,171,054,912,832,631 81,737,658,082,080 2008 Raanan Chermoni,
= 366,38423# 16 Jaroslaw Wroblewski

Table 3.3: Arithmetic prime number sequences with minimal difference (as of Jan. 2010)
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If someone wants to discover such sequences he should consider the following thought.
The length of a sequence determines the minimal common distance between the single
primes of the sequence. Given a sequence with 6 elements the distance between them
has to be 30 or a multiple of 30. The number 30 results as the product of all primes
smaller than the length of the sequence. So its the product of all primes smaller than 6:
6# = 5# = 2∗3∗5 = 30. It is 10# = 7# = 2357 = 210. If you look for a sequence with 15
elements, then the common distance is at least 15# = 13# = 2∗3∗5∗7∗11∗13 = 30, 030.

This means that the length of an arithmetic prime sequence can be arbitrary big, but the
distance between the elements cannot be any arbitrary number. E.g. there is no arithmetic
prime sequence with the distance 100, because 100 cannot be divided by 3.

k k#
2 2
3 6
5 30
7 210

11 2,310
13 30,030
17 510,510
19 9,699,690
23 223,092,870

Table 3.4: Products of the first primes <= k (called k primorial or k#)

Further restriction:
If you look at arithmetic prime sequences, which fulfill the additional requirement, that all
primes are consecutive40, then its getting even more complicated. At the website of Chris
Caldwell41 you can find further details: The longest known arithmetic prime sequence,
consisting only of directly consecutive primes, has a length of 10 and the distance is

10# = 7# = 2 ∗ 3 ∗ 5 ∗ 7 = 210

3.8.2 Unproven statements / conjectures about primes

• Christian Goldbach42 conjectured: Every even natural number greater than 2 can be
represented as the sum of two prime numbers. Computers have verified43 the Goldbach

40They are also called consecutive prime arithmetic progressions and therefore their abbreviation is CPAP-k or
CAP-k.

41http://primes.utm.edu/glossary/page.php?sort=ArithmeticSequence
42Christian Goldbach, German mathematician, Mar 18, 1690−Nov 20, 1764.
43It is generally accepted today, that the Goldbach Conjecture is true, i. e. valid for all even natural numbers

greater than 2. In 1999, mathematician Jörg Richstein from the computer sciences institute at the University of
Giessen, studied even numbers up to 400 billion (4 ∗ 1014) and found no contradictory example ([Richstein1999]).
In the meantime further progress was made: See
http://www.ieeta.pt/~tos/goldbach.html,
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conjecture for all even numbers up to 15 ∗ 1017 (as at July 2009) but no general proof has
yet been found44.

• Bernhard Riemann45 put forward a formula for the distribution of primes that would
further improve the estimate. However, this has neither been proved nor disproved so far.

• Benford’s law46,47 does not apply to primes.

According to Benford’s law, also called the first-digit law, the single digits in lists of
numbers from many (but not all) real-life sources of data, are distributed in a non-uniform
way. Especially the leading digit is much more often the digit 1 than any other digit.

Which empirical data applies to this ”law” ist not completely clear yet. Timo Eckhardt
analyzed in his thesis in 2008 extensively attributes of prime numbers. Among other
things all primes until 7,052,046,499 were described with different bases of the positional
notation.

Comparing the bases 3 to 10 the deviation from Benford’s law was lowest with base 3.
Comparing the first digit for base 10 all digits are almost equally distributed. Analyzing
bigger bases showed strong differences.

3.8.3 Open questions about twin primes

Twin primes are prime numbers whose difference is 2. Examples include 5 and 7, or 101 and
103, or 1, 693, 965 · 266,443 ± 1.

http://en.wikipedia.org/wiki/Goldbach’s_conjecture,
http://primes.utm.edu/glossary/page.php/GoldbachConjecture.html.
Nevertheless, this does not provide us with general proof.
The fact is that despite all efforts, Goldbach’s conjecture has to date not been proven. This leads one to believe
that since the pioneer work of the Austrian mathematician Kurt Gödel is well-known, not every true mathe-
matical theorem is provable (see http://www.mathematik.ch/mathematiker/goedel.html). Perhaps Goldbach’s
conjecture was correct, but in any case the proof will never be found. Conversely, that will presumably also
remain unproven.

44The English publisher Faber and the American publisher Bloomsbury issued in 2000 the 1992 published book
“Uncle Petros and Goldbach’s Conjecture” by Apostolos Doxiadis. It’s the story of an old maths professor who
fails to prove a more than 250 year old puzzle. To boost the sales figures the English and American publishers
have offered a prize of 1 million USD, if someone can prove the conjecture – which should be published by 2004
in a well-known mathematical journal.
Surprisingly only British and American citizens are allowed to participate.
The theorem which has come closest so far to Goldbach’s conjecture was proved by Chen Jing-Run in 1966 in a
way which is somewhat hard to understand: Each even integer greater than 2 is the sum of one prime and of the
product of two primes. E.g.: 20 = 5 + 3 ∗ 5.
Most of the research about the Goldbach conjecture is collected in the book: “Goldbach Conjecture”, ed. Wang
Yuan, 1984, World scientific Series in Pure Maths, Vol. 4.
Especially this conjecture makes it clear, that even today we do not have a complete understanding of the deeper
connections between addition and multiplication of natural numbers.

45Bernhard Riemann, German mathematician, Sep 17, 1826−Jul 20, 1866.
46http://en.wikipedia.org/wiki/Benford%27s_law,
http://arxiv.org/PS_cache/arxiv/pdf/0906/0906.2789v1.pdf.

47Two good didactical articles in German about applications of Benford’s law are:

– Rüdeger Baumann: ”Ziffernanalyse zwecks Betrugsaufdeckung — Beispiel für kompetenzorientierten und
kontextbezogenen Informatikunterricht”,
in LOGIN, Informatische Bildung und Computer in der Schule, No. 154/155, 2008, p. 68-72

– Norbert Hungerbühler: ”Benfords Gesetz über führende Ziffern”,
March 2007, http://www.educ.ethz.ch/unt/um/mathe/ana/benford
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The biggest known twin pair nowadays is

65, 516, 468, 355 · 2333,333 ± 1

with 100, 355 decimal digits.48

Remark: Triplet primes, however, only occur once: 3, 5, 7. For all other sets of three consecutive
uneven numbers, one of them is always divisible by 3 and thus not a prime.

Open questions are:

• The number of twin primes: infinitely many or a limited number?

• Does a formula exist for calculating the number of twin primes per interval?

A big step towards the solution of this problem was made by Dan Goldston, János Pintz
and Cem Yildirim in 200349. The three mathematicians were investigating the distribution of
prime numbers. They could proof, that

lim inf
n→∞

pn+1 − pn
log pn

= 0,

where pn denotes the n-th prime number.
This means that the smallest limit point (lim inf) of the sequence pn+1−pn

log pn
equals zero.

A point is called limit point of a sequence, if there lie in any arbitrarily small neighbourhood
of that point infinitely many elements of the sequence.
log pn is about the average distance between the prime pn and the next prime pn+1.
Hence, the term above implies, that there are infinitely many consecutive primes with a gap
between them which is arbitrarily small compared to the expected average gap.

Moreover, it was proofed, that

pn+1 − pn < (log pn)8/9

holds true for infinitely many primes50.

Those results could be the basis for the proof, that infinitely many twin primes exist.

3.8.4 Further open questions

• The proof (mentioned above in chapter 3.8.1) of the function f : N → Z with n 7→ ba3nc
only guarantees the existence of such a number a. How can we determine this number a
and will it have a value, making the function also of some practical interest?

• Is there an infinite number of Mersenne prime numbers?

48http://primes.utm.edu, October 2009
49D. A. Goldston: “Gaps Between Primes”
http://www.math.sjsu.edu/~goldston/OberwolfachAbstract.pdf

See also:

• D. A. Goldstone: ”Are There Infinitely Many Twin Primes?”
http://www.math.sjsu.edu/~goldston/twinprimes.pdf

• K. Soundararajan: ”Small Gaps Between Prime Numbers: The Work Of Goldston-Pintz-Yildirim”
http://www.ams.org/bull/2007-44-01/S0273-0979-06-01142-6/S0273-0979-06-01142-6.pdf

50c’t magazine 2003, no. 8, page 54
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• Is there an infinite number of Fermat prime numbers?

• Does a polynomial time algorithm exist for calculating the prime factors of a number (see
[Klee1997, p. 167])? This question can be divided into the three following questions:

– Does a polynomial time algorithm exist that decides whether a number is prime?
This question has been answered by the AKS algorithm (see chapter 4.11.5, “Primes
in P”: Primality testing is polynomial).

– Does a polynomial time algorithm exist that calculates for a composite number from
how many prime factors it is made up (without calculating these factors)?

– Does a polynomial time algorithm exist that calculates for a composite number n a
non-trivial (i.e. other than 1 and n) factor of n?51

At the end of chapter 4.11.4, section RSA-200 you can see the dimensions of the numbers
where the current algorithms testing for primality and calculating the factorization deliver
results.

3.8.5 Quaint and interesting things around primes52

Primes are not only a very active and serious research area in mathematics. Also a lot of people
think about them in their free time and outside the scientific research.

Recruitment at Google in 2004

In summer 2004 the company Google used the number e53 to attract potential employees54.

On a prominent billboard in California’s Silicon Valley on July 12 there appeared the fol-
lowing mysterious puzzle:

(first 10 digit prime in consecutive digits of e).com

Finding the first 10 digit prime in the decimal expansion of e is not easy, but with various
software tools, one can determine that the answer is

7, 427, 466, 391

Then if you visited the website www.7427466391.com, you were presented with an even
more difficult puzzle. Figuring this second puzzle out took you to a web page that asks you, to
submit your CV to Google. The ad campaign got high attention.

51Please compare chapters 4.11.5 and 4.11.4.
52Further curious things about primes may be found at:

- http://primes.utm.edu/curios/home.php
- http://www.primzahlen.de/files/theorie/index.htm.

53The base of the natural logarithm e is approximately 2.718 281 828 459. This is one of the most important
numbers in all of mathematics like complex analysis, finance, physics and geometry. Now it was used the first
time – as far as I know – for marketing or recruitment.

54Most of this information is taken from the article “e-number crunching” by John Allen Paulos in TheGuardian,
Sept. 30, 2004, and from the web:
- http://www.mkaz.com/math/google/
- http://epramono.blogspot.com/2004/10/7427466391.html
- http://mathworld.wolfram.com/news/2004-10-13/google/
- http://www.math.temple.edu/~paulos/.
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Presumably Google’s conceit was that if you’re smart enough to solve the puzzles, you’re
smart enough to work for them. Of course some days after the launch, anyone who really wanted
to discover the answers without incurring a headache could merely do a Google search for them,
since many solvers immediately posted their solutions online.55

Contact [Directed by Robert Zemeckis, 1997] – Primes helping to contact aliens

The movie originated from Carl Sagan’s book with the same title.

After years of unavailing search the radio astronomer Dr. Ellie Arroway (Jodie Foster)
discovers signals from the solar system Vega, 26 light years away. These signals contain the
primes in the right order and without a gap. This makes the hero confident, that this message
is different from the radio signals which permanently hit earth and which are random and of
cosmic origin (radio galaxies, pulsars). In an unmasking scene a politician asks her after that,
why these intelligent aliens didn’t just speak English ...

Doing communication with absolute strange and unknown beings from deep space is very
hard especially because of 2 reasons: First the big distance and therefore the long transfer
time makes it impossible to exchange within an average lifetime more than one message in each
direction ne after the other. Secondly the first contact must give the receiver of the radio signals
a good chance to notice the message and to categorize it as something from intelligent beings.
Therefore the aliens send numbers at the beginning of their message, which can be considered
as the easiest part of any higher language, and which are not too trivial: so they chose the
sequence of primes. These special numbers play such a fundamental role in mathematics that
one can assume that they are well known to each species who has the technical know-how to
receive radio waves.

The aliens then send a plan to build a mysterious machine ...

55The second level of the puzzle, which involved finding the 5th term of a given number sequence had nothing to
do with primes any more.
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3.9 Appendix: Number of prime numbers in various intervals

Ten-sized intervals Hundred-sized intervals Thousand-sized intervals
Interval Number Interval Number Interval Number
1-10 4 1-100 25 1-1000 168
11-20 4 101-200 21 1001-2000 135
21-30 2 201-300 16 2001-3000 127
31-40 2 301-400 16 3001-4000 120
41-50 3 401-500 17 4001-5000 119
51-60 2 501-600 14 5001-6000 114
61-70 2 601-700 16 6001-7000 117
71-80 3 701-800 14 7001-8000 107
81-90 2 801-900 15 8001-9000 110
91-100 1 901-1000 14 9001-10000 112

Table 3.5: How many primes exist within the first intervals of tens?

Interval Number Average number per 1000
1 - 10,000 1,229 122.900
1 - 100,000 9,592 95.920
1 - 1,000,000 78,498 78.498
1 - 10,000,000 664,579 66.458
1 - 100,000,000 5,761,455 57.615
1 - 1,000,000,000 50,847,534 50.848
1 - 10,000,000,000 455,052,512 45.505

Table 3.6: How many primes exist within the first intervals of dimensions?

A visualization of the number of primes in higher intervals of powers of 10 can be found in
chapter 3.13 at page 82.
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3.10 Appendix: Indexing prime numbers (n-th prime number)

Index Precise value Rounded value Comment
1 2 2
2 3 3
3 5 5
4 7 7
5 11 11
6 13 13
7 17 17
8 19 19
9 23 23
10 29 29
100 541 541
1,000 7,917 7,917
664,559 9,999,991 9.99999E+06 All prime numbers up to 1E+07 were

known at the beginning of the 20th
century.

1E+06 15,485,863 1.54859E+07
6E+06 104,395,301 1.04395E+08 This prime was discovered in 1959.
1E+07 179,424,673 1.79425E+08
1E+09 22,801,763,489 2.28018E+10
1E+12 29,996,224,275,833 2.99962E+13

Table 3.7: List of particular n-th prime numbers

Comment:
With gaps, extremely large prime numbers were discovered at an early stage.

Web links:
http://www.math.Princeton.EDU/~arbooker/nthprime.html
http://www.utm.edu/research/primes/notes/by_year.html.
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3.11 Appendix: Orders of magnitude / dimensions in reality

In the description of cryptographic protocols and algorithms, numbers occur that are so large
or so small that they are inaccessible to our intuitive understanding. It may therefore be useful
to provide comparative numbers from the real world around us so that we can develop a feeling
for the security of cryptographic algorithms. Some of the numbers listed below originate from
[Schwenk1996] and [Schneier1996, p.18].

Probability that you will be hijacked on your next flight 5.5 · 10−6

Annual probability of being hit by lightning 10−7

Probability of 6 correct numbers in the lottery 7.1 · 10−8

Risk of being hit by a meteorite 1.6 · 10−12

Time until the next ice age (in years) 14, 000 = (214)
Time until the sun dies (in years) 109 = (230)
Age of the earth (in years) 109 = (230)
Age of the universe (in years) 1010 = (234)
Number of molecules within one waterdrop 1020 = (263)
Number of bacteria living on earth 1030.7 = (2102)
Number of the earth’s atoms 1051 = (2170)
Number of the sun’s atoms 1057 = (2190)
Number of atoms in the universe (without dark material) 1077 = (2265)
Volume of the universe (in cm3) 1084 = (2280)

Table 3.8: Likelihoods and dimensions from physics and everyday life
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3.12 Appendix: Special values of the binary and decimal system

These values can be used to evaluate from a key length in bit the corresponding number of
possible keys and the search effort (if assumed, that e.g. one million keys can be tested within
one second).

Binary system Decimal system
210 1024
240 1.09951 · 1012

256 7.20576 · 1016

264 1.84467 · 1019

280 1.20893 · 1024

290 1.23794 · 1027

2112 5.19230 · 1033

2128 3.40282 · 1038

2150 1.42725 · 1045

2160 1.46150 · 1048

2192 6, 27710 · 1057

2250 1.80925 · 1075

2256 1.15792 · 1077

2320 2.13599 · 1096

2512 1.34078 · 10154

2768 1.55252 · 10231

21024 1.79769 · 10308

22048 3.23170 · 10616

Table 3.9: Special values of the binary and decimal systems

Such tables can easily be calculated using computer algebra systems. Here is a code sample for
Sage:

Sage sample 3.1 Special values of the binary and decimal systems
E = [10, 40, 56, 64, 80, 90, 112, 128, 150, 160, 192, 256, 1024, 2048]

for e in E:

# print "2^" + str(e), "---", 1.0*(2^e)

print "2^%4d" % e , " --- ", RR(2^e).n(24)

....:

2^ 10 --- 1024.00

2^ 40 --- 1.09951e12

2^ 56 --- 7.20576e16

2^ 64 --- 1.84467e19

2^ 80 --- 1.20893e24

2^ 90 --- 1.23794e27

2^ 112 --- 5.19230e33

2^ 128 --- 3.40282e38

2^ 150 --- 1.42725e45

2^ 160 --- 1.46150e48

2^ 192 --- 6.27710e57

2^ 256 --- 1.15792e77

2^1024 --- 1.79769e308

2^2048 --- 3.23170e616
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3.13 Appendix: Visualization of the quantity of primes in
higher ranges

The distribution of primes

Between 1 and 10 there are 4 primes. Between 103 and 104 there are already 1, 061 primes. In
the interval [109, 1010] lie 404, 204, 977 ≈ 4 · 108 primes and in the interval from 1019 to 1020

there are 1, 986, 761, 935, 284, 574, 233 ≈ 1, 9 · 1018 primes56.

Why is the difference between the number of primes in the different intervals so big, although
the boundaries of the intervals differ only by value 1 of the exponent of the power of 10?

The prime number theorem

The number of primes up to a given number x can approximately be determined by a formula,
the so called prime number theorem. π(x) denotes the number of primes which are smaller or
equal to x. Then the formula is

π(x) ∼ x

lnx
.

Note, that this formula only gives an approximation of the number of primes smaller or equal
to x. It’s getting more exact as the number x increases.
In the following we are using the prime number theorem to examine the distribution of primes.

To understand, why the number of primes is growing so rapidly, although the boundaries of
the intervals only differ by the exponent 1, let’s have a closer look to both components of the
right side of the formula: x and lnx.

The functions x and 10x

The function x is a straight line. It is shown in figure 3.1a on page 83.
In the next step the function of the boundaries of the intervals are drawn in figure 3.1b on page
83. To get an idea of how the functions look like, the domain of definition was chosen to be
from 0 to 1010 and from 0 to 10, respectively. You can see, that with increasing exponent x the
numbers grow stronger.

The function lnx

In comparison to that we consider the function lnx. The left picture of figure 3.2 on page 83
shows the graph with the domain of definition from 1 to 100. On the right picture the domain
of definition was chosen between 1 and 1010.
One can see that the values of the function lnx grow slowly compared to the growth of the
function x. This is visualizd by the graph of both functions in one picture shown in figure 3.3
on page 83. In addition to that the graph of the function x

lnx was drawn in the same figure.

The function x
lnx

The function x
lnx consists of the function x as the numerator and the function lnx in the

denominator, which, in comparison to x, increases very slowly. Compared to the number x

56http://en.wikipedia.org/wiki/Prime_number_theorem
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(a) x (b) 10x

Figure 3.1: Graph of the functions x and 10x

(a) (b)

Figure 3.2: Graph of the function lnx till 100 and till 1010

Figure 3.3: The functions x (blue), lnx (red) and x
lnx (green)

itself, the number of primes less or equal to x is small. But still, x
lnx is an increasing function

as you can see in figure 3.3 on page 83.
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The number of primes in the different intervals

To see how the number of primes in different intervals [10x−1, 10x] behave, let’s have a look on
figure 3.4 on page 84. Here 10x

ln 10x and 10x

ln 10x − 10x−1

ln 10x−1 are visualized. The left chart shows the
values for the exponent x from 1 to 5 and the other one shows the values for x from 1 to 10.
The blue bars represent the overall number of primes up to 10x. The red bars show how many
primes lie in the interval [10x−1, 10x], respectively. This makes clear, that the number of primes
in intervals of higher exponents grows quite fast.

(a) (b)

Figure 3.4: Numbers of primes in the interval 0 to 10x (blue) and in the intervall [10x−1, 10x]
(red) for different exponents x.

A table containing the number of primes in some dedicated intervals can be found in chapter
3.9 at page 78.
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Sage sample 3.2 Generation of the graphs of the three functions x, log(x) and x/log(x)

# Definition of function f(x)=x and plots for the domains from 0 to 10^10 and 0 to 100

sage: def f(x):return x

....:

sage: F=plot(f,(0,10^10))

sage: F.plot()

sage: F2=plot(f,(1,100))

sage: F2.plot()

# Definition of function g(x)=10^x and plots for the domain from 0 to 10

sage: def g(x): return 10^x

....:

sage: G=plot(g,(0,10))

sage: G.plot()

# Definition of function h(x)=log(x) and plots for the domains from 1 to 100 and 1 to 10^10

sage: def h(x): return log(x)

....:

sage: H=plot(h,(1,100),color="red")

sage: H.plot()

sage: H2=plot(h,(1,10^10),color="red")

sage: H2.plot()

# Definition of function k(x)=x/log(x) and plots for the domain from 2 to 100

sage: def k(x): return x/log(x)

....:

sage: K=plot(k,(2,100),color="green")

sage: K.plot()

# Plots of the functions f, k and h for the domain of definition up to 100

sage: F2+K+H

# Generation of the data for the bar charts ..........................

# Determination of the number of primes in the interval [1,10]

sage: pari(10).primepi()-pari(1).primepi()

4

# Determination of the number of primes in the interval [10^3,10^4]

sage: pari(10**4).primepi()-pari(10**3).primepi()

1061

# Determination of the number of primes in the interval [10^8,10^9]

sage: pari(10**9).primepi()-pari(10**8).primepi()

45086079

# (for 10^10: OverflowError: long int too large to convert)
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3.14 Appendix: Examples using Sage

Below is Sage source code related to contents of the chapter 3 (“Prime Numbers”).

3.14.1 Some basic functions about primes using Sage

This part of the appendix contains Sage code, to perform some simple computations about
primes57.

Sage sample 3.3 Some basic functions about primes

# primes (general commands)

# The set of prime numbers

sage: P=Primes(); P

Set of all prime numbers: 2, 3, 5, 7, ...

# Returns the next prime number

sage: next_prime(5)

7

# Returns how many primes <=x are there

sage: pari(10).primepi()

4

# Returns the first x primes

sage: primes_first_n(5)

[2, 3, 5, 7, 11]

# Returns the primes in an interval

sage: list(primes(1,10))

[2, 3, 5, 7]

57See the Sage documentation about Elementary number theory http://www.sagemath.org/doc/constructions/

number_theory.html.
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3.14.2 Check primality of integers generated by quadratic functions

The following Sage code verifies the primality of integers generated by the function f(n) =
n2− 9n+ 61. The code defines a function called quadratic_prime_formula() that takes three
arguments:

• start — An integer which is the lower bound for integers in the sequence start, start+
1, start + 2, . . . , end− 1, end.

• end — An integer which is the upper bound for the integers in the sequence start, start+
1, start + 2, . . . , end− 1, end.

• verbose — (default: True) a flag to signify whether to print a message indicating the
primality of an integer generated by f(n).

A meaningful modification of this code is to use another function, of which the primality of its
function values should be checked.

Sage sample 3.4 Verify the primality of integers generated by a quadratic function
def quadratic_prime_formula(start, end, verbose=True):

print "N -- N^2 - 9*N + 61"

P = 0 # the number of primes between start and end

for n in xrange(start, end + 1):

X = n^2 - 9*n + 61

if is_prime(X):

P += 1

if verbose:

print str(n) + " -- " + str(X) + " is prime"

else:

if verbose:

print str(n) + " -- " + str(X) + " is NOT prime"

print "Number of primes: " + str(P)

print "Percentage of primes: " + str(float((P * 100) / (end - start + 1)))

With the following function call we compute the values of f(n) = n2 − 9n + 61 for n =
0, 1, 2, . . . , 50 and verify the primality of the generated integers:

sage: quadratic_prime_formula(0, 50)

N -- N^2 - 9*N + 61

0 -- 61 is prime

1 -- 53 is prime

2 -- 47 is prime

3 -- 43 is prime

4 -- 41 is prime

5 -- 41 is prime

6 -- 43 is prime

7 -- 47 is prime

8 -- 53 is prime

9 -- 61 is prime

10 -- 71 is prime

11 -- 83 is prime

12 -- 97 is prime

13 -- 113 is prime

14 -- 131 is prime

15 -- 151 is prime
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16 -- 173 is prime

17 -- 197 is prime

18 -- 223 is prime

19 -- 251 is prime

20 -- 281 is prime

21 -- 313 is prime

22 -- 347 is prime

23 -- 383 is prime

24 -- 421 is prime

25 -- 461 is prime

26 -- 503 is prime

27 -- 547 is prime

28 -- 593 is prime

29 -- 641 is prime

30 -- 691 is prime

31 -- 743 is prime

32 -- 797 is prime

33 -- 853 is prime

34 -- 911 is prime

35 -- 971 is prime

36 -- 1033 is prime

37 -- 1097 is prime

38 -- 1163 is prime

39 -- 1231 is prime

40 -- 1301 is prime

41 -- 1373 is prime

42 -- 1447 is prime

43 -- 1523 is prime

44 -- 1601 is prime

45 -- 1681 is NOT prime

46 -- 1763 is NOT prime

47 -- 1847 is prime

48 -- 1933 is prime

49 -- 2021 is NOT prime

50 -- 2111 is prime

Number of primes: 48

Percentage of primes: 94.1176470588

The last two lines of the output contain a small statistics. You can see that f(n) generates 48
primes when 0 ≤ n ≤ 50, which is approximately 94% of the values generated by f(n).

For larger sequences, it is impractical to print all single messages indicating the primality of
integers. In the following Sage session, we count the number of primes generated by f(n) where
0 ≤ n ≤ 1000 and suppress primality messages.

sage: quadratic_prime_formula(0, 1000, False)

N -- N^2 - 9*N + 61

Number of primes: 584

Percentage of primes: 58.3416583417
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Ungelöste Probleme in der Zahlentheorie und der Geometrie der Ebene,
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Web links

1. GIMPS (Great Internet Mersenne-Prime Search)
www.mersenne.org is the home page of the GIMPS project,
http://www.mersenne.org/prime.htm

2. The Proth Search Page with the Windows program by Yves Gallot
http://www.utm.edu/research/primes/programs/gallot/index.html

3. Generalized Fermat Prime Search
http://primes.utm.edu/top20/page.php?id=12

4. Distributed Search for Fermat Number Divisors
http://www.fermatsearch.org/

5. At the University of Tennessee you will find extensive research results about prime num-
bers.
http://www.utm.edu/

6. The best overview about prime numbers is offered from my point of view by “The Prime
Pages” from professor Chris Caldwell.
http://www.utm.edu/research/primes

7. Descriptions e.g. about prime number tests
http://www.utm.edu/research/primes/mersenne.shtml
http://www.utm.edu/research/primes/prove/index.html

8. Showing the n-th prime number
http://www.utm.edu/research/primes/notes/by_year.html

9. The supercomputer manufacturer SGI Cray Research not only employed brilliant mathe-
maticians but also used the prime number tests as benchmarks for its machines.
http://www.isthe.com/chongo/tech/math/prime/prime_press.html

10. The Cunningham Project,
http://www.cerias.purdue.edu/homes/ssw/cun/

11. http://www.eff.org/awards/coop

12. http://www.math.Princeton.EDU/~arbooker/nthprime.html

13. Goldbach conjecture verification project von Toms Oliveira e Silva,
http://www.ieeta.pt/~tos/goldbach.html

14. http://www.mathematik.ch/mathematiker/goedel.html
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Chapter 4

Introduction to Elementary Number
Theory with Examples

(Bernhard Esslinger, July 2001; Updates: Dec. 2001, June 2002, May 2003, May 2005, March
2006, June 2007, July 2009, Jan. 2010)

This “introduction” is for people with a mathematical interest. There is no more pre-
knowledge necessary than what you learn in the secondary school.

We intentionally had “beginners” in mind; we did not take the approach of mathematical
textbooks, called “introduction”, which cannot be understood at the first reading further than
page 5 and which have the real purpose to deliver all information that special monographs can
be read.

4.1 Mathematics and cryptography

A large proportion of modern, asymmetric cryptography is based on mathematical knowledge –
on the properties (“laws”) of whole numbers, which are investigated in elementary number the-
ory. Here, the word “elementary” means that questions raised in number theory are essentially
rooted in the set of natural and whole numbers.

Further mathematical disciplines currently used in cryptography include (see [Bauer1995,
p. 2], [Bauer2000, p. 3]) :

• Group theory

• Combination theory

• Complexity theory

• Ergodic theory

• Information theory.

Number theory or arithmetic (the emphasis here is more on the aspect of performing cal-
culations with numbers) was established by Carl Friedrich Gauss1 as a special mathematical

1Carl Friedrich Gauss, German mathematician and astronomer, Apr 30, 1777−Feb 23, 1855.
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discipline. Its elementary features include the greatest common divisor2 (gcd), congruence (re-
mainder classes), factorization, the Euler-Fermat theorem and primitive roots. However, the
most important aspect is prime numbers and their multiplicative operation.

For a long time, number theory was considered to be the epitome of pure research, the ideal
example of research in the ivory tower. It delved into “the mysterious laws of the realm of
numbers”, giving rise to philosophical considerations as to whether it described elements that
exist everywhere in nature or whether it artificially constructed elements (numbers, operators
and properties).

We now know that patterns from number theory can be found everywhere in nature. For
example, the ratio of rotating counterclockwise and rotating clockwise spirals in a sunflower is
equal to two consecutive Fibonacci numbers3, for example 21 : 34.

Also, at the latest when number theory was applied in modern cryptography, it became
clear that a discipline that had been regarded as purely theoretical for centuries actually had a
practical use. Today, experts in this field are in great demand on the job market.

Applications in (computer) security now use cryptography because this mathematical disci-
pline is simply better and easier to prove than all other ”creative” substitution procedures that
have been developed over the course of time and better than all sophisticated physical methods
such as those used to print bank notes [Beutelspacher1996, p. 4].

This article explains the basics of elementary number theory in a way that you can easily
understand. It provides numerous examples and very rarely goes into any proofs (these can be
found in mathematical textbooks).

The goal is not to exhaustively explain the number theory findings, but to show the essential
procedures. The volume of the content is so oriented that the reader can understand and apply
the RSA method.

For this purpose we will use both theory and examples to explain how to perform calculations
in finite sets and describe how these techniques are applied in cryptography. Particular attention
will be paid to the traditional Diffie-Hellman (DH) and RSA public key procedures.

Additionally I added some qualified statements about the security of the RSA algorithm.

Carl Friedrich Gauss:
Mathematics is the queen of sciences and number theory is the queen of mathematics.

4.2 Introduction to number theory

Number theory arose from interest in positive whole numbers 1, 2, 3, 4, · · · , also referred to as
the set of natural numbers natural numbers N. These are the first mathematical constructs used
by human civilization. According to Kronecker4, they are a creation of God. In Dedekind’s5

2This article deals with the gcd (greatest common divisor) in appendix 4.14.
3The sequence of Fibonacci numbers (ai)i∈N is defined by the “recursive” rule a1 := a2 := 1 and for all numbers
n = 1, 2, 3, · · · we define an+2 := an+1 + an. This historical sequence can be found in many interesting forms
in nature (for example, see [Graham1994, p. 290 ff] or the website of Ron Knott, which is devoted to Fibonacci
numbers). A lot is known about the Fibonacci sequence and it is used today as an important tool in mathematics.

4Leopold Kronecker, German mathematician, Dec 7, 1823 − Dec 29, 1891
5Julius Wilhelm Richard Dedekind, German mathematician, Oct 6, 1831 − Feb 12, 1916.
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opinion, they are a creation of the human intellect. Dependent upon one’s ideology, this is an
unsolvable contradiction or one and the same thing.

In ancient times, no distinction was made between number theory and numerology, which
attributed a mystical significance to specific numbers. In the same way as astronomy and
chemistry gradually detached themselves from astrology and alchemy during the Renaissance
(from the 14th century), number theory also separated itself from numerology.

Number theory has always been a source of fascination – for both amateurs and professional
mathematicians. In contrast to other areas of mathematics, many of the problems and theorems
in number theory can be understood by non-experts. On the other hand, the solutions to these
problems or the prove to the theorems often resisted to the mathematicians for a very long time.
It is therefore one thing to pose good questions but quite another matter to find the answer.
One example of this is what is known as Fermat’s Last (or large) theorem6.

Up until the mid 20th century, number theory was considered to be the purest area of
mathematics, an area that had no practical use in the real world. This changed with the
development of computers and digital communication, as number theory was able to provide
several unexpected solutions to real-life tasks. At the same time, advances in information
technology allowed specialists in number theory to make huge progress in factorizing large
numbers, finding new prime numbers, testing (old) conjectures and solving numerical problems
that were previously impossible to solve. Modern number theory is made up of areas such as:

• Elementary number theory

• Algebraic number theory

• Analytic number theory

• Geometric number theory

• Combinatorial number theory

• Numeric number theory

• Probability theory.

All of the different areas are concerned with questions regarding whole numbers (both pos-
itive and negative whole numbers plus zero). However, they each have different methods of
dealing with them.

This article only deals with the area of elementary number theory.

6One of the things we learn in mathematics at school is Pythagoras’ theorem, which states the following for a
right-angle triangle: a2 + b2 = c2, where a and b are the lengths of the sides containing the right angle and c
is the length of the hypotenuse. Fermat famously proposed that an + bn 6= cn for a, b, c ∈ N and whole-number
exponents n > 2. Unfortunately, the letter in which Fermat made the claim did not have enough space for him
to prove it. The theorem was not proven until over 300 years later [Wiles1994, p. 433-551].
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4.2.1 Convention

Unless stated otherwise:

• The letters a, b, c, d, e, k, n,m, p, q are used to present whole numbers.

• The letters i and j represent natural numbers.

• The letters p always represents a prime number.

• The sets N = {1, 2, 3, · · · } and Z = {· · · ,−3,−2,−1, 0, 1, 2, 3, · · · } are the natural and
whole numbers respectively.
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Joanne K. Rowling7

This isn’t magic – it’s logic – a puzzle. A lot of the greatest wizards haven’t got an ounce
of logic.

4.3 Prime numbers and the first fundamental theorem of ele-
mentary number theory

Many of the problems in elementary number theory are concerned with prime numbers.

Every whole number has divisors or factors. The number 1 has just one – itself, whereas
the number 12 has the six factors 1, 2, 3, 4, 6 and 128. Many numbers are only divisible by
themselves and by 1. When it comes to multiplication, these can be regarded as the “atoms”
in the realm of numbers.

Definition 4.3.1. Prime numbers are natural numbers greater than 1 that can only be divided
by 1 and themselves.

By definition, 1 is not a prime number.

If we write down the prime numbers in ascending order (prime number sequence), then we
get:

2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 37, 41, 43, 47, 53, 59, 61, 67, 71, 73, 79, 83, 89, 97, · · · .

The first 100 numbers include precisely 25 prime numbers. After this, the percentage of
primes decreases, but never reaches zero.

We come across whole numbers that are prime fairly often. In the last decade only, three
years were prime: 1993, 1997 and 1999. If they were rare, cryptography would not be able to
work with them to the extent it does.

Prime numbers can be factorized in a unique (“trivial”) way:

5 = 1 ∗ 5
17 = 1 ∗ 17

1013 = 1 ∗ 1013
1, 296, 409 = 1 ∗ 1, 296, 409.

Definition 4.3.2. Natural numbers greater than 1 that are not prime are called composite
numbers. These have at least two factors other than 1.

7Joanne K. Rowling, “Harry Potter and the Philosopher’s Stone”, Bloomsbury, (c) 1997, chapter “Through the
trapdoor”, p. 307, by Hermine.

8Due to the fact that 12 has so many factors, this number – and multiples of this number – is often found in
everyday life: the 12-hour scale on clocks, the 60 minutes in an hour, the 360-degree scale for measuring angles,
etc. If we divide these scales into segments, the segments often turn out to be whole numbers. These are easier
to use in mental arithmetic than fractions.
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Examples of the decomposition of such numbers into prime factors:

4 = 2 ∗ 2
6 = 2 ∗ 3

91 = 7 ∗ 13
161 = 7 ∗ 23
767 = 13 ∗ 59

1029 = 3 ∗ 73

5324 = 22 ∗ 113.

Theorem 4.3.1. Each composite number a has a lowest factor greater than 1. This factor is
a prime number p and is less than or equal to the square root of a.

All whole numbers greater than 1 can be expressed as a product of prime numbers — in a
unique way.

This is the claim of the 1st fundamental theorem of number theory (= fundamental theorem of
arithmetic = fundamental building block of all positive integers). This was formulated precisely
for the first time by Carl Friedrich Gauss in his Disquisitiones Arithmeticae (1801).

Theorem 4.3.2. Gauss 1801 Every even natural number greater than 1 can be written as the
product of prime numbers. Given two such decompositions a = p1 ∗p2 ∗· · ·∗pn = q1 ∗q2 ∗· · ·∗qm,
these can be resorted such that n = m and, for all i, pi = qi.

In other words: Each natural number other than 1 can be written as a product of prime
numbers in precisely one way, if we ignore the order of the factors. The factors are therefore
unique (the “expression as a product of factors” is unique)!

For example, 60 = 2 ∗ 2 ∗ 3 ∗ 5 = 22 ∗ 3 ∗ 5. And this — other than changing the order of the
factors — is the only way in which the number 60 can be factorized.

If you allow numbers other than primes as factors, there are several ways of factorizing
integers and the uniqueness is lost:

60 = 1 ∗ 60 = 2 ∗ 30 = 4 ∗ 15 = 5 ∗ 12 = 6 ∗ 10 = 2 ∗ 3 ∗ 10 = 2 ∗ 5 ∗ 6 = 3 ∗ 4 ∗ 5 = · · ·

The 1st fundamental theorem only appears to be obvious. We can construct numerous other
sets of numbers9 for which numbers in the set cannot be expressed uniquely as a product of the
prime numbers of the set.

In order to make a mathematical statement, therefore, it is important to state not only the
operation for which it is defined but also the basic set on which the operation is defined.

For more details on prime numbers (e.g. how “Fermat’s Little Theorem” can be used to test
extremely large numbers to determine whether they are prime), please refer to the article on
prime numbers, chapter 3 in this script.

9These sets are formed especially from the set of natural numbers. An example of this can be found in this script
on page 52 at the end of chapter 3.2.
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4.4 Divisibility, modulus and remainder classes10

If whole numbers are added, subtracted or multiplied, the result is always another whole number.

The division of two whole numbers does not always result in a whole number. For example,
if we divide 158 by 10 the result is the decimal number 15.8, which is not a whole number!

If, however, we divide 158 by 2 the result 79 is a whole number. In number theory we express
this by saying that 158 is divisible by 2 but not by 10. In general, we say:

Definition 4.4.1. A whole number n is divisible by a whole number d if the quotient n/d is
a whole number c such that n = c ∗ d.

n is called a multiple of d, whereas d is called a divisor or factor of n.

The mathematical notation for this is d|n (read “d divides n”). The notation d 6 |n means
that d does not divide the number n.

In our example therefore: 106 |158 but 2|158.

4.4.1 The modulo operation – working with congruence

When we investigate divisibility, it is only the remainder of the division that is important. When
dividing a number n by m, we often use the following notation:

n

m
= c+

r

m
,

where c is a whole number and r is a number with the values 0, 1, · · · ,m− 1. This notation is
called division with remainder, whereby c is called the whole-number “quotient” and r is the
“remainder” of the division.

Example:
19
7

= 2 +
5
7

(m = 7, c = 2, r = 5)

What do the numbers 5, 12, 19, 26, · · · have in common for division by 7? The remainder is
always r = 5. For division by 7, only the following remainders are possible:

r = 0, 1, 2, · · · , 6.

The numbers that result in the same remainder r when divided by 7 are combined to form
the “remainder class r modulo 7”. Two numbers a and b belonging to the same remainder
class modulo 7 are said to be “congruent modulo 7”. Or in general:

Definition 4.4.2. The remainder class r modulo m is the set of all whole numbers a that
have the same remainder r when divided by m.

10With the educational tool for number theory NT you can have a playful view at the calculation with congruences,
discussed in this and the next chapter (see learning unit 2.1, pages 2-9/40).
NT can be called in CrypTool via the menu path Indiv. Procedures \ Number Theory Interactive \
Learning Tool for Number Theory. See appendix A.4.
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Example:

Remainder class 0 modulo 4 =
{x|x = 4 ∗ n; n ∈ Z} = {. . . ,−16,−12,−8,−4, 0, 4, 8, 12, 16, . . . }

Remainder class 3 modulo 4 =
{x|x = 4 ∗ n+ 3; n ∈ Z} = {. . . ,−13,−9,−5,−1, 3, 7, 11, 15, . . . }

As only the remainders 0, 1, 2, · · · ,m−1 are possible for division modulo m, modular arithmetic
works with finite sets. For each modulo m there are precisely m remainder classes.

Definition 4.4.3. Two numbers a, b ∈ N are said to be congruent modulo m ∈ N if and only if
they have the same remainder when divided by m.

We write: a ≡ b (mod m) (read a is congruent b modulo m), which means that a and b
belong to the same remainder class. The modulo is therefore the divisor. This notation was
introduced by Gauss. Although the divisor is usually positive, a and b can also be any whole
numbers.

Example:

19 ≡ 12 (mod 7), because the remainders are equal: 19/7 = 2 remainder 5 and 12/7 = 1
remainder 5.

23103 ≡ 0 (mod 453), because 23103/453 = 51 remainder 0 and 0/453 = 0 remainder 0.

Theorem 4.4.1. a ≡ b (mod m) if and only if, the difference (a − b) is divisible by m, i.e. if
q ∈ Z exists with (a− b) = q ∗m.

These two statements are therefore equivalent.

Therefore: If m divides the difference, there exists a whole number q such that: a = b+q∗m.
As an alternative to the congruence notation, we can also use the divisibility notation: m|(a−b).
Example Example of equivalent statements:
35 ≡ 11 (mod 3) ⇐⇒ 35 − 11 ≡ 0 (mod 3), where 35 − 11 = 24 is divisible by 3 without
remainder while 35 : 3 and 11 : 3 leave the remainder 2.

Comment:
The above equivalence does not apply to the sum (a+ b)!

Example:
11 ≡ 2 (mod 3), therefore 11 − 2 = 9 ≡ 0 (mod 3); but 11 + 2 = 13 is not divisible by 3.
The statement in theorem 4.4.1 does not even apply to sums in one direction. It is correct for
sums only if the remainder is 0 and only in the following direction: If a divisor divides both
summands with no remainder, it also divides the sum with no remainder.

We can apply the above equivalence in theorem 4.4.1 if we need a quick and easy method
of determining whether large numbers are divisible by a certain number.

Example: Is 69, 993 divisible by 7?
The number can be written in the form of a difference in which it is clear that each operand is
divisible by 7: 69, 993 = 70, 000− 7. Therefore, the difference is also divisible by 7.

Although these considerations and definitions may seem to be rather theoretical, we are so
familiar with them in everyday life that we no longer think about the formal procedure. For
example, the 24 hours on a clock are represented by the numbers 1, 2, · · · , 12. We obtain the
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hours after 12 noon as the remainder of a division by 12 and know immediately that 2 o’clock
in the afternoon is the same as 14.00.

This “modular” arithmetic (based on division remainders) forms the basis of asymmetric
encryption procedures. Cryptographic calculations are therefore not based on real numbers, as
the calculations you performed at school, but rather on character strings with a limited length,
in other words on positive whole numbers that cannot exceed a certain value. This is one of
the reasons why we choose a large number m and “calculate modulo m”. That is, we ignore
whole-number multiples of m and, rather than working with a number, we only work with the
remainder when this number is divided by m. The result is that all results are in the range 0
to m− 1.

4.5 Calculations with finite sets

4.5.1 Laws of modular calculations

From algebra theorems it follows that essential parts of the conventional calculation rules are
kept when we proceed to modular calculations over a basic set Z. For example, addition remains
commutative. The same goes for multiplication modulo m. The result of a division11 is not a
fraction but rather a whole number between 0 and m− 1.

The known laws apply:

1. Associative law:
((a+ b) + c) (mod m) ≡ (a+ (b+ c)) (mod m).
((a ∗ b) ∗ c) (mod m) ≡ (a ∗ (b ∗ c)) (mod m).

2. Commutative law:
(a+ b) (mod m) ≡ (b+ a) (mod m).
(a ∗ b) (mod m) ≡ (b ∗ a) (mod m).

The associative law and the commutative law apply to both addition and multiplication.

3. Distributive law:
(a ∗ (b+ c)) (mod m) ≡ (a ∗ b+ a ∗ c) (mod m).

4. Reducibility:
(a+ b) (mod m) ≡ (a (mod m) + b (mod m)) (mod m).
(a ∗ b) (mod m) ≡ (a (mod m) ∗ b (mod m)) (mod m).
When adding or multiplying the order in which the modulo operation is performed does
not matter.

5. Existence of an identity (neutral element):
(a+ 0) (mod m) ≡ (0 + a) (mod m) ≡ a (mod m).
(a ∗ 1) (mod m) ≡ (1 ∗ a) (mod m) ≡ a (mod m).

6. Existence of an inverse element:
For all whole numbers a and m there exists a whole number −a such that:
(a+ (−a)) (mod m) ≡ 0 (mod m) (additive inverse).

11The division modulo m is only defined for numbers co-prime to m because other numbers have the same property
as zero. See footnote 15 in chapter 4.6.1.
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For each a (a 6≡ 0 (mod p) ) where p is prime there exists a whole number a−1, such that:
(a ∗ a−1) (mod p) ≡ 1 (mod p) (multiplicative inverse).

7. Closeness12:
a, b ∈ G =⇒ (a+ b) ∈ G.
a, b ∈ G =⇒ (a ∗ b) ∈ G.

8. Transitivity:

[a ≡ b mod m, b ≡ c mod m] =⇒ [a ≡ c mod m].

4.5.2 Patterns and structures

In general mathematicians investigate “Structures”. They ask e.g. at a ∗ x ≡ b mod m, which
values x can take for given values of a, b, m.

Especially the case is investigated, where the result b of this operation is the neutral element.
Then x is the inverse of a regarding this operation.

12The property of closeness is always defined in relation to an operation in a set. See chapter 4.15 “Appendix:
Forming closed sets”.
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Seneca13:
The way of theory is long — it is short and effective by examples.

4.6 Examples of modular calculations

As we have already seen:

For two natural numbers a and m, a mod m denotes the remainder obtained when we divide
a by m. This means that a (mod m) is always a number between 0 and m− 1.

For example, 1 ≡ 6 ≡ 41 ≡ 1 (mod 5) because the remainder is always 1. Another example
is: 2000 ≡ 0 (mod 4) because 4 divides 2000 with no remainder.

Modular arithmetic only contains a limited quantity of non-negative numbers. The number
of these is specified by a modulus m. If the modulo is m = 5, then only the 5 numbers in the
set {0, 1, 2, 3, 4} are used.

A calculation result larger than 4 is then reduced “modulo 5”. In other words, it is the
remainder when the result is divided by 5. For example, 2 ∗ 4 ≡ 8 ≡ 3 (mod 5) because 3 is the
remainder when we divide 8 by 5.

4.6.1 Addition and multiplication

The following shows

• the addition table14 (mod 5) and

• the multiplication tables15 (table 4.1) for mod 5 (table 4.2) and mod 6 (table 4.3).

Example of an addition table

The result when we add 3 and 4 (mod 5) is calculated as follows: Calculate 3 + 4 = 7 and keep
subtracting 5 from the result until the result is less than the modulo: 7 − 5 = 2. Therefore:
3 + 4 ≡ 2 (mod 5).

Example of a multiplication table:

The result of the multiplication 4 ∗ 4 (mod 5) is calculated as follows: 4 ∗ 4 = 16 and subtract
5 until the result is less than the modulus.

16− 5 = 11; 11− 5 = 6; 6− 5 = 1.

The table directly shows that 4 ∗ 4 ≡ 1 (mod 5) because 16 : 5 = 3 remainder 1. Multiplication
is defined on the set Z excluding 0.

13Lucius Annaeus Seneca, philosophical writer and poet, 4 B. C. − 65 A. D.
14Comment on subtraction modulo 5:

2− 4 = −2 ≡ 3 mod 5.
It is therefore not true modulo 5 that −2 = 2 (see chapter 4.16 “Appendix: Comments on modulo subtraction”).

15Comment on division modulo 6:
Due to the special role of zero as the identity for addition, division by zero is not permitted:
For all a it is a ∗ 0 = 0, because a ∗ 0 = a ∗ (0 + 0) = a ∗ 0 + a ∗ 0. Obviously 0 has no inverse regarding the
multiplication, because if there would be one, it must be 0 = 0 ∗ 0−1 = 1. Also see footnote 11.
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+ 0 1 2 3 4
0 0 1 2 3 4
1 1 2 3 4 0
2 2 3 4 0 1
3 3 4 0 1 2
4 4 0 1 2 3

Table 4.1: Addition table modulo 5

* 1 2 3 4
1 1 2 3 4
2 2 4 1 3
3 3 1 4 2
4 4 3 2 1

Table 4.2: Multiplication table modulo 5

4.6.2 Additive and multiplicative inverses

You can use the tables to read the inverses for each number in relation to addition and multi-
plication.

The inverse of a number is the number that gives the result 0 when the two numbers are
added and 1 when they are multiplied. Thus, the inverse of 4 for addition mod 5 is 1 and the
inverse of 4 for multiplication mod 5 is 4 itself, because

4 + 1 = 5 ≡ 0 (mod 5);
4 ∗ 4 = 16 ≡ 1 (mod 5).

The inverse of 1 for multiplication mod 5 is 1, while the inverse modulo 5 of 2 is 3 and, since
multiplication is commutative, the inverse of 3 is again 2.

If we take a random number and add or multiply another number (here 4) and then add16

or multiply the corresponding inverse (1 or 4) to the interim result (1 or 3), then the end result
is the same as the initial value.

Example:

2 + 4 ≡ 6 ≡ 1 (mod 5); 1 + 1 ≡ 2 ≡ 2 (mod 5),
2 ∗ 4 ≡ 8 ≡ 3 (mod 5); 3 ∗ 4 ≡ 12 ≡ 2 (mod 5).

In the set Z5 = {0, 1, 2, 3, 4} for the addition and in the set Z∗5 for the multiplication, all
numbers have a unique inverse modulo 5.

In the case of modular addition, this is true for every modulo (not just for 5).

This is not the case, however, for modular multiplication.

16In general x+ y + (−y) ≡ x (mod m) [(−y) = additive inverse of y (mod m)].
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Theorem 4.6.1. A natural number a from the set {1, · · · ,m− 1} has one inverse if and only
if this number and the modulo m are co-prime17, in other words if a and m have no common
prime factors.

Since m = 5 is prime, the numbers 1 to 4 are relatively prime to 5 and each of these numbers
has a multiplicative inverse in mod 5.

Table 4.3 shows as a counterexample the multiplication table for mod 6 (since the modulus
m = 6 is not prime, not all elements from Z6 \ {0} are relatively prime to 6).

* 1 2 3 4 5
1 1 2 3 4 5
2 2 4 0 2 4
3 3 0 3 0 3
4 4 2 0 4 2
5 5 4 3 2 1

Table 4.3: Multiplication table modulo 6

In addition to 0, the numbers 2, 3 and 4 also have no unique inverse (we can also say they
have no inverse, because the elementary property of an inverse is uniqueness).

The numbers 2, 3 and 4 have the factor 2 or 3 in common with the modulus 6. Only
the numbers 1 and 5, which are relatively prime to 6, have multiplicative inverses, namely
themselves.

The number of numbers that are relatively prime to the modulus m is the same as the
number of numbers that have a multiplicative inverse (see the Euler function J(m) below).

For the two moduli 5 and 6 used in the multiplication tables, this means: the modulus 5 is
a prime number itself. In mod 5, therefore, there are exactly J(5) = 5 − 1 = 4 numbers that
are relatively prime to the modulus, that is all numbers from 1 to 4.

Since 6 is not a prime number, we write it as a product of its factors: 6 = 2 ∗ 3. In mod 6,
therefore, there are exactly J(6) = (2−1)∗(3−1) = 1∗2 = 2 numbers that have a multiplicative
inverse, that is 1 and 5.

Although it may seem difficult to calculate the table of multiplicative inverses for large
moduli (this only applies to the areas of the table shaded dark grey), we can use Fermat’s Little
Theorem to create a simple algorithm for this [Pfleeger1997, p. 80]. Quicker algorithms are
described, for instance, in [Knuth1998]18.

Cryptographically not only the unique nature of the inverse is important, but also that the
set of possible values has been exhausted.

17Two whole numbers a and b are co-prime if and only if gcd(a, b) = 1.
If p is prime and a is a random whole number that is not a multiple of p, then p and a are co-prime.
Further name to the topic co-prime (with ai ∈ Z, i = 1, · · · , n):

1. a1, a2, · · · , an are relatively prime , if gcd(a1, · · · , an) = 1.

2. An even stronger request for more than two numbers is :
a1, · · · , an are in pairs relatively prime, if for all i = 1, · · · , n and j = 1, · · · , n with i 6= j: gcd(ai, aj) = 1.

Example:
2, 3, 6 are relatively prime, because gcd(2, 3, 6) = 1. They are not in pairs relatively prime, because gcd(2, 6) =
2 > 1.

18Using Euclid’s extended theorem (extended gcd), we can calculate the multiplicative inverse and determine
whether numbers have an inverse (see appendix 4.14). Alternatively, we can also use the primitive roots.
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Theorem 4.6.2. For a, i ∈ {1, · · · ,m− 1} with gcd(a,m) = 1), then the product a ∗ i mod m
takes for a certain number a all values from {1, · · · ,m−1} (exhaustive permutation of the length
m− 1)19.

The following three examples20 illustrate the properties of multiplicative inverses.

Multiplication table mod 17 (table 4.4) shows for i = 1, 2, · · · , 18 the following:

(5 ∗ i)/17 = a remainder r and high-lighted 5 ∗ i ≡ 1 (mod 17),

(6 ∗ i)/17 = a remainder r and high-lighted 6 ∗ i ≡ 1 (mod 17).

We need to find the i for which the product remainder a ∗ i modulo 17 with a = 5 or a = 6 has
the value 1.

i 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18
5 ∗ i 5 10 15 20 25 30 35 40 45 50 55 60 65 70 75 80 85 90
remainder 5 10 15 3 8 13 1 6 11 16 4 9 14 2 7 12 0 5
6 ∗ i 6 12 18 24 30 36 42 48 54 60 66 72 78 84 90 96 102 108
remainder 6 12 1 7 13 2 8 14 3 9 15 4 10 16 5 11 0 6

Table 4.4: Multiplication table modulo 17 (for a = 5 and a = 6)

Between i = 1, · · · ,m, all values between 0, · · · ,m − 1 occur for the remainders, because
both 5 and 6 are also relatively prime to the modulus m = 17.

The multiplicative inverse of 5 (mod 17) is 7, while the inverse of 6 (mod 17) is 3.

i 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18
5 ∗ i 5 10 15 20 25 30 35 40 45 50 55 60 65 70 75 80 85 90
remainder 5 10 2 7 12 4 9 1 6 11 3 8 0 5 10 2 7 12
6 ∗ i 6 12 18 24 30 36 42 48 54 60 66 72 78 84 90 96 102 108
remainder 6 12 5 11 4 10 3 9 2 8 1 7 0 6 12 5 11 4

Table 4.5: Multiplication table modulo 13 (for a = 5 and a = 6)

Between i = 1, · · · ,m, all values between 0, · · · ,m − 1 occur for the remainders, because
both 5 and 6 are relatively prime to the modulus m = 13.

The multiplicative inverse of 5 (mod 13) is 8, while the inverse of 6 (mod 13) is 11.

The following table 4.6 contains an example, where the modulus m and the number a = 6
are not relatively prime.

We have calculated (5 ∗ i) (mod 12) and (6 ∗ i) (mod 12). Between i = 1, · · · ,m, not all
values between 0, · · · ,m − 1 occur and 6 does not have an inverse mod 12, because 6 and the
modulus m = 12 are not co-prime.

The multiplicative inverse of 5 (mod 12) is 5. The number 6 has no inverse (mod
12).

19See also theorem 4.9.1 in chapter 4.9, Multiplicative order and primitive roots.
20See chapter 4.18.1 “Multiplication table modulo m” for the source code to compute the tables using Sage.
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i 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18
5 ∗ i 5 10 15 20 25 30 35 40 45 50 55 60 65 70 75 80 85 90
remainder 5 10 3 8 1 6 11 4 9 2 7 0 5 10 3 8 1 6
6 ∗ i 6 12 18 24 30 36 42 48 54 60 66 72 78 84 90 96 102 108
remainder 6 0 6 0 6 0 6 0 6 0 6 0 6 0 6 0 6 0

Table 4.6: Multiplication table modulo 12 (for a = 5 and a = 6)

4.6.3 Raising to the power

In modular arithmetic, raising to the power is defined as repeated multiplication – as usual
except that multiplication is now slightly different. We can even apply the usual rules, such as:

ab+c = ab ∗ ac,
(ab)c = ab∗c = ac∗b = (ac)b.

Modular powers work in the same way as modular addition and modular multiplication:

32 = 9 ≡ 4 (mod 5).

Even consecutive powers work in the same way:

Example 1:
(43)2 = 642 ≡ 4096 ≡ 1 (mod 5).

(1) We can speed up21 the calculation by reducing the interim results modulo 5
but we need to take care because not everything will then work in the same way as
in standard arithmetic.

(43)2 ≡ (43 (mod 5))2 (mod 5)
≡ (64 (mod 5))2 (mod 5)
≡ 42 (mod 5)
≡ 16 ≡ 1 (mod 5).

(2) In standard arithmetic, consecutive powers can be reduced to a single power by
multiplying the exponents:

(43)2 = 43∗2 = 46 = 4096.

This is not quite as simple in modular arithmetic because this would give:

(43)2 ≡ 43∗2 (mod 5) ≡ 46 (mod 5) ≡ 41 ≡ 4 (mod 5).

But as we saw above, the correct result is 1!!

(3) Therefore, the rule is slightly different for consecutive powers in modular arith-
metic: We do not multiply the exponents in (mod m) but rather in (mod J(m)).

21The time required to calculate the multiplication of two numbers normally depends on the length of the numbers.
We can observe this if we use the school method to calculate, for instance, 474 ∗ 228. The time required increases
in a quadratic square manner , because we need to multiply 3 ∗ 3 numbers. The numbers become considerably
smaller if we reduce the interim result.
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Using J(5) = 4 gives:

(43)2 ≡ 43 ∗ 2 (mod J(5)) ≡ 46 mod 4 ≡ 42 ≡ 16 ≡ 1 (mod 5).

This delivers the correct result.

Theorem 4.6.3. (ab)c ≡ ab∗c (mod J(m)) (mod m).

Example 2:
328 = 34 ∗ 7 ≡ 34 ∗ 7 (mod 10) ≡ 38 ≡ 6561 ≡ 5 (mod 11).

4.6.4 Fast calculation of high powers

RSA encryption and decryption22 entails calculating high powers modulo m. For example, the
calculation (1005) (mod 3) exceeds the 32-bit long integer number range provided we calculate
an by actually multiplying a with itself n times in line with the definition. In the case of
extremely large numbers, even a fast computer chip would take longer than the age of the
universe to calculate a single exponential. Luckily, there is an extremely effective shortcut for
calculating exponentials (but not for calculating logarithms).

If the expression is divided differently using the rules of modular arithmetic, then the cal-
culation does not even exceed the 16-bit short integer number range:

(a5) ≡ (((a2 (mod m))2 (mod m)) ∗ a) (mod m).

We can generalize this by representing the exponent as a binary number. For example, the
naive method would require 36 multiplications in order to calculate an for n = 37. However, if
we write n in the binary representation as 100101 = 1 ∗ 25 + 1 ∗ 22 + 1 ∗ 20, then we can rewrite
the expression as: a37 = a25+22+20

= a25 ∗ a22 ∗ a1

Example 3: 8743 (mod 103).

Since 43 = 32 + 8 + 2 + 1 , 103 is prime, 43 < J(103)

and the squares (mod 103) can be calculated beforehand

872 ≡ 50 (mod 103),
874 ≡ 502 ≡ 28 (mod 103),
878 ≡ 282 ≡ 63 (mod 103),

8716 ≡ 632 ≡ 55 (mod 103),
8732 ≡ 552 ≡ 38 (mod 103).

We have23:

8743 ≡ 8732+8+2+1 (mod 103)
≡ 8732 ∗ 878 ∗ 872 ∗ 87 (mod 103)
≡ 38 ∗ 63 ∗ 50 ∗ 87 ≡ 85 (mod 103).

22See chapter 4.10 (Proof of the RSA procedure with Euler-Fermat) and chapter 4.13 (The RSA procedure with
actual numbers).

23See chapter 4.18.2 “Fast exponentiation” for source code implementing the square and multiply method in Sage,
which can be used to reproduce the calculations above.
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The powers (a2)k can be determined easily by means of repeated squaring. As long as a does
not change, a computer can calculate them beforehand and – if enough memory is available –
save them. In order to then find an in each individual case, it now only needs to multiply those
(a2)k for which there is a one in the k-th position of the binary representation of n. The typical
effort is then reduced from 2600 to 2 ∗ 600 multiplications! This frequently used algorithm is
called “Square and Multiply”.

4.6.5 Roots and logarithms

The inverses of the powers are also defined. The roots and logarithms are again whole numbers.
Yet in contrast to the usual situation, they are not only difficult to calculate but, in the case of
large numbers, cannot be calculated at all within a reasonable amount of time.

Let us take the equation a ≡ bc (mod m).

a) Taking the logarithm (determining c) – Discrete logarithm problem:24

If we know a and b of the three numbers a, b and c that meet this equation, then every
known method of finding c is approximately just as time-consuming as trying out all m
possible values for c one after the other. For a typical m of the order of magnitude of
10180 for 600-digit binary numbers, this is a hopeless task. More precisely, for suitably
large numbers m, the time required according to current knowledge is proportional to
exp

(
C ∗ (logm[log logm]2)1/3

)
with a constant C > 1.

b) Calculating the root (determining b):

The situation is similar if b is the unknown variable and we know the values of a and c:
If we know the Euler function of m,J(m), then we can easily25 calculate d with c ∗ d ≡
1 (mod J(m)) and use theorem 4.6.3 to obtain:

ad ≡ (bc)d ≡ bc∗d ≡ bc∗d (mod J(m)) ≡ b1 ≡ b (mod m)

the c-th root b of a.

If J(m) cannot be determined26, it is difficult to calculate the c-th root. This forms the
basis for the security assumption used by the RSA encryption system (see chapter 4.10
or chapter 5.3.1).

The time required for inverting addition and multiplication, on the other hand, is simply pro-
portional to logm or (logm)2. Powers (for a number x calculate xa with a fixed) and exponents
(for a number x calculate ax with a fixed) are therefore typical one way functions (compare
chapters 5.1 and 4.12.1).

4.7 Groups and modular arithmetic in Zn and Z∗n

Mathematical “groups” play a decisive role in number theory and cryptography. We only
talk of groups if, for a defined set and a defined relation (an operation such as addition or
multiplication), the following properties are fulfilled:

24Further details about the discrete logarithm problem can be found in chapter 5.4.
25See chapter 4.14 “Appendix: gcd and the two algorithms of Euclid”.
26According to the first fundamental theorem of number theory and theorem 4.8.4, we can determine J(m) by

reducing m to prime factors.
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• The set is closed

• A neutral element exists

• An inverse element exists for each element

• The associative law applies.

The abbreviated mathematical notation is (G,+) or (G, ∗).

Definition 4.7.1. Zn:

Zn comprises all numbers from 0 to n− 1 : Zn = {0, 1, 2, · · · , n− 2, n− 1}.

Zn is an often used finite group of the natural numbers. It is sometimes also called the
remainder set R modulo n.

For example, 32-bit computers (standard PCs) only directly work with whole numbers in a
finite set, that is the value range 0, 1, 2, · · · , 232 − 1.

This value range is equivalent to the set Z232 .

4.7.1 Addition in a group

If we define the operation mod+ on such a set where

a mod + b := (a+ b) (mod n),

then the set Zn together with the relation mod+ is a group because the following properties of
a group are valid for all elements in Zn:

• a mod + b is an element of Zn (the set is closed),

• (a mod + b) mod + c ≡ a mod + (b mod + c) (mod+ is associative),

• the neutral element is 0.

• each element a ∈ Zn has an inverse for this operation, namely n− a
(because a mod + (n− a) ≡ a+ (n− a) (mod n) ≡ n ≡ 0 (mod n)).

Since the operation is commutative, i.e. (a mod + b) = (b mod + a), this structure is actually
a “commutative group”.

4.7.2 Multiplication in a group

If we define the operation mod* on the set Zn where

a mod ∗ b := (a ∗ b) (mod n),

then Zn together with this operation is usually not a group because not all properties are
fulfilled for each n.

Example:

a) In Z15, for example, the element 5 does not have an inverse. That is to say, there is no a
with 5 ∗ a ≡ 1 (mod 15). Each modulo product with 5 on this set gives 5, 10 or 0.
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b) In Z55 \ {0}, for example, the elements 5 and 11 do not have multiplicative inverses.
That is to say, there is no a ∈ Z55 such that 5 ∗ a ≡ 1 ( mod 55 ) and no a such that
11 ∗ a ≡ 1 ( mod 55 ). This is because 5 and 11 are not relatively prime to 55. Each
modulo product with 5 on this set gives 5, 10, 15, . . . , 50 or 0. Each modulo product with
11 on this set gives 11, 22, 33, 44 or 0.

On the other hand, there are subsets of Zn that form a group with the operation mod*. If we
choose all elements in Zn that are relatively prime to n, then this set forms a group with the
operation mod*. We call this set Z∗n.

Definition 4.7.2. Z∗n :
Z∗n = {a ∈ Zn|gcd(a, n) = 1}.

Z∗n is sometimes also called the reduced remainder set R′ modulo n.

Example: For n = 10 = 2 ∗ 5 the following applies:

full remainder set R = Zn = {0, 1, 2, 3, 4, 5, 6, 7, 8, 9}

reduced remainder set R′ = Z∗n = {1, 3, 7, 9} −→ J(n) = 4.

Comment:
R′ or Z∗n is always a genuine subset of R or Zn because 0 is always an element of R but never
an element of R′. Since 1 and n− 1 are always relatively prime to n, they are always elements
of both sets.

If we select a random element in Z∗n and multiply it by every other element in Z∗n, then the
products27 are all in Z∗n, and the results are also a unique permutation of the elements in Z∗n.
Since 1 is always an element of Z∗n, there is a unique “partner” in this set such that the product
is 1. In other words:

Theorem 4.7.1. Each element in Z∗n has a multiplicative inverse.

Example: a = 3 modulo 10 with Z∗n = {1, 3, 7, 9} it holds that a−1 = 7:

3 ≡ 3 ∗ 1 (mod 10),
9 ≡ 3 ∗ 3 (mod 10),
1 ≡ 3 ∗ 7 (mod 10),
7 ≡ 3 ∗ 9 (mod 10).

The unique invertibility is an essential condition for cryptography (see section 4.10).

27This is due to the fact that Z∗n is closed with respect to the multiplication and due to the gcd property:
[a, b ∈ Z∗n]⇒ [((a ∗ b) (mod n)) ∈ Z∗n], exactly:
[a, b ∈ Z∗n]⇒ [gcd(a, n) = 1, gcd(b, n) = 1]⇒ [gcd(a ∗ b, n) = 1]⇒ [((a ∗ b) (mod n)) ∈ Z∗n].
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Eric Berne28:
Mathematical game theory postulates players who respond rationally. Transactional game
theory, on the other hand, deals with games that are not rational, perhaps even irrational
and thereby closer to reality.

4.8 Euler function, Fermat’s little theorem and Euler-Fermat

4.8.1 Patterns and structures

As mathematicians investigate the structure a ∗ x ≡ b mod m (see chapter 4.5.2), so they are
interested in the structure xa ≡ b mod m.

Again here they are interested in the case, if b = 1 (value of the multiplicative inverse) and
if b = x (the function has a fixpoint).

4.8.2 The Euler function

Given n, the number of numbers from the set {1, · · · , n − 1} that are relatively prime to n is
equal to the value of the Euler29 function J(n).

Definition 4.8.1. The Euler function30 J(n) specifies the number of elements in Z∗n.

J(n) also specifies how many whole numbers have multiplicative inverses in mod n. J(n)
can be calculated if we know the prime factors of n.

Theorem 4.8.1. For a prime number, the following is true: J(p) = p− 1.

Theorem 4.8.2. If m is the product of two distinct primes, then:

J(p ∗ q) = (p− 1) ∗ (q − 1) or J(p ∗ q) = J(p) ∗ J(q).

This case is important for the RSA procedure.

Theorem 4.8.3. If n = p1 ∗ p2 ∗ · · · ∗ pk where p1 to pk are distinct prime numbers (i.e. no
factor occurs more than once), then the following is true (as a generalization of theorem 4.8.2):

J(n) = (p1 − 1) ∗ (p2 − 1) ∗ · · · ∗ (pk − 1).

Theorem 4.8.4. In general, the following is true for every prime number p and every n in N:

1. J(pn) = pn−1 ∗ (p− 1).

2. If n = pe11 ∗ p
e2
2 ∗ · · · ∗ p

ek
k , where p1 to pk are distinct prime numbers, then:

J(n) = [(pe1−1
1 ) ∗ (p1− 1)] ∗ · · · ∗ [(pek−1

k ) ∗ (pk− 1)] = n ∗ ([(p1− 1)/p1] ∗ · · · ∗ [(pk− 1)/pk]).

28Eric Berne, “Games People Play”, rororo, (c) 1964, page 235.
29Leonhard Euler, Swiss mathematician, Apr 15, 1707 – Sep 18, 1783
30Often written as the Euler phi function Φ(n).
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Example:

• n = 70 = 2 ∗ 5 ∗ 7 =⇒ using theorem 4.8.3: J(n) = 1 · 4 · 6 = 24.

• n = 9 = 32 =⇒ using theorem 4.8.4: J(n) = 31 · 2 = 6, because Z∗9 = {1, 2, 4, 5, 7, 8}.

• n = 2, 701, 125 = 32 ∗ 53 ∗ 74 =⇒ using theorem 4.8.4:

J(n) = [31 ∗ 2] ∗ [52 ∗ 4] ∗ [73 ∗ 6] = 1, 234, 800.

4.8.3 The theorem of Euler-Fermat

In order to prove the RSA procedure, we need Fermat’s theorem and its generalisation (Euler-
Fermat theorem) – please see chapter 3.5.

Theorem 4.8.5. Fermat’s Little Theorem31 Let p be a prime number and a be a random
whole number, then:

ap ≡ a (mod p).

An alternative formulation of Fermat’s Little Theorem is as follows: Let p be a prime number
and a be a random whole number that is relatively prime to p, then:

ap−1 ≡ 1 (mod p).

Theorem 4.8.6. Euler-Fermat theorem (generalization of Fermat’s Little Theorem)
For all elements a in the group Z∗n (i.e. a and n are natural numbers that are co-prime):

aJ(n) ≡ 1 (mod n).

This theorem states that if we raise a group element (here a) to the power of the order of
the group (here J(n)), we always obtain the neutral element for multiplication (the number 1).

The 2nd formulation of Fermat’s Little Theorem is derived directly from Euler’s theorem if
n is a prime number.

If n is the product of two prime numbers, we can - in certain cases - use Euler’s theorem to
calculate the result of a modular power very quickly. We have: a(p−1)∗(q−1) ≡ 1 (mod pq).

Examples for calculating a modular power:

• With 2 = 1 ∗ 2 and 6 = 2 ∗ 3 where 2 and 3 are both prime; J(6) = 2 because only 1 and 5
are relatively prime to 6, we obtain the equation 52 ≡ 5J(6) ≡ 1 (mod 6), without having
to calculate the power.

• With 792 = 22 ∗ 36 and 23 ∗ 37 = 851 where 23 and 37 are both prime, it follows for
31 ∈ Z∗851 that 31792 ≡ 31J(23∗37) ≡ 31J(851) ≡ 1 (mod 851).

4.8.4 Calculation of the multiplicative inverse

Another interesting application is a special case of determining the multiplicative inverses using
the Euler-Fermat theorem (multiplicative inverses are otherwise determined using the extended
Euclidean algorithm).

31Pierre de Fermat, French mathematician, Aug 17, 1601 – Jan 12, 1665.
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Example:
Find the multiplicative inverse of 1579 modulo 7351.
According to Euler-Fermat: aJ(n) = 1 (mod n) for all a in Z∗n. If we divide both sides by
a, we get: aJ(n)−1 ≡ a−1 (mod n). For the special case that the modulo is prime, we have
J(n) = p− 1. Therefore, the modular inverse is

a−1 = aJ(n)−1 ≡ a(p−1)−1 ≡ ap−2 (mod p).

For our example, this means:

Since the modulus 7351 is prime, p− 2 = 7349.
1579−1 ≡ 15797349 (mod p).

By cleverly breaking down the exponent, we can calculate this power relatively easily (see
Section 4.6.4 Fast calculation of high powers):

7349 = 4096 + 2048 + 1024 + 128 + 32 + 16 + 4 + 1

1579−1 ≡ 4716 (mod 7351).

4.8.5 Fixpoints modulo 26

According to theorem 4.6.3, the arithmetic operations of modular expressions are performed in
the exponents modulo J(n) rather than modulo n32.

In ae∗d ≡ a1 (mod n), if we wish to determine the inverses for the factor e in the exponent,
we need to calculate modulo J(n).

Example: (with reference to the RSA algorithm)
If we calculate modulo 26, which set can e and d come from?

Solution: We have e ∗ d ≡ 1 (mod J(26)).

The reduced remainder set R′ = Z∗26 = {1, 3, 5, 7, 9, 11, 15, 17, 19, 21, 23, 25} are the ele-
ments in Z26, which have a multiplicative inverse, that is which are relatively prime to
26.

The reduced remainder set R′′ contains only the elements of R′ that are relatively prime
to J(n) = 12 : R′′ = {1, 5, 7, 11}.

For every e in R′′ there exists a d in R′′ such that a ≡ (ae)d (mod n).

For every e in R′′, there exists therefore precisely one element (not necessarily different from e)
such that e ∗ d ≡ 1 (mod J(26)).

For all e that are relatively prime to J(n) we could calculate d as follows using the Euler-
Fermat theorem: For aJ(n) ≡ 1 (mod n) is the same as saying aJ(n)−1 ≡ a−1 (mod n). Therefore

d ≡ e−1 (mod J(n)) ≡ eJ(J(n))−1 (mod J(n)).

The problems of factorizing n = pq with q 6= p and finding J(n) have a similar degree of
difficulty and if we find a solution for one of the two problems, we also have a solution for the
other33 (please compare requisition 3 in section 4.10.1).

32For the following example, we will adopt the usual practice for the RSA procedure of using “n” rather than “m”
to denote the modulus.

33If we know the factors of n = p ∗ q with p 6= q, then J(n) = (p− 1) ∗ (q − 1) = n− (p+ q) + 1. Additionally the
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4.9 Multiplicative order and primitive roots34

The multiplicative order and the primitive root are two useful constructs (concepts) in elemen-
tary number theory.

Mathematicians often ask, in which conditions the repeated application of an operation
results in the neutral element (compare Patterns and Structures, chapter 4.8.1).

For the i-times successive modular multiplication of a number a with i = 1, · · · ,m− 1 the
product is the neutral element of the multiplication if and only if a and m are relatively prime.

Definition 4.9.1. The multiplicative order ordm(a) of a whole number a (mod m) (where
a and m are co-prime) is the smallest whole number i for which ai ≡ 1 (mod m).

The following table shows that in a multiplicative group (here Z∗11) not all numbers neces-
sarily have the same order. The orders in this case are 1, 2, 5 and 10 and we notice that:

1. The orders are all factors of 10.

2. The numbers a = 2, 6, 7 and 8 have the order 10 - we say that these numbers have the
maximum order in Z∗11.

Example 1:
The following table 4.735 shows the values ai mod 11 for the exponents i = 1, 2, · · · , 10 and for
the bases a = 1, 2, · · · , 10 as well as the resulting value ord11(a) for each a/

i=1 i=2 i=3 i=4 i=5 i=6 i=7 i=8 i=9 i=10 ord11(a)
a=1 1 1 1 1 1 1 1 1 1 1 1
a=2 2 4 8 5 10 9 7 3 6 1 10
a=3 3 9 5 4 1 3 9 5 4 1 5
a=4 4 5 9 3 1 4 5 9 3 1 5
a=5 5 3 4 9 1 5 3 4 9 1 5
a=6 6 3 7 9 10 5 8 4 2 1 10
a=7 7 5 2 3 10 4 6 9 8 1 10
a=8 8 9 6 4 10 3 2 5 7 1 10
a=9 9 4 3 5 1 9 4 3 5 1 5
a=10 10 1 10 1 10 1 10 1 10 1 2

Table 4.7: Values of ai mod 11, 1 ≤ a, i < 11 and according order of a mod m

Table 4.7 shows, for example, that the order of 3 modulo 11 has the value 5.

factors p and q are solutions of the quadratic equation x2 − (p+ q)x+ pq = 0.
If only n and J(n) are known, then it is: pq = n and p + q = n − J(n) + 1. So you get p and q by solving the
equation

x2 + (J(n)− n− 1)x+ n = 0.

34With the educational tool for number theory NT you can have a playful experience with primitive roots (see
learning unit 2.2, pages 10-14/40 and 24-40/40).
NT can be called in CrypTool via the menu path Indiv. Procedures \ Number Theory Interactive \
Learning Tool for Number Theory. See appendix A.4.

35See chapter 4.18.3 “Multiplicative order” for the source code to generate the table using Sage.
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Definition 4.9.2. If a and m are co-prime and if ordm(a) = J(m) (i.e. a has maximum order),
then we say that a is a primitive root of m.

A number a is not a primitive root for every modulo m. In the table 4.7, only a = 2, 6, 7
and 8 is a primitive root with respect to mod 11 (J(11) = 10).

Using the primitive roots, we can clearly establish the conditions for which powers modulo
m have a unique inverse and the calculation in the exponents is manageable.

The following two tables show the multiplicative orders and primitive roots modulo 45 and
modulo 46.

Example 2:
The following table 4.836 shows the values ai mod 45 for the exponents i = 1, 2, · · · , 12 and for
the bases a = 1, 2, · · · , 12 as well as the resulting value ord45(a) for each a.

a \ i 1 2 3 4 5 6 7 8 9 10 11 12 ord45(a) J(45)
1 1 1 1 1 1 1 1 1 1 1 1 1 1 24
2 2 4 8 16 32 19 38 31 17 34 23 1 12 24
3 3 9 27 36 18 9 27 36 18 9 27 36 — 24
4 4 16 19 31 34 1 4 16 19 31 34 1 6 24
5 5 25 35 40 20 10 5 25 35 40 20 10 — 24
6 6 36 36 36 36 36 36 36 36 36 36 36 — 24
7 7 4 28 16 22 19 43 31 37 34 13 1 12 24
8 8 19 17 1 8 19 17 1 8 19 17 1 4 24
9 9 36 9 36 9 36 9 36 9 36 9 36 — 24
10 10 10 10 10 10 10 10 10 10 10 10 10 — 24
11 11 31 26 16 41 1 11 31 26 16 41 1 6 24
12 12 9 18 36 27 9 18 36 27 9 18 36 — 24

Table 4.8: Values of ai mod 45, 1 ≤ a, i < 13

J(45) is calculated using theorem 4.8.4: J(45) = J(32 ∗ 5) = 31 ∗ 2 ∗ 4 = 24.

Since 45 is not a prime, there is no “multiplicative order” for all values of a (for all numbers
that are not relatively prime to 45 : 3, 5, 6, 9, 10, 12, · · · , because 45 = 32 ∗ 5).

Example 3:
Is 7 a primitive root modulo 45?

The necessary, but not sufficient requirement/condition gcd(7, 45) = 1 is fulfilled. Table 4.8
shows that the number a = 7 is not a primitive root of 45, because ord45(7) = 12 6= 24 = J(45).

Example 4:
The following table 4.937 answers the question as to whether the number a = 7 is a primitive
root of 46. The necessary, but not sufficient requirement/condition gcd(7, 46) = 1 is fulfilled.
J(46) is calculated using theorem 4.8.2: J(46) = J(2 ∗ 23) = 1 ∗ 22 = 22. The number 7 is a
primitive root of 46, because ord46(7) = 2 = J(46).

36See chapter 4.18.3 “Multiplicative order” for the source code to generate the table using Sage.
37See chapter 4.18.3 “Multiplicative order” for the source code to generate the table using Sage.
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a\i 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 ord
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
2 2 4 8 16 32 18 36 26 6 12 24 2 4 8 16 32 18 36 26 6 12 24 2 –
3 3 9 27 35 13 39 25 29 41 31 1 3 9 27 35 13 39 25 29 41 31 1 3 11
4 4 16 18 26 12 2 8 32 36 6 24 4 16 18 26 12 2 8 32 36 6 24 4 –
5 5 25 33 27 43 31 17 39 11 9 45 41 21 13 19 3 15 29 7 35 37 1 5 22
6 6 36 32 8 2 12 26 18 16 4 24 6 36 32 8 2 12 26 18 16 4 24 6 –
7 7 3 21 9 17 27 5 35 15 13 45 39 43 25 37 29 19 41 11 31 33 1 7 22
8 8 18 6 2 16 36 12 4 32 26 24 8 18 6 2 16 36 12 4 32 26 24 8 –
9 9 35 39 29 31 3 27 13 25 41 1 9 35 39 29 31 3 27 13 25 41 1 9 11
10 10 8 34 18 42 6 14 2 20 16 22 36 38 12 28 4 40 32 44 26 30 24 10 –
11 11 29 43 13 5 9 7 31 19 25 45 35 17 3 33 41 37 39 15 27 21 1 11 22
12 12 6 26 36 18 32 16 8 4 2 24 12 6 26 36 18 32 16 8 4 2 24 12 –
13 13 31 35 41 27 29 9 25 3 39 1 13 31 35 41 27 29 9 25 3 39 1 13 11
14 14 12 30 6 38 26 42 36 44 18 22 32 34 16 40 8 20 4 10 2 28 24 14 –
15 15 41 17 25 7 13 11 27 37 3 45 31 5 29 21 39 33 35 19 9 43 1 15 22
16 16 26 2 32 6 4 18 12 8 36 24 16 26 2 32 6 4 18 12 8 36 24 16 –
17 17 13 37 31 21 35 43 41 7 27 45 29 33 9 15 25 11 3 5 39 19 1 17 22
18 18 2 36 4 26 8 6 16 12 32 24 18 2 36 4 26 8 6 16 12 32 24 18 –
19 19 39 5 3 11 25 15 9 33 29 45 27 7 41 43 35 21 31 37 13 17 1 19 22
20 20 32 42 12 10 16 44 6 28 8 22 26 14 4 34 36 30 2 40 18 38 24 20 –
21 21 27 15 39 37 41 33 3 17 35 45 25 19 31 7 9 5 13 43 29 11 1 21 22
22 22 24 22 24 22 24 22 24 22 24 22 24 22 24 22 24 22 24 22 24 22 24 22 –
23 23 23 23 23 23 23 23 23 23 23 23 23 23 23 23 23 23 23 23 23 23 23 23 –

Table 4.9: Values of ai mod 46, 1 ≤ a, i < 23

Theorem 4.9.1. 38,39 Given a modulus n and a number a, relative prime to n the following
holds:
The set {ai (mod n)| i = 1, . . . , J(n)} equals the multiplicative group Z∗n if and only if ordn(a) =
J(n).

The multiplicative group Z∗n contains all values from 1 to n− 1.

38For prime moduli p all a with 0 < a < p are of order J(p) = p − 1. Compare table 4.8 for an example. In this
case ai(mod n) goes through all the values 1, . . . , p− 1. Exhausting all possible values of the set is an important
cryptographic proposition (compare theorem 4.6.2). This determines a permutation π(p− 1).

39Table 4.9 demonstrates that for composite moduli n not all a are of maximal order J(n). In this example only
5, 7, 11, 15, 17, 19 and 21 are of order 22.
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4.10 Proof of the RSA procedure with Euler-Fermat

Using the Euler-Fermat theorem, we can “prove” the RSA40,41 procedure in the group Z∗n.

4.10.1 Basic idea of public key cryptography

The basic idea behind public key cryptography is that all participants possess a different pair of
keys (P and S) and the public keys for all recipients are published. You can retrieve the public
key P for a recipient from a directory just as you would look up some one’s phone number in the
phone book. Furthermore, each recipient has a secret key S that is needed in order to decrypt
the message and that is not known to anyone else. If the sender wishes to send a message M ,
he encrypts it using the public key P of the recipient before sending it:

The ciphertext C is determined as C = E(P ;M), where E (encryption) is the encryption
rule. The recipient uses his private key S to decrypt the message with the decryption rule
D : M = D(S;C).

In order to ensure that this system works for every message M , the following four require-
ments must be met:

1. D(S;E(P ;M)) = M for every M (invertibility) and M takes “very many” of its possible
values.

2. All (S, P ) pairs are different for all participants (i.e. lots of them are needed).

3. The time required to derive S from P is at least as high as the time required to decrypt
M with no knowledge of S.

4. Both C and M can be calculated relatively easily.

The 1st requirement is a general condition for all cryptographic encryption algorithms.

The 2nd requirement can easily be met because there is a “very” large number of prime
numbers42 and because this can be ensured by a central office that issues certificates.

It is this last requirement that makes the procedure actually usable. This is because it is
possible to calculate the powers in a linear amount of time (because there is a restriction on the
length of the numbers).

Although Whitfield Diffie and Martin Hellman formulated the general method as early as
1976, the actual procedure that met all four requirements was only discovered later by Rivest,
Shamir and Adleman.

40The RSA procedure is the most common asymmetric cryptography procedure. Developed in 1978 by Ronald
Rivest, Adi Shamir and Leonard Adleman, it can be used both for signatures and for encryption. Cryptographers
always associate this procedure with the abbreviation “RSA” − the following remark is meant with humor to
show that each letter combination can be used with several meanings: In Britain the “Royal Society for the
encouragement of Arts, Manufactures & Commerce” is commonly known as the “RSA”.

41In literature and in movies not only classic but also modern cryptographic methods have been used (see ap-
pendix A.3).

42According to the prime number theorem (chapter 3.7.2, p. 68) of Legendre and Gauss there are approximately
n/ ln(n) prime numbers up to the number n. This means, for example, that there are 6.5 ∗ 1074 prime numbers
under n = 2256 (= 1.1 ∗ 1077) and 3.2 ∗ 1074 prime numbers under n = 2255. Between 2255 and 2256 there are
therefore 3.3 ∗ 1074 prime numbers with precisely 256 bits. This large number is also the reason why we cannot
simply save them all.
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4.10.2 How the RSA procedure works

The individual steps for implementing the RSA procedure can be described as follows (see
[Eckert2003, p. 213 ff] and [Sedgewick1990, p. 338 ff]). Steps 1 to 3 constitute key generation,
steps 4 and 5 are the encryption, and steps 6 and 7 are the decryption:

1. Select two distinct random prime numbers43,44 p and q and calculate n = p ∗ q45.
The value n is called the RSA modulus46.

2. Select an arbitrary e ∈ {2, · · · , n− 1} such that47:
e is relatively prime to J(n) = (p− 1) ∗ (q − 1).
We can then “throw away” p and q.48

3. Select d ∈ {1, · · · , n− 1} with e ∗ d ≡ 1 (mod J(n)), i.e. d is the multiplicative inverse of
e modulo J(n)49,50. We can then “throw away” J(n).

→ (n, e) is the public key P .
→ (n, d) is the private key S (only d must be kept secret).

4. For encryption, the message represented as a (binary) number is divided into parts such
that each part of the number is less than n.

5. Encryption of the plaintext (or the parts of it) M ∈ {1, · · · , n− 1}:

C = E((n, e);M) := M e (mod n).

6. For decryption, the ciphertext represented as a binary number is divided into parts such
that each part of the number is less than n.

43Compaq introduced the so-called multi-prime method with high marketing effort in 2000. n was the product of
two big and one relative small prime: n = o ∗ p ∗ q. With theorem 4.8.3 we get: J(n) = (o− 1) ∗ (p− 1) ∗ (q− 1).
This method did not assert itself yet.
One reason probably is, that Compaq claimed a patent on it. Generally there is less understanding in Europe and
with the Open Source Initiative, that one can claim patents on algorithms. But there is really no understanding
outside the U.S., that one can get a patent for a special case (3 factors) of an algorithm (RSA), although the
patent for the general case was almost expired.

44If the two primes p and q are equal then (me)d ≡ m mod n is not true for all m < n (although e ∗ d ≡ 1 mod
J(n) is fulfilled). Example:
If n = 52 then according to theorem 4.8.4 it is J(n) = 5 ∗ 4 = 20, e = 3, d = 7, e ∗ d = 21 ≡ 1 mod J(n). But it
is (53)7 ≡ 0 mod 25.

45The GISA (German Information Security Agency) recommends, to choose the prime factors p and q almost the
same, but not too close:

0.5 < | log2(p)− log2(q)| < 30.

They recommend to generate the primes independently and check that the restriction is fulfilled (see [GISA2002]).

46In CrypTool the RSA modulo is denoted with a capital “N” .
47It is recommended by cryptanalytic reasons, but not necessary to make RSA work, to select e such that:

max(p, q) < e < J(n)− 1.
48The procedure also allows us to select d freely and then calculate e. However, this has practical disadvantages.

We usually want to be able to encrypt messages “quickly”, which is why we choose a public exponent e such that
it has a short bit length compared to the modulus n and as few binary ones as possible (e.g. 216 + 1). So a fast
exponentiation is possible when encrypting. We want to select the publicly known e to be an advantageous value
that allows the exponential calculation to be performed quickly during encryption. The prime numbers 3, 17 and
65537 have proved to be particularly practical for this purpose. The most often used number is 65537 = 216 + 1,
or in binary: 10 · · · 0 · · · 01 (this number is prime and therefore relatively prime to many other numbers).

49For reasons of security, d should not be too small.
50We start by determining either d or e depending on the implementation.
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7. Decryption of the ciphertext (or the parts of it) C ∈ {1, · · · , n− 1}:

M = D((n, d);C) := Cd (mod n).

The numbers d, e and n are usually extremely large (e. g. d and e 300 bits, n 600 bits).

Comment:
The security of the RSA algorithm depends as with all public key methods on the difficulty to
calculate the private key d from the public key (n, e).

Concretely for the RSA method does this mean:

1. It is hard to calculate J(n) for big compounds n and

2. It is hard to calculate the prime factors of big compounds n (factorization problem).51 .

4.10.3 Proof of requirement 1 (invertibility)

For pairs of keys (n, e) and (n, d) that possess fixed properties in steps 1 to 3 of the RSA
procedure, the following must be true for all M < n:

M ≡ (M e)d (mod n) with (M e)d = M e∗d.

This means that the deciphering algorithm above works correctly.

We therefore need to show that:

M e∗d ≡M (mod n).

We will show this in 3 steps (see [Beutelspacher1996, p. 131ff]).

Step 1:

In the first step we show that: M e∗d ≡M (mod p). This results from the requirements and
from Euler-Fermat (theorem 4.8.6). Since n = p ∗ q and J(p ∗ q) = (p − 1) ∗ (q − 1) and since
e and d are selected in such a way that e ∗ d ≡ 1 (mod J(n)), there is a whole number k such
that: e ∗ d = 1 + k ∗ (p− 1) ∗ (q − 1).

M e∗d ≡ M1+k∗J(n) ≡M ∗Mk∗J(n) ≡M ∗Mk∗(p−1)∗(q−1) (mod p)
≡ M ∗ (Mp−1)k∗(q−1) (mod p) based on little Fermat : Mp−1 ≡ 1 (mod p)
≡ M ∗ (1)k∗(q−1) (mod p)
≡ M (mod p)

The requirement for using the simplified Euler-Fermat theorem (theorem 4.8.5) was that M
and p are relatively prime.

Since this is not true in general, we need to consider the case when M and p are not relatively
prime. Since p is a prime number, this implies that p is a factor of M . But this means:

M ≡ 0 (mod p).

51There is no reason for the concern sometimes mentioned that there are not enough primes: Raising the dimension
(exponent) of the modul always offers enough primes to consider – this is visualized in chapter 3.13 “Appendix:
Visualization of the quantity of primes in higher ranges”.
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If p is a factor of M , then p is also a factor of M e∗d. Therefore:

M e∗d ≡ 0 (mod p).

Since p is a factor of both M and Me ∗ d, it is also a factor of their difference:

(M e∗d −M) ≡ 0 (mod p).

And therefore our conjecture is also true in this special case.

Step 2:

In exactly the same way we prove that: M e∗d ≡M (mod q).

Step 3:

We now combine the conjectures from step 1 and 2 for n = p ∗ q to show that:

M e∗d ≡M (mod n) for all M < n.

From step 1 and 2 we have (M e∗d−M) ≡ 0 (mod p) and (M e∗d−M) ≡ 0 (mod q). Therefore,
p and q are both factors of the same number z = (M e∗d−M). Since p and q are distinct prime
numbers, their product must also be a factor of this number z. Thus:

(M e∗d −M) ≡ 0 (mod p ∗ q) or M e∗d ≡M (mod p ∗ q) or M e∗d ≡M (mod n).

�

Comment 1:
We can also condense the three steps if we use the theorem 4.8.6 (Euler-Fermat) - i.e. not the
simplified theorem where n = p and which corresponds to Fermat’s Little Theorem:

(M e)d ≡M e∗d ≡M (p−1)(q−1)∗k+1 ≡ ( M (p−1)(q−1)︸ ︷︷ ︸
≡MJ(n)≡1 (mod n)

)k ∗M ≡ 1k ∗M ≡M (mod n).

Comment 2:
When it comes to signing messages, we perform the same operations but first use the secret
key d, followed by the public key e. The RSA procedure can also be used to create digital
signatures, because:

M ≡ (Md)e (mod n).
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4.11 Considerations regarding the security of the RSA algo-
rithm52

There have always been discussions about the suitability of the RSA algorithm for digital sig-
natures and encryption, e. g. after publications of breakthroughs in factorization. Nevertheless
the RSA algorithm has become a de-facto standard since it was published more than 20 years
ago (compare 7.1).

The security of the RSA algorithm rests — as with all cryptographic methods — on the
following 4 central pillars:

• the complexity of the number theoretical problem on which the algorithm is based (here
factorization of big numbers),

• the election of fitting parameters (here the length of the module N),

• the adequate usage of the algorithm and key generation and

• the correct implementation of the algorithm.

Usage and key generation are well understood today. Implementation based on long integer
arithmetic is very easy.

The following sections examine the RSA algorithm with respect to the first two points.

4.11.1 Complexity

Successful decryption or forgery of a signature — without knowing the private key — requires
calculating the e-th root mod n. The private key, this is the multiplicative inverse of e mod J(n),
can be easily determined if J(n) is known. J(n) again can be calculated from the prime factors
of n. Breaking of RSA therefore cannot be more difficult than factorization of the module n.

The best factorization method known today is a further development of the General Number
Field Sieve (GNFS) , which was originally devised to factor only numbers of a special form (like
Fermat numbers). The complexity of solving the factorization problem with the GNFS is
asymptotically

O(l) = ec·(l·ln 2)1/3·(ln(l·ln(2))2/3+o(l)

Please refer to:
• A. Lenstra, H. Lenstra: The development of the Number Field Sieve [Lenstra1993].

• Robert D. Silverman: A Cost-Based Security Analysis of Symmetric and Asymmetric Key
Lengths [Silverman2000].

This formula shows, that the factorization problem belongs to the class of problems with
sub-exponential time complexity (i. e. time complexity grows asymptotically not as fast as
exponential functions like el or 2l, but strictly slower, e. g. like e

√
l). This classification is all

that is currently known; it does not preclude the possibility that the factorization problem can
be solved in polynomial time (see 4.11.5).

52Major parts of chapter 4.11 follow the article “Vorzüge und Grenzen des RSA-Verfahrens” written by F. Bourseau,
D. Fox and C. Thiel [Bourseau2002].
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O(l) is the average number of processor steps depending on the bit length l of the number
n to be factorized. For the best currently known factorization algorithm the constant c =
(64/9)1/173 = 1923.

The inverse proposition, that the RSA algorithm can be broken only by factorization of n,
is still not proven. Most number theorists consider the “RSA problem” and the factorization
problem equivalent in terms of time complexity.

Please refer to: Handbook of Applied Cryptography [Menezes2001].

4.11.2 Security parameters because of new algorithms

Factorization algorithms53 The complexity is basically determined by the length l of the
modulus n. Higher values for this major parameter are oriented at the possibilities of the current
algorithms for factorization:

• In 1994 a 129-digit RSA modulus (428 bit), published in 1977, was factorized by a dis-
tributed implementation of the Quadratic Sieve algorithm (QS), developed 1982 by Pomer-
ance. This effort took 8 months.
Please refer to:

C. Pomerance: The quadratic sieve factoring algorithm [Pomerance1984].

• In 1999 a 155-digit modulus (512 bit) was factored with an implementation of the General
Number Field Sieve algorithm (GNFS), developed by Buhler, Lenstra and Pomerance.
The GNFS is more efficient than QS if n is longer than about 116 decimal digits. This
effort took 5 months.
Please refer to:

J.P. Buhler, H.W. Lenstra, C. Pomerance: Factoring integers with the number field
sieve [Buhler1993].

• Ten years later, end of 2009, a 232-digit modulus (768 bit) was factored by Kleinjung etc.
after 2 1/2 years.
Please refer to:

T. Kleinjung, et. al.: Factorization of a 768-bit RSA modulus [Kleinjung2010].

This made practically evident that a module length of 768 bit no longer prevents from
attackers.

Details about factorization progress since 1999 see chapter 4.11.4.

Lattice base reduction algorithms

The module length is not the only parameter relevant for security. Beneath requirements
from implementation and engineering the sizes and the proportions of the parameters e, d and
n are relevant.

According attacks based on lattice reductions are a real threat for (too) simple implemen-
tations of RSA. Theses attacks can be structured into the following four categories:

52With the educational tool for number theory NT you can gather more experience with current factorization
algorithms (see learning unit 5.1-5.5, pages 1-15/15).
NT can be called in CrypTool via the menu path Indiv. Procedures \ Number Theory Interactive \
Learning Tool for Number Theory. See appendix A.4.
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• Attacks against very small public keys e (e.g. e = 3).

• Attacks against relatively small private exponents d (e.g. d < n0.5).

• Factorization of the modulus n, if one of the factors p or q is partly known.

• Attacks requiring, that a part of the private key d is known.

A good overview concerning these attacks can be found in the diploma thesis of Matthias
Schneider [SchneiderM2004].

4.11.3 Forecasts about factorization of large integers

Since 1980 a lot of progress has been made. Estimations about the future development of the
ability to factor RSA modules vary and depend on some assumptions:

• progression in computing performance (Moore’s law: every 18 month the computing power
will double) and in grid computing.

• development of new algorithms.

Within the last years the module bit length feasible for factorization increased — even without
new algorithms — by 10 bit per year. Larger numbers require not only more time to be factored,
but also huge RAM storage for the solutions matrix being used by the best algorithms known
today. This need for storage grows like the square root of the computation time, i. e. also sub-
exponentially. Because RAM availability increased exponentially in the recent decades, it seems
that this should not be the limiting factor.

An estimation of the evolution of secure key lengths was done by Lenstra/Verheul in 1999
[Lenstra1999] (compare figure 7.1 in chapter 7.1).

Within the article [Bourseau2002] Dirk Fox54 published his prognosis of an almost linear
factorization progression, if all influencing factors are included: Each year the module length
feasible for factorization increases by 20 bit on average. So his forecast was below the more
optimistic estimations of GISA and NIST.

This forecast by Dirk Fox from the year 2001 seems to prove true by the latest factorization
records of RSA-200 and RSA-768 (see chapter 4.11.4). His estimation for the year 2005, to
achieve a bit length of 660 bit, was almost a precision landing (compare figure 4.1).

If the forecast withstands in the future then the factorization of an RSA modulus of 1024
bit can be expected in the year 2020.

54His company Secorvo Ltd also delivered a statement on the recommendation for key length selection published
by the GISA (German Information Security Agency). Chapter 2.3.1 of this statement contains a competent and
understandable discussion of RSA security (this document exists – to my knowledge – only in German):
http://www.secorvo.de/publikat/stellungnahme-algorithmenempfehlung-020307.pdf
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Figure 4.1: Comparison of the published factorization records (blue) and of the predicted de-
velopment (red; by Fox 2001)
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Hermann Hesse55:
To let the possible happen, you again and again have to try the impossible.

4.11.4 Status regarding factorization of concrete large numbers

An exhaustive overview about the factoring records of composed integers using different methods
can be found on the following web pages:

http://www.crypto-world.com
http://www.tutorgig.com/ed/RSA_number The RSA Factoring Challenge
http://en.wikipedia.org/wiki/Integer_factorization_records
http://en.wikipedia.org/wiki/RSA_Factoring_Challenge

The current record (as of Jan. 2010) obtained using the GNFS method (General Number
Field Sieve) factorized a general 232 decimal digit into its both prime factors.

The last records56 with factorization algorithms for composed numbers are listed in the
table 4.10.

Decimal digits Binary digits Factored on Factored by

RSA-768 232 768 Dec 2010 Thorsten Kleinjung et al.
RSA-200 200 663 May 2005 Jens Franke et al.

RSA-64057 193 640 Nov 2005 Jens Franke et al.
RSA-576 174 576 Dec 2003 Jens Franke et al.
RSA-160 160 530 Apr 2003 Jens Franke et al.
RSA-155 155 512 Aug 1999 Herman te Riele et al.

. . .
C307 307 1017 May 2007 Jens Franke et al.
C176 176 583 May 2005 Kazumaro Aoki et al.
C158 158 523 Jan 2002 Jens Franke et al.

Table 4.10: The current factoring records (as of Jan. 2010)

55Hermann Hesse, German/Swiss writer and Nobel Prize winner, July 2, 1877 − August 9, 1962.

56The ’RSA numbers’ are certain large semiprime numbers (i.e., numbers with exactly two prime factors). They
were generated and published by the company RSA Security: In the RSA Factoring Challenge the prime factors
for these numbers are sought.
See http://www.rsa.com/rsalabs/node.asp?id=2092.

RSA Labs offers its challenges since the beginning of the 1990th. The first RSA Factoring Challenge labeled
the numbers, from RSA-100 to RSA-500, according to their number of decimal digits; the second RSA Factoring
Challenge labeled the numbers according to their number of binary digits. Within the second challenge cash
prizes were offered for successful factorizations of RSA-576 to RSA-2048 (RSA-576, RSA-640 etc. using 64 bit
steps upwards — An exception to this is RSA-617, which was created prior to the change in the numbering
scheme). But the RSA challenges ended ahead of time in 2007, RSA Inc. retracted the prize.

The ’C numbers’ originate from the Cunningham project: http://www.cerias.purdue.edu/homes/ssw/cun/.
These are factors of Mersenne numbers, which have a very special form. This makes it an order of magnitude
easier to factor them as moduli of the same length build for RSA.

57A research group of the GISA solved this challenge which was awarded with 20,000 US dollar using the GNFS
method. The researchers needed about five months to divide this number into its both 320 bit long prime factors.
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Below the last records are explained in more detail. The two methods, GNFS and SNFS, used
to do so are shortly illustrated at the following web pages:

http://en.wikipedia.org/wiki/Special_number_field_sieve
http://en.wikipedia.org/wiki/General_number_field_sieve

RSA-155

On August 22, 1999 researchers from the Netherlands found the solution of this RSA chal-
lenge. They factorized a 155-digit number into its both 78-digit primes (see chapter 4.11.2).

This 512 bit RSA-155 meant to reach a kind of magic border.

C158

On January 18, 2002 researchers at the German University of Bonn58 factorized a 158-digit
decimal number into its both prime factors (these are build with 73 and 86 decimal digits) using
the GNFS method (General Number Field Sieve).

This record got much less attention within the press than the solution of RSA-155.

The task of the researchers from Bonn was not initiated by a challenge, but they wanted
to find the last prime factors of the integer 2953 − 1 (see “Wanted List” of the Cunningham
Project59).

The 6 smaller prime factors, already found before have been:

3, 1907, 425796183929,
1624700279478894385598779655842584377,

3802306738549441324432139091271828121 and
128064886830166671444802576129115872060027.

The first 3 factors can be easily computed60. The next three prime factors were found by
P. Zimmerman61, T. Grandlund62 and R. Harley during the years 1999 and 2000 using the
elliptic curve factorization method.

The last remaining factor, called “C158”, was known to be composite by then, but its factors
were not known (the following 3 lines contain one number):

39505874583265144526419767800614481996020776460304936
45413937605157935562652945068360972784246821953509354
4305870490251995655335710209799226484977949442955603

The factorization of C158 resulted in the following two 73- and 86-digit prime factors:

3388495837466721394368393204672181522815830368604993048084925840555281177

The researchers around Professor Jens Franke (from the University of Bonn, the GISA and the CWI) do not
aim on getting cash prizes but in extending the research limits. So statements about the necessary length of a
secure RSA modulus are more well-founded.

See http://www.heise.de/newsticker/meldung/print/65957.
58http://www.ercim.org/publication/Ercim_News/enw49/franke.html
59Cunningham project: http://www.cerias.purdue.edu/homes/ssw/cun/
60E.g. using CrypTool via menu Indiv. Procedures \ RSA Cryptosystem \ Factorization of a Number.

CrypTool can factorize in a reasonable time numbers no longer than 250 bit. Numbers bigger than 1024 bits are
currently not accepted by CrypTool.

61http://www.loria.fr/~zimmerma/ecmnet
62http://www.swox.se/gmp/
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and
1165882340667125990314837655838327081813101
2258146392600439520994131344334162924536139.

So now all 8 prime factors of 2953 − 1 have been found.

Links:
http://www.loria.fr/~zimmerma/records/gnfs158
http://www.crypto-world.com/FactorRecords.html
http://www.crypto-world.com/announcements/c158.txt

RSA-160

On January 18, 2002 researchers at the German University of Bonn63 factorized a 160-digit
number into its both prime factors (these are build with each 80 decimal digits) using the GNFS
method (General Number Field Sieve).

The computations for the factorization of RSA-160 also took place at the German Informa-
tion Security Agency (GISA) in Bonn64.

The 160-digit decimal number origins from the old challenge list of RSADSI. This number
was retracted after RSA-155 (RSA512) had been factorized successfully. The prime factors of
RSA-160 were still unknown. So this record of the team of Prof. Franke provides the solution
of the old challenge, for which RSADSI didn’t award a price anymore.

The composite number called “RSA-160” is (the following 3 lines contain one number):

215274110271888970189601520131282542925777358884567598017049
767677813314521885913567301105977349105960249790711158521430

2079314665202840140619946994927570407753

The factorization of RSA-160 resulted in the following two prime factors:

p = 45427892858481394071686190649738831
656137145778469793250959984709250004157335359

and
q = 47388090603832016196633832303788951

973268922921040957944741354648812028493909367

The calculations took place between December 2002 and April 2003.

63http://www.loria.fr/~zimmerma/records/rsa160

http://www.loria.fr/~zimmerma/records/factor.html

http://www.crypto-world.com/FactorWorld.html
64Every year the GISA creates a paper to describe which crypto algorithms are feasible to generate digital signatures

according to the German signature law – under participation of experts from economy and science. To review
signature methods based on the factorization problem the GISA also co-operates with researchers from the
University of Bonn. Further information about crypto algorithms can be found on the web page of GISA:
http://www.bsi.bund.de/esig/basics/techbas/krypto/index.htm
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RSA-200

On May 9, 2005 the research group of Prof. Jens Franke at the German University of Bonn65

announced, that they achieved to factorize a 200-digit number into its both prime factors (these
are build with each 100 decimal digits) using the GNFS method (General Number Field Sieve).

The composite number called “RSA-200” is (the following 3 lines contain one number):

2799783391122132787082946763872260162107044678695542853756000992932
6128400107609345671052955360856061822351910951365788637105954482006
576775098580557613579098734950144178863178946295187237869221823983

The factorization of RSA-200 resulted in the following two prime factors:

p = 35324619344027701212726049781984643686711974001976
25023649303468776121253679423200058547956528088349

and
q = 79258699544783330333470858414800596877379758573642

19960734330341455767872818152135381409304740185467

The calculations took place between December 2003 and May 2005. The factorization done
by the group around Bahr, Böhm, Franke, Kleinjung, Montgomery and te Riele lasted almost
17 months. The operating expense of the calculations was about 120,000 MIPS-years66.

RSA-768

On December 12, 2009 the research group around Prof. Thorsten Kleinjung67 announced,
that they achieved to factorize a 232-digit number into its both prime factors (both factors
have 116 decimal digits). They used the GNFS method (General Number Field Sieve) in a way
where they did “oversieving” on several hundred computers before starting the matrix step.

The composite number called “RSA-768” is (the following 3 lines contain one number):

123018668453011775513049495838496272077285356959533479219732245215172640050726
365751874520219978646938995647494277406384592519255732630345373154826850791702
6122142913461670429214311602221240479274737794080665351419597459856902143413

The factorization of RSA-768 resulted in the following two prime factors (each with 384 bit):

p = 3347807169895689878604416984821269081770479498371376856891
2431388982883793878002287614711652531743087737814467999489

and
q = 3674604366679959042824463379962795263227915816434308764267

6032283815739666511279233373417143396810270092798736308917

The calculations took about 2 1/2 years68.

65http://www.loria.fr/~zimmerma/records/rsa200
66A MIPS-year (MY) is the quantity of operations a machine can perform in one year, if the machine constantly

achieves one million integer operations per second (MIPS). For illustration: a INTEL Pentium 100 processor
achieves about 50 MIPS. To factorize a 2048 bit module it is estimated to need about 8.5 · 1040 MY.

67http://eprint.iacr.org/2010/006.pdf [Kleinjung2010]
68This was an “academic effort” – organisations with bigger resources could do it much faster.

128

http://www.loria.fr/~zimmerma/records/rsa200
http://eprint.iacr.org/2010/006.pdf


C307 / M1039

In May 2007 Prof. Franke, Prof. Kleinjung (University of Bonn), the Japanese telecom-
munication company NTT and Prof. Arjen Lenstra (Polytechnical University of Lausanne)
announced, that they managed to factorize a 307 digit decimal number into its both prime
factors with the SNFS method (Special Number Field Sieve) within 11 months (the two factors
have 80 and 227 decimal digits).

The task of the researchers was not initiated by a challenge, but they wanted to find the
last prime factors of the Mersenne number 21039 + 1 (see “Wanted List” of the Cunningham
Project69).

The number 21039 − 1 consists of 3 prime factors: The smallest one, p7 = 5080711 was
already known.70

To complete this the second factor (co-divider) “C307” had to be factorized: Till then it
was only known, that the last remaining factor was composite, but it was unknown, how many
prime factors it had and what are the prime factors. The following 5 lines contain one number:

C307 = 1159420574072573064369807148876894640753899791702017724986868353538
8224838599667566080006095408005179472053993261230204874402860435302
8619141014409345351233471273967988850226307575280937916602855510550
0425810771176177610094137970787973806187008437777186828680889844712

822002935201806074755451541370711023817

The factorization of C307 resulted in the following two 80- and 2276-digit prime factors:

p80 = 558536666199362912607492046583159449686465270184
88637648010052346319853288374753

and

p227 = 207581819464423827645704813703594695162939708007395209881208
387037927290903246793823431438841448348825340533447691122230
281583276965253760914101891052419938993341097116243589620659

72167481161749004803659735573409253205425523689.

So now the number 21039 − 1 is completely factorized in its 3 prime factors.

69Cunningham project: http://www.cerias.purdue.edu/homes/ssw/cun/

Cunningham table: http://homes.cerias.purdue.edu/~ssw/cun/pmain1206

The numbers in the Cunningham table have the following syntax:
“(2,n)-” means 2n − 1; “(2,n)+” means 2n + 1.
To describe the magnitude one writes p < n > or c < n >: “n” is the number of decimal digits and “p” and “c”
tell, whether the number is prime or composite.
21039 − 1 = p7 ∗ c307 = p7 ∗ p80 ∗ p227
It is explained more precisely at the CUN page:
“2651+ means 2651 + 1 and the size (c209 means 209 decimal digits) of the number which was factored. Then
come the new factor(s), the discoverer and the method used. Recently, only the multiple polynomial quadratic
sieve (ppmpqs), the elliptic curve method (ecm) and the number field sieve (nfs) have been used. ‘hmpqs’ stands
for hypercube multiple polynomial quadratic sieve. Under ‘new factors’, ‘p90’ means a 90-digit prime and ‘c201’
is a 201-digit composite number.”.

70This one can also be found using CrypTool via menu Indiv. Procedures \ RSA Cryptosystem \ Factor-
ization of a Number — with the algorithms of Brent, Williams or Lenstra, which are “relatively” good to
separate small factors.
CrypTool can factorize in a reasonable time numbers no longer than 250 bit.
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Links:
] http://www.loria.fr/~zimmerma/records/21039-
http://www.crypto-world.com/announcements/m1039.txt
http://www.crypto-world.com/FactorAnnouncements.html
http://www1.uni-bonn.de/pressDB/jsp/pressemitteilungsdetails.jsp?
detailjahr=2007&detail=160

Size of factorized numbers compared to primality proven numbers

As you notice the factorized compound numbers built of 2 prime factors are much smaller
than the especially structured numbers, for which primality tests are able to decide whether
these numbers are prime or not (see chapters 3.4, 3.5 and 3.6).

Length in bits of the current world records:

[RSA−768 Number] ←→ [47th known Mersenne Prime]

768 ←→ 43, 112, 609

4.11.5 Further current research about primes and factorization

Prime numbers are part of very many topical research areas in number theory and computer
science. Progress made with factorization is bigger than was estimated 5 years ago – this is not
only due to faster computers but also new knowledge.

The security of the RSA algorithm is based on the empirical observation that factoring large
numbers is a hard problem. A module n (typically, 1024 bit) can be easily constructed as the
product of two large primes p, q (typically, 500−600 bit each), by calculating n = pq. However,
it is a hard problem to extract p, q from n. Without knowing p or q, the private key cannot be
calculated.

Thus, any progress in efficiency of factorizing large integers will effect the security of the
RSA. As a consequence, the underlying primes p, q and, thus, the module n (1024 bit as of
today) have to be increased. In case of a quantum leap in factorization, the RSA algorithm
might be compromised.

Bernstein’s paper and its implication on the security of the RSA algorithm

In his paper “Circuits for integer factorization: a proposal” (http://cr.yp.to/djb.html,
published November 2001, D. J. Bernstein [Bernstein2001] addresses the problem of factorizing
large integers. Therefore, his results are of relevance from a RSA point of view. As a main
result Bernstein claims that the implementation of the General Number Field Sieve algorithm
(GNFS) can be improved to factor, with the same effort as before, integers with three times
more digits.
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We note that the definition of effort is a crucial point: Bernstein claims that effort is the
product of time and costs of the machine (including the memory used). The gist of the paper lies
in the fact that he can reduce a big part of factorizing to sorting. Using Schimmler’s scheme,
sorting can be optimized by massive parallel computing. At the end of section 3 Bernstein
explains this effect: The costs of m2 parallel computers with a constant amount of memory
is a constant times m2. The costs of a computer with a single processor and memory of size
m2 is also of the order of m2, but with a different constant factor. With m2 processors in
parallel, sorting of m2 numbers (with Schimmler’s scheme) can be achieved in time m, while a
m2-memory computer needs time of the order of m2. Decreasing memory and increasing the
number of processors, the computing time can be reduced by a factor 1/m without additional
effort in terms of total costs. In section 5 it is said that massive parallel computing can also
increase efficiency of factorizing using Lenstra’s elliptic-curve-method (a search algorithm has
costs that increase in a quadratic square manner instead of cubically).

We note that all results achieved so far are asymptotic results. This means that they only
hold in the limit n to infinity. Unfortunately, there is no upper limit for the residual error
(i.e. the difference between the real and the asymptotic value) for finite n — a problem which
has already been addressed by the author. As a consequence, one cannot conclude whether the
costs (in the sense of Bernstein) for factorizing 1024−2048-bit RSA modules can be significantly
reduced.

There is no doubt that Bernstein’s approach is innovative. However, the reduction of com-
puting time under constant costs comes along with a massive use of parallel computing — a
scenario which seems not to be realistic yet. For example, formally 1 sec computing time on
one machine and 1/1,000,000 sec time parallel computing time on 1,000,000 machines might
have same costs. In reality, it is much harder to realize the second situation, and Bernstein
does not take into account the fixed costs, in particular for building a network between all these
computers.

Although distributed computing over a large network might help to overcome this problem,
realistic costs for data transfer have to be taken into account — a point which was not addressed
in Bernstein’s proposal.

As long as there is neither (low cost) hardware nor a distributed computing approach (based
on Bernstein’s ideas), there should not be a problem for RSA. It has to be clarified from which
magnitude of n on Bernstein’s method could lead to a significant improvement (in the sense of
the asymptotic result).

Arjen Lenstra, Adi Shamir et. al. analyzed the paper of Bernstein [Lenstra2002]. In
summary they expect a factorization improvement on how much longer the bit length of the
keys could be with a factor of 1.17 (instead of factor 3 as proposed by Bernstein).

The abstract of their paper “Analysis of Bernstein’s Factorization Circuit” says:

“... Bernstein proposed a circuit-based implementation of the matrix step of the number
field sieve factorization algorithm. We show that under the non-standard cost function used in
[1], these circuits indeed offer an asymptotic improvement over other methods but to a lesser
degree than previously claimed: for a given cost, the new method can factor integers that are
1.17 times larger (rather than 3.01). We also propose an improved circuit design based on a
new mesh routing algorithm, and show that for factorization of 1024-bit integers the matrix
step can, under an optimistic assumption about the matrix size, be completed within a day by
a device that costs a few thousand dollars. We conclude that from a practical standpoint, the
security of RSA relies exclusively on the hardness of the relation collection step of the number
field sieve.”
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RSA Security71 concludes in its analysis of the Bernstein paper [RSA Security 2002] from
April, 8 2002 also – as expected – that RSA is still not compromised.

This is still an ongoing discussion.

When this section was written (June 2002) nothing was publicly known about, how far
there exist implementations of his theoretical onsets and how much financing there was for his
research project.

Links:
http://cr.yp.to/djb.html
http://www.counterpane.com/crypto-gram-0203.html#6
http://www.math.uic.edu

The TWIRL device

In January 2003 Adi Shamir and Eran Tromer from the Weizmann Institute of Science
published a preliminary draft called “Factoring Large Numbers with the TWIRL Device” raising
concerns about the security of key sizes till 1024 bits [Shamir2003].

Their abstract summarizes their results very well: “The security of the RSA cryptosystem
depends on the difficulty in factoring large integers. The best current factoring algorithm is
the Number Field Sieve (NFS), and its most difficult part is the sieving step. In 1999 a large
distributed computation involving thousands of workstations working for many months managed
to factor a 512-bit RSA key, but 1024-bit keys were believed to be safe for the next 15-20 years.
In this paper we describe a new hardware implementation of the NFS sieving step ... which is 3-
4 orders of magnitude more cost effective than the best previously published designs ... . Based
on a detailed analysis of all the critical components (but without an actual implementation),
we believe that the NFS sieving step for 1024-bit RSA keys can be completed in less than a
year with a $10M device, and that the NFS sieving step for 512-bit RSA keys can be completed
in less than ten minutes with a $10K device. Coupled with recent results about the difficulty
of the NFS matrix step ... this raises some concerns about the security of these key sizes.”

A detailed explanation from these two authors also can be found in the RSA Laboratories
CryptoBytes [Shamir2003a].

The 3-page article in the DuD issue of June 2003 [Weis2003] contains a very good expla-
nation, how the attack using the Generalized Number Field Sieve (GNFS) works and which
progress is made, to factorize numbers. At GNFS we can distinguish 2 general steps: The sieve
step (relation collecting) and the matrix reduction. Besides the sieve step is highly paralleliz-
able, it dominates the overall calculation burden. Shamir and Tromer haven’t built a TWIRL
device yet, but the estimated costs of 10 till 50 million Euro (in order to factorize a 1024-bit
number) is not prohibitive for secret agencies or big criminal organizations, because the “costs
for a single espionage satellite is estimated e.g. to be several billion USD”. The authors there-
fore recommend, to get as soon as possible rid of today used sensible RSA, Diffie-Hellman or
ElGamal keys up to 1024 bit and to use then keys of at least 2048 bit length. The planned
TCPA/Palladium hardware will use 2048-bit RSA keys!

So recommendations like the ones from the GISA (German Information Security Agency)
to use higher key lengths are very valid.

71http://www.rsasecurity.com/

132

http://cr.yp.to/djb.html
http://www.counterpane.com/crypto-gram-0203.html#6
http://www.math.uic.edu
http://www.rsasecurity.com/


“Primes in P”: Primality testing is polynomial

In August 2002 the three Indian researchers M. Agrawal, N. Kayal and N. Saxena published
the paper “PRIMES in P” about a new primality testing algorithm called AKS [Agrawal2002].
They discovered a polynomial time deterministic algorithm for determining if a number is prime
or not.

The importance of this discovery is that it provides number theorists with new insights
and opportunities for further research. Lots of people over centuries have been looking for a
polynomial time test for primality, and this result is a major theoretic breakthrough. It shows
that new results can be generated from already known facts.

But even its authors note that other known algorithms may be faster (for example ECPP).
The new algorithm works on any integer. For example the GIMPS project uses the Lucas-
Lehmer primality test which takes advantage of the special properties of Mersenne numbers.
This makes the Lucas-Lehmer test much faster, allowing to test numbers with millions of digits
while general purpose algorithms are limited to numbers with a few thousand digits.

Current research results on this topic can be found at:
http://www.mersenne.org/
http://fatphil.org/maths/AKS/ Original paper in English
http://ls2-www.cs.uni-dortmund.de/lehre/winter200203/kt/material/primes.ps

Good explanation in German by Thomas Hofmeister.
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Joanne K. Rowling72:
It is our choices, that show what we truly are, far more than our abilities.

4.12 Applications of asymmetric cryptography using numerical
examples

The results of modular arithmetic are used extensively in modern cryptography. Here we will
provide a few examples from cryptography using small73 numbers.

Enciphering a text entails applying a function (mathematical operation) to a character string
(number) to generate a different number. Deciphering entails reversing this function, in other
words using the distorted image that the function has created from the plaintext in order to
restore the original image. For example, the sender could take the plaintext M of a confidential
message and add a secret number, the key S, to obtain the ciphertext C:

C = M + S.

The recipient can reconstruct the plaintext by reversing this operation, in other words by
subtracting S:

M = C − S.
Adding S reliably makes the plaintext impossible to read. However, this encryption is rather
weak, because all an interceptor needs to do to calculate the key is obtain a plaintext and the
associated ciphertext

S = C −M,

and can then read any subsequent messages encrypted using S.
The essential reason for this is that subtraction is just as simple an operation as addition.

4.12.1 One way functions

If the key is to be impossible to determine even with knowledge of both the plaintext and
the ciphertext, we need a function that is, on the one hand, relatively easy to calculate – we
don’t want to have problems encrypting messages. On the other hand, the inverse function
should exist (otherwise information would be lost during encryption), but should be de facto
incalculable.

What are possible candidates for such a one way function? We could take multiplication
rather than addition, but even primary school children know that the inverse function, division,
is only slightly more difficult than multiplication itself. We need to go one step higher in the
hierarchy of calculation methods. It is still relatively simple to calculate the power of a number,
but the corresponding two reverse functions – taking roots (find b in the equation a = bc when
a and c are known) and calculating logarithms (find c in the above equation when a and b are
known) are so complicated that pupils normally do not learn them at school.

Although a certain structure can still be recognised for addition and multiplication, raising
numbers to the power of another or calculating exponentials totally mixes up all the numbers.

72Joanne K. Rowling, “Harry Potter and the Chamber of Secrets”, Bloomsbury, 1998, last chapter “Dobby’s
reward”, p. 245, by Dumbledore.

73In the RSA procedure, we call numbers “small” if the bit lengths are much less than 1024 bits (i.e. 308 decimal
points). In practice, 1024 bits is currently the minimum length for a secure Certification Authority RSA modulus.
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Knowing a few values of the function doesn’t tell us much about the function as a whole (in
contrast to addition and multiplication).

4.12.2 The Diffie-Hellman key exchange protocol

Whitfield Diffie, Martin E. Hellman and Ralph Merkle developed this DH key exchange protocol
in Stanford in 197674.

Alice and Bob75 use a one way function to obtain a key S, the session key, for subsequent
correspondence. This is then a secret that is only known to the two of them. Alice selects a
random number a and keeps it secret. She applies a one way function to a to calculate the
number A = ga and sends it to Bob. He does the same, by selecting a secret random number
b, calculating B = gb and sending it to Alice. The number g is random and can be publicly
known. Alice applies the one way function together with her secret number a to B, while Bob
does the same with his secret number b and the received number A.

The result S is the same in each case because the one way function is commutative: (ga)b =
(gb)a. But even Bob cannot reconstruct Alice’s secret number a from the data available to him,
while Alice cannot determine Bob’s secret number b. And a perpetrator who knows g and has
intercepted both A and B cannot use this knowledge to determine a, b or S.
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Procedure:

Alice and Bob want to negotiate a secret session key S via a channel that may be intercepted.

1. They select a prime number p and a random number g and exchange this information
openly.

74With CrypTool this exchange protocol has been visualized: you can execute the single steps with concrete
numbers using menu Indiv. Procedures \ Protocols \ Diffie-Hellman Demonstration.

75Bob and Alice are the default names used for the two authorized participants in a protocol (see [Schneier1996,
p. 23]).
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2. Alice now selects a, a random number less than p and keeps it secret.

Similarly, Bob selects b, a random number less than p and keeps it secret.

3. Alice now calculates A ≡ ga (mod p).
Bob calculates B ≡ gb (mod p).

4. Alice sends the result A to Bob.
Bob sends the result B to Alice.

5. In order to now determine the session key to be used by both, they both separately raise
the respective results they have received to the power of their secret random number
modulo p. This means:

- Alice calculates S ≡ Ba (mod p) and
- Bob calculates S ≡ Ab (mod p).

Even if a spy intercepts g, p, and the interim results A and B, he cannot use these in order to
determine the used session key used – due to the difficulty of calculating the discrete logarithm76.

We will now use an example with (unrealistically) small numbers to illustrate this.

Example using small numbers:

1. Alice and Bob select g = 11, p = 347.

2. Alice selects a = 240, Bob selects b = 39 and they keep a and b secret.

3. Alice calculates A ≡ ga ≡ 11240 ≡ 49 (mod 347).
Bob calculates B ≡ gb ≡ 1139 ≡ 285 (mod 347).

4. Alice sends Bob: A ≡ 49,
Bob sends Alice: B ≡ 285.

5. Alice calculates Ba ≡ 285240 ≡ 268 (mod 347),
Bob calculates Ab ≡ 4939 ≡ 268 (mod 347).

Alice and Bob can now communicate securely using their shared session key. Even if spies were
to intercept everything transferred via the connection: g = 11, p = 347, A = 49 and B = 285,
they would not be able to calculate the secret key.

Comment:
In this example using such small numbers, it is easily possible to calculate the discrete log-
arithms, but with large numbers the discrete logarithm problem77,78 is extremely difficult to
solve.

76Further details about the discrete logarithm problem can be found in chapter 5.4.
77You can use Sage to determine the discrete logarithm x that solves the equation 11x ≡ 49 (mod 347) (here for

Alice): discrete log(mod(49, 347), mod(11, 347)). The returned value is 67.
Such number theoretic tasks can also be solved using other tools like PariGP, LiDIA, BC or Mathematica (see
the list of web sites in the appendix at the end of this chapter):
- Pari-GP: znlog(Mod(49,347),Mod(11,347)).
- LiDIA: dl(11,49,347).
- Mathematica: The general Solve function delivers the em tdep message “The equations appear to involve the
variables to be solved for in an essentially non-algebraic way”.
- Mathematica: MultiplicativeOrder[11, 347, 49].
All deliver the result 67.

78Why have the functions delivered the value 67 for the discrete logarithm of Alice rather than 240 which Alice
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To get the discrete logarithms, here we need to calculate:
For Alice: 11x ≡ 49 (mod 347), that means log11(49) (mod 347).
For Bob: 11y ≡ 285 (mod 347), that means log11(285) (mod 347).

selected as exponent a?
The discrete logarithm is the smallest natural exponent that solves the equation 11x ≡ 49 (mod 347). Both
x = 67 and x = 240 (the number selected in the example) satisfy the equation and can therefore be used to
calculate the session key: 285240 ≡ 28567 ≡ 268 (mod 347). If Alice and Bob had selected a primitive root
modulo p as base g, then for every remainder from the set {1, 2, . . . , p − 1} there is exactly one exponent from
the set {0, 1, . . . , p− 2}.

As an aside, there are 172 different primitive roots modulo 347, 32 of which are prime (not necessary). Since
the number 11 selected for g in the example is not a primitive root of 347, the remainders do not take all values
from the set {1, 2, . . . , 346}. Thus, for a particular remainder there may be more than one exponent or even no
exponent at all in the set {0, 1, . . . , 345} that satisfies the equation.
With the relevant Sage commands you find:
is prime(347)=True, euler phi(347)=346, gcd(11,347)=1 and multiplicative order(mod(11, 347))=173.

i 11i mod 347

0 1
1 11
2 121
3 290
67 49 searched exponent
172 284
173 1 = multiplicative order of 11i mod 347
174 11
175 121
176 290
240 49 searched exponent

Further information can be found in chapter 4.18.4 “Primitive roots”.
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4.13 The RSA procedure with actual numbers79

Having described above how the RSA procedure works, we will now work through the steps
using actual, but small, numbers.

4.13.1 RSA with small prime numbers and with a number as message

Before applying the RSA procedure to a text, we will first demonstrate it directly using a single
number as message80.

1. Let the selected prime numbers be p = 5 and q = 11.
Thus, n = 55 and J(n) = (p− 1) ∗ (q − 1) = 40.

2. e = 7 (should81 lie between 11 and 39 and must be relatively prime to 40).

3. d = 23 (since 23 ∗ 7 ≡ 161 ≡ 1 (mod 40)),

→ Public key of the recipient: (55, 7),
→ Private key of the recipient: (55, 23).

4. Let the message be the number M = 2 (so no division into blocks is required).

5. Encryption: C ≡ 27 ≡ 18 (mod 55).

6. The ciphertext is simply the number C = 18 (we therefore do not need to divide it into
blocks).

7. Decryption: M ≡ 1823 ≡ 18(1+2+4+16) ≡ 18 ∗ 49 ∗ 36 ∗ 26 ≡ 2 (mod 55).

We will now apply the RSA procedure to a text, first using the upper case alphabet (26
characters), then using the entire ASCII character set as the basis for the messages.

4.13.2 RSA with slightly larger primes and a text of upper case letters

We have the text “ATTACK AT DAWN” and the characters are coded according to table 4.11.82

Key generation (steps 1 to 3):
1. p = 47, q = 79 (n = 3713; J(n) = (p− 1) ∗ (q − 1) = 3588).
2. e = 37 (should83 lie between 79 and 3587 and must be relatively prime to 3588).
3. d = 97 (since e ∗ d = 1 mod J(n); 37 ∗ 97 ≡ 3589 ≡ 1 (mod 3588) )84.

79Additional material: Minh Van Nguyen, “Number Theory and the RSA Public Key Cryptosystem”, 2009. An
introductory tutorial on using Sage to study elementary number theory and public key cryptography. A didac-
tically very clear article about some basic number theory and Sage usage. http://nguyenminh2.googlepages.

com/sage_numtheory-rsa.pdf.
80Using CrypTool you can solve this with the menu Indiv. Procedures \ RSA Cryptosystem \ RSA

Demonstration.
81See footnote 47 on page 118.
82Using CrypTool you can solve this with the menu Indiv. Procedures \ RSA Cryptosystem \ RSA

Demonstration. This is also described in the tutorial/scenario in CrypTool’s online help [Options, specify
alphabet, number system, block length 2 and decimal representation].

83See footnote 47 on page 118.
84How to compute d = 97 using the extended gcd algorithm is shown in appendix 4.14
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Character Numerical value Character Numerical value
Blank 0 M 13

A 1 N 14
B 2 O 15
C 3 P 16
D 4 Q 17
E 5 R 18
F 6 S 19
G 7 T 20
H 8 U 21
I 9 V 22
J 10 W 23
K 11 X 24
L 12 Y 25

Z 26

Table 4.11: Capital letters alphabet

4. Encryption:
Text: A T T A C K A T D A W N

Number: 01 20 20 01 03 11 00 01 20 00 04 01 23 14

This 28-digit number is divided into 4-digit parts (because 2626 is still smaller than n = 3713):
0120 2001 0311 0001 2000 0401 2314

All 7 parts are encrypted using: C ≡M37 (mod 3713)85:
1404 2932 3536 0001 3284 2280 2235

5. Decryption:
Ciphertext: 1404 2932 3536 0001 3284 2280 2235

This 28-digit number is divided into 4-digit parts.

All 7 parts are decrypted using: M ≡ C97 (mod 3713):
0120 2001 0311 0001 2000 0401 2314

The 2-digit numbers are transformed into capital letters and blanks.

Using the selected values it is easy for a cryptanalyst to derive the secret values from the public
parameters n = 3713 and e = 37 by revealing that 3713 = 47 ∗ 79.

If n is a 768-bit number, there is, according to present knowledge, little chance of this.

4.13.3 RSA with even larger primes and a text made up of ASCII characters

In real life, the ASCII alphabet is used to code the individual characters of the message as 8-bit
numbers.

The idea for this task86 is taken from the example in [Eckert2003, p. 271].

85See chapter 4.18.5 “RSA examples with Sage” for source code to do RSA encryption using Sage.
You can also encrypt the message with CrypTool via the menu path Indiv. Procedures \ RSA Cryptosystem
\ RSA Demonstration.

86Using CrypTool you can solve this via the menu path Indiv. Procedures \ RSA Cryptosystem \ RSA
Demonstration.
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Coded in decimal notation, the text “RSA works!” is as follows:
Text: R S A w o r k s !

Number: 82 83 65 32 119 111 114 107 115 33

We will work through the example in 2 variants. The steps 1 to 3 are common for both.

Key generation (steps 1 to 3):
1. p = 503, q = 509 (n = 256, 027; J(n) = (p− 1)(q − 1) = 255, 016 = 23 ∗ 127 ∗ 251)87.
2. e = 65, 537

(should88 lie between 509 and 255, 015 and must89 be relatively prime to 255, 016).
3. d = 231, 953

(since e ≡ d−1 mod J(n) : 65, 537 ∗ 231, 953 ≡ 15, 201, 503, 761 ≡ 1 (mod 255, 016))90.

Variant 1: All ASCII characters are en-/decrypted separately (no blocks are
formed).

4. Encryption:
Text: R S A w o r k s !

Number: 82 83 65 32 119 111 114 107 115 33

The letters are not combined91!

Each character is encrypted using: C = M65,537 (mod 256, 027)92:
212984 025546 104529 031692 248407
100412 054196 100184 058179 227433

5. Decryption:
Ciphertext:

212984 025546 104529 031692 248407
100412 054196 100184 058179 227433

Each character is decrypted using: M ≡ C231,953 mod 256, 027:
82 83 65 32 119 111 114 107 115 33

Variant 2: The ASCII characters are en-/decrypted two at a time as blocks.

In variant 2 the block formation is done in two different sub-variants: (4./5. and 4’./5’.).

87See chapter 4.18.5 “RSA examples with Sage” for the source code to factorize the number J(n) using Sage.
Using CrypTool you can solve this with the Indiv. Procedures \ RSA Cryptosystem \ Factorization of
a Number.

88See footnote 47 on page 118.
89e cannot, therefore, be 2, 127 or 251 (65, 537 = 216 + 1) (255, 016 = 23 ∗ 127 ∗ 251).

In real life, J(n) is not factorized but rather the Euclidean algorithm is used for the selected e to guarantee that
gcd(e, J(n)) = 1.

90Other possible combinations of (e, d) include: (3, 170, 011), (5, 204, 013), (7, 36, 431).
91For secure procedures we need large numbers that assume – as far as possible – all values up to n − 1. If

the possible value set for the numbers in the message is too small, even large prime numbers cannot make the
procedure secure. An ASCII character is represented by 8 bits. If we want larger values we must combine
several numbers. Two characters need 16 bits, whereby the maximum value that can be represented is 65536.
The modulus n must then be greater than 216 = 65536. This is applied in variant 2. When the numbers are
combined, the leading zeros are kept in binary notation (just as if we were to write all numbers with 3 digits
in decimal notation above and were then to obtain the sequence 082 083, 065 032, 119 111, 114 107, 115

033).
92See chapter 4.18.5 “RSA examples with Sage” for the source code for RSA exponentiation using Sage.
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Text: R S A w o r k s !
Number: 82 83 65 32 119 111 114 107 115 33

4. Encryption:
Blocks are formed93 (each ASCII character is encoded into a 8 digit binary number below):
21075 16672 30575 29291 2947394

Each block is encrypted using: C ≡M65,537 (mod 256, 027)95:
158721 137346 37358 240130 112898

5. Decryption:
Ciphertext:
158721 137346 37358 240130 112898

Each block is decrypted using: M ≡ C231,953 (mod 256, 027):
21075 16672 30575 29291 29473

4’. Encryption:
Blocks are formed: (each ASCII character is encoded into a 3 digit decimal number below):
82083 65032 119111 114107 11503396

Each block is encrypted using: C ≡M65,537 (mod 256, 027)97:
198967 051405 254571 115318 014251

5’. Decryption:
Ciphertext:
198967 051405 254571 115318 014251

Each block is decrypted using: M ≡ C2473 (mod 67, 519):
82083 65032 119111 114107 115033

4.13.4 A small RSA cipher challenge (1)

The task is taken from [Stinson1995, Exercise 4.6]: The pure solution has been published by
Prof. Stinson at http://www.cacr.math.uwaterloo.ca/~dstinson/solns.html98

However, it is not the result that is important here but rather the individual steps of the
solution, that is, the explanation of the cryptanalysis99:

93

single character binary representation decimal representation

01010010, 82 01010010 01010011 = 21075

01010011, 83

01000001, 65 01000001 00100000 = 16672

00100000, 32

01110111, 119 01110111 01101111 = 30575

01101111, 111

01110010, 114 01110010 01101011 = 29291

01101011, 107

01110011, 115 01110011 00100001 = 29473

00100001, 33:
94Using CrypTool you can solve this with the menu Indiv. Procedures \ RSA Cryptosystem \ RSA

Demonstration with the following options: all 256 ASCII characters, b-adic, block length 2 and decimal
representation.

95See chapter 4.18.5 “RSA examples with Sage” for the source code for RSA exponentiation using Sage.
96The RSA encryption works correctly with the modulus n = 256.027 because each ASCII block of two characters

will be encoded into a number that is smaller or equal than the number 255, 255.
97See chapter 4.18.5 “RSA examples with Sage” for the source code for RSA exponentiation using Sage.
98or http://bibd.unl/~stinson/solns.html.
99The method of solving the problem is outlined in the scenario of the online help to CrypTool and in the pre-
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Two samples of RSA ciphertext are presented in Tables 4.12100 and 4.13101. Your task is to
decrypt them. The public parameters of the system are

n = 18, 923 and e = 1261 (for Table 4.12) and
n = 31, 313 and e = 4913 (for Table 4.13).

This can be accomplished as follows. First, factor n (which is easy because it is so small).
Then compute the exponent d from J(n), and, finally, decrypt the ciphertext. Use the square-
and-multiply algorithm to exponentiate modulo n.

In order to translate the plaintext back into ordinary English text, you need to know how
alphabetic characters are “encoded” as elements in Zn. Each element of Zn represents three
alphabetic characters as in the following examples:

DOG 7→ 3 ∗ 262 + 14 ∗ 26 + 6 = 2398
CAT 7→ 2 ∗ 262 + 0 ∗ 26 + 19 = 1371
ZZZ 7→ 25 ∗ 262 + 25 ∗ 26 + 25 = 17, 575.

You will have to invert this process as the final step in your program.

The first plaintext was taken from “The Diary of Samuel Marchbanks”, by Robertson Davies,
1947, and the second was taken from “Lake Wobegon Days”, by Garrison Keillor, 1985.

4.13.5 A small RSA cipher challenge (2)

The following task is a corrected version from the book written by Prof. Yan [Yan2000, Example
3.3.7, p. 318]. However, it is not the result that is important here but rather the individual
steps of the solution, that is, the explanation of the cryptanalysis102.

There are three tasks with completely different degrees of difficulty here. In each case we
know the ciphertext and the public key (e, n):

(a) Known plaintext: find the secret key d using the additionally known original message.

(b) Ciphertext-only: find d and the plaintext.

(c) Calculate the RSA modulus, in other words factorization (with no knowledge of the mes-
sage).

sentation on the website. If anyone sends us a well prepared exact method of solving the problem, we would be
pleased to include it in the documentation.

100The numbers of this table can be worked with via Copy and Paste.
101The numbers of this table are in the online-help “Example illustrating the RSA demonstration” of CrypTool.
102The method of solving the problem is outlined in the scenario of the online help to CrypTool and in the CrypTool

presentation. If anyone sends us a well prepared exact method of solving the problem, we would be pleased to
include it in the documentation.
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12423 11524 7243 7459 14303 6127 10964 16399
9792 13629 14407 18817 18830 13556 3159 16647
5300 13951 81 8986 8007 13167 10022 17213
2264 961 17459 4101 2999 14569 17183 15827
12693 9553 18194 3830 2664 13998 12501 18873
12161 13071 16900 7233 8270 17086 9792 14266
13236 5300 13951 8850 12129 6091 18110 3332
15061 12347 7817 7946 11675 13924 13892 18031
2620 6276 8500 201 8850 11178 16477 10161
3533 13842 7537 12259 18110 44 2364 15570
3460 9886 8687 4481 11231 7547 11383 17910
12867 13203 5102 4742 5053 15407 2976 9330
12192 56 2471 15334 841 13995 17592 13297
2430 9741 11675 424 6686 738 13874 8168
7913 6246 14301 1144 9056 15967 7328 13203
796 195 9872 16979 15404 14130 9105 2001
9792 14251 1498 11296 1105 4502 16979 1105
56 4118 11302 5988 3363 15827 6928 4191
4277 10617 874 13211 11821 3090 18110 44
2364 15570 3460 9886 9988 3798 1158 9872
16979 15404 6127 9872 3652 14838 7437 2540
1367 2512 14407 5053 1521 297 10935 17137
2186 9433 13293 7555 13618 13000 6490 5310
18676 4782 11374 446 4165 11634 3846 14611
2364 6789 11634 4493 4063 4576 17955 7965
11748 14616 11453 17666 925 56 4118 18031
9522 14838 7437 3880 11476 8305 5102 2999
18628 14326 9175 9061 650 18110 8720 15404
2951 722 15334 841 15610 2443 11056 2186

Table 4.12: RSA ciphertext A

n = 63978486879527143858831415041, e = 17579

Message103:
1401202118011200,
1421130205181900,
0118050013010405,
0002250007150400

Cipher:
45411667895024938209259253423,
16597091621432020076311552201,
46468979279750354732637631044,
32870167545903741339819671379

Comment:
The original message consisted of a sentence containing 31 characters (coded with the capital

103The numbers of this table are in the online help “Example illustrating the RSA demonstration” of CrypTool.
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6340 8309 14010 8936 27358 25023 16481 25809
23614 7135 24996 30590 27570 26486 30388 9395
27584 14999 4517 12146 29421 26439 1606 17881
25774 7647 23901 7372 25774 18436 12056 13547
7908 8635 2149 1908 22076 7372 8686 1304
4082 11803 5314 107 7359 22470 7372 22827
15698 30317 4685 14696 30388 8671 29956 15705
1417 26905 25809 28347 26277 7897 20240 21519
12437 1108 27106 18743 24144 10685 25234 30155
23005 8267 9917 7994 9694 2149 10042 27705
15930 29748 8635 23645 11738 24591 20240 27212
27486 9741 2149 29329 2149 5501 14015 30155
18154 22319 27705 20321 23254 13624 3249 5443
2149 16975 16087 14600 27705 19386 7325 26277
19554 23614 7553 4734 8091 23973 14015 107
3183 17347 25234 4595 21498 6360 19837 8463
6000 31280 29413 2066 369 23204 8425 7792
25973 4477 30989

Table 4.13: RSA ciphertext B

letters alphabet from section 4.13.2). Each group of 16 decimal numbers is then combined to
form one number (the last number is filled with zeros). These numbers are raised to the power
of e.

When you decrypt the message you must fill the calculated numbers with leading zeros in
order to obtain plaintext.

This needs to be stressed because the type of padding is extremely important during imple-
mentation and standardization for interoperable algorithms.
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4.14 Appendix: The greatest common divisor (gcd) of whole
numbers and the two algorithms of Euclid104

The greatest common divisor of two natural numbers a and b is an important value that can be
calculated very quickly. Here we make use of the fact that if a number c divides the numbers a
and b (i.e. there exists an a′ and a b′ such that a = a′ ∗ c and b = b′ ∗ c), then c also divides the
remainder r of a/b. In short notion we can write: If c divides a and b it follows that c divides
r = a− ba/bc ∗ b105.

As the latter statement is valid for each common divisor c of a and b it follows that:

gcd(a, b) = gcd(a− ba/bc ∗ b, b).

Using this information, the algorithm for calculating the gcd of two numbers can be written as
follows (in pseudo code):

INPUT: a,b != 0
1. if ( a < b ) then x = a; a = b; b = x; // Swap a and b (a > b)
2. a = a - int(a/b) * b // a is smaller than b, the

// gcd(a, b) is unchanged
3. if ( a != 0 ) then goto 1. // a falls after each step and

// the algorithm ends when a==0.
OUTPUT "gcd(a,b) = " b // b is the gcd of the original a and b

Also further relationships can be derived from the gcd: For this, we need the set of equations
for a and b:

a = 1 ∗ a+ 0 ∗ b
b = 0 ∗ a+ 1 ∗ b,

or, in matrix notation: (
a
b

)
=
(

1 0
0 1

)
∗
(
a
b

)
.

We summarize this information in the extended matrix:(
a | 1 0
b | 0 1

)
If we apply the above gcd algorithm to this matrix, we obtain the extended Euclid algorithm
which can be used to calculate the multiplicative inverse:

104With the educational tool for number theory NT you can see
a) how Euklid’s algorithm calculates the gcd (learning unit 1.3, pages 14-19/21) and
b) how Euklid’s enhanced algorithm finds the multiplicative inverse (learning unit 2.2, page 13/40).
NT can be called in CrypTool via the menu path Indiv. Procedures \ Number Theory Interactive \
Learning Tool for Number Theory. See appendix A.4.

105The Gauss bracket bxc of a real number x is defined via: bxc is the next integer less or equal x.
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INPUT: a, b 6= 0

0. x1,1 := 1, x1,2 := 0, x2,1 := 0, x2,2 := 1

1.

(
a | x1,1 x1,2

b | x2,1 x2,2

)
:=
(

0 1
1 −ba/bc ∗ b

)
∗
(
a | x1,1 x1,2

b | x2,1 x2,2

)
.

2. if (b != 0) then goto 1.

OUTPUT: “gcd(a, b) = a ∗ x+ b ∗ y: ”, “gcd(a, b) = ” b, “x =” x2,1, “y =” x2,2

Since this algorithm only performs linear transformations, the same equations always apply

a = x1,1 ∗ a+ x1,2 ∗ b
b = x2,1 ∗ a+ x2,2 ∗ b,

We get the extended gcd equation at the end of the algorithm106:

gcd(a, b) = a ∗ x2,1 + b ∗ x2,2.

Example:
Using the extended gcd we can determine for e = 37 the multiplicative inverse number d to
modulo 3588 (i.e. 37 ∗ d ≡ 1 (mod 3588)):

0.

(
3588 | 1 0
37 | 0 1

)
1.

(
37 | 1 0
36 | 0 −96

)
=
(

0 1
1 −(b3588/36c = 96) ∗ 37

)
∗
(

3588 | 1 0
37 | 0 1

)
.

2.

(
36 | 1 −96
1 | −1 97

)
=
(

0 1
1 −(b37/36c = 1) ∗ 36

)
∗
(

37 | 1 0
36 | 0 −96

)
.

3.

(
1 | −1 97
0 | 37 −3588

)
=
(

0 1
1 −(b36/1c = 36) ∗ 1

)
∗
(

36 | 1 −96
1 | −1 97

)
.

OUTPUT:
gcd(37, 3588) = a ∗ x+ b ∗ y:
gcd(37, 3588) = 1, x = −1, y = 97.

Thus

1. 37 and 3588 are relatively prime (37 has an inverse modulo 3588).

2. 37 ∗ 97 = (1 ∗ 3588) + 1 in other words 37 ∗ 97 ≡ 1 (mod 3588).
and therefore the number 97 is the multiplicative inverse to 37 modulo 3588.

106By termination of the gcd algorithm, the program variables a and b contain the values a = 0 and b = gcd(a, b).
Please keep in mind, that the program variables are different to the numbers a and b and that they are only
relevant for the scope of the algorithm.
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4.15 Appendix: Forming closed sets

The property of closeness within a set is always defined in relation to an operation. The following
shows how to construct the “closed set” G with respect to the operation + (mod 8) for a given
initial set G0:

G0 = {2, 3} − −− addition of the numbers in G0 determines further numbers :
2 + 3 ≡ 5 (mod 8) = 5
2 + 2 ≡ 4 (mod 8) = 4
3 + 3 ≡ 6 (mod 8) = 6

G1 = {2, 3, 4, 5, 6} − −− addition of the numbers in G1 determines :
3 + 4 ≡ 7 (mod 8) = 7
3 + 5 ≡ 8 (mod 8) = 0
3 + 6 ≡ 9 (mod 8) = 1

G2 = {0, 1, 2, 3, 4, 5, 6, 7} − −− addition of the numbers in G2 does not extend the set!
G3 = G2 −−− we say : G2 is closed for addition (mod 8).

4.16 Appendix: Comments on modulo subtraction

Comment on subtraction modulo 5: 2− 4 = −2 ≡ 3 mod 2.
It is therefore not true that −2 = 2mod5 !

People often make the mistake of equating this. You can show this clearly if you place the
permutation (0, 1, 2, 3, 4) in Z5, for example from −11 to +11, over the range of numbers in Z.

4 1 2 3 4 1 2 3 4 1 2 3 4 1 2

-11 -1-2-3-4-6-7-8-9 1 2 3 4 6 7

3 4 1

8 9 11

0 0 0 00

0-5 5 10-10

range of numbers modulo 5

range of numbers in Z
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4.17 Appendix: Base representation and base transformation
of numbers, estimation of length of digits

For a given number z one may ask how to represent such a number. In general we use rep-
resentations like z = 2374 or z =

√
2. The second number consists of an infinite number of

digits and therefore it can never be described precisely by the first representation. You can get
around this problem by writing the number symbolically. But if you have to write it in digits,
the number must be rounded.

We represent numbers usually in the decimal system (base 10). Computers are working
with the binary representation of numbers — only for the display numbers are represented in
decimal or sometimes hexadecimal (base 16) form.

This appendix describes how to generate arbitrary base representations of any positive
integer and how to determine the number of required digits via the logarithm function.

b-adic sum representation of positive integers

Given base b, each positive integer z can be represented as a b-adic sum

z = anb
n + an−1b

n−1 + · · ·+ a1b+ a0,

where ai ∈ {0, 1, . . . , b− 1}, i = 0, 1, . . . , n are called digits.

For this sum, it follows that:
1) For arbitrary digits a0, a1, . . . , an it is: bn+1 > anb

n + an−1b
n−1 + · · ·+ a1b+ a0.

2) There exist digits a0, a1, . . . , an (namely ai = b−1 for i = 0, . . . , n), following that bn+1−1 ≤
anb

n + an−1b
n−1 + · · ·+ a1b+ a0.

(Using these inequalities it can be shown that each positive integer can be represented by a
b-adic sum).

By writing the digits anan−1 · · · a1a0 in a row directly after each other (without the bi) the
usual writing for numbers comes to hand.

Example:
Base b = 10: 10278 = 1 · 104 + 0 · 103 + 2 · 102 + 7 · 101 + 8
Base b = 16: FE70A = 15 · 164 + 14 · 163 + 7 · 162 + 0 · 161 + 10.

Number of digits to represent a positive integer

For a positive integer z the length of the b-adic representation can be determined via the
following steps. Starting from the inequality bn+1 > z ≥ bn we have — after applying the
logarithm function on basis b107 : n + 1 > logbz ≥ n. Therefore we have n = blogbzc108 . We
call lb(z) the number of required digits to represent the number z on the base b. We have

lb(z) := blogbzc+ 1.

Example 1 (decimal→hex):
We compute for the decimal number z = 234 (EA in hex) the hexadecimal representation

107Applying the logarithm formula on base b and b′ we have logb z = logb′ z/ logb′(b). It is therefore easy using e.g.
logarithm tables for the base b′ = 10 to compute the logarithm of base b = 2.

108The function bxc determines the next integer smaller than x (in case x ≥ 0 the digits after the decimal point are
truncated).
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(number base b = 16)

l16(z) = blog16(z)c+ 1 = bln(z)/ ln(16)c+ 1 = b1.96...c+ 1 = 1 + 1 = 2.

Example 2 (decimal→binary):
We compute for the decimal number z = 234 (11101010 in binary) the binary representation
(number base b = 2)

l2(z) = blog2(z)c+ 1 = bln(z)/ ln(2)c+ 1 = b7.87...c+ 1 = 7 + 1 = 8.

Example 3 (binary→decimal):
We compute for the decimal number z = 11101010 (234 decimal) the decimal representation
(number base b = 10)

l10(z) = blog10(z)c+ 1 = bln(z)/ ln(10)c+ 1 = b2, 36...c+ 1 = 2 + 1 = 3.

Algorithm to compute the base representation

Given the number z one can compute the base b representation of z using the following algorithm:

input: z, b
n := 0, z′ := z
while z′ > 0 do

an := z′ mod b,
z′ := bz′/bc
n := n+ 1

end do
output: anan−1 · · · a1a0 in base b representation.

Example 1 (decimal→hex):
The integer z = 234 on the number base 10 will be transformed into the hex representation via
a0 = 234 mod 16 = 10 = A, 234/16 = 14 = E,
a1 = 14 mod 16 = E
and therefore we have EA.

Example 2 (binary→decimal):
The binary number z = 1000100101110101 is transformed into the decimal representation via
the following steps:
1000100101110101 = 1001 (mod 1010) =⇒ a0 = 9, 1000100101110101/1010 = 110110111110
110110111110 = 1000 (mod 1010) =⇒ a1 = 8, 110110111110/1010 = 101011111
101011111 = 1 (mod 1010) =⇒ a2 = 1, 10101111/1010 = 100011
100011 = 101 (mod 1010) =⇒ a3 = 5, 100011/1010 = 1
11 = 11 (mod 1010) =⇒ a4 = 3
therefore z = 35189.
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4.18 Appendix: Examples using Sage

Below is Sage source code related to contents of the chapter 4 (“Introduction to Elementary
Number Theory with Examples”).

4.18.1 Multiplication table modulo m

The multiplication table 4.4 (from page 105) for a × i (mod m), where m = 17, a = 5 and
a = 6, and i ranges over all integers from 0 to 16 can be computed using Sage as follows:

Sage sample 4.1 Multiplication tables for a× i (mod m) with m = 17, a = 5 and a = 6
sage: m = 17; a = 5; b = 6

sage: [mod(a * i, m).lift() for i in xrange(m)]

[0, 5, 10, 15, 3, 8, 13, 1, 6, 11, 16, 4, 9, 14, 2, 7, 12]

sage: [mod(b * i, m).lift() for i in xrange(m)]

[0, 6, 12, 1, 7, 13, 2, 8, 14, 3, 9, 15, 4, 10, 16, 5, 11]

The function mod() returns an object that represents integers modulo m (in our case m = 17).
From the Mod object you can get its single components either with the function component
or with the function lift. We use the method lift() to convert that object to an integer
representation.

The other multiplication table examples modulo 13 (table 4.5) and modulo 12 (table 4.6) on
page 105 can similarly be computed by replacing m = 17 with m = 13 and m = 12 respectively.

4.18.2 Fast exponentiation

The fast exponentiation modulo m can be computed using the Sage function power_mod().
The result of this function is an integer. We can compute the exponentiation in the example in
chapter “Fast calculation of high powers” on page 107 as follows:

Sage sample 4.2 Fast exponentiation mod m = 103
sage: a = 87; m = 103

sage: exp = [2, 4, 8, 16, 32, 43]

sage: [power_mod(a, e, m) for e in exp]

[50, 28, 63, 55, 38, 85]
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4.18.3 Multiplicative order

The order ordm(a) of a number a in the multiplicative group Z∗m is the smallest number i ≥ 1
such that ai ≡ 1 (mod m) holds (see chapter 4.9, “Multiplicative order and primitive roots”).
To create table 4.7 on page 114 we can print all exponentiation ai (mod 11) as follows:

Sage sample 4.3 Table with all powers ai (mod m) for m = 11, a = 1, ..., 10
sage: m = 11

sage: for a in xrange(1, m):

....: print [power_mod(a, i, m) for i in xrange(1, m)]

....:

[1, 1, 1, 1, 1, 1, 1, 1, 1, 1]

[2, 4, 8, 5, 10, 9, 7, 3, 6, 1]

[3, 9, 5, 4, 1, 3, 9, 5, 4, 1]

[4, 5, 9, 3, 1, 4, 5, 9, 3, 1]

[5, 3, 4, 9, 1, 5, 3, 4, 9, 1]

[6, 3, 7, 9, 10, 5, 8, 4, 2, 1]

[7, 5, 2, 3, 10, 4, 6, 9, 8, 1]

[8, 9, 6, 4, 10, 3, 2, 5, 7, 1]

[9, 4, 3, 5, 1, 9, 4, 3, 5, 1]

[10, 1, 10, 1, 10, 1, 10, 1, 10, 1]

and including the last column with the order of each a mod (11)

sage: m = 11

sage: for a in xrange(1, m):

....: lst= [power_mod(a, i, m) for i in xrange(1, m)]

....: lst.append(multiplicative_order(mod(a,m)))

....: print lst

....:

[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]

[2, 4, 8, 5, 10, 9, 7, 3, 6, 1, 10]

[3, 9, 5, 4, 1, 3, 9, 5, 4, 1, 5]

[4, 5, 9, 3, 1, 4, 5, 9, 3, 1, 5]

[5, 3, 4, 9, 1, 5, 3, 4, 9, 1, 5]

[6, 3, 7, 9, 10, 5, 8, 4, 2, 1, 10]

[7, 5, 2, 3, 10, 4, 6, 9, 8, 1, 10]

[8, 9, 6, 4, 10, 3, 2, 5, 7, 1, 10]

[9, 4, 3, 5, 1, 9, 4, 3, 5, 1, 5]

[10, 1, 10, 1, 10, 1, 10, 1, 10, 1, 2]
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Table 4.8 on page 115 gives examples for the order modulo 45 ord45(a) and the Euler number
J(45).

The following Sage code constructs a table similar to that on page 115.

Sage sample 4.4 Table with all powers ai (mod 45) for a = 1, ..., 12 plus the order of a
sage: m = 45

sage: for a in xrange(1, 13):

....: lst = [power_mod(a, i, m) for i in xrange(1, 13)]

....: try:

....: lst.append(multiplicative_order(mod(a, m)))

....: except:

....: lst.append("None")

....: lst.append(euler_phi(m))

....: print lst

....:

[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 24]

[2, 4, 8, 16, 32, 19, 38, 31, 17, 34, 23, 1, 12, 24]

[3, 9, 27, 36, 18, 9, 27, 36, 18, 9, 27, 36, ’None’, 24]

[4, 16, 19, 31, 34, 1, 4, 16, 19, 31, 34, 1, 6, 24]

[5, 25, 35, 40, 20, 10, 5, 25, 35, 40, 20, 10, ’None’, 24]

[6, 36, 36, 36, 36, 36, 36, 36, 36, 36, 36, 36, ’None’, 24]

[7, 4, 28, 16, 22, 19, 43, 31, 37, 34, 13, 1, 12, 24]

[8, 19, 17, 1, 8, 19, 17, 1, 8, 19, 17, 1, 4, 24]

[9, 36, 9, 36, 9, 36, 9, 36, 9, 36, 9, 36, ’None’, 24]

[10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, ’None’, 24]

[11, 31, 26, 16, 41, 1, 11, 31, 26, 16, 41, 1, 6, 24]

[12, 9, 18, 36, 27, 9, 18, 36, 27, 9, 18, 36, ’None’, 24]

The number ordm(a) only exists if a is relatively prime to m, which can be checked with
gcd(a, m).

In the above code example, we put the calculation of the multiplicative order within a
try-except block. This allows Sage to catch any exceptions or errors raised by the function
multiplicative_order(). If an exception or error is raised in the try block, then we know
that ordm(a) does not exist for that particular value of a, hence in the except block we append
the string "None" to the row as represented by the object lst.
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Table 4.9 on page 116 displays exponentiation ai (mod 46) as well as the order ord46(a).

Sage can create that table as follows:

Sage sample 4.5 Table with all powers ai (mod 46) for a = 1, ..., 23 plus the order of a
sage: m = 46

sage: euler_phi(m)

22

sage: for a in xrange(1, 24):

....: lst = [power_mod(a, i, m) for i in xrange(1, 24)]

....: try:

....: lst.append(multiplicative_order(mod(a, m)))

....: except:

....: lst.append("None")

....: print lst

....:

[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]

[2, 4, 8, 16, 32, 18, 36, 26, 6, 12, 24, 2, 4, 8, 16, 32, 18, 36, 26, 6, 12, 24, 2, ’None’]

[3, 9, 27, 35, 13, 39, 25, 29, 41, 31, 1, 3, 9, 27, 35, 13, 39, 25, 29, 41, 31, 1, 3, 11]

[4, 16, 18, 26, 12, 2, 8, 32, 36, 6, 24, 4, 16, 18, 26, 12, 2, 8, 32, 36, 6, 24, 4, ’None’]

[5, 25, 33, 27, 43, 31, 17, 39, 11, 9, 45, 41, 21, 13, 19, 3, 15, 29, 7, 35, 37, 1, 5, 22]

[6, 36, 32, 8, 2, 12, 26, 18, 16, 4, 24, 6, 36, 32, 8, 2, 12, 26, 18, 16, 4, 24, 6, ’None’]

[7, 3, 21, 9, 17, 27, 5, 35, 15, 13, 45, 39, 43, 25, 37, 29, 19, 41, 11, 31, 33, 1, 7, 22]

[8, 18, 6, 2, 16, 36, 12, 4, 32, 26, 24, 8, 18, 6, 2, 16, 36, 12, 4, 32, 26, 24, 8, ’None’]

[9, 35, 39, 29, 31, 3, 27, 13, 25, 41, 1, 9, 35, 39, 29, 31, 3, 27, 13, 25, 41, 1, 9, 11]

[10, 8, 34, 18, 42, 6, 14, 2, 20, 16, 22, 36, 38, 12, 28, 4, 40, 32, 44, 26, 30, 24, 10, ’None’]

[11, 29, 43, 13, 5, 9, 7, 31, 19, 25, 45, 35, 17, 3, 33, 41, 37, 39, 15, 27, 21, 1, 11, 22]

[12, 6, 26, 36, 18, 32, 16, 8, 4, 2, 24, 12, 6, 26, 36, 18, 32, 16, 8, 4, 2, 24, 12, ’None’]

[13, 31, 35, 41, 27, 29, 9, 25, 3, 39, 1, 13, 31, 35, 41, 27, 29, 9, 25, 3, 39, 1, 13, 11]

[14, 12, 30, 6, 38, 26, 42, 36, 44, 18, 22, 32, 34, 16, 40, 8, 20, 4, 10, 2, 28, 24, 14, ’None’]

[15, 41, 17, 25, 7, 13, 11, 27, 37, 3, 45, 31, 5, 29, 21, 39, 33, 35, 19, 9, 43, 1, 15, 22]

[16, 26, 2, 32, 6, 4, 18, 12, 8, 36, 24, 16, 26, 2, 32, 6, 4, 18, 12, 8, 36, 24, 16, ’None’]

[17, 13, 37, 31, 21, 35, 43, 41, 7, 27, 45, 29, 33, 9, 15, 25, 11, 3, 5, 39, 19, 1, 17, 22]

[18, 2, 36, 4, 26, 8, 6, 16, 12, 32, 24, 18, 2, 36, 4, 26, 8, 6, 16, 12, 32, 24, 18, ’None’]

[19, 39, 5, 3, 11, 25, 15, 9, 33, 29, 45, 27, 7, 41, 43, 35, 21, 31, 37, 13, 17, 1, 19, 22]

[20, 32, 42, 12, 10, 16, 44, 6, 28, 8, 22, 26, 14, 4, 34, 36, 30, 2, 40, 18, 38, 24, 20, ’None’]

[21, 27, 15, 39, 37, 41, 33, 3, 17, 35, 45, 25, 19, 31, 7, 9, 5, 13, 43, 29, 11, 1, 21, 22]

[22, 24, 22, 24, 22, 24, 22, 24, 22, 24, 22, 24, 22, 24, 22, 24, 22, 24, 22, 24, 22, 24, 22, ’None’]

[23, 23, 23, 23, 23, 23, 23, 23, 23, 23, 23, 23, 23, 23, 23, 23, 23, 23, 23, 23, 23, 23, 23, ’None’]
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4.18.4 Primitive roots

Computing a primitive root (see chapter 4.9, “Multiplicative order and primitive roots”) in
Sage is very straightforward. If n is an integer, the command primitive_root(n) computes a
primitive root of the multiplicative group (Z/nZ)∗, if one exists. Where n is prime, then this
is the same as calculating a primitive root of Z/nZ.

Here, we calculate some primitive roots of a few integers.

Sage sample 4.6 Calculating one primitive root for some primes
sage: primitive_root(4)

3

sage: primitive_root(22)

13

sage: for p in primes(1, 50):

....: print p, primitive_root(p)

....:

2 1

3 2

5 2

7 3

11 2

13 2

17 3

19 2

23 5

29 2

31 3

37 2

41 6

43 3

47 5

If p is prime, then Z/pZ has at least one primitive root.
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Sometimes we want to compute all the primitive roots of Z/pZ, not just any primitive root of
Z/pZ. The following function can do this109.

Sage sample 4.7 Function “enum PrimitiveRoots of an Integer” to calculate all primitive
roots for a given number
def enum_PrimitiveRoots_of_an_Integer(M):

r"""

Return all the primitive roots of the integer M (if possible).

"""

try:

g = primitive_root(M)

except:

return None

targetOrder = euler_phi(M)

L=[]

# Stepping through all odd integers from 1 up to M, not including

# M. So this loop only considers values of i where 1 <= i < M.

for i in xrange(1,M,2):

testGen = Mod(g^i,M)

if testGen.multiplicative_order() == targetOrder:

L.append(testGen.lift())

# removing duplicates

return Set(L)

# AA_Start -- Testcases for enum_PrimitiveRoots_of_an_Integer(M)

print "AA_Start -- Testcases for enum_PrimitiveRoots_of_an_Integer(M)"

M=10; print "1-----------Testcase: M = %s" % M

LL = enum_PrimitiveRoots_of_an_Integer(M)

if LL==None:

print M

else:

print LL

M=8; print "2-----------Testcase: M = %s" % M

# M=8 hat keine primitive root mod m. Checke, ob per try - except abgefangen.

LL = enum_PrimitiveRoots_of_an_Integer(M)

if LL==None:

print M

else:

print LL

M=17; print "3-----------Testcase: M = %s" % M

LL = enum_PrimitiveRoots_of_an_Integer(M)

if LL==None:

print M

else:

print LL

# AA_End -- Testcases

OUTPUT:

AA_Start -- Testcases for enum_PrimitiveRoots_of_an_Integer(M)

1-----------Testcase: M = 10

{3, 7}

2-----------Testcase: M = 8

8

3-----------Testcase: M = 17

{3, 5, 6, 7, 10, 11, 12, 14}

109This code was developed in a Sage script file and executed non-interactively. That is why you don’t see ”sage:”
and ”....:” at the beginning of the lines like in the Sage samples before.
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For example, here is a list of all primitive roots of the prime 541.

Sage sample 4.8 Table with all primitive roots for the given prime 541
sage: L=enum_PrimitiveRoots_of_an_Integer(541); L

{2, 517, 10, 523, 13, 14, 527, 528, 18, 531, 24, 539, 30, 37, 40, 51,

54, 55, 59, 62, 65, 67, 68, 72, 73, 77, 83, 86, 87, 91, 94, 96, 98,

99, 107, 113, 114, 116, 117, 126, 127, 128, 131, 132, 138, 150, 152,

153, 156, 158, 163, 176, 181, 183, 184, 195, 197, 199, 206, 208,

210, 213, 218, 220, 223, 224, 244, 248, 250, 257, 258, 259, 260,

261, 263, 267, 269, 270, 271, 272, 274, 278, 280, 281, 282, 283,

284, 291, 293, 297, 317, 318, 321, 323, 328, 331, 333, 335, 342,

344, 346, 357, 358, 360, 365, 378, 383, 385, 388, 389, 391, 403,

409, 410, 413, 414, 415, 424, 425, 427, 428, 434, 442, 443, 445,

447, 450, 454, 455, 458, 464, 468, 469, 473, 474, 476, 479, 482,

486, 487, 490, 501, 504, 511}

sage: len(L)

144
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With a little bit of programming, we can count how many primitive roots are in a given range
of integers. We can check this for all numbers or only for the primes within this range.

Sage sample 4.9 Function “count PrimitiveRoots of an IntegerRange” to calculate all primi-
tive roots for a given range of integers
def count_PrimitiveRoots_of_an_IntegerRange(start, end, bPrimesOnly=True):

r"""

Compute all primitive roots of all numbers between start and end,

inclusive, and count them.

If the flag bPrimesOnly is True, it performs primality tests, so it

allows us to count the number of primes from start to end, inclusive.

If the flag bPrimesOnly is false, it additionally counts these even

numbers which have no primitive root.

"""

nCheckedNumb = 0

nCheckedNumb_WithoutPrimitivRoots = 0

nPrimitiveRoots = 0

for n in xrange(start, end+1):

if bPrimesOnly:

if is_prime(n):

nCheckedNumb += 1

L = enum_PrimitiveRoots_of_an_Integer(n)

nPrimitiveRoots += len(L)

else:

nCheckedNumb += 1

L = enum_PrimitiveRoots_of_an_Integer(n)

if L==None:

nCheckedNumb_WithoutPrimitivRoots += 1

else:

nPrimitiveRoots += len(L)

if bPrimesOnly:

print "Found all %s" % nPrimitiveRoots + \

" primitive roots of %s primes." % nCheckedNumb

else:

if nCheckedNumb_WithoutPrimitivRoots == 0:

print "Found all %s " % nPrimitiveRoots + \

"primitive roots of %s numbers." % nCheckedNumb

else:

print "Found all %s " % nPrimitiveRoots + \

"primitive roots of %s numbers." % \

(nCheckedNumb - nCheckedNumb_WithoutPrimitivRoots)

print "(Total of numbers checked: %s, " % nCheckedNumb + \

"Amount of numbers without primitive roots: %s)" % \

nCheckedNumb_WithoutPrimitivRoots
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Using the Sage command time, we can also find out how long it takes on our computer.

Sage sample 4.10 Function “count PrimitiveRoots of an IntegerRange”: testcases and output
# BB_Start -- Testcases for count_PrimitiveRoots_of_an_IntegerRange(start, end, bPrimesOnly=True)

print "\n\nBB_Start -- Testcases for count_PrimitiveRoots_of_an_IntegerRange(start, end, True)"

print "\n1-----------Testcase: (1, 500)"

time count_PrimitiveRoots_of_an_IntegerRange(1, 500)

print "\n2-----------Testcase: (5, 6, False)"

time count_PrimitiveRoots_of_an_IntegerRange(5, 6, False)

print "\n3-----------Testcase: (1, 500, False)"

time count_PrimitiveRoots_of_an_IntegerRange(1, 500, False)

# BB_End -- Testcases

OUTPUT:

BB_Start -- Testcases for count_PrimitiveRoots_of_an_IntegerRange(start, end, bPrimesOnly=True)

1-----------Testcase: (1, 500)

Found all 8070 primitive roots of 95 primes.

Time: CPU 0.94 s, Wall: 0.97 s

2-----------Testcase: (5, 6, False)

Found all 3 primitive roots of 2 numbers.

Time: CPU 0.00 s, Wall: 0.00 s

3-----------Testcase: (1, 500, False)

Found all 11010 primitive roots of 170 numbers.

(Total of numbers checked: 500, Amount of numbers without primitive roots: 330)

Time: CPU 1.52 s, Wall: 1.59 s

158



Using our custom-defined function enum_PrimitiveRoots_of_an_Integer, we can find all
primitive roots of one prime integer p.

The following function counts how many primes are in a given range and enumerate all their
primitive roots.

From this list of primitive roots, we can determine the smallest and largest primitive root
for Z/pZ, as well as count the number of primitive roots of Z/pZ.

Sage sample 4.11 Function “count PrimitiveRoots of a PrimesRange” to calculate the num-
ber of primitive roots for a given range of primes
def count_PrimitiveRoots_of_a_PrimesRange(start, end):

r"""

Compute all primitive roots of all primes between start and end,

inclusive. This uses a primes iterator.

"""

nPrimes = 0

nPrimitiveRoots = 0

for p in primes(start, end+1):

L = enum_PrimitiveRoots_of_an_Integer(p)

print p, len(L)

nPrimes += 1

nPrimitiveRoots += len(L)

print "Found all %s" % nPrimitiveRoots + " primitive roots of %s primes." % nPrimes

# CC_Start -- Testcases for count_PrimitiveRoots_of_a_PrimesRange(start, end)

print "\n\nBB_Start -- Testcases for count_PrimitiveRoots_of_a_PrimesRange(start, end)"

print "-----------Testcase: (1, 1500)"

time count_PrimitiveRoots_of_a_PrimesRange(1, 1500)

# CC_End -- Testcases

OUTPUT:

CC_Start -- Testcases for count_PrimitiveRoots_of_a_PrimesRange(start, end)

-----------Testcase: (1, 1500)

2 1

3 1

5 2

7 2

11 4

13 4

17 8

19 6

23 10

29 12

31 8

37 12

...

1483 432

1487 742

1489 480

1493 744

1499 636

Found all 62044 primitive roots of 239 primes.

Time: CPU 7.55 s, Wall: 7.85 s
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A slightly modified version of our function count_PrimitiveRoots_of_a_PrimesRange, is used
to generate a database of all primitive roots of all primes between 1 and 100,000.

Sage sample 4.12 Code to generate the database with all primitive roots for all primes between
1 and 100,000
start = 1

end = 10^5

fileName = "/scratch/mvngu/primroots.dat"

file = open(fileName, "w")

for p in primes(start, end+1):

L = enum_PrimitiveRoots_of_an_Integer(p)

print p, len(L)

# Output to a file. The format is:

# (1) the prime number p under consideration

# (2) the number of primitive roots of Z/pZ

# (3) all the primitive roots of Z/pZ

file.write(str(p) + " " + str(len(L)) + " " + str(L) + "\n")

file.flush()

file.close()

It took about one day on the machine sage.math to generate the file “primroots.dat” (done
in July 2009 by Minh Van Nguyen).

This code and the function enum_PrimitiveRoots_of_an_Integer was put in a Sage script
file and executed non-interactively.

The file “primroots.dat” is a database of all primitive roots of all primes between 1 and
100,000 inclusive. It is a very large file (about 1 GB uncompressed, and 285 MB compressed
with bzip2). You can find the file at http://sage.math.washington.edu/home/mvngu/doc/
primitive-roots/primroots.dat.bz2.
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This database file “primroots.dat” was used then to create three graphics using the following
code.

Sage sample 4.13 Code to generate the graphics about the primitive roots
sage: # open a database file on primitive roots from 1 to 100,000

sage: file = open("/scratch/mvngu/primroots.dat", "r")

sage: plist = [] # list of all primes from 1 to 100,000

sage: nlist = [] # number of primitive roots modulo prime p

sage: minlist = [] # smallest primitive root modulo prime p

sage: maxlist = [] # largest primitive root modulo prime p

sage: for line in file:

....: # get a line from the database file and tokenize it for processing

....: line = line.strip().split(" ", 2)

....: # extract the prime number p in question

....: plist.append(Integer(line[0]))

....: # extract the number of primitive roots modulo p

....: nlist.append(Integer(line[1]))

....: # extract the list of all primitive roots modulo p

....: line = line[-1]

....: line = line.replace("{", "")

....: line = line.replace("}", "")

....: line = line.split(", ")

....: # sort the list in non-decreasing order

....: line = [Integer(s) for s in line]

....: line.sort()

....: # get the smallest primitive root modulo p

....: minlist.append(line[0])

....: # get the largest primitive root modulo p

....: maxlist.append(line[-1])

....:

sage: file.close() # close the database file

sage: # plot of number of primitive roots modulo p

sage: nplot = point2d(zip(plist, nlist), pointsize=1)

sage: nplot.axes_labels(["x", "y"])

sage: nplot

sage: # plot of smallest primitive root modulo prime p

sage: minplot = point2d(zip(plist, minlist), pointsize=1)

sage: minplot.axes_labels(["x", "y"])

sage: minplot

sage: # plot of largest primitive root modulo prime p

sage: maxplot = point2d(zip(plist, maxlist), pointsize=1)

sage: maxplot.axes_labels(["x", "y"])

sage: maxplot
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Figure 4.2 graphs the number of primitive roots for each prime between 1 and 100,000. The
x-axis represents primes between 1 and 100,000, while the y-axis counts the number of primitive
roots for each prime within that interval.

Figure 4.2: The number of primitive roots of all primes between 1 and 100,000.

Figure 4.3 graphs the smallest primitive roots of all primes between 1 and 100,000. The
x-axis represents primes between 1 and 100,000. The y-axis represents the smallest primitive
root of each prime within that interval.

Figure 4.4 shows a corresponding graph for the largest primitive root of each prime within
the above interval.
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Figure 4.3: The smallest primitive roots of all primes between 1 and 100,000.

Figure 4.4: The largest primitive roots of all primes between 1 and 100,000.
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4.18.5 RSA examples with Sage

Below is Sage source code for the simple RSA examples in section 4.13 (“The RSA procedure
with actual numbers”).

Example on page 139:
The RSA exponentiation M37 (mod 3713) on message M = 120 can be calculated in Sage as
follows:

sage: power_mod(120, 37, 3713)

1404

Example on page 140:
The factorization of J(256027) = 255016 = 23∗127∗251 can be calculated using Sage as follows:

Sage sample 4.14 Factoring a number
sage: factor(255016)

2^3 * 127 * 251

Example on page 140:
Sage can do RSA encryption as follows:

Sage sample 4.15 RSA encryption by modular exponentiation of a number (used as message)
sage: A = [82, 83, 65, 32, 119, 111, 114, 107, 115, 33]

sage: e = 65537; m = 256027

sage: [power_mod(a, e, m) for a in A]

[212984, 25546, 104529, 31692, 248407, 100412, 54196, 100184, 58179, 227433]

Example on page 141:
RSA encryption using Sage:

sage: A = [21075, 16672, 30575, 29291, 29473]

sage: e = 65537; m = 256027

sage: [power_mod(a, e, m) for a in A]

[158721, 137346, 37358, 240130, 112898]

Example on page 141:
RSA encryption using Sage:

sage: A = [82083, 65032, 119111, 114107, 115033]

sage: e = 65537; m = 256027

sage: [power_mod(a, e, m) for a in A]

[198967, 51405, 254571, 115318, 14251]
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4.18.6 How many RSA keys exist within a given modulo range?

The RSA encryption procedure was described in section 4.10.2 (“How the RSA procedure
works”). Steps 1 to 3 constitute key generation, steps 4 and 5 are the encryption:

1. Select two distinct random prime numbers p and q and calculate n = p ∗ q.
The value n is called the RSA modulus.

2. Select an arbitrary e ∈ {2, · · · , n− 1} such that:
e is relatively prime to J(n) = (p− 1) ∗ (q − 1).
We can then “throw away” p and q.

3. Select d ∈ {1, · · · , n− 1} with e ∗ d ≡ 1 (mod J(n)),
i.e. d is the multiplicative inverse of e modulo J(n). We can then “throw away” J(n).

→ (n, e) is the public key P .

→ (n, d) is the private key S (only d must be kept secret).

4. For encryption, the message represented as a (binary) number is divided into parts such
that each part of the number represents a number less than n.

5. Encryption of the plaintext (or the parts of it) M ∈ {1, · · · , n− 1}:

C = E((n, e);M) := M e (mod n).

The default way to crack a given RSA ciphertext C would be to use the public key of the
recipient and to try to factorize n. Then you can go through the steps 2 and 3 and generate
the private key e, which is normally used to decrypt a ciphertext.

According to the “prime number theorem” (described in section 3.7.2 “The number of prime
numbers PI(x)”) the number of prime numbers PI(x) is asymptotic to x/ln(x). If you have a
given n then there are about n/ln(n) different possible values for the prime p.

If you don’t want to use factorization but ask the question like in classic encryption, you may
want to find out: How many possible private keys (n, d) are there for a given key size range
n ∈ [a, b]?

Sage source code 4.16 below defining the function count_Number_of_RSA_Keys can answer this
question concretely (if the modulus is not too big).110

As there are many more private keys (n, d) within a bigger range of values for n, even brute-force
factoring is much more efficient as brute-force trying all the keys.

110a) Calling sage: count_Number_of_RSA_Keys(100, 1000) means to consider the interval [100, 1000] for n. n is
defined by the two primes p, q : n = p ∗ q. So the primes can have the maximal value 500 because 2 ∗ 500 = 1000.
The number of possible combinations of primes is comb = 258.
The number of primes in the given range is 143.
The number of private keys is 34, 816.
b) Calling sage: count_Number_of_RSA_Keys(100, 100, True) has the following output:
- Number of private keys for modulus in a given range: 0
- Number of primes in a given range: 0
The reason for that is, that now we only consider n = 100, and 100 is not semi prime, this means 100 is not the
product of only two primes.
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Sage sample 4.16 How many RSA keys are there if you know a range for the public keys n?
def count_Number_of_RSA_Keys(start, end, Verbose=False):

r"""

How many private RSA keys (n,d) exist, if only modulus N is given, and start <= N <= end?

(prime_range(u,o) delivers all primes >=u und < o).

"""

a = start

b = end

s = 0

comb = 0

for p in prime_range(1, b/2+1):

for q in prime_range(p + 1, b/2+1):

if a <= p * q and p * q <= b:

comb = comb +1

s = s + (euler_phi(euler_phi(p * q))-1)

if Verbose:

print "p=%s, " % p + "q=%s, " % q + "s=%s" % s

print "Number of private keys for modulus in a given range: %s" % s + " (comb=%s), " % comb

# Just for comparison: How many primes are in this range?

s = 0

for p in prime_range(a, b+1):

if Verbose:

print "a=%s, " % a + "b=%s, " % b + "p=%s" % p

s = s + 1

print "Number of primes in a given range: %s" % s

print "\n\nDD_Start -- Testcases for count_Number_of_RSA_Keys(start, end)"

print "\n-----------Testcase: (100, 1000) [Should deliver 34.816]"

time count_Number_of_RSA_Keys(100, 1000)

print "\n-----------Testcase: (100, 107, True) [Should deliver 23]"

time count_Number_of_RSA_Keys(100, 107, True)

u = 10^3; o = 10^4;

print "\n-----------Testcase: (%s, " % u + "%s) [Should deliver 3.260.044]" % o

time count_Number_of_RSA_Keys(u, o)

OUTPUT:

DD_Start -- Testcases for count_Number_of_RSA_Keys(start, end)

-----------Testcase: (100, 1000) [Should deliver 34.816]

Number of private keys for modulus in a given range: 34816 (comb=258),

Number of primes in a given range: 143

Time: CPU 0.03 s, Wall: 0.04 s

-----------Testcase: (100, 107, True) [Should deliver 23]

p=2, q=53, s=23

Number of private keys for modulus in a given range: 23 (comb=1),

a=100, b=107, p=101

a=100, b=107, p=103

a=100, b=107, p=107

Number of primes in a given range: 3

Time: CPU 0.00 s, Wall: 0.00 s

-----------Testcase: (1000, 10000) [Should deliver 3.260.044]

Number of private keys for modulus in a given range: 3260044 (comb=2312),

Number of primes in a given range: 1061

Time: CPU 0.63 s, Wall: 0.66 s
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4.19 Appendix: List of the definitions and theorems formulated
in this chapter

Short description Page
Definition 4.3.1 prime numbers 96
Definition 4.3.2 composite numbers 96
Theorem 4.3.1 factors of composite numbers 97
Theorem 4.3.2 1st fundamental theorem of number theory 97
Definition 4.4.1 divisibility 98
Definition 4.4.2 remainder class r modulo m 98
Definition 4.4.3 congruent 99
Theorem 4.4.1 congruence with difference 99
Theorem 4.6.1 multiplicative inverse (existence) 103
Theorem 4.6.2 exhaustive permutation 105
Theorem 4.6.3 power mod m 107
Definition 4.7.1 Zn 109
Definition 4.7.2 Z∗n 110
Theorem 4.7.1 multiplicative inverse in Z∗n 110
Definition 4.8.1 Euler function J(n) 111
Theorem 4.8.1 J(p) 111
Theorem 4.8.2 J(p ∗ q) 111
Theorem 4.8.3 J(p1 ∗ · · · ∗ pk) 111
Theorem 4.8.4 J(pe11 ∗ · · · ∗ p

ek
k ) 111

Theorem 4.8.5 little Fermat 112
Theorem 4.8.6 Euler-Fermat theorem 112
Definition 4.9.1 multiplicative order ordm(a) 114
Definition 4.9.2 primitive root of m 115
Theorem 4.9.1 exhausting of all possible values 115
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Web links

1. Ron Knott’s Fibonacci page,
Here, everything revolves around Fibonacci numbers.
http://www.mcs.surrey.ac.uk/personal/R.Knott/Fibonacci/fib.html

2. CrypTool,
Open source e-learning software to illustrate cryptography and cryptanalysis
http://www.cryptool.de,
http://www.cryptool.org,
http://www.cryptool.com

3. Mathematica,
Commercial mathematics package
http://www.wolfram.com

4. LiDIA,
Extensive library containing number-theory functions and the LC interpreter. Mainte-
nance stopped.
http://www.informatik.tu-darmstadt.de/TI/LiDIA

5. BC,
Interpreter with number-theory functions
http://www.gnu.org/software/bc/bc.html

6. Pari-GP,
Excellent, fast, free interpreter with number theoretical functions.
http://pari.math.u-bordeaux.fr/
http://en.wikipedia.org/wiki/PARI/GP
Resources for PARI/GP at Karim Belabas’s website:
http://www.math.u-bordeaux.fr/~belabas/pari/

7. Only after I had completed this article, did I come across the website of Mr. Münchenbach,
which interactively and didactically uses elementary number theory to provide a sophisti-
cated description of the fundamental mathematical thought processes. It was created for
a teaching project in the 11th grade of the technical grammar school (unfortunately only
available in German):
http://www.hydrargyrum.de/kryptographie

8. Web site of Mr. Wagner, who is responsible for the development of the curriculum of
computer science in one of the German federal states (Länder). Here you can get hold of
a collection of texts and (Java-)programs (available only in German):
http://www.saar.de/~awa/kryptolo.htm

9. GISA,
German Information Security Agency
http://www.bsi.bund.de

10. Factorization records and challenges,
http://www.crypto-world.com/
http://www.crypto-world.com/FactorWorld.html, Webseite von Scott Contini
http://www.loria.fr/~zimmerma/records/factor.html
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http://www.tutorgig.com/ed/RSA_number

http://www.uni-bonn.de/Aktuelles/Pressemitteilungen/pm02/pm035-02.html
http://www.ercim.org/publication/Ercim_News/enw49/franke.html
http://www.loria.fr/~zimmerma/records/rsa160

http://www.rsa.com/rsalabs/node.asp?id=2092

11. The Cunningham Project,
http://www.cerias.purdue.edu/homes/ssw/cun/

12. Sage,
Excellent, open source computer algebra system with Python as script language, used to
build the code samples in this chapter. See the introduction in chapter A.5.
http://www.sagemath.org/
http://en.wikipedia.org/wiki/Sage_%28mathematics_software%29
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Chapter 5

The Mathematical Ideas behind
Modern Cryptography1

(Oyono R. / Esslinger B./ Schneider J., Sep. 2000; Updates Nov. 2000, Feb. 2003, Apr. 2007,
Mar. 2010)

Georg Christoph Lichtenberg2:
I don’t know if its getting better, if we change it,
but I know, that we have to change it, if it should become better.

5.1 One way functions with trapdoor and complexity classes

A one way function is a function that can be calculated efficiently, but whose inverse is
extremely complicated and practically impossible to calculate.

To put it more precisely: A one way function is a mapping f from a set X to a set Y, such
that f(x) can be calculated easily for each element x of X, whereas for (almost) every y from
Y it is practically impossible to find an inverse image x (i.e. an x where f(x) = y).

An everyday example of a one way function is a telephone book: the function to be performed
is to assign a name to the corresponding telephone number. This can be done easily due to the
fact that the names are sorted alphabetically. However, the inverse function - assigning a name
to a given number - is obviously difficult if you only have a telephone book available.

One way functions play a decisive role in cryptography. Almost all cryptographic terms can
be rephrased using the term one way function. Let’s take for example public key encryption
(asymmetric cryptography):

Each subscriber T to the system is assigned a private key dT and what is known as a public
key eT . These keys must have the following property (public key property):

1With the educational tool for number theory NT you can apply some of the methods introduced here (RSA,
Rabin, DH, ElGamal) (see learning unit 4.2 and 4.3, pages 9-17/17).
NT can be called in CrypTool via the menu path Indiv. Procedures \ Number Theory Interactive \
Learning Tool for Number Theory. See appendix A.4.

2Georg Christoph Lichtenberg, German writer and physicist (1742-1799),
(also see: http://en.wikipedia.org/wiki/Georg Christoph Lichtenberg)
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For an opponent who knows the public key eT , it is practically impossible to determine the
private key dT .

In order to construct useful public key procedures, therefore, we look for a one way function
that is “easy” to calculate in one direction , but is “difficult” (practically impossible) to calculate
in the other direction, provided that a particular piece of additional information (trapdoor) is
not available. This additional piece of information allows the inverse to be found efficiently.
Such functions are called trapdoor one way functions. In the above case, dT is the trapdoor
information.

In this process, we describe a problem as “easy” if it can be solved in polynomial time as
a function of the length of the input. If the length of the input is n bits, then the time for
calculating the function is proportional to na, where a is a constant. We say that the complexity
of such problems is O(na) [Landau- or Big-O notation].

If you compare two functions 2n and na, where a is a constant, then there always exists
a value for n, from which for all further n applies: na < 2n. The function na has a lower
complexity. Sample: for a = 5 the following applies: from the length n = 23, 2n is greater
than n5; for further n 2n clearly increases more quickly [(222 = 4, 194, 304, 225 = 5, 153, 632),
(223 = 8, 388, 608, 235 = 6, 436, 343), (224 = 16, 777, 216, 245 = 7, 962, 624)].

The term “practically impossible” is slightly less precise. In general, we can say that a
problem cannot be solved efficiently, if the time required to solve it increases more quickly than
the polynomial time as a function of the size of the input. If, for example, the length of the
input is n bits and the time required for calculating the function is proportional to 2n, then the
following currently applies: the function practically cannot be calculated for n > 80.

In order to develop a public key procedure that can be implemented in practice, it is therefore
necessary to discover a suitable trapdoor one way function.

In order to tidy things up among this confusing multitude of possible problems and their
complexities, we group problems with similar complexities into classes.

The most important complexity classes are the classes P and NP:

• The class P: This class contains those problems that can be solved in a polynomial amount
of time.

• The class NP: The definition of this class doesn’t look at the time required to solve a
problem, but rather at the time required to verify a given solution. The class NP consists
of those problems for which a given solution can be verified in a polynomial amount of
time. Hereby, the term NP “non-deterministic” means polynomial and is based on a
calculation model, i.e. on a computer that only exists in theory and can “guess” correct
solutions non-deterministically then verify them in polynomial time.

The class P is contained in the class NP. A well-known unsolved problem is the question
whether or not P 6= NP is true, i.e. whether or not P is a true subset. An important property
of the class NP is that it also contains what are known as “NP-complete” problems. These are
problems that represent the class NP as follows: If a “good” algorithm for such a problem exists,
then “good” algorithms exist for all problems from NP. In particular: if P only contained one
complete problem, i.e. if a polynomial solution algorithm existed for this problem, then Pwould
be equal to NP. In this sense, the NP-complete problems are the most difficult problems in
NP.

Many cryptographic protocols are formed in such a way that the “good” subscribers only
have to solve problems from P, whereas a perpetrator is faced with problems from NP.
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Unfortunately, we do not yet know whether one way functions actually exist. However, we
can prove that one way functions exist if and only if P 6= NP [Balcazar1988, S.63].

Some mathematicians have again and again claimed to have proven this equivalence, but so
far the claims have always turned out to be false [Hesselink2001].

A number of algorithms have been suggested for public key procedures. In many cases -
although they at first appeared promising - it was discovered that they could be solved polyno-
mially. The most famous failed applicant is the knapsack with trapdoor, suggested by Ralph
Merkle [Merkle1978].

5.2 Knapsack problem as a basis for public key procedures

5.2.1 Knapsack problem

You are given n objects G1, . . . , Gn with the weights g1, . . . gn and the values w1, · · · , wn. The
aim is to carry away as much as possible in terms of value while restricted to an upper weight
limit g. You therefore need to find a subset of {G1, · · · , Gn}, i.e. {Gi1 , . . . , Gik}, so that
wi1 + · · ·+ wik is maximised under the condition gi1 + · · ·+ gik ≤ g.

Such questions are called NP-complete problems (not deterministically polynomial) that
are difficult to calculate.

A special case of the knapsack problem is:
Given the natural numbers a1, . . . , an and g., find x1, . . . , xn ∈ {0, 1} where g =

∑n
i=1 xiai (i.e.

where gi = ai = wi is selected). This problem is also called a 0-1 knapsack problem and is
identified with K(a1, . . . , an; g).

Two 0-1 knapsack problems K(a1, . . . , an; g) and K(a′1, . . . , a
′
n; g′) are called congruent if

two co-prime numbers w and m exist in such a way that

1. m > max{
∑n

i=1 ai,
∑n

i=1 a
′
i},

2. g ≡ wg′ mod m,

3. ai ≡ wa′i mod m for all i = 1, . . . , n.

Comment:
Congruent 0-1 knapsack problems have the same solutions. No quick algorithm is known for
clarifying the question as to whether two 0-1 knapsack problems are congruent.

A 0-1 knapsack problem can be solved by testing the 2n possibilities for x1, . . . , xn. The
best method requires O(2n/2) operations, which for n = 100 with 2100 ≈ 1.27 · 1030 and 2n/2 ≈
1.13 · 1015 represents an insurmountable hurdle for computers. However, for special a1, . . . , an
the solution is quite easy to find, e.g. for ai = 2i−1. The binary representation of g immediately
delivers x1, . . . , xn. In general, the a 0-1 knapsack problem can be solved easily if a permutation3

π of 1, . . . , n exists with aπ(j) >
∑j−1

i=1 aπ(i). If, in addition, π is the identity, i.e. π(i) = i for
i = 1, 2, . . . , n, then the sequence a1, . . . , an is said to be super-increasing. Crypto procedure 5.1
solves the knapsack problem with a super-increasing sequence in the time of O(n).

3A permutation π of the numbers 1, . . . , n is a change in the order in which these numbers are listed. For example,
a permutation π of (1, 2, 3) is (3, 1, 2), i.e. π(1) = 3, π(2) = 1 and π(3) = 2.
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Crypto Procedure 5.1 Solving knapsack problems with super-increasing weights
for i = n to 1 do

if T ≥ ai then
T := T − si
xi := 1

else
xi := 0

if T = 0 then
X := (x1, . . . , xn) is the solution.

else
No solution exists.

5.2.2 Merkle-Hellman knapsack encryption

In 1978, Merkle and Hellman [Merkle1978] specified a public key encryption procedure that is
based on “defamiliarizing” the easy 0-1 knapsack problem with a super-increasing sequence into
a congruent one with a super-increasing sequence. It is a block ciphering that ciphers an n-bit
plaintext each time it runs, see crypto procedure 5.2 for the details.

Crypto Procedure 5.2 Merkle-Hellman (based on knapsack problems)
Let (a1, . . . , an) be super-increasing. Let m and w be two co-prime numbers with m >

∑n
i=1 ai

and 1 ≤ w ≤ m − 1. Select w̄ with ww̄ ≡ 1 mod m the modular inverse of w and set bi :=
wai mod m, 0 ≤ bi < m for i = 1, . . . , n, and verify whether the sequence b1, . . . bn is not
super-increasing. A permutation bπ(1), . . . , bπ(n) of b1, . . . , bn is then published and the inverse

permutation µ to π is defined secretly. A sender writes his/her message in blocks (x(j)
1 , . . . , x

(j)
n )

of binary numbers n in length, calculates

g(j) :=
n∑
i=1

x
(j)
i bπ(i)

and sends g(j), (j = 1, 2, . . . ).
The owner of the key calculates

G(j) := w̄g(j) mod m, 0 ≤ G(j) < m

and obtains the x(j)
µ(i) ∈ {0, 1} (and thus also the x(j)

i ) from

G(j) ≡ w̄g(j) =
n∑
i=1

x
(j)
i bπ(i)w̄ ≡

n∑
i=1

x
(j)
i aπ(i) mod m

=
n∑
i=1

x
(j)
µ(i)aπ(µ(i)) =

n∑
i=1

x
(j)
µ(i)ai mod m,

by solving the easier 0-1 knapsack problems K(a1, . . . , an;G(j)) with super-increasing sequence
a1, . . . , an.

In 1982, Shamir [Shamir1982] specified an algorithm for breaking the system in polynomial
time without solving the general knapsack problem. Len Adleman [Adleman1982] and Jeff
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Lagarias [Lagarias1983] specified an algorithm for breaking the twice iterated Merkle-Hellman
knapsack encryption procedure in polynomial time. Ernst Brickell [Brickell1985] then specified
an algorithm for breaking multiply iterated Merkle-Hellman knapsack encryption procedures in
polynomial time. This made this procedure unsuitable as an encryption procedure. It therefore
delivers a one way function whose trapdoor information (defamiliarization of the 0-1 knapsack
problem) could be discovered by an eavesdropper.

5.3 Decomposition into prime factors as a basis for public key
procedures

5.3.1 The RSA procedure4,5

As early as 1978, R. Rivest, A. Shamir, L. Adleman [RSA1978] introduced the most important
asymmetric cryptography procedure to date.

Crypto Procedure 5.3 RSA (based on the factorization problem)
Key generation:

Let p and q be two different prime numbers and N = pq. Let e be any prime number relative to
φ(N) , i.e. gcd(e, φ(N)) = 1. Using the Euclidean algorithm, we calculate the natural number
d < φ(N), such that

ed ≡ 1 mod φ(N).

whereby φ is the Euler phi Function.
The output text is divided into blocks and encrypted, whereby each block has a binary value
x(j) ≤ N .

Public key:
N, e.

Private key:
d.

Encryption:
y = eT (x) = xe mod N.

Decryption:
dT (y) = yd mod N.

Comment:
The Euler phi function is defined as: φ(N) is the number of natural numbers that do not have
a common factor with N x ≤ N. Two natural numbers a and b are co-prime if gcd(a, b) = 1.

For the Euler phi function it holds that:

φ(1) = 1, φ(2) = 1, φ(3) = 2, φ(4) = 2, φ(6) = 2, φ(10) = 4, φ(15) = 8.

For example, φ(24) = 8, because

|{x < 24 : gcd(x, 24) = 1}| = |{1, 5, 7, 11, 13, 17, 19, 23}|.

4Please compare chapters 4.10, ff.
5Using CrypTool you can gain practical experience with the RSA procedure via the menu Indiv.Procedures \
RSA Cryptosystem \ RSA Demonstration.
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If p is a prime number, then φ(p) = p− 1.
If we know the various prime factors p1, . . . , pk of N, then

φ(N) = N · (1− 1
p1

) · · · (1− 1
pk

).6

Table 5.1 gives the values up to 15. In the case of N = pq,

φ(N) = pq(1− 1/p)(1− 1/q) = p(1− 1/p)q(1− 1/q) = (p− 1)(q − 1).

n φ(n) The natural numbers that are co-prime to n and less than n.

1 1 1
2 1 1
3 2 1, 2
4 2 1, 3
5 4 1, 2, 3, 4
6 2 1, 5
7 6 1, 2, 3, 4, 5, 6
8 4 1, 3, 5, 7
9 6 1, 2, 4, 5, 7, 8
10 4 1, 3, 7, 9
15 8 1, 2, 4, 7, 8, 11, 13, 14

Table 5.1: Euler phi function

The function eT is a one way function whose trapdoor information is the decomposition into
primes of N .

At the moment, no algorithm is known that can factorize two prime numbers sufficiently
quickly for extremely large values (e.g. for several hundred decimal places). The quickest
algorithms known today [Stinson1995] factorize a compound whole number N in a time period
proportional to L(N) = e

√
ln(N) ln(ln(N)). Some example values can be found in table 5.2.

N 1050 10100 10150 10200 10250 10300

L(N) 1.42 · 1010 2.34 · 1015 3.26 · 1019 1.20 · 1023 1.86 · 1026 1.53 · 1029

Table 5.2: L(N) value table

To this date, it has not been proved that the problem of breaking RSA is equivalent to the
factorization problem. Nevertheless, it is clear that the RSA procedure will no longer be safe if
the factorization problem is “solved”.7

6Further formulas for the Euler phi function are in the article “Introduction to Elementary Number Theory with
Examples”, chapter 4.8.1.

7In 2000 the authors assumed that values of the order magnitude 100 to 200 decimal places are currently safe.
They estimates that the current computer technology indicates that a number with 100 decimal places could
be factorized in approximately two weeks at justifiable costs, and using an expensive configuration (e.g. of
around 10 million US dollars), a number with 150 decimal places could be factorized in about a year, and a
200-digit number should remain impossible to factorize for a long time to come, unless there is a mathematical
breakthrough. However, you can never be sure that there won’t be a mathematical breakthrough tomorrow.
How easy it is to guess the future wrong is shown by the factorization of RSA-200 (see chapter 4.11.4) – completely
without a “mathematical breakthrough”.
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5.3.2 Rabin public key procedure (1979)

The Rabin public key procedure (crypto procedure 5.4) has been shown to be equivalent to
breaking the factorization problem. Unfortunately, this procedure is susceptible to chosen-
ciphertext attacks.

Crypto Procedure 5.4 Rabin (based on the factorization problem)
Let p and q be two different prime numbers with p, q ≡ 3 mod 4 and n = pq. Let 0 ≤ B ≤ n−1.
Public key:

e = (n,B).

Private key:
d = (p, q).

Encryption:
y = eT (x) = x(x+B) mod n.

Decryption:
dT (y) =

√
y +B2/4−B/2 mod n.

Caution: Because p, q ≡ 3 mod 4 the encryption is easy to calculate (if the key is known).
This is not the case for p ≡ 1 mod 4. In addition, the encryption function is not injective: There
are precisely four different source codes that have eT (x) as inverse image: x,−x−B,ω(x+B/2)−
B/2,−ω(x+B/2)−B/2, where ω is one of the four roots of unity. The source codes therefore
must be redundant for the encryption to remain unique!

Backdoor information is the decomposition into prime numbers of n = pq.

5.4 The discrete logarithm as basis for public key procedures8

Discrete logarithms form the basis for a large number of algorithms for public-key procedures.

5.4.1 The discrete logarithm in Zp

Let p be a prime number and let g ∈ Z∗p = {0, 1, . . . , p − 1}. Then the discrete exponential
function base g is defined as

eg : k −→ y := gk mod p, 1 ≤ k ≤ p− 1.

The inverse function is called a discrete logarithm function logg; the following holds:

logg(g
k) = k.

The problem of the discrete logarithm (in Z∗p) is understood to be as follows:

Given p, g and y, determine k such that y = gk mod p.

8With the educational tool for number theory NT you can play with the distribution of the discrete logarithm
values and apply Shank’s baby-step-giant-step method: See learning units 6.1-6.3, pages 1-6/6.
NT can be called in CrypTool via the menu path Indiv. Procedures \ Number Theory Interactive \
Learning Tool for Number Theory. See appendix A.4.
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It is much more difficult to calculate the discrete logarithm than to evaluate the discrete expo-
nential function (see chapter 4.9). Table 5.3 lists several procedures for calculating the discrete
logarithm and their complexity [Stinson1995].

Name Complexity
Baby-step-giant-step O(

√
p)

Silver-Pohlig-Hellman polynomial in q, the greatest
prime factor of p− 1.

Index-Calculus O(e(1+o(1))
√

ln(p) ln(ln(p)))

Table 5.3: Procedures for calculating the discrete logarithm over Z∗p

The current record (as of April 2007) for calculating discrete logarithms was established in
February 2007 by the group Kleinjung, Franke and Bahr at University of Bonn.9 Kleinjung
calculated the discrete logarithm modulo a 160 digit prime number p and generator g:

p= b10159πc+ 119849
= 314159265358979323846264338327950288419716939937510582097494

459230781640628620899862803482534211706798214808651328230664
7093844609550582231725359408128481237299

g = 2

The discrete logarithms k of the following integer y was determined:10

y = b10159ec
= 271828182845904523536028747135266249775724709369995957496696

762772407663035354759457138217852516642742746639193200305992
1817413596629043572900334295260595630738

k = logg(y) mod p

= 829897164650348970518646802640757844024961469323126472198531
845186895984026448342666252850466126881437617381653942624307
537679319636711561053526082423513665596

The search was performed with GNFS method (General Number Field Sieve, Index-Calculus)
and took about 17 CPU years on 3.2 GHz Xeon machines.

5.4.2 Diffie-Hellman key agreement11

The mechanisms and algorithms of classical cryptography only take effect when the subscribers
have already exchanged the secret key. In classical cryptography you cannot avoid exchang-
ing secrets without encrypting them. Transmission safety here must be achieved using non-
cryptographic methods. We say that we need a secret channel for exchanging secrets. This
channel can be realised either physically or organisationally.
What is revolutionary about modern cryptography is, amongst other things, that you no longer
need secret channels: You can agree secret keys using non-secret, i.e. public channels.
One protocol that solves this problem is that of Diffie and Hellman (crypto procedure 5.5).

9http://www.nabble.com/Discrete-logarithms-in-GF(p)-----160-digits-t3175622.html
10The integer y was chosen as the first 159 digits of the Euler number e.
11With CrypTool this exchange protocol has been visualized: you can execute the single steps with concrete

numbers using menu Indiv. Procedures \ Protocols \ Diffie-Hellman Demonstration.
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Crypto Procedure 5.5 Diffie-Hellman key agreement
Two subscribers A and B want to agree on a joint secret key.
Let p be a prime number and g a natural number. These two numbers do not need to be secret.
The two subscribers then select a secret number a and b from which they calculate the values
α = ga mod p and β = gb mod p. They then exchange the numbers α and β. To end with, the
two subscribers calculate the received value to the power of their secret value to get βa mod p
and αb mod p.
Thus

βa ≡ (gb)a ≡ gba ≡ gab ≡ (ga)b ≡ αb mod p

The safety of the Diffie-Hellman protocol is closely connected to calculating the discrete
logarithm mod p. It is even thought that these problems are equivalent.

5.4.3 ElGamal public key encryption procedure in Z∗p

By varying the Diffie-Hellman key agreement protocol slightly, you can obtain an asymmetric
encryption algorithm, crypto procedure 5.6. This observation was made by Taher ElGamal.

Crypto Procedure 5.6 ElGamal (based on the discrete logarithm problem)
Let p be a prime number such that the discrete logarithm in Zp is difficult to compute. Let
α ∈ Z∗p be a primitive element. Let a ∈ IN and β = αa mod p.
Public key:

p, α, β.

Private key:
a.

Let k ∈ Zp−1 be a random number and x ∈ Z∗p the plaintext.
Encryption:

eT (x, k) = (y1, y2),

where
y1 = αk mod p

and
y2 = xβk mod p.

Decryption:
dT (y1, y2) = y2(ya1)−1 mod p

5.4.4 Generalised ElGamal public key encryption procedure

The discrete logarithm can be generalised in any number of finite groups (G, ◦). The following
provides several properties of G, that make the discrete logarithm problem difficult.
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Calculating the discrete exponential function Let G be a group with the operation ◦
and g ∈ G. The (discrete) exponential function base g is defined as

eg : k 7−→ gk, for all k ∈ N.

where
gk := g ◦ . . . ◦ g︸ ︷︷ ︸

k times

.

The exponential function is easy to calculate:

Lemma. The power gk can be calculated in at most 2 log2 k group operations.

Proof
Let k = 2n+kn−12n−1+· · ·+k12+k0 be the binary representation of k. Then n ≤ log2(k), because
2n ≤ k < 2n+1. k can be written in the form k = 2k′+ k0 with k′ = 2n−1 + kn−12n−2 + · · ·+ k1.
Thus

gk = g2k′+k0 = (gk
′
)2gk0 .

We therefore obtain gk from gk
′

by squaring and then multiplying by g. The claim is thus
proved by induction to n. �

Problem of the discrete logarithm

Let G by a finite group with the operation ◦. Let α ∈ G and β ∈ H =
{αi : i ≥ 0}.
We need to find a unique a ∈ N with 0 ≤ a ≤ |H| − 1 and β = αa.
We define a as logα(β).

Calculating the discrete logarithm A simple procedure for calculating the discrete log-
arithm of a group element, that is considerably more efficient than simply trying all possible
values for k, is the baby-step-giant-step algorithm.

Theorem 5.4.1. [baby-step-giant-step algorithm] Let G be a group and g ∈ G. Let n be the
smallest natural number with |G| ≤ n2. Then the discrete logarithm of an element h ∈ G can be
calculated base g by generating two lists each containing n elements and comparing these lists.
In order to calculate these lists, we need 2n group operations.

Proof
First create the two lists
Giant-step list: {1, gn, g2n, . . . , gn·n},
Baby-step list: {hg−1, hg−2, . . . , hg−n}.

If gjn = hg−i, i.e. h = gi+jn, then the problem is solved. If the lists are disjoint, then h
cannot be represented as gi+jn, i, j ≤ n,. As all powers of g are thus recorded, the logarithm
problem does not have a solution. �

You can use the baby-step-giant-step algorithm to demonstrate that it is much more difficult
to calculate the discrete logarithm than to calculate the discrete exponential function. If the
numbers that occur have approximately 1000 bits in length, then you only need around 2000
multiplications to calculate gk but around 2500 ≈ 10150 operations to calculate the discrete
logarithm using the baby-step-giant-step algorithm.
In addition to the baby-step-giant-step algorithm, there are also numerous other procedures for
calculating the discrete logarithm [Stinson1995].
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The theorem from Silver-Pohlig-Hellman In finite Abelian groups, the discrete logarithm
problem can be reduced to groups of a lower order.

Theorem 5.4.2. [Silver-Pohlig-Hellman] Let G be a finite Abelian group with |G| = pa1
1 p

a2
2 ·

. . . ·pas
s . The discrete logarithm in G can then be reduced to solving logarithm problems in groups

of the order p1, . . . , ps.

If |G| contains a “dominant” prime factor p, then the complexity of the logarithm problem is
approximately

O(
√
p).

Therefore, if the logarithm problem is to be made difficult, the order of the group used G should
have a large prime factor. In particular, if the discrete exponential function in the group Z∗p is
to be a one way function, then p − 1 must be a large prime factor. In this case a generalized
ElGamal procedure can be defined (crypto procedure 5.7).

Crypto Procedure 5.7 Generalized ElGamal (based on the factorization problem)
Let G be a finite group with operation ◦, and let α ∈ G, so that the discrete logarithm in
H = {αi : i ≥ 0} is difficult, Let a with 0 ≤ a ≤ |H| − 1 and let β = αa.
Public key:

α, β.

Private key:
a.

Let k ∈ Z|H| be a random number and x ∈ G be a plaintext.
Encryption:

eT (x, k) = (y1, y2),

where
y1 = αk

and
y2 = x ◦ βk.

Decryption:
dT (y1, y2) = y2 ◦ (ya1)−1

Elliptic curves provide useful groups for public key encryption procedures.
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Chapter 6

Hash Functions and Digital
Signatures

(Schneider J. / Esslinger B. / Koy H., June 2002; Updates: Feb. 2003, June 2005, July 2009)

The aim of digital signatures is to guarantee the following two points:

• User authenticity:
It can be checked whether a message really does come from a particular person.

• Message integrity:
It can be checked whether the message has been changed (on route).

An asymmetric technique is used again (see encryption procedures). Participants who wish
to generate a digital signature for a document must possess a pair of keys. They use their secret
key to generate signatures and the recipient uses the sender’s public key to verify whether the
signature is correct. As before, it must be impossible to use the public key to derive the secret
key1.

In detail, a Signature procedure looks like this:
Senders use their message and secret key to calculate the digital signature for the message.
Compared to hand-written signatures, digital signatures therefore have the advantage that they
also depend on the document to be signed. Signatures from one and the same participant are
different unless the signed documents are completely identical. Even inserting a blank in the
text would lead to a different signature. The recipient of the message would therefore detect
any injury to the message integrity as this would mean that the signature no longer matches
the document and is shown to be incorrect when verified.

The document is sent to the recipient together with the signature. The recipient can then use
the sender’s public key, the document and the signature to establish whether or not the signature
is correct. The procedure we just described has in practice, however, a decisive disadvantage.
The signature would be approximately as long as the document itself. To prevent an unnecessary
increase in data traffic, and also for reasons of performance, we apply a cryptographic hash

1With CrypTool you can also generate and check digital signatures: Using
the submenus of the main menu Digital Signatures / PKI or using
menu Indiv. Procedures \ RSA Cryptosystem \ Signature Demonstration (Signature Generation).
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function2 to the document – before signing. The output of the hash function will then be
signed.

Stanislaw Lem3:
We can make everything out of this world, but we cannot create a world, where humans in
some ten thousand years can think: ’Ok, now it is enough. Everything should stay like it
is. Let’s do no changes any more, don’t do inventions any more, because it cannot become
better, and if, then we don’t want this.’

6.1 Hash functions

A hash function4 maps a message of any length to a string of characters with a constant size,
the hash value.

6.1.1 Requirements for hash functions

Cryptographically secure hash functions fulfill the following three requirements (the order is in
a way that the requirements increase):

• Resistance against 1st pre-image attacks:
It should be practically impossible, for a given number, to find a message that has precisely
this number as hash value.
Given (fix): hash value H’,
Searched: message m, so that: H(m) = H’.

• Resistance against 2nd pre-image attacks:
It should be practically impossible, for a given message, to find another message, which
has precisely the same hash value.
Given (fix): message m1 [and so the hash value H1 = H(m1)],
Searched: message m2, so that: H(m2) = H1.

2Hash functions are implemented within CrypTool at several places.
Using menus Individual Procedures \ Hash and Analysis \ Hash you have the possibilities

• to apply one of 6 hash functions to the content of the current window,

• to calculate the hash value of a file,

• to test, how changes to a text change the according hash value,

• to calculate a key from a password according to the PKCS#5 standard,

• to calculate HMACs from a text and a secret key, and

• to perform a simulation, how digital signatures could be attacked by a targeted search for hash value collisions.

3This was the answer of Stanislaw Lem to heavy critics at his philosophical main book “Summa Technologiae”,
1964, where he thought about the possibility of an evolution creating artificial intelligence.

4Hash algorithms compute a condensed representation of electronic data (message). When a message is input
to a hash algorithm, the result is an output called a message digest. The message digests typically range in
length from 128 to 512 bits, depending on the algorithm. Secure hash algorithms are typically used with other
cryptographic algorithms, such as digital signature algorithms and keyed-hash message authentication codes, or
in the generation of random numbers (bits).
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• Collision resistance:
It should be practically impossible to find any two messages with the same hash value (it
doesn’t matter what hash value).
Searched: 2 messages m1 and m2, so that: H(m1) = H(m2).

6.1.2 Current attacks against hash functions like SHA-1

So far, no formal proof has been found that perfectly secure cryptographic hash functions exist.

During the past several years no new attacks against hash algorithms came up, and so the
candidates that had not yet shown any weaknesses in their structure in practice (e.g. SHA–15

or RIPEMD-1606) were trusted.

At Crypto 2004 (August 2004)7 this safety-feeling was disputed: Chinese researchers pub-
lished collision attacks against MD4, SHA-0 and parts of SHA-1. This globally caused new
motivation to engage in new hash attack methods.

The initially published result reduced the expected complexity for one SHA-1 collision search
from 280 (brute-force) to 269 [Wang2005]. More recent announcements claim to further reduce
the required effort to 263 [Wang2005b] and 252 [McDonald2009]. This would bring collision
attacks into the practical realm, as similar efforts have been mastered in the past (s. 1.1.2).

According to our current knowledge there is no need to run scared. But in the future digital
signatures should use longer hash values and/or other hash algorithms.

Already before Crypto 2004 the U.S. National Institute of Standards and Technology (NIST)
announced, to discontinue SHA-1 in the next few years. So it is recommended not to use SHA-1
for new products generating digital signatures. The SHA-2 family [FIPS180-3] provides stronger
algorithms. To address new findings in cryptanalysis, NIST has opened a competition to develop
a new cryptographic hash algorithm “SHA-3” in 2008. The competition is expected to end in
2012.8

Further information about this topic can be found in the article “Hash cracked – The
consequences of the successful attacks on SHA-1” by Reinhard Wobst and Jürgen Schmidt9 by

5SHA-1 is a 160 bit hash function specified in FIPS 180-1 (by NIST), ANSI X9.30 Part 2 and [FIPS186].
SHA means Secure Hash Algorithm, and is widely used, e.g. with DSA, RSA or ECDSA.
The current standard [FIPS180-3] defines four secure hash algorithms – SHA-1, SHA-256, SHA-384, and SHA-512.
For these hash algorithms there are also validation tests defined in the test suite FIPS 140-2.

The output length of the SHA algorithms was enhanced because of the possibility of birthday attacks: these
make n-bit AES and a 2n-bit hash roughly equivalent:
- 128-bit AES – SHA-256
- 192-bit AES – SHA-384
- 256-bit AES – SHA-512.

With CrypTool you can comprehend the birthday attack on digital signatures:
using the menu Analysis \ Hash \ Attack on the Hash Value of the Digital Signature.

6RIPEMD-160, RIPEMD-128 and the optional extension RIPEMD-256 have object identifiers defined by the ISO-
identified organization TeleTrusT, both as hash algorithm and in combination with RSA. RIPEMD-160 is also
part of the ISO/IEC international standard ISO/IEC 10118-3:1998 on dedicated hash functions, together with
RIPEMD-128 and SHA-1. Further details:
- http://www.esat.kuleuven.ac.be/~bosselae/ripemd160.html
- http://www.ietf.org/rfc/rfc2857.txt (“The Use of HMAC-RIPEMD-160-96 within ESP and AH”).

7http://www.iacr.org/conferences/crypto2004/
8http://csrc.nist.gov/groups/ST/hash/sha-3/
9http://www.heise.de/security/artikel/56634.
Further references are e.g.:
http://www.bsi.bund.de/esig/basics/techbas/krypto/index.htm

http://csrc.nist.gov/CryptoToolkit/tkhash.html.
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Heise Security.

6.1.3 Signing with hash functions

The signature procedure with hash functions is as follows:10

Rather than signing the actual document, the sender now first calculates the hash value of
the message and signs this. The recipient also calculates the hash value of the message (the
algorithm used must be known), then verifies whether the signature sent with the message is a
correct signature of the hash value. If this is the case, the signature is verified to be correct.
This means that the message is authentic, because we have assumed that knowledge of the
public key does not enable you to derive the secret key. However, you would need this secret
key to sign messages in another name.

Some digital signature schemes are based on asymmetric encryption procedures, the most
prominent example being the RSA system, which can be used for signing by performing the
private key operation on the hash value of the document to be signed.

Other digital signature schemes where developed exclusively for this purpose, as the DSA
(Digital Signature Algorithm), and are not directly connected with a corresponding encryption
scheme.

Both, RSA and DSA signature are discussed in more detail in the following two sections.
After that we go one step further and show how digital signatures can be used to create the
digital equivalent of ID cards. This is called Public Key Certification.

6.2 RSA signatures

As mentioned in the comment at the end of section 4.10.3 it is possible to perform the RSA
private and public key operation in reverse order, i. e. raising M to the power of d and then
to the power of e (mod N) yields M again. Based on this simple fact, RSA can be used as a
signature scheme.

The RSA signature S for a message M is created by performing the private key operation:

S ≡Md (mod N)

In order to verify, the corresponding public key operation is performed on the signature S and
the result is compared with message M :

Se ≡ (Md)e ≡ (M e)d ≡M (mod N)

If the result matches the message M , then the signature is accepted by the verifier, otherwise
the message has been tampered with, or was never signed by the holder of d.

As explained above, signatures are not performed on the message itself, but on a crypto-
graphic hash value of the message. To prevent certain attacks on the signature procedure (alone
or in combination with encryption) it is necessary to format the hash value before doing the ex-
ponentiation, as described in the PKCS#1 (Public Key Cryptography Standard #1 [PKCS1]).
The fact that this standard had to be revised recently, after being in use for several years, can
serve as an example of how difficult it is to get the details of cryptography right.

10Compare: http://en.wikipedia.org/wiki/Digital signature.
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6.3 DSA signatures

In August of 1991, the U.S. National Institute of Standards and Technology (NIST) proposed
a digital signature algorithm (DSA), which was subsequently adopted as a U.S. Federal Infor-
mation Processing Standard (FIPS 186 [FIPS186]).

The algorithm is a variant of the ElGamal scheme. Its security is based on the Discrete
Logarithm Problem. The DSA public and private key and its procedures for signature and
verification are summarised in crypto procedure 6.1.

Crypto Procedure 6.1 DSA signature
Public Key
p prime
q 160-bit prime factor of p− 1
g = h(p−1)/q mod p, where h < p− 1 and h(p−1)/q > 1 (mod p)
y ≡ gx mod p

Remark: Parameters p, q and g can be shared among a group of users.
Private Key
x < q (a 160-bit number)

Signing
m the message to be signed
k choose at random, less than q
r = (gk mod p) mod q
s = (k−1(SHA-1(m) + xr)) mod q

Remark:

• (s, r) is the signature.

• The security of the signature depends not only on the mathematical properties, but also
on using a good random source for k.

• SHA-1 is a 160-bit hash function.

Verifying
w = s−1 mod q
u1 = (SHA-1(m)w) mod q
u2 = (rw) mod q
v = (gu1yu2) mod p) mod q

Remark: If v = r, then the signature is verified.

While DSA was specifically designed, so that it can be exported from countries regulating
export of encryption soft and hardware (like the U.S. at the time when it was specified), it has
been noted [Schneier1996, p. 490], that the operations involved in DSA can be used to emulate
RSA and ElGamal encryption.

6.4 Public key certification

The aim of public key certification is to guarantee the connection between a public key and a
user and to make it traceable for external parties. In cases in which it is impossible to ensure
that a public key really belongs to a particular person, many protocols are no longer secure,
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even if the individual cryptographic modules cannot be broken.

6.4.1 Impersonation attacks

Assume Charlie has two pairs of keys (PK1, SK1) and (PK2, SK2), where SK denotes the secret
key and PK the public key. Further assume that he manages to palm off PK1 on Alice as Bob’s
public key and PK2 on Bob as Alice’s public key (by falsifying a public key directory).

Then he can attack as follows:

• Alice wants to send a message to Bob. She encrypts it using PK1 because she thinks that
this is Bob’s public key. She then signs the message using her secret key and sends it.

• Charlie intercepts the message, removes the signature and decrypts the message using
SK1. If he wants to, he can then change the message in any way he likes. He then
encrypts the message again, but this time using Bob’s genuine public key, which he has
taken from a public key directory, signs the message using SK2 and forwards it to Bob.

• Bob verifies the signature using PK2 and will reach the conclusion that the signature is
correct. He then decrypts the message using his secret key.

In this way Charlie can listen in on communication between Alice and Bob and change the
exchanged messages without them noticing. The attack will also work if Charlie only has one
pair of keys.

Another name for this type of attack is “man-in-the-middle attack”. Users are promised
protection against this type of attack by public-key certification, which is intended to guarantee
the authenticity of public keys. The most common certification method is the X.509 standard.

6.4.2 X.509 certificate

Each participant who wants to have an X.509 certificate ([X.509]) verifying that his public key
belongs to a real person consults what is known as a certification authority (CA)11. He proves
his identity to this CA (for example by showing his ID). The CA then issues him an electronic
document (certificate) which essentially contains the name of the certificate-holder and the name
of the CA, the certificate-holder’s public key and the validity period of the certificate. The CA
then signs the certificate using its secret key.

Anyone can now use the CA’s public key to verify whether a certificate is falsified. The CA
therefore guarantees that a public key belongs to a particular user.

This procedure is only secure as long as it can be guaranteed that the CA’s public key is
correct. For this reason, each CA has its public key certified by another CA that is superior in
the hierarchy. In the upper hierarchy level there is usually only one CA, which can of course
then have its key certified by another CA. It must therefore transfer its key securely in another
way. In the case of many software products that work with certificates (such as the Microsoft
and Netscape Web browsers), the certificates of these root CAs are permanently embedded in
the program right from the start and cannot be changed by users at a later stage. However,
(public) CA keys, in particularly those of the root entity, can also be secured by means of
making them available publicly.

11Often called trust center, if the certificates are not only offered to a closed user group.
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Chapter 7

Elliptic Curves

(Filipovics B. / Büger M. / Esslinger B. / Oyono R., April 2000, Updates: Dec. 2001, June
2002, Mar. 2003, November 2009)

7.1 Elliptic curve cryptography – a high-performance substi-
tute for RSA?

In many business sectors secure and efficient data transfer is essential. In particular, the RSA
algorithm is used in many applications. Although the security of RSA is beyond doubt, the
evolution in computing power has caused a growth in the necessary key length. Today, 1024-bit
RSA keys are standard, but the GISA (German Information Security Agency) recommends the
usage of 2048-bit keys from 2006 on (compare section 4.11). The fact that most chips on smart
cards cannot process keys extending 1024 bit shows that there is a need for alternatives. Elliptic
curve cryptography (ECC) can be such an alternative in the area of asymmetric cryptography.

The efficiency of a cryptographic algorithm depends on the key length and the calculation
effort that is necessary to provide a prescribed level of security. The major advantage of ECC
compared to RSA is that it requires much shorter key lengths. If we assume that the computing
power increases by Moore’s law (i. e. it doubles every 18 months)1, then the evolution of the
key lengths for secure communication will be as figure 7.1 [Lenstra1999] (source: Arjen Lenstra
and Eric Verheul: http://cryptosavvy.com/table.htm).

In addition, a digital signature can be processed 10-times faster with ECC than with RSA.
However, verification of a given signature is still more efficient with RSA than with ECC.
Refer to figure 7.2 (source: Dr. J. Merkle, Elliptic Curve Cryptography Workshop, 2001) for a
comparison. The reason is that RSA public keys can be chosen relatively small as long as the
secret key is long enough.

Nevertheless, thin clients like smart cards usually have to store the (long) secret key and
have to process a digital signature rather than verify one. Therefore, there is a clear advantage
in using ECC in terms of efficiency.

Nowadays, the major problem with ECC implementations is the lack of standardization.
There is only one way to implement RSA, but there are many ways for ECC: One can work
with different sets of numbers, different (elliptic) curves — described by parameters2 — , and

1empirical knowledge by Gordon Moore, co-founder of Intel, 1965
2see chapter 7.4
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Figure 7.1: Prognosis of the key lengths to be regarded safe for RSA and Elliptic Curves

a variety of representations of the elements on the curve. Each choice has its advantages
and disadvantages, and one can certainly construct the most efficient for each application.
However, this causes problems in interoperability. But if all ECC-tools should be able to
communicate with each other, they will have to support all different algorithms, which might
put the advantage of efficient computation and the need of less storage capacity to the contrary.

Therefore, international standardization organizations like IEEE (P1363), ASC (ANSI
X9.62, X9.63), ISO/IEC as well as major players like RSA labs or Certicom have recently started
standardization initiatives. While the IEEE only describes the different implementations, the
ASC has explicitly stated 10 elliptic curves and recommends their usage. The advantage of the
ASC approach is that one needs only a single byte to indicate which curve is meant. However,
it is not yet clear whether the ASC curves will become a de facto standard.

Although we see no need to replace RSA in any application today3, one should take the
usage of ECC-based tools into consideration whenever a new system is set up — in particular,
when the tool should be available beyond 20054.

7.2 Elliptic curves – history

Mathematicians have been researching elliptic curves for over 100 years. Over the course of time,
many lengthy and mathematically complex results have been found and published which are
connected to elliptic curves. A mathematician would say that elliptic curves (or the mathematics
behind them) are widely understood. This research was originally purely mathematical. That
is to say, elliptic curves were investigated, for example, in the mathematical areas of number
theory and algebraic geometry, which are generally highly abstract. Even in the recent past,
elliptic curves played an important role in pure mathematics. In 1993 and 1994, Andrew Wiles
published mathematical works that triggered enthusiasm far beyond the specialist audience. In
these works, he proved a conjecture put forward in the 1960’s. To put it short, this conjecture

3Current information about the security of the RSA algorithm can be found in chapter 4.11.
4Compare the recommendation of GISA: “Fitting Crypto Algorithms” from October 24th, 2002.
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was concerned with the connection between elliptic curves and what are called module forms.
What is particularly interesting for most people is that the works of Wiles also proved the
famous second theorem of Fermat. Mathematicians had spent centuries (Fermat lived from
1601 to 1665) trying to find a strict proof of this theorem. Understandably, therefore, Wiles’
proof got a good response. Fermat formulated his theorem as follows (written in the border of
a book):

Cubum autem in duos cubos, aut quadratoquadratum in duos quadratoquadratos, et
generaliter nullam in infinitum ultra quadratum potestatem in duos ejusdem nominis
fas est dividere: cujus rei demonstrationem mirabilem sane detexi. Hanc marginis
exiguitas non caperet.

With a free translation, using the denotation of modern mathematics, this means:
No positive whole numbers x, y and z greater than zero exist such that xn + yn = zn for n > 2.
I have found an amazing proof of this fact, but there is too little space within the confines of
this book to include it.

This is truly amazing: A statement that is relatively simple to understand (we are referring to
Fermat’s second theorem here) could only be proved after such a long period of time, although
Fermat himself claimed to have found a proof. What’s more, the proof found by Wiles is
extremely extensive (all of Wiles publications connected with the proof made up a book in
themselves). This should therefore make it obvious that elliptic curves are generally based on
highly complex mathematics.

Anyway that’s enough about the role of elliptic curves in pure mathematics. In 1985 Neal
Koblitz and Victor Miller independently suggested using elliptic curves in cryptography. El-
liptic curves have thus also found a concrete practical application. Another interesting area of
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application for elliptic curves is for factorizing whole numbers (the RSA cryptographic system
is based on the difficulty/complexity of finding prime factors of an extremely large number;
compare section 4.11.). In this area, procedures based on elliptic curves have been investigated
and used since 1987 (compare section 7.8).
There are also prime number tests based on elliptic curves.

Elliptic curves are used differently in the various areas. Encryption procedures based on
elliptic curves are based on the difficulty of a problem known as elliptic curve discrete logarithm.
The factorization of whole numbers uses the fact that a large number of elliptic curves can be
generated for a natural composite number n with several prime factors; however, these curves
are not then groups for composite n. More information about this can be found under the
chapter 7.8.

7.3 Elliptic curves – mathematical basics

This section provides information about groups and fields.

7.3.1 Groups

Because the term group is used differently in everyday language than in mathematics, we will,
for reasons of completeness, begin by introducing the essential statement of the formal definition
of a group:

• A group is a non-empty set G on which an operation “·”. The set G is closed under
this operation, which means that for any two elements a, b taken from G, performing the
operation on them gives an element in G, i.e. ab = a · b lies in G.

• For all elements a, b and c in G: (ab)c = a(bc) (associative law).

• There exists an element e in G that behaves neutrally with respect to the operation ·.
That means that for all a in the set G : ae = ea = a.

• For each element a in G there exists a so-called inverse5 element a−1 in G such that:
aa−1 = a−1a = e.

If also ab = ba (commutative law) for all a, b in G, then we call the group an Abelian group.

Since we may define different operations on the same set, we distinguish them by giving
them different names (e.g. + addition or · multiplication).

The simplest example of an (Abelian) group is the group of whole numbers under the stan-
dard operation of addition. The set of whole numbers is denoted as Z. Z has an infinite number
of elements, because Z = {· · · ,−4,−3,−2,−1, 0, 1, 2, 3, 4, · · · }. For example, the operation of
1 + 2 lies in Z, for 1 + 2 = 3 and 3 lies in Z. The neutral element in the group Z is 0. The
inverse element of 3 is −3, for 3 + (−3) = 0.

For our purpose, so-called finite groups play an important role. This means that these exists
a set M with a fixed number of elements and an operation + such that the above conditions
are fulfilled. One example of this is any set Zn where Zn = {0, 1, 2, 3, · · · , n− 1}, n is a positive
whole number and the operation is addition mod n, i.e. a and b in Zn are subject to the
operation a+ b mod n.

5The inverse is uniquely determined because if x, y ∈ G are each inverse to a, i.e. ax = xa = e and ay = ya = e,
then x = xe = x(ay) = (xa)y = ey = y.
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Cyclic groups Cyclic groups6 are those groups G′ that possess an element g from which the
group operation can be used to generate all other elements in the group. This means that for
each element a in G′ there exists a positive whole number i such that if g is subject to the
operation i times (i.e. “g · i”), g + g + · · · + g = a (additive group) or gi = g · g · · · g = a
(multiplicative group). The element g is the generator of the cyclic group — each element in
G′ can be generated using g and the operation.

Group order Now to the order of an element of the group: Let a be in G. The smallest
positive whole number r for which a subject to the operation with itself r times is the neutral
element of the group G′ (i.e.: r · a = a+ a+ · · ·+ a = e respectively ar = e), is called the order
of a.

The order of the group is the number of elements in the set G.

7.3.2 Fields

In mathematics, one is often interested in sets on which at least two (group) operations are
defined — frequently called addition and multiplication. Most prominent are so called fields.

A field is understood to be a set K with two operations (denoted as + and ·) which fulfils
the following conditions:

• The set K forms an Abelian group together with the operation + (addition), where 0 is
the neutral element of the operation +.

• The set K\{0} also forms an Abelian group together with the operation · (multiplication).

• For all elements a, b and c in K, we have c · (a+ b) = c · a+ c · b and (a+ b) · c = a · c+ b · c
(distributive law).

Fields may contain an infinite number of elements (e.g. the field of real numbers). They
are called infinite fields. In contrast we call a field finite, if it contains only a finite number of
elements (e.g. Zp = {0, 1, 2, 3, · · · , p − 1} , where p is a prime. Zp with addition mod p and
multiplication mod p).

Characteristic of a field Let K be a field and 1 be the neutral element of K with respect
to the multiplicative operation “·”. Then the characteristic of K is said to be the order of 1
with respect to the additive operation. This means that the characteristic of K is the smallest
positive integer n such that

1 + 1 + · · ·+ 1︸ ︷︷ ︸
n times

= 0.

If there is no such n, i.e. if 1 + 1 + · · ·+ 1 6= 0 no matter how many 1s we add, then we call K
a field with characteristic 0.

Thus, fields with characteristic 0 are infinite since they contain the (pairwise distinct) ele-
ments 1, 1 + 1, 1 + 1 + 1, . . . . On the other hand, fields with finite characteristic may by finite
or infinite.

If the characteristic is finite, it has to be prime. This fact can easily be proved: Assume
n = pq, p, q < n, is the characteristic of a field K. By definition of n, the elements p̄ =

6Cyclic groups can be in general also endless like the additive group of the integer numbers. We consider here
only finite cyclic groups.
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1 + 1 + · · ·+ 1︸ ︷︷ ︸
p times

, q̄ = 1 + 1 + · · ·+ 1︸ ︷︷ ︸
q times

of K are not equal to 0. Thus, there exist inverse elements

p̄−1, q̄−1 with respect to multiplication. It follows that (p̄q̄)(p̄−1q̄−1) = 1, which contradicts the
fact that p̄q̄ = n̄ = 1 + 1 + · · ·+ 1︸ ︷︷ ︸

n times

= 0 and, hence, (p̄q̄)︸︷︷︸
=0

(p̄−1q̄−1) = 0.

Comment:
The field of real numbers has the characteristic 0; the field Zp has the characteristic p. If p is
not prime, Zp is not a field at all.

The most simple field is Z2 = {0, 1}. It contains only two elements, the neutral elements
with respect to addition and multiplication. In particular, we have 0 + 0 = 0, 0 + 1 = 1 + 0 = 1,
1 + 1 = 0, 1 · 1 = 1, 0 · 0 = 0 · 1 = 1 · 0 = 0.

Finite Fields As mentioned above, each finite field has a characteristic p 6= 0, where p is a
prime. On the other hand, given a prime p there is a field which has exactly p elements, that
is Zp.

However, the number of elements of a field need not be prime in general. For example, it is
not hard to construct a field with 4 elements7.

One can show that the order of any field is a prime power (i.e. the power of a prime number).
On the other hand, we can construct a field with pn elements for any given prime p and positive
integer n. Since two fields that have the same number of elements can not be distinguished8,
we say that there is the field with pn elements and denote it by GF (pn). Here GF stands
for Galois Field to commemorate the French Mathematician Galois.

The fields GF (p) of prime order play a prominent role. They are called prime fields and
often denoted by Zp9.

7.4 Elliptic curves in cryptography

In cryptography elliptic curve are a useful tool. Such curves are described by some equation.
A detailed analysis has shown that curves of the form10

F (x1, x2, x3) = −x3
1 + x2

2x3 + a1x1x2x3 − a2x
2
1x3 + a3x2x

2
3 − a4x1x

2
3 − a6x

3
3 = 0, (7.1)

7The set K = {0, 1, a, b} fitted with the operation defined in the tabular below is a field:

+ 0 1 a b

0 0 1 a b

1 1 0 b a

a a b 0 1

b b a 1 0

und

· 0 1 a b

0 0 0 0 0

1 0 1 a b

a 0 a b 1

b 0 b 1 a

8If K,K′ are fields with k = pn elements, then there is a one-to-one map ϕ : K → K′, that respects the arithmetic
of the field. Such a map is called an isomorphy. Isomorphic fields mathematically behave in the same way so that
it makes no sense to distinguish between them. For example, Z2 und K′ = {ZERO,ONE} with zero-element
ZERO and one-element ONE are isomorphic. We note that mathematical objects are only defined by their
mathematical properties.

9For prime fields additive as well as multiplicative group are cyclic. Furthermore, each field GF (pn) contains a
subfield that is isomorphic to the prime field Zp.

10This curve is given by the zeros of a polynomial F of degree three in three variables. In general, expressions of
the form P =

P
i1,...,in∈IN0

ai1...inx
i1
1 . . . xin

n with coefficients ai1...in ∈ K are called polynomials in n variables
x1, . . . , xn with underlying field K, if degP := max{i1 + · · · + in : ai1...in 6= 0} is finite, i.e. the sum has only
finitely many non-zero terms (monomials). The sum of the exponents of the variables of each term of the sum is
at most 3, at least one term of the sum has a single variable with 3 as value of the according exponent.
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are especially useful. The variables x1, x2, x3 and parameters a1, . . . , a4, a6 are elements of a
given field K, which has certain properties that are make it useful from the cryptographic point
of view. The underlying field K might be the well known field of real numbers or some finite
field (see last section). In order to obtain a cure that is useful for cryptography, the parameters
have to be chosen in a way that the following conditions hold

∂F

∂x1
6= 0,

∂F

∂x2
6= 0,

∂F

∂x3
6= 0.

We identify points on the curve that can be derived from each over by multiplying each compo-
nent with some scalar. This makes sense since (x1, x2, x3) solves (7.1) if and only if α(x1, x2, x3)
(α 6= 0) does. Formally, this means that we consider classes of equivalent points instead of
single points, where points are called equivalent if one is the scalar multiple of the other one.
If we put x3 = 0 in the basic equation (7.1), then this equation collapses to −x3

1 = 0, leading
to x1 = 0. Thus, the equivalence class which includes the element (0, 1, 0) is the only one that
contains a point with x3 = 0. For all points on the curve that are not equivalent to (0, 1, 0), we
may apply the following transformation

K ×K × (K \ {0}) 3 (x1, x2, x3) 7→ (x, y) :=
(
x1

x3
,
x2

x3

)
∈ K ×K ,

which reduces the number of variables to two instead of three. We note that the basic equation
(7.1) F (x1, x2, x3) = 0 was chosen in a way that this transformation leads to the famous so-called
Weierstrass-Equation11 holds

y2 + a1xy + a3y = x3 + a2x
2 + a4x+ a6 . (7.2)

Since all but one point (i.e. equivalence class) of the elliptic curve can be described using
equation (7.2), this equation is often called the elliptic equation, and its solutions written as

E =
{

(x, y) ∈ K ×K | y2 + a1xy + a3y = x3 + a2x
2 + a4x+ a6

}
∪ {O}.

Here, O represents the point (0, 1, 0) that is loosely speaking mapped to infinity by the trans-
formation (division by x3) that reduces the three variables to two.

In contrast to figure 7.3 only finite fields K = GF (pn) are used in elliptic curve cryptography.
The reason is loosely speaking that in modern communication engineering data processing is
always based on discrete data (simply because computers accept only discrete data).

For practical reasons, it turned out to be useful to take either GF (p) with a large prime
p or GF (2n) with a (large) positive integer n. Using GF (p) has the advantage of providing a
relatively simple arithmetic; on the other hand GF (2n) allows a binary representation of each
element that supports the way computers work. Other fields like, for example, GF (7n) do not
have any of these advantages and are, thus, not considered, although there is no mathematical
reason why they should not.

A coordinate transformation can result in a simpler version12 of the Weierstrass equation.
Depending whether p > 3, different transformations are used, and we obtain

• in case of GF (p), p > 3, the elliptic curve equation of the form

y2 = x3 + ax+ b (7.3)

with 4a3 + 27b2 6= 0

11Karl Weierstrass, 31.10.1815−19.12.1897, German mathematician, famous for his rigorous formal approach to
mathematics.

12Such a coordinate transformation is combination of a rotation and a dilatation of the coordinate system without
changing the elliptic curve itself.
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x

y

Figure 7.3: Example of an elliptic curve with the real numbers as underlying field.

• in case of GF (2n) the elliptic curve equation of the form

y2 + xy = x3 + ax2 + b (7.4)

with b 6= 013.

This conditions on the parameters a, b ensure that the elliptic equation can be used in the
context of cryptography14.

Let |E| denote the number of elements of an elliptic curve E given an underlying field GF (k)
(for practical reasons either k = p with p prim or k = 2n). Then Hasse’s theorem[Silverman1986]
yields | |E| − k− 1 | ≤ 2 ·

√
k. This Inequality is equivalent to k+ 1− 2

√
k < |E| < k+ 1 + 2

√
k.

In particular, this means that the number of elements of an elliptic curve is approximately k
(for large k).

7.5 Operating on the elliptic curve

In order to work with elliptic curves in practice, we define an operation (often written in an
additive way +) on the set of points on the curve. If we have a curve over the field GF (p), we
define the commutative operation + by

1. P +O = O + P = P for all P ∈ E,

2. for P = (x, y) and Q = (x,−y) we set P +Q = O,

3. for P1 = (x1, x2), P2 = (x2, y2) ∈ E with P1, P2 6= O and (x2, y2) 6= (x1,−y1) we set
P3 := P1 + P2, P3 = (x3, y3) defined by

x3 := −x1 − x2 + λ2 , y3 := −y1 + λ(x1 − x3)

13The form (7.3) is called the standard form of the Weierstrass-equation. If the characteristic of the field is 2 or
3, we obtain 4 = 0 respectively 27 = 0, which means that the condition on parameters a, b collapse. Loosely
speaking, this is the reason why the transformation to the standard form does not work in these cases.

14Formally we call such curves non singular.
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with the auxiliary quotient

λ :=

{
y1−y2
x1−x2

if P1 6= P2,
3x2

1+a
2y1

if P1 = P2.

In particular, we obtain −P = (x,−y) for P = (x, y) ∈ E.

If we deal with a curve over the field GF (2n), we define the operation + in an analogous
way by

1. P +O = O + P = P for all P ∈ E,

2. for P = (x, y) and Q = (x, x+ y) we set P +Q = O,

3. for P1 = (x1, x2), P2 = (x2, y2) ∈ E with P1, P2 6= O and (x2, y2) 6= (x1, x1 + y1) we set
P3 := P1 + P2, P3 = (x3, y3) defined by

x3 := −x1 + x2 + λ+ λ2 + a , y3 := y1 + x3 + λ(x1 + x3)

with auxiliary quotient

λ :=
{ y1+y2

x1+x2
if P1 6= P2,

x1 + y1
x1

if P1 = P2.

In particular, we obtain −P = (x,−y) for P = (x, y) ∈ E.

(Note that −(−P ) = (x, x + (x + y)) = (x, 2x + y) = (x, y), since the underlying field has
characteristic 2.)15

One can verify that + defines a group operation on the set E∩{O}. In particular this means
that the sum of two points is again a point on the elliptic curve. How his operation works is
geometrically visualized in the following section.

15An animation of the addition of points on elliptic curves can be found on the Certicom homepage
http://www.certicom.com/resources/ecc_tutorial/ecc_tutorial.html
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How to add points on an elliptic curve

The following figures show how points on an elliptic curve over the field of real numbers are
summed up using affine coordinates. We note that the point infinity O cannot be shown in the
affine plane.

y

2P

P=Q
L

x

R

L’

Figure 7.4: Doubling of a point

RL

P+Q

L’

x

y

Q
P

Figure 7.5: Summing up two different points over the real number field
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7.6 Security of elliptic-curve-cryptography: The ECDLP

As mentioned above in section 7.4, we only consider elliptic curves over the finite16 fields GF (2n)
or GF (p) (for a large prime p). This means that all parameters that describe the curve are
taken from this underlying field. If E is an elliptic curve over such a field and P is a point on
the curve E, then we can derive for all positive integers m

mP := P + P + · · ·+ P︸ ︷︷ ︸
m times

.

Looking on this operation from the cryptographic point of view, it turns out to be very inter-
esting by the following reason: On the one hand one needs only logm operations to calculate
mP — one simply has to calculate P , 2P , 22P , 23P , . . . , write m in a binary form and finally
add all these multiples 2kP of P with respect to the binary representation of m — on the other
hand it seems to be very hard to find m given P and Q = mP on E. Of course, we may simply
calculate P, 2P, 3P, 4P, 5P, . . . and compare each of them with Q. But this will take as much
as m operations.

Yet there is no algorithm known that efficiently derives m given P and G. The best algo-
rithms known so far need about

√
q operations where q is the (largest) prime factor of p− 1, in

case the underlying field is GF (p); here m should be between 1 and q liegen so that one needs
at most log q operations to calculate mP . However, the quotient

√
q

log q tends to +∞ very fast for
large q.

If we choose the parameters sufficiently large (for example, let p be prime and at least 160
bits long), an computer will easily be able to calculate mP (in less than a second). The inverse
problem however, to derive m from mP and P , can (still) not be solved in reasonable time.

This problem is known as the “Elliptic Curve Discrete Logarithm Problem” (for short
ECDLP).

In elliptic curve cryptography we formally look at points on the elliptic curve as elements
of a group with point addition + as operation. Furthermore, we use only elliptic curves that
have a sufficiently large number of points. However, in special cases curves may be weak and
not useful due to other reasons. For such special cases the ECDLP can be much easier to solve
than in the general case. This means that one has to look carefully at the parameters when
choosing an elliptic curve for cryptographic applications.

Not useful for cryptography are a-normal (that are curves over Zp, for which the set E
consists of exactly p elements) and supersingular curves (that are curves, for which the ECDLP
can be reduced to the “normal” discrete logarithms in another, smaller finite field). This means
that there are cryptographically useful and non-useful elliptic curves. Given the parameters a
and b, it is possible to determine whether a curve is useful or not. In many publications one can
find parameters that turned out to be useful for cryptography. The open (scientific) discussion
guarantees that these results take into account latest research.

Given a secure curve, the time that is needed to solve the ECDLP is strongly correlated
with parameter p in case GF (p) respectively n in case of GF (2n). The larger these parameters
become, the more time an attacker needs to solve the ECDLP — at least with the best algorithms
known so far. Experts recommend bit-lengths of 200 for p for secure curves. A comparison with
RSA modulus length shows why elliptic curves are so interesting for applications. We note
that the computation effort for signing and encryption is closely related to the bit-length of the

16Discrete in contrast to continuous.
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parameters. In addition the initiation process, i.e. the generation of the private-public-key-pair,
becomes more complicated the larger p is. Thus, one looks for the smallest parameters that
still come along with the security required. It is remarkable that a length of 200 bits for p
is sufficient to construct a good elliptic curve that is as secure as RSA with a 1024 bit RSA
modulus (as far as we know today). For short, the reason for this advantage of ECC lies in
the fact that the best algorithms known for solving the ECDLP need exponential time while
the best algorithms for factorizing are sub-exponential (number field sieve, quadratic sieve or
factorizing with elliptic curves). Hence, the parameters for a cryptosystem that is based on the
problem of factorizing large integers have to be larger than the parameters for a system based
on ECDLP.

7.7 Encryption and signing with elliptic curves

The elliptic curve discrete logarithm problem (ECDLP) is the basis for elliptic curve cryptog-
raphy. Based on this problem, there are different signature schemes. In order to apply one of
these, we need:

• An elliptic curve E with an underlying field GF (pn).

• A prime q 6= p and a point G on the elliptic curve E with order q. This means that
qG = O and rG 6= O for all r ∈ {1, 2, . . . , q − 1}. Thus q is a factor of the group order
(i.e. the number of elements) #E of E. Since q is prime, G generates a cyclic sub-group
of E of order q.

The parameters mentioned are often called Domain parameter. They describe the elliptic curve
E and the cyclic sub-group of E on which the signature scheme is based.

7.7.1 Encryption

Using elliptic curves one can construct a key exchange protocol based on the Diffie-Hellman
protocol (see chapter 5.4.2). The key exchanged can be used for a subsequent symmetric
encryption. We note that in contrast to RSA there is no pair of private and public key that can
be used for encryption and decryption!

In the notation of elliptic curves, the Diffie-Hellman protocol reads as follows: First both
partners (A und B) agree on a group G and an integer q. Then they choose rA, rB ∈ {1, 2, . . . , q−
1} at random, derive the points RA = rAG, RB = rBG on the elliptic curve and exchange them
(using an insecure channel). After that A easily obtains R = rARB; B gets the same point
(R = rArBG) by calculating rBRA = rBrAG = rArBG = R. We note that RA, RB are easy to
derive as long as rA respectively rB are known G. However, the inverse operation, to get RA
respectively RB from rA respectively rB is hard.
Using the best algorithms known so far, it is impossible for any attacker to obtain R without
knowing either rA or rB — otherwise he would have to solve the ECDLP.

In order to prohibit a “Man-in-the-middle” attack, one may sign the values G, q,RA, RB as
described in chapter 6.4.1.
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7.7.2 Signing

Using the DSA signature scheme, one can proceed as follows: The signing party chooses a (non-
trivial) number s ∈ Zq, which will be the private key, and publishes q, G and R = sG. We note
that s cannot be obtained from G and R are not sufficient — a fact on which the security of
the signature scheme is based.

Given the message m, which should be signed, one first constructs a digital finger print
using a hash-algorithm h such that h(m) has its values in {0, 1, 2, . . . , q − 1}. Thus, h(m) can
be considered as an Element of Zq. Then the signing party chooses a random number r ∈ Zq
and derives R = (r1, r2) = rG. We note that the first component r1 of R is an element of
GF (pn). This component will then be projected onto Zq, i.e. in case of n = 1 it is interpreted
as the remainder of an element of {0, 1, . . . , p− 1} divided by q. This projection of r1 onto Zq
is denoted by r̄1. Then one determines x ∈ Zq such that

rx− sr̄1 − h(m) = 0.

The triple (m, r1, x) is then published as the digital signature of message m.

7.7.3 Signature verification

In order to verify a signature, one has to build u1 = h(m)/x, u2 = r̄1/x (in Zq and derive

V = u1G+ u2Q.

Since we have Q = sG, the point V = (v1, v2) satisfies v1 = u1 + u2s. We note that this
operations take place in the field GF (pn). The projection of GF (pn) on Zq mentioned above
should be chosen in such a way that v̄1 = u1 + u2s is an element of Zq. Then it follows that

v̄1 = u1 + u2s = h(m)/x+ r̄1s/x = (h(m) + r̄1s)/x = rx/x = r.

Since R = rG, we obtain v̄1 = r̄1, i.e. R and V coincide modulo the projection onto Zq.

7.8 Factorization using elliptic curves

There are factorization17 algorithms based on elliptic curves18. More precisely, these procedures
exploit the fact that elliptic curves can be defined over Zn (n composite number). Elliptic curves
over Zn do not form a group, because not every point on such an elliptic curve has an inverse
point. This is connected with the fact that - if n is a composite number - there exist elements
in Zn that do not have an inverse with respect to multiplication mod n. In order to add two
points on an elliptic curve over Zn, we can calculate in the same way as on elliptic curves over
Zp. Addition of two points (on an elliptic curve over Zn), however, fails if and only if a factor of
n has been found. The reason for this is that the procedure for adding points on elliptic curves
gives elements in Zn and calculates the inverse elements for these (with respect to multiplication

17Especially John M. Pollard was involved in the development of many different factorization algorithms; also at
factorization with ECC he was one of the leading heads. As an employee of British Telekom he never published
much. At the RSA data Security Conference in 1999 he was awarded for his “outstanding contributions in
mathematics”: http://www.eff.org/Privacy/Crypto misc/DESCracker/HTML/19990118 rsa awards.html.

18In 1987 H.W. Lenstra published a factorization algorithm, based on elliptic curves (see [Lenstra1987]). The
biggest compound number currently factorized with elliptic curves is the number 62859−1, which has 55 decimal
digits. It was found Oct. 6th, 2001 by M. Izumi (See ECMNET).
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mod n) in Zn. The extended Euclidean algorithm is used here. If the addition of two points
(that lie of an elliptic curve over Zn) gives an element in Zn that does not have an inverse
element in Zn, then the extended Euclidean algorithm delivers a genuine factor of n.

Factorization using elliptic curves thus principally works as follows: Random curves over Zn
are selected, as well as random points (that lie on this curve) and add them; you thus obtain
points that also lie on the curve or find a factor of n. Factorization algorithms based on elliptic
curves therefore work probabilistically. The opportunity of defining large number of elliptic
curves over Zn allows you to increase the probability of finding two points which you can add
to obtain a factor of n. These procedures are therefore highly suitable for parallelization.
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7.9 Implementing elliptic curves for educational purposes

There are not many free programms offering ECC under a graphical user interface. The following
subsections explain which according functionality is available in CrypTool and in Sage.

7.9.1 CrypTool

CrypTool offers elliptic curves for the digital signature function19 and for ECC-AES hybrid
encryption20.

It implements the basic algorithms for group operations, for generating elliptic curves, for
importing and exporting parameters for elliptic curves over finite fields with p elements (p
prime). The algorithms have been implemented in ANSI C and comply with draft no. 8 of the
IEEE P1363 work group Standard Specifications for Public Key Cryptography

http://grouper.ieee.org/groups/1363.

The procedure implements the cryptographic primitives for generating and verifying sig-
natures for the variations of Nyberg-Rueppel signatures and DSA signatures based on elliptic
curves.

7.9.2 Sage

In Sage elliptic curves are described at

http://www.sagemath.org/doc/constructions/elliptic_curves.html21.

Additionally there is an exhaustive, interactive ECC tutorial by Maike Massierer. This inter-
active introduction to Elliptic Curve Cryptography is built up as a Sage notebook.

Sage notebooks are running after a logon within a browser22,23.

19The dialog box, which appears in CrypTool after clicking the menu Digital Signatures/PKI \ Sign Message,
offers the EC methods ECSP-DSA and ECSP-NR.

20Within CrypTool you can find this technique using the menu path Crypt \ Hybrid.

21According Sage samples can be found at the ”Published Worksheets” at http://www.sagenb.org/pub/

- about Elliptic Curve: http://www.sagenb.org/home/pub/606/

- about Elliptic Curve El Gamal: http://www.sagenb.org/home/pub/104/, or at
- the ”Elliptic Curve Cryptography (ECC) Tutorial”
http://www.williamstein.org/simuw06/notes/notes/node12.html

22If you installed Sage on your own (Unix) server, you first have to enter at the command line the command
notebook().

23The ECC notebook of Maike Massierer needs the KASH3 library: Therefore e.g. with Sage 4.2.1 the package
“kash3-2008-07-31.spkg” has to be installed (command sage -i).
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The ECC notebook of Massierer24,25 consists of 8 parts (title page plus 7 chapters) and aims
to let even beginners understand what elliptic curves are:

0. ECC Notebook (title page and contents)

1. Introduction and Overview

2. Motivation for the use of Elliptic Curves in Cryptography

3. Elliptic Curves in Cryptography

4. Cryptographic Protocols in ECC

5. Domain Parameter Generation for ECC Systems

6. Conclusion and Further Topics

7. References

24Instructions to use an interactive Sage notebook:

- Public Sage servers like http://sage.mathematik.uni-siegen.de:8000 or http://www.sagenb.org/ often of-
fer running samples as ”Published Worksheets”, which you can run and download without login on. These
worksheets are listed if you click on “Published” in the above right corner.

- Worksheets using the interact command currently need some additional todos for a user to work correctly:
sign-in, make a copy and execute all commands again.
This works as follows (described for the sagenb server and for the ECC tutorial):

- Sign-up for a Sage notebook account at http://sagenb.org/register and sign in at http://sagenb.org/.
- Open the worksheet http://sagenb.org/home/pub/1126/. This contains the table of contents of the interactive

ECC notebook. From here you can navigate via a click to the different chapters of the document.
- In the very top left corner, click Edit a copy in order to create your own copy of the worksheet.
- Sometimes it’s necessary at the beginning to re-evaluate the worksheet. Click in the left upper corner on
Action -> Evaluate all.

- Some of the applications still do not always work after opening a worksheet. Instead of nice output, they show
lots of (blue) error messages. This normally can be solved quickly by clicking the gray “%hide” string: Then
you get the code behind the graphics. Simply generate the graphics again with Shift-Enter.
Even after doing this, the graphics code does not always disappear. Instead, it sometimes turns gray. Should
this happen, click on the gray text, then click somewhere outside of the text box. The code will then disappear
and leave you with a nice layout of the worksheet.

- Some of the ECC tutorial’s content uses a special math fonts that are not installed by default with most browsers.
When you notice that formulas are not displayed correctly or even get an error message about missing fonts
from your browser, you need to install the jsMath fonts for a better layout.
See http://www.math.union.edu/~dpvc/jsMath/ and http://pubpages.unh.edu/~jsh3/jsMath/.
After installing these fonts you can see the jsMath symbol at the lower border of your browser. If you click this
symbol you can find the download page for the TIFF fonts. This fonts installation has to be done at every PC.

- According to the Sage-support newsgroup there is work underway to create a system for using @interact

completely outside of the Sage notebook (JS code within a static html pages).

25Since 2008 this ECC notebook can be found at http://sage.mathematik.uni-siegen.de:8000/home/pub/45/

(#45 to #52). To logon in Siegen you have to allow port 8000 and Cookies.
Since 2009 an updated version of this ECC notebook can be found at http://sagenb.org/home/pub/1126/

(#1126 to #1133).
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7.10 Patent aspects

If the field GF (2n) is used instead of the prime field GF (p), one has to make substantial changes
in the implementation. The advantage of GF (2n) lies in the fact that calculations in GF (2n)
can be implemented very efficiently using the binary representation. In particular, divisions
are much easier to process compared to GF (p) (this is particularly important in the signature
scheme mentioned above where a division is needed for processing a signature as well as for the
verification).

In order to achieve maximal gain in efficiency, one may choose a field that allows special basis
like polynomial basis (useful for software implementations) or normal basis (best for hardware
implementations). For special n (like, for example, n = 163, 179, 181) one may even combine
both advantages. However, they are still non-standard.

Sometimes only the first component and one additional bit is used as representation of a
point on the elliptic curve instead of the full two components. Since the first component to-
gether with the additional bit is sufficient to derive the full point, this representation minimizes
the memory capacity needed. In particular, for normal basis this point compression can be
implemented efficiently. In addition, the cryptographic protocols themselves become more ef-
fective. A disadvantage is, however, that point compression can be used for about half of all
elliptic curves only and is protected under US patent (US Patent 6141420, Certicon), causing
additional costs. In the general case GF (pn) (and also in case n = 1) often so called affine or
projective co-ordinates are used. Depending on the application, these co-ordinates may result
in a gain in efficiency as well.

A comprehensive description of all implementations and their advantages and disadvantages
would go far beyond the scope of this paper. We only want to state that there is a variety of
possible implementations for elliptic curve cryptography, much more than for RSA. Therefore,
there are serious efforts to reduce this large to a small number of standard implementations.
Some standardization committees even try to reduce the complexity by focusing on a small
number of (prescribed) curves (ASC-approach).

Today it is still not clear whether these standardization initiatives will be successful or not.
However, without agreed standards, ECC is not likely to become a real alternative for RSA.
The committees might be forced to act fast if there was a break-through in factorization.

7.11 Elliptic curves in use

Today elliptic curve cryptography is already in use. A prominent example is the information
network Bonn-Berlin26, used for the exchange of strictly confidential documents between dif-
ferent German federal governmental institutions in Berlin and Bonn. With the help of ECC a
high security solution could be realized. Interoperability, however, played only a minor role.

In Austria ECC has been massively launched: A bank card with digital signature function.

Both examples show the typical range of application for elliptic curve cryptography: For
high security solutions and for implementations on smartcards in which the key length is crucial
(because of physical memory available).

26The Informationsverbund Bonn-Berlin (IVBB) connects governmental institutions in the old and new German
capital.
http://www.cio.bund.de/cln_094/sid_92C19118CBA5A021AFD1ABAEC15D2B77/DE/IT-Angebot/IT-

Infrastrukturen/IVBB/ivbb_inhalt.html
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Web links

1. Interactive introduction to elliptic curves and elliptic curve cryptography with Sage by
Maike Massierer and the CrypTool team,
http://sagenb.org/home/pub/1126/ (#1126 to #1133)
ECC Tutorial as Sage Notebook
Version 1.2, November 2009

2. Certicom Online Tutorial,
http://www.certicom.com/resources/ecc_tutorial/ecc_tutorial.html

3. Working group IEEE P1363,
http://grouper.ieee.org/groups/1363

4. An informative web page about factorization with elliptic curves,
http://www.loria.fr/~zimmerma/records/ecmnet.html
It contains literature related to the topic factorization with elliptic curves as well as links
to other web page.

5. Key length comparison by Arjen Lenstra and Eric Verheul,
http://cryptosavvy.com/table.htm
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Chapter 8

Crypto 2020 — Perspectives for
Long-Term Cryptographic Security

(Johannes Buchmann, Erik Dahmen, Alexander May and Ulrich Vollmer, TU Darmstadt,
May 2007)

Cryptography is a basic building block of all IT security solutions. Yet, for how long are the
cryptographic tools we use today going to remain secure? Is this time long enough to ensure
the confidentiality of medical data, to name just one example? Even in the short-term, the
potential for havoc is great if certain keys are broken. Just think of the digital signatures that
protect the authenticity of automatic updates for the Windows operating system.

8.1 Widely used schemes

In 1978, Rivest, Shamir and Adleman suggested the RSA public key encryption and signature
schemes [7]. RSA is still the most widely used public key scheme. The security of RSA depends
on the difficulty of factoring so-called RSA moduli which are products of two large prime
numbers. In their 1978 paper, the inventors of RSA suggested the use of RSA moduli with 200
decimal digits for long-term security. Later, the company RSA Security published a list of RSA
moduli of increasing size, the RSA challenge numbers. RSA Security offered prizes totaling $
635,000 for the factorization of these numbers, cf. www.rsasecurity.com/rsalabs/.

In 2005, that is 27 years after the invention of RSA, Bahr, Boehm, Franke, and Klein-
jung from Bochum University managed to factor a 200 digit RSA challenge number (www.mat.
uniroma2.it/~eal/rsa640.txt). A key with size originally thought to be secure for a very
long time was broken with a computation that took them just five months. This illustrates the
tremendous progress factoring technology has made within the last 30 years. This progress is
based on break-through mathematical ideas — e.g. the number field sieve proposed by John Pol-
lard — as well as significant developments in computer hardware and software implementation
technology.1

In 2000, Lenstra and Verheul developed an extrapolation formula that is supposed to help
us forecast the security one can achieve with RSA and other important cryptographic schemes
in the long term (www.keylength.com). The formula suggests the use of 850 digit RSA moduli

1Please compare chapter 4.11 Considerations regarding the security of the RSA algorithm, and especially chapters
4.11.4 and 4.11.5.
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if one wishes to protect data for the next 30 years. This corresponds to a 3072 bit RSA key.

Yet, even a well thought out extrapolation formula is no security guarantee! At any time, a
brilliant mathematical idea can allow us to factor large numbers easily, and destroy the security
of RSA. In 1996, Peter Shor showed that a quantum computer — a new type of computer that
leverages the laws of quantum mechanics to speed up certain types of computations — can in
principle be used for the fast factorization of large numbers [8]. Despite intensive research in
the area, it is still too early to judge whether we are ever going to be able to build quantum
computers of sufficient capacity to apply Shor’s algorithm to numbers of relevant size.2 Recent
announcements of significant progress in this area made by the start-up company D-Wave
(www.dwavesys.com) have been greeted with a lot of scepticism, even ridicule.

The development of attacks on another frequently used scheme called DSA (Digital Signature
Algorithm) and the Elliptic Curve Cryptography (ECC) class of schemes moves in analogy to
those on RSA. The security of these schemes depends on the difficulty of computing discrete
logarithms. Even today, there is significant algorithmic progress. Quantum computers would
render these schemes insecure.

What’s the state of affairs with the so-called secret-key encryption schemes? In 1977, DES
was introduced as the Data Encryption Standard [9]. Twenty-one years later, the Electronic
Frontier Foundation (EFF) built the special purpose machine Deep Crack which needed just 56
hours to break a DES key. The problem with DES was that it used keys which were too short.
It seems that the inventors of DES did not foresee the speed of hardware development. The
Advanced Encryption Standard AES [6], successor to DES, is deemed secure at the moment
even though there are interesting, if still inefficient, methods to attack AES with algebraic
methods.

8.2 Preparation for tomorrow

Is the security of today’s cryptography measuring up to its increasing importance? The ex-
perience shows: Carefully designed and implemented cryptographic schemes have a life time
of five to twenty years. Whoever uses RSA, ECC or AES for short-term protection of data
may feel safe. Moreover, it is also possible to achieve long-term authenticity, integrity and non-
reputability of data, e.g., using the multiple signature scheme suggested by Sönke Maseberg [3].

However, current schemes cannot guarantee long-term confidentiality. And what is to be
done in twenty years from now? What should we do if, quasi over-night, unexpected mathemat-
ical progress renders an important cryptographic scheme insecure? Three things are necessary
to prepare us for this event:

• a pool of secure alternative cryptographic schemes,

2Required qbits for attacks on RSA, DSA and ECDSA using key with a bit length n:

RSA 2n + 3
DSA 2n + 3

ECDSA 2n ˜2n + 8 log n
ECDSA p ˜4n

Please compare chapter 5.3 in “SicAri – Eine Sicherheitsplattform und deren Werkzeuge für die ubiquitäre
Internetnutzung, KB2.1 – Abschlussbericht, Übersicht über Angriffe auf relevante kryptographische Verfahren”,
version 1.0, Mai 17, 2005, Prof. Dr. Johannes Buchmann et al., TUD-KryptC and cv cryptovision GmbH
(http://www.cdc.informatik.tu-darmstadt.de/~schepers/kb 21 angriffe.pdf) and the dissertation of Axel
Schmidt at the same faculty.
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• infrastructures that enable us to exchange one cryptographic scheme for another, easily
and quickly, and

• methods that ensure long-term confidentiality.

For many years, the cryptography group at the Technische Universität Darmstadt and its
spin-off, the company FlexSecure (www.flexsecure.de), have worked to provide these tools.
The trust center software FlexiTrust which is employed by the German National Root Certi-
fication Authority and the German Country Signing Authority offers an infrastructure within
which cryptographic schemes can be easily exchanged. The open source library FlexiProvider
implements a multitude of cryptographic schemes. Lately, we have intensified our research into
“Post Quantum Cryptography” seeking cryptographic schemes which remain secure even in the
event that powerful quantum computers are built.

The security of public key cryptography traditionally rests on the difficulty of the solution
of certain mathematical problems. Today, the following alternatives to the factorization and
discrete logarithm problems are discussed in depth: the decoding problem, the shortest and
closest vector problem in lattices, and the problem of solving large systems of multivariate
quadratic equations. It is conjectured that quantum computers offer little advantage if we try
to solve these problems efficiently.

8.3 New mathematical problems

Let us look at these alternatives a little more closely. The first encryption scheme based on the
decoding problem was proposed by McEliece [4]. The background: Error-correcting codes are
used to transmit or store electronic data in such a way that they remain undistorted even if a
small number of bits are changed in transit or on the storage media. This property is used in,
e.g., compact discs (CDs). The data on a CD can be reconstructed even if the disc has been
slightly scratched.

In a code-based encryption scheme a message is encrypted by adding a fixed number of errors
to (i.e. flipping a fixed numbers of bits of) the encoded message. Decoding requires knowledge
of a suitable decoding procedure which eliminates these errors efficiently. This method is the
secret key. Code-based encryption is in general very efficient. At the moment, research focus
on the question which codes lead to secure encryption schemes with keys which are as small as
possible.

Encryption on the basis of lattice problems is very similar to that on the basis of error-
correcting codes. Lattices are regular structures of points in space. For instance, the points
where the lines on squared paper cross form a two-dimensional lattice. For cryptographic usage,
the dimension of the lattices is chosen to be much larger. Encryption works as follows: The
plain-text is used to construct a lattice point which is then slightly distorted in such a way that
it is no longer a lattice point, but close to one. Whoever knows a secret about the lattice is
able to find this lattice point in the vicinity of the given point in space. The lattice point in
turn yields the plain text. A particularly efficient lattice based encryption scheme is NTRU
Encrypt (www.ntru.com). However, because NTRU was introduced fairly recently (in 1998),
and its specification underwent several changes due to a variety of attacks, more cryptanalytic
scrutiny is required to achieve confidence in its security.

214

www.flexsecure.de
www.ntru.com


8.4 New signatures

In 1979, Ralph Merkle proposed a remarkable framework for new signature schemes in his PhD
thesis [5]. Contrary to all other signature schemes, its security does not rest on the difficulty
of a number-theoretic, algebraic or geometric problem. The only thing it requires is something
which other signature schemes need anyway: a cryptographically secure hash function and a
secure pseudo-random number generator. Each new hash function leads to a new signature
algorithm. In consequence, the Merkle scheme has the potential to solve the problem of long-
term availability of digital signature schemes.

Merkle uses in his construction so-called One-Time Signatures: Each new signature requires
a new signing key and a new verification key. The idea Merkle had was to reduce the validity
of many verification keys using a hash tree to the validity of a unique public hash value. When
generating keys for the Merkle scheme one has to determine the number of signatures one can
make with it in advance. For a long time this seemed a significant disadvantage. In [2], however,
a variant of Merkle’s scheme was proposed which allows to compute 240 signatures with a single
key pair.

8.5 Quantum cryptography – a way out of the impasse?

From the point of view of today’s state of the art of cryptography, the problem of long-term
confidentiality remains unsolved: There is no practical method to protect the confidentiality of
an encrypted message over a very long period of time.

One way out of that dilemma may be to employ quantum cryptography: it allows for key
agreement schemes (of very long keys for one-time pads) whose security is guaranteed by the
laws of quantum mechanics, cf., e.g., [1]. At the moment, however, quantum cryptography is
still rather inefficient, and it is unclear which cryptographic functionalities can be implemented
on top of it.

8.6 Conclusion

What’s on the balance sheet of today’s cryptography? We have good tools to ensure short and
medium term security. Software developers can employ these tools in their applications with
good conscience as long as they make sure that components can quickly be exchanged when
they become insecure.

In order to guarantee IT security for the future, too, we need to prepare a portfolio of secure
cryptographic schemes. This portfolio needs to contain schemes which are suitable for the world
of ubiquitous computing with many less powerful computers. It also needs to contain schemes
which remain secure in the event that powerful quantum computers are built. Several promising
candidates have been discussed in this article. They need to be studied carefully and prepared
for use in everyday scenarios. The question how to ensure long-term confidentiality remains an
important open research problem upon which cryptographic research should focus.
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A.1 CrypTool Menus

This appendix contains at the following page the complete menu tree of CrypTool version
1.4.301.

The main menu contains service functions in the menus

• File

• Edit

• View

• Options

• Window

• Help

and the actual cyrpto functions in the menus

• Encrypt/Decrypt

• Digital Signature/PKI

• Individual Procedures

• Analysis.

Below Individual Procedures you find visualizations of single algorithms and of protocols.
Some procedures are implemented both for a fast performance (mostly under the main menu
Encrypt/Decrypt) and for a step-by-step visualization.

Which menu items in CrypTool are active (that means not greyed), depends on the type of
the currently active document window: The brute-force analysis for DES e. g. is only available,
if the active window is opened in the hexadecimal view. On the other hand the menu item
“Generate Random Numbers. . . ” is always available (even if no document is opened).

1In parallel to CrypTool 1.x the future versions CrypTool 2 and JCrypTool are currently developed in the CrypTool
project.
- Webseite CT2: http://www.cryptool2.vs.uni-due.de

- Webseite JCT: http://jcryptool.sourceforge.net
These future versions are currently (December 2009) beta versions, but they are stable enough to be used by
end-users already. If the according release versions are available, we will add the appropriate menus and menu
trees.
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Figure A.1: Complete overview of the menu tree of CrypTool 1.4.30
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A.2 Authors of the CrypTool Script

This appendix lists the authors of this document.
Please refer to the top of each individual chapter for their contribution.

Bernhard Esslinger,
initiator of the CrypTool project, main author of this script, head Information Security
Management at Deutsche Bank and professor for IT security and cryptography at the
University of Siegen. E-mail: besslinger@web.de, esslinger@fb5.uni-siegen.de.

———

Matthias Büger,
contributor to chapter 7 (“Elliptic Curves”), research analyst at Deutsche Bank.

Bartol Filipovic,
original author of the CrypTool elliptic curve implementation and the corresponding chap-
ter in this script.

Henrik Koy,
main developer and co-ordinator of CrypTool development since version 1.3; script re-
viewer and TEX guru; cryptographer and project leader IT at Deutsche Bank.

Roger Oyono,
implementer of the CrypTool factorization dialog and original author of chapter 5 (“The
Mathematical Ideas behind Modern Cryptography”).

Jörg Cornelius Schneider,
design and support of CrypTool; crypto enthusiast and IT architect and senior project
leader IT at Deutsche Bank.

Christine Stötzel,
Master of Business and Computer Science at the University of Siegen.

———

Johannes Buchmann,
Co-author of chapter 8 (“Crypto 2020 — Perspectives for Long-Term Cryptographic Secu-
rity”). Johannes Buchmann holds the Chair for Theoretical Computer Science (Cryptog-
raphy and Computer Algebra) at the department of Computer Science of the Technische
Universität Darmstadt TUD). He is also a Professor at the department of Mathematics,
and vice-president of the university.

Alexander May,
Co-author of chapter 8 (“Crypto 2020 — Perspectives for Long-Term Cryptographic Se-
curity”), Assistant Professor at the department of Computer Science of the Technische
Universität Darmstadt, Germany.

Erik Dahmen,
Co-author of chapter 8 (“Crypto 2020 — Perspectives for Long-Term Cryptographic Se-
curity”), Researcher at the Chair for Theoretical Computer Science (Cryptography and
Computer Algebra), department of Computer Science, Technische Universität Darmstadt,
Germany.
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Ulrich Vollmer,
Co-author of chapter 8 (“Crypto 2020 — Perspectives for Long-Term Cryptographic Se-
curity”), Researcher at the Chair for Theoretical Computer Science (Cryptography and
Computer Algebra), department of Computer Science, Technische Universität Darmstadt,
Germany.

———

Minh Van Nguyen,
Sage developer and documentation quality reviewer.
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A.3 Movies and Fictional Literature with Relation to Cryptog-
raphy, Books for Kids with Simple Ciphers

Cryptographic applications – classical as well as modern ones – have been used in literature
and movies. In some media they are only mentioned and are a pure admixture; in others they
play a primary role and are explained in detail; and sometimes the purpose of the story, which
forms the framework, is primarily to transport this knowledge and achieve better motivation.
Here is the beginning of an overview.

A.3.1 For Grownups and Teenagers

[Poe1843] Edgar Allan Poe,
The Gold Bug, 1843.
In this short story Poe tells as first-person narrator about his acquaintanceship with the
curious Mr. Legrand. They detect a fabulous treasure via a gold bug and a vellum found
at the coast of New England.
The cipher consists of 203 cryptic symbols and it proves to be a general monoalphabetic
substitution cipher (see chapter 2.2.1). The story tells how they solve the riddle step by
step using a combination of semantic and syntax analysis (frequency analysis of single
letters in English texts).
In this novel the code breaker Legrand says the famous statement: “Yet it may be roundly
asserted that human ingenuity cannot concoct a cipher which human ingenuity cannot re-
solve – given the according dedication.”

[Verne1885] Jules Verne,
Mathias Sandorf, 1885.
This is one of the most famous novels of the French author Jules Verne (1828-1905), who
was called “Father of Science fiction”.
In “Mathias Sandorf” he tells the story of the freedom fighter Earl Sandorf, who is be-
trayed to the police, but finally he can escape.
The whistle-blowing worked, because his enemies captured and decrypted a secret mes-
sage sent to him. For decryption they needed a special grille, which they stole from him.
This turning grille was a quadratic piece of jig with 6x6 squares, of which 1/4 (nine) were
holes (see the turning grille in chapter 2.1.1).

[Kipling1901] Rudyard Kipling,
Kim, 1901.
Rob Slade’s review2 of this novel says: “Kipling packed a great deal of information and
concept into his stories, and in “Kim” we find The Great Game: espionage and spying.
Within the first twenty pages we have authentication by something you have, denial of
service, impersonation, stealth, masquerade, role-based authorization (with ad hoc au-
thentication by something you know), eavesdropping, and trust based on data integrity.
Later on we get contingency planning against theft and cryptography with key changes.”
The book is out of copyright3.

2See http://catless.ncl.ac.uk/Risks/24.49.html#subj12.
3You can read it at:
http://whitewolf.newcastle.edu.au/words/authors/K/KiplingRudyard/prose/Kim/index.html,
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[Doyle1905] Arthur Conan Doyle,
The Adventure of the Dancing Men, 1905.
In this Sherlock Holmes short story (first published in 1903 in the “Strand Magazine”,
and then in 1905 in the collection “The Return of Sherlock Holmes” the first time in book-
form) Sherlock Holmes has to solve a cipher which at first glance looks like a harmless
kid’s picture.
But it proves to be the monoalphabetic substitution cipher (see chapter 2.2.1) of the crim-
inal Abe Slaney. Sherlock Holmes solves the riddle using frequency analysis.

[Sayers1932] Dorothy L. Sayers,
Have his carcase, Harper/Victor Gollancz Ltd., 1932.
In this novel the writer Harriet Vane finds a dead body at the beach. The police believe
the death is suicide. Harriet Vane and the elegant amateur sleuth Lord Peter Wimsey
together clear of the disgusting murder in this second of Sayers’s famous Harriet Vane
mystery series.
This requires to solve a cryptogram. Surprisingly the novel not only describes the Play-
fair cipher in detail, but also the cryptanalysis of this cipher (see Playfair in chapter 2.2.3).

[Arthur196x] Robert Arthur,
The Three Investigators: The Secret Key (German version: Der geheime Schlüssel nach
Alfred Hitchcock (volume 119), Kosmos-Verlag (from 1960)
The three detectives Justus, Peter and Bob have to decrypt covered and encrypted mes-
sages within this story to find out what is behind the toys of the Copperfield company.

[Simmel1970] Johannes Mario Simmel,
And Jimmy went to the Rainbow (original title: Und Jimmy ging zum Regenbogen), Knaur
Verlag, 1970.
The novel plays between 19938 and 1967 in Vienna. The main character Manual Aranda
uncovers step by step the past of his murdered father. Important for the plot is an en-
crypted manuscript, which is decrypted in chapter 33. In the novel the cipher is called
“25-fold Caesar cipher”. It is actually a Vigenère cipher with a 25 character key.
A movie of the novel appeared in 1971.

[Crichton1987] Michael Crichton,
Sphere, Pan Books, 1987.
A team of different scientists is send to the ground of the ocean in order to investigate
a highly developed 900 m long space ship. The human peculiarities and psychological
problems of the researchers surface more and more, because of life threatening events and
isolation. There are many mysteries: While the space ship lies on the ground for 300 years,
it has English markings and a life of its own, and materializing of the researcher’s imagina-
tions appear. On a computer screen a cipher text appears, which is completely printed in
the book. The genius mathematician Harry deciphers the simple helical substitution code.

http://kipling.thefreelibrary.com/Kim or
http://www.readprint.com/work-935/Rudyard-Kipling.
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[Seed1990] Directed by Paul Seed,
House of Cards, 1990.
In this movie Ruth tries to solve the secret, which made her daughter fall silent. Here two
young people suffering from autism communicate via 5- and 6-digit primes (see chapter 3).
After more than 1 hour the movie contains the following encrypted two series of primes:

21, 383; 176, 081; 18, 199; 113, 933; 150, 377; 304, 523; 113, 933
193, 877; 737, 683; 117, 881; 193, 877

[Robinson1992] Directed by Phil Alden Robinson,
Sneakers, Universal Pictures Film, 1992.
In this movie the “sneakers”, computer experts under their boss Martin Bishop, try to
get back the deciphering box SETEC from the “bad guys”. SETEC, invented by a genius
mathematician before he was killed, allows to decrypt all codes from any nation.
In the movie the code is not described in any way4.

[Baldacci1997] David Baldacci,
Total Control, Mass Market Paperback, 1997.
Jason Archer, executive with a technology company suddenly disappears. Sidney Archer
tries to find out about her husband’s surprising death. She gets a clue how the global
financial system is abused and that the real control belongs to those with the most money.
Here even good passwords don’t help ...

[Natali1997] Directed by Vincenzo Natali,
Cube, Mehra Meh Film, 1997.
In this Canadian low-budget-movie 7 complete strangers of widely varying personality
characteristics are involuntarily placed in an kafkaesque maze of cubical rooms containing
deadly traps.
To get out the persons have to move through these rooms. To find out which rooms
are dangerous, mathematics is crucial: Each cubic room has at its entrance a numerical
marking consisting of three sets of three digits. First they deduce that all rooms marked
at their entrance with at least one prime number are trapped. Later it comes out that a
trapped room can also be marked by a number which is a power of a prime (so traps are
pn, e.g. 128 = 27 or 101 = 1011 = prime, but not 517 = 11 ∗ 47).

[Becker1998] Directed by Harold Becker,
Mercury Rising, Universal Pictures Film, 1998.
The NSA developed a new cipher, which is pretended to be uncrackable by humans and
computers. To test its reliability some programmers hide a message encrypted with this
cipher in a puzzle magazine.
Simon, a nine year old autistic boy, cracks the code. Instead of fixing the code, a govern-
ment agent sends a killer. FBI agent Art Jeffries (Bruce Willis) protects the boy and sets

4Leonard Adleman (the ”A” within RSA) worked as mathematical consultant for “Sneakers”. He describes
the funny story about his contribution at his homepage http://www.usc.edu/dept/molecular-science/fm-

sneakers.htm. It is assumed that the cipher used everywhere is RSA. According to that within the chip a fast,
unknown factorization method is implemented.
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a snare for the killers.
The code is not described in any way.

[Brown1998] Dan Brown,
Digital Fortress, E-Book, 1998.
Dan Brown’s first novel was published in 1998 as e-book, but it was largely unsuccessful
then.
The National Security Agency (NSA) uses a huge computer, which enables it to decrypt
all messages (needless to say only of criminals and terrorists) within minutes even if they
use the most modern encryption methods.
An apostate employee invents an unbreakable code and his computer program Diabolus
forces the super computer to do self destructing operations. The plot, where also the
beautiful computer expert Susan Fletcher has a role, is rather predictable.
The idea, that the NSA or another secret service is able to decrypt any code, is currently
popular on several authors: In “Digital Fortress” the super computer has 3 million proces-
sors – nevertheless from today’s sight this is by no means sufficient to hack modern ciphers.

[Elsner1999] Dr. C. Elsner,
The Dialogue of the Sisters, c’t, Heise, 1999.
In this short story, which is included in the CrypTool package as PDF file, the sisters
confidentially communicate using a variant of RSA (see chapter 4.10 and the following).
They are residents of a madhouse being under permanent surveillance.

[Stephenson1999] Neal Stephenson,
Cryptonomicon, Harper, 1999.
This very thick novel deals with cryptography both in WW2 and today. The two heroes
from the 40ies are the excellent mathematician and cryptanalyst Lawrence Waterhouse,
and the overeager and morphine addicted US marine Bobby Shaftoe. They both are mem-
bers of the special allied unit 2702, which tries to hack the enemy’s communication codes
and at the same time to hide the own existence.
This secretiveness also happens in the present plot, where the grandchildren of the war
heroes – the dedicated programmer Randy Waterhouse and the beautiful Amy Shaftoe –
team up.
Cryptonomicon is notably heavy for non-technical readers in parts. Several pages are
spent explaining in detail some of the concepts behind cryptography. Stephenson added a
detailed description of the Solitaire cipher (see chapter 2.4), a paper and pencil encryption
algorithm developed by Bruce Schneier which is called “Pontifex” in the book. Another,
modern algorithm called “Arethusa” is not explained in detail.

[Elsner2001] Dr. C. Elsner,
The Chinese Labyrinth, c’t, Heise, 2001.
In this short story, which is included in the CrypTool package as PDF file, Marco Polo has
to solve problems from number theory within a competition to become a major consultant
of the Great Khan. All solutions are included and explained.

[Colfer2001] Eoin Colfer,
Artemis Fowl, Viking, 2001.
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In this book for young people the 12 year old Artemis, a genius thief, gets a copy of the top
secret “Book of the Elfs”. After he decrypted it with his computer, he finds out things,
men never should have known.
The used code is not described in detail or revealed.

[Howard2001] Directed Ron Howard,
A Beautiful Mind, 2001.
This is the film version of Sylvia Nasar’s biography of the game theorist John Nash. After
the brilliant but asocial mathematician accepts secret work in cryptography, his life takes
a turn to the nightmarish. His irresistible urge to solve problems becomes a danger for
himself and his family. Nash is – within his belief – a most important hacker working for
the government.
Details of his way analysing code are not described in any way.

[Apted2001] Directed by Michael Apted,
Enigma, 2001.
This is the film version of Robert Harris’ “historical fiction” Enigma (Hutchinson, London,
1995) about the World War II code-breaking work at Bletchley Park in early 1943, when
the actual inventor of the analysis Alan Turing (after Polish pre-work) already was in the
US. So the fictional mathematician Tom Jericho is the lead character in this spy-thriller.
Details of his way analysing the code are not described.

[Isau1997] Ralf Isau,
The Museum of the stolen memories (original title: Das Museum der gestohlenen Erin-
nerungen), Thienemann-Verlag, 1997/2003.
In this exciting novel the last part of the oracle can only be solved with the joined help
of the computer community.
The book got several awards and exists in 8 different languages, but not in English yet.

[Brown2003] Dan Brown,
The Da Vinci Code, Doubleday, 2003.
The director of the Louvre is found murdered in his museum in front of a picture of
Leonardo da Vinci. And the symbol researcher Robert Langdon is involved in a conspir-
acy. The plot mentions different classic codes (substitution like Caesar or Vigenère, as
well as transposition and number codes). Also there are hints about Schneier and the
sunflower. The second part of the book contains a lot of theological considerations.
This book has become one of the most widely read books of all time.

[Hill2003] Tobias Hill,
The Cryptographer, Faber & Faber, 2003.
London 2021: The company SoftMark developed and establish an electronic curreny,
which guarantees highest security standards by an unbreakable code. The inventor and
company founder, called the cryptographer because of his mathematical talent, has be-
come the richest man in the world. But the code was hacked, and in a worldwide economic
crisis his company goes bankrupt. Additionally the tax investigator Anna Moore is set on
him.
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[McBain2004] Scott McBain,
Final Solution, manuscript not published by Harper Collins, 2004 (German version has
been published in 2005).
In a near future politicians, chiefs of military and secret services of many different countries
take over all the power. With a giant computer network called “Mother” and complete
surveillance they want to cement their power and commercialisation of life forever. Hu-
mans are only assessed according to their credit rating and globally acting companies
elude of any democratic control. Within the thriller the obvious injustice, but also the
realistic likelihood of this development are considered again and again.
With the help of a cryptographer a code to destroy was built into the super computer
“Mother”: In a race several people try to start the deactivation (Lars Pedersen, Oswald
Plevy, the female American president, the British prime minister and an unknown Finish
named Pia, who wants to take revenge for the death of her brother). On the opposite
side a killing group acts under the special guidance of the British foreign minister and the
boss of the CIA.

[Burger2006] Wolfgang Burger,
Heidelberg Lies (original title: Heidelberger Lügen), Piper, 2006.
This detective story playing in the Rhein-Neckar area in Germany has several independent
strands and local stories, but mainly it is about Kriminalrat Gerlach from Heidelberg. On
page 207 f. the cryptographic reference for one strand is shortly explained: The soldier
Hörrle had copied circuit diagrams of a new digital NATO decryption device and the
murdered man had tried to sell his perceptions to China.

[Vidal2006] Agustin Sanchez Vidal,
Kryptum, Dtv, 2006.
The first novel of the Spanish professor of art history has some similarities with Dan
Brown’s “The Da Vinci Code” from 2003, but allegedly Vidal started his writing of the
novel already in 1996. Vidal’s novel is a mixture between historic adventure and mystery
thriller. It was a huge success in Spain and Germany. There is currently no English
version available.
In the year 1582 Raimundo Randa is waiting to be condemned to death – he was all life
long trying to solve a mystery. This mystery is about a parchment with cryptic char-
acters, where a unique power is behind. Around 400 years later the American scientist
Sara Toledano is fascinated by this power until she vanishes in Antigua. Her colleague,
the cryptographer David Calderon, and her daughter Rachel are searching for her and
simultaneously they try to solve the code. But also secret organizations like the NSA
chase after the secret of the “last key”. They don’t hesitate to kill for it.

[Larsson2006] Stieg Larsson,
Perdition (original title: Flickan som lekte med elden), 2006.
The author was posthumously awarded in 2006 with the Scandinavian thriller award. The
super hero Lisbeth Salander uses PGP and occupies herself with mathematical riddles like
the Fermat theorem.

[Schroeder2008] Rainer M. Schröder,
The Judas Documents (original title: Die Judas-Papiere), Arena, 2008.
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In the year 1899 Lord Pembroke has three men and one woman in his grip. So they have
to follow his order to try to decipher the encrypted messages in the notebook of his dead
brother Mortimer and to find the missing gospel according to Judas, which could shock
the whole of Christendom. The four people therefor have to solve riddles at many places
in the world. The story explains some classic ciphers like Polybius and Freemason.

[Eschbach2009] Andreas Eschbach,
A King for Germany (original title: Ein König für Deutschland), Lübbe, 2009.
The novel deals with manipulations of electronic voting machines.
Vincent Merrit, a young US-American programmer, is blackmailed, to write such a pro-
gramme. Beside commercially oriented blackmailers also Massively Multiplayer Online
Role-Playing Games (MMORPGs) and Live Action Role Playing (LARP) have a role.
Because Merrit assumed that his programme will be misused, he installed a trapdoor: If
a party with the name VWM participates at the election, it automatically gets 95 % of
the votes ...
The fictional story line is based on many verifiable and well researched facts, which are
referenced in footnotes.
While the cryptographic protocols itself could be made secure, their implementation and
their organisational management stays susceptible against misuse.
Currently there is no English translation of the book.

Remark 1: Further samples of cryptology in fictional literature can be found on the following
German web page:

http://www.staff.uni-
mainz.de/pommeren/Kryptologie99/Klassisch/1_Monoalph/Literat.html

For some older authors (e.g. Jules Verne, Karl May, Arthur Conan Doyle, Edgar Allen Poe)
there are links to the original and relevant text pieces.

Remark 2: You can find title pages of some of these books on the web site of Tobias Schrödel,
who collects classic books about cryptography:

http://tobiasschroedel.com/crypto_books.php

Remark 3: If you know of further books and movies, where cryptography has a major role
then we would be very glad if you could send us the exact title and a short explanation about
the movie/book’s content. Thanks a lot.
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A.3.2 For Kids and Teenagers

The following list contains movies and “kid books”. The kid books here contain collections of
simpler cryptographic encryption methods, prepared in a didactic and exciting manner (please
send us similar English kid books and kid movies, because at the moment our list contains only
German kid books):

[Mosesxxxx] [no named author],
Top secret – The Book for Detectives and Spies (original title: Streng geheim – Das Buch
für Detektive und Agenten), Edition moses, [no year named].
This is a thin book for small kids with Inspector Fox and Dr. Chicken.

[Para1988] Para,
Ciphers (original title: Geheimschriften), Ravensburger Taschenbuch Verlag, 1988 (1st
edition 1977).
On 125 pages filled with a small font this mini format book explains many methods which
young children can apply directly to encrypt or hide their messages. A little glossary and
a short overview about the usage of encryption methods in history complete this little
book.

Right at page 6 it summarizes for beginners in an old fashion style “The Important Things
First” about paper&pencil encryption (compare chapter 2):

- “It must be possible to encrypt your messages at any place and at any location with
the easiest measures and a small effort in a short time.

- Your cipher must be easy to remember and easy to read for your partners. But
strangers should not be able to decrypt them.
Remember: Fastness before finesse, security before carelessness.

- Your message must always be as short and precise as a telegram. Shortness outranks
grammar and spelling. Get rid of all needless like salutations or punctuation marks.
Preferably use only small or only capital letters.”

[Müller-Michaelis2002] Matthias Müller-Michaelis,
The manual for detectives. Everything you need to know about ciphers, codes, reading
tracks and the biggest detectives of the world (original title: Das Handbuch für Detektive.
Alles über Geheimsprachen, Codes, Spurenlesen und die großen Detektive dieser Welt),
Südwest, 2002.

[Kippenhahn2002] Rudolf Kippenhahn,
Top secret! – How to encrypt messages and to hack codes (original title: Streng geheim!
– Wie man Botschaften verschlüsselt und Zahlencodes knackt), rororo, 2002.
In this novel a grandpa, an expert for secret writings teaches his four grandchildren and
their friends, how to encrypt messages which nobody should read. Because there is some-
one who hacks their secrets, the grandpa has to teach them more and more complicated
methods.
Within this story, which forms the framework, the most important classic encryption
methods and its analysis are explained in a manner exciting and appropriate for children.
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[Harder2003] Corinna Harder and Jens Schumacher,
Top secret. The big book for detectives (original title: Streng geheim. Das große Buch der
Detektive), Moses, 2003.

[Talke-Baisch2003] Helga Talke and Milena Baisch,
Your mission in the weird villa. Riddle thriller (original title: Dein Auftrag in der un-
heimlichen Villa. Kennwort Rätselkrimi), Loewe, 2003.
From 4th form, http://www.antolin.de
Young detectives are faced simple ciphers and codes during their missions.

[Flessner2004] Bernd Flessner,
The Three Investigators: Manual for Secret Messages (original title: Die 3 ???: Handbuch
Geheimbotschaften), Kosmos, 2004.
On 127 pages you learn in an easy and exciting manner, structured by the method types,
which secret languages (like the one of the Navajo Indians or dialects) and which secret
writings (real encryption or hiding via technical or linguistic steganography) existed and
how simple methods can be decrypted.
The author tells where in history the methods were used and in which novel authors used
encryption methods [like in Edgar Allan Poe’s “The Gold Bug”, like with Jules Verne’s
hero Mathias Sandorf or like with Astrid Lindgren’s master detective Blomquist who used
the ROR language (similar inserting ciphers are the spoon or the B language)].
This is a didactically excellent introduction for younger teens.

[Zübert2005] Directed by Christian Zübert,
The Treasure of the White Hawks (original title: Der Schatz der weißen Falken) , 2005.
This exciting adventure movie for kids ties in with the tradition of classics like “Tom
Sawyer and Huckleberry Finn” or Enid Blytons “Five Friendse”. The plot happens in
summer 1981. In an old half tumbledown villa three young kids find the treasure map of
the “White Hawks”, which they decrypt with the help of a computer. Traced by another
gang they aim to go to an old castle.

Remark 1: You can find title pages of many of these kid books on the web site of Tobias
Schrödel, who collects classic books about cryptography:

http://tobiasschroedel.com/crypto_books.php

Remark 2: If you know of further books, which address cryptography in a didactic and for
children adequate way, then we would be very glad if you could send us the exact book title
and a short explanation about the book’s content. Thanks a lot.
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A.4 Learning Tool for Elementary Number Theory

CrypTool contains an interactive educational tool for elementary number theory, called “NT”.5

The educational tool “NT” (number theory) by Martin Ramberger introduces number theory
and visualizes many of the methods and concepts. Where necessary it show the according
mathematical formulas. Often you can apply the mathematical methods dynamically with your
own small numerical examples.

The content of this educational tool is mainly based on the books by J. Buchmann and H.
Scheid [Buchmann2004, Scheid2003].

This visualized educational tool was build with Authorware 4.

Request for enhancement/upgrade: It would be desirable to update it to a new version
Authorware or to use another development platform. If there are developers interested to do
this, I’d be more than happy (please send an email at the author of this CrypTool script).

Figures: The figures A.2 till A.9 give you an impression of the educational tool “NT”:

Figure A.2: Each common divisor of two integers also divides all its linear combinations

5NT can be called in CrypTool via the menu path Indiv. Procedures \ Number Theory Interactive \
Learning Tool for Number Theory.
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Figure A.3: Euklid’s algorithm to determine gcd

Figure A.4: Distribution of primes and its differences
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Figure A.5: Finding primes with the prime number test of Fermat

Figure A.6: Reversibility of encryption mechanisms exemplified with additive ciphers
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Figure A.7: Fermat factorization using the third binomial formula

Figure A.8: Fermat factorization: Detecting squares
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Figure A.9: Pollard’s rho factorization: Floyd’s cycle finding algorithm
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A.5 Using Sage with this Script

This script includes numerous code samples using Sage. Sage is an open source computer algebra
system (CAS) that supports teaching, study and research in mathematics. It combines many
high-quality open source packages6 and provides access to their functionalities via a common
interface, namely, a Python7 based programming language.

Sage can be used as a powerful desktop calculator, as a tool to help (undergraduate) students
study mathematics, or as a programming environment for prototyping algorithms and research
in algorithmic aspects of mathematics.

You can get a quick impression of Sage e.g. with David Joyner’s “Invitation to Sage”8.

The official Sage online documentation9 is available at: http://www.sagemath.org/doc.

In the meantime there are lots of PDF and HTML documents about using Sage, so we name
only a few of them as a good starting point10.

With respect to studying cryptography, Sage modules can be used to complement a first course
in cryptography11.

Especially David Kohel’s notes at
http://www.sagemath.org/library/crypto.pdf or the same eventually newer at
http://sage.math.washington.edu/home/wdj/teaching/kohel-crypto.pdf
can be used to teach such a course that incorporates Sage.

Sage user interfaces

Sage is available free of charge and can be downloaded from the following website:

http://www.sagemath.org

The default interface to Sage is command line based, as shown in figure A.10. However, there
is a graphical user interface to the software as well in the form of the Sage notebook (see
figure A.11). We can even use Sage notebooks12 online at different servers, without having to
install Sage locally, e.g:

6To get an impression of how big Sage is: After downloading the source of Sage 4.1, it took around 5 hours on
an average Linux PC to compile the whole system including all libraries. The compiled version occupied 1.8 GB
disk space.

7There is also an easy interface to the C language, called Cython, which can be used to substantially speed up
functions in Sage.
See http://openwetware.org/wiki/Open_writing_projects/Sage_and_cython_a_brief_introduction.

8http://sage.math.washington.edu/home/wdj/teaching/calc1-sage/an-invitation-to-sage.pdf

(last update 2009).
9The corresponding official PDF documents can be downloaded at
http://www.sagemath.org/help.html

10- “Library”: http://www.sagemath.org/library/index.html,
- “Documentation Project”: http://wiki.sagemath.org/DocumentationProject,
- “Teaching”: http://wiki.sagemath.org/Teaching_with_SAGE.

11- Module sources in the directory SAGE_ROOT/devel/sage-main/sage/crypto.
- Overview, what crypto currently is in Sage:
http://www.sagemath.org/doc/reference/sage/crypto/

- Discussions about teaching related aspects of development crypto in Sage:
http://groups.google.com/group/sage-devel/browse_thread/thread/c5572c4d8d42d081

12Further details about Sage notebooks can be found at chapter 7.9.2 (“Implementing elliptic curves for educational
purposes” ⇒ “Sage”)
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http://www.sagenb.org or
http://sage.mathematik.uni-siegen.de:8000

.

Sage runs under many Linux distributions, Mac OS X, and Windows. For the Windows
platform, a complete distribution of Sage currently only runs as a VMware image. However, a
full native port of Sage to Windows is currently in progress.

Figure A.10: Sage command line interface

Figure A.11: Sage notebook interface13
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Getting help with using Sage

Upon loading Sage from the command line, we are presented with something similar to the
following:

mnemonic:~$ sage

----------------------------------------------------------------------

| Sage Version 4.1, Release Date: 2009-07-09 |

| Type notebook() for the GUI, and license() for information. |

----------------------------------------------------------------------

sage: help

Type help() for interactive help, or help(object) for help about object.

sage:

sage:

sage: help()

Welcome to Python 2.6! This is the online help utility.

If this is your first time using Python, you should definitely check out

the tutorial on the Internet at http://docs.python.org/tutorial/.

Enter the name of any module, keyword, or topic to get help on writing

Python programs and using Python modules. To quit this help utility and

return to the interpreter, just type "quit".

To get a list of available modules, keywords, or topics, type "modules",

"keywords", or "topics". Each module also comes with a one-line summary

of what it does; to list the modules whose summaries contain a given word

such as "spam", type "modules spam".

Plenty of help is provided in the form of the official Sage documentation that is distributed with
every release of Sage (see Figure A.12). The official Sage standard documentation includes the
following documents:

• Tutorial — This tutorial is designed to help Sage beginners become familiar with Sage. It
covers many features that beginners should be familiar with, and takes one to three hours
to go through.

• Constructions — This document is in the style of a Sage “cookbook”. It is a collection of
answers to questions about constructing various objects in Sage.

• Developers’ Guide — This guide is for developers who want to contribute to the devel-
opment of Sage. Among other issues, it covers coding style and conventions, modifying
the core Sage libraries, modifying the Sage standard documentation, and code review and
distribution.

• Reference Manual — This manual provides complete documentation on the major features
of Sage. The description of a class is accompanied by numerous code samples. All code
samples in the reference manual are tested before each Sage release.

• Installation Guide — This guide explains how to install Sage under various platforms.

13To start the Sage gui locally: Enter notebook() at the Sage prompt, and then your favorite browser (Iceweasel,
Firefox, IE, ...) is started e.g. with the URL http://localhost:8000.
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Figure A.12: The Sage standard documentation

• A Tour of Sage — This is a tour of Sage that showcases various features of Sage that are
useful for beginners.

• Numerical Sage — This document introduces tools available under Sage that are useful
for numerical computation.

• Three Lectures about Explicit Methods in Number Theory Using Sage — This document
is about using Sage to perform computations in advanced number theory.

From within a Sage session, we can obtain a list of commands matching some pattern. To do
so, we type the first few characters and then press the “Tab” key:

sage: Su[TAB]

Subsets Subwords SuzukiGroup

SubstitutionCryptosystem SupersingularModule

If we know the exact name of a command, we can use the help function to obtain further
information on that command, or append the question mark “?” to the command name.
For example, the command help(SubstitutionCryptosystem) provides documentation on
the built-in class SubstitutionCryptosystem. We can get documentation on this class with
the question mark as follows:

sage: SubstitutionCryptosystem?

Type:type

Base Class:<type ’type’>
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String Form:<class ’sage.crypto.classical.SubstitutionCryptosystem’>

Namespace:Interactive

File:/home/mvngu/usr/bin/sage-3.4.1/local/lib/python2.5/site-packages/sage/crypto/classical.py

Docstring:

Create a substitution cryptosystem.

INPUT:

- ‘‘S‘‘ - a string monoid over some alphabet

OUTPUT:

- A substitution cryptosystem over the alphabet ‘‘S‘‘.

EXAMPLES::

sage: M = AlphabeticStrings()

sage: E = SubstitutionCryptosystem(M)

sage: E

Substitution cryptosystem on Free alphabetic string monoid

on A-Z

sage: K = M([ 25-i for i in range(26) ])

sage: K

ZYXWVUTSRQPONMLKJIHGFEDCBA

sage: e = E(K)

sage: m = M(‘‘THECATINTHEHAT’’)

sage: e(m)

GSVXZGRMGSVSZG

TESTS::

sage: M = AlphabeticStrings()

sage: E = SubstitutionCryptosystem(M)

sage: E == loads(dumps(E))

True

For further assistance on specific problems, we can also search the archive of the sage-support
mailing list at

http://groups.google.com/group/sage-support
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Some examples using the built-in mathematical functions in Sage

Here are a few little examples14 (all in console mode, for ease) to see what you can do with
Sage:

Sage sample A.1 Some small general samples in Sage from different areas in mathematics
# * Calculus:

sage: x=var(’x’)

sage: p=diff(exp(x^2),x,10)*exp(-x^2)

sage: p.simplify_exp()

1024 x^10 + 23040 x^8 + 161280 x^6 + 403200 x^4 + 302400 x^2 + 30240

# * Linear Algebra:

sage: M=matrix([[1,2,3],[4,5,6],[7,8,10]])

sage: c=random_matrix(ZZ,3,1);c

[ 7 ]

[-2 ]

[-2 ]

sage: b=M*c

sage: M^-1*b

[ 7 ]

[-2 ]

[-2 ]

# * Number theory:

sage: p=next_prime(randint(2^49,2^50));p

1022095718672689

sage: r=primitive_root(p);r

7

sage: pl=log(mod(10^15,p),r);pl

1004868498084144

sage: mod(r,p)^pl

1000000000000000

# * Finite Fields (\url{http://en.wikipedia.org/wiki/Finite_field}):

sage: F.<x>=GF(2)[]

sage: G.<a>=GF(2^4,name=’a’,modulus=x^4+x+1)

sage: a^2/(a^2+1)

a^3 + a

sage: a^100

a^2 + a + 1

sage: log(a^2,a^3+1)

13

sage: (a^3+1)^13

a^2

14The examples are from the blog of Dr. Alasdair McAndrew, Victoria University,
http://amca01.wordpress.com/2008/12/19/sage-an-open-source-mathematics-software-system
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Writing code samples with Sage

When you start using a CAS (computer algebra system) you normally type in the single com-
mands on the command line as in the above example15.

But if you develop your own functions, modify them and call them, then it is much easier
to do the development in your own editor, save it to a script file and execute the functions
non-interactively on the command line manually. Both ways to develop code were applied
in chapter 1.6 (“Appendix: Examples using Sage”), chapter 2.5 (“Appendix: Examples using
Sage”), chapter 3.14 (“Appendix: Examples using Sage”) and in chapter 4.18 (“Appendix:
Examples using Sage”).

To program and test Sage code using an editor there are two useful commands: load() and
attach()16.
Suppose you have a function definition like this:

def function(var1):

r"""

DocText.

"""

...

return (L)

which has been saved to the file primroots.sage.

To load this function into Sage (and do a syntax check at once), use load() as follows:

sage: load primroots.sage

and you can then proceed to use on the command line any variable or function defined in that
Sage script17.

Normally we also want to edit our own Sage script and reload the content of the changed
script into Sage again. In that case, you can use the command attach() (you also can apply
attach() directly after loading the script, even before having changed the script; and you can
even omit load(), as this is contained in attach()):

15The standard way for presenting Sage code starts the lines with “sage:” and “...”.

sage: m = 11

sage: for a in xrange(1, m):

....: print [power_mod(a, i, m) for i in xrange(1, m)]

....:

This script usually uses the above convention for presenting Sage code, if the code doesn’t come from a Sage
script. When people copy and paste the Sage code from this script, in order to enter it at the command line,
they should leave out “sage:” and “...’ from the script (nevertheless in most cases the command prompt can deal
with these prefixes correctly).

16See Sage tutorial about Programming, chapter “Loading and Attaching Sage files”,
http://www.sagemath.org/doc/tutorial/programming.html#loading-and-attaching-sage-files.

17Notes:
- Don’t use white spaces in your file name.
- Its recommended that your Sage script has the file extension “.sage”, instead of “.py”. With a Sage script

whose file name ends in “.sage”, when you load it into Sage then the default Sage environment is also loaded
to make sure that it works as if you have defined your function from the Sage command line. This also applies
if you run the script from a bash shell using $ sage primroots.sage.

- If you run your script as above, then Sage first parses your script, writes it to another file called “primroots.py”
(note the “.py” extension), adds all necessary variables to ”primroots.py” as well as writing any import state-
ments to that file. That way, your Sage script is executed as if you had typed the definitions in your script to
the Sage command line. An important difference isthat all output needs a print statement.
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sage: attach primroots.sage

Now edit the Sage script in a text editor, but don’t exit Sage. After you saved it within your
text editor, the changed function definition is reloaded into the running Sage session after the
next typing of Enter (and a syntax check is done at once). This reloading is done automatically
for you, provided that all changes to your script have been saved. You can think of the command
attach() as a way of telling Sage to watch for all changes to a file, and reloading the file again
once Sage notices that there have been changes. With this command, you don’t have to copy
and paste between your text editor and the Sage command line interface.

Here is a picture of Sage code in the editor GVIM with activated code highlighting (see
figure A.13).

Figure A.13: Sage sample shown in an editor with code highlighting

If you prefer to see the output of an attached file as if you would have typed in the com-
mands on the commandline directly (not only what is shown via print) then you could use the
command iload(): Each line is loaded one at a time. To load the next line, you have to press
the Enter key. You have to repeatedly press the Enter key until all lines of the Sage script are
loaded into the Sage session.

sage: iload primroots.sage
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Some more hints:

• To get the version of your Sage environment: version()

• To move quickly to the Sage code examples in this script,

– either look in the index at Sage -> Code examples,

– or have a look at the appendix “List of Sage Code Examples”.

• The source code of the Sage samples in this script is delivered as Sage program files
within the CrypTool setup program. After installing CrypTool 1.x you find them within
the subdirectory sage within the CrypTool directory:
- SAGE-Samples-in-Chap01.sage
- SAGE-Samples-in-Chap02.sage
- SAGE-Samples-in-Chap03.sage
- SAGE-Samples-in-Chap04.sage
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GNU Free Documentation License

Version 1.3, 3 November 2008

Copyright c© 2000, 2001, 2002, 2007, 2008 Free Software Foundation, Inc.

http://fsf.org/

Everyone is permitted to copy and distribute verbatim copies of this license document, but
changing it is not allowed.

Preamble

The purpose of this License is to make a manual, textbook, or other functional and useful
document “free” in the sense of freedom: to assure everyone the effective freedom to copy
and redistribute it, with or without modifying it, either commercially or noncommercially.
Secondarily, this License preserves for the author and publisher a way to get credit for their
work, while not being considered responsible for modifications made by others.

This License is a kind of “copyleft”, which means that derivative works of the document
must themselves be free in the same sense. It complements the GNU General Public License,
which is a copyleft license designed for free software.

We have designed this License in order to use it for manuals for free software, because free
software needs free documentation: a free program should come with manuals providing the
same freedoms that the software does. But this License is not limited to software manuals; it
can be used for any textual work, regardless of subject matter or whether it is published as a
printed book. We recommend this License principally for works whose purpose is instruction
or reference.

1. APPLICABILITY AND DEFINITIONS

This License applies to any manual or other work, in any medium, that contains a notice
placed by the copyright holder saying it can be distributed under the terms of this License.
Such a notice grants a world-wide, royalty-free license, unlimited in duration, to use that work
under the conditions stated herein. The “Document”, below, refers to any such manual or
work. Any member of the public is a licensee, and is addressed as “you”. You accept the license
if you copy, modify or distribute the work in a way requiring permission under copyright law.

A “Modified Version” of the Document means any work containing the Document or
a portion of it, either copied verbatim, or with modifications and/or translated into another
language.

A “Secondary Section” is a named appendix or a front-matter section of the Document
that deals exclusively with the relationship of the publishers or authors of the Document to
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the Document’s overall subject (or to related matters) and contains nothing that could fall
directly within that overall subject. (Thus, if the Document is in part a textbook of mathe-
matics, a Secondary Section may not explain any mathematics.) The relationship could be a
matter of historical connection with the subject or with related matters, or of legal, commercial,
philosophical, ethical or political position regarding them.

The “Invariant Sections” are certain Secondary Sections whose titles are designated, as
being those of Invariant Sections, in the notice that says that the Document is released under
this License. If a section does not fit the above definition of Secondary then it is not allowed
to be designated as Invariant. The Document may contain zero Invariant Sections. If the
Document does not identify any Invariant Sections then there are none.

The “Cover Texts” are certain short passages of text that are listed, as Front-Cover Texts
or Back-Cover Texts, in the notice that says that the Document is released under this License.
A Front-Cover Text may be at most 5 words, and a Back-Cover Text may be at most 25 words.

A “Transparent” copy of the Document means a machine-readable copy, represented in
a format whose specification is available to the general public, that is suitable for revising the
document straightforwardly with generic text editors or (for images composed of pixels) generic
paint programs or (for drawings) some widely available drawing editor, and that is suitable
for input to text formatters or for automatic translation to a variety of formats suitable for
input to text formatters. A copy made in an otherwise Transparent file format whose markup,
or absence of markup, has been arranged to thwart or discourage subsequent modification by
readers is not Transparent. An image format is not Transparent if used for any substantial
amount of text. A copy that is not “Transparent” is called “Opaque”.

Examples of suitable formats for Transparent copies include plain ASCII without markup,
Texinfo input format, LaTeX input format, SGML or XML using a publicly available DTD,
and standard-conforming simple HTML, PostScript or PDF designed for human modification.
Examples of transparent image formats include PNG, XCF and JPG. Opaque formats include
proprietary formats that can be read and edited only by proprietary word processors, SGML or
XML for which the DTD and/or processing tools are not generally available, and the machine-
generated HTML, PostScript or PDF produced by some word processors for output purposes
only.

The “Title Page” means, for a printed book, the title page itself, plus such following pages
as are needed to hold, legibly, the material this License requires to appear in the title page. For
works in formats which do not have any title page as such, “Title Page” means the text near
the most prominent appearance of the work’s title, preceding the beginning of the body of the
text.

The “publisher” means any person or entity that distributes copies of the Document to
the public.

A section “Entitled XYZ” means a named subunit of the Document whose title either
is precisely XYZ or contains XYZ in parentheses following text that translates XYZ in an-
other language. (Here XYZ stands for a specific section name mentioned below, such as
“Acknowledgements”, “Dedications”, “Endorsements”, or “History”.) To “Preserve
the Title” of such a section when you modify the Document means that it remains a section
“Entitled XYZ” according to this definition.

The Document may include Warranty Disclaimers next to the notice which states that this
License applies to the Document. These Warranty Disclaimers are considered to be included by
reference in this License, but only as regards disclaiming warranties: any other implication that
these Warranty Disclaimers may have is void and has no effect on the meaning of this License.
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2. VERBATIM COPYING

You may copy and distribute the Document in any medium, either commercially or non-
commercially, provided that this License, the copyright notices, and the license notice saying
this License applies to the Document are reproduced in all copies, and that you add no other
conditions whatsoever to those of this License. You may not use technical measures to obstruct
or control the reading or further copying of the copies you make or distribute. However, you
may accept compensation in exchange for copies. If you distribute a large enough number of
copies you must also follow the conditions in section 3.

You may also lend copies, under the same conditions stated above, and you may publicly
display copies.

3. COPYING IN QUANTITY

If you publish printed copies (or copies in media that commonly have printed covers) of the
Document, numbering more than 100, and the Document’s license notice requires Cover Texts,
you must enclose the copies in covers that carry, clearly and legibly, all these Cover Texts:
Front-Cover Texts on the front cover, and Back-Cover Texts on the back cover. Both covers
must also clearly and legibly identify you as the publisher of these copies. The front cover must
present the full title with all words of the title equally prominent and visible. You may add
other material on the covers in addition. Copying with changes limited to the covers, as long as
they preserve the title of the Document and satisfy these conditions, can be treated as verbatim
copying in other respects.

If the required texts for either cover are too voluminous to fit legibly, you should put the
first ones listed (as many as fit reasonably) on the actual cover, and continue the rest onto
adjacent pages.

If you publish or distribute Opaque copies of the Document numbering more than 100, you
must either include a machine-readable Transparent copy along with each Opaque copy, or state
in or with each Opaque copy a computer-network location from which the general network-using
public has access to download using public-standard network protocols a complete Transparent
copy of the Document, free of added material. If you use the latter option, you must take
reasonably prudent steps, when you begin distribution of Opaque copies in quantity, to ensure
that this Transparent copy will remain thus accessible at the stated location until at least one
year after the last time you distribute an Opaque copy (directly or through your agents or
retailers) of that edition to the public.

It is requested, but not required, that you contact the authors of the Document well before
redistributing any large number of copies, to give them a chance to provide you with an updated
version of the Document.

4. MODIFICATIONS

You may copy and distribute a Modified Version of the Document under the conditions of
sections 2 and 3 above, provided that you release the Modified Version under precisely this
License, with the Modified Version filling the role of the Document, thus licensing distribution
and modification of the Modified Version to whoever possesses a copy of it. In addition, you
must do these things in the Modified Version:
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A. Use in the Title Page (and on the covers, if any) a title distinct from that of the Document,
and from those of previous versions (which should, if there were any, be listed in the History
section of the Document). You may use the same title as a previous version if the original
publisher of that version gives permission.

B. List on the Title Page, as authors, one or more persons or entities responsible for au-
thorship of the modifications in the Modified Version, together with at least five of the
principal authors of the Document (all of its principal authors, if it has fewer than five),
unless they release you from this requirement.

C. State on the Title page the name of the publisher of the Modified Version, as the publisher.

D. Preserve all the copyright notices of the Document.

E. Add an appropriate copyright notice for your modifications adjacent to the other copyright
notices.

F. Include, immediately after the copyright notices, a license notice giving the public per-
mission to use the Modified Version under the terms of this License, in the form shown in
the Addendum below.

G. Preserve in that license notice the full lists of Invariant Sections and required Cover Texts
given in the Document’s license notice.

H. Include an unaltered copy of this License.

I. Preserve the section Entitled “History”, Preserve its Title, and add to it an item stating
at least the title, year, new authors, and publisher of the Modified Version as given on the
Title Page. If there is no section Entitled “History” in the Document, create one stating
the title, year, authors, and publisher of the Document as given on its Title Page, then
add an item describing the Modified Version as stated in the previous sentence.

J. Preserve the network location, if any, given in the Document for public access to a Trans-
parent copy of the Document, and likewise the network locations given in the Document
for previous versions it was based on. These may be placed in the “History” section. You
may omit a network location for a work that was published at least four years before the
Document itself, or if the original publisher of the version it refers to gives permission.

K. For any section Entitled “Acknowledgements” or “Dedications”, Preserve the Title of the
section, and preserve in the section all the substance and tone of each of the contributor
acknowledgements and/or dedications given therein.

L. Preserve all the Invariant Sections of the Document, unaltered in their text and in their
titles. Section numbers or the equivalent are not considered part of the section titles.

M. Delete any section Entitled “Endorsements”. Such a section may not be included in the
Modified Version.

N. Do not retitle any existing section to be Entitled “Endorsements” or to conflict in title
with any Invariant Section.

O. Preserve any Warranty Disclaimers.
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If the Modified Version includes new front-matter sections or appendices that qualify as
Secondary Sections and contain no material copied from the Document, you may at your option
designate some or all of these sections as invariant. To do this, add their titles to the list of
Invariant Sections in the Modified Version’s license notice. These titles must be distinct from
any other section titles.

You may add a section Entitled “Endorsements”, provided it contains nothing but endorse-
ments of your Modified Version by various parties—for example, statements of peer review or
that the text has been approved by an organization as the authoritative definition of a standard.

You may add a passage of up to five words as a Front-Cover Text, and a passage of up to 25
words as a Back-Cover Text, to the end of the list of Cover Texts in the Modified Version. Only
one passage of Front-Cover Text and one of Back-Cover Text may be added by (or through
arrangements made by) any one entity. If the Document already includes a cover text for the
same cover, previously added by you or by arrangement made by the same entity you are acting
on behalf of, you may not add another; but you may replace the old one, on explicit permission
from the previous publisher that added the old one.

The author(s) and publisher(s) of the Document do not by this License give permission to
use their names for publicity for or to assert or imply endorsement of any Modified Version.

5. COMBINING DOCUMENTS

You may combine the Document with other documents released under this License, under
the terms defined in section 4 above for modified versions, provided that you include in the
combination all of the Invariant Sections of all of the original documents, unmodified, and list
them all as Invariant Sections of your combined work in its license notice, and that you preserve
all their Warranty Disclaimers.

The combined work need only contain one copy of this License, and multiple identical
Invariant Sections may be replaced with a single copy. If there are multiple Invariant Sections
with the same name but different contents, make the title of each such section unique by adding
at the end of it, in parentheses, the name of the original author or publisher of that section if
known, or else a unique number. Make the same adjustment to the section titles in the list of
Invariant Sections in the license notice of the combined work.

In the combination, you must combine any sections Entitled “History” in the various original
documents, forming one section Entitled “History”; likewise combine any sections Entitled
“Acknowledgements”, and any sections Entitled “Dedications”. You must delete all sections
Entitled “Endorsements”.

6. COLLECTIONS OF DOCUMENTS

You may make a collection consisting of the Document and other documents released under
this License, and replace the individual copies of this License in the various documents with a
single copy that is included in the collection, provided that you follow the rules of this License
for verbatim copying of each of the documents in all other respects.

You may extract a single document from such a collection, and distribute it individually
under this License, provided you insert a copy of this License into the extracted document, and
follow this License in all other respects regarding verbatim copying of that document.

7. AGGREGATION WITH INDEPENDENT WORKS
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A compilation of the Document or its derivatives with other separate and independent docu-
ments or works, in or on a volume of a storage or distribution medium, is called an “aggregate”
if the copyright resulting from the compilation is not used to limit the legal rights of the com-
pilation’s users beyond what the individual works permit. When the Document is included in
an aggregate, this License does not apply to the other works in the aggregate which are not
themselves derivative works of the Document.

If the Cover Text requirement of section 3 is applicable to these copies of the Document,
then if the Document is less than one half of the entire aggregate, the Document’s Cover Texts
may be placed on covers that bracket the Document within the aggregate, or the electronic
equivalent of covers if the Document is in electronic form. Otherwise they must appear on
printed covers that bracket the whole aggregate.

8. TRANSLATION

Translation is considered a kind of modification, so you may distribute translations of the
Document under the terms of section 4. Replacing Invariant Sections with translations requires
special permission from their copyright holders, but you may include translations of some or
all Invariant Sections in addition to the original versions of these Invariant Sections. You
may include a translation of this License, and all the license notices in the Document, and any
Warranty Disclaimers, provided that you also include the original English version of this License
and the original versions of those notices and disclaimers. In case of a disagreement between
the translation and the original version of this License or a notice or disclaimer, the original
version will prevail.

If a section in the Document is Entitled “Acknowledgements”, “Dedications”, or “History”,
the requirement (section 4) to Preserve its Title (section 1) will typically require changing the
actual title.

9. TERMINATION

You may not copy, modify, sublicense, or distribute the Document except as expressly
provided under this License. Any attempt otherwise to copy, modify, sublicense, or distribute
it is void, and will automatically terminate your rights under this License.

However, if you cease all violation of this License, then your license from a particular copy-
right holder is reinstated (a) provisionally, unless and until the copyright holder explicitly and
finally terminates your license, and (b) permanently, if the copyright holder fails to notify you
of the violation by some reasonable means prior to 60 days after the cessation.

Moreover, your license from a particular copyright holder is reinstated permanently if the
copyright holder notifies you of the violation by some reasonable means, this is the first time
you have received notice of violation of this License (for any work) from that copyright holder,
and you cure the violation prior to 30 days after your receipt of the notice.

Termination of your rights under this section does not terminate the licenses of parties who
have received copies or rights from you under this License. If your rights have been terminated
and not permanently reinstated, receipt of a copy of some or all of the same material does not
give you any rights to use it.

10. FUTURE REVISIONS OF THIS LICENSE
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The Free Software Foundation may publish new, revised versions of the GNU Free Doc-
umentation License from time to time. Such new versions will be similar in spirit to the
present version, but may differ in detail to address new problems or concerns. See http:
//www.gnu.org/copyleft/.

Each version of the License is given a distinguishing version number. If the Document
specifies that a particular numbered version of this License “or any later version” applies to it,
you have the option of following the terms and conditions either of that specified version or of
any later version that has been published (not as a draft) by the Free Software Foundation. If
the Document does not specify a version number of this License, you may choose any version
ever published (not as a draft) by the Free Software Foundation. If the Document specifies
that a proxy can decide which future versions of this License can be used, that proxy’s public
statement of acceptance of a version permanently authorizes you to choose that version for the
Document.

11. RELICENSING

“Massive Multiauthor Collaboration Site” (or “MMC Site”) means any World Wide Web
server that publishes copyrightable works and also provides prominent facilities for anybody
to edit those works. A public wiki that anybody can edit is an example of such a server.
A “Massive Multiauthor Collaboration” (or “MMC”) contained in the site means any set of
copyrightable works thus published on the MMC site.

“CC-BY-SA” means the Creative Commons Attribution-Share Alike 3.0 license published by
Creative Commons Corporation, a not-for-profit corporation with a principal place of business
in San Francisco, California, as well as future copyleft versions of that license published by that
same organization.

“Incorporate” means to publish or republish a Document, in whole or in part, as part of
another Document.

An MMC is “eligible for relicensing” if it is licensed under this License, and if all works
that were first published under this License somewhere other than this MMC, and subsequently
incorporated in whole or in part into the MMC, (1) had no cover texts or invariant sections,
and (2) were thus incorporated prior to November 1, 2008.

The operator of an MMC Site may republish an MMC contained in the site under CC-
BY-SA on the same site at any time before August 1, 2009, provided the MMC is eligible for
relicensing.

ADDENDUM: How to use this License for your documents

To use this License in a document you have written, include a copy of the License in the
document and put the following copyright and license notices just after the title page:

Copyright c© YEAR YOUR NAME. Permission is granted to copy, distribute and/or
modify this document under the terms of the GNU Free Documentation License,
Version 1.3 or any later version published by the Free Software Foundation; with no
Invariant Sections, no Front-Cover Texts, and no Back-Cover Texts. A copy of the
license is included in the section entitled “GNU Free Documentation License”.
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If you have Invariant Sections, Front-Cover Texts and Back-Cover Texts, replace the “with
. . . Texts.” line with this:

with the Invariant Sections being LIST THEIR TITLES, with the Front-Cover Texts
being LIST, and with the Back-Cover Texts being LIST.

If you have Invariant Sections without Cover Texts, or some other combination of the three,
merge those two alternatives to suit the situation.

If your document contains nontrivial examples of program code, we recommend releasing
these examples in parallel under your choice of free software license, such as the GNU General
Public License, to permit their use in free software.
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Zübert 2005, 230
Zemeckis 1997, 77

267


	Overview
	Contents Overview
	Contents
	Preface to the 10th Edition of the CrypTool Script
	Introduction -- How do the Script and the Program Play together?
	1 Encryption Procedures
	1.1 Symmetric encryption
	1.1.1 New results about cryptanalysis of AES
	1.1.2 Current status of brute-force attacks on symmetric algorithms (RC5)

	1.2 Asymmetric encryption
	1.3 Hybrid procedures
	1.4 Ciphers and cryptanalysis for educational purposes
	1.5 Further details
	1.6 Appendix: Examples using Sage
	1.6.1 Mini-AES

	Bibliography
	Web links

	2 Paper and Pencil Encryption Methods
	2.1 Transposition ciphers
	2.1.1 Introductory samples of different transposition ciphers
	2.1.2 Column and row transposition ciphers
	2.1.3 Further transposition algorithm ciphers

	2.2 Substitution ciphers
	2.2.1 Monoalphabetic substitution ciphers
	2.2.2 Homophonic substitution ciphers
	2.2.3 Polygraphic substitution ciphers
	2.2.4 Polyalphabetic substitution ciphers

	2.3 Combining substitution and transposition
	2.4 Further methods
	2.5 Appendix: Examples using Sage
	2.5.1 Transposition ciphers
	2.5.2 Substitution ciphers
	2.5.3 Caesar cipher
	2.5.4 Shift cipher
	2.5.5 Affine cipher
	2.5.6 Substitution with symbols
	2.5.7 Vigenère cipher
	2.5.8 Hill cipher

	Bibliography

	3 Prime Numbers
	3.1 What are prime numbers?
	3.2 Prime numbers in mathematics
	3.3 How many prime numbers are there?
	3.4 The search for extremely large primes
	3.4.1 The 20+ largest known primes (as of July 2009)
	3.4.2 Special number types -- Mersenne numbers and Mersenne primes
	3.4.3 Challenge of the Electronic Frontier Foundation (EFF)

	3.5 Prime number tests
	3.6 Overview special number types and the search for a formula for primes
	3.6.1 Mersenne numbers f(n) = 2ˆn - 1 for n prime
	3.6.2 Generalized Mersenne numbers f(k,n) = k .... 2ˆn +- 1 / Proth numbers
	3.6.3 Generalized Mersenne numbers f(b,n) = bˆn +- 1 / Cunningham project
	3.6.4 Fermat numbers f(n) = 2ˆ2ˆn + 1
	3.6.5 Generalized Fermat numbers f(b,n) = bˆ2ˆn + 1
	3.6.6 Carmichael numbers
	3.6.7 Pseudo prime numbers
	3.6.8 Strong pseudo prime numbers
	3.6.9 Idea based on Euclid's proof p_1 ... p_2 ... p_n +1
	3.6.10 As above but -1 except +1: p_1 ... p_2 ... p_n -1
	3.6.11 Euclidean numbers e_n = e_0 ... e_1 e_n-1 + 1
	3.6.12 f(n) = nˆ2 + n + 41
	3.6.13 f(n) = nˆ2 - 79 ... n + 1,601
	3.6.14 Polynomial functions f(x) = a_n xˆn + a_n-1 xˆn-1 + ... + a_1 xˆ1 + a_0
	3.6.15 Catalan's conjecture

	3.7 Density and distribution of the primes
	3.8 Notes about primes
	3.8.1 Proven statements / theorems about primes
	3.8.2 Unproven statements / conjectures about primes
	3.8.3 Open questions about twin primes
	3.8.4 Further open questions
	3.8.5 Quaint and interesting things around primes

	3.9 Appendix: Number of prime numbers in various intervals
	3.10 Appendix: Indexing prime numbers (n-th prime number)
	3.11 Appendix: Orders of magnitude / dimensions in reality
	3.12 Appendix: Special values of the binary and decimal system
	3.13 Appendix: Visualization of the quantity of primes in higher ranges
	3.14 Appendix: Examples using Sage
	3.14.1 Some basic functions about primes using Sage
	3.14.2 Check primality of integers generated by quadratic functions

	Bibliography
	Web links
	Acknowledgments

	4 Introduction to Elementary Number Theory with Examples
	4.1 Mathematics and cryptography
	4.2 Introduction to number theory
	4.2.1 Convention

	4.3 Prime numbers and the first fundamental theorem of elementary number theory
	4.4 Divisibility, modulus and remainder classes
	4.4.1 The modulo operation -- working with congruence

	4.5 Calculations with finite sets
	4.5.1 Laws of modular calculations
	4.5.2 Patterns and structures

	4.6 Examples of modular calculations
	4.6.1 Addition and multiplication
	4.6.2 Additive and multiplicative inverses
	4.6.3 Raising to the power
	4.6.4 Fast calculation of high powers
	4.6.5 Roots and logarithms

	4.7 Groups and modular arithmetic in Zn and Zn*
	4.7.1 Addition in a group
	4.7.2 Multiplication in a group

	4.8 Euler function, Fermat's little theorem and Euler-Fermat
	4.8.1 Patterns and structures
	4.8.2 The Euler function
	4.8.3 The theorem of Euler-Fermat
	4.8.4 Calculation of the multiplicative inverse
	4.8.5 Fixpoints modulo 26

	4.9 Multiplicative order and primitive roots
	4.10 Proof of the RSA procedure with Euler-Fermat
	4.10.1 Basic idea of public key cryptography
	4.10.2 How the RSA procedure works
	4.10.3 Proof of requirement 1 (invertibility)

	4.11 Considerations regarding the security of the RSA algorithm
	4.11.1 Complexity
	4.11.2 Security parameters because of new algorithms
	4.11.3 Forecasts about factorization of large integers
	4.11.4 Status regarding factorization of concrete large numbers
	4.11.5 Further current research about primes and factorization

	4.12 Applications of asymmetric cryptography using numerical examples
	4.12.1 One way functions
	4.12.2 The Diffie-Hellman key exchange protocol

	4.13 The RSA procedure with actual numbers
	4.13.1 RSA with small prime numbers and with a number as message
	4.13.2 RSA with slightly larger primes and an upper-case message
	4.13.3 RSA with even larger primes and a text made up of ASCII characters
	4.13.4 A small RSA cipher challenge (1)
	4.13.5 A small RSA cipher challenge (2)

	4.14 Appendix: gcd and the two algorithms of Euclid
	4.15 Appendix: Forming closed sets
	4.16 Appendix: Comments on modulo subtraction
	4.17 Appendix: Base representation of numbers, estimation of length of digits
	4.18 Appendix: Examples using Sage
	4.18.1 Multiplication table modulo m
	4.18.2 Fast exponentiation
	4.18.3 Multiplicative order
	4.18.4 Primitive roots
	4.18.5 RSA examples with Sage
	4.18.6 How many RSA keys exist within a given modulo range?

	4.19 Appendix: List of the definitions and theorems formulated in this chapter
	Bibliography
	Web links
	Acknowledgments

	5 The Mathematical Ideas behind Modern Cryptography
	5.1 One way functions with trapdoor and complexity classes
	5.2 Knapsack problem as a basis for public key procedures
	5.2.1 Knapsack problem
	5.2.2 Merkle-Hellman knapsack encryption

	5.3 Decomposition into prime factors as a basis for public key procedures
	5.3.1 The RSA procedure
	5.3.2 Rabin public key procedure (1979)

	5.4 The discrete logarithm as basis for public key procedures
	5.4.1 The discrete logarithm in Zp
	5.4.2 Diffie-Hellman key agreement
	5.4.3 ElGamal public key encryption procedure in Zp*
	5.4.4 Generalised ElGamal public key encryption procedure

	Bibliography

	6 Hash Functions and Digital Signatures
	6.1 Hash functions
	6.1.1 Requirements for hash functions
	6.1.2 Current attacks against hash functions like SHA-1
	6.1.3 Signing with hash functions

	6.2 RSA signatures
	6.3 DSA signatures
	6.4 Public key certification
	6.4.1 Impersonation attacks
	6.4.2 X.509 certificate

	Bibliography

	7 Elliptic Curves
	7.1 Elliptic curve cryptography -- a high-performance substitute for RSA?
	7.2 Elliptic curves -- history
	7.3 Elliptic curves -- mathematical basics
	7.3.1 Groups
	7.3.2 Fields

	7.4 Elliptic curves in cryptography
	7.5 Operating on the elliptic curve
	7.6 Security of elliptic-curve-cryptography: The ECDLP
	7.7 Encryption and signing with elliptic curves
	7.7.1 Encryption
	7.7.2 Signing
	7.7.3 Signature verification

	7.8 Factorization using elliptic curves
	7.9 Implementing elliptic curves for educational purposes
	7.9.1 CrypTool
	7.9.2 Sage

	7.10 Patent aspects
	7.11 Elliptic curves in use
	Bibliography
	Web links

	8 Crypto 2020 --- Perspectives for Long-Term Cryptographic Security
	8.1 Widely used schemes
	8.2 Preparation for tomorrow
	8.3 New mathematical problems
	8.4 New signatures
	8.5 Quantum cryptography -- a way out of the impasse?
	8.6 Conclusion
	Bibliography

	A Appendix
	A.1 CrypTool Menus
	A.2 Authors of the CrypTool Script
	A.3 Movies and Fictional Literature with Relation to Cryptography, Books for Kids with Simple Ciphers
	A.3.1 For Grownups and Teenagers
	A.3.2 For Kids and Teenagers

	A.4 Learning Tool for Elementary Number Theory
	A.5 Using Sage with this Script

	GNU Free Documentation License
	List of Figures
	List of Tables
	List of Crypto Procedures
	List of Sage Code Examples
	Index

