

In 1995, after a decade of development,
the Special Operation Forces (SOF)

Extendable Integration Support Environ-
ment (EISE) was established at Robins
Air Force Base in Warner Robins,
Georgia. The purpose of the SOF EISE
was to provide hardware and software
support for seven selected avionics sys-
tems (see Figure 1). The support environ-
ment permits the modification and test of
the OFPs running on the aircraft.

A key component of the SOF EISE is
the crew interface (CIF) simulation. It is
designed to allow real-time, simultaneous
operations with the line replaceable unit
and environment simulation portions of
SOF EISE. The computer display touch-
screens provide a simulation of the actual
aircraft cockpits. The CIF stands as the
key control element between the system
user and both the real and simulated air-
craft avionics. It provides a means by
which the functional capability of simulat-
ed aircraft avionics, real aircraft avionics,
and their associated OFPs can be evaluat-
ed against the required capability for these
system components.

Problem
After almost 20 years, the architecture of
the CIF segment was becoming unsup-
portable. A unique CIF simulation execut-
ed on a single-board computer (SBC) for
each of the seven systems. The SBC code
communicated with two silicon graphic

computers over a network using a remote
procedure call protocols (RPC). Three
processes ran on one of the silicon graph-
ics (client, server, and GUI), and two
processes ran on the second (client and
GUI). These processes communicated
using COTS software library calls. The
hardware was becoming unsupportable
and the software solutions were outdated.
The segment was incredibly complex and
resulted in reliability problems as well as
high maintenance costs.

Potential Challenges
Even though a COTS product had been in
place, high maintenance cost, poor cus-
tomer support, and an unreliable develop-
ment tool led to an investigation of new
possibilities for today’s technology for
both hardware and software. Our require-
ments fell into basically two categories:
1. Functional requirements. These

consisted primarily of requirements
elicitation from our test group cus-
tomer. The test group had written
extensive procedures over the years
that referred to specific graphical
objects on the interface. The steps
included observe actions that specified
color, position, button presses, and
other very specific details of the lega-
cy graphics. This was a justifiable con-
straint given the level of effort that
would be required to change thou-
sands of pages of test procedures.

2. Non-functional requirements. These
are essential to retarget the CIF GUI
that resided on a silicon graphics
machine to a Linux based system, bet-
ter performance, and higher reliability.

COTS Considerations
After it was decided that the functional
capabilities of the legacy system would
determine the requirements for the
upgrade, a development team met to dis-
cuss the vision for the upgrade.
Discussion focused on previous problems
with vendors, ease of debugging, and the
future of the system. From this discus-
sion, it was determined that we were look-

ing for the following [1]:
• A fully interactive 2-D or 3-D open

graphic library-based development
tool. We needed a tool that would
allow us to create custom widgets that
looked exactly like the legacy widgets.
Only tools with the ability to create 2-
D objects could do that. We also want-
ed the capability to improve the
appearance of those objects that did
not impact test procedures. In the
future, we will need to support new
platforms. For those new platforms,
we will not be restricted to legacy
appearances. For these, we would like
to create more photo-realistic panels.
There is a growing desire for out-the-
window views by the users. Should
that ever become a requirement, we
want to be able to meet it without hav-
ing to change tools. A 3-D tool is
required for that.

• Non-proprietary, human-readable,
object-oriented code. Historically,
there have been issues with the legacy
tool that required us to examine the
interim files that were generated.
Because the interim files were written
in a proprietary format, we were
unable to analyze certain conditions
while debugging. This significantly
hampered our ability to quickly correct
some defects, and we were not anxious
to subject ourselves to that limitation
again.

• Lower development cost. The legacy
tool was old and its customer base was
decreasing. Licensing fees were
increasing. Expertise with the tool was
limited. All these factors forced the
cost of the development tool to rise.
Newer, cheaper, and more capable
tools existed. We would take a cursory
look at a few of them and determine
which of those deserve further evalua-
tion.

• Efficient object-oriented designs
and code generation. An object ori-
ented approach to programming is
accepted industry-wide. While it is not
a function of the tool to provide the

GL Studio Brings Realism to
Aircraft Cockpit Simulator Displays

Testing operational flight programs (OFPs) for aircraft requires that the user be able to enter data and generate output via a
graphical user interface (GUI). Desiring to enhance the realism for the test team and upgrade the outdated software, we began
the search for a new tool. A new commercial off-the-shelf (COTS) product was selected and a success story unfolded. This
article presents that story.

Kim Stults
580th Software Maintenance Squadron

16 CROSSTALK The Journal of Defense Software Engineering June 2007

SOF Aircraft Deployment

Date

MH-53J PAVE LOW III

(PL3)

1995

AC-130H Gunship (GS) 1997

MC-130H Combat

Talon II (CT2)

1998

MC-130E Combat

Talon I (CT1)

1999

MH-53M Pave LOW IV

(PL4)

1999

EC-130H Compass Call

(CC)

2003

HH-60G PAVE HAWK

(PH)

2006

Figure 1: SOF EISE Supported Aircraft

GL Studio Brings Realism to Aircraft Cockpit Simulator Displays

approach, some tools make it easier
than others. We wanted a tool that
would support, even enforce, object
oriented code.

• A compact runtime library. Using
our legacy tool, the libraries had
become nearly unmanageable due to
increasing size. While the increases
were mandated by increased capability,
they were still consuming disk space.

• Flexible licensing options. As the
number of supported platforms
grows, we needed to be able to adjust
our licensing agreements. We needed
to be able to establish a fixed number
of development licenses and a differ-
ent number of runtime licenses. We
needed the option of a site license, in
the event the requirements dictated.
That is, in the event the number of
platforms we were required to support
grew to the point that it was economi-
cally feasible to get a site license
instead of individual run-time license.

• Proven COTS product with some
demonstrated level of maturity.
There are a plethora of tools on the
market that meet our needs. Many of
them are excellent, some are only
good. We had neither the time, nor the
engineering resources to evaluate all,
or even most of them in depth. We
elected to rely on the tool’s customer
base to do that for us. Mature tools
have a large customer base. We wanted
an alternative pool for advice, cus-
tomers who were already using the
tool.

• COTS vendor with good technical
support. Every new tool comes with
the promise of technical support. We
wanted to be sure that we were getting
more than promises. The vendor we
eventually selected provided excellent
technical support during the evalua-
tion period. We described several
unique problems and they promptly
provided explanations or solutions.
Certainly there are a lot of graphics

products on the market. We looked at sev-
eral and had vendors come in to demon-
strate their products. We obtained refer-
ences from those companies and contact-
ed their customers. One can usually learn
more from a vendor’s customer than a
vendor representative. For example, you
can find out what to expect in the compa-
ny’s training courses, the quality of the
technical support, the tool’s ease of use,
etc. After making an initial company selec-
tion for prototyping, we arranged for a
week-long training session at a facility near
our site. The instructor was technically
competent and a veteran in front of the

classroom. He provided satisfactory
answers and examples for all of our ques-
tions. Most of the questions were drawn
from what we thought would be difficul-
ties with using his company’s tool. In
every case, we were more than satisfied
with his response.

Obstacles
Change is not always welcome. There
were concerns in moving from the famil-
iar to the unfamiliar. We had previously
faced difficulties with customer support,
so a good working relationship with the
vendor was crucial. There were concerns
from the test team that the look and feel
of the test station not be changed for fear
of impact to the current test procedures.

The other obstacles we encountered
were typically hardware-related or self
imposed. The original Linux personal
computer we were given for development
had an incompatible operating system
(OS) and graphics card for the tool we
were evaluating. Our first step was to
acquire a compatible OS. At this point
though, the hardware acquisition still
lagged behind the software we were devel-
oping. The integrated product would be
driving two monitors. We did our early
development on systems that only had
one. We were concerned that mouse clicks
on the second monitor would not return
the screen coordinates we were expecting.
We tasked one of our developers to exam-
ine the possibility of intercepting the uni-
versal serial bus event stream and modify-
ing it. This was a risk mitigation step. Our
next step was to choose a multi-headed
graphics card to work with our selected
OS. Finally, we had to find a touch screen
that had existing drivers for our chosen
Linux OS. Once all of our hardware was in
place, we knew that the (x,y) desired coor-

dinates were being returned from mouse
events and the dual screen implementation
was a non-issue. The vendor had assured
us that this would not be a problem, but
we had no way to prove it. Therefore, a lot
of time had been spent on risk mitigation
that was completely unnecessary.

The Solution
The ultimate architecture for our solution
was a combination of procedural pro-
gramming in the system simulation and
object-oriented programming in the GUI.
Figure 2 depicts the selected architecture
for our solution. DiSTI GL Studio was a
perfect fit for our COTS product require-
ments. GL Studio is a premier Human
Machine Interface (HMI) development
toolkit that allows for the creation of end-
to-end safety critical displays from proto-
type to delivery. GL Studio has no propri-
etary formats and flexible licensing
options, and it produces reliable, safe, effi-
cient, reusable applications in a rapid and
easy fashion. The GL Studio development
package was a fraction of the cost of our
previous COTS product. The licensing
fees alone will save approximately
$120,000 over the next five years. The PCs
will save an additional $42,000 over the
same time period.

Keys to Successful Integration
Our COTS integration was completed
ahead of schedule and within budget. The
integration effort was a success story for
many reasons.

Partnering With the Vendor
We received and continue to receive excel-
lent technical support from DiSTI. Some
vendors have a take-it-or-leave-it
approach. We were a team and they want-
ed us to succeed. We were not the only

June 2007 www.stsc.hill.af.mil 17

Hardware Pentium 4 processor, 3.6 GHz, Intel EM64T, nVidia,

Linux OS Redhat Enterprise version 4.0

COTS Product DiSTI’s GL Studio

Implemented Configuration

Shared

Memory

CIF

Client

Server

GUI

Server

Client

Single Board Computer

Linux PC

(Silicon Graphics Replacement)

RPC

RPC

Quadro FX 3400 dual Video Graphics Array or

Digital Visual Interface graphics card

Figure 2: Selected Architecture for Configuration

COTS Integration

ones working weekends when we had a
problem to solve. Particularly, they worked
one weekend to develop a drop-in keypad
class for us. In the beginning, we had
issues with the particular OS we had cho-
sen. It was not supported by GL Studio,
but they helped us get it working anyway.
They also had many customers running
multi-headed touch screen applications in
Windows, but we were the first to attempt
it with Linux. Thanks to DiSTI’s support,
we were able to implement our desired
design.

Networking With Similar Users
DiSTI networked us together with the C-
130 Self-Contained Navigation System
(SCNS). ARINC had previously designed
photo-realistic pilot panels for the SCNS
project. We were able to obtain the
reusable software objects for several pilot
instruments and implement them into our
architecture seamlessly. This saved a
tremendous amount of time and money.
For our initial delivery, we did not have
time in the schedule to photograph our
own instruments and code the displays.
Having a product that was already being
used with displays that we needed was a
life saver.

Selecting the Hardware
Implementing the design of one multi-
head PC with two monitors – on each of
the five platforms – reduced the 10
required host computers to five. This sin-
gle PC architecture, along with utilizing a
shared memory segment to replace the
outdated communications library, greatly
simplified our code – eliminating approxi-
mately 25,000 lines of code.

Assessment of Results
The overall results for our upgrade have
been outstanding. At this time, all of the
platforms have been successfully ported

to the new architecture and have been in
use for approximately six months. Not
only has the integration been a success for
the development team, but for the end
users as well.

Customer Satisfaction
Even though our customer, OFP develop-
ers, and testers were leery of a change in
the beginning, they have been very pleased
with the improvements in our architec-
ture, the most notable improvement being
the photo-realistic displays for the pilot
instruments (Figure 3, a and b). This, of
course, enhances the realism of flight sim-
ulation and test.

Sharing Across Multiple Platforms
A huge success of the EISE in general is
the ability to share software across multi-
ple platforms. The object-oriented design
approach saved us a substantial amount of
time by providing the capability to reuse
components instead of redeveloping indi-
vidual instruments or instruments parts.
The new COTS software also supports
multiple OSs, leaving the future possibility
for further upgrades and configuration
changes completely open and easy to
maintain.

Conclusion
Use of COTS products is a viable way to
upgrade existing systems. As part of our
development plan, the port was complet-
ed in incremental steps. In order to mini-

mize risk, our first step was to port only
the code that ran on the silicon graphics
machine and to maintain the original
interfaces between the SBC code and the
silicon graphics. Once the new graphics
were in place, the second phase was to
restructure the SBC code and make min-
imal interface changes. This approach
worked very well for our initial delivery.

Now that we have transitioned to the
new architecture, we have many options
available to pursue. The most important
option is the addition of more photo-
realistic displays as time and schedule
permits. The Linux solution was a good
fit with the planned migration to a real-
time Linux architecture in the lab. In gen-
eral, the COTS HMI development tool
was able to help us save a substantial
amount of time and budget, allowing us
to complete our objective well within our
required deadline. The new architecture
of the instrumentation lends itself for
use in many other applications for the
future as well, further saving time and
budget for the SOF EISE lab as well as
any other entity that may receive this
source as government-furnished infor-
mation for other similar programs.u

References
1. “Generating Human Machine

Interfaces.” Orlando: DiSTI, 2006.

18 CROSSTALK The Journal of Defense Software Engineering June 2007

Figure 3 a and b: CT1 Pilot Display

About the Author

Kim Stults is a member
of the technical team for
the 580th Software
Maintenance Squadron
(580 SMXS) of the 402d
Software Maintenance

Group at Warner Robins Air Logistics
Center, Robins Air Force Base, GA. The
580 SMXS performs software mainte-
nance changes for the SOF weapon sys-
tems. She is responsible for the crew
interface segment of the EISE. Stults
has 17 years experience in software engi-
neering, 11 in private industry, and six
with the Air Force. She has bachelor’s
degrees in mathematics and computer
science.

420 Richard Ray BLVD
STE 100
Robins AFB, GA 31098
Phone: (478) 926-0718
Fax: (478) 926-0226
E-mail: kimberly.stults

@robins.af.mil

“Use of COTS products
is a viable way to
upgrade existing

systems.”

CrossTalk / 517 SMXS/MXDEA
6022 Fir AVE

BLDG 1238

Hill AFB, UT 84056-5820

PRSRT STD

U.S. POSTAGE PAID

Albuquerque, NM

Permit 737

CrossTalk is

co-sponsored by the

following organizations:

	Front Cover
	GL Studio Brings Realism to
Aircraft Cockpit Simulator Displays
	Back Cover

