
Kish Hirani

Sebastien Schertenleib

Sony Computer Entertainment Europe

Research & Development Division

Slide 2

• PlayStation® Development Resources

• Architecture of the PlayStation®3 (PS3™)

• Case studies

– Cover techniques used by 1st party titles for both the PSP®
(PlayStation®Portable) and PS3™

• PlayStation® Advanced Programming

– Graphics performance

– PS3™ SPE utilisation

What We Will Be Covering

Kish Hirani

Head of Developer Services

Sony Computer Entertainment Europe

(SCEE)

Developer Services
SCEE - Research & Development Division

Slide 4

Developer Services

• Great Marlborough Street in

Central London

• Cover ‘PAL’ Region

Developers

Slide 5

• Support – SCE DevNet

• Field Engineering

• Technical and Strategic Consultancy

• Technical Training

• TRC Consultancy

• Projects

What We Cover

Slide 6

PlayStation® DevNet

Slide 7

PS3 DevKit

Latest additions to Dev Tools

PS3 Test Kit

Slide 8

Existing PSP DevKit

Latest additions to Dev Tools

PSPgo

Commander Arm

Slide 9

• PS3 DevKit: €1,700

• PS3 TestKit: €900

• PSP DevKit: €1,200

• PSP Commander: €300 euros

Dev Tools Prices

Slide 10

• Option for Digital Distribution via

PlayStation® Store as well as disc

• Same with full PSP titles

• And now minis

Digital Distribution Options

Slide 11

• PSN available in 58 countries
– 12 languages, 22 currencies

– Including Russia! 90% of all titles release are now localised.

• 700+ games and demos available

• 600+ million items downloaded worldwide

• More than 130K registered in Russia

• Cumulative Russia PSN Sales €650K
– as of FY2009 Q3

PlayStation®Network Vital Statistics

Slide 12

• 52.9 million globally (as of end June 2009)

– 17 million in SCEE Region

– More than a 850K in Russia

• Russia Tie Ratio: 2:1

PSP Vital Statistics

Slide 13

• 23.7 million PS3s (as of end of June 2009)
– One million of the new model sold in three weeks in

September

• More than 190K in the Russia so far
– PlayStation and PS2 both sold more than 2 million in

Russia during their lifespan (PS2 still selling well)

• 68% of PS3 users in Russia go online

• Russia Tie Ratio 5:1

PS3 Vital Statistics

Slide 14

https://www.tpr.scee.net/

Where to start if you would like to become a registered PlayStation Developer

Slide 15

http://www.worldwidestudios.net/xdev

For registered developers who wish to be considered as a SCEE 2nd Partner Developer

Dr Sebastien Schertenleib

Developer Services - SCEE Research & Development

PS3™ Hardware Overview

Slide 17

• Console vs PC Development

• Main Memory

• RSX™

– Bandwidth, Pipeline and Data Placement

• Cell Broadband Engine™

– Element Interconnect Bus, PPE and SPE

• Benefits of SPU Programming

• Data Storage

• Peripherals

PS3™ Hardware Overview

Slide 18

PC vs Console Game Development

PC

• Open Platform

• Limitless Resources

• Generic API

• IHV Drivers

Console

• Closed Platform

• Fixed Hardware

• Tiny HW Abstraction

• Direct access

Slide 19

• High performance on a budget

• Fixed hardware target with a long life cycles

– Games have to get better every year

– Waiting for hardware to catch up with software is not an option

• Have to understand the strengths and weaknesses of the

hardware

Why Consoles Are Different

Slide 20

• Performance benefits from understanding of how the

hardware works

– Does not mean coding in assembly

– Need to have an awareness of how software design may affect

performance

– Generally code optimized for consoles run also faster on PC

Why Consoles Are Different

Slide 21

• Memory is a very finite resource

• Memory access is slow compare to processor speed

– This gulf is getting larger on all platforms

– Cache is trying to insulate the application from memory latency

– But cache on consoles are generally smaller than on a PC

Why Consoles Are Different

Slide 22

System Architecture

Slide 23

Main Memory

Slide 24

• Traditionally, heap function is called (malloc/new)
– Has to be contiguous

– Fragmentation possible

• Recommend acquiring memory through mmapper
– Build heap on top of this

– Non-contiguous pages mapped to contiguous address space

– Not subject to fragmentation

– More control: page sizes, access rights

Memory Management

Slide 25

• Games will typically have their own memory manager
– Small amount of memory compared to PC

– Conservative with data structures and memory allocations

• Different strategies for different uses
– Memory pools, custom heaps, memory tracking

• Understand the fragmentation, performance and space implications
for each tool and apply them appropriately

Memory Management

Slide 26

• Fetching data from memory into a processor can easily dominate
performance
– L1 cache miss 10~30 cycles

– L2 cache miss ~300 cycles

• Most applications exhibit locality of code or data
– A loop executes the same small set of instructions on data located

contiguously in memory

• Caches aim to increase overall system performance by taking advantage
of this

– Fast on die memory is very expensive so they are limited in size

Caches

Slide 27

Vertex

Shader

Setup/

Rasteriser

Fragment

Shader

Raster

Operations

GDDR

GDDR

RSX™

RSX™

Slide 28

• RSX™ has access to two memories

• Local Memory
–249MB usable (256MB – 7MB reserved by OS)

• System Memory
–213MB usable (256MB – 43MB reserved by OS)

–RSX™ usable through memory mapping by application
in 1MB blocks

Memory Setup

Slide 29

Memory Architecture

Main Memory

Cell RSX™

Local Memory

Slide 30

System Bandwidth

25.6GB/s 20.8GB/s

Audio Out

Video Out

15GB/s

20GB/s
Audio

I/F

Video

I/F

Cell

Cell

I/F

GPU

Main Memory Local Memory

Slide 31

Vertex

Shader

Triangle

Setup

Rasteriser Fragment

Shader

Raster

Operations

Vertex/Index DataVertex/Index Data

Local MemoryMain Memory

RSX™ Pipeline

Slide 32

Vertex

Shader

Rasteriser Fragment

Shader

Main Texture

Cache

Local Texture

Cache

Textures Textures

Triangle

Setup

Raster

Operations

Local MemoryMain Memory

RSX™ Pipeline

Slide 33

Z-Cull

Feedback

Fragment

Shader

Texture/

Framebuffer

Texture/

Framebuffer

Raster

Operations

Vertex

Shader

Triangle

Setup

Rasteriser

Local MemoryMain Memory

RSX™ Pipeline

Slide 34

• Able to utilise graphics data in either memory
– Vertex attributes, Textures

• Frame Buffer stores colour & depth surfaces
– Can also be in either memory

– Local memory supports colour & Z compression for MSAA modes
• Saves bandwidth rather than space

• Generally local memory accesses are faster
• If local memory bandwidth is bottleneck → consider moving

assets to system memory

Data Placement

Slide 35

How triangles end up on screen

RSX™

Local Memory

Cell

Main Memory

Verts

Textures

Shaders

Verts

Textures

Shaders
Cmd Buffer

Slide 36

Cell Broadband Engine™

Slide 37

Cell Broadband Engine™
• Processor core of PS3™

– Clocked at 3.2GHz

• Contains 7 processing cores.

– PowerPC Processor Element (PPE)

• 512k cache memory

– 6 Synergistic Processing Elements (SPE)

• 256k local memory store

Slide 38

Inputs and Outputs

Slide 39

• Memory Interface Controller (MIC)
– Controls the 2 Rambus XDR channels.

– Theoretical 25.6GB/s transfer

• IOIF 0 - Connection to RSX™
– 20 GB/s to RSX™

– 15 GB/s from RSX™

• IOIF1 – Connection to South Bridge
– 2.5GB/s to/from devices

Inputs and Outputs

Slide 40

Element Interconnect Bus

Slide 41

• This connects all units in the CBE

• Consist of 4 128bit buses

• All data transfers are 128 byte packets

– Smaller transfers sent as partial packed

Element Interconnect Bus

Slide 42

Element Interconnect Bus

Slide 43

Element Interconnect Bus

Slide 44

PowerPC Processing Element

Slide 45

• 64 bit CPU core

• 25.6 GFLOPs FPU

• In order execution

• Execution units include:

– IEEE double precision FPU

– Integer

– Float vector unit (VMX)

PowerPC Processing Element

Slide 46

PPU
E

I

B

PowerPC Processing Element

Slide 47

• Intrinsics are supported, preferable to inline assembly

– Scheduling and optimisation

• Two hardware threads

– 2 or more active software threads act to mitigate stalls

• Good use of caches can make big difference in

performance

PPE Performance

Slide 48

• Power PC issue that can severely affect performance

• PPU has a store queue, that queues up stores waiting to

get sent to the cache

• If a load occurs that conflicts with data in store queue, the

load will stall until the data is stored

– Pipeline stall, around 40 cycles

• Find using Tuner

– LHS performance counter

Load Hit Store

Slide 49

• Type conversion
– Integer, floating point or vector registers

– Moves have to go through memory as there are no asm
instructions to move data between register sets

• Stack access - when calling a function that has:
– Large parameters - will be passed on the stack

– Many parameters - some may end up on the stack

– Few instructions - with stack based parameters

LHS Cases

Slide 50

Synergistic Processor Elements

Slide 51

SPE Architecture
• 3.2GHz processor

• 128 Vector registers

• 128 bit

• No scalar registers

• 256kB Local Store

• Very fast, like L1 cache

• Runs Asynchronously from rest of system

• Independent Memory Flow Controller (MFC)

• SIMD (single instruction multiple data)

• No Operating System, Very few system calls

• Performance is high and deterministic

SPE

EIB

MFC
SPU

Local Store

Slide 52

• SPE means Synergistic Processing Element

– Mutual dependence between PPE and SPEs

• PPE runs operating system and performs top level control

– General Purpose Hardware (PowerPC)

• SPEs provide bulk of application performance

– Simple hardware

– Simple pipeline

– Simple memory architecture

– Massive computational horsepower

SPEs

Slide 53

• Simple, predictable instruction set
– Has full SIMD support

– Intrinsics are supported for all instructions

• Optimised compiler
– Handles scalar conversion

– Often as good as PPE for scalar code, can be quicker

• Easy to program; can be programmed in C/C++

• Core power of system, key to performance

• Frees up RSX™, frees up PPE

Synergistic Processor Elements

Slide 54

• Ported PPU code usually faster for optimised & non-optimised code
– Port your code

• Easy to program; with some limitations can be programmed in C/C++

• Scalar code can be run
– Full SIMD instruction set

• Multithreaded engine analogy - can move threads to SPUs

SPU Development

Slide 55

• Raw

– You own the hardware

– Complete control, direct hardware access

– Once loaded – stays resident

• SPU Threads

– The OS owns the hardware

– Must belong to a thread group

– Scheduled by Cell OS Lv-2 kernel – based on group priority

• SPURS

– Higher level abstraction

– Plays well with middleware

Ways of Using SPUs

Slide 56

• Runs on-top of SPU Threads

– Small kernel on SPU

• Thread switching more efficient

– Requires no PPU resources

– PPU SPURS Handler: only to restore thread group when necessary

• Easier to synchronise threads

• Easier to balance load on multiple SPUs

– SPUs grab work when available

SPURS (SPU Run Time System)

Slide 57

SPURS (SPU Run Time System)

Policy Module

SPURS Kernel

Work

Load

Policy Module

SPURS Kernel

Work

Load

Policy Module

SPURS Kernel

SPURS

Handler

PPU SPU0 SPU1 SPU2

Thread Group for SPURS

• Implemented as an

SPU Thread Group

• Kernel, Policy

Module, Workload

• Minimal PPU

Overhead

Work

Load

Slide 58

• Jobs
– A chain of execution units
– Suited to short execution times
– Automatic DMA transfer of input & output data
– Executed with associated data
– No context switching – run complete

• Tasks
– Different data model, larger programs
– Can yield - synchronisation mechanisms
– Optimised context switch
– Similar to threads

SPURS Workload Types

Slide 59

• SPURS JobChain uses manual control of the execution sequence

• SPURS JobQueue is designed for dynamic job submission in parallel

SPURS Job Queue

SPU

SPU

SPURS Job Queue

PPU Fiber

Port
PPU Thread

SPU

Submitted jobs

SPURS Task

submitting in parallel executing in parallel

Slide 60

Example Application 1

Slide 61

• Problem: Update an array of objects and submit the visible
ones for rendering

• Object.update() method was bottleneck on PPE

– Determined using SN Tuner

– This function generates the world space matrices for each
object

– Embarrassingly parallel
• No data dependencies between objects

• If we had 1 processor for each object we could do that

Function off load example using a SPURS Task

Slide 62

SPURS Tasks
//---Conditionally calling SPU Code

if (usingSPU==false) //---------------------------generic version

{

for(int i=0; i<OBJECT_COUNT; i++)

{

testObject[i].update();

}

}

else //---SPU version

{

int test=spurs.ThrowTaskRunComplete(taskUpdateObject_elf_start,

(int)testObject,

OBJECT_COUNT,0,0);

//could do something useful here…

int result = spurs.CatchTaskRunComplete(test);

}

Slide 63

• Getting data in and out of SPU is first problem
• Get this working before worrying about actual processing

– Brute force often works just fine
• DMA entire object array into SPE memory
• Run update method
• DMA entire object array back to main memory

• List DMA allows you to get fancy
– Gather and Scatter operation

• If the data set is really big or if you need every last drop of performance
– Streaming model

• Overlap DMA transfers with processing
• Double or quad buffering

SPURS Task

Slide 64

SPURS Task: Getting Data in and out
int cellSpuMain(.....)

{

int sourceAddr =; //source address

int count =; //number of data elements

int dataSize = count * sizeof(gfxObject); //amount of memory to get

gfxObject *buf = (gfxObject*)memalign(128,dataSize); //alloc mem

DmaGet((void*)buf,sourceAddr,dataSize);

DmaWait(....);

//---data is loaded at this point so do something interesting

DmaPut((void*)buf,sourceAddr,dataSize);

DmaWait(....);

return(0);

}

Slide 65

• Keep code the same as PPE Version

– Conditional compilation based on processor type

– Might have to split code into a separate file

SPURS Task: Executing the Code

//--- SPU code to call the update method

//--- data is loaded at this point so do something interesting

//--- step through array of objects and update

gfxObject *tp;

for(int i=0; i<count; i++)

{

tp = &buf[i];

tp->update(); //same method as on PPE compiled for SPU

}

Slide 66

• 5x Speed up in this instance
– Brute force solution

– Could add more SPUS

– Problem is embarrassingly parallel

• Note that the same source code for the method is being
used on PPU and SPU

– Code stays in sync

– No fancy SPU specific optimisations

SPURS Task: Results

Slide 67

• PPU Stalled while waiting for SPU to Process

• SPU Data get and put were synchronous

– Not using hardware to its fullest extent

– Easy to get more if we need it

SPURS Task: Time Waster

PPU PPU

GET PUTExec

TIME

SPU

Slide 68

Example Application 2

Slide 69

Physics Solver
Parallel SPU x5PPU

512

22ms

3200

23ms

Slide 70

PPU Solver

• Collision detection and response is a big, involved process

0

50

100

150

200

250

0 100 200 300 400 500 600

T
im

e
 (
m

s)

Step

Integrate

Collision

Response

3200 boxes

Slide 71

Development History

0

50

100

150

200

250

PPU x1 SPU x1 SPU x5 SPU x5 (Optimised)

T
im

e
(m

s)

Total

T
im

e
 (
m

s)

Slide 72

SPU solver

0

5

10

15

20

25

0 100 200 300 400 500 600

T
im

e
(m

s)

Step

Integrate

Collision

Response

T
im

e
 (
m

s)

Slide 73

• Simple pipeline

– No stalls like LHS

• No Operating System, very few system calls

– Performance is high and deterministic

• Memory is very fast like L1 cache

– Memory transfers a asynchronous so can be hidden

• Even if performance is comparable, frees up the PPE to do other stuff

SPEs are faster than the PPE

Slide 74

• Double buffer
• Align data and transfers optimally
• Vectorise data: SOA instead of AOS
• Use SIMD

– 4 operations at once = 4x speed up

• Use intrinsics
• Program directives - branch hinting

Further SPU Optimisations

Slide 75

Double-Buffering

Buffer0 Buffer0 Buffer0 Buffer0

Buffer1 Buffer1 Buffer1 Buffer1

DMA Computation

• Allows overlapping of DMA and computation

• Transfer to/from one buffer while using data from another

• Use different tag group for each buffer

• Depends on space available in LS

TIME

Slide 76

• Graphics API

• Multistream – Audio

• Bullet – Physics

• PlayStation®Edge – Geometry/Compression/Animation

• FIOS – Optimised disc access

• Various Codecs

Our Libraries that run on SPUs

Slide 77

• Game engine including

– Modular run time

– Samples, docs and whitepapers

– Full source and art work

• Optimised for multi-core platforms especially PS3™

• Extractable and reusable components

PhyreEngine™

Slide 78

• A lot of 3rd party middleware partners use the SPUs
– Physics

– Audio

– AI

– Game Engines

– Many more…

• Examples by guest speakers at the end of the talk
– NVIDIA® PhysX ®, Epic Games Unreal ® Engine3

and Crytek CryENGINE ® 3

In Addition

Slide 79

• Animation

• AI Threat prediction

• AI Line of fire

• AI Obstacle avoidance

• Collision detection

• Physics

• Particle simulation

• Particle rendering

• Scene graph

Killzone®2 SPU Usage

• Display list building

• IBL Light probes

• Graphics post-processing

• Dynamic music system

• Skinning

• MP3 Decompression

• Edge Zlib

• etc.

44 Job types

Slide 80

• Effect done on SPU

– Motion Blur, Bloom, Depth of Field

– Quarter-res image on XDR

• SPUs assist RSX™

1. RSX™ prepares low-res image buffers in XDR

2. RSX™ triggers interrupt to start SPUs

3. SPUs perform image operations

4. RSX™ already starts on next frame

5. Result of SPUs processed by RSX™ early in next frame

Post Processing

Slide 81

Resolve to quarter resolution

Image generated on the SPUs

(bloom, DoF, motion blur)
Final image by the RSX™

(Blending the out-of-focus and blurry areas in)

XDR DDR

Slide 82

South Bridge

Slide 83

• Faster than Blu-ray
– Over 20MB/s vs. 9MB/s of Blu-ray

– Cache data to HDD for faster subsequent load times

– Install titles

– Stream data

• Virtual memory
• Decrease usage of system memory

Storage – Hard drive

Slide 84

• High capacity

– 25GB single layer

– 50GB dual layer

• Constant linear velocity

– Constant read speed over disc - 9 MB/s

– Optimise layout, duplicate and pack data

• Use compression

– Lowers bandwidth cost and lowers read time

– Use SPUs to decompress – Edge Zlib

• Can emulate on Devkit

Blu-ray

Slide 85

• Can access both Blu-ray drive (~9 MB/s) and
HDD (~20MB/s) simultaneously

– On HDD, data come from the system cache and
game data partitions

• SPU Zlib decompression
– Increase the throughput

• libFIOS
– Optimize I/O transfers

– Ease background HDD caching implementation

PS3TM I/O Performance

System
Cache
(2GB)

25 ms apart

Game Data
(up to 5GB
per title)

Slide 86

Any questions so far?

