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PIECES OF MEREOLOGY∗

Abstract. In this paper† we will treat mereology as a theory of some struc-
tures that are not axiomatizable in an elementary langauge (one of the axioms
will contain the predicate ‘belong’ (‘∈’) and we will use a variable ranging
over the power set of the universe of the structure). A mereological struc-
ture is an ordered pair M = 〈M,⊑〉, where M is a non-empty set and ⊑
is a binary relation in M , i.e., ⊑ is a subset of M × M . The relation ⊑ is
a relation of being a mereological part (instead of ‘〈x, y〉 ∈ ⊑’ we will write
‘x ⊑ y’ which will be read as “x is a part of y”). We formulate an axioma-
tization of mereological structures, different from Tarski’s axiomatization as
presented in [10] (Tarski simplified Leśniewski’s axiomatization from [6]; cf.
Remark 4). We prove that these axiomatizations are equivalent (see Theo-
rem 1). Of course, these axiomatizations are definitionally equivalent to the
very first axiomatization of mereology from [5], where the relation of being a

proper part ⊏ is a primitive one.
Moreover, we will show that Simons’ “Classical Extensional Mereology”

from [9] is essentially weaker than Leśniewski’s mereology (cf. Remark 6).

Keywords: mereology, mereological structures, axioms of mereology, collec-
tive sets, mereological sets, mereological fusions, mereological parts.

1. Relation ⊑ is a partial order

Let M be a non-empty set. We assume (among others) that the relation ⊑
partially orders the set M , that is it is reflexive, transitive and antisymmetric

∗This is a modified version of the Polish paper [7]. The main changes involve trans-
forming some of the footnotes into remarks and facts.
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∧

x∈M

x ⊑ x ,(A1)

∧

x,y,z∈M

(

x ⊑ y ∧ y ⊑ z =⇒ x ⊑ z
)

,(A2)

∧

x,y∈M

(

x ⊑ y ∧ y ⊑ x =⇒ x = y
)

.(A3)

Structures which satisfy (A1) and (A2) are called quasi-partial orders.
The conjunction of (A1) and (A2) is logically equivalent to the theorem

(1)
∧

x,y∈M

(

x ⊑ y ⇐⇒
∧

z∈M

(z ⊑ x ⇒ z ⊑ y)
)

.

Moreover, the conjunction of (A1) and (A3) is logically equivalent to the
thesis

(2)
∧

x,y∈M

(

x = y ⇐⇒ (x ⊑ y ∧ y ⊑ x)
)

.

From (1) and (A3) for any a, b ∈ M we obtain

(ext⊑)
∧

x∈M

(x ⊑ a ⇔ x ⊑ b) =⇒ a = b .

We will introduce an auxiliary relation of having a common part ≬ ⊆ M ×M

(def ≬) a ≬ b ⇐⇒
∨

x∈M

(x ⊑ a ∧ x ⊑ b).

Directly from the definition we have for a, b ∈ M

(3) a ≬ b =⇒ b ≬ a .

From the axiom (A1) and (def ≬) it follows that for a, b ∈ M

a ≬ a ,(4)

a ⊑ b ∨ b ⊑ a =⇒ a ≬ b .(5)

And from (A2) for all a, b, c ∈ M we have

(6) c ⊑ a ∧ b ≬ c =⇒ b ≬ a .
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Fact 1. (i) By (A2) and (def ≬), for any a, b ∈ M , the condition

(a)
∧

x∈M

(

x ⊑ a ⇒ x ≬ b
)

entails the condition

(b)
∧

x∈M

(

x ≬ a ⇒ x ≬ b
)

.

(ii) By (A1) and (def ≬), the condition (b) entails the condition (a).

So in all quasi-partial orders the conditions (a) and (b) are equivalent.

Proof. (i) Let us take an arbitrary x ∈ M such that x ≬ a. So there is a y

such that y ⊑ x and y ⊑ a. Hence, by (a), y ≬ b, i.e., for some z: z ⊑ y and
z ⊑ b. Hence, by (A2), z ⊑ x. So, x ≬ b, by (def ≬).

(ii) If x ⊑ a then x ≬ a, by (A1) and (def ≬). So x ≬ b, by (b).

2. Relation S of being a supremum of a distributive set

Let S and I be respectively relations of being supremum and infimum in
a structure M, i.e. S, I ⊆ M × 2M and they are defined by means of the
following conditions

a S X ⇐⇒
∧

x∈X

x ⊑ a ∧
∧

y∈M

(

∧

x∈X

x ⊑ y ⇒ a ⊑ y
)

,(def S)

a I X ⇐⇒
∧

x∈X

a ⊑ x ∧
∧

y∈M

(

∧

x∈X

y ⊑ x ⇒ y ⊑ a
)

.(def I)

Relations S and I are mutually (logically) definable

a I X ⇐⇒ a S
{

z :
∧

x∈X

z ⊑ x
}

,(7)

a S X ⇐⇒ a I
{

z :
∧

x∈X

x ⊑ z
}

.(8)

Indeed, let a I X and Z := {z :
∧

x∈X z ⊑ x}. Since
∧

y(
∧

x∈X y ⊑ x ⇒
y ⊑ a), thus

∧

z∈Z z ⊑ a. Moreover let us take an arbitrary y ∈ M such
that

∧

z∈Z z ⊑ y. Since
∧

x∈X a ⊑ x, so a ∈ Z. Hence a ⊑ y, that is a S Z.
Conversely, if a S Z then we have

∧

z∈Z z ⊑ a, i.e.
∧

z∈M (
∧

x∈X z ⊑ x ⇒ z ⊑
a). Moreover, let as take an arbitrary x ∈ X. Since

∧

z∈Z z ⊑ x and a S Z,
so a ⊑ x. Therefore a I X. We prove (8) in a similar way.
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In structures satisfying the axioms (A1) and (A2), definitions (def S)
and (def I) are respectively equivalent to the following conditions

a S X ⇐⇒
∧

y∈M

(

a ⊑ y ⇔
∧

x∈X

x ⊑ y
)

,(9)

a I X ⇐⇒
∧

y∈M

(

y ⊑ a ⇔
∧

x∈X

y ⊑ x
)

.(10)

Indeed, if a S x and a ⊑ y, then
∧

x∈X x ⊑ y, by (A2) and assumption
∧

x∈X x ⊑ a. Conversely, if a ⊑ y ⇔
∧

x∈X x ⊑ y, then
∧

x∈X x ⊑ a, since
a ⊑ a, by (A1). Therefore a S X. The proof of (10) is analogous.

It follows from (A3) that relations S and I are functions of the second
argument, i.e.

a S X ∧ b S X =⇒ a = b ,(11)

a I X ∧ b I X =⇒ a = b .(12)

Indeed, for (11):
∧

x∈X x ⊑ a,
∧

x∈X x ⊑ b,
∧

z(
∧

x∈X x ⊑ z ⇒ a ⊑ z) and
∧

z(
∧

x∈X x ⊑ z ⇒ a ⊑ z). Hence a ⊑ b and b ⊑ a. Therefore, by (A3), we
have a = b. We prove (12) in a similar way.

3. Relation F of being a fusion of a distributive set

An additional notion of the theory of mereological structures is a «fusion»

of a distributive set whose elements are elements of the universe. Let us
then define the relation of being a mereological fusion of a distributive set
F ⊆ M × 2M

(def F) a F X ⇐⇒
∧

x∈X

x ⊑ a ∧
∧

y∈M

(

y ⊑ a ⇒
∨

x∈X

x ≬ y
)

.

In Leśniewski’s mereology the notion of being a collective class was defined
in a way that can be paraphrased by means of the following schema1

M is a class of S-es iff there exists exactly one M

and every S is a part of M

and every part of M has a common part with some S.

1Cf. Definition II given in [5] on p. 264 (English version p. 230). Leśniewski, the creator
of mereology, formulated it using his own logical system which had its peculiar language.
Leśniewski did not recognize the existence of distributive sets. Therefore definition couched
as (def F) would have been unacceptable for him. Since sets are foundation of mathemat-
ics, thus—according to Leśniewski—these are collective sets, since no others exist. This is
probably the source of Leśniewski’s work title:“On foundations of mathematics”.
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In the above schema letters ‘M’ and ‘S’ represent arbitrary names, while
the word ‘part’ has been used in a way that allows improper parts.

Assuming that a phrase ‘object P’ stands for an arbitrary definite name,
the schema can be simplified as follows

an object P is a class of S-es iff every S is a part of an object P

and every part of an object P has a common part with some S.

Leśniewski used to assume that if a name represented by ‘S’ is not empty,
then exists exactly one object which is a class of S-es.2

Let M = 〈M,⊑〉 be a mereological structure and let ‘S’ stand for an
arbitrary non-empty name, whose range (a distributive set of its designates)
is a subset of M . Then—comparing the above schemas with (def F)—we
can say that a class of S-es (in Leśniewski’s sense) is equal to a fusion of
a distributive set {x ∈ M : x is an S}. Therefore if a ∈ M is a fusion of
a distributive set X ⊆ M , then we say that object a is a collective set of
distributive elements of the set X.

Directly from (def F) and (A1) we have theorems3

¬
∨

x∈M

x F ∅ ,(13)

a F {a} ,(14)

a F {x : x ⊑ a} .(15)

Nevertheless, without taking additional assumptions concerning a mere-
ological fusion, we cannot even prove that it is a function of the second
argument. For example, in a partial order that is depicted in the follow-
ing diagram, in which M := {1, 2} and ⊑ := {〈1, 1〉, 〈1, 2〉, 〈2, 2〉}, we have
1 F {1} and 2 F {1}.

•

•
2

1

2In set theoretical setting to this assumption corresponds either a pair of formulae
(fun F) and (A5), or a formula (A5&funF) that is equivalent to their conjunction (cf.
Remark 3 and Theorem 1).

3The sentence (13), saying that there is no fusion of the empty set, is some version of
a statement saying that there is no empty collective set.
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Remark 1. In mereology a different notion of being a collective set is often
accepted, i.e., authors use a different definition of the relation of being a

mereological fusion. Let F⋆ ⊆ M × 2M , where

(def F⋆) a F⋆ X ⇐⇒
∧

y∈M

(

y ≬ a ⇔
∨

x∈X

x ≬ y
)

.

The above definition was used by Leśniewski and, after him, by Leonard and
Goodman [4].4 Breitkopf [1], Eberle [2], and Simons [9] defined the relation
of being a fusion in the same way.

Fact 2. By (A2) and (def ≬) we obtain F ⊆ F⋆.

Proof. Indeed, let a F X. Let as take an arbitrary y ∈ M . “⇒” We
suppose y ≬ a, i.e., for some z: z ⊑ y and z ⊑ a. Since a F X and z ⊑ a, by
(def F), there is an x ∈ X such that x ≬ z. Hence x ≬ y, by (6). “⇐” We
suppose that there is an x ∈ X such that x ≬ y, i.e., for some z: z ⊑ x and
z ⊑ y. Since a F X and x ∈ X, by (def F), we have x ⊑ a. Hence, by (A2)
we obtain z ⊑ a. So y ≬ a.

In Remark 6 we will construct a partial order in which F 6= F⋆ . In all
mereological structures we have F = F⋆ (see Corollary 1, p. 219).

4. Partial order ⊑ is separative

As we shall prove further in the text (cf. thesis (fun F)) the relation of being

a fusion will be the function of the second argument in case if we assume that
mereological structures contain only those partial orders that are separative,
i.e., in case if the following condition is satisfied

(A4) a 6⊑ b =⇒
∨

x∈M

(

x ⊑ a ∧ ¬ x ≬ b
)

.

Structures which satisfy (A1), (A2) and (A4) we may call separative quasi-

partial orders. In all separative quasi-partial orders the axiom (A1) is de-
pendent from the other ones.

4Actually these authors define the relation F⋆ by the following condition

a F⋆ X ⇐⇒
ŷ∈M

�
¬ y ≬ a ⇔

x̂∈X

¬ x ≬ y
�
.

Of course, the above formula is logically equivalent to (def F⋆).
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Fact 3 (cf. [8, Lemma IV.5.4]). Let M be an arbitrary non-empty set and

let ⊑ and ≬ be binary relations in M which satisfy conditions (A2), (A4)
and (def ≬). Then the relation ⊑ is reflexive, i.e., it satisfies condition (A1).

Proof. Assume towards contradiction that for some a we have a 6⊑ a.
Then, by (A4), for some x we have x ⊑ a and ¬x ≬ a. Hence, by (def ≬),
∧

y∈M (y ⊑ x ⇒ y 6⊑ a). Hence, by (A2), we have ¬
∨

z∈M z ⊑ x. Hence,
x 6⊑ x and we obtain

∨

z∈M z ⊑ x, by (A4).

It is easily observable that from (A1), (A2) and (A4) follows

(16) a ⊑ b ⇐⇒
∧

x∈M

(

x ⊑ a ⇒ x ≬ b
)

.

Moreover, by Fact 1, from (16) we obtain

(def≬ ⊑) a ⊑ b ⇐⇒
∧

x∈M

(

x ≬ a ⇒ x ≬ b
)

.

So from (A3) and (def≬ ⊑) it follows that

(ext≬)
∧

x∈M

(

x ≬ a ⇔ x ≬ b
)

=⇒ a = b .

We will show that from (def≬ ⊑) and (def ≬) follows the following thesis,
whose «strenght» will be unveiled in lemmas 1–3.

(17) a ≬ b ⇐⇒
∨

y∈M

∧

x∈M

(

x ≬ y ⇒ (x ≬ a ∧ x ≬ b)
)

.

Indeed, let a ≬ b. Then there is y such that y ⊑ a and y ⊑ b. From this and
from (def≬ ⊑) we have

∧

x(x ≬ y ⇒ x ≬ a) and
∧

x(x ≬ y ⇒ x ≬ b). Thus
∧

x(x ≬ y ⇒ (x ≬ a∧x ≬ b)). Conversely, let
∨

y

∧

x(x ≬ y ⇒ (x ≬ a∧x ≬ b)),
thus after making some logical transformations:

∨

y(
∧

x(x ≬ y ⇒ x ≬ a) ∧
∧

x(x ≬ y ⇒ x ≬ b)). Hence by (def≬ ⊑), we have
∨

y(y ⊑ a ∧ y ⊑ b), that is
a ≬ b, by (def ≬).

Lemma 1 (cf. [7]). Let M be an arbitrary non-empty set and let ⊑ and ≬
be binary relations in M . Then for the relations ⊑ and ≬ the following sets

of conditions are equivalent

(i) (A2), (A4) and (def ≬);

(ii) (def≬ ⊑) and (def ≬);

(iii) (def≬ ⊑) and (17).
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Proof. We have already shown “(i) ⇒ (ii)” and “(i) ⇒ (iii)”.

“(ii) ⇒ (i)” It is clear that the conditions (A1) and (A2) are logical
consequences of the condition (def≬ ⊑). Therefore we have to prove the
condition (A4). To do this we will show that

∧

x(x ⊑ a ⇒ x ≬ b) entails
∧

x(x ≬ a ⇒ x ≬ b), which entails a ⊑ b, by (def≬ ⊑). Therefore, by
contraposition, we obtain (A4).

Let us assume that
∧

x(x ⊑ a ⇒ x ≬ b) and c ≬ a. Then by (def ≬), there
is some y such that y ⊑ c and y ⊑ a. From this and from the first assumption
y ≬ b. Therefore—by (6) which we derive from (A2)—we have c ≬ b.

“(iii) ⇒ (ii)” From (17) and (def≬ ⊑) we will infer (def ≬). Let a ≬ b.
Then, by (17),

∨

y

∧

x(x ≬ c ⇒ (x ≬ a∧x ≬ b)). After logical transformations
we obtain:

∨

y(
∧

x(x ≬ y ⇒ x ≬ a)∧
∧

x(x ≬ y ⇒ x ≬ b)). Hence, by (def≬ ⊑),
we have

∨

y(y ⊑ a ∧ y ⊑ b). Conversely, let
∨

y(y ⊑ a ∧ y ⊑ b). By (def≬ ⊑)
we obtain

∨

y(
∧

x(x ≬ y ⇒ x ≬ a) ∧
∧

x(x ≬ y ⇒ x ≬ b)). From this, after
logical transformations, we have

∨

y

∧

x(x ≬ c ⇒ (x ≬ a ∧ x ≬ b)). Therefore,
by (17), we have a ≬ b.

Lemma 2 (cf. [7], [8, Theorem IV.2.1]). Let M be an arbitrary non-empty

set, and ⊑ and ≬ be binary relations in M which satisfy conditions (A2) and

(def ≬). Moreover, let F and F⋆ be relations in M × 2M which satisfy condi-

tions (def F) and (def F⋆). Then the following conditions are equivalent:

(i) ⊑ and ≬ satisfy the condition (A4);

(ii) F⋆ ⊆ F.

In other words, every separative quasi-partial order is a quasi-partial order

satisfying F⋆ ⊆ F, and vice versa.

Proof. Clearly the relation ≬ satisfying (def ≬) is symmetrical.

“(i) ⇒ (ii)” If ⊑ and ≬ satisfy the conditions (A2), (A4) and (def ≬),
then, by Fact 3 and Lemma 1, ⊑ and ≬ also satisfy the condition (A1) and
(def≬ ⊑). Let a F⋆ X, i.e.,

∧

y∈M (y ≬ a ⇔
∨

x∈X x ≬ y). The condition
∧

y∈M (
∨

x∈X x ≬ y ⇒ y ≬ a) entails
∧

x∈X

∧

y∈M (y ≬ x ⇒ y ≬ a). Hence
∧

x∈X x ⊑ a, by (def≬ ⊑). Moreover, the condition
∧

y∈M (y ≬ a ⇒
∨

x∈X x ≬
y) entails

∧

y∈M (y ⊑ a ⇒
∨

x∈X x ≬ y), by (A1) and (def ≬). So, a F X.

“(ii) ⇒ (i)” Let F⋆ ⊆ F. We prove (A4) by contraposition. Suppose that
∧

x∈M (x ⊑ a ⇒ x ≬ b). Hence, by Fact 1(i), we obtain
∧

x∈M (x ≬ a ⇒ x ≬ b).
Hence

∧

x∈M (x ≬ b ⇔ x ≬ a ∨ x ≬ b) and b F⋆ {a, b}, by (def F⋆). So
b F {a, b}, because F⋆ ⊆ F. Hence a ⊑ b, by (def F).
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Remark 2. By the proof of the part “(ii) ⇒ (i)” and by the part “(i) ⇒ (ii)”
of Lemma 2 we obtain that the following statements are equivalent in all
quasi-partial orders

(i) F⋆ ⊆ F;

(ii) for any a, b ∈ M : if b F⋆ {a, b}, then b F {a, b}, i.e. a ⊑ b.

Indeed, (ii) together with (A1), (A2) and (def ≬) entail (A4). Hence, by the
part “(i) ⇒ (ii)” of Lemma 2, we obtain F⋆ ⊆ F.

Corollary 1. If a given quasi-partial order ⊑ is separative then F = F⋆.

Proof. By (A2) and (def ≬) we obtain F ⊆ F⋆ (see Fact 2). Moreover, by
the part “(i) ⇒ (ii)” of Lemma 2 we obtain F⋆ ⊆ F.

Lemma 3 (cf. [7]). Let M be an arbitrary non-empty set and let ⊑ and ≬ be

binary relations in M . Then the following sets of conditions are equivalent

(i) (A2), (A3) (A4) and (def ≬);

(ii) (def≬ ⊑), (ext≬) and (17).

Proof. We have already shown “(i) ⇒ (ii)”.
“(ii) ⇒ (i)” By Lemma 1 it is enough to notice that, in a clear way, the

condition (A3) follows from (def≬ ⊑) and (ext≬).

Let us define one more auxiliary relation ⊏ of being a proper part. For
any a, b ∈ M

(def ⊏) a ⊏ b ⇐⇒ a ⊑ b ∧ a 6= b .

By (A3) definition (def ⊏) is equivalent to the condition

(def′ ⊏) a ⊏ b ⇐⇒ a ⊑ b ∧ b 6⊑ a .

The reflexivity of identity relation gives us the irreflexivity of ⊏, i.e. for
any a ∈ M

(irr⊏) a 6⊏ a .

It follows from (A3) that the relation ⊏ is asymmetric, i.e. for any a, b ∈ M

(as⊏) a ⊏ b =⇒ b 6⊏ a .

From (A2) and (A3) it follows that relation ⊏ is transitive, i.e. for any
a, b, c ∈ M

(t⊏) a ⊏ b ∧ b ⊏ c =⇒ a ⊏ c .
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Finally, from (A1) and (A3) it follows that for a, b,∈ M

(def⊏ ⊑) a ⊑ b ⇐⇒ a ⊏ b ∨ a = b .

The following fact is well known.

Lemma 4. Let M be an arbitrary non-empty set and let ⊑ and ⊏ be binary

relations in M . Then for relations ⊑ and ⊏ the following sets of conditions

are equivalent

(i) (A1)–(A3) and (def ⊏);

(ii) (A1)–(A3) and (def′ ⊏);

(iii) (irr⊏), (t⊏) and (def⊏ ⊑);

(iv) (as⊏), (t⊏) and (def⊏ ⊑).

Proof. We have already shown that “(i) ⇔ (ii)” and “(i) ⇒ (iii) & (iv)”.
“(iii) ⇔ (iv)” From (irr⊏) and (t⊏) we have (as⊏), moreover from (as⊏)

we obtain (irr⊏).
“(iv) ⇒ (i)” (A1), (A2) and (A3) are obtained from (def⊏ ⊑), (t⊏) and

(as⊏). Moreover, from (as⊏) and (def⊏ ⊑) we have (def ⊏).

Using (A1), (A3) and (A4) we obtain the following law of separation5

(WSP) a ⊏ b =⇒
∨

x∈M

(

x ⊏ b ∧ ¬x ≬ a
)

.

Indeed, let a ⊏ b, i.e., a ⊑ b and b 6= a. Then by (A3), we have (a) b 6⊑ a,
while by (A1) and (def ≬), we have (b) b ≬ a. From (a), by (A4), there is an
x such that (c) x ⊑ b and (d) ¬ x ≬ a. From (b) and (d) we obtain x 6= b.
From this and from (c) we have x ⊏ b.

5. Fusion relation in separative partial orders

We will prove that from (A2) and (A4) follows the auxiliary thesis

(18)
(

∧

z∈M

(

z ⊑ a ⇒
∨

x∈X

x ≬ z
)

∧ X ⊆ Y ∧
∧

y∈Y

y ⊑ b
)

=⇒ a ⊑ b .

Indeed, from the first two assumptions we have:
∧

z∈M (z ⊑ a ⇒
∨

y∈Y y ≬ z).
So, by the last assumption, we have that

∧

z(z ⊑ a ⇒
∨

y(y ⊑ b ∧ y ≬ z)).
Now from (6) we obtain:

∧

z(z ⊑ a ⇒ z ≬ b). Thus, by (A4), we have a ⊑ b.

5This formula was called by Simons in [9] “Weak Supplementation Principle”, and for-
mula (A4) “Strong Supplementation Principle”.
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Directly from (18) and (A3) it follows that relation F is a function of the
second argument, i.e., for any a, b ∈ M and X ⊆ M

(fun F) a F X ∧ b F X =⇒ a = b .

Indeed, let a F X and b F X. Since we have
∧

y(y ⊑ a ⇒
∨

x∈X x ≬ y) and
∧

x∈X x ⊑ b, so a ⊑ b, by (18). Similarly, since
∧

y(y ⊑ b ⇒
∨

x∈X x ≬ y)
and

∧

x∈X x ⊑ a, thus b ⊑ a. Therefore a = b, by (A3).

Moreover from (18) it follows that

(19) F ⊆ S .

Indeed, let a F X. Then
∧

x∈X x ⊑ a. Let us take an arbitrary b such that
∧

x∈X x ⊑ b. From (def F) and (18) we obtain a ⊑ b. Therefore a S X.

The inclusion that is inverse to (19) is not deducible from (A1)–(A4).
For example in a partial order depicted below in which M = {1, 2, 3, 4} and
⊑ := {〈x, x〉 : x ∈ M} ∪ {〈1, 4〉, 〈2, 4〉, 〈3, 4〉}, set {1, 2} has the upper bound
equal 4 while it has no mereological fusion.
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Yet in case if there exist both upper bound and mereological fusion then
they are equal to each other, i.e., for any a, b ∈ M

(20) a F X ∧ b S X =⇒ a = b .

Indeed by (19), if a F X, then a S X. Therefore a = b, by (11).

Let us notice that from (A1), (A3) and (A4) it follows that in non-
degenerate structures (i.e., such that their domains contain at least two
elements) there is no smallest element

(21)
∨

x,y∈M

x 6= y =⇒ ¬
∨

x∈M

∧

y∈M

x ⊑ y .

Indeed, let us assume that the domain has at least two elements and assume
for contradiction that there is such b that (†)

∧

y∈M b ⊑ y. From the as-
sumptions and from (A3) we infer that there is such a that a 6⊑ b. Hence,
by (A4), for some c it is the case that c ⊑ a and ¬ c ≬ b. By (†) we have
b ⊑ c. Hence, we get contradiction: c ≬ b, by (A1) and (def ≬).
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From (21) we obtain the following conclusion

(22) Card(M) > 1 =⇒ ¬
∨

x

x S ∅ .

Indeed, assume for contradiction, that there is x such that x S ∅. Then by
definition of the relation S we have

∧

y∈M x ⊑ y. And this contradicts (21).

6. The axiom of fusion existence

A pair M = 〈M,⊑〉 is called mereological structure if and only if it satisfies
axioms (A2)–(A4) (by Fact 3 we obtain (A1)) and the following condition

(A5)
∧

∅6=X⊆M

∨

z∈M

z F X ,

i.e., for every non-empty distributive subset of whose elements are among
the elements of the domain there exists its mereological fusion.

The formulae (A5) and (fun F) entail the following sentence

(A5&funF)
∧

∅6=X⊆M

∨

x∈M

(

x F X ∧
∧

y∈M

(y F X ⇒ x = y)
)

,

i.e., every non-empty subset of the domain has exactly one fusion.

Remark 3. It is evident that (A5) and (fun F) follow from (A5&funF), (A1),
and (def F), by (13).

Remark 4. Let us mention here that taking the relation ⊑ as a primitive
one Leśniewski accepted the following four axioms: (A2), (A3), (fun F),
(A5), and (def F) (cf. axioms (a)–(d) and Definition (f) in [6, p. 82; English
version p. 321]).6 Leśniewski proved that from these axioms follows the
formula (A1) (cf. [6], Theorem m, p. 85; English version p. 324). Later
Tarski noticed that the axiom (A3) is redundant (cf. [10], second footnote).
Further, in Theorem 1, we will prove that the set of the three axioms (A2),
(fun F) and (A5) is equivalent to (A2)–(A5).

In mereological structures for any a ∈ M and X ⊆ M it is the case that

a F X ⇐⇒ X 6= ∅ ∧
∧

x∈X

x ⊑ a ∧

∧

y∈M

(

∧

x∈X

x ⊑ y ∧ y ⊑ a ⇒ y = a
)

.
(23)

6We of course pass over the difference between set theoretical language and language
of Leśniewski’s system.
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Indeed, if a F X, then X 6= ∅ and a S X, respectively by (13) and (19). It
follows from the second fact that if

∧

x∈X x ⊑ y then a ⊑ y. Therefore if
y ⊑ a, then y = a by (A3). Conversely, let us assume the right side of the
equivalence being proved. Since X 6= ∅, then by (A5) there is b such that
b F X, i.e.

∧

x∈X x ⊑ b and
∧

y(y ⊑ b ⇒
∨

x∈X x ≬ y). Now in (18) we put
a := b, b := a and Y := X. Since the antecedent in (18) is satisfied, then
b ⊑ a. By the assumption we obtain that a = b, that is a F X.7

Let us notice that in mereological structures being fusion of elements of
a given non-empty set coincides with being supremum of elements of this set,
i.e. for any a ∈ M and X ⊆ M

(24) a F X ⇐⇒ X 6= ∅ ∧ a S X .

Indeed, if a F X, then X 6= ∅ and a S X, by (13) and (19). Conversely,
assume that X 6= ∅ and a S X. Then, by (A5), there is b such that b F X.
Therefore a = b, by (20). So a F X.8

Using definite description, thesis (24) can be formulated as follows

(25)
∧

X 6=∅

(ıx)x F X = (ıx)x S X .

Indeed, for every X 6= ∅, by (A5&funF), there exists exactly one x such that
x F X. Now, by (11) and (24), x is the only element such that x S X.9

Moreover, in non-degenerate mereological structures F = S

(26) Card(M) > 1 =⇒ F = S .

Indeed, by (19), F ⊆ S. Conversely, assume that a S X. Then X 6= ∅, by
(22). Hence a F X, by (24). Therefore it is also the case that S ⊆ F.

In a mereological structure 〈M,⊑〉 we can distinguish greatest element
1 with respect to the relation ⊑

(def 1) 1 := (ıx)x F M .

7In [6, p. 87, thesis (a); English version p. 327] Leśniewski points out that K. Kurato-
wski was first to prove (23), in a peculiar language of the original system (cf. footnote 1).

8Fact (24), written in specific language of original Leśniewski’s system, was proved for
the first time by Tarski in two formulations: when relation S is defined by means of (def S)
or condition (9) (cf. [6], p. 87, theses (b) and (c) respectively; English version p. 327).

9Of course thesis (25) does not say that in axiom (A5) instead of the relation F one
can take relation S, i.e., in place of (A5) accept as the axiom (∗):

V
∅6=X⊆M

W
x∈M

x S X.
The set of conditions (A1)–(A4) and (∗) is essentially weaker than set (A1)–(A5). For
example, the structure on p. 221 satisfies the first set but not the condition (A5).
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Therefore, by (21), we arrive at the following conclusion

(27) Card(M) 6= 2 .

7. Other axiomatizations

7.1. Axiomatizations with primitive ⊑

As we already mentioned it in Remark 4, Leśniewski showed that the formula
(A1) is a consequence of the axioms (A2), (A3), (fun F) and (A5). Moreover,
Tarski noticed that (A3) is redundant in this set. The conditions (A2)
and (A5&funF) together form the axiomatization of mereological structures
adopted by Tarski in [10].

Fact 4 (cf. [7, Theorem 1]). For any non-empty set M , any relation ⊑ in M×
M and two relations ≬ and F defined respectively by (def ≬) and (def F):

(i) If ⊑ and F satisfy conditions (A2) and (A5&funF), then ⊑ satisfies

conditions (A1) and (A3).
(ii) If ⊑ and F satisfy conditions (A2), (fun F) and (A5), then ⊑ satisfies

conditions (A1) and (A3).

Proof. (i) Notice that (A5) follows from (A5&funF).
(A1): Let us take an arbitrary a ∈ M . Since {a} 6= ∅, then by (A5)

there exists b such that b F {a}. From (def F) we obtain that 1◦ a ⊑ b and
2◦

∧

x(x ⊑ b ⇒ x ≬ a). Hence a ≬ a. Applying (def ≬) we get
∨

x x ⊑ a,
that is A := {x ∈ M : x ⊑ a} 6= ∅. Therefore by (A5) there exists c

such that c F A. Now from (def F) we have
∧

x(x ⊑ a ⇒ x ⊑ c) and
∧

x(x ⊑ c ⇒
∨

y(y ⊑ a ∧ y ≬ x)). Hence 3◦
∧

x(x ⊑ a ⇒
∨

y(y ⊑ a ∧y ≬ x)).
It is enough, using (def F), to conclude that a F A.

Since A 6= ∅, so by (A5&funF) we have that for any z in M , if z F A

then a = z. We will show that also b F A. From this we will get a = b

which, by 1◦, will give us a ⊑ a.
Indeed, firstly, by 1◦ and (A2), it is the case that

∧

x(x ⊑ a ⇒ x ⊑ b).
Secondly, by 2◦ and (def ≬), we have

∧

x(x ⊑ b ⇒
∨

z(z ⊑ a∧ z ⊑ x)). From
this and from 3◦ we obtain

∧

x(x ⊑ b ⇒
∨

y,z(y ⊑ a ∧ y ≬ z ∧ z ⊑ x)).
Therefore

∧

x(x ⊑ b ⇒
∨

y,z,u(y ⊑ a ∧ u ⊑ y ∧ u ⊑ z ∧ z ⊑ x)). Hence, by
(A2) and (def ≬), we have

∧

x(x ⊑ b ⇒
∨

y(y ⊑ a∧y ≬ x)). From both above
facts and from (def F) it follows that b F A.

(A3): Let a ⊑ b and b ⊑ a. Then firstly, we have 1◦
∧

x(x ⊑ a ⇒ x ⊑ b),
by (A2). Secondly, from (A1) follows (15), i.e. a F {x ∈ M : x ⊑ a}, that is
∧

x∈M (x ⊑ a ⇒
∨

y∈M (y ⊑ a ∧ y ≬ x)). From this and from (A2) and b ⊑ a
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we get
∧

x(x ⊑ b ⇒
∨

y(y ⊑ a ∧ y ≬ x)). From this and from 1◦ we have
b F {x ∈ M : x ⊑ a}. Moreover, by (A1), we have {x ∈ M : x ⊑ a} 6= ∅.
Therefore a = b, by (A5&funF).

(ii) It follows from (i), because (A5) and (fun F) entail (A5&funF).

We will prove that the system (A2)–(A5) is equivalent to the system
adopted by Tarski in [10].

Theorem 1 ([7]). For every non-empty set M , every relation ⊑ in M × M

and two relations ≬ and F defined respectively by (def ≬) and (def F) the

three following sets of conditions are equivalent

(i) (A2)–(A5),

(ii) (A2), (fun F) and (A5)

(iii) (A2) and (A5&funF).10

Proof. “(i) ⇒ (ii)” On p. 221 we proved that (fun F) follows from (A2),
(A3), and (A4).

“(ii) ⇒ (iii)” It is evident that (A5&funF) follows from (A5) and (fun F).
“(iii) ⇒ (i)” (A5) follows from (A5&funF). Moreover, by Fact 4, we

obtain (A1) and (A3).
(A4): Assume towards contradiction that for some a and b from M it is

the case that 1◦ a 6⊑ b and 2◦
∧

z(z ⊑ a ⇒ z ≬ b).
By (A5) there exists c such that c F {x : x ⊑ b} ∪ {a}, i.e. we have

3◦
∧

x(x ⊑ b ⇒ x ⊑ c), 4◦ a ⊑ c and 5◦
∧

x(x ⊑ c ⇒
∨

y((y ⊑ b ∨ y =
a) ∧ y ≬ x). From 1◦ and 4◦ it follows that b 6= c. Further we will show
that c F {x : x ⊑ b}. And this gives a contradiction since by (A1) we have
{x ∈ M : x ⊑ b} 6= ∅ and b F {x ∈ M : x ⊑ b}, that is b = c, by (A5&funF).

Let us take an arbitrary x such that x ⊑ c. By 5◦ there exists y such
that (a) y ≬ x and either (b′) y ⊑ b or (b′′) y = a. In case (b′′), from (a)
we get that a ≬ x. Hence there exists z such that (c) z ⊑ a and (d) z ⊑ x.
From (c) and 2◦ we have z ≬ b. Hence there is u such that (e) u ⊑ z and (f)
u ⊑ b. From (e), (d) and (A2) we have u ⊑ x which together with (A1) gives
u ≬ x. From this and from (f), (a) and (b′) it follows that

∨

v(v ⊑ b∧ v ≬ x).
Therefore, taking 3◦ into account, we have c F {x : x ⊑ b}.

10If the relation F were replaced by F⋆, then the theorem would not be true (cf. [8]).
Moreover, referring to the footnote 9, let us notice that the counterpart of this theorem

for the relation S does not hold as well. Indeed, replacing in formula (A5&funF) the
relation F by the relation S we obtain formula (∗∗):

V
∅6=X⊆M

W
x∈M

(x S X∧
V

y∈M
(y S X

⇒ x = y)). It clearly follows from (11) that in partial orders conditions (∗) and (∗∗) are
equivalent.
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Remark 5. In the set (A1)–(A3), (fun F) and (A5) two axioms for partial
orders, (A1) and (A3), follow from (A2), (fun F) and (A5), that is, in other
words, from (A2) and (A5&funF). Moreover, (A1) follows from (A2)–(A4).
In the set (A2)–(A5) the axiom (A3) cannot be omitted.

By Corollary 1, in separative partial orders the axiom (A5) is equivalent
to the following formula

(A5⋆)
∧

∅6=X⊆M

∨

z∈M

z F⋆ X ,

since in these structures F = F⋆.

The above fact, facts 3 and 4, and lemmas 1–4 show different possible
axiomatizations of the theory of mereological structures.

Of course, the set of formulas (A2), (A3) (A4) and (A5⋆) is an axiomati-
zation of mereological structures. Indeed, by Fact 2 and Lemma 2, we have
F = F⋆. Hence, (A5⋆) entails (A5).

In [8, Theorem IV.5.1] it was proved that in axiomatization of mereolog-
ical structures instead of “Strong Supplementation Principle” (A4) one can
accept “Weak Supplementation Principle” (WSP). Then the axiom (A3)
can be omitted. So, the set of formulas (A2), (WSP) and (A5) is an axiom-
atization of mereological structures.

Notice that the system (A1), (A2), (A3), (WSP) and (A5⋆) is essentially
weaker than the system (A2), (WSP) and (A5) (resp. (A2)–(A5)). Sim-
ply the set (A2)–(A4) is essentially stronger than the set (A1)–(A3) and
(WSP), since the last one does not guarantee that the Lemma 2 holds. In
partial orders it can only be proved that F ⊆ F⋆. The equality of these
relations in partial orders is actually equivalent to the formula (A4) (cf. [8],
Theorem IV.3.1, Corollary IV.3.1 and Fact IV.3.4).

Taking as a primitive one the relation of being a part ⊑ and defining
relation having a common part ≬ by means of (def ≬), one can use axioms
(A3), (def≬ ⊑) and (A5⋆).11 Indeed, by Lemma 1, from (def≬ ⊑) and (def ≬)

11The set of axioms just mentioned was used by Eberle in [2], while he treated mere-
ology as an elementary theory. Therefore instead of non-elementary axiom (A5⋆) Eberle
accepted infinite number of elementary axioms that represented one axiom schema. In his
axioms in place of ‘x ∈ X’ one finds an arbitrary formula ϕ(x) of the first order language
with identity ‘=’, one specific predicate ‘<’ and with at least one free variable ‘x’. Taking
such an approach—from a structure-theoretical point of view—we only assume the exis-
tence of fusion for so called elementarily definable sets of the form {x ∈ M : ϕ(x)}, while
these can be sets that are defined with parameters when a formula ϕ(x) contains other
free variables. We write about the difference between both approaches to mereology in [8].
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we have (A2) and (A4). Moreover, by Fact 2 and Lemma 2, we have F = F⋆.
Hence, (A5⋆) entails (A5).

7.2. Axiomatizations with primitive ≬

Axiomatizing mereological structures it is possible to accept the relation ≬
as a primitive one, and take as axioms the formulae (def ≬), (A3), (def≬ ⊑)
and (A5⋆), where (def≬ ⊑) can be treated as a definition of the relation ⊑.12

Different axiomatization, where ≬ is a primitive relation, was used in
Goodman’s book [3]. One can assume that it consists of formulae (ext≬),
(17) and (A5⋆), while the relation ⊑ is defined by means of the formula
(def≬ ⊑).13 Indeed, by Lemma 3, from (def≬ ⊑), (ext≬) and (17) we obtain
(A2), (A3), (A4) and (def ≬). Moreover, by Fact 2 and Lemma 2, we have
F = F⋆. Hence, (A5⋆) entails (A5).

7.3. Axiomatizations with primitive ⊏

In the very first set of axioms for mereology, that was proposed by its creator
Leśniewski, a primitive one is the relation of being a proper part ⊏. This
relation satisfies the axioms of a strict partial order (as⊏) and (t⊏) and,
moreover, (fun F) and (A5) (cf. [5], pp. 263–265; English version pp. 230–
232). Leśniewski proved ([6], pp. 82–86; English version p. 321–326), that
it is definitionally equivalent to the set composed of (A2), (A3), (fun F)
and (A5) which axiomatizes the relation ⊑. To the first set as a definition
of relation ⊑ the formula (def⊏ ⊑) was added, while to the second, as a
definition of ⊏ was added (def ⊏).

Indeed, Lemma 4 says that in an axiomatization of mereological struc-
tures one can take relation ⊏ as a primitive one. In such a case instead of
the axioms of partial orders (A1)–(A3) we take the axioms of strict orders,
i.e., either the pair (irr⊏) and (t⊏) or the pair (as⊏) and (t⊏), and we define
relation ⊑ by (def⊏ ⊑). To the axioms of strict partial orders we add a
pair of axioms (A4) and (A5). In [8, Theorem IV.1.1] it was proved that
replacing axiom (A4) by the formula (fun F) we also get the axiomatization
of mereological structures.

12This solution is similar to the one accepted in [4] by Leonard and Goodman. The only
difference is that they took as a primitive relation the complement of the relation ≬ (one
of their axioms asserts this). In [4] the relation ⊑ is defined by means of some formula
that arises from (def≬ ⊑) by contraposing it and ≬ is defined by (def ≬).

13Similarly to Eberle (cf. footnote 11), Goodman in [3] deals with some elementary
theory.
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Moreover, in [8, Theorem IV.1.1] it was proved that in axiomatization of
mereological structures instead of “Strong Supplementation Principle” (A4)
one can accept “Weak Supplementation Principle” (WSP). Yet the axioms
(irr⊏) and (as⊏) follow from (t⊏) and (WSP).

Fact 5 (cf. [8, Lemma II.4.1]). Let M be a non-empty set, let ⊏ be a binary

relation in M , and let ⊑ and ≬ be binary relations in M defined respectively

by (def⊏ ⊑) and (def ≬).
(i) If the relation ⊏ satisfies (WSP), then it is irreflexive, i.e., it satisfies

the condition (irr⊏).
(ii) If the relation ⊏ satisfies (WSP) and (t⊏), then it is asymmetric, i.e.,

it satisfies the condition (as⊏).

Proof. (i) Assume towards contradiction that for some a we have a ⊏ a.
Then, by (WSP), for some x we have x ⊏ a and ¬x ≬ a. Hence, by (def⊏ ⊑)
and (def ≬), we have x ≬ a, since x ⊑ x and x ⊑ a.

(ii) The conditions (irr⊏) and (t⊏) entail (as⊏).

So the set of formulas (t⊏), (WSP) and (A5) is an axiomatization of
mereology. Yet after such a change one cannot—contrary to what is sug-
gested by Simons in [9, p. 37]—replace the axiom (A5) by the formula (A5⋆),
because the set of the axioms (t⊏), (WSP) and (A5⋆) is essentially weaker
than the set (t⊏), (WSP) and (A5). Simply the set (as⊏), (t⊏) and (A4) is
essentially stronger than the set (as⊏), (t⊏) and (WSP), since the letter does
not guarantee that F = F⋆. In strict partial orders it can only be proved
that F ⊆ F⋆. The equality of these relations in partial orders is actually
equivalent to the formula (A4) (cf. [8], Theorem IV.3.1, Corollary IV.3.1
and Fact IV.3.4).

Remark 6 (cf. [7, footnote 12]). Simons in [9] called Classical Extensional

Mereology the theory whose primitive relation is ⊏ and whose axioms are
(as⊏), (t⊏), (WSP) and

(A5′)
∧

∅6=X⊆M

∨

z∈M

∧

y∈M

(

y ≬ z ⇔
∨

x∈X

x ≬ y
)

,

while relations ⊑ and ≬ are defined by means (def⊏ ⊑) and (def ≬). Of
course, the axiom (A5′) can be replaced by formulas (A5⋆) and (def F⋆).

In [9, p. 64] on the list presenting theses of the system one can find formu-
lae (16) and (def≬ ⊑) (respectively as SCT13 and SCT15). In [8, Ch. IV] we
proved that they are consequences of neither axioms nor definitions accepted
by Simons.
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Simons in [9] does not prove the fact that formulae (16) and (def≬ ⊑)
are theses of his system. He only quotes the lists of theorems given in [1]
by Breitkopf. Yet Simons need not have excluded the third of Breitkopf’s
axioms maintaining on p. 36 in footnote 22 that this axiom is not indepen-
dent from the others. Simons justification (p. 36) is not apt while having
such a weak assumption as (WSP) added to partial order axioms. Simons
made avail himself of an analogy of mutual definability of relations S and I

in partial orders (cf. conditions (7) and (8)) which simply does not hold in
this case. We present detailed analysis of this fact in [8, Ch. IV, §§ 3 and 8].

The following structure is a model of Simons’ “Classical Extensional
Mereology”. However, the formulas (A5) and (fun F) are not true in it.
Thus, it is not a mereological structure. We put S := {1, 2, 12, 21} and
⊏ := {〈1, 12〉, 〈1, 21〉, 〈2, 12〉, 〈2, 21〉}.

12 21

1 2

The relations ⊑ and ≬ are defined by (def⊏ ⊑) and (def ≬). Of course, the
formulas (irr⊏), (t⊏) and (WSP) are true in 〈S, ⊏〉. Obviously, the axiom
(A5′) is true, for any singelton (i.e., x F⋆ {x}). Moreover, for every at least
two-element set X ⊆ S, we have {y : y ≬ 12} =

⋃

x∈X{y : y ≬ x} = {y :
y ≬ 21} = S (i.e., 12 F⋆ X and 21 F⋆ X). Thus, the axiom (A5′) is true in
〈S, ⊏〉, for any non-empty subset of S.

The sentence (A5) is not true in 〈S, ⊏〉, since there are no fusions of the
sets S, {12, 21}, {1, 12, 21} and {2, 12, 21}. Moreover, the condition (fun F)
is not true, because 12 F {1, 2} and 21 F {1, 2}.14

8. Algebraic operations

Let M = 〈M,⊑〉 be an arbitrary mereological structure. By means of
(A5&funF) and (25) we can define a unary operation

⊔

: 2M \ {∅} → M

(def
⊔

) X 6= ∅ =⇒
⊔

X := (ıx)x F X = (ıx)x S X .

Referring to part 3, if ∅ 6= X = {x : ϕ(x)}, then the element
⊔

X can be
called a collective set (resp. fusion) determined by a condition ϕ(x) and we
can designate it, e.g. by [[x : ϕ(x)]].

14From Theorem 2 it follows that there is no four-element mereological structure (cf.
footnote 15). Hence we also obtain that 〈S, ⊏〉 is not a mereological structure.



230 Andrzej Pietruszczak

Let us notice that for a ∈ M and ∅ 6= X ⊆ M we have

a ⊑
⊔

X ⇐⇒
∧

y∈M

(

y ⊑ a ⇒
∨

x∈X

x ≬ y
)

.

Indeed, let a ⊑
⊔

X and y ⊑ a. Then, by (A2), we have y ⊑
⊔

X. Therefore
from (def F) it follows that

∨

x∈X x ≬ y. Conversely let
∧

y∈M (y ⊑ a ⇒
∨

x∈X x ≬ y). By F = F⋆, if
∨

x∈X x ≬ y, then y ≬
⊔

X. Therefore we obtain
∧

y∈M (y ⊑ a ⇒ y ≬
⊔

X). Hence, by (A4), we have a ⊑
⊔

X.
We will also introduce binary operation ⊔ : M × M → M

(def ⊔) a ⊔ b :=
⊔

{a, b} .

Notice that for a, b ∈ M we have

a ⊔ b =
⊔

{x : x ⊑ a ∨ x ⊑ b} .

Indeed, applying just (1), (def S) and simple logical transformations we get:
c S {x : x ⊑ a ∨ x ⊑ b} iff c S {a, b}. Thanks to (25) instead of the relation
S one can take F.

If a ≬ b, then {x : x ⊑ a∧ x ⊑ b} 6= ∅. Therefore, by (7), (A5&funF) and
(25), we obtain

a ≬ b =⇒ (ıx)x I {a, b} = (ıx)x F {x : x ⊑ a ∧ x ⊑ b} .

So we can define a partial binary operation

(def ⊓) a ≬ b =⇒ a ⊓ b := (ıx)x I {a, b} .

If b 6⊑ a, then, by (A4), {x : x ⊑ b ∧ ¬ x ≬ a} 6= ∅. Therefore for a 6= 1

we have {x : ¬ x ≬ a} 6= ∅. So we can define a unary partial operation

(def −) a 6= 1 =⇒ −a :=
⊔

{x : ¬ x ≬ a} .

9. Mereological structures and complete Boolean algebras

By a Boolean algebra we mean an algebraic structure A = 〈A, +, •, –, , 〉,
in which A is a non-empty set, + and • are binary operations on A, – is
a unary operation on A, while  and  are elements of A; moreover, the
following axioms are satisfied

a + b = b + a, a • b = b • a,(i)
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a + (b + c) = (a + b) + c, a • (b • c) = (a • b) • c,(ii)

a • (b + c) = (a • b) + (a • c), a • (b + c) = (a • b) + (a • c),(iii)

a +  = a, a •  = a,(iv)

a + – a = , a • – a = .(v)

If  6=  (iff Card(A) > 1), then algebra A is called non-degenerate.
Boolean algebra is a set partially ordered by the relation ≤ by means of

conditions

(def ≤) a ≤ b ⇐⇒ a + b = b ⇐⇒ a • b = a .

Let us remind that for any a, b ∈ A

a ≤ b ⇐⇒ – b ≤ – a,

–(– a) = a.

Moreover

 = (ıx)x S≤ A ,

 = (ıx)x S≤ ∅ ,

a + b = (ıx)x S≤ {a, b} ,

a • b = (ıx)x I≤ {a, b} ,

– a = (ıx)x S≤ {y ∈ A : y • a = } ,

– a = (ıx)x S≤ {y ∈ A : ¬
∨

z∈A(z 6=  ∧ z ≤ y ∧ z ≤ a)} ,

where S≤ and I≤ are relations of supremum and infimum with respect to
the relation ≤.

We say that a Boolean algebra is complete if for an arbitrary set X in
A there is such an a ∈ A that a S≤ X (then there exists as well such b ∈ A

that b I≤ X, it is b such that b S≤ {y ∈ A :
∧

x∈X y ≤ x}).
We will prove the theorem saying that after «adding» zero element to

some mereological structure we will «turn» it into a non-degenerate complete
Boolean algebra:15

15Tarski was the first one to notice this fact together with the other one presented in
Theorem 3. He described these in [11] in some footnote which in an English translation
of [11] can be found at pages 333–334. Cf. further remarks 7 and 8.

By this fact one can strengthen the result (27): The number of elements of the universe

of some finite mereological structure equals 2n−1 for some natural number n > 1. Indeed,
after adding 1 to the number of elements of the universe («adding zero») we have to get
number 2n, since only such can be the cardinality of finite universes of non-degenerate
Boolean algebras.
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Theorem 2. Let 〈M,⊑〉 be a mereological structure. Let  be an arbitrary

element not in M . Assume for a, b ∈ M

a + b := a ⊔ b,

a +  := a =:  + a and  +  := ,

a ≬ b =⇒ a • b := a ⊓ b,

¬ a ≬ b =⇒ a • b := ,

a •  :=  =:  • a and  •  := ,

a 6= 1 =⇒ – a := −a,

– 1 :=  and –  := 1,

 := 1.

Then 〈M ∪ {}, +, •, –, , 〉 is a non-degenerate complete Boolean algebra

in which the relation ≤ defined by (def ≤) satisfies the following condition

(†) a ≤ b ⇐⇒ a ⊑ b ∨ a =  .

Remark 7. In the footnote mentioned earlier Tarski noticed that a structure
〈M ∪ {}, ≤〉, where now ≤ is the relation defined directly by (†), will be
a complete Boolean lattice (relational characterization of complete Boolean
algebras). Let us remind that Tarski characterized mereological structure
〈M,⊑〉 by means of axioms (A2) and (A5&funF) (cf. Theorem 1). The whole
gist of Tarski’s observation was hidden in theorems 1 and 2 proved in [11]
which say that a structure 〈B,≤〉 is a complete Boolean lattice iff relation
≤ satisfies some conditions B2 and B

∗
4
. Condition B2 says that the relation

≤ is transitive, so it follows from (A2). Condition B
∗
4

is a counterpart of
the condition (A5&funF). Roughly speaking, those conditions differ only in
«adding or deleting zero» of a Boolean lattice. Details of the proof can be
found in [8, Ch. III].

Proof of Theorem 2. We check (i)–(v) and (†) in a standard way. We
will show that Boolean algebra 〈M ∪ {}, +, •, –, , 〉 is complete. Indeed
 S≤ ∅. Moreover, if X 6= ∅, then, by (A5) and (25), there is such an a ∈ M ,
that a S⊑ X. Therefore a S≤ X.

We will prove now that from a non-degenerate complete Boolean algebra
by «deleting zero» we will obtain a mereological structure:16

16Of course zero element can be dropped only in non-degenerate Boolean algebras (there
must be some element left in the domain after «deleting»). If a given Boolean algebra is
not two-element (Card(A) > 4; cf. footnote 15), then obtained mereological structure is
non-degenerate.
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Theorem 3. Let 〈A, +, •, –, , 〉 be a non-degenerate complete Boolean

algebra. Assume
⊑ := ≤ |A\{},

where the relation ≤ is defined by (def ≤). Then 〈A \ {},⊑〉 is a mereo-

logical structure.

Remark 8. Referring to Remark 7, Tarski noticed that if a structure 〈B,≤〉
satisfies conditions B2 and B

∗
4
, then the structure 〈B \ {},⊑〉 fulfills (A2)

and (A5&funF). Details of the proof can be found in [8, Ch. III].

Proof. It is evident that ⊑ is a partial order.

For (A4): Let a, b ∈ A \ {} be such that a 6⊑ b. Then a • (– b) 6= ,
a • (– b) ⊑ a and there is no such x ∈ A \ {}, that x ⊑ a • (– b) and x ⊑ b.
Therefore partial order ⊑ is separative.

For (A5): Let ∅ 6= X ⊆ A \ {}. Since 〈A, +, •, –, , 〉 is a complete
Boolean algebra, then there is such a ∈ A \ {} that a S≤ X. We will show
that a F X. Primo:

∧

x∈X x ≤ a. Hence
∧

x∈X x ⊑ a. Secundo: we have to
prove that

∧

x∈A\{}(x ⊑ a ⇒
∨

y∈Y y ≬ x). Let us take an arbitrary c 6= 

such that c ⊑ a. If c ∈ X, then the proof is finished since c ≬ c. Assume
now that c 6∈ X and (for contradiction) that ¬

∨

y∈X y ≬ x. By definition of
relations ≬ and ⊑ we have

∧

y∈X ¬
∨

z 6=(z ≤ y∧z ≤ c). Since – c = (ıx)x S≤

{y : ¬
∨

z 6=(z ≤ y∧z ≤ c)} and X ⊆ {y : ¬
∨

z 6=(z ≤ y∧z ≤ c)}, so a ≤ – c.
Moreover, by assumption we have c ⊑ a. Therefore c ≤ – a and c ≤ a. Hence
c ≤ a • – a = , i.e., c = , and we obtained a contradiction.

Acknowledgments. I would like to thank Rafał Gruszczyński for his trans-
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