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Introdu
tionThe theory of uniqueness of trigonometri
al series 
an be regarded as arisingfrom the question of de
iding in what sense the Fourier series of a fun
tionmay be 
onsidered as the legitimate expansion of the fun
tion in an in�nitetrigonometri
al series. We know, of 
ourse, that if the series 
onvergesboundedly to the fun
tion, then indeed the 
oeÆ
ients of the series mustbe given by the Euler{Fourier Formulas. However, in the absen
e of su
ha 
ondition, we may ask ourselves whether two trigonometri
al series may
onverge to the same fun
tion everywhere. The answer to this question isin the negative and was essentially proved so by Riemann, the proof being
ompleted by Cantor.It is with the repla
ement of the 
ondition of 
onvergen
e everywherewith that of 
onvergen
e almost everywhere, that the theory of sets ofuniqueness is 
on
erned. The situation here is not quite as simple. It wasshown by Mensov, that there exist trigonometri
al series whi
h 
onverge tozero almost everywhere, but whi
h are not identi
ally zero. By the theo-rem of Riemann{Cantor mentioned above, this series does not 
onverge tozero almost everywhere. The set at whi
h it fails to 
onverge to zero is anexample of what is 
alled a set of multipli
ity. To be more pre
ise, we saythat a set E of measure zero, is a set of multipli
ity or an M{set, if thereexists a trigonometri
al series 
onverging to zero everywhere outside E, butnot identi
ally zero. A set of measure zero is 
alled a set of uniqueness or aU{set, if it is not an M{set.Young [13℄ showed that every denumerable set is a U{set. Raj
hmanand Bary [13℄ independently dis
overed the existen
e of non{denumerableperfe
t U{sets. The main problem in the subje
t might be 
onsidered to bethat of �nding ne
essary and suÆ
ient 
onditions for a set to be a U{set.In pra
ti
e, attention has been largely restri
ted to 
losed sets. It seemsthat metri
al properties su
h as 
apa
ity have little to do with the question[7℄. In general one 
an say that the problem is related to the arithmeti
al2



stru
ture of the set.Our knowledge of U{sets may be summed up in the following way. Onthe one hand a theorem of Bary says that a 
ountable union of 
losed U{setsis a U{set. On the other, 
ertain sets designated as Hr sets are known to be
losed U{sets. Here r may be any positive integer. H1 sets were dis
overedby Raj
hman and Bary while Hr sets, whi
h are generalizations of the H1sets, were found by Pyatetskii{Shapiro. In his paper [5℄, Pyatetskii{Shapiroproved that there were H2 sets whi
h were not 
ountable unions of H1 sets.He also stated that for ea
h r, there exists a set of type Hr, whi
h is nota 
ountable union of Hr�1 sets. One of our theorems will be a 
ompleteproof of this fa
t. It depends upon a 
ertain arithmeti
al property of Hrsets, whi
h is fairly obvious for H1 sets, but rather involved for r > 1.Pyatetskii{Shapiro also introdu
ed Bana
h spa
e methods to give ne
es-sary and suÆ
ient 
onditions for a 
losed set to be a U{set. This 
ondition
annot be applied to any known sets, however, be
ause it is stated in termsof 
ertain Bana
h spa
e notions and not in terms of the set itself. Be
auseof the unavailability of the paper in English, I have in
luded a rather briefoutline of the proof of his results. Also I give suÆ
ient 
riteria for U{setswhi
h are more arithmeti
al in nature and are in terms of the set itself.Pyatetskii{Shapiro's 
riterion may be used to reprove a result of Zygmundand Mar
inkiewi
z [4℄ in the 
ase of 
losed sets. In the �rst se
tion is alsoin
luded a theorem whi
h is a ne
essary 
ondition for U{sets to be of a 
er-tain spe
ial type. As no ne
essary 
onditions, to my knowledge, have beengiven for U{sets up to now, I think this may be of some interest.In the theory of several variables, no analogue of Riemann's uniquenesstheorem has ever been proved, without 
ertain strong additional hypotheses.These hypotheses 
on
ern the rate at whi
h the 
oeÆ
ients are allowed togrow. In parti
ular the results of [9℄, imply that if the 
oeÆ
ients of a doubleseries tend to zero, and the series is 
ir
ularly summable to zero everywhere,then it is identi
ally zero. It seems that no results 
on
erning the rate ofgrowth of the 
oeÆ
ients of a 
onvergent trigonometri
al series have beenpublished. In the se
ond 
hapter I prove a result whi
h implies that the rateof growth is smaller than exponential. This result applies to a general type ofmethod of summation whi
h in
ludes both 
ir
ular and square summation.There is a notion of M{sets of restri
ted type whi
h will be dis
ussedin the third 
hapter. This is a set on whi
h there exists a measure, whoseFourier{Stieltjes series 
onverges to zero outside the set. The 
lassi
al M{sets were of this type and the trigonometri
al series given were the seriesasso
iated with the measures. In this se
tion I will give a 
onstru
tive3



example of a series whi
h 
onverges to zero almost everywhere, but whi
his not the Fourier series of a measure. Also I have in
luded a generalizationof a theorem of Wiener 
on
erning the Fourier series of measures, to severaldimensions.In the last 
hapter, I 
onsider Green's theorem for the plane in whatmight be 
onsidered as a best possible form. Bo
hner in [3℄, and Shapiro in[10℄, 
onsidered this question, but the theorem that I prove is stronger thanBo
hner's, and has fewer hypotheses than the one in [10℄, but it does notallow the same type of ex
eptional sets as in this latter work.
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Chapter 1
1. We �rst make several de�nitions whi
h will o

ur in the 
ourse of this
hapter. We denote by W the ring of absolutely 
onvergent Fourier serieson the interval [0; 1℄. We may think of W as the set of all sequen
e 
n,�1 < n < 1, su
h that Pn j
nj < 1. Then W forms a Bana
h spa
eunder the norm Pn j
nj. Let S denote the Bana
h spa
e of all sequen
esan, �1 < n < 1, su
h that Limjnj!1an = 0. The norm of the sequen
efang is de�ned to be Maxnjanj. Then W is the dual spa
e of S wherethe sequen
e f
ng represents a linear fun
tional on S whi
h, when appliedto an element fang of S, yields Pn an
�n. In W we have the weak startopology indu
ed by S. In this topology a sequen
e of elements ofW f
(m)n g,1 � m < 1, 
onverges to the element f
0ng if and only if (a) Pn j
(m)n j isuniformly bounded in m, and (b) 
(m)n approa
hes 
0n for ea
h n as m tendsto in�nity. In [5℄, Pyatetskii{Shapiro proves the following theorem:Theorem 1. Let E be a 
losed set in the interval [0; 1℄. Let L be the spa
eof all absolutely 
onverging Fourier series vanishing on open neighborhoodsof E. Then E is a U{set if and only if the weak 
losure of L is all of W .Proof. We assume familiarity with the 
on
ept of formal multipli
ationas expounded for example in [13℄. We further need a little known lemmaof Zygmund whi
h is essentially reproved in [5℄ by means of ideal{theoreti

onsiderations.Lemma 1. Let P =Pn 
ne2�inx and Q =Pn dne2�inx be two trigonometri-
al series where P belongs toW andQ belongs to S. Assume that either P orQ vanishes on some open set U . Then the formal produ
t R =Pn 
ne2�inxwhere 
n =Pp 
pdn�p vanishes on U .Postponing the proof of the lemma, we pro
eed to prove the theorem.Let f =Pn 
ne2�inx belong to S. A ne
essary and suÆ
ient 
ondition for f5



to 
onverge to zero outside E is that f annihilate the subspa
e L. For, if fdoes 
onverge to zero outside E, and g =Pn dne2�inx belongs to L, then bythe lemma the formal produ
t of f and g 
onverges to zero outside E sin
ef 
onverges to zero there, and 
onverges to zero on some neighborhood ofE, sin
e g does so. Hen
e this formal produ
t is identi
ally zero, and inparti
ular the 
onstant term Pn 
nd�n equals zero. Thus f annihilates thesubspa
e L. Conversely, assume that f does annihilate L. This means thenthat the 
onstant term of the formal produ
t of f and g is zero. Now everyterm of this formal produ
t is the 
onstant term of the produ
t of f ande2�ikx g, for some k. Sin
e e2�ikx g lies in L whenever g does, it follows thatthe formal produ
t of f and g is zero. Let y not be in E. We 
an then
hoose g to be rapidly 
onvergent in the sense of [13℄, and g(y) 6= 0. Thetheorem on formal multipli
ation tells us that sin
e this produ
t is zero, f
onverges to zero at y. Hen
e E is a U{set if and only if no f annihilatesL. By the Hahn{Bana
h theorem applied to W , this is equivalent to sayingthat the weak 
losure of L is all of W .It remains to prove the lemma. Assume for example that Q vanisheson U . For any x0 in U , let T (x) = Pn tne2�inx be a rapidly 
onvergingFourier series su
h that T (x0) 6= 0 and vanishing outside U . Then the tripleprodu
t PQT , by the asso
iative law, may be evaluated in two di�erentways. On the one hand QT is identi
ally zero sin
e the formal produ
tvanishes everywhere. On the other hand, sin
e T (x0) 6= 0, it follows thatPQ vanishes at x0. A similar proof holds if P vanishes on U .The subspa
e L is of 
ourse an ideal in W . Its weak 
losure �L is also anideal. This may be seen as follows. If f belongs to L, then so does e2�ikx f ,for any k. Hen
e �L is 
losed under multipli
ation by �nite trigonometri
polynomials and hen
e by approximating an arbitrary element of W bytrigonometri
 polynomials we see that �L is an ideal. Thus we may rephrasethe 
ondition of Theorem 1, namely that �L is all of W , and say that �L
ontains 1.A theorem of Bana
h [1℄ states that ifW is the dual spa
e of a separableBana
h spa
e, and if L is a 
onvex set, 
losed under sequential limits inthe weak star topology, then it is 
losed in that topology. If E is a set ofuniqueness we know that �L = W . For ea
h ordinal number � set L� =[�<�L� if� is a limit ordinal and set L�+1 equal to the 
losure with respe
tto sequential limits of L�. For some � then, we have L� =W . The least su
h� is an invariant of the set. The Hr sets mentioned in the introdu
tion havethe ordinal � = 1 asso
iated to them, and there are no sets known whi
h6



have any other value of � asso
iated to them. It would seem reasonable thata 
ountable union of Hr sets for in
reasing values of r would be an exampleof su
h a set.2. Let E be a U{set situated in the interval [0; 1℄. Let � be a positivereal number. Consider the set �E 
onsisting of all points of the form �xwhere x belongs to E. A theorem of Zygmund and Mar
inkiewi
z says that�E 
onsidered modulo 1 is also a U{set. In this se
tion we shall apply theresults of the previous se
tion to obtain a new proof of this fa
t in the 
aseof 
losed U{sets. First we need the following lemma.Lemma 2. Assume that the intervals [�; �℄ and [��; ��℄ are both 
on-tained in [0; 1℄. There exists an absolute 
onstant A, su
h that if f(x) =Pn 
ne2�inx is a member of W vanishing outside of [�; �℄, then f �x�� =Pn 
0ne2�inx also belongs to W and Pn j
0nj � APn j
nj.Proof. Let D(x) = Pn dne2�inx belong to W , have two 
ontinuous deriva-tives, and be equal to 1 on [�; �℄. Further, let D(x) vanish outside a smallenough neighborhood of [�; �℄ so that D �x�� is unambiguously de�ned. Nowwe have(1) 
0n = � Z 10 f(x)e�2�inx�dx ;so(2) 
0n = � Z 10 f(x)D(x)e�2�inx�dx :Also(3) D(x) e�2�in�x =Xm d(n)m e2�imxwhere(4) d(n)m = Z 10 D(x)e�2�i(n�+m)xdx :Remembering that D(x) has two 
ontinuous derivatives, we get after inte-grating by parts twi
e that(5) jd(n)m j � C1C2 + (n�+m)27



where C1 and C2 are suitable positive 
onstants. Applying Parseval's for-mula to (2), we obtain(6) j
0nj � � Xm j
mj C1C2 + (n�+m)2 :Hen
e,(7) Xn j
0nj �Xm j
mjXn �C1C2 + (n�+m)2 � A Xm j
mjwhere A is some absolute 
onstant.If E is a U{set, then we know by x1, that the fun
tion 1 belongs to �L. LetD(x) denote the same fun
tion as in the proof of the lemma. For any f(x)in W , we have that f(x) belongs to the weak 
losure of f(x)L. This we seeas follows. If f(x) = e2�ikx, then it is 
lear. It then follows easily for a �nitelinear 
ombination of exponential fun
tions, and �nally by approximationin the norm, for arbitrary elements of W . In parti
ular D(x) belongs tothe 
losure of D(x)L. The elements of D(x)L all satisfy the hypothesis ofLemma 2. Sin
e the elements of D(x)L vanish outside a neighborhood of[�; �℄ it follows that any fun
tion in the 
losure of D(x)L also vanishes there.By the theorem of Bana
h quoted above, D(x) is the iterated sequential limitof suitable elements of D(x)L. For ea
h f vanishing outside a neighborhoodof [�; �℄ let ~f denote f �x��. If we 
an verify that whenever fn tends to g,then ~fn tends to ~g, we will have proved that D �x�� is in the weak 
losureof the spa
e 
onsisting of all ~f , where ~f lies in D(x)L. In turn this impliesthat D �x�� is in the 
losure of the ideal of all fun
tions vanishing on someneighborhood of the set �E. Now, with the aid of Lemma 2, we 
an easilyprove this assertion. For, if fn tends to g, this means pre
isely two things.First, the norms of the fn are bounded, and se
ond, ea
h 
oeÆ
ient of fnapproa
hes the 
orresponding 
oeÆ
ient of g. Lemma 2 tells us that if the�rst 
ondition is satis�ed for fn, it is still satis�ed for ~fn. Sin
e the fun
tionsfn are bounded in L1 norm, it follows that the se
ond 
ondition implies thatea
h Fourier 
oeÆ
ient of ~fn approa
hes the 
orresponding 
oeÆ
ient of ~g.Now, if the U{set E is 
ontained in the interval [�; �℄ it follows that �Eis a U{set. For, D �x�� is a fun
tion whi
h is equal to one on a neighborhoodof �E, and is in the 
losure of L0, where L0 denotes the ideal of all fun
tionsof W vanishing on some neighborhood of �E. If h(x) is an element of L0equal to one on an open set 
ontaining all the points where D �x�� is notone, we have then that D �x��+h(x)�D �x�� h(x) = 1 belongs to the 
losure8



of L0. Hen
e �E is a U{set. Sin
e we 
an always subdivide the set E intosuÆ
iently many portions Ei, su
h that ea
h is 
ontained in an interval [�; �℄as above, and sin
e a �nite union of 
losed U{sets is a U{set, the theoremof Zygmund and Mar
inkiewi
z follows.3. As the simplest examples of U{sets, we shall 
onsider those sets whi
hhave the property that, as explained in x1, the ordinal 1 is invariantly as-so
iated with them. Re
alling the de�nition, this means that there exists asequen
e of fun
tions inW , ea
h vanishing on some neighborhoodof the set,and su
h that fn weakly approa
hes 1. Su
h a set we shall 
all a U1 set.Theorem 2. A ne
essary and suÆ
ient 
ondition for a 
losed set E to be aU1 set, is the following. There exists � > 0, su
h that for no integer N andreal number Æ > 0 is it true that for every open set O 
ontaining E, and everysequen
e 
n > 0, n 6= 0, with 
j < Æ for jjj = 1; : : : ; N and P 
n = 1 thereexists a �nite number of points in O, x1; x2; : : : ; xk and 
onstants �1; : : : ; �ksu
h that P�j = 1 and(8) Xn 6=0 
n ������ kXj=1�je2�inxj ������2 < � :Remark: Sin
e the statement of the theorem is rather involved, somethingshould be said 
on
erning the point of the theorem. Equation (8) expressesthe fa
t that the points xj are su
h that nxj are evenly distributed for manyvalues of n. More spe
i�
ally, the left side of (8) is an average of quantitieswhi
h will be small if nxj are well distributed. Thus our theorem mightbe paraphrased by saying that a set E is a U1 set if one 
annot �nd pointsarbitrarily 
lose to E having more or less random distributions modulo 1n formany values of n. The signi�
an
e of the number Æ is that one may ignorewhat happens for small values of n.Proof. The 
ondition is ne
essary. If E is a U1 set this means that thereexists a sequen
e fm belonging to W , ea
h fun
tion vanishing on an openneighborhood Om of E, and tending weakly to one. We may assume that(9) fm = 1 +Xn 6=0 
(m)n e2�inxwhile Xn j
(m)n j < A9



where A is an absolute 
onstant. Also, we have that 
(m)n tends to zero for�xed n as m tends to in�nity. In the following we will drop the supers
riptm when it is 
onvenient. Let � =Pn j
nj and set �
n = j
nj� , so thatP �
n = 1.Set(10) g1 = 1 +Xn �
ne2�inx ; g2 = 1 +Xn 
np�
n e2�inx ;and � = 12A2 . If the theorem were false there would exist N and Æ as statedin the theorem. Furthermore for some value of m suÆ
iently large, thesequen
e 
n would satisfy the hypothesis j�
nj < Æ for jnj � N . Hen
e therewould exist x1; : : : ; xk, lying in Om, and �1; : : : ; �k su
h that P�j = 1 and(11) Xn 6=0 �
n ������ kXj=1�je2�inxj ������2 < � :Now we put h(x) =X�j g1(x+ xj) :Then we will have Z 10 g2(x)h(x)dx = 0by Parseval's formula, remembering that fm vanishes at xj sin
e they lie onOm. On the other handZ 10 g2(x)h(x)dx = 1 +Xn 6=00� kXj=1p�
n �je2�inxj1A 
np�
n :By S
hwarz's inequality this is greater in absolute value than1� h� � X j
nji1=2 = 1� �p� > 0and hen
e we have a 
ontradi
tion. Thus the ne
essity is proved.The 
ondition is suÆ
ient. The 
ondition means that there exists an� > 0, and a sequen
e 
(m)n , su
h that Pn 
(m)n = 1, and 
(m)n tends to zerofor a �xed m as n tends to in�nity, and open sets Om 
ontaining E, su
hthat(12) Xn 
(m)n ������ kXj=1�je2�inxj ������2 > �10



for all xj in Om where �j are numbers su
h that P�j = 1. Let(13) fm = 1 +Xn q
(m)n e2�inx :Clearly fm belongs to L2 of the interval [0; 1℄. Furthermore R 10 jf2m(x)jdx = 2.Let M be the subspa
e of L2 
onsisting of all fun
tions with 
onstant term1 in their Fourier expansions. Again we drop the indexm where 
onvenient.Let M0 be the subspa
e of M generated by the fun
tions fm(x+ t) where tbelongs to Om. Let g be that element ofM0 su
h that R 10 jgj2dx is minimum.Set h = �+ � g(x) where �; � are so 
hosen that(14) Z 10 h �gdx = 0 ; Z 10 hdx = 1 :This will be possible provided R 10 jgj2dx > 1, for in that 
ase we take(15) � = � Z 10 jgj2dx1� Z 10 jgj2dx ; � = 11� Z 10 jgj2dx :Now the hypotheses of the theorem tell us thatZ 10 jgj2dx > 1 + " :Hen
e we see that Z 10 jhj2dx < Awhere A depends only on �. On the other hand,Z 10 h(x) �j(x)dx = 0for any j(x) belonging to M0. For we have(16) Z 10 (�+ � g) �jdx = Z 10 (�+ � g) �gdx+ Z 10 (�+ � g) (j � g)dx :The �rst integral on the right is zero be
ause of (14), whereas the se
ondintegral equals � R 10 g (j � g)dx, whi
h is zero by the minimal property of g.Hen
e if hm(x) = 1 +Xn d(m)n e2�inx ;11



the fun
tion(17) km(x) = 1 +Xn d(m)n q
(m)n e2�inxbelongs to W , and has its norm in that ring, by S
hwarz's inequality, lessthan 1 + pA. Furthermore sin
e R 10 h(x) �j(x)dx = 0 for all j in M0 andin parti
ular for fm(x + t) where t lies in Om, it follows from Parseval'sformula that km(x) = 0 for x in Om. Thus it is 
lear that the sequen
eskmtend weakly to one and vanish on neighborhoods of E, so that E is a U1set. The fa
t that the 
oeÆ
ients of km tend to zero as m tends to in�nityfollows from the fa
t that the 
(m)n do so and d(m)n are all bounded by pA.Now we shall turn our attention to the Hr sets whi
h were dis
overedby Pyatetskii{Shapiro. We need a preliminary de�nition.De�nition. A sequen
e of r{tuples of integers, nji , 1 � j � r, 1 � i < 1,is said to be normal if whenever aj, 1 � j � r, are integers not all zero,(18) ������Xj ajnji ������tends to in�nity with i.Then we have:De�nition. A set S is an Hr set if and only if there exist r intervalsL1; : : : ; Lr on the interval [0; 1℄ and a normal sequen
e of r{tuples of integersnji , su
h that for all x in S, and all i, there exists j su
h that njix does notlie in Lj modulo 1.We now prove that the Hr sets are sets of uniqueness. For ea
h Lj , let�j(x) be a fun
tion inW vanishing everywhere ex
ept in an interval interiorto Lj , and su
h that the 
onstant term of �j(x) is 1. Letfi(x) = rYj=1�j(njix) :These fun
tions then vanish on a neighborhood of E, and their norms aselements of W are uniformly bounded by the produ
t of the norms of �j .Let(19) �j(x) =X 
(j)�j e2�i�jx12



where �1; : : : ; �r range from �1 to 1. Then the 
onstant term of fi(x) is1(20) Xn(1)i �1+:::+n(r)i �r=0 
(1)�1 � : : : � 
(r)�r :This last sum 
ontains the term 
(1)0 � : : : � 
(r)0 = 1. For any �xed 
hoi
e of�1; : : : ; �r not all zero there will be an i su
h that no term 
orresponding tothese values of �j o

urs in the sum (20) be
ause of the normality 
ondition(18), for that value of i or thereafter. Hen
e it is 
lear that this 
onstant term(20) approa
hes one, and a similar argument shows that the non{
onstantterms approa
h zero. Thus fi(x) tend weakly to one, and sin
e they allvanish on open sets 
ontaining E by de�nition of an Hr set, it follows thatE is a set of uniqueness. Moreover E is obviously a U1 set. The nexttheorem will have as its obje
t to show that in some sense Hr sets are thesimplest U1 sets.Theorem 3. Let fm =Pn 
(m)n e2�inx, 
(m)0 = 1, be fun
tions in W , vanish-ing on a set E, su
h that fm tends weakly to one. Assume that there exists� < 1, and an integer N su
h that for all m suÆ
iently large we 
an �nd aset Jm of N indi
es n(m)1 ; : : : ; n(m)N , su
h that(21) Xn 6=0; n 62Jm j
(m)n j < � :Then E is a �nite union of Hr sets.Remark: In the proof that Hr sets are sets of uniqueness, we 
onstru
tedexa
tly su
h a sequen
e of elements of W . On the other hand it is possibleby taking appropriate linear 
ombinations of the fun
tions in this sequen
e,to 
onstru
t a sequen
e vanishing on neighborhoods of a Hr set, tendingweakly to one, but not satisfying the hypotheses of Theorem 3.Proof. The elements of the sets Jm are not uniformly bounded, be
ause,sin
e fm tend weakly to one, this would imply that the 
oeÆ
ients 
orre-sponding to the indi
es in Jm tend to zero, and hen
e by (21) thatPn 6=0 j
(m)n j <1 form suÆ
iently large. This in turn implies that the fun
tions fm are neverzero. Thus we see that after possible rearranging n(m)j , we have that n(m)1forms a normal sequen
e of 1{tuples in the sense of our de�nition. Assumethat after further rearrangement n(m)1 ; : : : ; n(m)r form a normal sequen
e of1Original 
ontained Pn(1)i �1:::n(r)i �r=0 
(1)1 � : : : � 
(r)r .13



r{tuples, while n(m)1 ; : : : ; n(m)r ; n(m)r+1 do not form a normal sequen
e of r+1{tuples. By restri
ting ourselves to a suitable subsequen
e, this implies thatthere exist integers a11; a12; : : : ; a1r, b1 6= 0, 
1, su
h that2rXj=1a1jn(m)j + b1n(m)r+1 = 
1 :Now with this new sequen
e of n(m)j , we 
onsider the sequen
e of r + 1{tuples n(m)1 ; : : : ; n(m)r ; n(m)r+2. If this sequen
e is not a normal sequen
e ofr + 1{tuples we pro
eed exa
tly as before. If it is a normal sequen
e weadjoin n(m)r+2 to n(m)j , 1 � j � r. Thus eventually we will �nd that for asuitable subsequen
e of our original sequen
e and suitable rearrangements,there will be a number r and integers akj where 1 � j � r, 1 � k � N � r,bk 6= 0, 
k, 1 � k � N � r, su
h that(23) rXj=1 akjn(m)j + bkn(m)r+k = 
k :Now set(24) B = b1 � : : : � bN�r ; �n(m)j = 24n(m)jB 35 ; �akj = akj Bbk :We have then(25) rXj=1 �akj�n(m)j + �n(m)r+k = �
(m)kwhere �
(m)k depends on m but remains bounded, j�
(m)k j � K. The sequen
e�n(m)j , 1 � j � r, is 
learly still a normal sequen
e. We shall show nowthat the set E is a �nite union of Hr sets, ea
h de�ned relative to somesubsequen
e of this sequen
e. For ea
h integer d, let I1; : : : ; Id be the d
onse
utive intervals of length 1d whi
h 
over the unit interval. If E \ I1were not an Hr set, then for ea
h 
hoi
e of �1; : : : ; �r from among the setof positive integers less than or equal to d, the relations(26) �n(m)1 x 2 I�1 ; : : : ; �n(m)r 2 I�r2Typo \n(m)r 1" in manus
ript. 14



hold for some x 
ontained in E \ I1, for some m suÆ
iently large, sin
eotherwise E \ I1 would be an Hr set. There are dr possible 
hoi
es of thenumbers �1; : : : ; �r, and so for ea
h m suÆ
iently large we have a set of drpoints whi
h we denote by Sm, belonging to I1\E and satisfying (26). Ournext obje
t will be to show that the sums1dr Xx2Sm e2�in(m)j x ; 1 � j � N ;are quite small.First we have(27) ������ 1dr Xx2Sm e2�in(m)j x � 1dr Xx2Sm e2�i�n(m)j Bx������ < ���1� e 2�iBd ��� ;remembering that I1 
onsists of the interval h0; 1di and x belongs to I1. Forea
h �n(m)j x where x belongs to Sm, has dr�1 points in ea
h of the intervalsI1; : : : ; Id. Therefore we have that the average value of the fun
tion e2�iBxtaken over these points di�ers from the integral extended over the interval[0; 1℄ by at most Maxjx�yj� 1d ���e2�iBx � e2�iBy��� :Hen
e, sin
e the integral of e2�iBx is zero, we obtain that(28) ������ 1dr Xx2Sm e2�iB�n(m)j x������ � ���1� e 2�iBd ��� ;or, from (27)(29) ������ 1dr Xx2Sm e2�in(m)j x������ � 2 ���1� e 2�iBd ��� � 2 2�Bd :Now, if j = r+k, we have3 �n(m)r+k = �
(m)k � (�ak1�n(m)1 + � � �+�akr�n(m)r ). Assumethat ak1 6= 0. Consider any set of indi
es �2; : : : ; �r. Let T denote the setof d points in Sm for whi
h(30) �n(m)2 x 2 I�2 ; : : : ; �n(m)r x 2 I�r :3Typo \�n(m)r k" in manus
ript. 15



Then the points �
(m)k x� (�ak2�n(m)2 + : : :+ �akr�n(m)r )xall lie within distan
e j�
(m)k j+ j�ak2j+ � � �+ j�akrjd � Adof ea
h other and hen
e of a single point x0. Here A denotes an absolute
onstant. Hen
e(31) �����1d Xx2T e2�i�n(m)r+kx � 1d Xx2T e�2�i(�ak1�n(m)1 x�x0)����� � 2�Ad :But, exa
tly as above, sin
e the points �n(m)1 x lie su

essively in ea
h of theintervals I1; : : : ; Id, we have(32) �����1d Xx2T e�2�i�ak1�n(m)1 x����� � 2�j�ak1jd :Sin
e Sm 
onsists of dr�1 sets ea
h exa
tly like our set T , it follows that by
ombining (31) and (32) we obtain(33) ������ 1dr Xx2Sm e2�in(m)j x������ � Kdwhere K is some 
onstant, independent of m and d.Now the theorem follows easily. Sin
e for all points of the set Sm, fm(x)equals zero, we have0 = 1dr Xx2SmXn 
(m)n e2�inx = 1 + Xn 62Jm 1dr Xx2Sm 
(m)n e2�inx(34) + Xn2Jm Xx2Sm 1dr 
(m)n e2�inx :The �rst sum on the right is bounded by 1� � in absolute value, while these
ond sum does not ex
eed Pn j
(m)n j Kd . Hen
e we have(35) 1 � (1� �) + Kd Xn j
(m)n j16



whi
h is 
learly impossible if d is 
hosen large enough.In the next theorem the symbol jEj will be used to denote the measureof E.Theorem 4. Let En be a sequen
e of 
losed sets in [0; 1℄, su
h that jEnj >Æ > 0. Assume that for ea
h �xed interval I,(36) I \EnjIj � jEnjtends to zero as n tends to in�nity. Let Fn denote the set of all x su
h thatEn + x, whi
h means En translated by x, does not not interse
t En. Thenany 
losed set 
ontained in the interse
tion of all the Fn is a U1 set.Proof. Let �n(x) be the 
hara
teristi
 fun
tion of the set En. Setfn(x) = �n(x)jEnj :fn then has 
onstant term one in its Fourier expansion. Sin
e ea
h fn(x)belongs to L2, and kfnk2 = 1pÆ , it follows that gn(x) = fn(x) ? fn(x), where? denotes 
onvolution, lies in W , and its norm in that ring does not ex
eed1Æ . For any k 6= 0, and � > 0, let d be so large that je2�ikx � e2�ikyj < � ifjx� yj < 1d . Let I1; : : : ; Id be as in the proof of Theorem 3. Pi
k n so largethat(37) ���� jI� \EnjjI�j � jEnj���� < �; 1 � � � d :Then we have(38) ����ZI�\En e2�ikxdxdx� jI� \EnjjI�j ZI� e2�ikxdx���� < � jI�j ;or by (37), ����ZI�\En e2�ikxdxdx� jEnj ZI� e2�ikxdx���� < 2� jI�j :Summing over all �, we obtain����ZEn e2�ikx���� < 2� :17



It follows that the fun
tions gn(x) tend weakly to one. On the other handwe have gn(x) = Z fn(t) fn(x� t)dt ;so it is 
lear that gn(x) vanishes on Fn. Hen
e the theorem is proved.We now remark that those Hr sets whi
h are de�ned with respe
t tonormal sequen
es where the ratio of su

essive terms in ea
h r{tuple tendsto in�nity, obviously satisfy the hypotheses of our theorem 4. The 
hoi
e ofthe set En is rather obvious.4. Now we shall 
onsider the question of whether there exist Hr sets whi
hare not 
ountable unions of Hr�1 sets. We will �rst prove that the 
omple-ment of an Hr�1 set has a 
ertain metri
 property, and then we will �ndan Hr set whose 
omplement does not have this property. We need somepreliminary de�nitions and lemmas.De�nition: Let S be any set in [0; 1℄. For 
; � > 0, we say that an intervalI is of type (1; 
; �) relative to S, if to every point x belonging to I, thereexists an interval 
ontained in S of length Æ, with its midpoint at m, su
hthat(39) jx�mj < �; Æjx�mj > 
both hold. Similarly, we say that an interval I is of type (r; 
; �) relative to S,if to every point x belonging to I, there exists an interval of type (r�1; 
; �)relative to S, of length Æ, with its midpoint at m, su
h thatjx�mj < �; Æjx�mj > 
 :Finally, if the interval [0; 1℄ itself is of type (r; 
; �) relative to S, we say thatS is of type (r; 
; �).Roughly speaking, this de�nition says that a set is of type 1, if everypoint is 
lose to a relatively long interval of the set. It is of type 2, if everypoint is 
lose to a relatively long interval of points, ea
h one of whi
h is 
loseto a long interval of the set, et
. Su
h sets as those in the de�nition o

urin the de�nition of Hr sets, and the purpose of Theorem 5, is pre
isely toprove that a 
ertain set if of type (r; 
; �).We �rst have a lemma. 18



Lemma. Let Li be the intervals (hi; hi + d) where 0 � hi < 1, 0 < d < 1,1 � i � r. There exist 
onstants B(d) and C(d) depending only on d, asfollows: For any � > 0, there exists an integer N su
h that ifs1 = p1n ; s2 = p2n : : : ; sr = prnare r rational numbers, with jsij � 1, and having the property that for allintegers aj , 0 � j � r, not all zero, satisfying jaj j � N , we have(40) ������a0n+ rXj=1ajpj������ > N ;then there exists an integer q � B(d) su
h that the set of all intervals ofthe form h kn ; k+1n i where k runs through all the integers satisfying kqsi 2Li (modulo 1), 1 � i � r, forms a set of type (r; C(d); �).Proof. In the statement of the lemma, the number N in reality dependsupon both d and r. Therefore, at times we shall denote it by N(r; �; d). Theproof pro
eeds by indu
tion on r. We assume the lemma true for r� 1. SetC 0 = C �d4� and B0 = B �d4�, where we 
onsider these quantities de�nedfor the 
ase r � 1. Let � be an arbitrary positive quantity. Then if we setN 0 = N ��; d4�, again for the 
ase r � 1, we shall prove the lemma for the
ase r with the following determination of 
onstants,C = Min � d32B0 ; C 0� B = �8B0d + 1� B0 ;(41) N = Max �5� ; r (B + 1)N 0� :Therefore, assume that si = pin are r rational numbers whi
h satisfy the
ondition (40) of the lemma where N is given by (41). Thus in parti
ularfor no k satisfying(42) k � �8B0d + 1�rdo we have(43) k (s1; s2; : : : ; sr) = 0 (modulo 1) ;19



by whi
h we mean that the 
orresponding ve
tor does not have all its 
om-ponents integral. This is so sin
e otherwise k s1 = t, where t is an integerand both k and t are smaller than N , so that we have kp1 � tn = 0 whi
hviolates (40). Now we apply the well known box prin
iple of Diri
hlet. Wedivide the unit interval up into 8B0d +1 equal intervals. If we do this for ea
haxis in r{dimensional spa
e, we will have subdivided the r{dimensional 
ubeinto at most �8B0d + 1�r 
ubes. Now, 
onsider all the ve
tors k (s1; : : : ; sr),where k satis�es (42). There must exist two values of k su
h that the 
or-responding ve
tors lie in the same 
ube. Their di�eren
e then will be aninteger k1 su
h that(44) k1 � �8B0d + 1�r ; k1si = �i +Ei ; j�ij � d8B0 ;and Ei are integers. Now let �1 be the largest of the �i in absolute value,and assume that �1 is positive.Let C denote the 
ube in r�1 dimensional spa
e de�ned by the followinginequalities,(45) if �i > 0 ; hi � h1�1 �i + d4 � yi � yi � h1�1 �i + d2 ;if �i < 0 ; hi � h1�1 �i + d2 � yi � yi � h1�1 �i + 3d4 ;where y2; : : : ; yr are the variables. If (y2; : : : ; yr) lies in the 
ube C, and �is an integer satisfying(46) h1 + d8 � �1� � h1 + 3d8 ;then it will follow that(47) � (�1; : : : ; �r) + (0; y2; : : : ; yr)lies in the 
ube L0 whi
h is de�ned as the dire
t produ
t of the intervalsL0i = �hi + d8 ; hi + 7d8 �. This is so sin
e the �rst 
omponent of the ve
tor(47) lies in the interval L0i by (46), while if �i is greater than zero we have(48) h1 �i�1 � ��i � h1 �i�1 + 3d820



sin
e j�ij � �1 and for �i < 0 we have(49) h1 �i�1 � 3d8 � ��i � h1 �i�1 :Thus 
omparing (48), (49), and (46) we see that (47) lies in the 
ube C.Now set(50) �i = �i�1 = k1pi �Eink1p1 �E1n = p0in0 ; 2 � i � r ;where n0 = k1p1 �E1n ; p0i = k1pi �Ein :Now if ai, 1 � i � r, are r integers not all zero and su
h that jaij � N 0,where we re
all that N 0 was de�ned as N 0 �r � 1; �; d4�, we have(51) ����� rXi=2 aip0i + a1n0����� = ����� rXi=1 aik1pi � n  rXi=1Eiai! ����� :Using the inequality jEij � B+1, we see that we have a linear 
ombinationof pi and n with 
oeÆ
ients less than or equal to r(B + 1)N 0 whi
h doesnot ex
eed N . Hen
e the quantity in (51) ex
eeds N and therefore N 0.We also note that j�ij � 1 and that the length of ea
h side of the 
ube Cis d4 . Thus applying our lemma to these numbers and the 
ube C for the
ase r � 1, we dedu
e that there exists a number q0 � B0 su
h that theset of intervals of the form h k0n0 ; k0+1n0 i where k0 ranges over all integers su
hthat q0k0 � �i�1� lies in the 
ube C modulo 1 for 2 � i � r, forms a set oftype (r � 1; C 0; �). Remembering that C � C 0, it follows that to prove thelemma we must merely show that ea
h one of the intervals h k0n0 ; k0+1n0 i is oftype (1; C; �) relative to the original set mentioned in the lemma. Let usthen 
onsider a parti
ular k0 su
h that q0k0 � �i�1� lies in C modulo 1. Setm = h k0�1 i. By what was said above 
on
erning the ve
tor in (47), it followsthat if an integer � satis�es(52) h1 + d8 � �1q0 � � h1 + 3d8 ;then the ve
tor(53) q0 ��+ k0�1� (�1; : : : ; �r)21



lies in the 
ube L0 modulo 1. The ve
tor (53), however, di�ers in every
omponent from the ve
tor(54) q0 (�+m) (�1; : : : ; �r)by at most jq0 �ij � d8 . Hen
e the ve
tor (54) lies in the 
ube L modulo 1,where L is de�ned as the dire
t produ
t of the intervals Li. Now set q = q0 k,so that we have q � B, and all intervals of the form h�+mn ; �+m+1n i belongto the original set des
ribed in the lemma. The 
ondition (52) on � 
an berewritten as follows:1�1 q0 �h1 + d8� � � � 1�1 q0 �h1 + 3d8 � :Obviously then, there is a string of 
onse
utive su
h � numbering at least4d4�1 q0 � 1 � d8�1 q0sin
e d4�1 q0 � 2 :The 
orresponding intervals h�+mn ; �+m+1n i whi
h we know belong to theoriginal set of the lemma, form on large interval of length at least d8�1 q0n =d8 q0n0 . This large interval is 
ontained in hmn ; m+1n + 2n0q0 i sin
e h1 + 3d8 < 2.In turn, this interval is of length at most 3n0 . We also have k0n0 � mn � k0n0 � 1n .Thus we 
on
lude that the distan
e from any point in h k0n0 ; k0+1n0 i to themidpoint of our blo
k of intervals is at most 4n0 . Now n0 � N so that thisdistan
e is smaller than �, and the ratio of the length of the blo
k of intervalsto this distan
e is at least d32q0 � d32B0 . Thus the lemma is proved for the
ase r under the assumption that it holds for the 
ase r� 1. Noti
e that atthis last step if we took ea
h point in the interval h k0n0 ; k0+1n0 i and examinedits distan
e to the blo
k of intervals of the original set whi
h we asso
iatedwith those values of � su
h that 1+ h1 + d8 � �1 q0 � � h1 + 3d8 +1, then we
ould modify the argument very slightly to show that with a di�erent 
hoi
eof C(d) we 
an assume that all the intervals whi
h o

ur in the de�nitionof a set of type (r; 
; �) o

ur to the right. We will need this remark later.Thus, it only remains to prove the lemma in the 
ase r = 1.4Original: \�" missing on right hand side.22



This is very simple. If L1 is the interval (h; h + d), we set C(d) equalto d4 , and B(d) equal to 20d + 1. Finally for � > 0 we set N equal toMax �2� ; B + 1�. Then if s = pn , jsj < 1, we have as above for no k � B(d)is ks � 0 (modulo 1), so that there exists an integer k � B(d), su
h thatks = �+E, where E is an integer and j�j < d20 . Also jEj < B+1. We have� = kp�Enn = n0n , and n0 � N sin
e k and E do not ex
eed N . Let v be anyinteger. There exists a 
onse
utive sequen
e of integers � satisfying bothv� � � � v+1� and h � �� � h+ d (modulo 1) numbering at least d2� terms.If we set q = k, intervals of the form h�n ; �+1n i will be of the desired type,and the total length of these intervals will e at least as great as d2�n = d2n0 .The distan
e from the midpoint of this blo
k of intervals to any point in theinterval h v�n ; v+1�n i is at most 2n0 , using again the fa
t that n > n0. Thus wesee that our 
hoi
e of C and B satisfy the 
onditions of the lemma, sin
efor some v every point is 
ontained in an interval of the form h v�n ; v+1�n i.Theorem 5. Let nij, j = 1; : : : ; r be a normal sequen
e of r{tuples. LetL1; : : : ; Lr be the intervals [hj ; hj + d℄. Then there exists a 
onstant C(d)depending only on d, su
h that if � > 0, there exists an integer N su
h thatfor i > N the set Si = fx j nijx 2 Lj mod 1; all jg is a set of type (r; C(d); �).Proof. We shall drop the supers
ript in nij without risk of 
onfusion. Letn1 > n2 > � � � > nr. If for j = 2; : : : ; r and for some integer k, we have(55) hj � 34 d njn1 � h1 + kn1 nj � hj + d� njn1 d (modulo 1) ;then the intervalAk = hk+h1n1 + 34 dn1 ; k+h1n1 + dn1 i will belong to the set S. Wesee this be
ause if x lies in this interval then n1x lies in hh1 + 34 d; h1 + di (modulo 1),and njx for j 6= 1 lies in [hj ; hj + d℄ modulo 1. We noti
e that the intervalsAk are of length at least d4n1 , and that every point of the interval h kn1 ; k+1n1 iis no more than 2n1 distant from its midpoint. This means that the intervalh kn1 ; k+1n1 i is of type �1; d8 ; 2n1� relative to S. The 
ondition on k in (55)says that k njn1 lies in a 
ertain interval modulo 1 of length at least 34 d, re-membering that n1 > nj. We may thus apply our lemma to the numbersnjn1 . We then 
on
lude that there exists an integer q � B(d), su
h that theintervals of the form h kn1 ; k+1n1 i where qk satis�es (55), is of type (r�1; C; �).This follows be
ause the hypotheses of the lemma will be satis�ed for any23



N if we go out far enough in the sequen
e of r{tuples, sin
e the sequen
eis normal. Therefore we may say that the intervals h qkn1 ; qk+1n1 i are of type�1; d8 ; 2n1� relative to S. Now, if a set S is of type (r; C; �) then the set qS iseasily seen to be of type (r; C; q�). Thus the intervals h qkn1 ; qk+1n1 i are of type(r � 1; C; q�). Ea
h su
h interval is of type �1; d8q ; q+2n1 � relative to S sin
ethe interval h qkn1 ; qk+1n1 i is of type �1; d8q ; 2n1�. Thus if we insure that n1 issuÆ
iently large we will have that S is of type (r; C 0; �), where C 0 is a new
onstant whi
h depends only on d. Thus the theorem is proved. Now wehave the main theorem of this se
tion:Theorem 6. There exists an Hr set whi
h is not 
ontained in a 
ountableunion of Hr�1 sets.Proof. We remark �rst that every Hr�1 set is trivially also an Hr set. Forif a give Hr�1 set is de�ned relative to the intervals L1; : : : ; Lr�1 and thesequen
e nij, 1 � j � r�1, then it is also de�ned relative to the sequen
e nij,1 � j � r where nir is taken to be a suÆ
iently rapidly in
reasing sequen
eso that the sequen
e of r{tuples is still normal, and Lr is taken to be theinterval [0; 1℄.We shall now de�ne a set S, whi
h satis�es the statement of the theorem.Let ak1 < ak2 � � � < akr be a sequen
e of in
reasing positive integers su
h that(56) ak2 � ak1 !1; : : : ; akr � akr�1 !1as k tends to in�nity. We de�ne the set S as the set of all x su
h that forea
h k, not all the points 3ak1 x; 3ak2 x; : : : ; 3akr xlie in the open interval h13 ; 23i. Clearly S is an Hr�1 set, so that by anappli
ation of the Baire 
ategory theorem we need only prove the following:If x 2 S, and I is an interval 
ontaining x, no Hr�1 set 
an 
ontain S\I.Let x and I be su
h a point and interval. Every number z 
an beexpanded in the ternary system,5(57) z = 1Xk=1 �(k)3k5In original \1" missing. 24



where �(k) takes only the values 0; 1; 2. Unless the expansion of z endsin all zeroes or all twos, then saying that 3n z lies in the interval h13 ; 23i,is equivalent to asserting that �(n + 1) = 1. So ex
luding the ex
eptionalnumbers mentioned of whi
h there are only a 
ountable number, to say thatz lies in S means exa
tly that for no k do we have(58) �(ak1 + 1) = �(ak2 + 1) = : : : = �(akr + 1) = 1 :Even if the number z does terminate in zeroes then the above 
onditionimplies that z is in the set S. Therefore if we modify our original x bysetting all �(k) = 0 for k suÆ
iently large, we may still assume that it liesin S \ I, and that it terminates in zeroes. Assume further that x is themidpoint of I, and that I is of length 2Æ. Let T be an Hr�1 set whi
h
ontains S \ I. Then by our theorem, we know that there exists a 
onstantC, su
h that the 
omplement of T , whi
h we denote by U , is a set of type(r � 1; C; �) for arbitrary �. Let n be an integer having 
ertain propertieswhi
h we shall spe
ify later on, and also having the property that for k � an1 ,�(k) = 0. Sin
e U is of type (r � 1; C; �), there exists an interval I1 withmidpoint m1 and length Æ1 su
h that(59) jx�m1j < � ; Æ1jx�m1j > C ;and I1 is an interval of type (r � 2; C; �) with respe
t to U . By the remarkwhi
h was made in the 
ourse of the proof of the lemma, we 
an assumethat I1 lies to the right of x. By 
hoosing � small enough we 
an insure thatthe interval I1 lies 
ompletely within our original interval I. As a matterof fa
t, we 
an 
hoose � so small that ea
h one of the r � 1 intervals whi
hwe shall 
hoose all lie in the original interval I. Now sin
e m1 > x, it mustagree with x in its ternary expansion up to the pla
e(60) �� log jx�m1jlog 3 �� 1 :Now if we assume that(61) r 2< 3�an1�2 ;this pla
e will be one beyond whi
h x terminates in zeroes. De�ne z1 to bethe number whi
h agrees with m1 up to the pla
e"� log 12log 3 #+ 1 ;25



beyond whi
h z1 terminates in zeroes. Let us 
all the range of pla
es between�� log jx�m1jlog 3 �� 1 "� log 12log 3 #+ 1R1. Now be
ause I1 is of length Æ1, z1 lies in the interval I1. Also be
auseof (59), the number of pla
es in R1 is at most some bounded quantity whi
hdepends only on C. Now there must exist an interval I2 with midpoint m2and of length Æ2, whi
h is of type (r � 2; C; �) with respe
t to U and su
hthat(62) Æ2jz1 �m2j > C; jz1 �m2j < � :Again we may assume that6 z1 and m2 will then agree in their ternaryexpansions up to the pla
e�� log jz1 �m2jlog 3 �� 1 :De�ne z2 to agree with m2 up to the pla
e"� log 22log 3 #+ 1and be zero beyond that. Then again, the number z2 lies in the interval I2,and this number agrees with the number x in all but possibly two ranges ofpla
es R1 and R2, the se
ond being de�ned as all pla
es lying between�� log jz1 �m2jlog 3 �� 1 and "� log 22log 3 #+ 1 :Be
ause of (62), both ranges have at most a bounded number of pla
es inthem. Pro
eeding in this manner, we eventually obtain a number z, whi
hlies in U , and whi
h agrees with x in all but r � 1 ranges of pla
es ea
h oflength bounded by a number depending only on C. Now if n were 
hosen solarge that the di�eren
e7 anj+1�anj was always greater than this 
onstant, forall j, it would follow that this number z would lie in S, sin
e the 
onditions(58) 
ould only o

ur for at most r � 1 of the anj . Hen
e z is in S and6Original 
ontains here \m2 z1 � z1 and m2".7Original 
ontains typo \anj 1". 26



simultaneously in the 
omplement of T , so that we have a 
ontradi
tion.Therefore the theorem is proved.5. It is not a priori obvious from the de�nition that an Hr set for r > 1 isa set of measure zero. Of 
ourse, on
e we know that su
h a set is a set ofuniqueness then it follows that it must be a set of measure zero. For r = 1it is 
lear that an H1 set is a set of measure zero, for we 
onstantly removefrom the unit interval a set of �xed measure whi
h is more and more evenlydispersed, so that we de
imate any �xed in the set. For r > 1 the situationis 
lari�ed by the following theorem:Theorem 7. Let nkj , 1 � j � r be a sequen
e of r{tuples su
h that for anyr integers aj, not all zero, the sumPrj=1 ajnkj is zero for only a �nite numberof values of k. Then for fj, 1 � j � r, bounded measurable fun
tions, wehave(63) Z 10 f1(nk1x) f2(nk2x) : : : f(nkrx)dx! rYj=1 Z 10 fj(x)dx :Proof. Assume �rst that fj are �nite exponential polynomials. Then theexpression on the left of (63) will 
onsist of the produ
t of the 
onstantterms of fj if k is suÆ
iently large. This is so be
ause of the 
ondition onnkj . This is exa
tly what the right side is, so that the theorem is true in this
ase. In the general 
ase, we may approximate ea
h fj by an exponentialpolynomial in the L1 norm, su
h that the maximum of ea
h polynomial isnot more than the maximum of the 
orresponding fj . Then it follows thatthe right and left hand sides of (63) approa
h the 
orresponding expressionsfor the fj as the approximation be
omes 
loser. Here we must use the fa
tthat nx is a measure{preserving transformation for all n. Hen
e the theoremis proved in this 
ase also.Now, assume that nkj are a normal sequen
e of r{tuples. This meanspre
isely that the r+1{tuples 1; nk1 ; : : : ; nkr satisfy the 
ondition of our theo-rem. Thus if I is an arbitrary interval and L1; : : : ; Lr are intervals of lengthÆ ea
h, then the set Sk = fx j x 2 I; nkjx 2 Lj ; all jg has measure ap-proa
hing Ær jIj. This we see by applying the theorem to the 
hara
teristi
fun
tions of these intervals. Thus if E is an Hr set de�ned by the normalsequen
e nkj and the intervals Lj, then if U is any open set 
ontaining E,for some k ea
h interval in U is de
imated by the 
orresponding Sk to theextent that Ær times the measure of U lies in the 
omplement of E. This
learly implies that E is of measure zero.27



Chapter 2
In this se
tion we shall prove a theorem 
on
erning multiple trigonometri
series. In the theory of trigonometri
 series in one variable, the famousCantor{Lebesgue theorem states that if a trigonometri
 series 
onvergeson a set of positive measure, then the 
oeÆ
ients must tend to zero. No
omplete analogue of this theorem 
an exist, sin
e we must �rst spe
ifya parti
ular method of summation when we are dealing with the 
ase ofseveral variables. Shapiro in [9℄ has obtained results whi
h would give analmost 
omplete answer to the question of the uniqueness of multiple series,if some kind of analogue 
ould be proved. It appears that no results alongthis line have been published. The theorem whi
h we shall prove is mu
hweaker than the 
orresponding Cantor{Lebesgue theorem. The terms of amultiple series are in one to one 
orresponden
e with the set of all r{tuplesof integers. A method of summation is des
ribed by a sequen
e En, of �nitesets of r{tuples of integers, su
h that En is 
ontained in En+1 and the unionof En 
onsists of all r{tuples. At the nth stage of the summation we 
onsiderthe sum of all terms 
orresponding to r{tuples 
ontained in En. Then wehave the following de�nition.De�nition. A method of summation En, for a trigonometri
 series in rvariables, is said to be regular if and only if there exists a 
onstant K su
hthat for every latti
e point a = (a1; : : : ; ar), there exists n0 su
h that abelongs to En0 and the maximum of the absolute value of all 
oordinates ofall latti
e points in En0 is smaller than K Max1�i�r jaij.It is 
lear that the usual methods of spheri
al and 
ubi
al summationare regular. Now we have our theorem.
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Theorem. Let(1) 1Xj1;:::;jr=�1 
j1:::jrei (j1x1+:::+jrxr)be a trigonometri
 series in r variables, whi
h 
onverges almost everywhereby a regular method of summation. Then for all 
 > 1, there exists b > 0,su
h that(2) j
j1:::jr j � b 
jjj where jjj = Max1�i�r jjij :Proof. The variables x1; : : : ; xr range over the reals modulo 2�, whi
h we
onsider as being 
anoni
ally identi�ed with the reals modulo 1.By applying Egoro�'s theorem to the partial sumssn = Xj2EnCj ei j�x ;where j = (j1; : : : ; jr), x = (x1; : : : ; xr), and j � x = j1x1 + : : : + jrxr, we�nd that for any � > 0, there exists a 
losed set G, of measure greaterthan 1 � �, su
h that sn are uniformly bounded in absolute value by some
onstant B, for all x in G. Let a = (a1; : : : ; ar) be a latti
e point. LetEn0 be the set whi
h 
orresponds to it in the de�nition of regularity. SetN = 2 Maxj2En1�i�r jjij+2. Then N � K Max1�i�r jaij. The set G 
an be visualized asbeing 
ontained in the r{fold dire
t produ
t T r of the unit 
ir
le. Be
ausethe measure of G is more than 1� �, it follows that there is a set G0, in thespa
e T r�1 of measure greater than 1� �1=2 su
h that if (x2; : : : ; xr) belongsto G0, the set of all x1 su
h that (x1; x2; : : : ; xr) belongs to G is of measurealso greater than 1� �1=2. We now need the following simple lemma.Lemma. Let S be a set on the unit 
ir
le of measure greater than Æ. Thenfor any integer k > 0, there exist k points in S, z1; : : : ; zk, su
h that thedistan
e between any two of them is greater than Æk .Proof. Let z1 be any point in S. Then for any � > 0, let z2 be a point in S,if it exists, su
h that z2 > z1 + Æk and the measure of the set of all points inS lying in the interval [z1; z2℄ is smaller than Æk +�. Here [z1; z2℄ denotes theset of all points lying to the right of z1 and to the left of z2. Choose z3 to bea point in S, if it exists, whi
h has the same relationship to z2, as z2 had toz1. Now assume that the pro
ess terminates after m steps, that is, no zm+129




an be found having the appropriate property. This means that the onlyelements of S lying in the interval [zm; z1℄ are 
ontained in hzm; zm + Æk i.Thus it follows that the measure of S is smaller than m � Æk + ��, unlessm = k. This shows that z1; : : : ; zk 
an be so 
hosen in S that they are pla
ed
y
li
ally around the 
ir
le, and the distan
e between two 
onse
utive pointsis greater than Æk . This prove the lemma.Now 
onsider sn0 (x1; : : : ; xr) as a fun
tion of x1 alone, holding x2; : : : ; xr�xed. By multiplying sn0 (x1; : : : ; xn) by a suitable power of eix, we obtain atrigonometri
 polynomial �sn0 (x1; : : : ; xr) whi
h 
ontains only positive pow-ers of eix1 and is of degree smaller than N . Set � = ex1 , so that �sn0 
an beregarded as a polynomial of degree smaller than N in the 
omplex variable�. For ea
h (x2; : : : ; xn) in G0, �sn0 is still bounded in absolute value by Bon the points (x1; : : : ; xn) where x1 belongs to a set S of measure greaterthan 1� �1=2. Thus by the lemma there are N points z1; : : : ; zN in S, su
hthat the distan
e between any two of them is greater than � = 1��1=2N . Set�k = eizk . Now, if we apply the Lagrange interpolation formula to �sn0 , itfollows that(3) �sn0(�) = NXk=1 �sn0(�k) Qj 6=k (� � �j)Qj 6=k (�k � �j) :The denominator of ea
h term in (3) obviously ex
eeds the 
orrespondingprodu
t where the �j are mth roots of unity, and m = h 1�i + 1. Now, theprodu
t Q�(1� �), where the produ
t is extended over all the mth roots ofunity di�erent from 1, equals m. On the other hand, in the denominatorwhi
h o

urs in (3), only N � 1 terms o

ur in the produ
t. Thus there arem�N terms whi
h are additional, and ea
h one of these terms is boundedin absolute value by 2. Hen
e we obtain(4) Yj 6=k(�k � �j) � m2m�N � N2ÆNwhere Æ is a quantity whi
h goes to zero with �. Now we estimate thenumerators whi
h o

ur in (3). We have(5) ������Yj 6=k (� � �j) ������ � �����Y� (1� �) ����� ;30



where the produ
t is now extended over those N � 1 mth roots of unitywhi
h are furthest from 1. The same produ
t extended over the remainingroots is bounded from below by(6) ����� Æ mYk=1(1� e 2�ikm )2 ����� � 122 Æ m � 1m � 2m : : : [Æ m℄m �2 ;where Æ as before tends to zero with �. The right hand side of (6) 
an beestimated by Stirling's formula. It follows easily that the right side of (6)is greater than 2�Æ N , where Æ here is again a quantity whi
h tends to zerowith �. Hen
e it follows from (5) that(7) ������Yj 6=k (� � �j) ������ � N 2Æ N :Now j�sn0(�j)j � B, so that from (3) it follows that �sn0(�) is bounded byb 
N , where b depends only on B, and 
 is a number whi
h tends to one as� tends to zero. Thus it follows that the 
oeÆ
ients of �sn0(�) are boundedby b 
N . These 
oeÆ
ients are fun
tions of x2; : : : ; xn, and are boundedby b 
N whenever (x2; : : : ; xn) lies in G0, whi
h is a set of measure greaterthan 1� �1=2. Now if we apply the same argument as above to ea
h of thesefun
tions we �nd that they in turn are bounded by b1 
N1 where 
1 also tendsto one as � tends to zero. If we apply this pro
ess r times we eventuallyobtain the result that the 
oeÆ
ient j
aj � b 
N for suitable 
hoi
es of b and
. Sin
e N � K Max1�i�r jaij, it follows that the theorem holds after a suitablerede�nition of 
 and b.2. Be
ause our theorem allows the 
oeÆ
ients to grow quite rapidly, it maybe of some interest to 
onstru
t an example of a series where the 
oeÆ
ientsgrow at a reasonably rapid pa
e. However, we 
annot prove that our theoremis a best possible result. Given any fun
tion !(n) whi
h tends to zero as ntends to in�nity, we shall now show that there exists a double trigonometri
series with the property that it 
onverges almost everywhere, and yet forsome sequen
e of 
oeÆ
ients mk and nk we have jCmk;nk j > !(Nk)Nk whereNk = Max (mk; nk). Let Kn(t) denote the Fejer kernel, that is,(8) Kn(t) = 12 (n+ 1)  sin(n+ 1)12 tsin 12 t !2 :31



Then 
onstant 
oeÆ
ient of Kn(t) is 1, and Kn(t) is a trigonometri
 poly-nomial of degree n. Let nk be an in
reasing sequen
e of integers, and dkpositive numbers su
h that P1k=1 dknk 
onverges and dk > !(nk)nk. Thenit is 
lear that the series P1k=1 dkKnk(x) 
onverges absolutely at all pointsex
ept for x = 0. Hen
e it follows that the 
orresponding double series,(9) 1Xk=1 dk einkyKnk(x)
onverges at all points where x 6= 0, if we sum the series by the method ofsquare summation. More pre
isely, we take as the nth partial sum all thoseterms of degree not greater than n in either x or y. On the other hand it isquite 
lear that the 
oeÆ
ients tend to in�nity rapidly as was indi
ated.
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Chapter 3
1. The �rst example of a trigonometri
 series whi
h 
onverges to zero al-most everywhere, and whi
h is not identi
ally zero, was given by Mensov.He 
onstru
ted a measure on a perfe
t set of Lebesgue measure zero and
onsidered its Fourier{Stieltjes series. Riemann's lo
alization theorem thentells us that su
h a series 
onverges to zero on the 
omplement of the supportof the measure provided only that the 
oeÆ
ients of this series tend to zero.An exposition of Mensov's result 
an be found either in [2℄ or [13℄. The par-ti
ular set of multipli
ity, or M{set, whi
h is thus 
onstru
ted is very similarto the usual Cantor set. The Cantor set is 
onstru
ted by removing fromthe unit interval the middle third. From ea
h of the remaining segments oneremoves the middle third and so on. What remains is pre
isely the Cantorset. If at ea
h stage, instead of using the fra
tion one third, we use the num-ber �i, where 0 < �i < 1, we obtain a more general 
lass of sets. Mensov'sexample is exa
tly when the �i tend to zero, while P�i = 1. Salem [8℄,investigated the 
ase of equal �i and proved the remarkable theorem thatunless this 
ommon ratio belongs to a 
ertain denumerable 
lass of algebrai
numbers, the set is an M{set, whereas in the 
ontrary 
ase it is a U{set. Inhis proof he used a formula for the Fourier{Stieltjes 
oeÆ
ients of a 
ertainmeasure whi
h originated with Carleman. This formula is valid in the 
aseof Mensov's example, but the proofs of Mensov's result referred to above donot use this expli
it formula. Therefore, it seems of interest to give a proofwhi
h uni�es the treatment of these two 
ases, and seems to be 
on
eptuallymu
h 
learer. We begin by deriving the formula whi
h was referred to.Let �i be a sequen
e of real numbers su
h that 0 < �i < 12 . Let �i bethe measure whi
h assigns mass 12 to the point 0 and mass 12 to the point�1 : : : �i�1(1� �i). Now set �j = �1 ?�2 : : : ? �j where ? denotes 
onvolution.Set �i = 1 � 2�i, and let Sj be the 
olle
tion of intervals whi
h remain33



after j disse
tions as des
ribed above, using the ratios �i. Then 
learly Sj
onsists of 2j intervals and the measure �j assigns mass 12j to the left handendpoint of ea
h of these intervals. As j tends to in�nity, �j tends weaklyto a measure � whi
h has its support on the set S = \1j=1Sj. This measurehas been 
onstru
ted entirely analogously to the ordinary Cantor fun
tion.Now let Cn be the Fourier 
oeÆ
ients of �, that is,(1) Cn = Z 10 e�2�inx d�(x) :Sin
e � is an in�nite 
onvolution, Cn is the in�nite produ
t of the 
orre-sponding 
oeÆ
ients for ea
h of the measures �k. So1Cn = 1Yk=1 1 + e�2�in�1:::�k�1(1��k)2 !(2) = 1Yk=1 e��in�1:::�k�1(1��k) 1Yk=1 
os �n�1 : : : �k�1(1� �k)= (�1)n 1Yk=1 
os �n�1 : : : �k�1(1� �k) ;(3)Sin
e the �rst fa
tor is obviously (�1)n. Now under the assumption that �ktends to 12 , we shall prove that the produ
t (3) tends to zero as n tends toin�nity. Set �k = �1 : : : �k�1(1� �k). Then 
learly �k+1�k tends to 1=2. In the
ase where �i = 12 , then 
learly the measure �j 
onsists of 2j equally spa
edmasses of mass 12j ea
h. The Fourier 
oeÆ
ients of this measure are easily
omputed and we may express the result in the following equation.(4) 
os x 
os x2 : : : 
os x2k = sin2x2k+1 sin x2k :This formula may also be easily veri�ed by indu
tion on k. Now if we assumethat x2k < 110 , it follows that(5) ����
os x 
os x2 : : : 
os x2k ���� � 1x :Let A > 0 and m an integer su
h that 3A2m < 110 . Then the expression(6) ����� mỲ=0 
os x2` � mỲ=0 
os �k+`�k x�����1In original \(�1)n" missing. 34



where x lies between A and 3A approa
hes 0 uniformly in x as k tendsto in�nity and m is kept �xed. This is true be
ause the quantity �k+`�kapproa
hes 12 for �xed ` as k tends to in�nity. Now if n is large enoughthere is a value of k su
h that A < n�k < 3A and su
h that (6) is smallerthan a positive number �, with n�k substituted for x. By (5) it follows that(7) ����� mỲ=0 
os n �k2` ����� � 1A :Thus a partial produ
t of (3) is smaller than 1A + �, and sin
e all the termsof (3) are bounded by 1 in absolute value (3) itself is bounded by 1A + �.Sin
e A 
an be taken larger and larger as n tends to in�nity, it follows that(3) tends to zero.2. A 
losed M{set su
h that there exists a measure with support 
ontainedin that set, whose Fourier 
oeÆ
ients tend to zero is 
alled an M{set of re-stri
ted type. Pyatetskii{Shapiro has shown the existen
e of M{sets whi
hare not of restri
ted type. His proof is non{
onstru
tive and does not yieldan example of a trigonometri
al series whi
h 
onverges to zero almost every-where and yet whi
h is not a Fourier{Stieltjes series. In this se
tion we shallgive an example of su
h a series using a modi�
ation of the 
onstru
tiongiven by Salem in [7℄. We �rst need the following result of Wiener, (seeZygmund, [13℄, p. 221).Lemma. If � is a measure on [0; 1℄ of total variation V , let �(Æ) denote themaximum value of the total measure 
ontained in an interval of length Æ.Then if d� has the Fourier series d� �PCne2�inx we have(8) 12N NXn=�N jCnj2 � A � V � �� 1N � ;where A is an absolute 
onstant.Also we need a transformation whi
h was �rst used by Wiener and Wint-ner in a paper dealing with this subje
t [12℄. Let �(x) be a fun
tion de�nedon h�12 ; 0i whi
h is quadrati
, in
reasing, and � ��12� = �12 , �(0) = 0. Ex-tend � to the interval h�12 ; 12i by requiring it to be an odd fun
tion. Then
35



as is proved in [12℄, we have the following properties of �(x). Let2e�2�im�(x) = 1Xn=�1�n;m e�2�inx :Then j�n;mj � C jmj�1=2 for all m,j�n;mj � C jnj�2 for all jnj > 2 jmj,where C is some absolute 
onstant.Assume that the measure � has Fourier 
oeÆ
ients Cn, andP1n=�1 jCnj �B. Then the measure �(��1(x)) is a measure whose Fourier 
oeÆ
ients wedenote by ~Cm. We have then(10) ~Cm = Z 10 e�2�imx d�(��1(x)) = Z 10 e�2�im�(x) d�(x) :Now the Fourier series for e�2�im�(x) 
onverges absolutely, so that in (10)we may integrate term by term to obtain(11) ~Cm =Xn �n;mCm = Xjnj�2 jmj�n;mCn + Xjnj<2 jmj�n;mCn :The �rst sum in (11) is less than �1B jmj�1=2, while the se
ond is less than�2m V , where V is the total variation of � and �1 and �2 are 
onstants.Let 
(N) be an arbitrary positive fun
tion tending monotoni
ally toin�nity. We now propose to 
onstru
t a set of measures �k with the followingproperties:a) the total variation of �k is not greater than k,b) if �k has the Fourier series P1n=�1 dn;k e2�inx, then(12) 1Xn=�1 jdn;kj � !(k) ;where !(k) tends monotoni
ally to in�nity.
) For ea
h k, let p = p(k) be a positive integer su
h that �2 kq < 
(q)q1=2for all q � p, and p(k + 1) > p(k). We also demand that !(k) satisfy�1 !(k) < 
(p). This 
an be a
hieved by 
hoosing p large enough. Set(13) ~dm;k =Xn �n;m dn;k :2In original \�" is missing. 36



Then (9), (11) and a) imply that there exists M and �, su
h that(14) jdn;k � dn;k+1j < � for jnj < Mimplies(15) j ~dm;k � ~dm;k+1j < 
(jmj)2k jmj1=2 for jmj � p(k + 1) :This is so be
ause in the se
ond summand of (11),Pjnj>2 jmj �n;m 
onvergentsequen
e while dn;k are bounded by k. We now assume that �k satisfy
ondition (14).Under these 
onditions let m be an integer, k1 su
h that p(k1) � jmj �p(k1 + 1). Then by (11),(16) j ~dm;k1 j � �1 !(k1)jmj1=2 + �2 k1jmj < 2
(jmj)jmj1=2 :On the other hand, (15) implies that for all k > k1 we have(17) j ~dm;k1 � ~dm;kj < 
(jmj)jmj1=2so that ~dm = Limk!1 ~dm;k is su
h that(18) j ~dmj < 3
(jmj)jmj1=2 :We also observe that sin
e (16) holds for jmj > jpj, it follows that j ~dm;kj �3
(jmj)jmj1=2 . In parti
ular ~dm;k are uniformly bounded if3 
(N) tends to in�nityslowly enough.Now we shall pro
eed to 
onstru
t a sequen
e of sets Sk. let d1; d2; : : :be a sequen
e of integers tending to in�nity. Let S1 be the union of allintervals of the form h rd1 ; rd1 + 14 d1 i for some integer r. Then the measureof S1 is one{fourth. S1 has the property that the set S1 + S1, whi
h meansall points of the form x+ y where x and y belong to S1, is the union of allintervals of the form h rd1 ; rd1 + 12 d1 i and is of measure 12 . S1 thus 
onsists ofthe unit interval with d1 intervals removed. Let S2 
onsist of all the intervalsof S1, from ea
h one of whi
h d2 intervals have been removed in pre
isely3In original \
" missing. 37



the same manner. Then the measure of S2 will be 116 while that of S2 + S2will be 14 . We pro
eed in this manner with d3; d4; : : :, to 
onstru
t the setsSk. The measure of Sk is 14k while that of Sk + Sk is 12k .Now measures �k will be de�ned indu
tively. Ea
h interval of Sk has theproperty that �k assigns to the �rst half of it a multiple of Lebesgue measureand to the se
ond half another multiple of Lebesgue measure. Now ea
h halfinterval of Sk 
ontains 
ertain intervals of Sk+1. �k+1 assigns to ea
h of theseintervals identi
al distributions of mass so that the sum of the measures ofthese intervals is the same as that of the original half interval. However thisis done in su
h a manner that the total variation is k+1k times that of theoriginal interval. We �rst observe that �k+1 will have any �nite number ofits Fourier 
oeÆ
ients arbitrarily 
lose to the 
orresponding 
oeÆ
ients of�k provided dk+1 is 
hosen large enough. For, as dk+1 approa
hes in�nity itis obvious that �k+1 approa
hes �k weakly. In parti
ular it follows that ifFk+1(x) and Fk(x), de�ned as the integrals of �k+1 and �k respe
tively, i.e.,Fk+1(x) = Z x0 d�k+1 ; Fk(x) = Z x0 d�k ;then jFk+1(x) � Fk(x)j 
an be made uniformly small. We 
an thus assumethat all the Fk(x) are uniformly bounded. This remark will be neededpresently.The quantity MaxÆ>0 Æ �(Æ) also does not depend upon the 
hoi
e of thesequen
e dk. This is so be
ause this quantity is the maximum \density" ofthe measure and only depends upon the Lebesgue measure of Sk. Now set�k = �k ? �k. Then by the lemma we have(19) NXn=�N jdn;kj � A � V �N � �� 1N � :Thus it follows that by 
hoosing dk large enough we 
an be 
ertain that �ksatisfy all the properties mentioned above.The support of �k is 
ontained in Sk+Sk. The interse
tion of these setsis a 
losed set of measure zero. Now I 
laim that the seriesPn ~dne2�inx 
on-verges to zero everywhere outside the transform of this set by the transfor-mation �(x). For it is 
ertainly true that the series Pn ~dn;ke2�inx 
onvergesto zero outside the transform of Sk+Sk. Now the assertion follows from thefollowing lemma:Lemma. If the sequen
e of trigonometri
al series Pn ~dn;ke2�inx 
onvergesto zero in an open interval, and dn;k are uniformly bounded, if ~dn = Limk!1 ~dn;k38



exist, thenPn ~dne2�inx 
onverges to zero in that interval, provided Limk!1 ~dn =0.Proof. This is a trivial 
onsequen
e of formal multipli
ation. If 
(x) 
on-verges rapidly, is non{zero at a point of the interval, zero outside it, thenthe formal produ
t of 
(x) with ea
h of the series Pn ~dn;ke2�inx is identi-
ally zero. The hypotheses imply that the produ
t of 
(x) and Pn ~dne2�inxis zero. Therefore the 
on
lusion of the lemma follows from well{knowntheorems 
on
erning formal multipli
ation.Sin
e �(x) is pie
ewise di�erentiable it follows thatPn ~dne2�inx 
onvergesalmost everywhere to zero. It remains to prove that Pn ~dne2�inx is not aFourier{Stieltjes series. Let Fk(x) be the integral of the measure �k(x),that is, �k(x) = dFk(x). All the fun
tions Fk(x) are uniformly boundedprovided we take the sequen
e dk growing qui
kly enough. The fun
tionsFk(x) 
onverge boundedly to a fun
tion F (x) of in�nite variation. TheFourier series of F (x) is the integrated series of Pn ~dne2�inx. Sin
e F (x)is of in�nite variation it follows that Pn ~dne2�inx is not a Fourier{Stieltjesseries.Thus we have shown that there exist series whi
h 
onverge to zero al-most everywhere and whi
h are not Fourier{Stieltjes series. Furthermorethe 
oeÆ
ients 
an be made smaller than 
(jmj)jmj1=2 where 
(m) is any fun
tiontending to in�nity.3. In the pre
eding se
tion we quoted a theorem of Wiener 
on
erning theFourier series of measures. In this se
tion we shall present a generalization ofthe theorem to several dimensions by means of a rather simple proof whi
hseems more lu
id than the one in [13℄. Also a generalization in a di�erentdire
tion will be given.Theorem. Let � be a measure on the n{dimensional torus T n, with Fourierseries(20) d� �Xj Cj e2�i (j�x)where j ranges over all n{dimensional latti
e points j = (j1; : : : ; jn), x =(x1; : : : ; xn) and j � x = j1x1 + : : :+ jnxn. Let Sp be an expanding sequen
eof re
tangles in the spa
e of all latti
e points, and jSpj denote the numberof latti
e points 
ontained in Sp. Then(21) Limp!1 1jSpj Xj2Sp jCj j239



exists and equalsPQ j�(Q)j2 where Q ranges over all points having non{zeromass.Proof. We assume Sp is the set of all latti
e points j, su
h that �mp;k �jk � mp;k, 1 � k � n. We assume that mp;k tends to in�nity as p tends toin�nity. Set(22) fp(x1; : : : ; xn) = 1jSpj Xj2Sp e2�i (j�x)= nYk=1 12mp;k + 1 X�mp;k�jk�mp;k e2�ijkxk :It is 
lear that jfpj � 1, and sin
e fp is a produ
t of Diri
hlet kernels, itfollows from the formula for the sum of a geometri
 series that fp 
onvergesto 0 everywhere ex
ept at (0; 0; : : : ; 0) where it is 1. It is also 
lear that(23) 1jSpj Xj2Sp jCj j2 = Z ZTn�Tn fp(x� y) d�(x)d��(y) ;as may be seen by dire
t substitution. By the Lebesgue monotone 
onver-gen
e theorem it follows that the limit of (21) exists and equals(24) Z ZTn�Tn Æ(x � y) d�(x)d��(y) ;where Æ(x) is zero for x 6= 0, Æ(0) = 1. This quantity by Fubini's theorem is
learly PQ j�(Q)j2.Now we shall restri
t ourselves to the 
ase of one variable. Let � be ameasure whi
h has no point masses, i.e., a 
ontinuous measure. If d� hasthe Fourier series Pn Cn e2�inx, let us examine the quantity 1N PNk=1 jCnk j2,where nk is some in
reasing sequen
e of integers. Then this expression isequal to(25) 1N Z ZT 1�T 1 fN (x� y) d�(x)d��(y) ;where FN (x) = 1N NXk=1 e2�inkx :40



As before the fN(x) are unformly bounded by 1 in absolute value. If the nkare a polynomial sequen
e, i.e., nk is a polynomial in k, then well{knownresults of Weyl [11℄, tell us that fN(x) approa
hes zero for all irrationalvalues of x. Hen
e (25) approa
hes (24) where Æ(x) is now a fun
tion whi
his zero at all irrational points. Sin
e there are only a 
ountable number ofrational points and � is assumed 
ontinuous we have the following result:Theorem. If � is a 
ontinuous measure, then1N NXk=1 jCnk j2approa
hes zero if nk is a polynomial sequen
e.
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Chapter 4
Green's theorem in two dimensions says that if C is a simple 
losed 
urvebounding the region Q, if A(x; y) and B(x; y) are 
ontinuous fun
tions hav-ing derivatives, then under suitable further 
onditions we have,(1) ZC Ad+Bdy = Z ZQ ��B�x � �A�y � dxdy ;where the line integral is taken in a positive sense around the 
urve C.In [3℄, Bo
hner investigated under whi
h 
onditions (1) holds. There it wasshown that if A and B have 
ertain regularity properties and if the integrandon the right of (1) behaves well, then (1) does hold. Here we shall prove(1) under what may be regarded as the weakest possible hypotheses. Thisquestion was also treated by Shapiro in [10℄, and though he assumes 
ertainregularity of A and B, namely, the existen
e of the di�erential, he allows
ertain ex
eptional sets whi
h we 
annot allow. The proof of our theorem ismodeled after the proof of the Looman{Mensov theorem as 
ontained, forexample, in [6℄. We will not deal with the topologi
al diÆ
ulties involved sothat our theorem will only treat the 
ase in whi
h Q is a re
tangle.Theorem. Let A(x; y) andB(x; y) be two fun
tions de�ned on the re
tangleQ, and 
ontinuous on the 
losure of Q. Assume further that the partialderivatives �A�x �A�y �B�x �B�yexist everywhere in the interior of Q, ex
ept perhaps at a 
ountable numberof points. If �B�x � �A�y is Lebesgue integrable in the re
tangle Q, then (1)holds.Proof. We �rst need a lemma whi
h is 
ontained in [6℄. In the following,the word \re
tangle" means the dire
t produ
t of two intervals.42



Lemma. Let w(x; y) be a fun
tion de�ned in a square Q, su
h that �w�x and�w�y exist almost everywhere in Q. Let F be a 
losed, non{empty set in Q,and N a �nite 
onstant su
h that(2) w(x; y + k)� w(x; y)j � N jkj ;w(x+ h; y)� w(x; y)j � N jhj ;whenever (x; y) belongs to F and (x+ h; y) and (x; y+ k) belong to Q. LetJ be the smallest re
tangle 
ontaining F and assume J is the produ
t of(a1; b1) and (a2; b2). Then(3) ������Z ZF �w�x dxdy � Z b2a2 [w(b1; y)� w(a1; y)℄dy ������ � 5N � jQ� F j ;������Z ZF �w�y dxdy � Z b1a1 [w(x; b2)� w(x; a2)℄dx ������ � 5N � jQ� F j :It is 
learly enough to prove the theorem for all re
tangles Q0 properly
ontained in Q, for, in this 
ase, we 
an approximate Q from the interior bya sequen
e of su
h re
tangles, and for ea
h of whi
h (1) holds. Now by theLebesgue integrability of �B�x��A�y the right side approa
hes the 
orrespondingintegral over Q, and by the 
ontinuity of A and B so does the left side. Hen
ewe may assume in the original statement of the theorem that A and B area
tually de�ned in a neighborhood of Q where they are 
ontinuous and havederivatives at all but a 
ountable number of points. Now, let E be theset of all points P in Q, su
h that (1) holds for integrations taken over allre
tangles in a suÆ
iently small neighborhood of P . We shall show that E isall of Q. Let F = Q�E. Sin
e E is obviously open, F is 
losed. Let Hn bethe set of all points (x; y) in Q, su
h that ���A(x+h;y)�A(x;y)h ���, ���A(x;y+k)�A(x;y)h ���,���B(x+h;y)�B(x;y)h ���, ���B(x;y+k)�B(x;y)h ��� are all bounded by n whenever jhj � 1n ,jkj � 1n , and all the quantities involved are de�ned. Clearly Q, with a
ountable number of ex
eptions, is the union of all these 
losed sets Hn.Therefore by the Baire 
ategory theorem, sin
e F is also 
losed, either F
ontains an isolated point in the interior of Q, or there is some square I, inthe interior of Q, su
h that I \ F is non{empty and is 
ontained in HN forsome N . If a re
tangle lies 
ompletely in E, then the Heine{Borel theoremshows that (1) holds for it. Hen
e we see that isolated points of F 
annot43



o

ur and so the se
ond alternative holds. Then the 
onditions of the lemmahold and we have(4) ������ZJ Adx+Bdy � Z ZJ\F ��B�x � �A�y � dxdy ������ � 10N � jJ � F j :Here J is the smallest re
tangle 
ontaining I\F and �J denotes the bound-ary of J . The set I � J is a �nite union of re
tangles ea
h of whi
h 
an beapproximated from the interior by re
tangles wholly 
ontained in E. Hen
e(1) holds for the set I�J , where the line integral is taken around its bound-ary in the positive sense. Thus we have(5) Z�(I�J)Adx+Bdy = Z ZI�J ��B�x � �A�y � dxdy :So by (4) we have(6) �������Z�I Adx+Bdy � Z Z(J\F )[(I�j)��B�x � �A�y � dxdy ������� � 10N � jJ � F j :From (6) it follows that(7) ����Z�I Adx+Bdy���� � 10N � jIj+ Z ZI �����B�x � �A�y ���� dxdy :Now (7) holds equally well for any square I 0 
ontained in I. Thus the setfun
tion whi
h assings to every square I 0 the quantity1 R�I0 Adx + Bdy isdominated by an absolutely 
ontinuous measure and hen
e extends to anabsolutely 
ontinuous measure de�ned on all Borel sets. Thus, it is givenby the inde�nite integral of some fun
tion. If we 
an then show that thederivative of this measure in the sense of averages taken over smaller andsmaller squares is equal to �B�x � �A�y almost everywhere, then we will knowthat (1) holds for all re
tangles in I and hen
e that I \ F is empty, whi
his a 
ontradi
tion. How the derivative of the measure at almost all pointsnot in F is 
learly �B�x � �A�y . This is merely the theorem 
on
erning thedi�erentiation of inde�nite integrals, sin
e at su
h points (1) does hold. Onthe other hand, if P is a point of density of F , then for2 a suÆ
iently small1In original the 0 is missing.2In original \a" missing. 44



square I around P , we have that jI�F jjIj is arbitrarily small. Thus from (6) itfollows that 1jIj R�I Adx+Bdy approa
hes 1jIj Z Z(J\F )[(I�j)��B�x � �A�y � dxdy.This last quantity approa
hes the derivative of the integral taken with re-spe
t to the sets (J \ F ) [ (I � J). These are a regular sequen
e of sets inthe sense of [6℄ p. 106, sin
e j(J\F )[(I�J)jjIj tends to 1, and so this derivative isequal to �B�x � �A�y at almost all points of F . Thus the measure is the desiredinde�nite integral and so (1) holds at all points P . Now by the Heine{Boreltheorem it follows that (1) holds for the re
tangle Q itself.We may easily generalize this result to any number of dimensions.
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NotesPaul Cohen's thesis has remained unpublished, ex
ept for the results ofChapter 4 (the shortest 
hapter) whi
h appeared in [Coh59℄. However, therest of the thesis also presents interesting results, and in fa
t, some of thesewere reprodu
ed by Ash and Welland in [AWe72℄, see also [AWa97℄. Apartfrom this, it appears that the results of the thesis have largely gone unno-ti
ed. The main referen
es on the uniqueness questions are the books ofBary [Ba64℄, Salem [Sal63℄, Meyer [Mey72℄, Zygmund [Zy79℄, Ke
hris andLouveau [KL87℄, and Kahane and Salem [KS94℄. Even though a numberof the results stated in these works were proved in Paul Cohen's thesis, itis not 
ited in the referen
es. Therefore, it seemed appropriate that thiswork should �nally be more widely available. I have in
luded a short list ofreferen
es in order to indi
ate the progress made in the last 40 years.The most substantial referen
e is the book of Ke
hris and Louveau[KL87℄ whi
h also gives a 
omplete update on the progress done on thetopi
s of Chapter 1. As noted above, some of the results of Chapter 2 arereproved in [AWe72℄. The general referen
e for Chapter 3 is the updatedversion of the book of Kahane and Salem [KS94℄ whi
h summarizes progressuntil 1994.Chapter 1Se
tion 1. This se
tion simpli�es and extends some results previouslyobtained by Piatetski{Shapiro [PS52℄. The notation used here is not stan-dard, and the notations of Kahane and Salem [KS94℄ have been adopted.The 
lass W is written A. The 
lass of sequen
es an su
h that Liman = 0is now referred to as the 
lass of pseudofun
tions.At the end of the se
tion it is stated that there are no known setswhi
h have an ordinal > 1 asso
iated to them. This ordinal, introdu
ed48



by Piatetski{Shapiro, is now known as the rank of the set of uniqueness. Asurvey of results is given by Ke
hris and Louveau [KL87, Chapter V℄. Forexample, it follows from a theorem of Bana
h [KL87, p. 156℄ that the rankis < !1 and M
Gehee [MG68℄ has shown that the rank is in unbounded in!1.Se
tion 2. This se
tion uses the results of Piatetski{Shapiro to give aspimple proof of a spe
ial 
ase of a theorem of Zygmund and Mar
inkiewi
z.The proof should be 
ompared with the one given by Kahane and Salem[KS94, p. 61℄, see also [KL87, p. 71℄. The general proof, i.e., not limited to
losed sets, is given by N. Bary [Ba64, p. 364℄.Se
tion 3. The 
lasses Hn studied here are now denoted H(n). Moreover,the notation nji used in this se
tion should be n(j)i in order to be 
onsistentwith the rest of the text.Se
tion 4. Another expli
it 
onstru
tion of an H(n) set whi
h is not a
ountable union of H(n�1) sets is given by N. Bary [Ba64, p. 382℄.Chapter 2This 
hapter presents a generalization of the Cantor{Lebesgue theorem tomultiple trigonometri
 series. Re
all that this theorem states that if atrigonometri
 series 
onverges on a set of positive measure then its 
oeÆ-
ients must go to zero. In this 
hapter, Paul Cohen proves that if a multipletrigonometri
 series 
onverges almost everywhere for a \regular" method ofsummation, e.g., 
ir
ular or square, then the 
oeÆ
ients grow more slowlythan exponential. Moreover, the other result in this 
hapter shows that ananalogue of the Cantor{Lebesgue theorem 
annot generalize dire
tly, as anexample is given of a double trigonometri
 series whi
h 
onverges almosteverywhere using square 
onvergen
e, but whose 
oeÆ
ients do not go tozero.The �rst result may appear to be somewhat weak, but in fa
t it wasre
ently shown by Ash and Wang [AWa97℄ that Cohen's result is optimalfor square summation, i.e., for any fun
tion '(n) whi
h goes to in�nityslower than exponentially, there is a square 
onvergent trigonometri
 serieswhi
h has 
oeÆ
ients whi
h grow like '(n).In the 
ase of spheri
al summation, mu
h progress has been made. TheCantor{Lebesgue theorem does generalize in this 
ase as was shown by49



Cooke [Co71℄ and Zygmund [Zy72℄ in dimension 2, and by B. Connes (inslightly less general form) in dimensions greater than 2 [BC76℄.Due to a result of Shapiro [Sh57℄, Cooke's result immediately proved theuniqueness of double trigonometri
 results for 
ir
ular summation. A re
entadvan
e was made by Bourgain [Bo76℄ who extended this uniqueness resultto all dimensions.Similarly, uniqueness results were also obtained for \unrestri
ted re
tan-gular 
onvergen
e" by Ash, Freiling, and Rinne [AFR93℄. The 
ase of square
onvergen
e still remains open.Chapter 3In the �rst se
tion, a simple proof is given that Mensov's original example isa set of multipli
ity. The following 
omment is impli
it in the proof, but isadded here for 
larity: In order to ensure that the resulting set has measurezero, one just have that Q(2�k) = 0, while �k < 1=2 for all k, i.e., P�i =1as in Mensov's original 
onstru
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