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The simplest of conventional tie knots,
the four-in-hand, has its origins in late-

nineteenth-century England. The Duke of
Windsor, as King Edward VIII became after
abdicating in 1936, is credited with intro-
ducing what is now known as the Windsor
knot, from which its smaller derivative, the
half-Windsor, evolved. In 1989, the Pratt
knot, the first new knot to appear in fifty
years, was revealed on the front page of The
New York Times.

Rather than wait another half-century
for the next sartorial advance, we have
taken a more formal approach. We have
developed a mathematical model of tie
knots, and provide a map between tie
knots and persistent random walks on a
triangular lattice. We classify knots accord-
ing to their size and shape, and quantify
the number of knots in each class. The
optimal knot in a class is selected by the
proposed aesthetic conditions of symme-
try and balance. Of the 85 knots that can
be tied with a conventional tie, we recover
the four knots that are in widespread use
and introduce six new aesthetically pleas-
ing knots.

A tie knot is started by bringing the wide
(active) end to the left and either over or
under the narrow (passive) end, dividing
the space into right (R), centre (C) and left
(L) regions (Fig. 1a). The knot is continued
by subsequent half-turns, or moves, of the
active end from one region to another (Fig.
1b) such that its direction alternates
between out of the shirt (() and into the
shirt (^). To complete a knot, the active
end must be wrapped from the right (or
left) over the front to the left (or right),
underneath to the centre and finally
through (denoted T but not considered a
move) the front loop just made.

Elements of the move set {R(, R^, C(,
C^, L(, L^} designate the moves necessary
to place the active end into the correspond-
ing region and direction. We can then
define a tie knot as a sequence of moves ini-
tiated by L^ or L( and terminating with the
subsequence R( L^ C( T or L( R^ C( T. The
sequence is constrained such that no two
consecutive moves indicate the same region
or direction.

We represent knot sequences as random
walks on a triangular lattice (Fig. 1c). The
axes r, c and l correspond to the three move
regions R, C and L, and the unit vectors r^, c^

and l
^

represent the corresponding moves;
we omit the directional notation (,^ and
the terminal action T. Because all knot
sequences end with C( and alternate
between ( and ^, all knots of odd num-
bers of moves begin with L(, whereas those
of even numbers of moves begin with L^.

Our simplified random-walk notation is
therefore unique.

The size of a knot, and the primary
parameter by which we classify it, is the
number of moves in the knot sequence,
denoted by the half-winding number h. The
initial and terminal sequences dictate that
the smallest knot is given by the sequence
L( R^ C( T, with h43. Practical considera-
tions (namely the finite length of the tie), as
well as aesthetic ones, suggest an upper
bound on knot size, so we limit our exact
results to h 9.

The number of knots as a function of
size, K(h), corresponds to the number of
walks of length h beginning with l

^
and end-

ing with r^ l
^ 

c^ or l
^ 

r^ c^. It may be written

K(h)4(1/3)(2h222(21)h22)

where K(1)40, and the total number of
knots is ∑i41

9 K(i)485.

The shape of a knot depends on the
number of right, centre and left moves in
the tie sequence. Because symmetry dictates
that there be an equal number of right and
left moves (see below), the shape of a knot
is characterized by the number of centre
moves g. We use it to classify knots of equal
size h; knots with identical h and g belong
to the same class. A large centre fraction g/h
indicates a broad knot (such as the Wind-
sor) and a small centre fraction suggests a
narrow one (such as the four-in-hand), but
not all centre fractions allow aesthetic
knots. We therefore limit our attention to
1/4   g/h   1/2.

The number of knots in a class, K(h, g),
is equivalent to the number of walks of
length h that satisfy the boundary condi-
tions and contain g steps c^; it appears as

K(h, g)42g11(h1g12)g11
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FFiigguurree  11 All diagrams are drawn in the frame of reference of the mirror image of the actual tie. 
a, The two ways of beginning a knot, L( and L^. For knots beginning with L(, the tie must begin 
inside-out. b, The four-in-hand, denoted by the sequence L  ̂  R(  L  ̂  C( T. c, A knot may be represented 
by a persistent random walk on a triangular lattice. The example shown is the four-in-hand, indicated by the
walk ll

^̂
rr^̂ ll

^̂
cc^̂.
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Table 1 Aesthetic tie knots

h g g/h K(h, g) s b Name Sequence

3 1 0.33 1 0 0 L( R^ C( T

4 1 0.25 1 11 1 Four-in-hand L^ R( L^ C( T

5 2 0.40 2 11 0 Pratt knot L( C^ R( L^ C( T

6 2 0.33 4 0 0 Half-Windsor L^ R( C^ L( R^ C( T

7 2 0.29 6 11 1 L( R^ L( C^ R( L^ C( T

7 3 0.43 4 0 1 L( C^ R( C^ L( R^ C( T

8 2 0.25 8 0 2 L^ R( L^ C( R^ L( R^ C( T

8 3 0.38 12 11 0 Windsor L^ C( R^ L( C^ R( L^ C( T

9 3 0.33 24 0 0 L( R^ C( L^ R( C^ L( R^ C( T

9 4 0.44 8 11 2 L( C^ R( C^ L( C^ R( L^ C( T

Knots are characterized by half-winding number h, centre number g, centre fraction g/h, knots per class K(h, g),
symmetry s, balance b, name and sequence.
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The symmetry of a knot, which is our
first aesthetic constraint, is determined by
the number of moves to the right minus the
number of moves to the left,

s4∑i41
h xi

where xi41 if the ith step is r^, 11 if the ith
step is l

^
and 0 otherwise. Because asymmet-

ric knots disrupt human bilateral symme-
try, we consider the most symmetric knots
from each class, that is, the ones that mini-
mize s.

Whereas the centre number g and the
symmetry s specify the move composition
of a knot, balance relates to the distribu-
tion of these moves; it corresponds to the
extent to which the moves are mixed. A
balanced knot is tightly bound and keeps
its shape. We use this as our second aes-
thetic constraint. The balance b may be
expressed as

b4(1/2)∑i42
h11ävi1vi11ä

and the winding direction vi(si, si&1)41,
where si represents the ith step of the walk,
if the transition from si to si&1 is clockwise,
say, and 11 otherwise. Of those knots that
are optimally symmetric, we desire that
knot which minimizes b.

The ten canonical knot classes {h, g} and
the corresponding most aesthetic knots are
listed in Table 1. The four named knots are
the only ones, to our knowledge, to have
received widespread attention, either pub-
lished or through tradition. Here we intro-
duce some unnamed knots.

The first four columns of Table 1
describe the knot class {h, g}, whereas the
remainder relate to the corresponding most
aesthetic knot. The centre fraction g/h pro-
vides a guide to the shape of a knot, with
higher fractions corresponding to broader
knots; along with the size h, it should be
used in selecting a knot.

Some readers may notice the use of
knots whose sequences are equivalent to
those shown in Table 1 apart from transpo-
sitions of r^, l

^
groups, such as the use of 

L^ R( C^ R( L^ C( T in place of the half-
Windsor (T. P. Harte and L. S. G. E. Howard,
personal communication); some will argue
that this is the half-Windsor. Such ambi-
guity follows from the variable width of
conventional ties (the earliest ties were uni-
formly wide). This makes some transposi-
tions arguably favourable, namely the last
r^, l

^
group in the knots {5, 2}, {6, 2}, {7, 2},

{8, 3} and {9, 3} in Table 1. We do not
attempt to distinguish between these knots
and their counterparts; this much we leave
to the sartorial discretion of the reader.
Thomas M. Fink, Yong Mao
Cavendish Laboratory, 
Cambridge CB3 0HE, UK
e-mail: tmf20@cus.cam.ac.uk

Pasture damage by an
Amazonian earthworm

Almost all cultivated soils undergo some
reduction in the porosity of the surface lay-
ers, and nowhere is this more evident than
in tropical rainforests that have been con-
verted to pastures. Following deforestation
in an area of Costa Rica, soil bulk density
has been shown to increase rapidly after
conversion to pasture, leading to poor
drainage and a reduced rate of gaseous dif-
fusion1. These factors limit methane con-
sumption and promote the anaerobic
production of methane. A similar effect on
methane flux has been found in upland
soils in the Brazilian Amazonian basin after
conversion from forest to pasture2,3.
Increases in atmospheric methane are
therefore not limited to emissions from
flooded soils4, as forest-to-pasture conver-
sion promotes the anaerobic mineralization
of organic matter by changing the physical
properties of soil.

We now demonstrate the importance of
this process in pasture degradation in cen-
tral Amazonia, close to Manaus in northern
Brazil (Fig. 1a). We show that, in addition
to the substantial compacting effects of
heavy machinery5 and cattle trampling6,
another more insidious agent — the soil

macrofauna — can have profound and last-
ing effects7,8 on the porosity of pasture soils.

We wetted a natural forest soil (xanthic
acrudox, USDA, 1996) to a water potential
of 110 kPa and compressed it at a pressure
of 103 kPa, measured using an oedometer.
Macroporosity (in the range 0.1. to 100
mm) fell from 21.7 to 3 cm3 per 100 g, indi-
cating that forest surface soils (at a depth of
0–5 cm) are extremely sensitive to com-
paction (Fig. 1b). Passing the same soil
through the gut of the earthworm Pon-
toscolex corethrurus, an aggressive exotic
colonist that invades many tropical pas-
tures, reduced macroporosity even more to
1.6 cm3 per 100 g. We believe that this
change is brought about by the intense
mixing and near-complete dispersion of
soil particles in the moist environment of
the earthworm gut (water content: 0.85 g
per g).

During conversion from forest to pas-
ture, two separate mechanisms act to com-
pact the soil. First, the effects of heavy
machinery5 and trampling by cattle6 occur
in specific locations and result from the
techniques used for deforestation and pas-
ture management. They lead to the mixing
of plant debris and clay in the upper 5 cm
and to severe compaction in the layer 5–10
cm deep (Fig. 1c). Second, the effects of
reduced abundance and diversity of macro-
faunal communities in the newly created
pastures are linked to ecosystem dynamics
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FFiigguurree  11 Effect of mechanical and biological action on soil pore distribution in central Amazonia. Data are
deduced from mercury porosimetry analysis10. The pore size distribution shows a bimodal pattern, indicating
that there are two types: the largest pores, which have an equivalent pore radius (EPR) between 0.1 and 100
mm, are biological in origin or are fine fissures, and are essential for gas exchange and the infiltration and
retention of free water; the smaller pores, with an EPR of less than 0.1 mm, are found in compact clumps of
kaolinite. a, In primary forest, biodiverse soil macrofauna and roots regulate soil pore volume. b, Laboratory
experiments in which the forest surface horizon is compacted by mechanical compression (103 kPa) of soil
with a water potential of 110 kPa, or by mechanical working and dispersion in the earthworm gut. c, Effects
of recent deforestation due to heavy machinery and trampling by cattle (after manual clearance). d, Ungrazed,
manually deforested pasture shows accumulation of compact surface casts in the layer 0–5 cm deep.
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