
Biometric Security Using Finger Print Recognition
Subhra Mazumdar, Venkata Dhulipala

University of California, San Diego

Abstract–Our goal is to implement finger print recognition on the PXA27x DVK
platform in view of increasing popularity of biometric security for digital handheld
devices. To this end we are using Siemens ID Mouse finger print capture device
mentioned in [5] that scans the finger print and gives out a high quality image while
maintaining sub-pixel geometric accuracy. This image will then be stored and
processed to extract the critical pixel information (minutiae). Subsequent scans on
any finger print other than that of the authorized user(s) will be disallowed. A
secure process will be then forked based on the authorization. The image
recognition algorithm has to be highly precise and also efficient enough to enable
accurate instantaneous access.

1. Project Background

The analysis of fingerprints for matching purposes generally requires the comparison of
several features of the print pattern. These include patterns, which are aggregate
characteristics of ridges, and minutia points, which are unique features found within the
patterns. It is also necessary to know the structure and properties of human skin in order
to successfully employ some of the imaging technologies. The three basic patterns of
fingerprint ridges are the arch, loop, and whorl. An arch is a pattern where the ridges
enter from one side of the finger, rise in the center forming an arc, and then exit the other
side of the finger. The loop is a pattern where the ridges enter from one side of a finger,
form a curve, and tend to exit from the same side they enter. In the whorl pattern, ridges
form circularly around a central point on the finger.

1.1 Fingerprint sensors

A fingerprint sensor details of which can found in [4] captures the digital image of a
fingerprint pattern called live scan. This live scan is digitally processed to create a
biometric template (a collection of extracted features) which is stored and used for
matching. The commonly used fingerprint sensor technologies are optical, ultrasonic and
capacitive. Siemens ID Mouse falls under the capacitive category of fingerprint sensors.
Capacitance sensors utilize the principles associated with capacitance in order to form
fingerprint images. The two equations used in this type of imaging are:

http://en.wikipedia.org/wiki/Skin
http://en.wikipedia.org/wiki/Whorl
http://en.wikipedia.org/wiki/Sensor
http://en.wikipedia.org/wiki/Digital_image
http://en.wikipedia.org/wiki/Digital_signal_processing
http://en.wikipedia.org/wiki/Feature_extraction
http://en.wikipedia.org/wiki/Technology
http://en.wikipedia.org/wiki/Capacitance

where, C is the capacitance in farads, Q is the charge in coulombs, V is the potential in
volts, ε0 is the permittivity of free space, measured in farad per metre, εr is the dielectric
constant of the insulator used, A is the area of each plane electrode, measured in square
metres, d is the separation between the electrodes, measured in metres.

As shown in Fig. 1 texture of the fingerprint formed by cured alternation of the ridges
and valleys has to be transformed into the digital image. For this purpose, the distance
between sensor surface and finger ridges or valleys is transformed to the discrete
information, and from this information grey level representation of discrete levels is
given on the output. The underlying principles are discussed in greater detail in [7].

 Fig.1

In this method of imaging, the sensor array pixels each act as one plate of a parallel-plate
capacitor, the dermal layer (which is electrically conductive) acts as the other plate, and
the non-conductive epidermal layer acts as a dielectric. Listed below are some state-of-
the-art commercially available finger print scanners –

http://en.wikipedia.org/wiki/Farad
http://en.wikipedia.org/wiki/Coulomb
http://en.wikipedia.org/wiki/Volt
http://en.wikipedia.org/wiki/Physical_constants
http://en.wikipedia.org/wiki/Physical_constants
http://en.wikipedia.org/wiki/Permittivity_of_free_space
http://en.wikipedia.org/wiki/Dielectric_constant
http://en.wikipedia.org/wiki/Dielectric_constant
http://en.wikipedia.org/wiki/Square_metre
http://en.wikipedia.org/wiki/Square_metre
http://en.wikipedia.org/wiki/Metre
http://en.wikipedia.org/wiki/Capacitor
http://en.wikipedia.org/wiki/Conductive

where, Dpi stands for dots-per-inch, a quantity that correlates with image resolution

1.2 Matching Algorithms

Matching algorithms are used to compare previously stored templates of fingerprints
against candidate fingerprints for authentication purposes. In order to do this either the
original image must be directly compared with the candidate image or certain features
must be compared.

1.2.1 Pattern-based (or image-based) algorithms

Pattern based algorithms compare the basic fingerprint patterns (arch, whorl, and loop)
between a previously stored template and a candidate fingerprint. This requires that the
images be aligned in the same orientation. To do this, the algorithm finds a central point
in the fingerprint image and centers on that. In a pattern-based algorithm, the template
contains the type, size, and orientation of patterns within the aligned fingerprint image.
The candidate fingerprint image is graphically compared with the template to determine
the degree to which they match and a match score is generator.

1.2.2 Minutia Feature extraction based algorithms

Other algorithms use minutiae features on the finger. The major Minutia features as
shown in Fig.2 of fingerprint ridges are: ridge ending, bifurcation, and short ridge (or
dot). The ridge ending is the point at which a ridge terminates. Bifurcations are points at
which a single ridge splits into two ridges. Short ridges (or dots) are ridges which are
significantly shorter than the average ridge length on the fingerprint. Minutiae and
patterns are very important in the analysis of fingerprints since no two fingers have been
shown to be identical.

 Fig.2

http://en.wikipedia.org/wiki/Image_resolution
http://en.wikipedia.org/wiki/Algorithms
http://en.wikipedia.org/wiki/Authentication
http://en.wikipedia.org/wiki/Minutiae

2. Project Description

2.1 Fingerprint Recognition Using Siemens ID Mouse

We are using Siemens ID Mouse for our project. It is a USB2.0 device that uses
capacitive fingerprint reader. The PXA27x platform support Linux kernel bundle version
of up to 2.6.9 as stated in the Mainstone document found in [2], whereas the drivers of
Siemens ID Mouse are available in versions 2.6.10 and above. So we had to download
and make the ID Mouse driver patch to 2.6.9 and re-compile the kernel to run on the
target device. An appropriate patch was obtained from the authors of the driver
mentioned in [1].

2.2 Configuring and Accessing ID Mouse through PXA27x

Linux kernel version 2.6.9 recognizes the device connected on the USB port but does not
create the corresponding device system file to access the fingerprint obtained from the
device. For this purpose we had to manually create a device system file with the mknod
bash command that creates a device file with arguments, device type, minor and major
numbers. We used mknod /dev/idmouse0 c 180 250 to match the kernel version 2.6.9 and
had to edit mainstone_defconfig configuration to include the CONFIG_USB_IDMOUSE
and CONFIG_USB_DEVFS switches without which the ID Mouse driver does not work.
These help the device to communicate appropriately with platform through the driver
software. ID Mouse was accessed through the system open and read calls on the device
file. The open call returns the file handle of the device and stores the fingerprint image
into a buffer. A subsequent read returns a block-wise pointer to read the image as a PGM
file, the minutiae information of which is subsequently be used to implement the
recognition algorithm.

2.3 Fingerprint Image Capture, Storage and Minutiae Detection

2.3.1 libfprint Open Source Library and Cross Compilation

We use the libfprint open source fingerprint recognition library to handle image capture,
enrollment, verification and identification. As stated in [3] and [6] the current model of
libfprint is that a fingerprint is enrolled (storing its minutiae data), and at the time of
authentication, the pre-stored (enrolled) minutiae data is compared to a live scan. In other
words, libfprint can't compare two images in situ. libfprint uses state of the NBIS
algorithms: MINDTCT – Minutiae Detection Algorithm and BOZORTH3 – Minutiae
Matching algorithms, the details related to which can be found in [6]. The similarity
between two fingerprints is returned in the form of a parameter called match score.
libfprint provides enrollment, verification and identification API. Enrollment is a process
in which a user’s fingerprint is scanned, processed and stored for later comparison.
libfprint extracts the minutiae information from the image and if quality of detected
minutiae is above a threshold it declares it as a successfully enrollment. Verification is a
process in which user provides one’s identity and the system compares the scanned
fingerprint against enrolled fingerprint data for that user identity and declares a match or

no match. In Identification, a user provides one’s fingerprint scan which is compared
against all previously enrolled fingerprint data to find the identity.

We cross compiled the libfprint fingerprint recognition library which in turn uses the
ImageMagick, Libusb, Libcrypto and Glib packages for implementing API. We had to
link and cross-compile all the packages before compiling libfprint. Installing these
packages was a challenging task involving resolution of multiple dependency chains
before successfully compiling the library of interest. Several forums had to be consulted
to understand the package configuration options before compiling them. The Libcrypto
library was used only in a limited of the source, so, its dependency and the dependent
files were removed from the library.

2.3.2 Image Capture Using Sample Application

A small application was written to initialize the device and capture the image using
libfprint library functions. We had to resolve arm-linux-gcc compilation, link-load errors.
These errors were due to the way which static and dynamic libraries have to specified for
compilation and linking an application. Consequently the arm-linux-gcc –L <lib_path>
<app.c> command line options had to be used for our application to successfully pick up
all the dependent static/dynamic libraries of libfprint, ImageMagick, Libusb and Glib
packages and additionally soft links to these library objects had to be made in the
/usr/include directory of the platform for running the application executable. After this
the image was successfully captured into PGM file and its minutiae were extracted using
the functions in libfprint.

2.4 The Algorithm and Performance Evaluation

Fig.3 shows the algorithm that enrolls, identifies and verifies a user using the functions in
libfprint library for minutiae detection and identification. Image goodness factor is the
number of minutiae returned by the feature extraction function in the library. Image
matching against the database is done through comparison of the minutiae and
subsequent score generation based on the degree of match. The library function
BOZORTH3 does a fairly good job in image identification and verification and provides
the flexibility of setting the score threshold through only above which the fingerprint is to
be considered authorized. The performance of any fingerprint identification system is
measured in terms of two parameters i.e. False Positive and False Negative. False
Positive is the situation in which an invalid user is granted access to the system while
False Negative is the situation in which a valid user is denied access to the system. For
any identification system it is very important not to grant access to an unauthorized user,
so false positive should be very low and ideally zero. While false negative is an
inconvenience faced by a valid user in which he has to scan his finger again. Thus, in
order to develop a more secure and accurate identification system the rate of these two
parameters should be as low as possible. With a BOZORTH score threshold of 40 we
observed 0 false positive rate and 1 out of 10 false negative attempts. Finally we have a
function that can delete an enrolled user’s record from the database.

 Fig.3

3. Conclusion and Future Projections

Through out experience in this project we learned to build a reliable Embedded
Fingerprint Identification System using open source software components. This was an
excellent embedded system design exercise, which involved Researching existing
technologies and solutions, Requirement Definition (defining the project objective which
can be achieved in given time frame), Project Planning, System Analysis and Design
(Deciding components of the system and their interactions), Implementation, Integration
and Testing. This project is close to a real-life project which can produce a useful
embedded system to be deployed in close to life applications like that of an ATM
machine, a vending machine or even access to secure areas. This application can in future
be ported to a real-time user authentication embedded system with further enhancements
like building the authorized user database and storing it into a central database like
memory drive and scanning from that database for authentication. Also the application
could be compressed and made compatible with for different operating systems resulting

in an interesting yet ambitious application of Biometric Chip Cards which is a credit with
an embedded integrated circuit that is programmed to be activated for a transaction only
upon accepting owner’s fingerprint scan. Many such innovative applications can be
designed around fingerprint recognitions.

4. References

[1] Florian Echtler; “idmouse” – http://www.fs.tum.de/~echtler/idmouse/

[2] Xscale-PXA27x Platform- http://cse.ucsd.edu/classes/wi08/cse237a/miniproj/doc.zip

[3] Jake Edge, “Fingerprint recognition using fprint” - http://lwn.net/Articles/259363/

[4] Fingerprint Recognition - http://en.wikipedia.org/wiki/Fingerprint_recognition

[5] Siemens ID Mouse - http://www.siemensidmouse.com/

[6] “The libfprint project” - http://www.reactivated.net/fprint/wiki/Main_Page

[7] “Characteristics and Application of the Fingerprint Recognition Systems”, I. Plajh et
al, MEASUREMENT SCIENCE REVIEW, Volume 3, Section 2, 2003

http://www.fs.tum.de/%7Eechtler/idmouse/
http://cse.ucsd.edu/classes/wi08/cse237a/miniproj/doc.zip
http://lwn.net/Articles/259363/
http://en.wikipedia.org/wiki/Fingerprint_recognition
http://www.siemensidmouse.com/
http://www.reactivated.net/fprint/wiki/Main_Page

	1.2.1 Pattern-based (or image-based) algorithms

