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“Star in a Jar” 
– W. Moss, LLNL
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Optical Micromanipulation

GRC History of Revolutionary Research
• Nonelectrochemical Cold Fusion Experiment
• Light Water-Ni-K2CO3 Electrolytic Cell
• Schlicher’s Thrusting Antenna
• Optical Micromanipulation
• NanoStar: Sonoluminescence

Glenn Research Center - Communications, Instrumentation & Controls 38/14/2009

Nonelectrochemical Cold Fusion 
Experiment

Light Water-Ni-K2CO3 Electrolytic 
Cell

Schlicher’s Thrusting Antenna

NanoStar: Sonoluminescence
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A Short History Of Sonoluminesence
• 1920’s and 30’s: Chemists discovered that strong acoustic fields could 

catalyze chemical reactions.
• 1934: H. Frenzel & H. Schultes, U. of Cologne, discovered 

sonoluminescence in a bath of water excited by sound waves.
– Thought it was an electrical discharge phenomenon, similar to static electricity

• 1990: Gaitan and Crum, U. of Washington, succeeded in trapping a single 
light emitting bubble in partially degassed water.

– Demonstrated bubbles can emit repeatable flashes at minimum of bubble collapse

• 1991: Putterman, UCLA, also begins systematic study
– Putterman’s article on Sonoluminescence appears in Feb. 1995 Scientific American

• 1997: NATO Advanced Study Institute on Sonochemistry and 
Sonoluminescence (a conference in Leavenworth, WA)

• 2002: Taleyarkhan, Purdue U. publishes “Evidence for Nuclear Emissions 
During Acoustic Cavitation”, Science, 8 March 2002 (“Sonofusion”)

– Widespread publicity begins public debate over results, Empirical Science 
vs. Pathological Science

• 2005: Young’s “Sonoluminescence” (CRC Press)

Glenn Research Center - Communications, Instrumentation & Controls 48/14/2009
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Gas Bubble 
Expands in 
Acoustic 
Wave Pulse

Liquid Pressure Forces 
Collapse at Pulse Node

Shock Wave of Collapse 
Focuses to a Point in 

Microseconds

Energy Released in Imploding Shock Wave as Light
Calculations show that the Collapsed Bubble 

Temperature is Millions of Degrees

Note: Sonoluminescence is not entirely 
understood.  The origin of the 
luminosity is the subject of lively 
debate! 

Glenn Research Center
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Bubble Collapse
• Bubble begins expanding at 

minimum wave pressure 
(rarefaction)

– Bubble Growth/Collapse is 
adiabatic (P·Vγ=constant)

• Bubble expands to a radius of 30 
to 60 µm, then collapses suddenly

– Mach 4 wall velocity 
(1011g acceleration)

• Bubble collapses to a radius of 
~0.5 µm (Van der Waals radius) 
for <20ns

– Flash of light at collapse (how?) 
for <50 picoseconds

• “Afterbounces” of bubble 
amplitude after collapse ~3 MHz

– Instabilities in afterbounces can 
destroy the bubble

Glenn Research Center - Communications, Instrumentation & Controls 68/14/2009

Graphs from Simon, et al., Nonlinearity 15 (2002) 25–43 
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Theories of Sonoluminescence
• Shock Wave Theory-S. Putterman, UCLA

– Bubbles remain perfectly spherical as they collapse
– Pressure increases to as much as 200 Mbar at minimum radius
– Bubble stops collapsing, but shock wave continues, creating plasma & light emission in broad spectrum
– Doesn’t account for reports that cold water works better than warm water, and water infused with a noble gas 

works better than not

• Jet Formation-A. Prosperetti, U. of Mississippi
– Bubble does not remain spherical as it collapses, but caves in & propels a small jet across the bubble
– The jet hits the opposite wall of the bubble at high speed and fractures the water at the point of impact; the light is 

due to fracto-luminescence. 
– Noble gases would disturb the crystalline form of the hammered water, and provide fracture points.

• Collision Induced Emission-A. Frommhold & A. Atchley, U. of Texas
– Colliding molecules induce oscillating dipoles in each other.
– Collisions occur on short time scale, so radiation is broad band, as is observed.
– Effect is supposedly strongest when collisions occur between N or O and Ar.
– Doesn’t appear to explain water or temperature dependence of sonoluminescence.

• Quantum Vacuum Radiation-C. Eberlein, U. of Illinois
– Radiation is due to dynamic Casimir effect:  Photons are created whenever the interface between a dielectric and 

a vacuum or between two dielectrics moves non-inertially.
– The medium can be regarded as an assembly of dipoles, excited by zero point fluctuations; when an interface 

moves non-inertially, fluctuations no longer average to zero and real photons are emitted.
– The effect is normally very feeble; but the acceleration of the wall of the sonoluminescent bubble is enormous.
– This theory makes a specific prediction: there are no photons emitted in the x-ray transparency range of water, 

232 Å < λ < 437Å.

Glenn Research Center - Communications, Instrumentation & Controls 78/14/2009
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Sonofusion: Why do we care?
Burning Coal:
• C + O2 → CO2 (4 eV)
Fission:
• 235U + n → 236U 

→ 141Ba + 92Kr + 3·n (170 MeV)
Fusion Processes:
• D + D → T (1.01 MeV) + p (3.02 MeV) 
• D + D → 3He (0.82 MeV) + n (2.45 MeV)
• D + D → 4He (73.7 keV)+ γ (23.8 MeV)
• D + 3He → 4He (3.6 MeV) + p (14.7 MeV)

– D = 2H, T = 3H; D available from D2O, “heavy” 
water and from deuterated solvents

– At least 13% more productive per mass of fuel

Glenn Research Center - Communications, Instrumentation & Controls 88/14/2009
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“Sonofusion”
• Cavitation Fusion Reactor (CFR) - Hugh Flynn (U. of 

Rochester) (1982) – Concept (never built)
– Six acoustic horns to cavitate liquid lithium metal with hydrogen, 

deuterium or helium gas
– Liquid metal used due to high speed of sound and thus higher energy 

cavitations
– Fusion reactions would be intiated by cavitation
– Case would heat a heat exchanger for energy harvesting 

• Seth Putterman (UCLA) & W. Moss (LLNL) examined D-D 
and D-T fusion possibilities in Sonoluminescence 
(“Sonofusion”)

– UCLA patented Putterman’s apparatus for converting acoustic power 
to other useful forms of energy, including D-T fusion reactions (1997)

– No method of extracting the energy from fusion was outlined

• Roger Stringham & Russ George (D2Fusion, Inc.) 
published claims of “Cavitation-Induced Micro-Fusion” 
(1996-)

– Metal foil (Cu, Ag, Ti, NiTi, Pd) in heavy water (D2O) cavitated by
an acoustic horn

– Up to 15 watts output with 10 acoustic watts input
– Micro-eruptions seen in Pd claimed indicative of localized 

nuclear reactions
Glenn Research Center - Communications, Instrumentation & Controls 98/14/2009

Flynn’s Cavitation Fusion 
Reactor (from Patent)

Putterman’s 
Sonoluminescence Test Cell 

(from Scientific American)

Stringham & George’s “Micro-eruptions” 
on the surface of Pd foil 

(from George’s 2005 APS Presentation)
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Taleyarkhan’s Sonofusion
• R. P. Taleyarkhan, et al. (ORNL/Purdue) “Evidence for Nuclear Emissions During 

Acoustic Cavitation,” Science 295, 1868 (2002) outlined results of cavitation 
experiments in deuterated acetone

– Cavitation sites were initiated with a 14 MeV pulsed neutron source and driven with a PZT ring
– Sonoluminescence was not single-bubble, but formed clusters of a thousand bubbles at the cavitation 

site. 
– Observed tritium decay activity above background, neutron emission near 2.5 MeV coinciding with 

sonoluminescence flash
– Control experiments with normal acetone did not result in tritium activity or neutron emissions.
– Hydrodynamic shock code simulations supported the observed data and indicated highly 

compressed, hot (106 to 107 K) bubble implosion conditions
– The results imply that higher cavitation temperatures are found in liquids with higher vapor pressure 

rather than liquids with higher speed of sound, surface tension or viscosity
– A different ORNL group repeated the experiment, but no coincidence of neutrons with 

sonoluminescence flash was found

• Taleyarkhan’s group repeated experiment with uranyl nitrate in a mix of benzene, 
tetrachloroethene and acetone (normal and deuterated)

– Reported an increase in neutron and gamma ray flux using the deuterated acetone mixture; this flux 
was not seen in the other mixtures, including heavy water (Phys. Rev. Lett. 96(3), January 2006) 

– Edward Forringer and his group from LeTourneau University were able to reproduce the experiment 
and results (Transactions of the American Nuclear Society, November 2006)

– Criticism of the results range from neutron flux is too weak for definitive evidence or that the reported 
neutron energies are consistent with Cf-252 emission, a common lab source

Glenn Research Center - Communications, Instrumentation & Controls 108/14/2009
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Lawson Diagram Metric 
to Track Fusion Development

• Conditions for D-D Fusion:
– T ≥ ~4x108 K
– nτ ≥ 1016 s/cm3 (Lawson Criterion)

• ORNL/Purdue claims that 
thermonuclear fusion using 
sonochemistry is possible 
(“Sonofusion” or “Bubble 
Fusion”)
– Results supported by  

LeTourneau University
– Discounted by UCLA

• The Lawson Criterion metric 
suggests that Sonofusion is at 
the point that Tokamaks were 
40 years ago

Glenn Research Center - Communications, Instrumentation & Controls 118/14/2009
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Sonoluminesence as a Power Source?
• As a new Practical Power Source, needs to be 

scalable to as small as possible
– Power supply for the transducers is most of the mass
– An array of cells like a battery pack can distribute 

required mass for larger specific power
– >>20 ml for cell size realistic criterion

• First Order Estimate of Cell Size:
– free oscillation frequency of a bubble in a liquid:

– resonance frequency of the test cell:

– smallest test cell (with k=1):

– If a=10 µm, r=2.3 mm, so V=0.013 ml, but f=325 kHz
Glenn Research Center - Communications, Instrumentation & Controls 128/14/2009

ISS Battery Cell Pack
~316 W/kg specific power (peak)

350 ml per Ni-H cell

Star in a Jar
1 kW/kg specific 

power (?)
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Sonoluminescence in Microgravity

• KC-135 Flight in 1998 by 
University of Washington

• Single-Bubble Sono-
luminescence (SBSL) promptly 
brightened 20% and continued 
brightening under microgravity 
conditions

• ISS experiment was scheduled 
for launch April 2005

• Flight hardware under 
development in 2003

• Experiment cancelled in the 
redirection of space 
exploration efforts

Glenn Research Center - Communications, Instrumentation & Controls 138/14/2009
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NanoStar: Sonoluminescence
Gus Fralick (PI - RIS), John Wrbanek (RIS), Susan Wrbanek (RIO)

Task Summary
• Sonoluminescence: The phenomenon in which acoustic energy 

is concentrated into collapsing bubbles that emit picosecond
pulses of broadband light.

• Calculations indicate that peak temperatures inside the SL 
bubbles may exceed 12 million K, that peak pressures may 
reach 100 million atmospheres, could initiate D-D fusion.

• Harnessing the high energy release would lead to the 
development of revolutionary propulsion and power systems.

• Developing instrumentation and measurement techniques to 
investigate power generation using sonoluminescence.

• Initially determine whether there is any difference in the 
emission spectrum of radiation from bubbles in heavy water  

(D2O) and light water (H2O). 

Glenn Research Center - Communications, Instrumentation & Controls 148/14/2009

Advancing the Existing State of the Art
• The claims and theories being examined predict a 

net gain of power resulting from atomic 
interactions at the high temperatures and 
pressures present in SL.

• SL-based power generation has been only recently 
reported in the main-stream academic press 
(Science, 8 Mar 02).

• The development of measurement techniques to 
verify and further develop this technology is a 
necessity. 

From a “Star in a Jar”…

…to the Future?
© Paramount Pictures

http://www.gyre.org/news/Physics�
http://www.gyre.org/news/Physics�
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Apparatus

• Ultrasonic transducer induces cavitation in a test cell
• Piezoelectric amplifier drives transducer from signal generator
• Two types of transducer setups

– Resonating Test Cell
– “Sonicator” Cell Disruptor in Flask or Beaker

• Photodetectors, Spectrometers, Neutron Detectors can be used
– Monitor with Lights Out!

Glenn Research Center - Communications, Instrumentation & Controls 158/14/2009
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Ring of Multi-Bubble Sonoluminescence 
(MBSL) Imaged with Low Lux Video Camera

Glenn Research Center - Communications, Instrumentation & Controls 168/14/2009

Compilation of 
Three Images: 

• Lights Off 
Background

• Lights On Flask
• Lights Off MBSL
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Multi-Bubble Sonoluminescence (MBSL) 
Imaged using Astrophotography Camera

• Image quality allows better placement of instrumentation
• Improved image of MBSL over video camera

– Enhanced contrast only
Glenn Research Center - Communications, Instrumentation & Controls 178/14/2009
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MBSL using Sonicator Test Cell

Glenn Research Center - Communications, Instrumentation & Controls 188/14/2009

• 100 ml 
Beaker

• 50 ml 
Quartz 
Flask

False 
Color 

Images 
Showing 
Structure
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MBSL in Resonating Test Cell

• 68.76 
kHz

• 93.28 
kHz

Glenn Research Center - Communications, Instrumentation & Controls 198/14/2009

False 
Color 

Images 
Showing 
Structure
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True-Color MBSL in H2O

Glenn Research Center - Communications, Instrumentation & Controls 208/14/2009

A Galaxy of “Nano-Stars” in a Jar
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Sonoluminescence in Solvents

Glenn Research Center - Communications, Instrumentation & Controls 218/14/2009

Room Lights ON

Room Lights OFF

• Empirical relationships correlate SL brightness 
with:
• the liquid’s viscosity,
• surface tension,
• inverse of the vapor pressure, or
• a combination of properties

• Brighter sonoluminescence should be seen in 
the solvents with higher boiling points 
(>100°C)

• Glycerin is an attractive solvent for use in 
sonoluminescence studies

– Notoriously hydroscopic
– Stabilizes as the 80% glycerin to 20% water 

mixture in air
– Relatively safe and readily available 

• Generated cavitation in Glycerin with a 
Sonicator setup corresponding to bright MBSL

– Cavitation was particularly localized
– Provides a promising target for spectroscopy 

and radiation studies
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Indications of High Temperature
• Modifications of films can indicate high temperature environments

– Comparison can reveal temperature differences
• Initial platinum (Pt) films on alumina exposed to MBSL in H2O and 

D2O showed little difference
– Globules in D2O run?  Not conclusive

Glenn Research Center - Communications, Instrumentation & Controls 228/14/2009

• Pt Film after exposure to MBSL in H2O • Pt Film after exposure to MBSL in D2O
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PdCr Thin Films Over Pt Traces on Alumina

Glenn Research Center - Communications, Instrumentation & Controls 238/14/2009

• No Crater Formation seen after 
exposure to MBSL in H2O

• Crater Formation seen after 
exposure to MBSL in D2O

• Large Grain Failures usually seen in thin films due 
to CTE mismatches at high temperature (~1000°C)
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PdCr Thin Films Over Pt Traces on Alumina

Glenn Research Center - Communications, Instrumentation & Controls 248/14/2009

• No Crater Formation seen after 
exposure to MBSL in H2O

• Crater Formation seen after 
exposure to MBSL in D2O

• Large Grain Failures usually seen in thin films due 
to CTE mismatches at high temperature (~1000°C)
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PdCr Thin Films Over Pt Traces on Alumina

Glenn Research Center - Communications, Instrumentation & Controls 258/14/2009

• No Crater Formation seen after 
exposure to MBSL in H2O

• Crater Formation seen after 
exposure to MBSL in D2O

• Large Grain Failures usually seen in thin films due 
to CTE mismatches at high temperature (~1000°C)
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PdCr Thin Films Over Pt Traces on Alumina

• Large failure areas 
also seen in PdCr film 
over Pt exposed to 
MBSL in D2O
– PdCr nodules appear 

on the bottom in 
failure areas

• Failures not seen in 
PdCr directly on 
alumina, or when 
exposed to MBSL in 
H2O runs

Glenn Research Center - Communications, Instrumentation & Controls 268/14/2009
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Concepts
• Localized sonoluminescence a first 

step for including in-situ 
instrumentation

• Sonofusion claims of neutron 
production should be detectable
– Miniature radiation detectors inside cells 

complementing or replacing large 
detectors outside of the test cells

• Bubble temperature of millions of 
degrees should be harvestable
– In-situ energy harvesting based on 

thermal gradient between liquid and hot 
bubbles

Glenn Research Center - Communications, Instrumentation & Controls 278/14/2009

© Paramount Pictures

http://www.gyre.org/news/Physics�
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Thin Film Coated Scintillating Detectors

Glenn Research Center - Communications, Instrumentation & Controls 288/14/2009

Particle 
Emission

From SL

Optical Fiber to PMT

Scintillating Plastic

Metal Film

Test Cell
• Fiber optic-based 
scintillator detector 
under development

• Particle emissions 
react with metal film
–Results react with 

the scintillator

• Thin film coatings 
allow identification 
of processes that 
may be occurring
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Thin Film Coated Scintillating Detectors

• Prototype detectors 
fabricated
– Rhodium for neutron 

detection
– Copper as an attenuator, 
– Palladium as a possible 

catalyst based on thin film 
experiments

• Relative responses 
modeled using Monte Carlo 
program SRIM

• Very sensitive to external 
light noise

• Leveraging work as 
detectors for space 
missions

Glenn Research Center - Communications, Instrumentation & Controls 298/14/2009
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Energy Harvesting Concept

• Recent results in ceramic thin films suggest this concept is possible 
Glenn Research Center - Communications, Instrumentation & Controls 308/14/2009

Carbide Element

Silicide Element

Quartz 
Substrate

MBSL

Volts 
Out

Catalyst / Insulator Multi-Layer
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Energy Harvesting Concept

• Estimate of power generation:
100µV/°C × ∆T => 200 mV/junction
200 Ω/junction => 0.2 mWatts/junction 
50% efficiency => 0.1 mWatts/junction
40 junctions => 4 mWatts
– Input electrical power of 

Sonicator => 350 Watts

• Improvements needed
– Thermoelectric materials
– Sonocator/PZT arrays

Glenn Research Center - Communications, Instrumentation & Controls 318/14/2009

• Initial test of concept to use thin film thermopile 
for heat flux measurements

6 mm diameter, 40-pair thermopile 
thin film heat flux sensor



National Aeronautics and Space Administration

www.nasa.gov

Sonoluminesence as a Power Source?
• As a new Practical Power Source, needs to be 

scalable to as small as possible
– Power supply for the transducers is most of the mass
– An array of cells like a battery pack can distribute 

required mass for larger specific power
– >>20 ml for cell size realistic criterion

• First Order Estimate of Cell Size:
– free oscillation frequency of a bubble in a liquid:

– resonance frequency of the test cell:

– smallest test cell (with k=1):

– If a=10 µm, r=2.3 mm, so V=0.013 ml, but f=325 kHz
Glenn Research Center - Communications, Instrumentation & Controls 328/14/2009

ISS Battery Cell Pack
~316 W/kg specific power (peak)

350 ml per Ni-H cell

Star in a Jar
1 kW/kg specific 

power (?)
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Summary
• The high temperatures and pressures measured in sonoluminescence 

have generated claims and theories that predict a net gain of power 
resulting from atomic interactions.
– Success has been recently reported in the mainstream academic press, 

and if practical, could revolutionize aerospace power systems.
• NASA Glenn Research Center (GRC) conducted a preliminary 

investigation of the technologies and techniques to characterize 
sonoluminescence.

• Apparatus to produce sonoluminescence were built to generate the 
effect with both a resonating container and a Sonocator inserted in a 
flask

• Images have been produced of sonoluminescence in a variety of 
containers and with a variety of liquids

• The modification of palladium-chromium alloy (PdCr) thin films 
suggests the generation of high temperature from sonoluminescence 
in heavy water.

• Concepts for in situ radiation detection and energy harvesting were 
presented.

Glenn Research Center - Communications, Instrumentation & Controls 338/14/2009
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Questions

The Alchemist in Search 
of the Philosophers Stone, 
by Joseph Wright (1771) 
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