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A contingent claim is a security that provides a payoff that is dependent (contingent) on 

something specific happening.  An option is one form of a contingent claim in that it provides a 

positive payoff under the condition that the option expires in-the-money.  If the option does not 

expire in-the-money, the payoff is obviously zero.  Another form of a contingent claim is a security 

that pays $1 in a given outcome and zero otherwise.  These outcomes are referred to as states or 

states of nature and the security is often called a state-contingent claim.  Other common names for 

this type of security are pure security, the term we shall use, and Arrow-Debreu security, the latter 

arising out of the work of Nobel Laureates Kenneth Arrow and Gerard Debreu.  In this Teaching 

Note, we examine some properties of pure securities and demonstrate how they relate to options. 

Suppose we are facing a risky situation, which could be something as simple as the next day 

in the stock market.  Let us define the possible outcomes in terms of three states, which might be as 

simple as the market goes down 2% (state 1), the market is unchanged (state 2), and the market goes 

up 2% (state 3).  Naturally the possible outcomes are infinite and cannot be reduced to such simple 

statements, but the framework provided by this simplification is, nonetheless, useful and generalizes 

to the case of a continuous spectrum of states.   

Consider a stock that will be worth $110 in state 1, $100 in state 2 and $90 in state 3.  

Another security might be worth $105 in state 1, $101 in state 2 and $98 in state 3.  Suppose the 

risk-free rate is 2%.  Then a risk-free security worth $100 today would have a value of $102 in each 

state. 

 
1These notes have benefitted from helpful conversations with and similar notes of Professor Richard Rendleman of the University of 
North Carolina at Chapel Hill.  The notes also appear in published form in Financial Engineering News, March/April 2003, pp. 8-10. 

Now consider a state-contingent claim that pays $1 in state 1 and zero in the other states.  

Another state-contingent claim pays $1 in state 2 and zero in the other states.  A third state-

contingent claim pays $1 in state 3 and zero in the other states.  Our first stock, whose three possible 

future values are $110, $100 and $90, can be viewed as a portfolio of 110 units of the first-state 
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contingent claim, 100 units of the second state-contingent claim and 90 units of the third state-

contingent claim.  Our second security can be viewed as a portfolio of 105 units of the first state-

contingent claim, 101 units of the second and 98 units of the third.  A risk-free security worth $100 

today can be viewed as 102 units of all three state-contingent claims.  The price of a state-contingent 

claim is called a state price.  It follows that the price of each security must be the value today of the 

equivalent portfolio of state-contingent claims.  In other words, if we know the state prices, we can 

determine the security prices.  Alternatively, if we know the security prices, we can determine the 

state prices. 

The state-contingent claims are the fundamental securities in the market.  We cannot literally 

see them or trade them, but they are there, the financial atoms of the marketplace.  Ordinary 

securities, being combinations of these pure securities, are sometimes called complex securities, 

though there is nothing particularly complex about them.  They are just portfolios of pure securities. 

 Let us now develop a formal framework for understanding these concepts. 

First let us establish the fact that there must always be at least as many securities as there are 

states.  This is referred to as the spanning property, which means that the pure securities will be 

sufficient to reproduce any complex securities.  Here we shall make the number of securities equal to 

the number of states.  Specifically let there be n states, where each state is identified as state i, i = 1, 

2, ...n and n complex securities, with each security defined as security j, j = 1, 2, ...,n with price Sj.  

Let Xij be the payoff of complex security j in state i.  A complex security can be defined in terms of 

the number of units of each pure security required to replicate the payoffs of the complex security.  

We can alternatively define each pure security in terms of the number of units of each complex 

security required to replicate its outcomes.  Define pure security i as a security that pays $1 in state i 

and zero in all other states.  Then αij is the number of units of complex security j that should be held 

to reproduce the payoff of pure security i.  Alternatively we can view the payoff Xij as the number of 

units of pure security i that are implicit in complex security j.  Let us now organize this information 

in a more meaningful way.  We shall use both matrix and scalar notation, though the matrix notation 

is somewhat more useful in facilitating the solution of simultaneous equations. 

As stated, a pure security is a combination of complex securities.  The payoffs of pure 

security 1 in each of the possible states are as follows: 

α11X11 + α12X12 + ... + α1nX1n = 1 (outcome in state 1) 



α11X21 + α12X22 + ... + α1nX2n = 0 (outcome in state 2) 

. . . 

α11Xn1 + α12Xn2 + ... + α1nXnn = 0 (outcome in state n). 

In other words, pure security 1 is a combination of α11 units of complex security 1, α12 units of 

complex security 2, ..., and α1n units of complex security n.  Similarly the payoffs of pure security 2 

in each of the possible states are as follows: 

α21X11 + α22X12 + ... + α2nX1n = 0 (outcome in state 1) 

α21X21 + α22X22 + ... + α2nX2n = 1 (outcome in state 2) 

. . . 

α21Xn1 + α22Xn2 + ... + α2nXnn = 0 (outcome in state n). 

Pure security 2 is, thus, a combination of α21 units of complex security 1, α22 units of complex 

security 2 and α2n units of complex security n.  The payoffs of pure security n in each of the possible 

states are as follows: 

αn1X11 + αn2X12 + ... + αnnX1n = 0 (outcome in state 1) 

αn1X21 + αn2X22 + ... + αnnX2n = 0 (outcome in state 2) 

. . . 

αn1Xn1 + αn2Xn2 + ... + αnnXnn = 1 (outcome in state n). 

Pure security n is, thus, a combination of αn1 units of complex security 1, αn2 units of complex 

security 2, and αnn units of complex security n. 

These conditions can be easily expressed in matrix notation as 

 

, 

 X. . .XX 

 . . . ... 

 . . . ... 

 . . . ... 

 X. . .XX 

 X. . .XX 

 = X

nnn2n1

2n2221

1n1211 
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, 

 . . . 

 . . . ... 

 . . . ... 

 . . . ... 

 . . . 

 = A

nnn2n1

2n2221

ααα

ααα

 . . . 1n1211 ααα

 

 

 

 

 

. 

 1. . .00 

 . . . ... 

 . . . ... 

 . . . ... 

 0. . .10 

 0. . .01 

 = I

 

 

 

 

 

The relationship is expressed as XA' = I.  We can then solve for the weights using the expression2 

 
.)IX( = A -1 ′

 

We can also obtain this result using scalar notation.  Letting Iij be the ijth element of vector I, then 

 
.X = I jkik

n

=1k
ij α∑ 

In other words the rows and columns of matrix I are 

I11 = X11α11 + X12α12 + . . . + X1nα1n = 1 

I12 = X11α21 + X12α22 + . . . + X1nα2n = 0 

. 

. 

. 

I1n = X11αn1 + X12αn2 + . . . + X1nαnn = 0 

I21 = X21α11 + X22α12 + . . . + X2nα1n = 0 

I22 = X21α21 + X22α22 + . . . + X2nα2n = 1 

. 

. 
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2To obtain the inverse of X, we require the condition that no row or column of X is a linear function of any other row or column.  This 
will always be the case if no complex security is a linear function of any other combination of complex securities.  Otherwise, that 
security would be redundant. 



. 

I2n = X21αn1 + X22αn2 + . . . + X2nαnn = 0 

. 

. 

. 

In1 = Xn1α11 + Xn2α12 + . . . + Xnnα1n = 0 

In2 = Xn1α21 + Xn2α22 + . . . + Xnnα2n = 0 

. 

. 

. 

Inn = Xn1αn1 + Xn2αn2 + . . . + Xnnαnn = 1  

Now let us introduce a vector Φ where the element φi is the price today of pure security i: 

 

. 

  

 . 

 . 

 . 

  

  

 = 

n

2

1

φ

φ

φ

Φ

 

 

 

 

 

The price of a complex security can be obtained, in matrix notation, as 

 
,X = S Φ′

 

or in scalar notation as 

 

.X = S kkj

n

=1k
j φ∑ 

 

The above equations written out are as follows: 

S1 = X11φ1 + X21φ2 + . . . + Xn1φn 

S2 = X12φ1 + X22φ2 + . . . + Xn2φn 

. 

. 
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. 

Sn = X1nφ1 + X2nφ2 + . . . + Xnnφn. 

Here we see how the complex securities are combinations of the pure securities.  Alternatively we 

can obtain the state prices from the prices of the complex securities.  This would be found as 

 
.S)X( = -1′Φ

 

Alternatively one could solve for the φi values in the scalar equations for Sj shown above.   

In other words, a complex security j can be priced by multiplying its payoff in each state by 

the price of the pure security that pays off in that given state.  In this way we see that the payoffs of 

complex securities, or what we ordinarily just call “securities,” can be expressed in terms of the 

payoffs of more fundamental securities, those whose payoffs are contingent on the given states.  

The risk-free security is extremely easy to see in this context.  Its payoffs are the same in all 

states.  Denoting the risk-free security as security r and its payoff as R, we have 

 One plus the risk-free rate is, by definition, R/Sr.  Consequently, the risk-free 

rate, which we write as rf is given as

.k

n

=1k
k

n

=1k
r R = R = S φφ ∑∑

3 

 

1−
∑ ⎟⎟

⎟
⎟
⎟
⎟

⎠

⎞

⎜⎜
⎜
⎜
⎜
⎜

⎝

⎛

 
k

n

=1k

f
1 = r
φ

 

 

 

We see that the risk-free rate is just the inverse of the sum of the state prices minus 1.  This should 

make sense.  A risk-free asset is one that pays $1 in each state.  Thus, a portfolio of 1 unit of each 

pure security will replicate the payoff of the risk-free asset.  It follows that the sums of the values of 

1 unit of each pure security will give the present value of $1, which will be the price of the risk-free 

asset.  Inverting the price gives one plus the rate. 

 Numerical Example 
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3To solve for rf in matrix notation we would introduce an nx1 row vector, ι, which contains 1 as each element.  Then rf = (1/ιΦ) - 1. 



Let there be four states and four complex securities.  The payoffs of these securities are 

shown in the four columns of the matrix X below, where the rows are the states and the columns are 

the securities: 

 

. 

 110118150100 

 13590125100 

 7265100100 

 852075100 

 = X
 

 

 

The A matrix will, of course, be 

 

. 

  

  

  

  

 = A

44434241

34333231

24232221

14131211

αααα

αααα

αααα

αααα
 

 

 

 

We can solve for A by obtaining A = (X-1I)′.4  The solution is 

 

. 

 0.0131-0.0496-0.08250.0409- 

 0.02420.04180.0626-0.0181 

 0.0091-0.06530.0822-0.0564 

 0.0020-0.0574-0.06240.0236- 

 = A  
 

 

 

Let us assume we have the prices of the complex securities: 
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4The matrix operations of transposing, multiplying and taking the inverse can be easily done using Excel’s array formulas 
=transpose(), =mmult(), and =minverse(). 



92.00

118.00
S = .

85.86

99.36

 

Then we can find the prices of the pure securities as The solution is .S)X( = -1′Φ

0.06

0.18
Φ = .

0.26

0.42

 

In scalar notation, this would be found by solving the equations, 

  92.00 = 100φ1 + 100φ2 + 100φ3 + 100φ4 

118.00 =   75φ1 + 100φ2 + 125φ3 + 150φ4 

  85.86 =   20φ1 +   65φ2 +   90φ3 + 118φ4 

  99.36 =   85φ1 +   72φ2 + 135φ3 + 110φ4 

Alternatively, if we had the prices of the pure securities, we could obtain the prices of the complex 

securities as S = X'Φ or in the above scalar equations, inserting values for each φ and leaving the 

left-hand sides as the unknowns. 

The risk-free rate is then (1/ιΦ) - 1 or simply 

 

.086957. = 1 - 
0.42+0.26+0.18+0.06

1 = r f   

 

State Pricing and Options 

Consider a one-period binomial option pricing world.  Let an asset worth V today be worth 

either Vu or Vd one period later, where u and d are one plus the return on the stock in each of the 

two outcomes.  From what we have previously learned about state pricing, we know that the V must 

be Vuφ1 + Vdφ2. Let us divide through by V and also specify the formula for the risk-free rate in 

terms of the state prices,  
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1. - 
 + 

1 = r

d + u = 

21
f

21

⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛

φφ

φφ1 

 

 

Solving these simultaneously for φ1 and φ2, we obtain 

 

.
d) -)(u r + (1
)r + (1 -u 

 = 

d) -)(u r + (1
d - r + 1

 = 

f

f
2

f

f
1

φ

φ 

 

 

 

We know that we can obtain the price of a call option on this asset with an exercise price of 

K by using the standard binomial pricing formula, 

 

,
r + 1

cp) - (1 + pc = c
f

du 

 

where p = (1 + rf - d)/(u - d), cu = Max(0,Vu - K) and cd = Max(0,Vd - K).  We know that p and 1 - p 

are the risk neutral or equivalent martingale probabilities of the two states.  Given what we learned 

about state pricing, we can also obtain the option price by weighting its payoffs by the state prices.  

Note also that comparing the formula for p to that for φ1, we see that 

 
φ1f )r + (1 = p

 

and 1 - p = (1 + rf)φ2.  Thus, the state prices and risk neutral probabilities differ only by the risk-free 

rate.   In fact if we are given the risk-free rate, we can easily solve for the state prices as φ1 = p/(1 + 

rf) and φ2 = (1 - p)/(1 + rf).  Let us demonstrate these results with an example. 

Consider the following case.  We have a stock priced at $100 that can go up to either $125 or 

down to $80 in the next period.  Thus, u = 125/100 = 1.25 and d = 80/100 = 0.80.  The risk-free rate 

is 7%.  Using the standard binomial pricing approach, we first calculate the risk neutral probability 

as 

 

D. M. Chance, TN97-13 Option Prices and State Prices 
 9 

0.6, = 
0.80 - 1.25
0.80 - 1.07 = p



 

 

and 1- p is, therefore, 0.4.  The payoffs of the call are obviously 25 and 0.  The call price today is 

found as 

 

14.02. = 
1.07

0.4(0) - 0.6(25) = c 

 

Now let us look at how this problem is consistent with state pricing.  Given the risk neutral 

probabilities of .6 and .4, we can find the state prices as 

 

0.3738. = 
1.07
0.4 = 

0.5607 = 
1.07
0.6 = 

2

1

φ

φ
 

 

 

We have three financial instruments, a stock, an option and a riskless bond.  Let us take two 

of these at a time and, using the formulas we previously developed, re-derive the state prices, which 

should be 0.5607 and 0.3738.  Let us first use the stock and risk-free bond.  We can set the price of 

the risk-free bond to anything as long as its payoff is 7% higher than its price.  Let us just set it at 

$100, the same as the stock price.  Then our X matrix is 

 
. 

 80107 

 125107 
 = X 

 

Our S matrix is 

. 
 100 

 100 
 = S 

 

Then performing the matrix operations (X')-1S, we obtain 

 
, 

 0.3738 

 0.5607 
 = Φ 

 

which are the correct values for the state prices. 

Alternatively, we could use the option and the stock.  Then our X matrix would be 
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. 

 800 

 12525 
 = X 

 

Our S matrix would be 

 
. 

 100 

 14.02 
 = S

 

 

Performing the necessary matrix operations would again gives us the correct values in Φ. 

Using the option and the risk-free bond, our X matrix is 

 
. 

 1070 

 10725 
 = X 

 

The S matrix is 

 
. 

 100 

 14.02 
 = S 

 

Again, performing the necessary matrix operations gives us the correct values in Φ.  Obviously it 

does not matter which assets we use. 

State Prices in a Continuous-State World 

In the real world there are an infinite number of possible states.  This makes it difficult, if not 

impossible, to identify the specific states and obtain their prices.  It is possible, however, to make 

some rough approximations of state prices from the prices of traded options. 

A standard European call option on a stock can be decomposed into two components.  One is 

a long position in an asset-or-nothing option, which pays the value of the asset if its price at 

expiration exceeds the exercise price and nothing otherwise.  The other component is a short 

position in a certain number of cash-or-nothing option, which obligates the seller to pay a certain 

amount of money if the asset price at expiration exceeds the exercise price and nothing otherwise.  

The amount of money owed is the exercise price.   
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Letting c be the call price, V be the underlying asset price, K be the exercise price, rf be the 

risk-free rate, σ be the volatility of the return on the asset price and T - t be the time to expiration, 

the value of the European call is well-known as the Black-Scholes formula of 

 

. t- T - d = d

 t- T
 t)- 2)(T/ -(r  + ln(V/K) = d

where

12

2

1

σ
σ

σ

  ),dN(Ke - )dVN( = c 2
t) - (Tr-

1
f

 

 

 

 

The value of the asset-or-nothing component is known to be VN(d1) while the value of the cash-or-

nothing component is known to be .  For our purposes here, we need the value of a 

more general cash-or-nothing option, one that pays off $1 if it expires with the asset value above the 

exercise price and zero otherwise.  Such an option is sometimes called a digital option.

)dN(Ke 2
t) - (Tr- f

5  Let us 

denote the price of that call option as dc, and we see that its formula is 

 
).dN(e = dc 2

t) - (Tr- f

 

Given the Black-Scholes put option pricing formula, 

 
)],dN( - V[1 -)] dN( - [1Ke = p 12

t) - (Tr- f

 

we can find the price of a digital put, which is an option that pays $1 if the asset value at expiration 

is less than the exercise price.  Its formula is 

 
)].dN( - [1e = dp 2

t) - (Tr- f
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5Cash-or-nothing options are also sometimes called digital options.  Another name for these types of options is binary options. 
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These digital option formulas are also the partial derivatives of the Black-Scholes call and put 

formulas with respect to the exercise price.6 

Now let us divide the uncertain outcomes into three possibilities.  Let VT be the value of the 

asset at a specific future date, K1 be one possible level of the asset and K2 be another possible level 

of the asset where K2 > K1.  Now let us define three states: VT ≤ K1, K1 < VT ≤ K2, and VT > K2.  

Although this specification oversimplifies the real world, it does allow us to define three easily 

identifiable states from which we can determine the three state prices. 

A digital put with an exercise price of K1 is a security that pays $1 if the first state, VT < K1, 

occurs and zero otherwise.  Thus, its price is the price of the first pure security.  The second pure 

security is identical to a long position in a digital call with an exercise price of K1 and a short 

position in a digital call with an exercise price of K2.  To see this note that if VT ≤ K1, both options 

expire out-of-the-money so there is no payoff.  If K1 < VT ≤ K2, the long digital call struck at K1 

pays $1 and the short digital call struck at K2 pays nothing for a total payoff of $1.  If VT > K2 the 

long digital call struck at K1 pays $1 and the short digital call struck at K2 will require a payment of 

$1, thereby offsetting and leaving a zero payoff.  The third pure security, which pays $1 if the state 

VT > K2 occurs, can be replicated with a long digital call with an exercise price of K2. 

Let us illustrate these results by estimating the prices of certain pure securities from the 

prices of options on the Dow Jones Industrial Average (DJIA).  The DJIA is, of course, the most 

widely followed market indicator.  Its options, which trade at the Chicago Board Options Exchange, 

are European-style, which means that the Black-Scholes model is appropriate, at least for our 

purposes.  Consider the following information: The index is at 9234.47, which per contract 

specifications is converted to 92.34 for option trading purposes.  We shall look at some options 

expiring in 37 days with exercise prices of 90 and 94.  The continuously compounded risk-free rate 

is 4.95%.  An estimate of the dividend yield of the Dow Jones Industrials is 2% and an estimate of 

the volatility is 18%.  Given the exercise prices of 90 and 94, we can define three states:  DJIA ≤ 

 
6The derivative of the call formula with respect to the exercise price has a minus sign, which would have to be ignored if one were 
using the derivative as the price of a digital option. 



9000, 9000 < DJIA ≤ 9400, and DJIA > 9400.  Obviously these three states are more general than 

exist in practice, but they are useful for understanding state pricing. 

Using the Black-Scholes dividend-adjusted option pricing model,7 we obtain the following 

values: , N(d2|K=90) = 0.6813 and N(d2|K=94) = 0.3869.  The following prices are 

obtained for the digital options: 

0.9950 = e t)-(Tr- f

digital call struck at 90: 0.6779  (0.9950*0.6813) 

digital put struck at 90: 0.3171  (0.9950*(1 – 0.6813)) 

digital call struck at 94: 0.3850  (0.9950*0.3869). 

Thus, our state prices are 

pure security 1:  0.3171 

pure security 2:  0.6779 - 0.3850 = 0.2929 

pure security 3:  0.3850. 

We can then obtain the risk-free rate over that period as 1/(0.3171 + 0.2929 + 0.3850) - 1 = .0050.  

This is consistent with the 4.95% continuously compounded rate since the equivalent discrete 

compounded rate for 37 days would be e.0495(37/365) - 1 = .0050. 

Final Comments 

State-pricing theory, sometimes known as state-preference theory, provides a framework for 

the valuation of financial assets.  It can be shown to provide a general equilibrium theory of asset 

pricing, consistent with a market in which assets are risky, and investors have homogeneous beliefs 

and aversion to risk.  State-preference theory was developed around the same time as the Capital 

Asset Pricing Model, but has not received as much attention as the CAPM.  This is probably because 

state-preference theory is a more abstract theoretical framework, relying as it does on the existence 

of pure securities, whose prices cannot be observed in financial newspapers, from the Bloomberg, or 

on the Internet.  It is more appropriately viewed as what one would see if one took a microscopic 

look at the financial markets.   
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7Recall that the dividend adjustment is simply to change the asset price from V to Ve-y(T-t) where y is the dividend yield.  This reduces 
the asset price by the present value of the dividends. 
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With the development of option pricing theory, state-preference theory has stepped to the 

back in the family of valuation models.  While, as we have seen here, state-preference theory is 

clearly consistent with option pricing theory, the implications of the latter are much easier to observe 

in the real world, and hence, it has become more widely used in practice as well as in scholarly 

work.  Keep in mind that just as a biologist cannot simply observe a specimen with the naked eye 

and expect to learn much about it, so must a serious student of finance observe the internal structure 

of the financial pricing process.  State-preference theory provides the framework to accomplish that 

task. 
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