
1. ABSTRACT
For several years now, Expressed Sequence Tags (ESTs) have provided researchers with a
low cost, yet extensive survey of the genomes they were derived from.  ESTs have proven
to be invaluable in the research domains of structure prediction, gene discovery, and
genomic mapping for many species.  While most of the key mammalian model organisms
have had their transcriptomes defined, ESTs continue to provide value in detecting splice
variants, and in the exploration of poorly characterized transcriptomes.  Researchers that
are interested in utilizing array-based gene expression technologies need to be able to
confidently predict RNA transcripts from ESTs.  Here we discuss methodologies to
generate EST assemblies with the purpose of generating transcript representatives that
can be used as sources of high quality sequence for oligonucleotide probe design.

2. INTRODUCTION

2.1 EST Problem Overview

Expressed Sequence Tags (ESTs) are 200-500 bp sequences that are obtained as part of a
3’ or 5’ single pass read of individual clones (1).  These clones are derived from cDNA
libraries that may be specific to a tissue and/or development state of an organism, which
can be used to identify expressed genes that are considered “rare” when exploring the
overall expression of an organism’s transcriptome.  These rare transcripts may have
splice variants and/or alternative polyadenylation (2).  ESTs are popular primarily because
they can be generated in high volume, using a high-throughput data production method
at low cost.  Despite serving as a rich source of sequence information as a survey of a
transcriptome, ESTs must be used with an understanding of their limitations.  The
principle problems are that EST sequences contain errors, represent only a portion of a
gene product, and are found in vast, highly redundant datasets.

ESTs contain sequencing errors (sequence compression and frame-shift errors) at high
rates (3%) due to the single pass read process they were generated from (3).  These
errors do not follow a normal distribution along the length of the sequence, but rather are
biased toward the start and end of the sequence (4), leaving EST base pair positions 100
to 300 to be the most accurate part of the EST (5).
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Each EST in itself represents only a portion of a gene product.  Being 200-500 bp means
that there are potentially several thousand base pairs of the underlying transcript that are
unrepresented in the EST sequence.  The attenuation of the sequencing reaction used in
generating the EST leads to a length that is shorter than the cDNA clone it was derived
from.  EST single pass reads can be generated from the 5’ or 3’ end.  ESTs can also be
generated using random primers, which may result in ESTs with ambiguous orientation,
from different parts of the same, non-overlapping RNA (6).

Databases that contain EST data also have two primary limitations.  1) ESTs, as a whole,
are poorly annotated, both in terms of source and sequence quality, which makes it
difficult to determine what gene product a given EST represents.  In addition, 2) EST
databases contain a huge number of sequences, at a high rate of redundancy, which
makes it difficult for a researcher to negotiate and derive concise value from.

2.2 Why Cluster and Assemble?

The value of ESTs with respect to microarray target creation is greatly enhanced by
utilizing a process of clustering and assembling.  The primary goals of sequence
clustering and assembling are to 1) reduce redundancy and mass of the EST dataset; 2)
increase the sequence quality of the reduced data; and 3) create a contiguous sequence
from ESTs that approximate the cDNA clone from which the ESTs were derived.

In principle, clustering is a grouping of like entities on one or more dimensions.  These
groupings allow for the creation of partitions that provide a binary definition of ‘self’ and
‘non-self’ for any given entity.  With respect to nucleic acid sequence, clustering is often
done on the dimension of sequence similarity, were sequences that have a defined
degree of similarity are considered part of the same cluster.  There are as many ways to
define similarity, both in terms of variables and approach, as there are clustering
applications that employ them.  We will not discuss the specific definitions of sequence
similarity in this paper, however.

The clustering of gene sequence is often referred to as gene indexing, where all data
concerning a single gene or gene isoform is partitioned into a single index class, and
each index class contains the information for only one gene (7).  Gene indexes can be
used to define exemplar transcripts (transcripts that provide the best available
representative for a given cluster of transcripts), as well as provide a basis for an
assembly, which would create consensus transcripts. The UniGene dataset provided by
NCBI is a gene index that does not contain sequence assemblies, but rather represents
the exemplar sequence of a given cluster in its Unigene Unique set (8).  The TIGR Gene
Indices, on the other hand, represents assemblies called tentative consensus (TC)
sequences, which are meant to approximate the underlying mRNA transcripts (9).

Clustering and assembling methodologies can be used to define sequence strings that
reliably represent transcripts, which can, in turn, be used to define probe sequences for
an Oligonucleotide array.
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2.3 Clustering Types

Sequence clustering methodologies can be categorized into three primary groups;
Unsupervised, Semi-supervised, and Supervised.

Unsupervised Clustering (also called non-seeded clustering) is a computationally
intensive process where a N x N comparison is made between all ESTs, and all ESTs with
a defined degree of similarity to each other are grouped into the same partition.  With
this methodology, there is no pre-conceived notion as to the number of clusters that will
be formed, and there is a higher chance of clustering error because the data content of
the sequences are generally poor.  Because this methodology has the greatest chance of
error, only researchers that only have EST data for their transcriptome would principally
use this methodology.

Semi-supervised Clustering includes well-characterized reference objects in the EST data
set.  These reference objects are often well-characterized sequence (e.g., full-length
mRNA), which serve as an implicit scaffold against which an EST can cluster.  The
primary role of such a methodology is to leverage the length of known sequence in
serving as a bridge for 5’ and 3’ EST sequence when creating a representative transcript.
Semi-supervised clustering helps in determining which ESTs already are represented by a
full-length transcript, and which ESTs are derived from novel, or unknown transcripts.
Despite the fact that the full-length transcripts have higher quality information content
than the ESTs, they are not given any special weighting in the Semi-supervised clustering
process, simply relying on the inherent value as long, well characterized sequence.

Supervised Clustering (or seeded clustering) utilizes reference objects in much the same
way that Semi-supervised clustering does, however these reference objects are given
explicitly defined value within the sequence data set.  These reference objects define the
boundary for clusters.  Reference objects in Supervised Clustering can either be well-
characterized sequence (e.g., full-length mRNA) that act as seeds during the clustering
process, or can be partial sequences that have clearly defined transcript features
(polyadenylation sites, poly A tail, etc.) that define the edge of a cluster, and ultimately
the assembled, consensus transcript.  Edge definition helps to prevent the merging of
sequences that are actually represent different transcripts, as well as prevent the
creation of chimerical assemblies.  Defining explicit reference objects can also help to
differentiate ESTs that belong to different splice variants.
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3. A GENERAL CLUSTERING AND ASSEMBLY METHODOLOGY FOR ESTs

3.1 Sequence Preparation

With any EST set, it is important to prepare the data for similarity searching.  The goal of
preparation is to 1) eliminate all sequence substrings that that have no or low probability
of existing in the biological sample (contaminants), and 2) eliminate all sequence
substrings that may lead to spurious results in similarity searching. 

Contaminants may be cloning vectors (e.g. plasmid, BACs, YACs); adapters and linkers;
transposons; and other impurities.  During an EST cluster and assembly, present 
contaminants can lead both false positives and negatives during the similarity search
process.  These contaminants can be identified and masked using NCBI’s Univec 
database (10).  The low quality reads of the 3’ and 5’ end of ESTs are candidates for
masking as well.

Repetitive elements and low complexity regions provide a problem for sequence
alignments used in clustering.  Repetitive elements (interspersed repeats) are transcript
sequence substrings found to be similar among phylogenetically related organisms, and
decrease in similarity as species diverge.  Within repeat databases, repeats are often
represented at the taxonomic Class or Order level.  Low complexity regions and simple
repeats are the primary cause of false positives in a similarity search.  Low complexity
sequence is a more general term for stretches of DNA with or without detectable
repetitive structure.

After conducting vector and repeat masking, sequences that contain a contiguous base
pair stretch that falls short of a defined minimum, should be removed from the data set
before sequence assembly.  These resulting sequences may contain low information
content, and lead to spurious results during the clustering and/or alignment procedures.
For example, as part of the Unigene build procedure, NCBI determines that a sequence
must contain at least 100 informative bp to be a candidate for entry into Unigene (11).

3.2 First-Pass Clustering

The goal of first-pass clustering is to partition a large input sequence set into reasonably
smaller sequence subsets that can be processed by the assembly program without
running out of memory (12).  In addition to creating manageable data sets, this initial
clustering reduces redundancy; while at the same time increases base position
confidence for each sequence assembly that is generated from the cluster.  The first-pass
cluster and assembly process should generate a reduced and reliable dataset that has a
low chance of containing type I errors. 

First Pass Clustering should be highly stringent, using an application (such as
MegaBLAST) that finds similarity between sequences that have only slight differences.
Slight differences observed between sequences have a greater chance of resulting from
sequencing errors, not evolutionary divergence (13).  In a pair-wise alignment, high
stringency is observed when the two sequences being compared have 95% identity and
90% overlap for both sequences.  If sequence similarity is being defined with BLAST, E
value scores of 10-4 could also be considered a stringent cutoff value (14).  
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3.3 First-Pass Alignment and Assembly

The goal of first-pass alignment and assembly is to align sequences found within each of
the clusters, and to create a consensus sequence for each cluster.  This process can be
conducted with, or without the use of Sequence Quality Scores, which are generated
during the conversion of the raw, continuous chromatogram data into discrete EST
sequences (15).  Most public domain EST sequence information is not provided with
quality scores, which makes the use of highly redundant EST sets useful in eliminating
errors by determining a consensus for each base position, after an alignment has been
performed.  EST Assemblies can be conducted using an assembly application such as
CAP3 (16), or PHRAP (17), which both can use quality score information during the
assembly process.

3.4 Second-Pass Clustering

The goal of second-pass clustering is to partition the first-pass assemblies into groups of
sequence that potentially belong to the same transcript.  Second pass assemblies should
utilize a high identity threshold (95%) but should allow for less overlap (40-70%),
particularly for ESTs that are generated using a random primer methodology.  If the ESTs
contain potential splice variants, it may be best to use an iterative second pass clustering
process that uses an ever-lessening overlap threshold.

3.5 Chimerical Sequence Detection and Removal 

Chimeric transcripts are sequences that are hybrids between heterologous mRNAs,
which can be generated by a variety of molecular mechanisms.  Analysis of NCBI’s
Unigene database has revealed that ~1% of all transcripts within the dataset contain
chimeric sequence (18).  Chimeric sequence is extremely problematic for EST assembly
procedures in that they may cause truly unique transcript clusters to join together.
Because of this, Identifying and removing these sequences is an important part of the
EST clustering and assembly process.

Because chimeric sequences are anomalous, there should be few or no such sequences
within any given cluster.  Identifying and removing putative chimeras may be a process of
simply extracting all potential chimeras from the EST dataset, applying a rule set to refute
or acknowledge their chimeric nature, and remove them from the EST clusters.  Potential
Chimeras could be found by analyzing the chimerism point of each cluster; that is the
weakest subsequence of a cluster relatively to alignment depth (19).  Once the chimerism
point has been identified, it can be tested for the presence of internal poly A stretches
and polyadenylation sites, and even endonuclease restriction sites.  Chimeras can also be
identified by genome comparison.  These sequences would then be removed from the
cluster, and a reclustering step would be performed.  
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3.6 Final Assembly

Once clustering has been completed with all putative chimeric sequences removed, a
final assembly can be constructed that contains transcript targets against which
oligonucleotide probes can be designed.  The alignment and assembly process can be
similar to what was conducted for first-pass alignment and assembly, however sequence
quality data would no longer be available for use, unless you choose to average base
positional scores for the first alignment and assembly that was performed.

3.7 Target Dataset Construction

After all ESTs have been assembled into high quality, non-redundant putative partial or
full-length transcripts, an additional step is necessary to construct the target data set for
probe design.  If 5’ derived EST were included in the dataset, and their assemblies
include no 3’ EST sequences, the 5’ EST assembly should be removed from probe design
consideration if a 3’ biased linear amplification sample preparation methodology is to be
employed.  Sequences assemblies that were derived from small clusters should also be
potentially removed from probe design consideration, as they may not represent an
actual transcript.

If the assembled ESTs belong to a well characterized genome, conducting a similarity
search against genomic sequence, or even protein sequence can help to validate the
presence of the putative transcripts within the transcriptome of interest.

4. CONCLUSIONS

Designing probes to assembled ESTs, as opposed to raw EST sequence, can significantly
improve the performance of the microarrays containing them.  There are many
methodologies that can be used in constructing EST assemblies, however most are
variations on the cluster and assembly paradigm. Incorporating full-length, well-
characterized transcript sequence into the EST data set increases overall sequence
quality, which can have a positive impact on the creation of putative transcripts, against
which oligonucleotide probes can be designed.
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