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Abstract 
The security of operating systems is a main concern for 
all computer users and programmers.  Operating system 
developers have addressed this concern in different 
ways, resulting in a number of security improvements 
for existing operating systems.  In our paper, we report 
our findings from a case study of SELinux and 
grsecurity, two prominent Linux kernel enhancements.  
In implementing Mandatory Access Control (MAC), 
SELinux is a MAC mechanism that provides domain 
type enforcement and role-based access control, while 
grsecurity employs Access Control Lists (ACLs).  We 
describe and quantify the differences between the two, 
in terms of ease of use, installation, MAC 
implementation, and performance.  We determine that 
SELinux has a stronger MAC implementation, while 
grsecurity is simpler to use and offers other exclusive 
features, such as address space protection and resource 
limiting.  We show that although SELinux and 
grsecurity use two different approaches to achieving the 
same goal, relative overall performance remains 
consistent. 

1 Introduction 
Herein, we report our findings from a case study 
conducted in order to compare the design, 
implementation, functionality, flexibility, usability and 
performance of SELinux and grsecurity.  This paper not 
only discusses the theoretical underpinnings of these 
two Linux security tools, but strives to quantify their 
performance differentials through experimentation and 
testing.   
 
In our survey of the literature, we found several 
comparisons between SELinux or grsecurity and one of 
several other tools, like Linux Intrusion Detection 
System (LIDS) or Rule Set Based Access Control 
(RSBAC), but none between the two and nothing 
approaching the rigor of any of the papers detailing 
SELinux design and implementation.  We feet it would 
be useful to the audience to review the theory, describe 

different implementations and evaluate the performance 
of two prominent Linux security patches.  We provide 
the reader with a comprehensive case study of these 
two tools in order to better inform the community of 
their performance potential. 

1.1 Relevant Terminology   
In this case study, we compare two security patches 
that include MAC mechanisms.  MAC can be defined 
as: 
  

“When a system mechanism controls access to 
an object and an individual user cannot alter that 
access, the control is a mandatory access control 
(MAC), occasionally called a rule-based access 
control. [1]”    

 
SELinux provides flexible support for policy 
configuration with the intention of overcoming some of 
the limitations of traditional MAC mechanisms.   
 
On the other hand, MAC is implemented in grsecurity 
using ACLs.  An ACL is a set of pairs associated with 
an object.  Each pair contains a subject and a set of 
rights.  Subjects can only access their associated objects 
using any of those rights.  In grsecurity, the use of 
ACLs results in process-based access control.  
Grsecurity includes a tool, gradm, for the creation and 
fine tuning of ACLs.  Grsecurity includes many 
security mechanisms besides ACLs, such as protection 
against buffer overflow exploits, file system protection, 
auditing, and randomization options. 

1.2 Outline 
In Section 2, we describe the underlying security 
architecture in SELinux.  Section 3 provides an 
overview of grsecurity.  In section 4, we compare the 
design and implementation of SELinux and grsecurity, 
as well as describe our experiences in installing, 
configuring and using each system.  Section 5 discusses 
our results of running benchmark suites on SELinux 



 

and grsecurity in order to quantify performance 
differences between them.  Section 8 compares 
SELinux and grsecurity from a practical standpoint, 
explaining differences in setting up and configuring 
each one.  The conclusions of our comparison study are 
outlined in section 9, and in section 10, we discuss 
potential future work on the subject. 

2 Security Framework in SELinux 
This section describes SELinux, including its 
implementation of mandatory access control. 

2.1  Flask 
Traditional MAC mechanisms have been tied to a 
multi-level security (MLS) policy which bases its 
decisions on the classification of objects and the 
clearances of subjects.   
 

“This traditional approach is too limiting to meet 
many security requirements.  It provides poor 
support for data and application integrity, 
separation of duty, and least privilege 
requirements. It requires special trusted subjects 
that act outside of the access control model. It 
fails to tightly control the relationship between a 
subject and the code it executes. This limits the 
ability of the system to offer protection based on 
the function and trustworthiness of the code, to 
correctly manage permissions required for 
execution, and to minimize the likelihood of 
malicious code execution. [5]” 

 
Because of the limitations of traditional approaches to 
MAC, the Flask Architecture, a general MAC 
architecture was created.  Flask was designed to 
provide flexible support for security policies, giving 
administrators the ability to use the MAC policy model 
that satisfies their security requirements.  It is possible 
to support many models of MAC, because Flask 
separates the security policy logic from the policy 
enforcement mechanism.  A security server is 
constructed to hold the security policy logic and 
interfaces for obtaining security policy decisions. 
Object manager components are responsible for 
enforcing the security policy [5]. 
 
In Flask every process and object has its own security 
context, which stipulates all security attributes of the 
process or object.  SELinux uses security identifiers, 
simply integers, to represent each security context.  
When a security issue arises, the enforcement code 
passes a pair of security identifiers (SIDs), the subject’s 
SID and the object’s SID, to a security server, which 
makes a decision based on the security contexts that the 
SIDs represent.  It is important to note that the security 
contexts have their own user identity implementations 
separate from the traditional Linux user IDs (UIDs). 

 
Flask provides an Access Vector Cache (AVC) that 
stores the security server’s access decisions for later 
use.  An object manager communicates with the 
security server to update permissions and perform 
permission checks.  The AVC allows the object 
manager to communicate like this much faster, since 
decisions are cached.   
 
Flask encapsulates security labels, supports flexibility 
in labeling and access decisions, and supports policy 
changes.  It has a process management component and 
provides a mechanism for controlling access to whole 
file systems, individual files, and directories [9]. 

2.2 SELinux as an Application of Flask 
SELinux is simply an application of the Flask 
architecture in Linux.  The policy control mechanisms 
implemented in SELinux are referred to as “permission 
checks that have been inserted at control points 
throughout the Linux kernel.”  About 140 permissions, 
grouped into 28 object classes, are defined and make 
almost every system operation controllable.  The 
permission checks communicate with the security 
server to access SIDs and determine access amongst 
instances of objects in the system. 

In [6] a description of an example security server 
implemented for SELinux is given.  This example uses 
a combination of Identity-based Access Control 
(IBAC), Role-based Access Control (RBAC), and Type 
Enforcement (TE). A security context in SELinux has 
three attributes: an identity, a role, and a type.  Every 
process in the system has an identity. This identity is 
separate from standard Unix user id. The SELinux user 
identity determines what roles and domains can be 
used. A user of the system has a set of roles that he may 
take on at any time. For example, an administrator will 
use the user role (user_r) when he is doing normal user 
tasks, but he will switch to a more privileged admin 
role (sysadm_r) when he must add users and the like. It 
is important to note that when the user switches roles, 
his identity does not change.  

The role determines what domains can be used. The 
policy determines which roles each identity can 
become. Every object in the system has a type, which 
determines who can access the object. Every process 
runs in a domain. The domain determines how much 
access a process has.  In SELinux types are 
synonymous to domains. The concept of a domain and 
a type are similar except types apply to object (e.g. 
files, sockets), whereas, domains apply to processes.  
The RBAC policy in SELinux allows a user to enter 
some specific domain by way of an individual role in 
his set of roles.  The TE policy allows for fine-grained 
access control.  



 

SELinux provides several security mechanisms 
including ones for process control, file control, and 
socket control.  Sockets are accessed through file 
descriptions and therefore inherit permissions defined 
for the file object classes.  Refer to the section entitled 
Security Mechanisms in [5] for a more detailed 
description of the security mechanisms implemented in 
SELinux. 

2.3 Policy Configuration 

2.3.1 The Security Policy Language 
With SELinux one can implement a security model 
within the context of a combination of a TE model and 
an RBAC model, as described earlier.  With a TE 
model one can define the security policy for processes 
and objects at a very low-level, and with the RBAC 
model one can maintain a higher-level abstraction of 
the policy for management ease.   
 
TE statements are attribute declarations, type 
declarations, type transition rules, type change rules, 
access vector rules, or assertions.  All of these describe 
attributes and rules of types that one can create.  RBAC 
statements are role declarations, role dominance 
definitions, or role-allow rules.  They describe rules for 
user roles that one can create.  The TE and RBAC 
grammar is as follows: 
 
te_rbac -> te_rbac_statement | te_rbac 
te_rbac_statement 
te_rbac_statement -> te_statement | 
rbac_statement 
te_statement -> attrib_decl | 
                type_decl |  
                type_transition_rule |  
                type_change_rule |  
                te_av_rule |  
                te_assertion 
rbac_statement -> role_decl |  
                  role_dominance |  
                  role_allow_rule 
 
[7] 
 
More specialized grammars are available making the 
SELinux policy language robust and complete.  These 
include grammars for attribute declarations, type 
declarations, role declarations, role transition roles, etc.  
Below are some applications of the grammar that show 
how the TE and RBAC models interact. 
 
user root roles { staff_r sysadm_r } 
 
This example shows how roles map to an identity. 
According to this rule, the root user can operate in the 
staff_r and sysadm_r roles. 
 
allow system_r sysadm_r; 
 

This rule allows the system_r role to transition to the 
sysadm_r role. 
 
type lib_t file_type, sysadmfile; 
 
This rule defines a type lib_t for system library files. 
Only the administrator should be able to alter these 
files, so this type is designated with sysadmfile 
modifier. 
 
/sbin/insmod.* 
system_u:object_r:insmod_exec_t; 
 
allow sysadm_t insmod_exec_t:file 
x_file_perms; 
allow sysadm_t insmod_t:process transition; 
allow insmod_t insmod_exec_t:process 
{entrypoint execute}; 
allow insmod_t sysadm_t:fd inherit_fd_perms; 
allow insmod_t self:capability sys_module; 
allow insmod_t syadm_t:process sigchld; 
 
These examples [5] show a portion of the insmod utility 
policy. The insmod utility allows a system administrator 
to insert kernel modules. The insmod program is 
labeled with the insmod_exec_t type as shown in the 
first example, though it runs in the insmod_t domain. 
The first example defines the context for the insmod 
utility; it has the system_u identity, system_r role, and it 
resides in the insmod_exec_t domain. In the second 
example, the first rule allows the administrator to 
execute the insmod program. The second rule allows 
sysadm_t domain to transition to the insmod_t domain. 
The third rule allows the insmod program to enter the 
insmod_t domain (by declaring the entry point) and 
execute in that domain. The fourth rule allows the 
insmod utility to use file descriptors from sysadm_t 
domain. The fifth rule allows the insmod utility to use 
the CAP_SYS_MODULE utility, which allows for 
inserting and removing kernel modules. The final rule 
allows insmod to send the SIGCHLD signal to the 
sysadm_t domain when it exits. 

2.3.2 Policy Customization 
There are degrees of difficulty in customizing the 
policy.  For example it is fairly easy to add a user to the 
system; the administrator must edit the policy/users file 
by specifying a name for the user and the user’s 
associated allowable roles.  Adding permissions, 
however, is more difficult because first new rules must 
be defined and it may be necessary to make 
modifications to the RBAC model for the object or 
subject in question or even relax or tighten constraints 
with the involved object or subject. 

2.4 Summary 
SELinux is an application of the Flask architecture. It 
provides a MAC mechanism that incorporates IBAC, 



 

RBAC and TE. The policy syntax is non-trivial, but 
allows for flexible policy configuration.  

3 Grsecurity Overview 
Grsecurity is a suite of patches (300K total) that is an 
attempt to improve Linux security.  According to Brad 
Spengler, the creator of grsecurity, the suite meets four 
goals.  First, grsecurity offers configuration-free 
operation.  Second, it gives protection against all kinds 
of address space modification bugs.  Next, grsecurity 
includes a rich access control list system and many 
auditing systems.  Finally, it operates on multiple 
processor architectures and operating systems. 
 
As stated by Spengler, there are many problems with 
the current “avoid/identify/fix” method of dealing with 
software bugs.  He likens the task of keeping systems 
secure to a “never ending rat race,” an endless cycle of 
discovering and fixing bugs.  Grsecurity is offered as a 
solution, and is reported to detect, prevent, and contain 
software bugs that are security vulnerabilities.  
Detection is obtained through auditing and logging of 
attacks.  Prevention is implemented by PaX (address 
space protection) and other techniques.  Finally, 
containment is offered by grsecurity’s access control 
list system.  The following sections discuss this ACL 
system and the various other security options offered by 
grsecurity. 

3.1  Grsecurity Access Control Lists 
Mandatory access control is implemented in grsecurity 
using access control lists (ACLs) [10].  Within these 
structures, administrators define restrictions on 
subjects, including access to files, capabilities, 
resources, and IP.  For every event, the kernel will 
check the ACL for the executing process and the 
standard Linux ACL with the requested object.  Access 
is granted only when both systems agree. 
 
Grsecurity ACLs are made up of subjects (processes) 
and objects (files, capabilities, resources, and IP ACLs).  
ACL structures define what the restrictions that 
processes should adhere to.  Inheritance is provided to 
reduce the necessary configuration needed for similar 
binaries.   
 
ACLs have the following general structure: 
 
<path of subject process> <optional subject 
modes> { 
 <file object> <optional object modes> 
 [+|-]<capability> 

<resource name> <soft limit> <hard 
limit> 
connect { 

<ip>/<netmask>:<low port>-<high 
port> <type> <proto> 
 } 

bind  { 

<ip>/<netmask>:<low port>-<high 
port> <type> <proto> 
} 

} 
 
This implementation of ACLs creates a form of 
process-based mandatory access control.  It is possible 
to restrict what a process can and cannot do.  
Additionally, access can be restricted to an object for 
any user, even root.  Further, these restrictions cannot 
be changed by normal users.  The system will soon 
offer role-based access control as well [10]. 

3.1.1 IP Access Control Lists 
Grsecurity IP access control lists allow administrators 
to control many things, such as what IPs and ports a 
process can bind to on a server, what IPs and ports 
users can connect to remotely, what kind of sockets a 
process can use, what protocols sockets are allowed to 
use. 
 
As shown above, the format of an IP ACL is: 
 
connect{ 
 <ip>/<netmask>:<low port>- 

<high port> <type> <proto> 
}  

bind  { 
 <ip>/<netmask>:<low port>- 

<high port> <type> <proto> 
} 

 
For example, a valid IP ACL is [10]: 

 
connect{ 

192.168.1.2/24     stream dgram tcp udp 
134.55.22.12/24:80   stream tcp 
} 

bind  { 
192.168.1.2/24:1024– 
65535 any_type any_proto 
} 

3.1.2 Gradm tool 
With grsecurity comes a powerful tool called gradm.  
This tool is used for configuring ACLs.  Specifically, it 
parses ACLs, enforces a secure base policy, optimizes 
ACLs, and offers a learning mode for fine-tuning 
ACLs. 
  
Learning mode in grsecurity is process-based.  It can be 
used on a single process while the rest of the system 
remains protected.  It can be used to create an access 
control list that is optimized for a new process on a 
particular environment.  Learning mode supports files, 
capabilities, resources, and socket usage.   

3.2 Additional Security Mechanisms 
Grsecurity includes many security mechanisms besides 
access control lists, such as protection against buffer 



 

overflow exploits and protection against fork bombs.  It 
includes PaX, logging options, executable protections, 
network protections, and more.  This section will 
explore those mechanisms.  In the following 
subsections, the italicized text represents grsecurity 
configuration options.  

3.2.1 Filesystem Protection 
In Linux, the /proc filesystem is a pseudo-filesystem 
used as an interface to kernel data structures.  Although 
most of it is read-only, some files allow kernel variables 
to be changed [2].  Sometimes, it is subject to exploits, 
so grsecurity provides Proc restrictions.   
 
While using these filesystem protections, multiple 
restrictions are available.  First, restrict to user only 
ensures that users can only view information about their 
own processes.  Additional restrictions are available to 
hide CPU and device information.  For users of chroot 
jails, chroot jail restrictions offers several options for 
chroot restrictions.  Additionally, Linking restrictions 
control a user’s ability to follow symbolic links and 
make it impossible to hardlink to files she does now 
own.  Finally, FIFO restrictions curb users from 
writing to FIFOs in world-writeable directories if they 
are not the FIFO or directory owner [4]. 

3.2.2 Kernel Auditing 
Grsecurity allows administrators to configure the 
amount of logging provided by the kernel [4].  This 
auditing capability is meant to detect attacks.  
Examples of audited events include exec, chdir(2), 
mounting/unmounting devices, signals, failed 
forks.   

3.2.3 Executable Protections 
Executable protection is provided in grsecurity, since 
most exploits work through or with running processes.  
If Enforce RLIMIT_NPROC is enabled, resource limits 
on processes are checked during execve() calls.  
Emesg(8) restrictions prevent non-users from using 
dmesg to view the log buffer.  Further options include 
Randomized PIDs and Trusted path execution. 

3.2.4 Network Protections 
To prevent the potential prediction-based attacks in the 
default Linux TCP/IP stack implementation, grsecurity 
includes many options.  Larger entropy pools doubles 
the poolsize.  Randomized IP IDs are available to 
prevent operating system fingerprinting and spoofed 
scans.  To prevent RPC connection hijacking, 
Randomized RPC XIDs can be enabled to randomize 
RPC transaction IDs (XIDs).  With Truly random TCP 
ISN selection, TCP Initial Sequence Numbers are 
randomized.  Randomized TCP source ports 
randomizes the dynamically generated connect() source 

port.  With Altered Ping IDs, ICMP echo replies are 
altered to make their IDs equal to the ID of the echo 
requests they respond to.  Socket restrictions are offered 
to Deny any sockets to group, Deny client sockets to 
group, and Deny server sockets to group [4].   

3.2.5 PaX Address Space Protection 
Many Linux exploits, such as buffer overflow bugs, 
take advantage of how Linux handles memory.  The 
PaX project attempts to prevent and contain the 
problem by creating defense mechanisms against 
exploits that give an attacker access to the attacked 
task’s address space [3].  This section will contain a 
brief overview of PaX.   
 
New executable code can be introduced into a task’s 
address space in two ways.  First, an executable 
mapping can be created.  Second, an existing 
writable/executable mapping can be modified.  PaX 
attempts to deal with the second method, while leaving 
the first to access control mechanisms.   
 
To combat the problem of writable/executable mapping 
modifications, PaX provides the NOEXEC category of 
features.  The philosophy of NOEXEC is that if some 
data in a task’s address space does not need to be 
executable, then it should not be.  These pages must be 
marked as non-executable.  Furthermore, if an 
application does not need to generate code at runtime, 
then it should not have the ability to.  PaX should, 
therefore, be able to prevent memory page state 
transitions between executability and writability.  So, 
NOEXEC enforces a type of least privilege.  Some of 
the features of NOEXEC are that it implements 
executable semantics on memory pages, makes the 
stack and heap non-executable, creates ELF 
(Executable and Linking Format) object file mappings 
with only the requested access rights (only those with 
code will be executable), and locking down of 
permissions on memory pages. 
 
The Linux implementation of PaX is split into two main 
feature sets, NOEXEC (PAGEEXEC and 
SEGMEXEC), and the MPROTECT page protection 
restrictions.  PAGEEXEC implements the non-
executable page feature using the paging logic of IA-32 
based CPUs.  SEGMEXEC, on the other hand, 
implements the non-executable page feature using the 
segmentation logic of IA-32 based CPUs.  MPROTECT 
attempts to prevent the introduction of new executable 
code into the task’s address space. 
 
In practice, most attacks require advance knowledge of 
assorted addresses in the attacked task.  Consequently, 
PaX contains a second set of features, the address 
layout randomization (ASLR) features. ASLR is 
intended to introduce randomness into these addresses, 



 

thus forcing attackers to guess each address or obtain it 
by brute force.  With this option activated, exploits will 
probably crash the attacked application, making it easy 
to catch and react to the attack [4].  Options are 
available for randomizing the kernel stack base, 
randomizing the user stack base, and randomizing the 
nmap() base. 
  
It should be noted that some applications need to do 
things that PaX disallows.  The provided tool chpax 
gives the user fine grained control over PaX features on 
a per executable basis to combat this problem.   
 
PaX is part of grsecurity.  By default, PAGEEXEC, 
SEGMEXEC, MPROTECT, and RANDMAP are all 
enabled on ELF binaries in the grsecurity system [10].  
Additionally, PaX has been decoupled from grsecurity 
and can be integrated into SELinux and other MAC 
projects.  
 
3.3 Summary 
Grsecurity is a suite of patches that attempt to improve 
Linux security in many ways.  First, it offers an ACL 
system.  Second, it employs auditing and logging for 
detection of attacks.  PaX is used to prevent attacks by 
protecting the address space.  The combination of these 
security mechanisms detect, prevent, and contain 
attacks. 

4 Security and Application Comparison 
In this section, we compare the SELinux and grsecurity 
implementations of mandatory access control 
mechanisms.  We also describe and compare our 
experiences with installing and using the two. 

4.1 Protection Models 
Grsecurity has a simple MAC implementation.  It does 
not implement the domain-type enforcement 
component of SELinux, though the grsecurity MAC 
functionality is somewhat similar.  Both essentially 
provide an access matrix defining permissions between 
processes and files. Domain-type enforcement is more 
flexible in terms of policy definition.  It provides for 
better isolation between processes and allows for a 
more fine-grained description of the sharing between 
processes.   
 
Grsecurity has no concept of role-based access control, 
but we can expect to see RBAC in a subsequent release.  
Consequently, grsecurity does not allow the 
administrator to give different levels of access to 
different non-root users outside the limited 
discretionary access control (DAC) mechanisms (in 
which an individual user can allow or deny access to an 
object [1]). Both grsecurity and SELinux will respect 
DAC if DAC permits less access than the respective 
MAC implementation. 

 
SELinux also provides more fine-grained access than 
grsecurity in general, especially with respect to sockets 
and other inter-process communication (IPC) 
mechanisms.  On the other hand, grsecurity supports 
certain features that SELinux lacks. For example, 
grsecurity supports fork() rate limiting, various resource 
limiting and randomizing options.   
 
Grsecurity also includes PaX for protection against 
stack smashing attacks and the like. PaX has recently 
been updated so it may be used on SELinux systems, so 
this is no longer an advantage.  
 
The path-based protection mechanism that grsecurity 
provides is considered weak, since paths are not 
necessarily unique. SELinux uses an inode-based 
approach, so it does not have this weakness.   
 
4.2 Installation 
Grsecurity is much simpler to install than SELinux.  To 
install grsecurity, the site administrator need only patch 
the kernel with the grsecurity kernel patches and install 
gradm. If she wants to employ the PaX address space 
protection mechanism, she must also install the chpax 
utility. No other changes need be made. 
 
To install SE Linux, the site administrator must patch 
the kernel.  She must also install libselinux, 
checkpolicy, and policycoreutils.  These packages are 
roughly equivalent to gradm in that they provide the 
userspace component of SELinux.  Additionally, 
various system related utilities such as login and ps 
must be patched in order to support security labels. 
 
If the administrator uses a Linux distribution that 
supports SELinux such as Gentoo or Debian however, 
the SELinux installation process is comparable to 
grsecurity in difficulty.  The distributions take care of 
installing the SELinux utilities and patching the 
necessary applications. 

4.3 Ease of Use 
Overall, grsecurity is simpler to administer than 
SELinux.  First, grsecurity policies are simpler to 
create, since there are no roles or complicated 
domain/file transitions.  Second, the administrator need 
not write policies manually. Gradm in learning mode 
can be used to generate policies automatically. The 
administrator will likely want to adjust these policies 
somewhat. 
 
There is no such tool for SELinux. SELinux ships with 
a very simple perl script audit2allow that will convert 
denials in system logs to SELinux rules. This tool 
requires that a basic policy exists. It can only be used to 
adjust an existing policy. Since the script performs such 



 

a simple translation, the user does not gain much from 
using it aside from a few saved keystrokes. The 
generated rules must be audited carefully, as the script 
does not analyze the security impacts of the generated 
rules. Tresys has released some tools to help with 
policy analysis and construction yet, these tools do not 
generate policies automatically either.  
 
SELinux requires that all files be labeled with a security 
context.  Whenever an administrator installs a new 
program, she must manually re-label all the files 
associated with the context. Gentoo and Debian both 
provide package managers that support for automatic 
file re-labeling.  SELinux requires that the administrator 
use SELinux wrappers for standard UNIX user 
management utilities, such as useradd and vipw.  
Grsecurity relies on the standard utilities.  Unlike 
grsecurity, SELinux also requires that the administrator 
creates an initial ramdisk to hold the policies. This is 
not an overly onerous requirement, however.  

4.4 Documentation 
Probably because it was developed by the NSA, an 
abundance of documentation is available for SELinux.  
This documentation includes many published papers, 
technical reports, presentations, and mailing lists.   
 
Grsecurity, unfortunately, is not as well documented.  
Only one formal document is available, and it focuses 
on only the ACLs [10]. Additional information can be 
found in forums and in informal web sites.  

4.5 Linux Security Modules 
The Linux Security Modules (LSM) project is an 
attempt to include a security framework within the 
mainstream Linux kernel.  The project came about after 
many projects, such as SELinux, grsecurity, LIDS, 
DTE, and SubDomain, developed security kernel 
patches for Linux [8].   
 
Basically, the LSM kernel patch provides a framework 
to support access control modules.  Alone, the 
framework does not provide extra security.  The patch 
adds security fields to kernel data structures.  Then, 
calls to hook functions are inserted at critical points in 
the kernel code to manage these security fields and 
enforce access control.  Functions are added for 
registering and un-registering security modules.  This 
infrastructure can then be used by loadable kernel 
modules to implement any desired model of security.  
At the present, LSM only focuses on access control, but 
it may be extended in the future [8].   
 
SELinux and grsecurity have taken widely different 
stances on the LSM project.  Although SELinux was 
originally developed as a kernel patch, it was totally 
reimplemented as a security module using LSM.   

 
Grsecurity, on the other hand, does not use LSM.  This 
is for multiple reasons.  First, Spengler believes that 
LSM could be detrimental to Linux security.  He says, 
“Because LSM is compiled and enabled in the kernel, 
its symbols are exported.  Thus, every rootkit and 
backdoor writer will have every hook he ever wanted in 
the kernel.  This will allow for a new generation of 
sophisticated backdoors and rootkits that will be nearly 
impossible to detect [11].”  Additionally, Spengler says 
that LSM is not appropriate for grsecurity because it 
only involves access control; the additional features of 
grsecurity would not operate under LSM. 
 
The use of LSM remains a fundamental difference in 
the design of the two patches. 

5 System Performance Expectations and 
Benchmarking  

As we have discussed, SELinux and grsecurity differ in 
their respective security models.  Since security 
mechanisms generally have some performance impact, 
we wish to quantify how these two implementations 
differ in terms of performance.  As in [12], the best way 
to evaluate performance is through objective 
benchmarks.  We chose to replicate the benchmarking 
tests conducted in [5] and included grsecurity data. 
 
We note that we have replicated the tests and not the 
experimental conditions under which Loscocco and 
Smalley conducted their tests of SELinux.  Our intent is 
to neither validate nor refute their findings, but rather to 
provide the reader with a comparative basis by which 
one can asses these two implementations critically as a 
component of our case study.  While performance 
differentials exceed the bounds expressed in [5], in 
some cases by orders of magnitude, our results reflect 
performance based on our particular experiment’s 
environment.  
 
Microbenchmarking suites such as lmbench and 
Unixbench perform a sequence of low-level operations 
in a controlled, timed environment and report 
performance metrics.  As in [5], we converted the units 
in which Unixbench reports its results to units that 
compare more readily to lmbench results.  The two 
benchmarking suites both employ a number of sub-
programs, or microbenchmarks, that perform low-level 
operations.  The low level of these tests provides 
precision required to make informed conclusions 
regarding performance.   
 
We established a testbed consisting of two identical 
PCs, each configured with Gentoo Linux 1.4.1, running 
AMD K6 II microprocessors with a clock speed of 
450MHz, and having 8Gb Fujitsu hard drives and 
128Mb of memory.  One PC’s Linux installation was 



 

patched with SELinux, and the other grsecurity.  We 
conducted three iterations of each test suite on both 
SELinux and grsecurity with security policies being 
enforced in both. 
 
Before conducting benchmark experiments, we 
surveyed the literature and posed a hypothesis 
regarding performance, based upon the theoretical and 
practical concerns presented by both models and 
implementations.  Since system performance is derived 
from a relatively high-level view, our hypothesis 
contended that there would be no significant overall 
difference in observed system performance between 
SELinux and grsecurity, but that there would be 
differences in their performance of specific tasks, like 
disk operations, I/O, floating point calculations etc., 
largely as a result of how each patch implements its 
security model at low levels.  Since benchmark results 
are most often used as a basis for decision-making, we 
leave it up to the reader to apply the results and 
interpretations that we have included here.   

5.1 Unixbench   
Our results for Unixbench are shown in Table 1.  The 
tests we chose to include correlate to most of the tests 
in [5], but we note they are only a subset of all results 
available for analysis.  We feel the variety of 
microbenchmark tests in terms of granularity of 
operations provides for an acceptable basis of 
comparison and should underscore the performance 
differentials between the two patches.   
 

Microbenchmark Base SELinux  Over-
head 

grsec Over-
head 

File Copy 4096 30.5 29.4 3.4% 20.4 32.9% 
File Copy 1024 28.7 28.7 -0.1% 30.5 -6.4% 
File Copy 256 14.3 13.6 5.1% 16.0 11.7% 
Pipe 3.3 5.0 52.9% 3.2 -3.6% 
Context Switching 10.4 16.3 56.7% 10.2 -1.7% 
Process Creation 451.4 477.3 5.7% 477.5 5.8% 
Execl  1379.9 1371.6 -0.6% 1390.0 0.7% 
Shell Scripts 365.5 383.2 4.9% 348.4 -4.7% 

Table 1 – Unixbench Results 

The file copy operations capture the number of 
characters copied to a file based on the various buffer 
sizes indicated.  Pipe measures inter-process 
communication.  Context switching captures the 
communications between a parent and child process.  
Process creation measures the number of child process 
that can be forked in 10 seconds.  Execl replaces a 
currently running process with a new one.  The shell 
script test measures the execution of a shell script by 8 
concurrently running processes.   
 
We observe conflicting results for file copy operations.  
In SELinux, as buffer size increases, latency becomes 

negligible, whereas in grsecurity, an increasing buffer 
size induces a penalty of increasing magnitude.  We 
observe significant performance penalties in SELinux 
for pipe throughput and pipe-based context-switching 
as a result of the revalidation of permissions 
 
Since subject-object associations must still be verified, 
this results in additional overhead relative to grsecurity 
where the ACL is loaded and checked once.  In the 
remaining microbenchmarks, we see negligible 
overhead or even improved performance relative to the 
baseline consistently with both patches. 

5.2 lmbench  
Our results for Lmbench are shown in Table 2.  The 
tests included here, as in Unixbench, are a subset of all 
microbenchmark tests available for analysis from the 
suite. 
 

Microbenchmark Base SELinux 
Over- 
head grsec 

Over- 
Head 

null I/O 1.78 3.72 108% 1.52 14% 
stat 7.74 15.88 105% 293 3.6K% 
open/close 9.90 19.60 98% 1098 11K% 
fork 486 464 -4.69% 484 0.58% 
evecve 1533 1543 0.64% 1611 5.1% 
sh 6321 6482 2.55% 6379 0.92% 
pipe 9.83 15.88 61.53% 9.24 6.1% 
AF_UNIX 19.07 24.67 29.38% 21.42 12.3% 
UDP 48.1 45.5 -5.38% 42.2 12.1% 
TCP 62.1 83.2 34.% 71.0 14% 
TCP/IP 248 292 17.5% 267 7.4% 

Table 2 - lmbench results 

As in [5], null I/O is the average combined time for a 
one byte read and write operation. The stat test measure 
the time required to obtain the status of an unopened 
temporary file created by the benchmark suite.  
Open/close simply times the opening and closing of a 
temporary file for reading.  Fork, execve and sh time 
process creation from fork() and exit, to fork() and 
execve, to fork() and instantiating the shell.  Pipe 
latency, AF_UNIX, UDP and TCP latency and TCP/IP 
tests all time inter-process communication between two 
processes on the tested system.     
 
We observe pronounced overhead in SELinux in the for 
the I/O timing, largely as a result of having to revalidate 
permissions for each operation in SELinux.  In 
grsecurity, however, we see a performance degradation 
orders of magnitude more than in SELinux in file 
operations, but not in IPC, and certainly not with the 
same magnitude.  This latency is likely a result of 
repeated checks of the ACL in grsecurity for each file 
operation.   



 

5.3 Conclusions 
In general, we have not seen a significant gap in overall 
system performance between the two patches, but our 
benchmark suites do reveal some critical performance 
advantages along with some inconclusive results.  
Unixbech’s microbenchmarks that target inter-process 
communication reveal noticeable overhead in SELinux 
relative to grsecurity, yet lmbench’s tests targeting the 
same do not reveal that, at least not conclusively.  This 
disparity makes it difficult to asses each patch’s relative 
performance in this domain.  Perhaps underscoring 
more of the subjectivity of interpreting 
microbenchmark results at a high level, our experiments 
cannot provide the basis for making an implementation 
decision with regards to either SELinux or grsecurity, 
nor can we predict performance based on our results.  
Our hypothesis before experimentation is largely 
validated, and we have revealed the metrics that support 
our claim that different processes, and hence user tasks, 
will incur overhead based on the security model being 
implemented.  Our metrics and conclusions presented in 
this section say nothing about the inherent security 
afforded by either patch.   

6 Policy Analysis and Experimentation 
In order to more effectively compare grsecurity and 
SELinux, we decided to write a security policy for a 
representative application.  We chose irssi, a popular 
command-line IRC client, since it is not overly complex 
but somewhat representative of networked applications 
that run on server machines.  

6.1  Grsecurity policy 
We generated the grsecurity ACL by running gradm in 
learning mode.  Gradm would then analyze the system 
logs to see what resources the application required and 
output a policy. 
 
In order to use gradm, we first created a default least 
privilege ACL in learning mode.  Below is the policy 
which was generated after running irssi several times. 
 
irssi.acl: 
 
/usr/bin/irssi o { 
 /usr/share/zoneinfo/US/Eastern r 
 /usr/share/terminfo/l/linux r 
 /usr/share/irssi/themes/default.theme r 

 /usr/lib/perl5/vendor_perl/5.8.
1/i586-linux/Irssi/Irc.pm  

 /usr/lib/perl5/site_perl/5.8.0  
 /usr/lib/perl5/5.8.1/Symbol.pm r 
 /usr/lib/perl5/5.8.1/Exporter.pm r 
 /usr/lib rx 
 /proc/sys/kernel/version r 
 /proc/1941/exe  
 /proc/1941  
 /proc/1885/exe  
 /proc/1885  
 /proc/1880/exe  

 /proc/1880  
 /lib rx 
 /lib/ld-2.3.2.so x 
 /home/lori/.irssi/config r 
 /home/lori/.irssi  
 /etc r 
 /dev/urandom r 
 /dev/null r 
 /usr/bin/irssi x 
 / h 
 -CAP_ALL 
 RES_FSIZE 0 0 
 RES_DATA 587536 587536 
 RES_STACK 17384 17384 
 RES_RSS 0 0 
 RES_NPROC 8 8 
 RES_NOFILE 8 8 
 RES_MEMLOCK 54096 54096 
 RES_AS 7082272 7082272 
 RES_LOCKS 0 0 
 
 connect { 
  130.239.18.172:6667 stream tcp 
  209.218.71.2:6667 stream tcp 
  128.143.136.15:53 dgram udp 
 } 
 
 bind { 
  0.0.0.0:0 dgram ip 
 } 
 
} 
 
The policy defines which files the program can access 
and what sort of access is allowed. It also determines 
what sort of resources the process is allowed.  Finally, it 
determines the application's allowed network 
operations. 
 
We modified the above policy by hand in order to allow 
any user to use irssi.  In the gradm-generated policy, 
only the user lori would be able to run irssi.  The irssi 
binary was allowed access only to the user lori's 
configuration files.  Additionally, the gradm-generated 
policy was modified to allow the irssi executable to 
connect to any IRC server.  Finally, the ACL was 
modified to allow access to any /proc filesystem entry 
that might be used.  These manual changes were 
necessary, since we did not run the program in all 
possible scenarios during the learning phase.  

6.2  Selinux policy 
We developed this policy mostly by hand through 
careful examination of the system logs for AVC denials 
while irssi was running. We consulted other example 
policies for guidance. We also used the audit2allow 
script for minor tweaking. We carefully audited the 
rules audit2allow generated, however.  
 
irssi.fc: 
 
# irssi 
/usr/bin/irssi 
 system_u:object_r:irssi_exec_t 



 

 
This file sets up the security context of the irssi binary. 
The file contexts for irssi's configuration files are 
defined by the default policy. The file /etc/irssi.conf has 
the context system_u:object_r:etc_t; whereas, the file  
<userid>/.irssi/config has the context  
<userid>:object_r:user_home_t. 
 
irssi.te: 
 
#DESC irssi - IRC client 
# 
                                                                                 
user_application_domain(irssi) 
can_network(irssi_t) 
                                                                                 
# lib access 
allow irssi_t lib_t:file { getattr read ioctl 
}; 
                                                                                 
# allowed signals 
allow irssi_t irssi_t:process { signal fork 
sigchld }; 
                                                                                 
# use of proc filesystem 
allow irssi_t proc_t:dir { search }; 
allow irssi_t proc_t:lnk_file { read }; 
                                                                                 
# access config files 
type user_home_irssi_t, file_type, sysadmfile; 
allow irssi_t home_root_t:dir { search getattr 
}; 
file_type_auto_trans(irssi_t, user_home_dir_t, 
user_home_irssi_t, dir) 
file_type_auto_trans(irssi_t, user_home_t, 
user_home_irssi_t, file) 
allow irssi_t user_home_t:file { getattr read 
write }; 
allow irssi_t etc_t:file { getattr read }; 
                                                                                 
# locale support 
read_locale(irssi_t) 
                                                                                 
# name resolution 
allow irssi_t resolv_conf_t:file { read 
getattr }; 
                                                                                 
# access urandom 
allow irssi_t random_device_t:chr_file { read 
}; 
                                                                                 
# pts support 
allow irssi_t user_devpts_t:chr_file 
rw_file_perms;                                                                                 
                                                                                 
# ssh 
allow irssi_t sshd_t:fd { use }; 
                                                                                 
# access theme 
allow irssi_t usr_t:file { getattr read }; 
                                                                                 
# needed for pipe 
allow irssi_t irssi_t:dir { search }; 
allow irssi_t irssi_t:fifo_file { read write 
}; 
                                                                                 
# other denials 
#allow irssi_t bin_t:dir { search }; 
#allow irssi_t opt_t:dir { search }; 

#allow irssi_t sysctl_kernel_t:dir { search }; 
#allow irssi_t sysctl_kernel_t:file { read }; 
#allow irssi_t sysctl_t:dir { search }; 
#allow irssi_t irssi_t:lnk_file { read }; 
 
The first two lines are macros. The first sets up various 
operations associated with the a user domain 
application. For example,  it creates the irssi_t and 
irssi_exec_t domains and defines the transitions to and 
from these domains. The second macro defines 
common networking operations. There are a few other 
macros that ease the policy creation policies. The 
file_type_auto_trans macro is of special interest. If the 
creating domain of the file is irssi_t and the parent 
directory of the file is user_home_t (or 
user_home_dir_t), the file will be given the user_irssi 
context. The rest of the lines determines what 
operations (e.g. Read) are valid on each type. The lines 
at the end of the file are commented, since they are not 
actually necessary to run irssi. The program does 
attempt these operations, however, so they will be 
logged as AVC denials in the system logs when these 
lines are commented. 

7 Conclusions 
After doing a thorough theoretical and practical 
comparison between SELinux and grsecurity, we were 
able to make several broad conclusions about the 
potential advantages and disadvantages of each system 
with respect to the other.  We compared the two in 
terms of their theory and practicality so as to provide a 
deeper understanding of their differences.   
 
SELinux is a more powerful access control mechanism, 
since it incorporates role-based access control and more 
fine-grained access control in general.  Nevertheless, 
we believe the two theories underscore sound security 
models.  They both allow for easy control of access 
between processes and objects, processes and other 
processes, and objects and other objects. 
 
While both systems implement MAC, they have many 
distinguishing characterisitics.   The Flask architecture 
in SELinux provides for a flexible security policy.  The 
policy language is complex but allows for powerful 
security configurations.  Grsecurity, on the other hand, 
comes with the gradm tool, which is capable of 
programmatically optimizing and fine-tuning ACLs in 
the operating system.  When making a decision about 
implementing one of these systems, one should 
consider that SELinux provides a more powerful access 
control mechanism, whereas grsecurity is easier to use 
and includes many other security options.  In terms of 
relative performance, while we observed differences in 
microbenchmark measurements, both systems’ overall 
performance was similar.  



 

8 Further Work 
In our experiments, we ran a number of 
microbenchmarks to compare the performance of 
grsecurity and SELinux. We would like to run more of 
these microbenchmark suites to gather further 
performance data. Additionally, we would like to run 
various real-world applications such as Apache or Bind. 
 
Moreover, we would like to further explore the many 
security options of grsecurity.  For this work, we 
largely focused on access control and PaX because 
many of grsecurity’s security mechanisms are not 
available in SELinux.   
 
Furthermore, we would like to compare the next 
generation of grsecurity against SELinux.  It may prove 
to be a more interesting comparison, since it is slated to 
support RBAC.  It would also be interesting to compare 
RSBAC, a less popular MAC system that incorporates 
both RBAC and DTE.  We would also like to 
investigate the SELinux policy tools from Tresys.  
Additionally, we would like to do a vulnerability 
assessment of systems running both SELinux and 
grsecurity.  Finally, we would like to measure the 
performance of real-world program, such as apache. 
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