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Preface

Tumour evolution is a very complex process, involving many different phenom-
ena, which occur at different scales. In fact, the phenomenological description
strongly depends on the enlargement used in the real or ideal microscope
used by the biologist or by the modeller. A biologist, a bio-chemist, or a
medical doctor would probably describe the phenomena occurring during the
evolution of tumours using three natural viewpoints: the sub-cellular level,
the cellular level, and the tissue level. From the modelling point of view a
connection can be approximately drawn between the description levels above
and the microscopic, mesoscopic, and macroscopic scales.

So, the microscopic scale refers to those phenomena that occur at the sub-
cellular level and therefore to activities that take place within the cell or at
the cell membrane, e.g., DNA synthesis and degradation, gene expression,
alteration mechanisms of the cell cycle, absorption of vital nutrients, acti-
vation or inactivation of receptors, transduction of chemical signals between
cells that regulate cellular activities, such as duplication, motion, adhesion,
or detachment.

The mesoscopic scale refers to the cellular level and therefore to the main
activities of the cell populations, e.g., statistical description of the progres-
sion and activation state, interactions among tumour cells and the other types
of cells present in the body such as endothelial cells, macrophages, lympho-
cytes, proliferative and destructive interactions, aggregation and disaggrega-
tion properties, and intravasation and extravasation processes.

The macroscopic scale refers to the tissue level and therefore to those phe-
nomena which are typical of continuum systems, e.g., cell migration, convec-
tion and diffusion of nutrients and chemical factors, mechanical responses,
interactions with external tissues, capsule formation and rupture, diffusion of
metastases, and phase transitions (from free to bound cells and vice versa).

Of course what happens at a certain scale is strongly linked to what hap-
pens at the other scales. Therefore it is impossible to completely describe a
phenomenon without taking into account others occurring at a smaller or a
larger scale. This means that like a set of Chinese boxes, mathematical models
and methods characteristic of different scales could be interlaced to achieve
a better description of the phenomena. For instance, in the avascular phase
tumour cells are packed in a multicellular spheroid not yet connected to the
host’s blood supply. Looking at this stage from the tissue level the evolution
depends, for instance, on the distribution of oxygen, glucose, and other nu-
trients and on the production and reception of growth modulating chemical
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Figure 0.1

substances, phenomena involving the sub-cellular level. This phase can be
described by mass balance equation and reaction-diffusion equations that can
be derived not only on the basis of principles of continuum mechanics but also
on the basis of cell-based models. Actually, in the latter modelling framework
it is easier to introduce cellular and sub-cellular mechanisms, while in the
former framework it is easier to deal with macroscopic mechanisms, such as
the interaction with external tissues. Going on with the evolutionary pro-
cess, at a certain stage of maturation tumour cells start producing particular
chemical factors switching on the process of angiogenesis. By this process new
blood vessels grow into a tissue from surrounding parent vessels. This crucial
triggering mechanism, leading to the vascular growth phase, is therefore also
regulated by phenomena occurring at the sub-cellular and cellular level. Fi-
nally, the detachment of metastases is regulated by the adhesion properties of
the cells.

In addition to the just-mentioned connections among different observation
and modelling levels, research at each single level would certainly profit from
the interactions among different branches of science. In fact, the ideal mod-
elling cycle should develop as follows: from the phenomenological observation
of a certain phenomenon in real patients, scientists in bio-medicine try to con-
ceive a more convenient and relatively harmless biological model, which can be
in vivo, e.g., mouse, chicken embryo, or in vitro. They can then perform a se-
ries of experiments on that model. Either directly from the phenomenological
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observation or through the biological model, mathematicians and physicists
can generate mathematical models aimed at describing the phenomenon of
interest. The analysis of the properties of the solution by proper mathemati-
cal methods will then give a qualitative description of the dynamics resulting
in a deeper insight into the problem. The model can then be implemented
numerically to give rise to in silico models of the phenomenon. The quality of
the modelling process can be tested validating the results of the simulations
with the experiments. If the comparison is considered satisfactory, then the
modelling cycle closes successfully. If not, one or more steps of the modelling
process need be refined and the cycle continues. Needless to say that, vice
versa simulations need to agree with the qualitative properties of the solution,
otherwise the numerical code is not accurate enough and that the theoretical
predictions need to agree with the experiments, otherwise the mathematical
model is not satisfactory.

Figure 0.2

This book is embedded in the cultural framework explained above and is
written in the belief that the use of mathematical modelling and computer
simulations can help cancer research. In fact, the path that goes from clinical
experience to the laboratories and back to the clinic starts from a very prac-
tical situation and passes through progressive abstractions and simplification
steps to gain insight into the complex phenomena occurring during tumour
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evolution and growth. The acquisition of this knowledge is then tested back
through experimental phases of increasing complexity and hopefully applied
in the clinical practice. It is common knowledge that this stepwise process
also means a different level of ethical involvement.

It is true that including mathematical modelling and computer simulations
in the path mentioned above can speed up the process, provide insight into the
mechanisms that control tumour evolution and growth, and, hence, suggest
directions for new therapies. The theoretical predictions generated from the
models and their simulations can help optimise the experimental protocol by
identifying the most promising candidates for further clinical investigation.
In fact, the ease with which physical parameters can be manipulated in a
computer simulation and the speed with which large numbers of simulations
can be performed can help reduce the number of animal experiments to be
carried out and identify new experimental programmes and optimal tumour
therapy schedules.

However, the development of mathematical models of tumour growth re-
quires the knowledge of different backgrounds, in particular the understanding
of the biological phenomena involved and the skill in using several mathemat-
ical tools to obtain both qualitative and quantitative results.

The aim of this book is to collect some of the modelling techniques and the
mathematical methods that allow the reader to gain deeper insight into the
dynamics of tumour development and growth after being given the biological
background. The aim is to deal with the whole modelling process and to
propose a unified treatment of the whole subject in a way that modelling,
analytical, and computational methods are linked together toward the final
objective of providing a virtual representation of physical reality.

The first three chapters give the phenomenological description of the main
processes involved in tumour development and growth. Specifically, the first
chapter describes the process of angiogenesis, the second some of the sub-
cellular mechanisms that direct tumour behaviour, and the third the funda-
mental mechanisms of diffusion in an avascular and a vascular tumour. Chap-
ter 4 introduces at a tutorial level some of the basic techniques used to deduce
models describing the growth of tumour masses in the avascular phase, and to
study the existence of stationary solution and their stability properties. Chap-
ter 5 gives the fundamentals of continuum mechanics of growing media and of
multicomponent systems usually applied to deduce tumour models. Chapter
6 gives a review of mathematical models for the description of angiogenesis,
keeping in mind both the mesoscopic and the macroscopic description. Chap-
ter 7 looks more deeply into the mechanisms of angiogenesis studying the
interactions between the sub-cellular and the tissue level, going toward the
definition of antiangiogenic strategies. The following three chapters deal with
the mechanisms of detachment, intravasation, transport, and extravasation of
metastases from the multicell spheroid, both from an experimental and a the-
oretical viewpoint. More precisely, Chapter 8 deals with the fundamentals of
the adhesion mechanisms and the experiments that can be performed to test
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Figure 0.3

adhesion properties, Chapter 9 with the interactions between the endothelium
and the tumour cells which are circulating in the body, and Chapter 10 with
a review of the invasion models existing in the literature. Chapter 11 deals
with the competition between a tumour and the immune system and with
a review of the models deduced at the cellular level. Chapter 12 describes
the general problem of hypersensitivity to chemotherapy and how in silico
models can help optimise therapies. Finally, the last chapter explains some of
the most used mathematical methods that can be applied to tumour models
which write as systems of reaction-diffusion equations, like those introduced
in Chapters 4, 6, and 10.

This book is addressed to curricula in applied mathematics, bio-physics,
bio-mathematics, and theoretical biology and medicine. It is then proposed
as an advanced textbook for graduate interdisciplinary courses having as a
common point the interest in modelling and simulating tumoural systems.
Of course, the contents of the volume develops keeping in mind the different
backgrounds of the readers. In this respect mathematicians and physicists will
find some chapters easier than others as they might have stronger backgrounds
in these particular fields. The opposite will occur for biologists and medical
doctors. The aim of the volume is, however, to give both types of readers
a common language, a common starting block, and a complete knowledge
of the mathematical and biological aspects of tumour growth. It is thought
that this will help them in breaking down the barriers which often hamper
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inter-disciplinary activities. In addition, by reading this volume, the readers
will acquire a wide panorama of the topic, broadening their horizons in the
related fields.

The contents of the volume refer in part to the lectures held during the
summer schools organised in the framework of a Research Training Network
funded by the European Community on “Using Mathematical Modelling and
Computer Simulation to Improve Cancer Therapy.”
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Alain Duperray
Laboratoire de Migration Cellulaire et
Infiltration Tumorale, Institut A. Bonniot,
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Chapter 1

Biological Aspects of Tumour
Angiogenesis

Federico Bussolino, Marco Arese, Enrica Audero, Enrico Giraudo, Serena
Marchiò, Stefania Mitola, Luca Primo, and Guido Serini
Institute for Cancer Research and Treatment and Department of Oncological
Sciences, University of Torino School of Medicine, Candiolo (Italy)

1.1 Vas c ulogenes is, Angiogenes is, and Ar ter iogenes is

1.2 I nduc er s of Angiogenes is : T he Ex ample of t he VEG F Family

1.3 T he T is s ue- Spec ifi c Angiogenic I nduc er s

1.4 Molec ules Stabilis ing N as c ent C apillar ies :
The Example of Angiopoietins

1.5 N atural Inhibitor s of Angiogenes is

1.6 Angiogenes is and Canc er Pr ogr es s ion

Ack now ledgments

1.7 R efer enc es

1.1 Vasculogenesis, Angiogenesis, and Arterio-
genesis

The development of the cardiovascular system is regulated by vasculogenesis,
which typically occurs during embryonic development, and by angiogenesis which
regulates the growth of vessels both in the embryo and in the adult. Key cellular
elements of vasculogenesis are the hemangioblast and the angioblast which differen-
tiate from the mesoderm under the control of fibroblast growth factor (FGF)-2 and
vascular endothelial growth factor (VEGF)-A [1]– [4]. In the more peripheral mat
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zone hemangioblasts form blood islands, i.e., cellu lar aggreg ations made of ex ter-
nal endothelial cells (ECs) and in ternal precursors o f h ematopoietic cells [5], [6].
ECs o riginatin g from these structures organise in to a p rimitive plexus of homoge-
neously sized vessels, which vascularise tissu es of endodermal orig in . In the more
in ter n al zo n a p e llu cid a th e a ngioblasts give rise to ECs which particip ate to h eart
organogenesis and locally self-assemble in to a p rimitive capillary plexus contribu t-
in g to th e f o r m atio n o f th e larg e b lo o d ve sse ls, su c h a s a orta and cardinal vein [5], [6]
(Figure 1 .1). Little is known about the m echan isms governing EC fate; basic h elix-
loop-helix (bHLH) transcriptio n factors, Ets-1, Fra1, Hex , Vezf1, Hox, and GATA
fa m ily m e m b er s o f tr a n scr ip tio n facto r s m ay b e invo lved [ 7 ] . Th e fate o f E Cs to
become integrated in to ar ter ies o r ve in s is m ed iated b y th e b HLH tr an scr ip tio n fac-
to r g r id lock at the angioblast stage [8], and, subsequently, b y members of th e ephrin
fa mily [9], [10], signals th at are also involved in guidance o f axons and repulsion of
neurons.

Figure 1 .1

Va s c u l ogenesis. Pa nel A . D if f e re nt ia t io n o f meso dermic precurso r st imula t ed
by so luble media t o rs re lea sed by endo derm int o a ng io bla st s a nd hema ng io bla st s
that orig inate a primitive vascula r plexus a nd the later the hematopoietic sy stem
t oo. Pa nel B. R emo delling o f primit ive plex us by a ng io g e nic mecha nism.

In th e e m b r y o , th e in itial cap illar y m e sh wo r k is th en r e m o d e lled b y a n g io g e n -
esis into a mature and functional vascular bed comprised of arteries, capillaries, and
veins [11]. Angiogenic remodelling co-ordinates with the establishment of blood
flow and can occur through sprouting [11], intussusception, i.e., by internal division
of th e vessel lumen [12] (Figure 1 .2), or vascular fusion [13].

Angiogenesis also includes penetration by sprouting of vessels into avascular
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Figure 1.2

Different modalities of angiogenesis in fetal and adult life.

regions of the embryo and recruitment of mural cells [14]. In the adult, angiogenesis
characterises some physiological situations, such as the vascularisation of ovary and
uterus during the menstrual cycle, of mammary glands during lactation, and of gran-
ulation tissue during wound healing [15]. Not less significant is the role of angiogen-
esis in pathological settings, such as tumours, chronic inflammatory diseases (e.g.,
rheumatoid arthritis and psoriasis), vasculopathies (e.g., diabetic microangiopathy),
degenerative disorders (e.g., atherosclerosis and cirrhosis), and tissue injury occur-
ring in ischemia [15]. Five biological phases of angiogenesis have been established
and characterised by different, overlapping genetic programs: initiation, progression,
differentiation, maturation, and remodelling and guidance. Initiation is characterised
by changes in the EC shape and by increased permeability. The progression phase
includes the degradation of extracellular matrix, and migration and proliferation of
ECs. During differentiation, ECs stop to growth, survive in suboptimal conditions,
and differentiate into primitive blood vessels. The maturation phase implies forma-
tion of new extracellular matrix, recruitment of pericytes and smooth muscle cells
(SMCs), and remodelling of the primitive vascular network. In the guidance phase,
the architecture of the mature vasculature tree is delineated both during development
and in the adult organism [16], [17]. All these steps are in part regulated by vas-
cular endothelium-specific growth factors that now include members of the VEGF,
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Figure 1 .3

Five overlapping steps o f sprouting angiogenesis: initia tion, progression, differ-
ent ia t io n, ma t ura t io n, a nd re mo delling a nd g uida nce.

Angiopoietin (Ang), ephrin [10], [11], and se maphorin families [ 18] (Serini G., in
preparation) (Figure 1 .3). An emerging rule is th at all th e se m o lecu les h ave to act in
concert to allow the formation of functional vasculature.

In the adult new vessels arise mainly through angiogenesis, although vasculoge-
nesis may occur [19]. However, a further process leading to vessel formation in the
adult life is arteriogenesis, a process triggered by arterial occlusion and characterised
by the enlargement of pre-existing arteriolar connections into true collateral arter-
ies [20]. These vessels, bypassing the site of occlusion, have the ability to markedly
grow and increase their lumen providing an enhanced perfusion to the jeopardised
ischemic regions caused by arterial occlusions. It is worth noting that proliferation
of collateral arteries is not a process of passive dilatation, but of active prolifera-
tion and remodelling. Under normal flow conditions and depending on the pressure
gradient between the interconnecting arterial networks, there is only minimal net for-
ward flow, but small amounts of flow may oscillate within the network. In a sudden
arterial occlusion or a slowly progressing stenosis, a steep pressure gradient along
the shortest path within the interconnecting network develops that increases blood
flow velocity and hence fluid shear stress in these vessels that now assume the new
function as collaterals. Such a sustained increase in shear results in the upregula-
tion of distinct processes in the collateral arteries, including increased endothelial
production of cytokines, attraction of circulating monocytes, and production of ni-
tric oxide [21]– [23]. These events in turn create an inflammatory environment and
produce fairly large amounts of growth factors, particularly FGF-2 [24]. The inva-
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sion of monocytes is soon followed by the first wave of mitosis of ECs and smooth
muscle cells (SMCs). The perivascular inflammation in turn creates the space for the
greatly expanding collateral vessel that can increase its diameter up to 20 times. The
old structure is largely dismantled and primarily replaced by new intimal and medial
SMCs. Finally, arteriogenesis results in a new functional artery originating from a
pre-existing arteriole.

1.2 Inducers of Angiogenesis: The Example of
the VEGF Family

Direct angiogenic inducers cause ECs to migrate, proliferate, and differentiate
into nascent blood vessels, which require the involvement of other molecules (e.g.,
Angs) to acquire whole function and stability.

Before 1989, the prototypic members of the fibroblast growth factor family,
were the leading candidates as positive regulators of angiogenesis; they are potent
angiogenic inducers both in vitro and in vivo and widely distributed in tissues and
organs. However, cloning of genes encoding fibroblast growth factor-1 and -2 in
1986 demonstrated that both molecules lack a classic secretory signal peptide. Thus,
these molecules are not typical secreted proteins and indeed they have been shown
to be mostly cell-associated [25]. In 1989, the definitive isolation and cloning of
VEGF-A as a diffusible EC-specific mitogen, as well as a permeability-enhancing
factor, had the potential to fill, at least in part, the gap of our understanding the reg-
ulation of angiogenesis [26]. The family of VEGF consists of six genes, which en-
code specific proteins: VEGF-A, -B, -C, -D, -E, and placental derived growth factor
(PlGF) [11], [27], [28]. They are dimeric glycoproteins produced by mesenchymal
cells, structurally related to platelet derived growth factor, and capable of binding
with different affinities to three related receptor tyrosine kinases VEGF receptor-1
(VEGFR-1), VEGFR-2, and VEGFR-3. VEGF-A is expressed as different splice
variants, including in humans 121-, 145-, 165-, 189-, and 206-amino acid residues,
the 121- and 165-isoforms being the most frequently expressed variants. Exon 7
in the VEGF-A gene encodes a structural motif mediating binding to heparin. The
121-amino acid isoform, in which exon 7 as well as exon 6 are excluded, is freely
diffusible. In contrast, the 189- and 206-amino acid isoforms contain additional
stretches of basic residues responsible for their retention in the extracellular matrix.
VEGF-A induces EC chemotaxis, chemokinesis, survival, and proliferation. VEGF-
A also controls hematopoietic differentiation during development [3], [4], [29], as
well as monocyte [30], osteoclast, and osteoblast [31] behaviour. The biological
significance of VEGF molecules other than VEGF-A is largely unknown. VEGF-C
(and probably also VEGF-D) seems to be the most important effector of lymphan-
giogenesis by activating VEGFR-3 [32]. PlGF, which does not play major roles in
physiological angiogenesis, is an important inducer of vascularisation of tumours
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and ischemic tissu e s [ 3 3 ] .
On e the most important regulators of VEGF-A expression is oxygen tension. In

response to reduced oxygen levels, cells overexpress the hypoxia-inducib le transcrip-
tio n factor 1 (HIF-1), which translocates in to th e nucleus wh ere it b inds to hypoxia-
response elements o f g enomic DNA, th ereby activatin g the expression of numerous
hypoxia-responsive g enes, including VEGF-A. Inductio n o f VEGF-A p roductio n b y
low oxygen tension ju stifies th e fact th at th is molecule is highly expressed in many
situ ations wh ere an increase in vascularisatio n is required to compensate low oxy-
genation, e.g., n ecrotic area of so lid tu mour or ischemic tissu es. The most eleg ant
demonstratio n o f the need for fine regulatio n o f VEGF levels is represented by post-
natal r etin al va scu lar isatio n in r o d e n ts. An g io g e n ic sp r o u tin g in to th e in itially avas-
cular and hypoxic retin a d epends upon its VEGF expression [34]. In the presence
of oxygen, HIF-1� is bound to the tumour suppressor Von Hippel-Lindau (VHL)
protein. This in teraction causes HIF-1� to b eco m e u b iq u ity lated a n d targ eted to th e
proteasome, wh ere it is d eg raded. Mutations in VHL, that are asso ciated with re-
nal can cer an d cer eb ellar h em an g io b lasto m a s, p r even t its u b iq u ity latio n , r e su ltin g in
an accumulation o f HIF-1 and continuous activ ation o f VEGF g ene which promotes
tumour angiogenesis [35]. Besides, the effect of hypoxia is amplified in the pres-
ence of mutations of the Ras protooncogene, suggesting a strict relationship between
oncogenesis and angiogenesis [36], [37].

Three structurally related receptor tyrosine kinases for the VEGF family mem-
bers have been id entified to date (see Table 1 .1): VEGFR-1 (Flt-1; binds VEGF-
A, PlGF, and VEGF-B); VEGFR-2 (KDR in humans or Flk-1 in the mouse; binds
VEGF-A, VEGF-C, VEGF-D, and VEGF-E); and VEGFR-3 (Flt-4; binds VEGF-
C and VEGF-D). Generally, VEGFR-1 and -2 are expressed in vascular ECs and
all three receptors are crucial for vascular development during embryogenesis. The
structural hallmarks of VEGF receptors include seven immunoglobulin (Ig)-like do-
mains in the extracellular portion and a split tyrosine kinase domain containing an
intervening noncatalytic 70-amino-acid residue sequence. The extracellular domain
of VEGFR-3 is composed of two large domains bound by a disulphide bridge. The
third Ig-like loops in VEGFR-1 and -2 are responsible for binding VEGF-A, whereas
the first three loops are required for receptor dimerization. The tyrosine kinase do-
mains of the three receptors are highly related (80% similarity) [11], [27], [28].

An emerging topic of interest in the field of VEGF receptors is the requirement
of co-receptors capable of modulating their activity and specificity. Integrin �v�3
functions as a co-receptor in VEGFR signal transduction. Indeed, VEGFR-2 forms
complexes with �v�3 integrin, which is specifically expressed on angiogenic ECs.
Activation of �v�3 by plating cells on one of its ligand vitronectin or fibrin, one of
more abundant protein in remodelled extracellular matrix during angiogenesis, re-
sults in an increased VEGFR-2 kinase activity and augmented VEGF-A-mediated
mitogenicity [38]. Homotypic adhesive interactions between ECs negatively regu-
late VEGFR-2 tyrosine phosphorylation and a neutralising antivascular endothelial
(VE)-cadherin antibody increases VEGFR-2 responsiveness to VEGF-A, suggesting
that VE-cadherin could act as co-receptor as well. On the other hand, targeted inac-
tivation of VE-cadherin in mice severely impairs vascular development causing em-
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bryonic death and indicating the need for a fine-tuned balance of VEGFR-2 activity
during vasculogenesis [39]. Neuropilins (Npns) are the third class of co-receptors.
Originally implicated in repulsive growth cone guidance in the developing nervous
system, Npn-1 and -2 have been recently suggested to play a role in the development
of the vascular system [40], [41] and in angiogenesis [42], [43]. In past years, it
has been shown that neuropilins also bind specific isoforms of VEGF-A. In 1998,
Klagsbrun’s group [44] reported that VEGF-A165 binds to Npn-1. Subsequently,
VEGF-A 145, PlGF-2, VEGF-B, and VEGF-E have all been shown to bind to Npn-1
or -2. Exon 7 in VEGF-A is involved in Npn binding, thereby excluding VEGF121
from this interaction [27], [28]. Finally, the fourth class of co-receptors are extracel-
lular matrix heparan sulphates. They either may be a reservoir of VEGF-A or could
allow a better ligand/receptor interaction. VEGF-A exon 7 confers heparin-binding
ability to VEGF-A isoforms 165, 189, and 206 [27], [28].

VEGF receptor signal transduction appears to rely upon the canonical pathways
activated by most receptor tyrosine kinases [45]. After binding specific receptors
with high affinity (pM range), VEGF triggers their dimerization and autophospho-
rylation on specific cytoplasmic tyrosine residues, which mediate the recruitment
of adaptors and enzymes (e.g., Grb, Nck, VRAP, Sck, phospholipase C �, CrK,
phospatidylinositol 3-kinase, SHP-2) and lead to early and late biological responses
by activating Ras, mitogen activate protein kinase, and protein kinase B pathways
(for an extensive review see Reference 28). The observed biological activities (mi-
gration, proliferation, and survival) exerted on adult ECs are mainly mediated by
VEGFR-2, while the function played by VEGFR-1 is not well defined yet [27], [28].
Studies on null mice indicate that both receptors are required for embryo vasculo-
genesis [46], [47]. During development, VEGFR-1 is crucial for negative regulation
of the hemangioblast pool. Such a negative regulation appears to be independent
of VEGFR-1 kinase activity and may be mediated through the binding and seques-
tering of VEGF-A. This is compatible with the observation that dosing VEGF-A is
required for a proper vascular development [4]. Therefore, both in the embryo and
the adult life VEGFR-1 activity seems to be generally devoted to the regulation of
VEGF-A/VEGFR-2 activities.

1.3 The Tissue-Specific Angiogenic Inducers

Depending on the phenotypic features and the growth rate of the different tis-
sue compartments, the endothelium of the various vascular beds is diverse and dis-
tinct [48], [49]. This happens despite the fact that the expression of VEGF and
Ang (see above) is almost ubiquitous. The morphology and architecture of ECs
also differs among different capillary beds. For example, fenestrae are associated
with highly permeable vessels, such as those serving the endocrine tissues. The
contribution of tissue microenvironment to EC phenotypic characteristics has been
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Table 1.1 Direct and indirect angiogenic inducers.
+ Molecules that induce the in vitro migration and/or proliferation of endothelial
cells .
++ Molecules that extert their angiogenic activity in specific anatomical districts
or in selected conditions
+++ Molecules unable to directly induce the in vitro migration and/or proliferation
of endothelial cells
* Molecules that induce angiogenesis in vitro, i.e., promote the differentiation of
endothelial cell cultured in tri-dimensional structures.
PDGF shows that activity, but does not induce angiogenesis in vivo.

Direct inducers+ Endothelial cell receptor
involved

Prolifer-
ation

Migr-
ation

VEGF-A* Tyrosine kinase receptors
(VEGFR-1, Flt-1; VEGFR-2,
Flk-1/KDR)

Yes Yes

VEGF -C Tyrosine kinase receptors
(VEGFR-3, Flt-4; VEGFR-2,
Flk-1/KDR)

Weak Yes

VEGF -D Tyrosine kinase receptors
(VEGFR-3, Flt-4; VEGFR-2,
Flk-1/KDR)

Weak Yes

VEGF -E Tyrosine kinase receptors
(VEGFR-3, Flt-4; VEGFR-2,
Flk-1/KDR)

Weak Yes

Basic and acid fibroblast
growth factor*

Tyrosine kinase receptors
(FGFR-1, flg-1; FGFR-2,
bek)

Yes Yes

Transforming growth factor-�
and epidermal growth factor*

Tyrosine kinase receptors
(erb-1, erb-2)

Yes Yes

Platelet-derived
endothelial cell
growth factor

Unknown Yes No

Hepatocyte growth
factor *

Tyrosine kinase receptor
(met)

Yes Yes

IL-8 Chemokine receptor(s) Yes Yes
Neutrophil-activating peptide-2 Chemokine receptor(s) No Yes
Epithelial cell-derived
neutrophil-activating
protein-78

Chemokine receptor(s) No Yes

Melanoma growth-stimulatory
activity-�

Chemokine receptor(s) No Yes

Stroma-derived
factor-1�

Chemokine receptor(s) No Yes

Growth-related
oncogenes � and �

Chemokine receptor(s) No Yes
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Granulocyte-colony
stimulating factor

Type 1 cytokine receptor Weak Yes

Placental growth
factor-1 and -2

Tyrosine kinase receptor
(VEGFR-1, Flt-1)

Weak Yes

Proliferin IGF-II/mannose 6-phosphate
receptor

- Yes

B61 (ephrin-A1) Tyrosine kinase receptor
(EphA2, eck)

No Yes

Soluble form of
VCAM-1

Integrin �4�1 No Yes

Leptina Ob receptor Yes Yes
Timosin �1 Unknown Unknown Yes
TWEAK
(member of TNF family)

TWEAK receptor Yes Yes

TRANCE RANK Yes Yes
Soluble form of
Selectine-E

Sialil Lewis X/A ? Unknown Yes

CYR61 Integrin �v�3. Other receptors? - -
Connective-tissue growth
factor

Integrin �v�3. Other receptors? No Anti-
apoptotic

Yes

IL-13 IL-13 receptor Not
tested

Not
tested

IL-18 IL-18 receptor - Yes
HIV-1 Tat VEGFR2, �v�3, �v�5 Weak Yes
Platelet activating
factor (PAF)

Seven transmembrane domains
receptor

No Yes

Adenosine A2A receptor Yes Yes
Nicotine Ach receptor Yes Not

tested
Local angiogenic
inducers++
Prolactin Type 1 cytokine receptor
Growth hormone Type 1 cytokine receptor
Placental lactogen Type 1 cytokine receptor
EG-VEGF Seven transmembrane domains

receptor
Yes Yes

Indirect inducers +++ No No
Tumor necrosis factor-� p55, tumor necrosis factor-� re-

ceptor
No No

Transforming growth
factor-�*

Serine/treonine kinase receptors
(types I and II)

No No

Angiogenin Unknown No No
Copper binding peptide
from the SPARC protein

Unknown No No

Prostaglandin E1 Seven transmembrane domains
receptor (EP2 e/o EP3)

No No
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clearly demonstrated by studies on grafted tissues and tumour xenografts implanted
at various anatomic sites [50], [51]. Recently, it has been found a new angiogenic
inducer, which specifically activates microvascular ECs of endocrine tissues and has
been therefore named endocrine gland derived VEGF. It is not structurally related to
VEGF family and transduces through a G protein-coupled receptor [52]. The bio-
logical activity of this molecule is indistinguishable from that of VEGF-A, but only
in specific cell and tissue contexts. A similar role is played by other molecules, such
as proliferin, placental lactogen, and growth hormone, which are also angiogenic in
specific tissues [53].

The existence of local activators of angiogenesis suggests that vasculature for-
mation could be controlled at two different levels, VEGF-A controlling the initiation
of neovascularisation and local molecules refining the system to establish and main-
tain differentiated EC structure and function.

1.4 Molecules Stabilising Nascent Capillaries:
The Example of Angiopoietins

It has been well established that nascent capillaries are not physiologically
active and can regress when extracellular matrix is perturbed [54], [55]. There-
fore, VEGF-A as well as other angiogenic inducers must cooperate with stabilising
molecules. Some of them, such as transforming growth factor � (TGF�) are not ex-
clusively specific for this function. It is interesting to point out that point mutations of
TGF� receptor subunits endoglin and activin are responsible of hemorrhagic telang-
iectasia [56], a syndrome characterised by blood vessel dilatation and formation of
artery-vein shunt with disappearance of capillaries.

Angiopoietins (Ang) were discovered as ligands for the Tie family of receptor
tyrosine kinases that are selectively expressed by vascular ECs. There are four mem-
bers of the Ang family. Although Ang3 and Ang4 may represent widely diverged
counterparts of the same gene locus in mouse and man. Ang1 promotes in vitro EC
sprouting, survival, and migration. On the contrary, Ang2 blocks the activation of
Tie2 induced by Ang1, suggesting that it may be a naturally occurring inhibitor of
Ang1/Tie2 activity [10].

The most important insights into the physiological roles of Ang1 and its recep-
tor Tie2 came from the analysis of null mice [57]– [60]. Ang1-/- or Tie2-/- mice
show a decreased number of ECs, simplification of the vascular branching pattern,
and failure to recruit pericytes and SMCs. Transgenic overexpression of Ang1 in
the skin results in a pronounced hyper-vascularisation characterised by a modest in-
creases in vessel number and marked increase in vessel size. Consistent with its
action as an Ang1/Tie2 inhibitor, over-expression of Ang2 results in vascular defects
similar to those observed in Ang1 or Tie2 knockout mice. These studies suggest that
angiopoietins play their major role during vascular remodelling and maturation from
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si mple endothelial tubes into more elaborate vascular tree composed of several cell
types. Fu rthermore, th ey contribu te to th e maintenance of vessel integ rity th rough
th e e stab lish m en t o f a p p r o p r iate cell- cell a n d cell- m a tr ix co n n ectio n s [ 1 7 ] .

In addition to their effects o n vascula r morphology, transgenic overexpression
of Ang1 resu lts in a reduced responsiveness to leakage induced by in flammato ry
agents and VEGF [61], [62]. On the contrary, VEGF-A overexpression leads to
im m a tu r e , leaky, an d h aem o r r h ag ic ve ssels [ 6 3 ] . T h e se fin d in g s co n fir m th e a b ility
of Ang1 to maximise in teractions between ECs and th eir surrounding support cells
and m atrix.

1.5 Natural Inhibitors of Angiogenesis
There are different classes of natural inhibitors of angiogenesis that exert their

activ ity by inhibiting E C m otility and g rowth (se e Table 1.2). By counteracting an-
giogenic inducers, inhibitors guarantee a fine homeostatic balance, which finally re-
sults in a regulated angiogenic process. Events reducing the concentration of in-
hibitors or increasing that of stimulators trigger a deregulated vascular proliferation,
as found in tumours, chronic inflammatory diseases, and retinopathies. The first
negative controller of angiogenesis in is the oncosuppressor protein p53, responsible
for the reduction of VEGF-A synthesis and thrombospondin secretion [64]. Throm-
bospondin is a multifunctional inhibitor of angiogenesis, which acts by modulating
EC adhesiveness and motility or trapping angiogenesis inducers [64]. Thus, p53 mu-
tations favour the initiation of tumour angiogenesis by impairing the regulation of
thrombospondin synthesis. A second class of inhibitors includes protein fragments.
Angiostatin was the first protein fragment to be found to behave as an angiogenesis
inhibitor. Angiostatin is a 38 kDa fragment of plasminogen [65]. The antiangio-
genic protein fragment described was endostatin that corresponds to the C-terminal
fragment of collagen XVIII [66]. The class of antiangiogenic protein fragment in-
cludes also a fragment of 16 kDa of prolactin, one of 6 kDa of platelet factor 4, and
fragments of hepatocyte growth factor, epidermal growth factor, thrombospondin-1,
kininogen, antithrombin III, and prothrombin [67].

The third class of angiogenesis inhibitors includes some chemokines belonging
to both Cys/Cys and Cys/X/Cys subclasses, which selectively inhibit cell cycle [68].

1.6 Angiogenesis and Cancer Progression
In cancer new vessels are required to provide cancer cells with nutrients and

are targets for invading cancer cells themselves. At the beginning of its natural his-
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Table 1.2 Angiogenesis inhibitors: (a) Oncosuppressor genes.

Inhibitor Mechanism
TP53 Induction of TSP-1 synthesis
RB Induction of TSP-1 synthesis
VHL Induction of TSP-1 synthesis
Locus Loh2,
mouse chormosome 16

Induction of unknown angiogenesis inhibitors

Unidentified gene on
human choromosome 10q

Induction of TSP-1 synthesis

(b) Criptic molecules derived from larger precursors
Inhibitor Mechanism
Angiostatin
(plasminogen fragment)

Inhibition of endothelial growth and motility

Endostatin
(collagene XVIII fragment)

Inhibition of endothelial growth and motility

Alternative form of HGF Unknown
Antithrombin fragment Inhibition of EC growth and motility
Prothrombin fragments Inhibition of endothelial growth
High molecular weight
kininogen fragment

Inhibition of endothelial motility

16 kDa prolactin fragment Inhibition of endothelial growth and motility
16 kDa placental lactogen
fragment

Inhibition of endothelial growth

16 kDa GH fragment Inhibition of endothelial growth
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(c) Soluble mediators
Soluble mediators
Interferon � Inhibition of endothelial growth and motility
Platelet factor 4 Inhibition of endothelial motility and VEGF-A activity
Interferon-� (IFN-�)-
inducible protein-10

Inhibition of endothelial growth and differentiation

IFN-inducible T-cell
�-chemoattractant

Inhibition of endothelial growth

Monokine induced by
IFN-�

Inhibition of endothelial growth

gro-� Inhibition of endothelial growth
C6kine Not determined
TSP-1 Inhibition of endothelial growth, motility, and adhesion
Tissue type metallo- Type 1 is an inhibitor of EC motility
protease inhibitors Type 2 is an inhibitor of EC motility and growth
(Type 1, 2 e 3) Type 3 acts with an unknown mechanism
Heparinase Heparan sulphates depletion
Semaphorin III A Inhibition of VEGF-A165 activity
2-methossiestradiol Inhibition of endothelial growth and motility
IL-4 Inhibition of endothelial motility
Corticotropin-
releasing factor

Inhibition of endothelial motility and growth

Dopamine Inhibition of VEGFR-2
Parathyroid hormone
related peptide

Inhibition of endothelial growth and motility

Proliferin-related
protein

Inhibition of endothelial motility
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to ry, a cancer is not vascularised, and it does not grow beyond 2 mm in size unless
va s c u l a r i s atio n h as occurred. The switch to the angiogenic phenotype is a critical
point in tu mour progression [69] and d epends on th e additive effect of progressive
genetic alterations [70]. Before this switch o ccurs, most tumours are restricted to a
microscopic size. A p rominent ex ample is represented by th e early in situ carcinoma,
wh ere n eighbourin g m ature m icrovessels are quiescent, and m etastases are virtually
absent. After th e angiogenic switch, e.g., in the later stages o f in situ breast carci-
noma, neo-vascular sp routs b reach the b asement m embrane [71], and tumour cells
can grow around each new capillary vessel, enter the circulation, and cause metas-
ta se s. Fu r t h e r m o r e , th e angiogenic switch is also active in d etermining th e translatio n
of micrometastases from a dormant to an aggressive status [69].

On e EC  can support more than 5 0 to 100 tu mour cells. Thus, the microvascular
EC recruited b y a tumour has b ecome an important second targ et in cancer therapy.
Tr e a ting both the cancer cell and the EC in a tu m our may b e more effective than
treating the cancer cell alone [72]. The interactions between tu mour cells and b lood
ve sse ls may be supported by:

1. the ability of tumour cells to directly modify the homeostasis of inducers and
inhibitors of angiogenesis [15];

2. the ability of tumour cells to disturb this b alance through stromal and inflam-
mato ry cells [73], [74];

3. the possibility of tumour cells to grow around pre-ex isting vessels [75];

4. the colonisation of nascent vessels by CD34+ cells which differentiate in ECs
[76];

5. the formation of capillaries by tumour cells themselves through a trandifferen-
tiation process [77]; and

6. the transient and dynamic participation of tumour cells to vessel walls [78]
(Figure 1 .4).

The first model implies the selection of a tumour cell clone having the biological
feature to support the switch to the angiogenic phenotype. It implies a change in the
local equilibrium between positive and negative regulators of microvessel growth.
Usually the up-regulation of an angiogenic inducer is not sufficient by itself for a
tumour cell to become angiogenic and therefore certain inhibitors have to be down
regulated. Similarly, tumour cells may stimulate stromal and infiltrating leukocytes
to produce angiogenic factors. In addition to these well-characterised models of
tumour angiogenesis, new hypotheses are arising. Indeed, it has been shown how
cancer cells may initially co-opt existing host blood vessels and the growing mass
could cause the collapse and the regression of these blood vessels with subsequent
necrosis and hypoxia, which in turn may induce neo-angiogenesis [79].

The third model represents a new and provocative concept in cancer biology
that has raised some criticisms [80]. Such a model would suggest that tumour cells
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Figure 1.4

Different mechanisms of tumour angiogenesis. Panel A: Tumour produces an-
giogenic inducers; Panel B: Tumour activates host cells to produce angiogenic
inducers; Panel C: Tumour grows around pre-existing vessels, increases in size
inducing vessel collapse followed by necrosis. Subsequent hypoxia stimulates
angiogenesis from neighbouring capillaries; Panel D: vasculogenic mimicry;
Panel E: Mobilisation of EC precursors from bone marrow; Panel F: Mosaicism
in tumour capillaries that are constituted by endothelial and cancer cells.

metamorphose into vessels that either carry blood or connect to the host’s blood sup-
ply. This model has been named vasculogenic mimicry, because it is reminiscent of
the differentiation process occurring during vasculogenesis. Highly invasive primary
and metastatic melanoma cells may generate vascular channels, lined externally by
melanoma cells that facilitate tumour perfusion independent of angiogenesis.

Recently it has been noted the existence of angioblast-like circulating endothe-
lial precursor cell in adult human blood. These precursors may be endowed with
the phenotype of embryonic angioblasts, which are migratory EC precursor capa-
ble of circulating, proliferating, and differentiating into mature ECs, but which have
neither acquired characteristic markers of mature endothelium nor lumenised [81].
Id deficient mice allowed demonstrating the role of these EC precursors in tumour
angiogenesis. Adult mice with reduced Id gene dosage cannot support tumour neo-
angiogenesis. However, mobilisation of bone-marrow EC precursors overcome the
genetic defect restoring tumour angiogenic response [82].

The last model may explain the observation that metastasising tumour cells tran-
siting into the vascular lumen may reside temporarily on the microvessel wall and
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occupy up to 4% of the total vascular surface area. Approximately 15% of vessels
of a human colon carcinoma transplanted in mice contain a subpopulation of tumour
cells that in the vessel wall share space with ECs. These blood vessels have been
defined as “mosaic” blood vessels [83].
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2.1 Abstract
It is now well established that dynamic interactions between cells and their mi-

croenvironment are essential for the regulation of tissue function, cell behaviour, and
gene expression. Notably the influence of extracellular matrix proteins on structural
and functional epithelial tissue differentiation and normal epithelial cell behaviour
has been linked to specific interactions between basement membrane-related extra-
cellular matrix proteins and their cell membrane receptors. The importance of the
basement membrane in tissue polarisation, a critical parameter of tissue differenti-
ation and cell survival, was clearly demonstrated using three-dimensional cultures
of epithelial cells that mimic physiologically relevant conditions. A major advance-
ment in the understanding of the epigenetic regulation of gene expression has been
obtained thanks to the identification of several molecular systems involved in chro-
matin remodelling. These discoveries have enabled biologists to begin deciphering
the mechanisms by which extracellular matrix signalling regulates gene expression.
In this chapter, we will review the fundamental processes of basement membrane-
directed polarisation and chromatin remodelling and discuss how alterations in these
processes may be associated with tumour development. An overview of novel ther-
apeutic strategies targeted to the regulation of cell-extracellular matrix interactions
and chromatin remodelling factors in cancer cells will also be presented.

2.2 Introduction
The identification of novel targets for cancer therapy relies on the understand-

ing of the mechanisms that direct tumour behaviour. This review will develop two
aspects of tumour biology that have brought considerable potential for understanding
tumour development and cancer progression, and discuss their relevance for cancer
therapy. The first aspect focuses on the relationship between tumour cells from ep-
ithelial origin and their microenvironment and more particularly the basement mem-
brane, a specific type of extracellular matrix (ECM). The basement membrane acts
as a signal transducer to epithelial cells, an organiser of cellular compartmentalisa-
tion and tissue polarisation, and a physical barrier between epithelial structures and
the surrounding stroma. Changes in cell-basement membrane interaction occur early
during tumour development and increasing alterations between basement membrane
organisation and basement membrane receptors at the surface of tumour cells may
account for significant modifications in tumour cell behaviour during cancer progres-
sion.

The second feature of tumour biology we are addressing in this chapter is related
to epigenetics, which refers to the control of gene expression without alterations in
DNA sequence. It has become increasingly evident that beside numerous examples
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of mutations and o th er DNA aberrations found in th e g enome o f tumour cells, a num-
ber o f unaltered g enes coding for key regulatory p rotein s are simply tu rned on or off.
Most often alterations in th e expression of genes are th e consequences of chromatin
remodellin g th a t switch e s g en e p r o m o ter s b e tween o p e n a n d clo sed co n f o r m a tio n s.
Tw o m ech an ism s invo lved in ch r o m a tin r e m o d e llin g , th e ATP- d ep en d e n t SWI /SNF
modulatory complex and post-translational h istone modifications, h ave b een deci-
phered. These mechanisms are influenced by DNA methylation, wh ich chemically
modifies DNA and h ence regulates the r ecr uitment o f the machinery n ecessary for
chromatin remodelling. Understanding how genes are controlled locally has opened
new possib ilities f o r th e im p lem e n tatio n o f str ateg ies a im ed at alter in g g e n e ex p r es-
si on, and notably th e expression of genes involved in p roliferatio n control, in cancer.

Fin a lly, in a th ir d sectio n o f th e ch ap ter, we will d iscu ss p r o m isin g d ir ectio n s in
tu m our biology research by explorin g the connectio n b etween basement membrane
sig n allin g an d ch ro matin remo d ellin g . In each ch ap ter sectio n a p articu lar asp ect o f
tu m our biology will be discussed in comparison with the normal situation, since as it
wa s proposed more than two d ecades ago [1], the best way to understand how cells
go awry is to first understand how cells behave normally.

2.3 Cell-Basement Membrane Interactions
during Tumour Progression

More than 80% of cancers originate from epithelial tissue and one of the earliest
modifications in the neoplastic epithelium is the alteration of tissue polarity. Tissue
polarisation is a characteristic of epithelial differentiation and is accompanied with
th e c o m p a r tm e n talisatio n o f p r o tein s a lo n g th e p o lar isatio n a x is ( Fig u r e 2 .1 ) .

This phenomenon induces an asymmetrical intracellular organisation in which
different subcellular areas are morphologically or functionally distinct. Tissue polar-
ity is responsible for the appropriate function of the epithelial tissue. For instance it
influences cell proliferation and directs secretion vectorially into the lumen in breast,
salivary, or pancreatic glandular structures [2, 3, 4] and also regulates appropriate cell
assembly in the epidermis [5]. Typically polarisation is initiated by the deposition of
a continuous basement membrane against what then becomes the basal plasma mem-
brane of epithelial cells. Basement membrane deposition triggers the redistribution
of receptors of basement membrane components to the basal cell membrane, while
proteins involved in cell-cell junctions redistribute to cell membranes in contact with
other cells. The predominant and most studied receptors of the basement membrane
are the integrins that belong to a superfamily of proteins capable of heterodimeriza-
tion. Unravelling alterations in both basement membrane and integrin organisation in
tumours has considerably improved our understanding of the mechanisms involved
in tumour progression and resistance to treatment.
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Figure 2 .1

Compartmentalisation of proteins along the polarisation axis. The centre of
the figure represents a polarised glandular structure, in which one layer of ep-
ithelial cells is organised around a lumen (cell nuclei are drawn as black filled-
circles). Polarisation is induced by the deposition of a continuous basement
membrane (in grey) that delineates the external side of the glandular structure.
Upon basement membrane deposition, cell membrane proteins redistribute to
different compartments: certain proteins are only found at basal cell mem-
branes (basal distribution), others relocalise to cell-cell contacts (lateral distri-
bution), while certain types of proteins concentrate to the cell membranes that
delineate the internal lumen (apical distribution).

2.3.1 T h e Ro les o f B asemen t Memb ran e- In t eg rin In t eract io n in
No rmal T issu e

Th e b asem en t m em b r an e is co m p o sed o f an o rg an ised lattice o f fib r o u s p r o -
te in s, in cluding nidogens, lamin in s and collagen IV, and p roteoglycans that make
contact with the cell m embrane v ia sp ecific receptors [6, 7 ]. Laminins are among the
main constituents of basement membranes. These heterotrimeric glycoproteins are
composed of heavy �, light �, and light � chains held together by disulphite bonds
(Figure 2 .2). To date 11 different chain isoforms have been id entified [7] and have
been described to be expressed in a tissue-specific and developmentally regulated
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Figure 2 .2

Structure of laminin. Three types of chains (�, �, and �) organised cruciformly
are involved in laminin formation. Binding sites for major laminin receptors
(integrins) are indicated by a box.

manner. All m ajor types o f b asement m embranes contain at least one of the laminin
va r i a n t s . F o r instance, in the m ammary gland lam in in 1 , 5 , 9, and 1 0 are present
and are main ly in contact with myoepith elial cells th at su rround lu minal epith elial
cells. L am in in s a r e also in co n tact with a p o r tio n o f th e lu m in a l cell su r face [ 8 ] . I n
th e epidermis, keratinocytes are in continuous contact with laminin 5 and 1 [9]. It
wa s recently sh own u sing lung organotypic cultu res that in o rder to mediate polari-
satio n lam in in m u st b e p o ly m er ised an d th at polymerisatio n is mediated b y the outer
globular region of its � chain [10].

The major receptors of fibrous basement membrane molecules belong to the in-
tegrin family of proteins. The term integrin was chosen because these molecules are
in teg r al m e m b r a ne proteins (Figure 2 .3) and play a major role in th e integ ratio n o f
functions between the ECM and the cytoskeleton [11]. They act as noncovalently
associated �/� heterodimers that were originally thought to mediate exclusively
cell-ECM interactions in multicellular organisms. Integrins possess a cytoplasmic
domain that participates in cellular signalling via its ability to associate with and
activate signal transduction pathways, and to connect with the cytoskeletal network.
The extracellular domain of integrins binds to ECM proteins including fibronectin,
collagen, nidogen, and laminin [12]. The interaction between integrins and laminin
seems to be largely determined by the � chain of laminin. However, integrins can
also bind counter receptors on adjacent cells. This is illustrated by the localisation of
�1 and �v integrins to cell-cell boundaries. Such a localisation has been proposed
to participate in the maintenance of polarity by integrating or supporting the role of
other cell-cell adhesion molecules [13, 14].

To date 18 �-integrin chains and 8 �-integrin chains have been identified in
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Figure 2.3

Integrin heterodimers and signal transduction. Upon the binding of their ex-
tracellular domains to specific ECM components (e.g., a cruciform laminin is
represented in this image) � and � integrin heterodimers interact, via their in-
tracellular domains, with signal transducers and elements of the cytoskeleton.

vertebrates. In addition, for most chain types, several isoforms can be generated by
alternative mRNA splicing. Binding specificity is determined by both the conforma-
tion of individual � and � chains and the cellular context [15, 16]. �1/�1, �2/�1,
�3/�1, �6/�1, �7/�1, �9/�1, �v/�3, �v/�5, �v/�8, and �6/�4 have all been re-
ported to bind laminin. Among those, �6/�1, �7/�1, and �6/�4 are viewed almost
exclusively as laminin receptors. The �4 subunit is unique among integrins because
it possesses a distinctively large cytoplasmic domain (1000 amino-acids instead of 50
amino-acids) and encompasses fibronectin type III repeats that bring elasticity and
allow resistance to mechanical forces [17]. The first pair of repeats has been shown
to mediate �4-integrin unique association with intermediate filaments via an inter-
action with plectin [18]; other integrins are mainly connected to the actin network.

�6/�4-integrins are localised to the basal plasma membrane of polarised ep-
ithelial cells where they preferentially interact with laminin 5. Their role in polarisa-
tion is exemplified by their specific localisation to hemidesmosomes, the ultrastruc-
tures that maintain adhesion of the epithelium to the underlying basement membrane
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and are critical for the induction and maintenance of tissue polarity [19]. The role
of �6/�4 integrins in tissue polarity has been well demonstrated thanks to the use
of three-dimensional (3D) culture systems that reproduce glandular differentiation
[2, 20–23] and epidermis formation [5] of normal and nonmalignant cells placed in
contact with a reconstituted basement membrane. Human primary mammary lumi-
nal epithelial cells cultured within collagen-I gels instead of reconstituted basement
membrane arrested growth and formed 3D cell clusters; however, they did not po-
larise, as shown by the deposition of milk precursors at the basal rather than the
apical pole of the cell clusters and the absence of �4-integrin [8]. Subsequent ad-
dition of laminin 1 was sufficient to restore polarity and �4-integrin localisation at
basal cell membranes. In another study, �4-integrin blocking antibodies were able to
suppress polarity in breast glandular structures and induce cells to proliferate [24].

�1-integrins have been involved in polarity by acting directly on the assembly
of the basement membrane. They mainly localise to regions of cell-cell interaction;
however, certain dimers, like �3/�1 are also located to the basement membrane area.
Expression of �1-integrin lacking its extracellular domain induced poor lactation
performances in transgenic mice. Alterations in the function of the mammary gland
were accompanied with an abnormal accumulation of laminin and �4-integrin at the
lateral surface of luminal epithelial cells [25].

Another important function of integrin-mediated polarity is the maintenance of
cell survival in a growth-arrested state. This function was demonstrated by interrupt-
ing �1-integrin binding using function-blocking antibodies in 3D mammary cultures
[26] and expressing truncated �1-integrin in mice [25]. Both manipulations induced
apoptosis in mammary luminal epithelial cells. Furthermore, adhesion-mediated ac-
tivation of �4-integrin was shown to trigger phosphorylation of Akt and Bad, two
transducers involved in the inhibition of apoptotic pathways [27]. However, the au-
thors suggested that cell survival might result from integrin involvement in the main-
tenance of cell adhesion rather than from a direct interaction between a particular
integrin and mediators of apoptotic pathways.

2.3.2 Alteration of Polarity in Cancer

Originally, reports described that tumour progression was paralleled by changes
in basement membrane organisation and hence might be accompanied by alterations
in polarity. Discontinuous laminin has been observed in pancreatic acinar carcinoma
[28] and other reports have indicated that well-differentiated gastric adenocarcino-
mas have a discontinuous but thick basement membrane, while increasing loss of
differentiation is associated with the production of thinner and fragmentary, or even
totally disorganised, basement membranes [29]. Similarly, organotypical cultures of
mouse epidermal invasive tumour cells revealed that classical basement membrane
components are expressed but there is no formation of a structured basement mem-
brane, except in some areas of well differentiated tumours [30]. The presence of
intact basement membrane in certain tumour regions was intriguing since it sug-
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gested that tumour cells in these areas might maintain polarity. The consequence
of the presence of polarised tumour cells for tumour behaviour was recently unrav-
elled. Indeed maintenance of �4-integrin-mediated polarity may drive resistance to
apoptosis normally induced by cytotoxic drugs. This possibility is illustrated by re-
cent work showing that the expression of altered �4-integrin in nonmalignant human
breast epithelial cells is accompanied with impaired polarisation and increased sen-
sitivity to cytotoxic drugs. Whereas, ligation of �4-integrins in tumour cells and
induction of hemidesmosome formation initiate resistance to apoptosis induction via
NFkB activation [31].

The loss of polarity usually seen in many tumours can easily be linked to the
presence of an incomplete basement membrane. In mammary cancer, this hypothesis
is based on the fact that mesenchymal cells that usually produce a lot of a laminin
rapidly disappear during tumour progression. Although tumour cells can produce
a number of basement membrane components, they make minimal amounts of a
laminin, which results in the formation of incomplete laminin [32]. In addition the
increase in matrix metalloprotease (MMP) activity [33], and notably gelatinase ac-
tivity, in the vicinity of tumour cells may be responsible for the cleavage of basement
membrane components and thus contribute to the alteration of polarity, as suggested
by MMP2-mediated cleavage of the �2 chain of laminin 5 in certain tumours [34].

Alterations in basement membrane receptors also contribute to the loss of polar-
ity in tumours. Malignant development is often associated with defective hemidesmo-
somal structures [35]. �6/�4 integrins may still be expressed but they are not lo-
calised to hemidesmosomes. Depending on the type of neoplastic lesion, the al-
teration of polarity may be accompanied by either an increase in �6/�4 integrin
expression (e.g., squamous cell carcinoma) or a decrease in �6/�4 integrin expres-
sion (e.g., basal cell carcinoma) [36]. Alterations in �2/�1 and �3/�1 integrins are
also observed, as shown by their pericellular distribution instead of typical cell-cell
localisation in epidermal carcinoma [5]. A change in the ratio between �� and ��-
integrins have been reported between malignant, nonpolarised HMT-3522 mammary
epithelial cells and their compared to their nonmalignant counterpart. Interestingly
polarity and glandular differentiation could be reinduced in these tumour cells using
function blocking �1-integrin antibodies, indicating that modifications in the dom-
inant integrin pathway may also be involved in the loss of polarity associated with
tumour development [24].

Interestingly, once released from their participation in tissue polarity, integrins
become involved in tumour behaviour. �6/�4-integrins may redistribute to actin-rich
cell protrusions during migration of carcinoma cells [37] and may promote invasion
via activation of phosphoinositide 3-kinase [38]. The same integrin dimer has also
been shown to stimulate chemotactic migration, a key component of invasion [39].
Similarly �6/�1 integrins may promote adhesion, migration, and survival of tumour
cells [24, 40, 41]. These cancer-related functions may be mediated either by the
appearance of a splice variant, as reported for the �6-integrin subunit [42], the bind-
ing of truncated laminin (e.g., peptides derived from the laminin � chain) [43], or
abnormal clustering, as shown for �6/�1-integrins [44]. In addition, the formation
of integrin clusters in invadopodia may serve as docking sites for MMPs and hence
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allow focal proteoly sis o f the su rrounding matrix [45].
Alter a tio n s in b a sem e n t m e m b r a n e d e p o sitio n a n d in teg r in s a r e o bv io u s illu str a -

tions of th e loss o f polarity. However, more subtle alterations in cell and tissu e polar-
ity appear very early during tum our development. In carcinoma in situ , a basement
membrane still d e lin eates th e b asal su r face o f th e ex ter n a l cell lay er, bu t th e cen tr al
lumen has been completely filled by tumour cells that are not in contact with the
basement membrane (Figure 2 .4). This phenomenon was reproduced in cultu re by
activating erb2 receptor, a member of the epidermal growth factor (EGF) signalling
pathway, in preformed mammary glandular structures [46]. This study suggests that
constitutive activation of EGF-related signalling pathways may contribute to tumour
cell survival upon the loss of basement membrane contact. In addition, this survival
could be mediated by the loss of function of proteins involved in positioning con-
trol, that normally direct the requirement for basement membrane attachment. For
instance expression of the tumour suppressor protein Dab2 is frequently lost in ovar-
ian and breast cancers. Reexpression of Dab2 in ovarian and breast tumour cells was
shown to induce cell death. However, cell death could be prevented by the attach-
ment of tumour cells to a basement membrane [47].

Figure 2.4

Epithelial cell organisation in normal glandular structures and carcinoma in
situ. A section through a normal and fully polarised (baso-apical polarisa-
tion) glandular structure shows the central lumen (left image), while a section
through a carcinoma in situ surrounded by a continuous basement membrane
shows a mass of tumour cells; the basement membrane is in light grey.
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2.3.3 Novel Anti-Cancer Strategies Based on Cell-ECM Interaction

The better understanding of the role of the basement membrane and its receptors
in the regulation of normal and tumour cell behaviours has led to the development of
both general and specific anti-cancer strategies. A strategy currently tested in clini-
cal trials is to prevent the expression of MMPs that degrade the basement membrane
and stromal ECM and are found activated in most tumour types investigated so far.
Broad-spectrum MMP inhibitors produced initially have a structure that imitates col-
lagen structure. They act by chelating the zinc ion present at the active site of MMPs.
These broad range inhibitors have shown promising results in clinical trials and have
been proposed to be used in adjuvant treatment or maintenance therapy following
response to usual cytotoxic drugs [48]. They are also being investigated for use in
refractory cancers [49]. It would certainly be an advantage, in order to reduce the
extent of side effects and get a higher response rate in certain types of cancer, to use
inhibitors targeted to specific MMPs. For instance, inhibitors specific of basement
membrane proteases MMP-2 and MMP-9 have been recently developed and have
been shown to prevent tumour growth and invasion in xenograft-bearing animals
[50]. Other possibilities for more specific targeting of defined MMPs could include
the use of ribozymes that block MMP expression. Such a system has been under
investigation in vitro for MMP-9 [51]. Neverthless, caution should be used with
inhibitors of MMP activity that act principally in the cell’s microenvironment. Tu-
mour cells may not be directly targeted (with the exception of the use of ribozymes)
and might easily develop counter-actions that would still permit tumour progression.
Therefore MMP inhibitors may only be useful in combined therapy with agents that
directly act on tumour cells. Novel approaches have also been developed to inhibit
tumour invasion by blocking or down-regulating integrins involved in tumour cell ad-
hesion. FTY720, an immunosuppressive agent, significantly prevents tumour cells
adhesion and migration on ECM by inducing a decrease in integrin expression via
an unknown mechanism [52]. Another compound, Contortrostatin, a homodimeric
disintegrin (a soluble integrin ligand capable of disrupting cell-matrix interactions),
has been shown to prevent cell invasion through an artificial basement membrane
and significantly inhibit ovarian cancer dissemination in a nude mice model [53].

None of these therapeutic approaches have yet been developed to modulate
basement membrane-related cellular polarity. However, in light of the results re-
ported above and showing that tumour cells may resist apoptosis induction by cyto-
toxic drugs via �4-integrin-mediated polarity, a promising strategy may be to block
this pathway in certain tumours. A possible approach could be to use recombinant
human antibodies specific for laminin. Such antibodies have been recently devel-
oped and shown to reduce tumour cell attachment to laminin [54]. The authors have
proposed that these antibodies might have a potential application in cancer therapy.
Nevertheless, like for many therapeutic tools, the difficulty will be to intervene only
at the tumour cell level and not the normal tissue level.
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2.4 Chroma t in Re mode lling a nd Ca nc e r
Ch romatin is defin ed as th e o rg anised assembly of DNA, histone and nonhis-

tone proteins. The basic repeatin g units of chromatin , referred to as nucleosomes,
are composed of 147 base pair DNA sequences wrapped around an octamer o f four
different h istone proteins (H2A, H2B, H3, and H4). This nucleosomal configuratio n
can be further condensed (e.g., by histone H1 ) to form “heterochromatin .” Ch romatin
condensation p revents DNA accessibility to tr anscription factors and the transcrip-
tio n a l m ach in er y, an d u ltim ately lead s to th e r e p r essio n o f g e n e tr an scr ip tio n . I n
contrast, d econdensed chromatin fib res form an open chromatin or “euchromatin ”
that may b e asso ciated with active g ene expressio n . Th e r eo rg an isatio n o f c h r o m atin
between open and closed conformations is referred to as “chromatin remodelling”
[55].

Diff erent systems are involved in the control o f chromatin structure:

� the ATP-dependent chromatin remodelling complex switching/su crose non-
fermentin g (SWI/SNF) which mediates th e slid in g o f n u c leo somes along DNA
[56],

� protein complexes that i nduce covalent h istone modifications, including acety-
la tion, phosphorylation, and methylation [57].

In addition, th ere is g rowing ev idence to sh ow th at th e r ecr u itm en t o f c h r o m atin
remodellin g c o m p lexes is in flu en ced b y DNA m eth y latio n , an im p o r tan t ep ig en etic
mechanism o f g ene silencin g [58]. Alterations in th e f u n c tio n o r th e r ecr u itm en t o f
ch r o m a tin r e m o d e llin g c o m p lexes ar e a sso ciated with im p r o p e r c h r o m atin co n f o r-
matio n and subsequent dysregulatio n o f g ene expression th at seem to play a critical
role in tumour development and progression [59].

2.4.1 The SWI/SNF AT P- Dependent Chro mat in Remodelling
Complex

Th e SWI /SNF co m p lex is a m u ltip r o tein assem b ly ( 8 - 1 2 p r o tein s) th at r e m o d e ls
chromatin structure in an ATP-dependent manner [56].

Mech an ism s b y wh ich SWI /SNF in flu en ce ch r o m a tin co n f o r m a tio n a r e in tr i-
cate and not yet fully understood. On one hand, SWI/SNF activ ity can mediate the
formatio n o f an open chromatin by altering individual nucleosomal structures or act-
ing in concert with other chromatin remode lling factors to d econdense h igher- order
chromatin fib res [56] (Figure 2 .5). On th e o th er hand, wh en asso ciated with other
ch ro matin remo d e llin g facto r s su c h a s th e h isto n e d eacety lase Sin 3 , SWI/SNF ac-
tivity may also be involved in inactive chromatin conformation and subsequent gene
silen c ing, [60] (Figure 2 .5). Therefore the molecular contex t at the level o f a sp ecific
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gene promoter is likely to play a critical role in determining whether SWI/SNF will
participate in closing or opening chromatin.

Figure 2.5

Regulation of chromatin conformation. Compaction of nucleosomes and for-
mation of higher order chromatin folding is associated with the repression of
gene transcription. Histone deacetylation induced by HDACs and SWI/SNF
activity may act separately or in concert to mediate chromatin compaction. Hi-
stone methylation and phosphorylation may also provide chromatin conden-
sation. Histone acetylation induced by HATs, histone dephosphorylation, and
histone demethylation lead to open chromatin conformation, which may be as-
sociated with active gene transcription. Depending on the composition of the
multiprotein complex, SWI/SNF activity may also be involved in the formation
of an open chromatin.
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2.4.2 H ist o n e Mo d if yin g En z ymes

Cova le n t posttranslational modifications of histones are critical for nucleosome
stab ility, a n d th u s ch ro matin o rg a n isatio n . Acety latio n /d eacety latio n is th e mo st
st udied covalent modificatio n o f h istones that p articip ates in th e control o f chro-
matin structure. Other h istone modifications may b e induced by phosphorylatio n
and methylation; although less understood th ese posttranslational modifications also
seem to play a role in chromatin conformation. Finally, h istones may also underg o
ubiquitin atio n , bu t th e in flu en ce o f su ch a m o d ificatio n o n c h r o m atin r e m o d e llin g
remain s to b e clarified.

The interactio n b etween DNA and histones is p rincip ally mediated by th e at-
traction b etween negative charges o f DNA an d positive charges o f the ly sine residues
lo cated o n h isto n e tails. T h e ad d itio n o f a n acety l g r o u p (C�H�O) onto lysin es is me-
diated by histone acetyltransf erases (HATs) and n eutralises the positive charges o f
histones, and h ence may d isrupt histone-DNA in teractions and induce the formatio n
of open chromatin (Figure 2 .5). The rever se reaction catalysed by histone deacety-
lases ( HDACs) , in c r eases th e a ffin ity o f histones for DNA, which, in turn, triggers
chromatin compactio n and subsequent gene silencin g [61] (Figure 2 .5). HATs and
HDACs are organised as multiprotein assemblies and may cooperate with ATP-
dependent chromatin remodelling complexes to regulate gene transcription. This
co-operation has been observed for the multi-protein assembly that forms the nucle-
osome remodelling and deacetylation (NuRD) complex [60].

Supplementation of histones with phosphate ion PO��

�
(i.e., phosphorylation)

is principally mediated by the histone H1 kinase cyclin E Cdk2 and the family of hi-
stone H3 kinases Msk/Rsk. Several studies have shown that histone phosphorylation
(notably on the serine-10 residue of histone H3) may have opposite effects by pro-
moting chromatin condensation as well as activation of gene expression. This is well
illustrated for histone H3, the phosphorylation of which correlates with chromosome
compaction during mitosis [62], while it is also associated with the transcription of
the early-response genes c-fos and c-jun [63, 64].

Histone methylation is catalysed by histone methyl transferases (HMTs) and
consists of the addition of methyl (CH3) groups onto either arginine or lysine residues
mainly located on histones H3 and H4. In contrast to acetylation, histone methylation
does not change the overall charge of histone tails, but rather increases histone basic-
ity and hydrophobicity that, in turn, enhances histone affinity for anionic molecules
like DNA. Recent data suggest that histone methylation might be involved in hete-
rochromatin assembly. Indeed, the heterochromatin-associated protein Suvar3-9 has
been shown to methylate histone H3 in vitro [65]. Interestingly, histone methylation
may also be associated with active gene transcription when preferentially targeted to
acetylated histones H3 and H4 [61]. Additional support for a role of histone methy-
lation in promoting gene expression arises from the findings of a direct interaction
between HATs (e.g., CBP) and HMTs [61]. To complicate the matter further, an
interplay between histone methylation and phosphorylation has also been observed.
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Site-specific histone methylation on the lysine 9 residue of histone H3 prevents his-
tone phosphorylation on serine 10. Whereas, when histone methylation is prevented
upon Suvar3-9 deletion, histone H3 phosphorylation is induced and abnormal chro-
mosome condensation follows [55]. Altogether reports suggest that one type of post-
translational alteration occurring on histone probably influences the effect that addi-
tional histone alterations will have on chromatin structure.

2.4.3 Dysregulation of Chromatin Remodelling in Cancer

Cancer is characterised by dramatic changes in the pattern of gene expression.
Consequently it is not surprising to find alterations in chromatin structure in tumour
cells. According to the literature, these alterations are mainly due to the retargeting
of chromatin modifiers to different sets of genes. However, it is unclear whether the
retargeting of chromatin modifiers is a consequence of alterations in the molecules
they interact with or whether initial alterations in chromatin modifiers may be suffi-
cient to trigger the abnormal expression of specific genes.

Accumulating data strongly suggest that SWI/SNF acts as a tumour suppressor
in mammalian cells. Mutations within the SNF5/INI1 components of the SWI/SNF
complex have been found in several cases of rhabdoid tumour and leukaemia [66,
67], and mutations in Brg1, the ATPase subunit of the SWI/SNF complex, have been
observed in prostate, lung, and breast cancer cell lines [68]. In addition, SNF5 or
Brg1 knock out mice display a cancer-prone phenotype [69, 70]. A possible explana-
tion for the tumour suppressor role of the SWI/SNF complex arose from data show-
ing that SWI/SNF subunits interact with tumour suppressors, including Rb, BRCA1,
and Myc. For example, Rb can act in concert with Brg1 to assist in gene silencing
and induce growth arrest [71]. In addition, several lines of evidence suggest that
functions of BRCA1 and Myc are partially dependent on the presence of SWI/SNF
[72, 73]. Thus abnormal SWI/SNF may prevent proper functions of these key regula-
tors of cell behaviour. Conversely, we cannot rule out that proteins like Rb, BRCA1,
or Myc may control gene expression by directing the SWI/SNF complex to distinct
promoters and hence induce chromatin remodelling. Since Rb, BRCA1, and Myc are
mutated or silenced in certain cancers, alterations in their function or expression may
also have repercussions on the targeting of SWI/SNF to specific DNA sequences.

Similarly to SWI/SNF, the impairment of HATs function has been linked to
cancer. A well-described example is the chromosomal translocation affecting the
CREB binding protein (CBP) gene, a HAT, which is associated with leukaemia [59].
This chromosomal translocation may lead to the fusion of CBP with other proteins
that, in turn, modify CBP targeting to DNA or CBP activity. Fusions with the mixed
lineage leukaemia/trithorax protein (MLL), monocytic leukaemia zinc finger (MOZ),
MOZ related factor (MORF), and transcriptional intermediary factor (TIF) have all
been shown to alter the HAT function of CBP [59].

There are many reasons to believe that dysregulation of HDAC functions is
also involved in tumorigenesis. For example, HDACs may be recruited by certain

©2003 CRC Press LLC



oncoproteins th at subsequently modify HDACs subnuclear distribu tio n and may u l-
tim ately lead to im p r o p e r c h r o m atin r e m o d e llin g a n d g e n e ex p r essio n . Th is p o ssib il-
ity is illu str a ted b y th e fact th at m u tatio n s o r ch r o m o so m a l tr a n slo catio n s aff ectin g
the r etinoic acid r eceptor d imers RAR/RXR may induce a p ersistent interaction b e-
tw e e n RA R/RX R a n d th e SI N 3 - H DAC c o m p lex and  hence p romote leukaemia [59].
Additional support for a role o f HDACs in tumorig enesis is demonstrated by th e
ability of HDAC inhibitors (including suberoyl anilide hydroxamic acid: SAHA, or
tr ic hostatin e A: TSA) to induce g rowth arrest, d ifferentiation, or apoptosis in a wid e
va r i e t y o f human malignant cell lin es in vitro , including bladder, breast, prostate,
lung, ovary and colo n cancer cells [74]. Cell g rowth arrest may b e m ediated b y d e
novo expression of the cyclin dependent kinase inhibitor p21, as observed in the T24
human bladder carcinoma cells treated with SAHA [75]. HDAC inhibito rs are also
efficient to reduce tumour growth in chemically -induced animal models of mammary
carcinoma, or following transp lantatio n o f p rostate tumours o r melanoma into nude
mice [76, 77, 78].

2.4.4 DNA Met hylat ion and Chromat in Remodelling in Normal and
Can cero u s T issu es

An o th e r a ttr active a sp ect o f th e r eg u latio n o f c h r o m atin r e m o d e llin g c o m es
from r ecent d ata showing that SWI/SNF and HDACs interact with the DNA methy-
latio n m ach in er y, an d m o r e p ar ticu lar ly, th a t HDACs a r e invo lved in m e th y latio n -
mediated aberrant gene silencing in cancer.

DNA m ethylation corresponds to the addition o f a methyl group to DNA, most
often onto a cytosine (Cp) followed by a guanosine (G). In promoter sequences of
genes, Cp G d inucleotid es are clu stered to form Cp G islands. When methylated, CpG
islands may trigger gene silencing. One of the most accepted explanations for pro-
moter methylation-induced gene silencing is the recruitment of histone deacetylases
by methyl-CpG binding proteins (MBPs) to methylated DNA that, in turn, causes
deacetylation of adjacent histones and subsequent chromatin condensation [79]. Al-
most all MBPs interact with HDACs and require deacetylase activity to repress gene
tr an scr ip tio n ( Fig u r e 2 .6 ) . Methyl binding domain 2 (MBD2) related-protein is p art
of the histone deacetylase complex MeCP1 [80], while the presence of MBD1 in
MeCP1 is still discussed [81, 82]. MBD3 is a component of the NuRD multisub-
unit assembly containing both ATP-dependent nucleosome remodelling activities,
because of the presence of the SWI2/SNF2 ATPase Mi2, and histone deacetylase
properties mediated by Sin3A, HDAC1, and HDAC2 [83]. MBD2 is not part of
NuRD but can direct the complex to methylated DNA [83]. Transcriptional repres-
sion mediated by the methyl CpG-binding protein 2 (MeCP2) is partially dependent
on histone deacetylase activity (mainly via Sin3A) [84]. In addition, interactions
between HDAC1, HDAC2, and proteins responsible for DNA methylation, the DNA
methyltransferases 1 (DNMT1) [85] and 3a [86] have been demonstrated to play a
role in gene silencing. DNMT1 is usually located to replication foci where it methy-
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Figure 2.6

Methyl CpG binding proteins, chromatin remodelling factors, and methylated
gene silencing. MBD2 is part of the histone deacetylase complex MeCP1 and
binds to methylated DNA (black-filled circles), while the presence of MBD1 in
MeCP1 is still being discussed. NuRD is composed of MBD3, Mi2-an ATP-
dependent nucleosome remodelling factor- and histone deacetylases Sin3A,
HDAC1, and HDAC2. MBD2 is not part of NuRD but directs the complex to
methylated genes. MeCP2 binds to methylated DNA promoter sequences and
can repress gene expression via HDAC (Sin3A) dependent or independent path-
ways.

lates newly synthesised DNA. The interaction between DNMT1 and HDAC2 at the
level of replicating DNA during late S phase may further explain how a repressive
heterochromatin state is maintained throughout cell generations [85]. Altogether,
these observations connect chromatin remodelling, HDAC activity, and DNA methy-
lation.

Aberrant DNA methylation is a hallmark of malignant cells. It may act up-
stream of histone modifications responsible for abnormal chromatin remodelling and
improper gene expression by recruiting HDACs to sets of genes different from the
ones targeted in a normal situation. In cancer, aberrant methylation associated with
HDAC-mediated gene silencing has been shown for cell cycle genes (e.g., CDK2A
and 2B) [87], genes involved in DNA repair (e.g., MLH1) [87], tumour suppressor
genes (e.g., BRCA1) [88], inhibitors of invasion and metastasis (e.g., TIMP3) [87],
and other key regulatory genes including the human telomerase reverse transcriptase
[89] and RAR� [90].
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2.4.5 Anti-Cancer Strategies Based on Chromatin Remodelling

The development of drugs targeting epigenetic mechanisms is relevant for can-
cer treatment because these drugs could influence the pattern of gene expression and
thus cell behaviour. An approach based on the inhibition of HDACs is currently
under investigation. The goal is to reinduce genes aberrantly silenced during tumori-
genesis by acetylating histones. Inhibitors of HDACs have been shown to promote
growth arrest and even differentiation or apoptosis in many tumour cell lines and in
tumour bearing animals [74, 91]. The most studied HDAC inhibitors with poten-
tial therapeutic use are hydroxamic-acid-based hybrid polar compounds like SAHA;
they act by blocking the catalytic site of HDACs. Several HDACs inhibitors are
currently in phase I or II clinical trials and some objective tumour regressions have
been observed [91, 92]. The biologic activity of HDAC inhibitors is monitored by
measuring the increase in the level of acetylated histones in tumours. However, since
these inhibitors are not specific of a particular deacetylase, we do not know whether
the effect observed with tumour cells is solely due to histone hyperacetylation or
whether treatment-induced acetylation of transcription factors, such as p53, might
also regulate gene transcription and hence influence cell cycle and cell proliferation
[93]. In addition, treatment-induced acetylation has also been detected in normal tis-
sues, and we do not know the long-term consequences of hyperacetylation for these
tissues. Results presented on chromatin remodelling during differentiation in part III
of this chapter suggest caution should be taken when using HDAC inhibitors.

The regulation of gene expression by HDACs seems to be selective. Only about
2% of genes are affected upon treatment of normal and transformed cells with SAHA
or TSA [74, 94]. For a number of genes this phenomenon may be due to the upstream
regulation of gene expression resulting from DNA methylation. Indeed treatment
with the HDACs inhibitor TSA is not sufficient to restore gene expression at certain
loci, whereas treatment with the global demethylating agent 5 Aza 2’-deoxycytidine
(5Aza) leads to a substantial reinduction of the expression of these genes, and ad-
ditional treatment with TSA enhances the effect on 5Aza-mediated gene expression
[87–90]. 5Aza has been used in clinical trials with various results; there were unde-
sirable secondary effects (high toxicity, mucositis, diarrhoea, nausea, vomiting, and
skin rash) and no significant antitumour activity could be measured for most types of
cancer tested, including breast carcinoma [95, 96]. Additionally, preliminary results
obtained in our laboratory showed that treatment of preformed breast tumour-like
clusters with 5Aza did not alter malignant cell proliferation and did not induce glan-
dular differentiation (unpublished results). Although combined treatment with 5Aza
and HDACs inhibitors may be more efficient to restore the expression of methy-
lated genes in cancer, it seems very dangerous to use such broad range inhibitors in
patients. Therefore, knowing whether a specific type of acetylase and methyltrans-
ferase or MBP can be associated with the regulation of distinct subclasses of genes
may be extremely useful for designing more specific, less toxic, and more efficient
therapies.
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2.5 Extra c e llula r M a t rix S igna lling t o t he
Cell Nucleus, Chroma tin Remodelling, and
Cell Behaviour

As we d isc u sse d in th e fir st part of th is chap ter, the b asement m embrane p lays
a critical role in th e inductio n and main tenance o f epith elial cell d ifferentiation. The
formation o f d ifferentiated structures is accompanied b y changes in g ene expression
an d , acco rd in g to r ecen t d ata o n ch r o m atin remo d ellin g r ep o r ted in th e seco n d p art
of th e chapter, it is expected th at as a consequence o f cell-basement membrane in ter-
actio n , th er e will b e sig n ifican t a lter a tio n s in th e o rg an isatio n o f c h r o m atin . T h e r e -
fore understanding how b asement membrane signalling r egulates chromatin will be
inva lu able to id entify intracellu lar p athways that m ay be modulated in futu re th era-
peutic strateg ies.

2.5.1 Chromat in Remodelling during Dif ferent iat ion

A common feature for th e study of th e role o f chromatin rearrangement in th e
diff erentiation p rocess is to u se TSA, a r eversible inhibito r o f HDACs. TSA treat-
ment should maintain the expression of genes that would h ave b een tu rned off nor-
mally by hypoacetylation during the diff erentiation p rocess. Pr evention o f g lobal
histone hypoacetylation u sing HDAC inhibitors has various effects o n cell d ifferen-
tiation according to the cell type. For instance, TSA treatment prevents the d iffer-
entiation o f nonmalignant rat stellate cells into myofibroblasts because, while TSA
treatment hyperacetylates histones and should induce d e n ovo g ene expression, it
also in d u ces th e in h ib itio n o f c o llag e n I an d I I I sy n th e sis, as well as sm o o th m u s-
cle �-actin, a marker of differentiation [97]. Thus histone hypoacetylation somehow
plays a role in differentiation. A possible explanation for the repressive effect on
gene expression observed in the example described above is that TSA maintains the
expression of certain genes, the products of which act as transcriptional repressors
for other genes involved in the differentiation process.

As discussed in sectio n 1 .4, HDAC inhibito rs may induce d ifferentiatio n o f
tumour cells [91]. SAHA triggers differentiation in several transformed cell lines
including the T24 human bladder carcinoma and MCF-7 human breast adenocarci-
noma [74], indicating that hypoacetylation is involved in tumorigenesis. The differ-
entiated phenotype was assessed according to morphological and proliferation pa-
rameters, as well as the expression of markers such as milk proteins in MCF-7 cells
and gelsolin in T24 cells. However, it should be noted that the expression of differ-
entiation markers is not necessary indicative of true phenotypic reversion since this
pattern of expression may also occur naturally in a number of tumours. Moreover,
the effect of drug treatments on cell proliferation may be quite different between cells
cultured as a monolayer (technique most often used) and cells cultured in conditions
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that promote the formation of more physiologically relevant, tumour-like 3D multi-
cellular structures. If indeed hypoacetylation plays a role in both differentiation and
tumorigenesis, it is likely that the pattern of genes affected by this epigenetic mod-
ulation is different in each case. We do not know at this point if the genes affected
by HDAC inhibitors in the examples described above are subject to methylation-
mediated hypoacetylation or only methylation-free-hypoacetylation.

The use of 3D cultures in which cells are in contact with a reconstituted base-
ment membrane has provided evidence that HDAC activity is involved in basement
membrane-mediated mammary glandular differentiation [98, 99]. In the 3D cul-
ture system, mouse mammary epithelial cells differentiate into polarised glandular
structures and express functional markers of milk production such as �-casein. Inter-
estingly, glandular differentiation was accompanied by histone hypoacetylation, as
shown for histone H4. When mammary epithelial cells were treated with TSA during
the differentiation process, �-casein expression was prevented [99], indicating that
shutting down certain genes is necessary for functional differentiation. Similarly in a
human model of breast glandular differentiation, TSA-induced hyperacetylation trig-
gered the loss of polarity, as shown by the fragmentation of the basement membrane,
and pushed the cells back into the cell cycle [98]. Thus, chromatin remodelling me-
diated by histone deacetylation participates in basement membrane regulated events.
At this time, there is no direct evidence showing that specific chromatin remodelling
complexes are recruited by ECM-mediated differentiation. However, the potential
connection between integrin signalling and HATs (e.g., CBP, SRC-1, and SRC-3),
histone H3 kinases Rsk2 and Msk1, and histone H1 kinase cyclin E-cdk2 [58] de-
scribed in the next paragraph, suggests that some of these chromatin remodelling
factors might be involved in basement membrane-directed tissue differentiation.

2.5.2 Extracellular Matrix Signalling to Chromatin

A direct connection between basement membrane signalling and gene regula-
tion was first described several years ago upon the discovery of ECM-responsive
elements in several gene promoter sequences. A laminin responsive element was
identified in the enhancer region of the �-casein gene [100] and, more recently, it
was shown that the activation of this enhancer is modulated by the state of histone
acetylation [101]. These results were obtained using mouse mammary epithelial
cells stably transfected with the bovine �-casein promoter and subsequently treated
with sodium butyrate, an inhibitor of HDACs. Sodium butyrate treatment was able
to induce the transcription of �-casein controlled by the exogenous promoter, re-
gardless of the presence of ECM. In another study, the expression of the �5-integrin
subunit was shown to be positively regulated by the ECM component fibronectin in
rabbit corneal epithelial cells. Transcription factor Sp1 that binds to the fibronectin
responsive element was involved in this regulation [102].

Conversely, the ECM may have a repressive action on gene transcription. This
effect was demonstrated for the TGF-� gene promoter in mammary epithelial cells

©2003 CRC Press LLC



[103]. When grown on plastic, mammary epithelial cells displayed a high level of
TGF-�1, while it was strongly downregulated in cells grown in the presence of re-
constituted basement membrane. This observation was further confirmed using the
chloramphenicol acetyl transferase (CAT) gene as reporter gene under the control
of the TGF-�1 promoter. CAT transcription was inhibited by the presence of the
basement membrane.

Integrins are among the main transducers of signals induced by the ECM. In-
tegrin binding to laminin activates a cascade of biochemical reactions as well as
the reorganisation of the cytoskeleton and nuclear structure. Biochemical path-
ways include principally the tyrosine kinase cascade Ras/MAPK [104]. Interestingly
Ras/MAPK signalling has been directly connected to chromatin remodelling com-
plexes. Following a cascade of sequential activations by phosphorylation/dephospho-
rylation of Ras/Raf/MAPKK/MAPK, Erk MAPK is translocated into the nucleus
where it interacts with chromatin remodelling factors. For instance, histone acety-
lases CBP, SRC-1, and SRC-3 are activated upon phosphorylation by Erk1 and Erk2.
In addition, Erk can also activate histone H3 kinases, Rsk2 and Msk1, and histone
H1 kinase cyclin E-cdk2 [58]. Therefore, interactions between integrins and base-
ment membrane components may be able to direct chromatin remodelling, thereby
controlling gene expression and cell phenotype.

Other proteins that may be involved in ECM or, more specifically, basement
membrane signalling to chromatin could be found among proteins, other than hi-
stones, that contain a histone-fold sequence [105, 106]. These proteins can inter-
act with other histone-fold bearing proteins and thus may regulate chromatin struc-
ture. Our laboratory is currently investigating this possibility with the example of
the nuclear mitotic apparatus protein, NuMA. The nuclear distribution of NuMA
is regulated by basement membrane-induced differentiation in mammary epithelial
cells and seems to play a role in the control of MMP activity as well as basement
membrane-mediated survival in these cells; NuMA distribution and function are al-
tered in cancer [98, and unpublished results].

2.6 Conclusion
In this chapter, we have presented and discussed aspects of tumour biology re-

search that have led scientists and clinicians to envision the development of novel
anti-cancer strategies. These strategies illustrate an emerging view of cancer ther-
apy, which aims at monitoring the illness chronically by influencing, and even re-
programming, tumour cell behaviour rather than killing tumour cells. The goals are
to prevent invasion and dissemination as well as restrain tumour cell proliferation.
Unfortunately, the drugs that are currently being tested have a broad range of action
and thus may also have effects on normal tissues. A better drug design will require
at least,
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� understanding the pathways that lead to the regulation of the expression of
genes involved in the control of proliferation and differentiation from the cell
membrane to the chromatin for each type of tissue, and

� undertaking pharmacological tests not only on tumours but also on nonmalig-
nant and differentiated tissues.

The success of such difficult investigations will require thorough mathematical mod-
elling of the different signalling networks and the dynamics of the multiprotein com-
plexes involved.
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3.1 Introduction
The movement of fluids, molecules, and particles within tumour interstitium

has countless biophysical and clinical implications. Since the proliferation of cancer
cells and their response to treatment are determined by the distribution and clearance
of nutrients, metabolites, and bioactive agents, transport of these molecules plays a
crucial role in tumour growth, angiogenesis, metastasis, and therapy. Trafficking of
small and large molecular weight agents in solid tumours may occur both by diffu-
sion and convection and depends on the physiochemical properties of both the diffus-
ing molecule and the medium [34], [54], [67], [75], [89]. Diffusion is the dominant
mode of interstitial transport for small molecular weight agents, and when the driv-
ing force for convection is reduced, it may be the dominant or at least a significant
mechanism of transport of large molecules as well [42]. Therefore the understand-
ing of the biological and physical factors that regulate interstitial transport in tumour
interstitium has important implication in the control of tumour development and in
the developing strategies to improve drug penetration in tumour masses.

Tumour interstitium is a complex network structure composed of elastic fi-
bres and collagen interdispersed with hydrophilic macromolecular constituents to
form a fluid saturated gel-like medium. Similar to polymer gels, interstitial move-
ment of molecules occurs mainly within the accessible fluid phase of the network
driven by concentration gradient (diffusion) or by interstitial fluid movement (con-
vection) [35]. Interstitial diffusion rate depends upon size, charge, and shape of
the diffusion molecule as well as on specific or nonspecific binding between the
molecule and tissue component [36]. For a given molecule, diffusion rate is strictly
controlled by the amount and type of constituents forming the extracellular matrix
(ECM), such as collagens, proteoglycans, hyaluronic acid, and elastin as well as on
their microstructural assembly. The extracellular matrix acts as a dispersive filter,
controlling fluid composition and the rate of molecular trafficking. This control is
mediated by a synergistic interaction among ECM constituents. In mature tissues,
resistance to diffusion is generally attributed to the amount of hydrophilic ground
substance, predominately glycosaminoglycans [1], [19], [55], [63], [71], [89]. The
highly hydrophilic proteoglycan chains are noncovalently bound to the more rigid
structural fibres to form a hydrated gel [51], [61]. However, it is now appreciated
that GAG content alone does not fully account for the high transport resistance pre-
sented by many soft tissues [32], [55], [89]. Tumour tissue may possess unique
characteristics due in part to an embryonic-like stage of development with extensive
remodelling of the extracellular matrix [29], [30], [31], which leads to substantial
differences in the composition and assembly [22], [29], [80], [82] and therefore in
the transport properties [67]. Interstitial rate of diffusion varies with tumour type [67]
and within the same tumour it may change both in time and space [36], [37].

Molecules may also move through the interstitial space dragged by fluid flow.
Interstitial fluid flow involves a complex equilibrium between the fluid pressure and
tissue stresses, which are influenced by tissue properties such as hydraulic con-
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ductiv ity an d tissu e e lasticity [ 6 5 ] , [ 6 6 ] , [ 8 6 ] . Besid es th e cap illar y - ly m p h a tic ex -
ch an g e [ 3 3 ] , in ter stitial flu id m ove m e n t m a y a lso o ccu r a s c o n seq u e n c e o f tissu e
deformation. Indeed, tumour in terstiu m can be envisaged as a poroelastic mate-
rial in wh ich fluid transport may take place as a result o f tissu e d eformatio n [65],
[66]. Flu id percolation, on th e o th er hand, induces deformatio n o f the so lid ma-
tr ix [12], [60], [68]. Although th e couplin g b etween tissu e mechanics and flu id flow
is well established in the field of biomechanics [63], only recently these concepts
have been used to describe flu id flow in solid tu mours (see chapter 4 o f this volume
and [65], [66], [67], [69]). The tissue parameters that control fluid transport also
depend on the composition and assembly of the extracellular matrix and vary signif-
icantly between tumour type and for a given tumour may change both in space and
in time.

Since many new and promising therapeutic strategies rely on delivery of large
agents such as genes, viruses, immunomodulators, and monoclonal antibodies, hin-
dered interstitial transport may pose a strong limitation to their effectiveness [35],
[39], [43]. In this chapter we will discuss the experimental techniques used to quan-
tify the interstitial transport in solid tumours along with the most recent experimental
data and their implication for cancer therapy.

3.2 Interstitial Transport Parameters
Transport of macromolecules in tumour interstitum may occur both by convec-

tion and diffusion and can be described by the following constitutive equation [36]

� � ����� ���� � ����� ������ � (3.1)

where � is the mass flux, � is the diffusion coefficient of the molecule in the in-
terstitium, � is the interstitial concentration, �� is the drag coefficient (= solute ve-
locity/fluid velocity), � is the interstitial fluid velocity, � is the interstitial hydraulic
conductivity, and � is the interstitial fluid pressure. The drag coefficient measures
the ratio between the solute and the fluid and may vary from 0 to values higher than
unity [25], [56].

In normal tissues, it is assumed that convection is the dominant mechanism of
transport for large molecules [34], [79]. Interstitial fluid movement occurs from the
capillary to lymphatics driven by interstitial fluid pressure gradients. However, most
tumours do not have anatomically well-defined lymphatic vessels and this leads to an
increase in interstitial fluid pressure and a consequent reduction of the driving force
for fluid flow [11], [13], [72]. Therefore convective transport is strongly hindered in
tumour interstitium ( [2], [3], [4], [5], [42]) and diffusion, although highly inefficient,
becomes the relevant mechanism of transport for macromolecules. The combination
of reduced interstitial fluid flow and the slow diffusion rate of macromolecules in
the tumour interstitium are possible causes of the therapeutic inefficiency of large
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molecular drugs [38]. Strategies to overcome these transport limitations are aimed at
the enhancement of the interstitial convective transport [10], [68].

Experimental evaluation of transport parameters of molecules within tumour in-
terstitium is useful to assess the accessibility of a given drug to tumour tissue. Ideally,
knowing the transport parameters of the tissue as function of both time and space,
one could develop precise mathematical models which would be able to accurately
describe the evolution of concentration of a variety of drugs in the interstitial space
of a tumour. Since the selective tumour cell kill depends on the concentration-time
history of a drug, such models would be extremely useful in developing optimal dose
schedules of anticancer agents. Furthermore, since diffusion rate depends upon the
structural assembly of the medium, an experimentally evaluated diffusion coefficient
serves as probe of tissue structure. Measurements of diffusion coefficient in vivo
require specific techniques and animal models since it should be carried in a non-
invasive manner over distances of less than 1 mm with a high spatial resolution. In
the following sections the most relevant experimental techniques to measure intersti-
tial transport parameters along with the relevant animal models will be described.

3.3 Experimental Models

3.3.1 Multicellular Spheroids

Multicellular spheroids have been often used as in vitro model to evaluate the
interstitial transport resistance [84]. In these studies spheroids are exposed to the cul-
ture medium at a known drug concentration. The diffusion coefficient is evaluated
by measuring the drug concentration profile within the spheroids at several times.
The methods used to measure the concentration profile include microelectrode, au-
toradiography, quantitative fluorescence microscopy, and fractional disaggregation
of various spheroids layer to measure cellular concentration in each layer. Although
this model has been widely used in the past it is now appreciated that it has severe
limitation in reproducing data relevant for an in vivo comparison [20]. The extracel-
lular matrix composition and assembly produced by tumour spheroids is significantly
different from when the same cells are grown in vivo. Therefore the interstitial trans-
port parameters in spheroids are significantly different from those measured in the
tumour tissue when the same cells are grown in an animal model [20].

3.3.2 Animal Models

The most relevant experimental models to measure diffusion coefficient within
tumour interstitium are those involving a direct measurement in a tumour implanted
in vivo. Several models can be used to measure interstitial transport parameters and
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these can be divided in two classes: macroscopic and microscopic models. The first
are used for an overall evaluation of the transport properties of the tumour inter-
stitium (i.e., tissue-level) while the latter provides information about transport on a
local microscopic scale.

3.3.2.1 Macroscopic Model

These studies involve an intravenous injection of the drug into an animal-bearing
tumour, measurement of drug concentration within the tumour as function of time by
sequential sacrifice of animals, and estimation of the interstitial transport parameter
by using specific mathematical models [6], [7]. Depending on the type of drug, in-
terstitial concentration can be measured by radioassay, chemical assay, bioassay, or
immunoassay. A very useful experimental model for interstitial transport studies,
known as isolated tumour, was introduced by Gullino [28]. In this model the tumour
is fed by a single artery and the blood flow leaves from a single vein and is isolated
by surrounding host. This model allows one to cannulate the tumour artery and vein
and, thus, study directly the blood flow rate and transport in tumours [50].

3.3.2.2 Microscopic Model

Over the past years several techniques have been developed to visualise the mi-
crovasculature and the microcirculation in vivo. Among those the transparent cham-
ber techniques have proved to be a very useful tool to study tumour interstitial trans-
port [41], [43]. Originally developed by Sandison in 1924 for rabbit ear [83], the
transparent chamber has been continuously developed and adapted to cranium, skin,
and even to the upper-arm skin fold in man [14], [15], [43]. With the use of various
optical and electronic devices and quantitative fluorescence techniques, these cham-
bers permit noninvasive, continuous, and quantitative measurements of interstitial
transport [8], [9], [15], [16], [17], [18], [67], [70], [75].

3.4 Experimental Techniques to Quantify
Interstitial Transport

3.4.1 Diffusion Coefficient

Most of the experimental techniques used to quantify interstitial transport pa-
rameters have limited capability for noninvasive measurements of diffusion in a small
sample. Results obtained with invasive methods [59] must be interpreted with cau-
tion since these techniques may alter the fluid balance and damage the structure
of the tissue by causing oedema that may strongly affect the diffusion characteris-
tics of the tissue. Intravital microscopy coupled with quantitative fluorescence has
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been shown to be a more appropriate technique to measure the diffusion coeffi-
cient of fluorescently labelled molecules since it strongly reduces the perturbation
of the tissue [8], [9], [15], [17], [18], [24], [64], [67], [70], [75], [76]. The diffu-
sion coefficient can be calculated based on the spatial distribution of fluorescence
as the labelled material spreads through the tissue (relaxation of fluorescence gradi-
ent) [18], [24], [70], [64], or by adapting the method of fluorescence recovery after
photobleaching (FRAP) based on the recovery of fluorescence pattern in a small re-
gion of the tissue (� ����) [8], [9], [67], [76], [75]. The latter method has a high
spatial resolution allowing multiple diffusion measurements within the same tissue
and also allows discrimination between diffusive and convective transport [17].

3.4.2 Hydraulic Conductivity

The experimental measurements of tissue hydraulic conductivity (�) have been
made mostly under in vitro conditions ( [52], [55], [85]) and in a few studies in vivo
( [12], [21], [85]). In vitro, � is generally estimated by measuring the flow after
applying pressure across a tissue slice of known area and thickness. Recently �
has been measured ex-vivo by the confined compression test, which couples mea-
surement of fluid transport, tissue mechanics, and hydration [67]. The advantage of
these preparations is the well defined geometry of the sample such as cross-sectional
area and thickness of the specimen. The major drawback of these techniques is the
poor control and maintenance of in vivo tissue characteristics such as tissue integrity,
pressure, hydration, and strain. In vivo estimations of� are also not straightforward,
since the characterisation of tissue dimensions can be difficult. Several approaches
have been used to perform these measurements. Swabb et al. [85] evaluated � by
measuring the unsteady fluid flow oozing out from a tumour grown around a porous
capsule. DiResta et al. [21] evaluated � by direct measurements of pressure and
velocity profiles within a solid tumour xenograft. Boucher et al. [12] evaluated �
by measuring the pressure profile generated in a solid tumour during intratumoural
fluid infusion. However, there is a significant discrepancy among the in vivo K val-
ues reported using different techniques that may be ascribed to the experimental
uncertainty associated with these procedures and to capillary fluid filtration that may
influence the estimation of this transport parameter. The in vivo � values reported
by Boucher et al. [12] are in good agreement with the ex-vivo data obtained on the
same tumour type suggesting that the procedure used by these authors may be seen
as the most reliable.

3.5 Role of Solute Dimension and Charge
Diffusion of small molecular weight molecules, such as oxygen and small molec-

ular weight drugs, within interstitial space is scarcely hindered since the molecular
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siz e is ve r y sm a l l c o m p a r e d t o the matrix p o r e size [ 87]. Transport o f small molecu-
lar weight molecules m ay therefore b e envisaged as occurring in the free fluid phase
with in th e ex tr acellu lar m atr ix w ith a n eg lig ib le ster ic o b str u c tio n r esu ltin g f r o m th e
so lid m a tr ix n e two r k . A wid e r an g e o f n ove l can cer th er ap ies seek to u tilise m acr o -
molecular agents such as p rotein s, gene vectors, liposomes, o r polymers that are
in te nded to recognise cancer cells and exert a selectively toxic effect. However, due
to th eir larg e size th e tr a n sp o r t o f th e se ag en ts with in th e in ter stitial sp ace m a y b e sig -
nificantly hindered [39]. Compared to conventional chemoth erapeutic agents, which
are small molecules less than 1 nm in diameter, these novel agents h ave d imensions
that sp an between 10 to 1000 nm in diameter and therefore their interstitial m ove-
ment is strongly reduced by steric obstruction. Diffusio n o f p robe macromolecules
with in tu m o u r an d n o r m a l tissu es h ave b een measured by several investigators (for
a review see [36]). The d iffusion coefficient data for d ifferent molecular weight
molecules diffusing in water solution, normal and tumour tissues are shown in Fig-
ure 3 .1.

Figure 3.1

Dependence of diffusion coefficient on molecular weight in normal and tumour
tissues. Data are obtained at room temperature and corrected to 37�C. Symbols
are:
(diamond) diffusion of dextran in aqueous solution, data from [27],
(square) diffusion of dextran in mature granulation tissue, and
(circle) in VX2 carcinoma implanted in rabbit, data from [26] and [70].
Lines are fit of the data with the relationship � � 	�
� ���.
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The d ependence o f d iffusion coefficient upon th e molecular weight of th e d if-
fusing molecule can be described b y a power law

� � 	�
� ��� � (3.2)

wh ere 
� is th e m o lecu lar weig h t o f th e d iff u sin g m o lecu le, a n d 	 and � are two
experimental constants. In Table 3 .1, the coefficients a and b are reported for various
molecular weight dextrans in water solutions, normal and tumour tissues. The coef-
ficient � is 0.5 for water solution, according to the Stokes-Einstein relationship, and
ranges from 0.75 to 3 for tissues. The increase of the coefficient � indicates that there
is an additive hindrance to the movement of macromolecules within the interstitium
that may depend on several factors such as steric obstruction, nonspecific interaction,
and configurational dynamics of the molecule [76].

Figure 3.2

Interstitial mobility of BSA (68 �	) and IgG (150 �	) in four tumour types
and in solution. Diffusion coefficient measured in vivo in dorsal skin-fold
chamber on mice-bearing tumour xenograft by FRAP. From left to right the
columns refer to aqueous solutions, colon carcinoma LS174T, mammary carci-
noma MCaIV, osteblastoma HSTS26, and gliobastoma U87. Data from Netti et
al. [67].

It has been often reported in the past that diffusion coefficient of a given macro-
molecule in a tumour is higher than the diffusion coefficient of the same molecule
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Table 3.1 Dependence on the molecular weight of the diffusion coefficient of
several macromolecules in solution and tissues (� � 	�
� ��� �����).

Tissue Diffusant
(MW range)

a b Ref.

Human articular cartilage
(in vitro)

Dextran
(5–40 kDa)

�� ���� 1.34 [59]

Mesentery cat Dextran
(3.4–393 kDa)

��	
� ���� 0.758 [64]

Mesentery rat Dextran
(3.45–41.2 kDa)


�
� ���� 1.09 [24]

Rabbit ear granulation tissue Dextran
(19.4–150 kDa)

�� ���� 2.96 [70]

VX2 carcinoma Dextran
(19.4–150 kDa)

��
�� ���� 1.14 [26]

Colon carcinoma LS174T
Dorsal chamber

Proteins
(68–155 kDa)

���� ���� 0.81 [67]

Mammary carcinoma McaIV
Dorsal chamber

Proteins
(68–155 kDa)

���� ���� 0.87 [67]

Osteosarcoma HST26T
Dorsal chamber

Proteins
(68–155 kDa)

���
 1.57 [67]

Glioblastoma U87
Dorsal chamber

Proteins
(68–155 kDa)


��� 1.69 [67]

Glioblastoma U87
Dorsal chamber

Various solutes
(68–2000 kDa)

��	� 1.4 [75]

Glioblastoma U87
Cranial window

Various solutes
(68–2000 kDa)

���� ���� 0.68 [75]

Melanoma Mu89
Dorsal chamber

Various solutes
(68–2000 kDa)

� ���� 0.95 [75]

Melanoma Mu89
Cranial window

Various solutes
(68–2000 kDa)

���� ���� 0.68 [75]
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in normal host tissu e [ 34], [ 85]. However, it h as been recently sh own that the dif-
ference b etween th e d iffusion coefficient in tu mour and in host normal tissu e d epend
upon the tumour and the host tissue type [67], [75]. Figure 3.2 shows the diffusion
coefficient of BSA (68 �	) and  IgG (150 �	) in  four different tumour types and
in bu ff er ed salin e so lu tio n a lo n e . T h e co efficien t � for g lioblastoma and sarcoma
(� � ���) is much higher than the two carcinomas group (� � ��) indicatin g a
much stronger d ependence o f d iffusion coefficient upon th e molecular weight for the
glioblastoma and sarcoma tissu es compar ed to the carcinoma. As a consequence, the
difference in diffusio n coefficient among tu mour types b ecomes more evident at high
molecular weight. Indeed, BSA diffuses at a modestly hindered rate that does not
diff er significantly among tumour types. Although the m ean BSA m obility in the
mammary carcinoma (MCaIV) and colon carcinoma (LS174T) are approximately
10% greater th an in th e g lioblasto ma (U87) and sarcoma (HSTS 26T), th e d ifference
is n o t sig n ifican t. Howeve r, th e d iff u sio n co efficien t o f th e larg e r I g G m o lecu le is
si gnificantly greater in th e two carcinomas (MCaIV and LS174T) compared to the
glioblasto ma (U87) and sarcoma (HSTS 26T).

Th e m o lecu lar weig h t is n o t th e o n ly facto r in flu en cin g th e in ter stitial m o b ility
of a m acromolecule. Parameters such as charg e a n d c onfiguration m ay also affect the
rate o f d iff u sio n o f a m acr o m o lecu le in th e tu m o u r in ter stitiu m [ 4 4 ] , [ 4 6 ] . Ch a rg e
may influence both ster ic p ar titio n a n d d iff u sio n c o e fficien t. Co m p ar in g th e d iff u sio n
co efficien t o f a g lo bu lar p r o tein ( BSA) a n d a lin ear m acr o m o lecu le ( Dex tr an ) with in
the same tissu e it h as been reported that BSA d iff uses at a slower r ate compared to
Dextran o f equivalent size [24], [70]. Molecular charg e regulates th e nonspecific
binding (stick in e ss) b e tween th e d iffu sin g mo lecu le an d th e in terstitial sp ace. Bin d -
in g is a ve r y im p o r tan t p a r a m e ter in th e in ter stitial tr a n sp o r t sin ce it m a y a ff ect th e
eff ective d iff u sio n r a te b y lower in g th e m o lecu lar m o b ility [ 4 7 ] . T h is p ar am eter h a s
been experimentally evaluated in vivo by using FRAP (see Figure 3.3, [9]).

3.6 Hydraulic Conductivity
There is a paucity of data in the literatu re regarding the hydraulic conductivity

( � ) of  tissu e, in p a r ticu lar tu m o u r, d u e to th e ex p e r im e n tal d ifficu lties to eva lu ate
th is p a r a m e ter. I n Ta b le 3 .2 , a su m m a ry of th e experimental evaluatio n o f K in
vitro and in vivo is r e p o r te d. The d ata reported d epend o n the technique used to
evaluate the parameter since the different experimental techniques may modify tissue
condition and hydration. The value of � depends upon the tumour type and within
th e same tissu e d epends on tissu e hydratio n o r d eformation. Figure 3 .4 sh ows the
tissue hydraulic conductivity for the four tumours as a function of tissue deformation
(i.e., hydration).

Tumour hydraulic conductivity is a strong function of tissue hydration accord-
ing to data reported for other soft tissues [55]. The dependence of � on tissue
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Figure 3.3

Dependence of interstitial diffusion coefficient and nonspecific binding on
molecule size and charge. Diffusion coefficient (left column) and immobile frac-
tion (right column) of BSA (68 �	), antibody fragment (Fab’), and nonspecific
antibody IgG (150 �	). Data from Berk et al. [9].

Figure 3.4

Dependence of hydraulic conductivity on tissue deformation. Tissue hydraulic
conductivity as a function of tissue deformation evaluated by confined compres-
sion experiments on freshly sliced tumour tissue [67]. Solid lines are the fit of
the experimental data with the equation � � �� �������� where �� and �
are empirical parameters, and � is the tissue deformation.
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hydratio n is well d escrib ed by an exponential law, in agreement with th at suggested
in the literature for o ther so ft tissu es [63] and hydrogels [45]

� � ���
�� �

wh ere � is an experimental parameter, � is th e tissu e d ef o r m a tio n ( i.e., th e tr ace o f
the m atrix d eformation tenso r), and �� is th e hydraulic conductivity at zero tissu e
deformation. The hydraulic conductivity of th e unstrained tissu e (��) can be esti-
mated b y extrapolatin g to zero the data reported in Figure 3 .3 (see Table 3 .1). By
comparin g the hydraulic conductivity valu es for tumour and normal tissu es, it can
be concluded that in g eneral the r esistance to water flow is lower in tumour than in
normal tissu es.

Hydraulic conductivity regulates the inter stitial fluid velocity that along with the
retardatio n facto r �� deter m in e th e in ter stitial c o nvective r ate o f a so lu te. T h e r e tar-
datio n coefficient is a phenomenological parameter and depends on tissu e hydratio n
and structu re, and molecular p roperties o f solutes. It h as been poorly quantified in
th e liter a tu r e [ 5 6 ] an d th e r e ar e n o d ir ect evalu a tio n s o f th is p a r a m e ter f o r tu m o u r
tissu e. Parameswaran and co-wo rkers h ave examined �� of albu min in m embrane-
like str u c tu r e s, su ch as p ig m ed iastin al p leura [73] and rabbit mesentery [74] durin g
tissu e perfusion and found th at RF depends on th e p erfusion rate. This finding is
co n sisten t with an o th e r r ep o r t in th e liter a tu r e th at in d icates an inve r se r elatio n sh ip
between RF and infusio n rate in tumour tissu e [60]. The retardatio n o f convective
tr an sp o r t is likely d u e to d e f o r m atio n o f th e tissu e d u e to so lid str e ss g e n e r a ted b y
th e flu id flow. A m o r e sy stem atic ex p e r im e ntal approach is necessary to gather more
in formatio n about th e retardatio n factor in tu mour tissu es and its dependence o n the
physio chemical and structu ral p roperties o f the tissu e and th e solutes.

3.7 Role of E xtracellula r Matrix Composit ion a nd
Assembly

In matu r e n o r m a l tissu es, in ter stitial r esistan c e to water an d so lu te tr a n sp o r t is
generally attributed to th e amount of proteoglycans [1], [19], [63], [71]. Indeed,
th er e is a g e n e r a l c o r r e latio n b etween flu id an d so lu te tr a n sp o r t r esistan c e with th e
amount of glycosaminoglycans (GAG) in th e tissu e (Figure 3 .5). However, th e same
conclusion cannot be drawn for tumour tissues [67].

Tumour tissue may possess unique characteristics due in part to an embryonic-
like stage of development with extensive synthesis of extracellular matrix ( [29],
[80], [82]), which leads to substantial differences in composition and assembly com-
pared to the host tissue ( [22], [51], [57], [58]). These differences have important
consequences in regulating the transport parameters of tumour tissues. Anomalous
assembly of the fibrillar component and its interaction with the proteoglycan compo-
nent of the tumour ECM greatly influence the physiological barrier to macromolecule
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Ta bl e 3.2 Inters titial hy draulic conductivity of tumor a nd norma l tissues.
Hydraulic conductivity wa s determined by diffe re nt me thods: in c onfined
compression (�), � is eva luated from the time c onstant for s tress re laxation
by fitting the data with a porov iscoleastic model [67]; in vivo ��� , � is
calculated based on pressure gradients measure d by micropipet pressure
probes during infusion of saline [12]; in ex-vivo or in vitro ���� excised tissue
is placed in a flow cell in which a pressure gradient is imposed on the tissue
and water flow through the sample measure d [55], [89].

Hydraulic conductivity (���� �������� � �)

Ti ssue t y p e � in vitro
(confined
compressio n )

� in vitro
(flow chamber)

� in vivo
(intratu moral
in f u si on)

Co lo n c a rcino ma
LS 174T

�
� �	� ��� ��� �	� ���

Ma mma ry carcinoma
Mc a IV

�
�� ���� � �

G lio ma
U8 7

�
� ��� � �

Osteosarcoma
HSTS-26T

���� 	��� ��	�� ���	� �

vitrous body � ���� ���� �

Hepa toma � ���� �

Subcut a neo us t issue � ���
� �

Sclera � ����� �

Ao rta � ����� ���� �

corneal stroma � ����� ����� �

cartilage surface layer � ���	� �

cartilage deep layer � ������ �

femo ral head cartilage � ����� ������ �

motion posed by healthy tissu e ECM. In a series of recent studies ( [20], [67], [75])
it has b een sh own that contrary to wh at occurs in normal tissu es, transport resistance
to flu id and macromolecules in tumour tissu es does not correlate with th e amount
of GAG but rather to the amount of fibrillar collagen. Figure 3 .5 sh ows that the hy-
draulic conductivity of four different type of tu mour tissu es changes b y almost two
orders of magnitude with virtually no change in GAG content. Analogously, Fig-
ure 3 .6a shows th at th e d iffusion coefficient of a 155 �	 molecule (IgG) does not
co r r e late with th e GAG co n ten t. On th e o th er h a n d , Fig u r e 3 .6 b sh ows th at d iff u -
sion coefficient of macromolecules within tumour interstitium correlates well with
the amount of collagen in the tissue. The influence of fibrillar collagen has been
definitely proven by showing that enzymatic digestion of collagen network leads
to a substantial increase of diffusion coefficient [67]. The dependence of transport
resistance of tumour interstitium on the fibrillar collagen content of the tissues, is
corroborated by recent data by Pluen et al. [75] and by Ramanujan et al. [78], and

©2003 CRC Press LLC



Figure 3.5

Hydraulic conductivity of various tissue and hyaluronic acid aqueous solu-
tions as a function of glycosaminoglycan (GAG) composition. The symbols are:
(full circle) hyluronan solutions [89]; (circle) various tumour and normal tis-
sues [55]; (square) carcinomas, sarcoma, and glioblastoma tissues [67].

also by the data obtained by direct intratumoural infusion of macromolecular solu-
tions by Boucher et al. [12]. Furthermore, recently Brown et al. [15] have loosened
tumour collagen by chronic treatment with the hormone relaxin and demonstrated
an increase in diffusive transport. Taken together these findings can be generalised
by concluding that tumours with a well defined collagen network are more resis-
tant to macromolecular drugs compared to tumours that exhibit a loose collagen
network. Degeneration of the fibrillar network and a resulting compromised physio-
logical function may be a general feature of tumours. Indeed, ECM organisation is
often abnormal in tumours ( [22], [57], [58]) and this may explain the discrepancy
reported in the fluid and macromolecular transport resistance in tumours compared
to normal tissues.

Since the extracellular matrix assembly and composition of a given tumour
is determined by tumour-host tissues interaction, it suggests that also the transport
properties of a tumour are controlled by the host. Therefore, in determining the trans-
port resistance of a solid tumour particular attention should be paid to the choice of
the relevant experimental model. It has been recently shown that interstitial trans-
port properties of a given tumour depend upon the anatomical location of the im-
plants [75]. Along the same line, it has also been shown that tumour spheroids, as in
vitro models for interstitial transport, fail to reproduce the in vivo tissue characteris-
tics and therefore interstitial transport data obtained with in vitro models should be
interpreted with caution [20].
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(a) (b)

Figure 3.6

Dependence of interstitial diffusion coefficient of a 155 �	 molecule (IgG) on
tissue GAG (a) and collagen (b) content. Data are adapted from Netti et al.
[67]. Dashed lines are the best fit of the data with the exponential equation
� � �� ��� ����
���, where � and �� are empirical parameters and [M1] is
the composition of the ECM component (i.e., GAG or collagen).

The micro-structural assembly of the ECM may lead to microporous struc-
ture with complex interconnectivity. The interconnection of micropores, or effec-
tive available volume, within the tissue controls both the partition coefficient and
apparent diffusion rate of macromolecular drugs. It has been recently shown that
pore-matrix connectedness and shape strongly regulates the dependence of diffusion
coefficient upon molecular weight [90].

3.8 Relevance for Delivery of Molecular Medicine
A wide range of novel cancer therapies seek to utilise macromolecular agents

such as proteins, monoclonal antibodies, gene vectors, viruses, liposomes, or poly-
mers. Since the size of these agents are significantly larger compared to that of
conventional therapies, the success of “molecular medicine” may ultimately depend
on how well the agent can penetrate the tumour interstitial matrix. Therefore, a bet-
ter understanding of the physiochemical parameters that control tumour interstitial
transport, along with appropriate mathematical modelling of the processes involved,
may be helpful in proposing and designing novel strategies to improve the delivery
of macromolecular agents to solid tumours.

Studies on the role of the extracellular matrix assembly and composition on in-
terstitial transport have lead to the identification of measurable tumour characteristics

©2003 CRC Press LLC



that could be useful in predicting penetration by therapeutic macromolecules. For
instance, the results obtained suggest that the feasibility of therapeutic approaches
requiring macromolecule penetration could be assessed by histological staining of
tumour tissue biopsies or by optical imaging [14], [15], [67], [75]. Delivery of high-
molecular-weight agents should be facilitated in tumours with poorly organised and
loosely interconnected collagen networks. However, further studies are needed along
these lines since the assembly of the interstitial network is probably determined by
the interaction of both neoplastic and host cells. Particularly in tumours of epithelial
origin, host stromal cells are involved in the production and organisation of ma-
trix molecules [48]. Hence, the transport properties of the tumour interstitial matrix
likely depends on the site of tumour growth as well as on the tumour type [75].

Besides the size and charge, the transport of a molecule depends on the flexi-
bility of the diffusing molecule. Comparing the diffusive regimes in polymer gels of
several molecules with different molecular rigidity it has been shown that configura-
tional change of diffusing macromolecule may control the transport regime [76]. Not
only flexible macromolecules exhibit greater mobility in the gel than comparable-
size rigid spherical particles, but also flexible macromolecules can undergo to mech-
anisms of transport not possible for rigid ones. In particular, flexible macromolecules
move via reptation through the polymer network even when their radius of gyration
exceed the gel mesh size.

Mathematical modelling of coupled fluid and macromolecular transport in tu-
mour interstitium has helped elucidate the role of extracellular matrix compliance,
hydraulic conductivity, and diffusion coefficient in macromolecular drug distribution
within tumour tissues [2], [3], [4], [5], [23], [62], [65], [66], [67], [69], [77], [78].
These basic models provided new insight for understanding the physiological bar-
rier to fluid and macromolecular transport in solid tumours and represent a valuable
tool for determining the relevant transport parameters both in vitro and in vivo [12].
Further studies are needed along these directions to integrate in the basic theory spa-
tial and temporal effect on transport parameters, dependence of the parameters on
the tissue hydration and include finite volume analysis to take into account complex
geometry.

3.9 Conclusion and Challenge
Interstitial movement of macromolecules is controlled by chemical-physical

properties and configurational dynamics of the transported molecule as well as the
microstructure and composition of the extracellular matrix. The macroscopic param-
eters that control the rate of interstitial transport are the tissue hydraulic conductivity
(�) and the diffusion coefficient (�), which define the intrinsic convective and dif-
fusive rate of the transport, respectively. These parameters are related to molecular
properties of the solute, such as molecular size, charge and configuration, and molec-
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ular and structural parameters of the interstitium such as composition, charge, and
assembly. Albeit some of these relationships have been established, at least empir-
ically, most of them remain still fundamentally unknown. The acquisition of these
basic relationships through a heuristic approach is urgently needed.

There is a paucity of quantitative data on the penetration of large agents in
tumour interstitum and in particular on the role of charge, shape, and configuration
on their transport parameters. This deficiency is significant considering the vast array
of different agents currently under development or in use for cancer therapy; there is
no consensus on the best chemical-physical characteristics an agent should have [49],
[81], [88]. The need for measuring the relevant transport parameters for the novel
agents developed by molecular medicine is urgent to assess the feasibility of the
approaches and to design appropriate time-dose schedule to enhance their efficacy.

The tumour interstitium is not a passive fibre-matrix gel but rather a living mate-
rial undergoing dynamic remodelling of cell shape, matrix structure, and cell-matrix
connections. As a consequence interstitial transport parameters change both in time
and space leading to gradients in drug concentration within tumour tissue [35], [53].
To address the important issue of space and time heterogeneity of tumour tissues,
novel techniques with the ability to monitor pharmacokinetics and physiological pa-
rameters simultaneously and continuously with a high spatial resolutions (1–10�m)
are needed. One of the most promising novel noninvasive method that meets these re-
quirements is the multiphoton in vivo microscopy associated with transparent cham-
ber preparations [15]. With this technique it will be possible to investigate tissue
in three dimension with the adequate spatial resolution. The use of this technique
should permit in the future to investigate and exploit the mechanisms that underline
the heterogeneous distribution of drugs within tumour interstitium.
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4.1 Introduction
Wh en settin g o u t to m o d e l n ew p h e n o m en a, it is n a tu r a l to f o c u s in itially o n

sim p le , w e ll- d e fin e d sy ste m s. T h u s, b e f ore using the Navier-Stokes’ equations to
st udy tu rbulent fluid flow, one might first consid er steady lamin ar flow. Looking
through the m athematical literature on so lid tumour growth a similar p attern emerges:
th e ear liest m o d e ls f o cu sed o n ava scu lar tu m our growth; then models of angiogen-
esis were developed; and, now, models of vascular tu mour growth are startin g to
emerge. The improvements in biomedical techniques such as imaging and g ene-
se quencin g that h ave o ccurred over the past th irty years p rovide an alternative expla-
nation f or this development: as experimental procedures became m ore sophisticated
and knowledge about so lid tu mour growth in creased, the deficiencies o f the earlier
math ematical mo d els b ecame ap p aren t an d p o in ted th e d irectio n f o r n ew m o d ellin g
approaches.

Given the larg e, and ever increasing, number o f mathematicians wh o are now
st udying different aspects of solid tumour growth, it would be impossible to review
th e e n tir e m o d e llin g liter a tu r e h e r e . I n stead , in th is c h a p ter we will f o cu s o n m ath -
ematical models of avascular tumour growth . In so doing, we hope to explain h ow
th e field h as d eve lo p e d a n d m a tu r e d in lin e w ith n ew b io lo g ical in sig h ts.

We s t a r t our review, in section 4.2, by consider in g m o d e ls in wh ich d etails o f
th e tu m o u r ’s sp atial str u c tu r e ar e n eg lected an d a tten tio n f o c u sed o n , f o r ex a m p le,
th e tu m o u r ’s ove r a ll vo lu m e or th e total number o f cells present with in th e tumour.
Th e r esu ltin g m o d e ls ar e f o r m u lated a s sy stem s o f d iff er en tial e q u a tio n s an d h ave
been widely used by clinicians to estimate kinetic parameters associated with tu-
mour growth in vivo and in vitro and to assess the efficacy of different therapeutic
strategies.

Fo r t h e next class o f models th at we study, in sectio n 4 .3, the role of a single,
rate-limiting, diffusible growth factor on the tumour’s development is investigated.
Since the concentration and hence potency of the chemical will vary as if diffuses
through the tumour, spatially nonuniform growth will emerge naturally from such
models. The chemical of interest may promote cell division (e.g., glucose or oxygen)
or promote cell death (e.g., chemotherapeutic drugs, tumour necrosis factor, or other
biproducts of cell degradation). Equally, it may be supplied externally (e.g., oxygen
and drugs) or be produced by the cells themselves (e.g., tumour necrosis factor). By
specialising the model appropriately and assuming one-dimensional growth, each of
these cases may be investigated. The resulting models typically comprise a reaction-
diffusion equation for the growth factor and an integro-differential equation for the
tumour radius. Additional equations may be used to determine the tumour’s spatial
structure. For example, if the chemical of interest is oxygen, the transition from
rapid proliferation to quiescence and from quiescence to necrosis may be assumed to
coincide with the oxygen concentration passing through experimentally determined
threshold values. As we show, these models can be used to identify conditions under
which a tumour will evolve to an equilibrium configuration and to show how its size,
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st ructure, and stability to time-dependent perturbations depend on physically relevant
parameters su ch as th e concentratio n o f oxygen b eing supplied to the tu mour.

In section 4.4 we turn our attention to tumour invasion. We sh ow how the
sp atially - str u c tu r e d m o d e ls o f sectio n 4 .3 can b e ad ap ted to stu d y th e im p act o f
sy mmetry-breakin g p ertu rbations on tu mours undergoing one-dimensional (usually
radially - sy m m e tr ic) g r owth . We ex p lain h ow lin ear stab ility an aly sis m a y b e u sed
to id en tif y th o se a sy m m e tr ic p e r tu r b a tio n s to wh ich th e tu m o u r is u n sta ble and how
the r ange of instability varies with parameters su ch as the concentration o f oxy-
gen outside th e tumour and the strength o f surface tensio n effects. In th is way, it
is possible to p redict conditions under which an avascular tumour will main tain an
approximately radially -symmetric structure and those for wh ich its outer boundary
will become highly irregular, the latter case corresponding to a highly invasive and
aggressive tumour.

The chapter concludes in sectio n 4 .5 with a summary of th e earlier sections and
a brief d iscu ssio n o f d ir ectio n s f o r f u tu r e m ath e m a tical r e sear ch in m o d e llin g so lid
tu m our growth.

4.2 S patially -Uniform Models of Avascula r
Tu m our Growth

4.2.1 Introduction

In th is sectio n we p resent a number o f mathematical models th at have been used
to describe th e g rowth dynamics of so lid tu mours when spatial effects are neglected.
The models are amongst the earliest that were used to describe solid tumour growth
and are formulated as sy stems o f d ifferential equations. As we show, models of th is
type may b e u sed to d escrib e h ow th e numbers of proliferating, quiescent, and d ead
cells co n tain e d with in a tu m o u r ch an g e ove r tim e. Eq u a lly, d iff e r e n tial e q u a tio n
models may b e u sed to compare th e response o f a tu mour to different chemoth era-
peutic protocols (continuous drug infusion or periodic pulsing).

Th e r em ain d er o f th is sectio n is o rg an ised in th e f o llowin g way. I n sectio n 4 .2 .2
we p r esen t m o d e ls in wh ich the tumour is assumed to be homogeneous, containing
only one type of cell. In section 4.2.3 we investigate the response of such homoge-
neous tumours to different chemotherapeutic str a teg ies. I n sectio n 4 .2 .4 we g e n e r-
alise the earlier models so th at heterogeneous tu mours containing different cell types
may be studied. The section concludes with a discussion of the spatially-uniform
models.
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4.2.2 Growth of Homogeneous Solid Tumours

One of the simplest models that can be used to describe the way in which the
number of cells ���� within a solid tumour changes over time is the exponential
growth law which states

��

��
� ��� with ��� � �� � ��� (4.1)

� ���� � ���
���

In Equation (4.1) � � � represents the net rate at which the cells proliferate, and
�� denotes the number of cells initially present within the tumour. In this model,
there are no constraints on cell growth: all nutrients and other vital growth factors
are assumed to be available in abundance. In consequence, the model predicts that
the population will increase, without limit.

Whilst an exponential growth law may provide an accurate description of the
early stages of a tumour’s development, it is clearly unable to capture the periods of
reduced growth and eventual saturation that are observed when avascular tumours
are grown in vitro or when vascular tumours develop in vivo. This discrepancy arises
because as the tumour increases in size competition for nutrients and other vital
resources, such as space, can no longer be neglected. A simple modification of (4.1)
which takes account of competition for resources (without specifying what those
resources are) is the logistic growth law

��

��
� ��

�
�� �

�

�
� with ��� � �� � �� � �� (4.2)

� ���� �
���

�� � �� ��������
� � as ����

In (4.2), � � � represents the carrying capacity of the population.
Whilst the logistic growth law predicts almost exponential growth of small tu-

mours and growth saturation when the tumour reaches its carrying capacity (� � �),
the symmetry of ���� about its point of inflection (where ���

��� � � and � � �	�)
means that it is not particularly flexible when it is used to fit (or describe) experi-
mental data. A more general family of curves, which, depending on the choice of 
,
can saturate more or less rapidly than (4.2), is given by

��

��
�
�



�

�
��

�
�

�

���
� with ��� � �� � ��� (4.3)

� ���� � �

�
��
�

��
� � ��� ���

� ��
���

����

�

We remark that the logistic growth law is a special case of (4.3) (set 
 � �) and
that the Gompertzian growth law is recovered in the limit as 
� ��.
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In order to compare th e three models presented above, we p lo t in Figure 4 .1
growth curves for each model for fixed va lues of the p roliferation r ate � and the
carrying capacity �.
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Figure 4 .1

Diagram showing how the tumour’s evolution depends on the choice of growth
law. Key: exponential growth law (dot-dashed line); logistic growth law (solid
line); general growth law (
 � ���, circles and 
 � ���, crosses). Parameter
values: � � ���� � � ���� �� � ���� 
 � ���, or 
 � ���.

Many alternative g rowth laws h ave b een proposed to describe th e d evelopment
of solid tumours (for details, see, for example [24,25]). The different models have
enjoyed varying degrees of su ccess when applied to experimental data. A common
weakness of models of this type (i.e., models in wh ich a sin g le d iff e r e n tial e q u a tio n
describes the tu mour’s growth rate and the effects o f any other external factors, su ch
as n u tr ien t availab ility o r tu m o u r cell h eter o g en eity, ar e n eg lected ) is th e d ifficu lty
in relating the model parameters (e.g., � and � for the logistic growth law) to the
behaviour of individual cells. We will return to this issue in section 4.3 where we
present spatially-structured models of avascular tumours. Before that, we discuss
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two possible modifications of Equations (4.1) to (4.3) which lead to models that pro-
vide preliminary insight into the impact that cellular heterogeneity and chemotherapy
may have on solid tumour growth. In the first case we consider the response of a tu-
mour to a cytotoxic (poisonous) chemotherapeutic agent which is administered either
as a continuous infusion or via a series of pulses. In the second case, we suppose that
the tumour contains different cell types and investigate how the proportion of each
cell type changes over time.

4.2.3 Treatment of Homogeneous Solid Tumours

We now consider a tumour growing in vivo which, in the absence of therapeu-
tic intervention, undergoes logistic growth. A chemotherapeutic drug, which kills
tumour cells when it comes into contact with them, is injected into the patient. Fol-
lowing section 4.2.2, we denote by���� the number of tumour cells at time � and by
���� the (average) drug concentration within the tumour and assume that

��

��
� ��

�
�� �

�

�
� ��� � ������ (4.4)

��

��
� ����� ��� ��� � ������� (4.5)

with
��� � �� � �� and ��� � �� � ��� (4.6)

In Equations (4.4) and (4.5) � denotes the rate at which the drug kills tumour
cells, � represents the drug’s half-life (or decay rate), � represents the rate at which
the drug becomes ineffective as a result of cell kill, and ���� represents the rate at
which the drug is delivered to the tumour. We will consider two alternative delivery
protocols:

Continuous Infusion: ���� � �� � � � ��

Periodic Infusion: ���� �

�
�� � � � � �� �
� �� � � � � �� ��

4.2.3.1 Continuous Infusion

When �� � � (i.e., no drug is administered), Equation (4.4) reduces to (4.2)
and, hence, ���� � � as � � �. It seems reasonable to expect that when the
tumour is continuously exposed to a cytotoxic drug, both the tumour and the drug
concentration will evolve to equilibrium values. In order to study the impact of
continuous drug infusion, we now identify and classify the equilibrium solutions of
Equations (4.4) and (4.5), paying particular attention to how they depend on ��
(and, hence, the amount of drug that is administered).
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Wh e n �
�� � � , Equations (4.4) and (4.5) reduce to g ive

� � ��

�
�� �

�
� �
�
�

�
and � � �� � ��� ��� �

so th at eith er
� � � and � �

��
�
�

or

� � �� �
�

�

�
�� ��

�

�
� �

��

�

����
��

� �
�

and � �
�

�

�
�� �

�

�
� (4.7)

Now, for a particular tumour and a sp ecific drug, the p arameters �� �� �� �, and
� will be fixed: the only p arameter over which th ere will be so me degree of control
is ��, which  we take a s our bifurcation p arameter.

Elementary analysis indicates th at (4.7) po sse sse s n o r e a l r o o t s i f

�� � ����
� � ��

�

�
� �

�

���

�
�� ��

�

��
�
�

Thus, if the administered dose is such that �� � ����
� th en th e only physically

realistic steady solutio n is the triv ial, tu mour-free solutio n for which � � � .
Fu r th e r a naly sis o f (4.7) indicates th at for intermediate values o f �� (� � �� �

����
� ) the nontrivial steady state so lu tions depend on th e p arameter grouping ��	�.

Re f e rring to Figure 4.2, we note that if ��	� � � th en th er e is a fin ite r a n g e o f ��
(��	� � �� � ����

� ) for wh ich (4.7) possesses two , physically realistic so lu tions:
for smaller valu e s o f �� (� � �� � ��	� ) there is a single, nontrivial so lu tion. We
note also that if ��	�� � th en f o r m o d e r a te va lu es o f �� (� � �� � ��	� ) there
is a single, nontrivial so lu tion: for larger values o f �� (��	� � �� � ����

� ) there
are n o physically realistic, nontrivial equilibrium so lutions.

Wh ilst th e ab ove analysis and the resu lts presented in Figure 4 .2 sh ow how the
equilibrium solutions depend on the system parameters, they do not enable us to de-
termine which solution would be realised in regions of parameter space where more
than one equilibrium occurs. One method that can be used to address such questions
involves using linear stability analysis to determine the local stability of the equilib-
rium solutions to time-dependent perturbations. We now describe this technique, and
use it to assess the stability of the trivial, tumour-free solution ����� � ��� ��	��
which exists for all parameter values.

We linearise about ����� � ��� ��	�� by introducing the small parameter
�� � and writing

���� � � 	���� and ���� �
��
�

� � 	����� (4.8)

We substitute with (4.8) in Equations (4.4) and (4.5), and equate coefficients of ����
to obtain

� 	�

��
�
�
� � ���

�

�
	��
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Figure 4.2

Bifurcation diagrams showing how the tumour’s equilibrium size varies with
the drug dosage, �� for the cases (a) ��	� � � and (b) ��	� � �. Parameter
values: (a) � � � � � � � � �� � � ��� and (b) � � � � � � � � �� � � �.

� 	�

��
� � 	�� ���

�
	��

Therefore

	���� � 	��������	���
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���	���
���

We deduce that if �� � ��	� then 	����� 	����� � as ���, i.e., the tumour
evolves to the trivial, tumour-free solution. Therefore, if �� � ��	� then the trivial
solution (with ����� � ��� ���) is said to be linearly stable whereas if �� �
��	� it is said to be linearly unstable. Given that �� denotes the concentration of
drug administered to the tumour, we deduce from the above analysis that if the drug
concentration exceeds the threshold value ��	� then the tumour will be eradicated.

The same technique can be used to assess the linear stability of the nontrivial
equilibrium solutions of (4.4) and (4.5), although the algebra is more involved. To

©2003 CRC Press LLC



determine the stability of a nontrivial solution ����� � ���� ���, where�� and
�� solve (4.7), we seek solutions of the form

���� � �� � � 	���� and ���� � �� � � 	���� where �� ��

Substituting with these trial solutions in Equations (4.4) and (4.5) and equating to
zero coefficients of ���� we deduce that

� 	�

��
�
�

��
	� �

�

��
	� � �

�
�� ���

�
� ���

�

�
	� � ��� 	��

� 	�

��
�
��

��
	� �

��

��
	� � ���� 	� � ��� ���� 	��

where
�

��
� �

��
���� ����

and so on. This pair of linear differential equations possesses solutions of the form

� 	�� 	�� � � 
�� 
�����

where, for nontrivial solutions (i.e., � 
�� 
�� 	� �), � satisfies the dispersion relation

� � �� �
�
�

��
�
��

��

�
� �

�
�

��

��

��
� �

��

��

��

�
�

and we have linear stability if 
��� � �. Using the dispersion relation it is straight-
forward to show that this will be the case if

�

��
�
��

��
� � �

�

��

��

��
� �

��

��

��
�

Example
We apply the above techniques to our model of continuous drug infusion with

� � � � � � � � �� � � �	�� and �� � ��� ���

The nontrivial equilibrium solutions (��� ��) satisfy

� � ��
� ��� � ���� � �� or ��� � ����� ���

�� � �����
and there is a single, physically-realistic (i.e., positive) solution for �� � ��� ��.

Using elementary calculus, it is possible to show that	



�
�

��

�

��

��

��

��

��

�
�
������

�

	

�
�� ��� ��� ���

���
�

��� ��
�

�
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� �
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��

��
� �

�
��
�

���

�
� �

and

�

��

��

��
� �

��

��

��
� ��

� �
��
�
� ��

Hence we d educe that, where it exists, the physically-realistic e quilibrium so lution
is stab le to tim e- d e p endent perturbations.

In Fig u r e 4 .3 we u se th e ab ove a p p r o ach to sh ow h ow th e lo cal stab ility o f
th e stead y state so lu tio n s p r esen ted in Fig u r e 4 .2 ch an g e as th e d r u g c o n cen tr atio n ,
��, varies. As predicted above, when ��	� � �, the nontrivial solution is stable
where it exists and the trivial solution unstable. For values of �� for which there
are no nontrivial steady states the tumour-free steady state is stable. The case when
��	� � � is slightly different. Here where multiple, nontrivial steady state solutions
exist, the smaller steady state is unstable while both the larger solution and the trivial,
tumour-free solution are stable. Indeed, the smaller steady state acts as a boundary,
separating the basins of attraction of the two stable solutions.

4.2.3.2 Periodic Infusion

The analysis of the continuous infusion model presented above suggests that if
the drug dosage is sufficiently large (�� � �	�) then the tumour will be eliminated.
In real situations, side-effects mean that continuous infusion is not usually a viable
drug delivery protocol: if delivered systemically, the drug may have an adverse effect
on vital organs such as the liver where there is a rapid cell turnover rate. As a result,
chemotherapeutic drugs are often delivered as a series of continuous infusions, so
that the patient’s healthy organs (and, unfortunately, the tumour) can recover between
successive treatments.

We now investigate the impact of periodic infusion on our solid tumour growth
model. For simplicity we study the following simple model

��

��
� ��

�
�� �

�
� ��

�
� with ���� � ��� (4.9)

and ���� �

�
�� � � � � �� �
� �� � � � � �� ��

(4.10)

(Note: this model can be derived from (4.4) and (4.5) by assuming �� � ���� and
��� � ����� �.)

Since ���� is piecewise constant, Equation (4.9) is simply a logistic equation,
whose carrying capacity switches between ��� � ���	�� and � as ���� switches
between �� and � at times � � �� � � � �� � �� �� �� � � ��. By assuming continuity
of ���� at these switching times, it is possible to construct the following analytical
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Figure 4 .3

Diagrams showing how the stability of the equilibrium solutions presented in
Figure 4.2 change as �� varies for the cases (a) ��	� � � and (b) ��	� � �.
Parameter values: (a) � � � � � � � � �� � � ��� and (b) � � � � � � � �
�� � � �. Stable solutions are represented by solid lines and unstable solutions
by dashed lines.

solution for����:

���� �

�����
����

����

�� � ������� ��� ������� ��� � � � � �� �

�����

���� � �� ����� � ��������� �� ��� �� � � � � �� �

(4.11)

where
� � �� ���

�
�

���� � �� is prescribed,�� � ��� � �� �� � ��,

���� � ��� � �� �� �
����

�� � ������� �������� �
and, by continuity of ���� at � � � � �, the coefficients �� satisfy the following
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recurrence r elation:

���� �
����

��� � ���� ���� � ������� �������� �� ��������� ��� � (4.12)

In Figure 4 .4 we sh ow how the sequence �������� ev olve s and how the lim itin g
behaviour depends on th e d rug dosage applied. In all cases, the sequence eventually
settles to a n e q u ilib r iu m wh ich d ecr eases in m a g n itu d e as �� increases. 1 Indeed,
if th e d r u g d o sag e is su fficien tly larg e, th en er ad icatio n o f th e tu m o u r o ccu r s. Ob -
viously, with periodic infusio n the dosage required to achieve eradicatio n is g reater
than that required for continuous infusion (this is b ecause with periodic infusion the
tu mour cells are exposed to th e d rug for less time).

Recall that when we studied the tumour’s response to continuous drug infusion,
th e tu m o u r even tu ally settled to a tim e- in d e p e n d e n t eq u ilib r iu m so lu tio n . By co n -
trast, as the r esults of Figure 4 .4 indicate, wh en th ere is p eriodic infusion, th e system
may also evo lve to a (nontrivial) p eriodic solutio n for wh ich ���� � ��� � �� and
hence �� � ���� � �� � �, say.  Using  Equation (4.12) it is possible to show
th at nontrivial periodic solutions will arise if

�� �
����� ������������� �

� � ��� ���������� � ������������� �

In Figure 4 .5 we sh ow how �� decreases as the drug dosage �� increases.

4.2.4 Heterogeneous Growth of Solid Tumours

In the models that we have studied thus far all tumour cells were assumed to
be identical. In practice solid tumours consist of many different types of cells. For
example, vascular tumours growing in vivo may contain blood vessels that supply
nutrients to the tumour, extracellular matrix and immune cells such as macrophages
(macrophages are white blood cells that are usually associated with wound-healing
but which are now believed to play an important role in solid tumour growth [22]).

In addition, the tumour cell population may contain functionally distinct sub-
populations. These sub-populations, which are often caused by genetic mutations,
may be characterised by different proliferation and death rates and different re-
sponses to environmental conditions (for example, cells with mutant p53 are believed
to be able to survive longer periods of oxygen deprivation than cells with normal

1Note that even though the sequence �����
���

evolves to an equilibrium, the system does not settle to a
time-independent steady state: rather it settles to a periodic solution, with � � ���� during the interval
� � � � �� �.
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Figure 4.4

Series of diagrams showing the tumour’s response to periodic infusion at dif-
ferent drug dosages for different initial conditions. Key: top panel, �� � ���;
middle panel, �� � ���; bottom panel, �� � ���. Parameter values: � �
� � � � �� � � ���. Circles correspond to ���� � �� � ���, crosses to
���� � �� � ���.

p53 [15]). These functional variations can also mean that certain sub-populations
are less responsive to chemotherapeutic intervention.

By considering the proliferation rates of tumour cells at increasing distances
from a blood vessel, we can appreciate a different type of heterogeneity within solid
tumours which is based upon local environmental conditions. Cells adjacent to the
blood vessel have an abundant supply of nutrient and, hence, proliferate freely. As
the distance from the vessel increases the local nutrient concentration falls since it
is being progressively consumed as it diffuses away from the blood vessel. Eventu-
ally a point is reached at which the nutrient concentration becomes so low that the
tumour cells there are unable to proliferate, although they have sufficient nutrient to
remain alive. These cells are termed quiescent. At greater distances from the vessel,
the nutrient concentration may become so low that the quiescent cells are unable to
stay alive: they die due to nutrient deprivation, forming a region of necrotic cellular
debris. Thus we may characterise tumour cells as (a) proliferating, (b) quiescent, and
(c) necrotic or dead. Typically, all three cell types will be present within a vascular
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Diagram showing how �� varies with �� when periodic solutions emerge. Pa-
rameter values: � � � � � � �� � � ���.

tu m o u r an d a well- d eve l oped avascular tu mour [13,26].
In sectio n 4 .3 th e sp a tially - str u c tu r e d m o d e ls th at we stu d y en ab le u s to d istin -

guish between th ese d ifferent cell types o n the basis o f the lo cal nutrient concentra-
tion. However, in order to g ain some insight into the p roportion o f each cell type
with in a tu m o u r ( a nd how this changes as the tumour evolves), we now present a
mathematical model in which the three cell types are considered separately.

We d e note by � ��� th e n u m b e r o f p r o lif er atin g cells at tim e � , ���� th e number
of quiescent cells, ���� th e number o f d ead or necrotic cells, and ���� � � ��� �
���� �����  th e to tal number o f tumour cells. The schematic diagram p resented in
Fig u r e 4 .6 , o n wh ich o u r m o d e l is b ased , illu str a tes h ow cells m a y c h a n g e f r o m o n e
sta t e t o a nother, how n ew cells are p roduced (proliferation) and h ow dead cells are
degraded.

Gu id ed b y Fig u r e 4 .6 , we d ed u c e th a t o u r m a th em atical m o d e l m ay b e wr itten
as follows

��

��
� ���� � ��� � ����� � ����� (4.13)

��

��
� ���� � ���� � ������ (4.14)
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Figure 4.6

Schematic diagram of model of heterogeneous tumour growth.

��

��
� ���� � ����� ��� (4.15)

with

� ��� � ��� ���� � ��� ���� � ��� (4.16)

In Equations (4.13) to (4.15), the functions ��� and ��� represent, respectively, the
rate at which proliferating cells produce new cells (these daughter cells are assumed
to enter the proliferating state) and the rate at which cells stop proliferating and
become quiescent. The interpretation of the other functions follows similarly.

In order to fully specify our model it remains to choose the functions ��� ��� � �
������. In practice the rates ��� depend on the local nutrient level within the tu-
mour. Rather than introducing nutrient as an additional model variable, for simplic-
ity, and by analogy with the competition term that appears in the logistic growth law
(see Equation (4.2)), we assume that the transition rates between the proliferating,
quiescent, and dead states depend on the total number of cells in the tumour mass
and the number of cells in each state. One possible choice of the transition rates is
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as f o llows

��� �
����
�� ��

� ��� �
�����

�� ��
�

��� � ���� � ��� �
�����

�� ��
� ��� �

������ ���

�� ��
� (4.17)

with �, the decay rate of the n ecrotic cellular m aterial, assu med constant. When
th ese k in etic ter m s a r e su b stitu ted in to E q u a tio n s ( 4 .1 3 ) to ( 4 .1 5 ) we o b ser ve th at
our math ematical model comprises a system o f coupled differential equations. This
sy ste m m a y b e stu d i e d usin g the same analytical techniques as those u sed to investi-
gate th e models of sections 4.2.2 and 4.2.3. Fo r e x a m p l e , i t is possib l e t o show that
if ��� � � (i.e., if natu ral cell d eath is n eg lected) then Equations (4.13) to (4.15)
ad m it th e f o llowin g eq u ilib r iu m so lu tio n s

� � � � � � ��

or

� �

�
����
����

� �

�
� � �

�
�����

���� ����

� �
��

����
����

�
����
����

�
� �

�
� �

����
����

��

with

�� �
������ � ���� ��

����
�

and

� � �� � � �� � � ���� �
����
�

�� �����

We remark that there are at most two nontrivial equilibrium so lutions. I n p rac-
tic e it is necessary to determin e wheth er th e solutions are physically realistic (i.e., � ,
� , and  � are nonnegative). Fo r example, the expression relatin g � to � indicates
that physically realistic equ ilibrium so lutions must satisfy � � ���� 	����.

As an exer cise, th e r ead er is en co u r ag ed to d e ter m in e th e lin ear stab ility o f th e
diff er en t e q u ilib r iu m so lu tio n s.

4.2.5 D iscu ssio n

In this section we h ave p resented a r ange of mathematical models of increas-
in g complex ity th at may b e u sed to p rovide in sight in to th e overall growth dynamics
of so lid tu mours. Wh ilst the models neglect any spatial effects that may be present
with in th e tu m o u r, th ey can b e u sed to estim ate the kinetic parameters from experi-
mental data and to predict or estimate the response to therapy.

There are many ways in which the models that we have studied could be ex-
te nded. Fo r example, in sectio n 4 .3 we presen t a class o f well-studied sp atio-temporal
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models that reproduce the layered spatial structure that characterises avascular tu-
mours and multicellular spheroids growth in vitro.

Another possible extension which enables the action of cell-cycle specific drugs,
such as doxorubicin, to be investigated involves introducing a second independent
variable � � � � � , say. Then ���� �� denotes the number of cells at time � which
are in position � of their cycle and����, the total number of cells at time �, is related
to ���� �� in the following way

���� �

� �

�

���� ����

where, in the absence of therapy, ���� �� may satisfy the following partial differential
equation

��

��
�
��

��
� ����� �����

with
���� �� � �����

and

���� �� �

� �

�

�������� �����

In the above equations, the constants �� and �� represent rates of natural cell
death and cell death due to overcrowding respectively, and ���� denotes the prolif-
eration rate of cells at position � of their cell cycle. Models of this type are termed
age-structured models, and their analysis may be quite involved. Further details
about models of this form can be found in [19] whereas a more general discussion of
age-structured models is presented in [20].

4.3 One-Dimensional Spatial Models of
Avascular Tumour Growth

4.3.1 Introduction

The earliest spatially-structured models of avascular tumour growth are due to
Burton and Greenspan [3,16]. At this time, biologists were focusing on the effect
that changes in the composition of the medium surrounding the tumours had on their
growth [13,26]. They recorded the radii of the (approximately radially-symmetric)
tumours over time, supplementing their measurements, where possible, with infor-
mation about the oxygen distribution within the tumours and the proportion of the
tumours that were necrotic and hypoxic. Faced with such data, it is not surprising
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th at th e key variables in the corresponding math ematical models are:  ��� , the po-
sitio n o f th e o u ter tu m o u r r a d iu s o f th e a ssu m e d r ad ially - sy m m e tr ic tu m o u r ; !�"� �� ,
th e c o n cen tr atio n with in th e tu m o u r o f a p ar ticu lar d iff u sib le ch em ical ( th is m ay b e a
growth factor su ch as oxygen o r g lu cose or a n ew anti-cancer drug th at is bein g tested
prior to clin ical tr ials) ; ���� , the lo cus o f the boundary separatin g p roliferatin g and
quiescent cells; and  � ��� , the lo cus o f the boundary separatin g the quiescent and
necrotic cells. Sin ce th e tumours change in size over time, th e domains on wh ich
th e r esu ltin g m o d e ls ar e f o r m u lated a lso var y a n d m u st b e d e ter m in ed as p a r t o f th e
so lu tio n p r o cess. Co n seq u e n tly, th e m o d e ls th at we n ow stu d y fa ll with in th e w id er
class o f mov in g boundary problems [12].

Th e o u tlin e o f th is sectio n is a s f o llows. I n sectio n 4 .3 .2 we p r esen t in g en er al
form the class of moving boundary problems that we use to study avascular tumour
growth. I n section 4 .3.3 we sh ow how, under certain conditions, the models may
be reduced to sy stems o f d ifferential equations similar in form to those studied in
sectio n 4 .2 . We in d icate th e so r t o f in sig h t th at th ese sp a tially - str u c tu r e d m o d e ls
can p r ov id e b y p r e sen tin g so m e a n a ly tical r e su lts in sectio n 4 .3 .4 . T h e sectio n th e n
concludes with a discussion of the merits and weaknesses of these models.

4.3.2 The Mathematical Model

The simplest models that describe the growth of a radially-symmetric, avas-
cular tumour comprise equations governing the evolution of a single, growth rate
limiting, diffusible chemical !�"� ��, the outer tumour radius  ���, and the hypoxic
and necrotic radii  ���� and  � ���. The principle of mass balance is used to de-
rive equations for !�"� �� and  ��� whereas  ���� and  � ��� are defined implicitly,
occurring when the chemical concentration passes through known threshold values.
We state the model equations both in words and in mathematics, in order to highlight
the connection between the underlying physical assumptions and the mathematical
formulation.

The chemical concentration, !�"� ��.

�
rate of change of

chemical concentration

�
�

�
flux due to
diffusion

�
�
�

rate of chemical
consumption

�
�

�!

��
�
�

"�
�

�"

�
"�
�!

�"

�
� ��!�  � � �  � �� (4.18)

In Equation (4.18)� denotes the assumed constant diffusion coefficient of the chem-
ical and ��!�  � � �  � � its rate of consumption. In practice ��!�  � � �  � � will
be a nonlinear function which depends on the tumour cell line being studied and the
chemical of interest. In order to demonstrate the qualitative behaviour of the model
we suppose that the chemical is a vital nutrient (e.g., oxygen or glucose) and assume
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that it is consumed at a constant rate � by proliferating and quiescent cells. Thus we
write

��!�  � �  � �  � � � �#�" � � ��
where #��� denotes the Heaviside step function (#�$� � � if $ � � and#�$� � �
otherwise).

The outer tumour radius,  ���.

�
rate of change of
tumour volume

�
�

�
total rate of cell

proliferation

�
�
�

total rate of
cell death

�
�

(4.19)

�



�

��
� �� �  � � 

��
�

� �

�

%�!�  � � �  � �"
��" �

� �

�

��!�  � � �  � �"
��"�

In Equation (4.19), %�!�  � � �  � � and ��!�  � � �  � � denote respectively the
rates of cell proliferation and cell death within the tumour. Cell proliferation is as-
sumed to be localised in nutrient-rich regions (where !� � ! or  � � " �  )
where it occurs at a rate which is proportional to the local nutrient concentration
!. We assume that apoptosis and necrosis contribute to the overall cell death rate,
with apoptosis occurring at a constant rate throughout the tumour and necrosis be-
ing initiated in nutrient-poor regions (where ! � !� or " �  � ). Thus, as simple
representative examples, we write

%�!�  � � �  � ��&!#�"� �� and ��!�  � � �  � ��&��&��#� ��"��

where &� � and �� are positive constants. Substituting with % and � in Equation
(4.19) yields

�

&
 � � 

��
�

� �

��

!"��" � �


�� 

� � �� 
�
� �� (4.20)

The hypoxic and necrotic boundaries, ���� and  � ���.

!�"� �� � !� � " � ���  ��  � �  � � ��

� " � ���  ���� such that !� � !�"� �� � !� �  � � � �  � �  
with !� � � �� � !� �

� " � ���  ���� such that !�"� �� � !� � !� � � �  � �  � �  
with !� � � �� � !� and !� � � �� � !� �

����������
���������

(4.21)

In Equations (4.21), the internal free boundaries  ���� and  � ��� are defined im-
plicitly in terms of threshold nutrient concentrations !� and !� . These constants
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denote respectively the minimum nutrient concentration at which cell p roliferation
can occur and the m aximum nutrient concentr ation at which necrosis occurs. In Fig-
ure 4.7 we p r ov id e a sch e m a tic d iag r a m to illu str a te th e str u c tu r e o f a well- d eve lo p e d
avascular tumour which possesses a central necrotic core and a hypoxic region.

Figure 4.7

Schematic diagram of a fully-developed avascular tumour. The central region
represents the necrotic core (where !�"� �� � !� ), the middle annulus represents
the hypoxic region (where !� � !�"� �� � !� ), and the outer rim represents the
proliferating region (where !� � !�"� ��).

We close the model equations by prescribing the following boundary and initial
conditions

�!

�"
� � at " � ��

! � !� on " �  ����

!�
�!

�"
continuous across " �  ���� and " �  � ����

!�"��� � !��"��  �� � �� �  ��

�������
������

(4.22)

In Equations (4.22) !� is the assumed constant nutrient concentration external to
the tumour, !��"� is the initial nutrient distribution within the tumour when  �
 �. Thus we impose symmetry of the nutrient profile about " � �, we fix the
nutrient concentration on the outer tumour boundary and prescribe the initial nutrient
concentration and tumour radius.

Nondimensionalisation

Before continuing with an analysis of the model equations, it is appropriate to recast
them in terms of dimensionless variables. Denoting by ', ( , and � typical nutrient
concentrations, lengthscales and timescales respectively, we introduce the following
dimensionless variables

!� �
!

'
� "� �

"

(
� �� �

�

�
�  � �

 

(
�  �� �

 �
(
�  � �

 �
(
�
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When written in terms of !�� "�, etc., our model equations become

�!�

���
�

�
��

(�

�
�

"��
�

�"�

�
"�

� �!�

�"�

�
� ��#�"� � �� ��

 �
� � �

���
�

� ��

�

�&�'!�#�"� � �� �� &�� � &���#� �� � "��� "�
�

�"��

At this stage, our choice of the scalings �'�(� � � remains unspecified. We base our
choice of ' and ( on typical experimental measurements. For example, if oxygen
is the nutrient of interest then ' � ��� and, for an avascular tumour, ( � �mm.
We remark that there are several timescales implicit in the model equations. These
include:

� The nutrient diffusion timescale,(�	�

� The tumour doubling timescale, �	&'

� The nutrient consumption timescale, �	�

In practice, experimental parameter estimates indicate that�
nutrient diffusion timescale� (�	�

� mins or hours

�
�

�
tumour doubling timescale� �	&'

� weeks

�
�

Since we wish to simulate changes in the tumour’s spatial structure, we focus on the
longer timescale, choosing

� �
�

&'
�

In addition, we make the following quasi-steady assumption in the nutrient equation

���� � ��
�

(�
�� �������

This equation then reduces to give

� �
�

"��
�

�"�

�
"�

� �!�

�"�

�
� ��#�"� � �� ��

where �� �
�(�

�
� �����

We now state, in full, our nondimensionalised model equations

� �
�

"��
�

�"�

�
"�

� �!�

�"�

�
� ��#�"� � �� ��

 �
� � �

���
�

� ��

�

�!�#�"� � �� �� �� � ���#� �� � "��� "�
�

�"��
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 �� � � if !� � !�� � " and otherwise !�� �� � �
�� � !�� �

 �� � � if !� � !�� � " and otherwise !�� �� � �
�� � !�� �

�!�

�"�
� � at "� � ��

!� � !�� on "� �  ��

 ���� �  ��� prescribed�

where �� �
�(�

�
� �� �

�
'
� ��� �

��
'
�

!�� �
!�
'
� !�� �

!�
'
� !�� �

!�
'
�

Henceforth, we omit the �s for clarity.
We remark that, by choosing ' � !�, we could have eliminated !� from the

model equations. Since we want to investigate the effect of varying !�, we choose
to retain !� as an explicit model parameter. For similar reasons, we choose not to
scale lengths with  �.

4.3.3 Model Simplification

Using the simple functional forms that appear in our model equations, we may
construct analytical expressions for ! in terms of � � , and � and algebraic equa-
tions that define the free boundaries � and � in terms of . The evolution of ���
is, in turn, governed by a nonlinear differential equation. At any given time, the form
of these relations depends on the current value of  ���, this value indicating whether
the tumour contains regions of hypoxia or necrosis.

When � �  ���� � ��!� � !��	�, it is possible to show that

!�"� �� � !� � �

�
� � � "���

� 

��
�
 



�
!� � � �

��
� �

�
� (4.23)

with  � � � �  � �

Thus, for this range of  , the tumour contains only proliferating cells.
When ��!� � !��	� �  ���� � ��!� � !� �	�, we have

!�"� �� � !� � �

�
� � � "���

� 

��
�
 



��
!� � � �

�

��
��  

�
�

 �

�
�

� �

��

�
��  

	
�

 	

�
� �

�
� (4.24)
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with  � � � and  �
� �  � � �

�
�!� � !��� (4.25)

Hence, for this range of , the tu mour contains a central quiescent o r hypoxic reg io n
wh ic h is surrounded b y an outer proliferatin g rim.

Wh e n ��!� � !� �	� �  �, it is  possib l e t o show that

!�"� �� �

�
!� � � " �  �
!� � ��" � � ���" � � ��	�"  � � " �  

�

� 

��
�
 



�
!�

�
��  

�
�

 �

�
�
�
� � ��

 �
�

 �

��
(4.26)
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� (4.27)

with

�
��  �

 

���
� �

� �
 

�
�

�

� �
�!� � !� �� (4.28)

and

�
��  �

 �

���
� �

� �
 �

�
�

�

� �
�

�!� � !� �� (4.29)

In th is case, th e tumour is fully developed, containing a central necrotic core, an
in te rmediate hypoxic annulus and an outer proliferatin g rim.

In th e n ex t sectio n w e u se th e a b ove r e su lts to m a ke a n u m b e r o f p r e d ictio n s
about th e tumour’s growth . In p articular, we investig ate h ow th e tumour’s sp atial
str u c t u r e i s a ff ected by model p arameters such as the rate at which the tumour cells
consume nutrient and th e threshold concentrations at wh ich quiescence and n ecrosis
ar e in itiated .

Bef o r e co n tin u in g we r e m a r k th at b y d iff er en tiatin g with r e sp ect to tim e th e
algebraic expressions for  � and  � our model may be reduced to systems of
coupled differential equations wh ich are similar in form to those studied in sectio n
4.2. For example, if ��!� � !��	� �  � � ��!� � !��	� then we obtain the
following differential equations for  ��� and  � ���

� 

��
�
 



��
!� � � �

�

��
��  

�
�

 �

�
�

� �

��

�
��  

	
�

 	

�
� �

�
�

� �
��

�
 

 �

� 

��
�

Since � �  � �  we deduce that ������ � � ����� � i.e., if the tumour contains a
quiescent region � ��� evolves more rapidly than  ���. We note also that when the
outer tumour radius is expanding (i.e., ���� � �) so is the quiescent boundary.
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4.3.4 Mo d el Pred i ct ions

Settin g �	�� � � in Eq u a tio n ( 4 . 23) we deduce that the tumour will evolve to
a stead y state th at is d evo id o f q u iescent and necrotic cells and h as  � � ���!� �
��	� prov id ed th at th is is a valid so lu tio n i.e., q u iescen ce h a s n o t b een in itiated .
Th is will b e th e case if , at eq u ilib r iu m , ! � !� �" � ���  � . Using the expression
for the nutrient concentratio n it is possible to show that this will be th e case p rovided
th at

!� � !� � �

�
�!� � ���

This inequality sh ows h ow the r ates of pr oliferation and apoptosis of the tumour
cells m u st b e in ter- r e lated in a tu m o u r wh ich , at eq u ilib r iu m , h as n o q u iescen ce o r
necrosis.

Usin g E q u a tio n ( 4 . 2 3 ) it is also possible to show that the tumour volume ) ��� �
�* ����	 satisfies th e f o llowin g g r ow th law

�)

��
� )

�
!� � � � �

��

�
)

�*

����
�

or, equivalently,
�)

��
�
�)




�
��

�
)

�

���
�

wh ere 
 �
�


� � �

�


�!� � ��� � �

�*



�
��

�
�!� � ��

����
�

This resu lt sh ows h ow th e spatially -structu red models th at we are studying relate to
th e sp a tially - ave r a g e d m o d e ls o f sectio n 4 .2 an d , in p a r ticu lar, h ow th e g r owth o f
a uniformly proliferatin g tumour may b e d escrib ed by model 3 of sectio n 4 .2. By
making this comparison between the two models we can also see how local param-
eters associated with the spatially-structured model relate to the spatially-averaged
parameters that appear in the spatially-uniform models.

We commented above that the kinetic terms that we employ are overly simplis-
tic and should be replaced by experimentally-determined functions. In general, these
functions will be nonlinear and the resulting models will not admit analytical solu-
tions: they must be solved numerically. Whilst numerical simulations are of tremen-
dous value, they may obscure the manner in which the various mechanisms interact.
Complementary insight into the system’s behaviour can be gained by studying spe-
cial cases for which the model equations simplify greatly [7]. We sketch below how
this may be achieved by focusing on three, physically-relevant cases:

1. Small tumour analysis (� �  � �);

2. Tumour behaviour near the onset of necrosis (� �  � �  � ����); and

3. Well-developed tumours, with thin proliferating rims (� �  � � � �).
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In order to sim p lif y th e an aly sis, w e a ssu m e f u r th e r th a t th e tr an sitio n f r o m
quiescence to necrosis is very rapid and hence that !� � !� and  � �  � .

4.3.4.1 Sma ll Tumour Analysis, � �  � �

If  � � � and � �  � � th en ! � !� � " � ���  � and, by solving
Eq u a tio n ( 4 . 2 3 ) to lead in g o r d er in  , we  deduce that  ��� satisfies

 ��� �  ��� ���
�
�!� � ���



�
�

Th u s, w h e n th e tu m o u r is sm all, th e n u tr ien t is u n if o r m ly d istr ibu ted w ith in th e tu -
mour vo lu me and its growth rate depends on th e b alance between th e rate o f cell loss
due to apoptosis and the rate of cell p roliferation, th e latter effect bein g regulated by
th e ex ter nal nutrient concentration, !�. In particular, if !� � � then the tumour
is not being supplied with enough nutrient to grow, and it will regress to the tumour-
free solution  � � wh ich is lin ear ly stab le ( see sectio n 4 .2 ) . Sim ilar ly, if !� � �
then sufficient nutrient is being supplied for tumour growth to occur: in this case the
trivial solution  � � is unstable.

4.3.4.2 Tumour Behaviour near the Onset of Necrosis, � �  � �  � ����
In order to study this behaviour we assume that

 �  � � � � � �
� � and  � � � �� ��� ���

Substituting with the expressions above in Equation (4.28) and equating coeffi-
cients of ���� we deduce that

 �
� �

��!� � !��
�

�  � � ��  � �
 �

��

� �
�

where  �  � when necrosis is initiated. These results indicate that when the
necrotic core is small, temporal variations in  ��� are smaller than variations in
 � ���. Substituting for  � and  � in Equation (4.26) yields a differential equation
for  � which is singular in the limit as � � �. We regularise this equation by
introducing a short timescale � � �	�� and obtain

 ���� �  ��� � �� � �

�
�

�
�!� � !� �� �


�� � !� �

�
��

Using the above expression for  ���� we deduce that the necrotic core persists
if !� � !� � ��� � !� �	 and otherwise it will disappear at time � � �� where

�� �  ��� � ��	

�
 �

�
�

�
�!� � !� �� �


�� � !� �

��
�

For a particular set of experiments, involving a particular tumour cell line and
for which !� is known, we can use these results to relate some of the parameters gov-
erning the tumour cells’ proliferation and death rates. For example, if the spheroids
contain a necrotic core then we deduce that !� � !� � ��� � !� �	.
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The above analysis also provides some insight into the way in which the tu-
mour’s volume and spatial structure change when the necrotic core is very small.
Since temporal variations in  ��� are much smaller than variations in  � ��� (�����
rather than ����), we deduce that the necrotic core evolves rapidly while the over-
all tumour volume remains approximately constant. These predictions are consis-
tent with independent experimental observations of multicell spheroids grown in
vitro [18].

4.3.4.3 Well-Developed Tumours, with Thin Proliferating Rims,  � � � �

We assume that  � is related to  in the following way

 � � � Æ �� ���Æ
���

where the small parameter � � Æ � � characterises the width of the proliferat-
ing rim. Substituting with these expression in Equation (4.28) and equating to zero
coefficients of ��Æ� we deduce that

!� � !� � �

�
�Æ ���

� �
�

�
� � � ��

and
� 

��
� ��


�� � �� � � Æ�!� � �� � �� ���Æ

���

Solving for  ���, we deduce that

 ����  � � Æ�!� � �� � ��

�� � �� �
as ����

Assuming that !� �  �� � ����, we deduce further that  � � ��Æ	�� �
�� ��. In particular, if experimental measurements of the tumour radius at equilib-
rium indicate that  � � ���� we deduce that � � �� � ��Æ�. Combining
the above results, we deduce that there are two necessary conditions for realising
growth-saturated avascular tumours which possess thin proliferating rims and have

 � � ����� !� � !� ���Æ�� and � � �� � ��Æ��
The constraints on � and �� are tumour-cell specific whereas the constraint on !�
can be realised by choosing the external nutrient concentration appropriately.

4.3.5 Discussion

Before developing more complex models, we reflect upon the insight gained
from the simple, radially-symmetric models studied in this section. The models can
be used to identify conditions under which a tumour will grow to an equilibrium con-
figuration and to show how its size, spatial structure, and stability to time-dependent
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perturbations depend upon physically relevant parameters su ch as th e externally -
supplied nutrient concentratio n !�. The model can be used to predict conditions
under which certain equilibrium configura tions will be realised e.g., a necessary
co n d itio n f o r o b tain in g a tu m o u r with a th in p r o lif er atin g r im is th at th e ex ter n a l
nutrien t c o n cen tr atio n b e a p p r o x im a tely eq u a l to th a t a t wh ich n ecr o sis is in itiated
(i.e., !� � !� ).

There are many ways in wh ich the model p resented above could b e extended.
Fo r e x a m p l e , w e c ould u se experimentally -determined functions for the rates o f cell
proliferation, apoptosis, and necrosis. Equally, we could include additional d iffu-
sio n e quations to describe th e actio n o f o th er diffusib le growth factors which may
be present in the tu mour environment. These chemicals, wh ich may be supplied
ex t e r n a lly o r expressed b y the tu mour cells th emselves, may promote o r inhibit the
tu mour’s growth . For ex ample, by-products of th e cell d eg radatio n p rocess that ac-
co m p an ies n ecr o sis ar e b elieve d to in h ib it cell p r o lif er atio n . Mo d e ls o f th is ty p e ar e
st udied in [6]. A furth er model extension wh ich p rovides a simplistic descriptio n
of vascular tu mour growth invo lves in cluding a d istributed source of nutrient (or a
distributed sink of waste products) in the outer portion of the tumour: the distributed
source means that nutrients may b e supplied to the tu mour eith er by ex change with
its va sc ulature o r b y d iffusion across the tu mour’s outer boundary. For details of
models of th is type refer to [21].

Give n th a t ava sc ular tu mours are usually radially - sy m m e tr ic an d vascu lar tu -
mours possess highly irregular boundaries, it is n atural to ask wheth er th is change in
morphology is due to the nonuniform distribu tion o f b lood vessels that accompanies
vascularisation or whether the radially symmetric avascular tumours are themselves
unstable to asymmetric perturbations. Although the spatially-structured models pre-
sented in this section are not amenable to such analysis, in the next section we show
how they can be extended to address this important question.

4.4 Asymmetric Growth of Avascular Tumours

4.4.1 Introduction

In this section we show how the one-dimensional models of avascular tumour
growth presented in sectio n 4 .3 m a y b e m o d ified in o r d er to stu d y g r owth in two a n d
three dimensions. The approach we adopt was originally developed by Greenspan
[17] and involves the introduction of new variables that describe the local cell veloc-
ity and pressure within the tumour. We motivate the inclusion of pressure and veloc-
ity into the model in the following way. Suppose that the tumour is incompressible
and contains no voids or holes. Then cell proliferation and death will generate spa-
tial variations in the pressure within the tumour and these will drive cell motion, with
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cells moving away from reg ions of high pressu re (i.e., net cell p roliferation) towards
regions of lower p ressu re (i.e., net cell d eath). We also introduce surface tensio n ef-
fects into the model: su ch restrain in g forces main tain th e tumour’s compactness and
counteract th e expansive force caused b y n et cell p roliferation.

Th e r em ain d e r o f th is sectio n is o rg an ised in th e f o llowin g wa y. Th e m o d e l
th at we stu d y is p r esen ted in sectio n 4 .4 .2 . I n sectio n 4 .4 .3 we sh ow h ow th e m o d e l
reduces to th e one-dim ensional m odels of sectio n 4 .3 wh en growth is assu med to b e
one-d im en sio n a l. Th e stab ility o f stead y, r a d ially - sy m m e tr ic so lu tio n s to sy m m e tr y -
break in g p er tu r b atio n s is inve stig ated in sectio n 4 .4 .4 u sin g lin ear stab ility an aly sis.
The sectio n concludes in sectio n 4 .4.5 with a b rief discussion of th e strengths and
weaknesses of the models.

4.4.2 T h e Model Equations

The mathematical model that we study is presented b elow in dimensionless
form (for d etails of th e nondimensionalisatio n p rocess, refer to [6]). Fo r simplicity
we assu m e th at th er e is n o cen tr al n ecr o sis with in th e tu m o u r vo lu m e ( i.e., th e tu -
mour is small enough th at all cells are nutrient-rich and p roliferating). The key phys-
ical variables are assu med to b e the nutrient concentration !��� �� , the cell velocity
���� �� , and the pressu re +��� �� . The lo cus o f the tu mour boundary is represented b y
the surface ���� �� � � (the precise details of th is su rface depend on th e g eometry
under consideration). The evolution of !��, and + is d e ter m in ed b y th e f o llowin g
sy stem o f p a r tial d ifferential equations

� � ��!� �� (4.30)

� � � � %�!����!� � !� �� (4.31)

� � ���+� (4.32)

Equatio n (4.30) is th e n atural ex tensio n in h igher spatial d imensions of th e d if-
fusion equatio n that was used in sectio n 4 .3. Equatio n (4.31) expresses m ass b alance
with in th e tu m o u r wh en it is v iewed as an in co m p r e ssib le flu id . To r e in f o r c e th e sim -
ilar ity with th e m o d e ls d iscu ssed in sectio n 4 .3 , w e u se th e sam e p r o lif er atio n a n d
death rates as adopted th ere. We view th e tumour as a porous medium and, hence,
use Darcy ’s law to relate the velo city of th e cells moving th roughout th e tumour
to the p ressu re, the constant of proportionality � denoting the sensitivity of the tu-
mour cells to pressu re gradients. More details on porous media models for g rowing
tu m ours are given in Chapter 5.

We remark that Equations (4.31) and (4.32) may be combined to eliminate �
from the model equations, giving

� � ���+� �!� ��� (4.33)

We append to Equations (4.30) and (4.33) the following boundary and initial
conditions

! � !�� + � �, on ���� �� � �� (4.34)
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�!

�"
�
�+

�"
� � at � � �� (4.35)

In (4.34) !� and +� � � are the assu med constant nutrient concentratio n and pres-
su r e o u t si de the tumour, � � � is th e su r face ten sio n c o e fficien t, an d , the m ean
curvature o f the tu mour boundary. Thus Equations (4.34) state that the nutrient con-
centratio n is continuous across the tu mour boundary and that there is a jump d iscon-
tinuity in th e p ressu re, this jump b eing proportional to the curvature o f the bound-
ary (and p laying th e role o f a su rface tensio n force wh ich maintains th e tumour’s
compactness). Equatio n (4.35) guarantees th at th e nutrient and pressu re profiles are
bounded at the origin.

In order to complete our model, it remain s to d etermine how the tu mour bound-
ary ���� �� � � evo l v e s . S i nce in this sectio n we focus on spherical geometry, we
wr ite � � �"� �� and p arameterise the tu mour boundary in th e following way

���� �� � � � " � ��� ���
We assu me further that the boundary moves with th e local cell velocity so th at

� 

��
� � � � � ���+ � �� with  ��� �� �  ����� (4.36)

In Equatio n (4.36), � represents th e unit outward normal to the tu mour boundary,
and we h ave prescribed ���� �� � � , the initial locus of the tumour boundary.

In summary, our model of solid tumour growth comprises Equations (4.30),
(4.33), and (4.36) which we solve subject to (4.34) and (4.35).

4.4.3 R ad ially- Symmetric Model Solutions

Under radial symmetry, ! � !�"� ��� + � +�"� �� , and " �  ��� on the tumour
boundary, and th e model equations reduce to g ive

� �
�

"�
�

�"

�
"�
�!

�"

�
� ��

� �
�

"�
�

�"

�
"�
�+

�"

�
� �!� ���

� 

��
� � ��+

�"

����
������

�

Integrating the equation for + once with respect to " and imposing (4.35), we deduce
that

���+
�"

�
�

"�

� �

�

�!� ��-��- �  � � 

��
�

� �

�

�!� ��"��" �

This expression for  ��� is eq u iva len t to Eq u a tio n ( 4.19) of sectio n 4 .3 wh en  � �
� and shows how the current model reduces to the original model under radial sym-
metry.
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As in sectio n 4 .3 , we can in teg r ate th e eq u a tio n s f o r ! and + to obtain the fol-
lowin g expressions for the nutrient concentratio n and pressu re distribu tio n in terms
of  ���

!�"� �� � !� � �

�
� � � "���

+�"� �� �
�

 
� �

����
� � � "��� � �

��

�
!� � � � � �

��

�
� � � "���

Fu r th e r
� 

��
�
 



�
!� � � � � �

��

�
�

In th e n ex t sectio n , we inve stig ate wh a t h ap p e n s wh en th ese r ad ially - sy m m e tr ic
so lu tio n s ar e su b jected to sm all, sy m m e tr y - b r eak in g p er tu r b atio n s, so th a t, f o r ex -
ample,

! � !��"� �� � �!��"� �� ��� wh ere �� ��

As with the linear stability analysis of section 4 .3, our aim is to identify condi-
tions under which the p erturbations grow over time and conditions under which they
regress. In th e former case the underlying, radially -symmetric so lu tio n is said to b e
unstable to symmetry-breakin g p ertu rbatio n s an d in th e latter it is stab le.

4.4.4 L inear St abilit y A nalysis

To minimise th e complex ity of th e analy sis, we assu me th at th e underlying
radially-symmetric so lution h as reach ed its steady-state configuration, so that

�!�� +��  �� � �!��"�� +��"��  ��

where, from section 4 .4.3,

!� � !� � �

�
� �

� � "��� +� �
�

 �
� &�

����
� �

� � "����

and  �
� �

��

�
�!� � ��� (4.37)

We determine the response to symmetry-breaking perturbations by introducing
the small parameter �� � and seeking solutions to Equations (4.30), (4.33), (4.36),
(4.34), and (4.35) of the form

! � !��"� � �!��"� �� ���
+ � +��"� � �+��"� �� ���
 �  � � � ���� ���

��
�

Substituting with the above trial solutions in the governing equations and equat-
ing coefficients of ���� we deduce that �!�� +��  �� solve

� � ��!� � ��+� � !�� (4.38)
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� �

��
� ��

�
�+�
�"

� �
��+�
�"�

�
����

� (4.39)

with
�!�
�"

�
�+�
�"

� � at " � �� (4.40)

!� � � �
�!�
�"

����
����

� (4.41)

+� � � �
�+�
�"

����
����

� �

 �
�

�� � � �� �������
� (4.42)

 ���� �� �  ������ prescribed � (4.43)

In (4.42), we d enote b y ���� th e �-dependent component of th e Laplacian oper-
ator

���"� �� �
�

"�
�

�"

�
"�
�

�"

�
�
���
"�

wh ere ��� � �

��� �

�

��

�
��� �

�

��

�
�

We h a v e used resu lts presented in sectio n 4 .6 .3 to d e ter m in e th e ���� contri-
butions to the curvature on the tumour boundary and the normal derivative of the
pressure there (see Equations (4.47) and (4.50)). We seek separable solutions to
Equations (4.38) to (4.43) of the form

!��"� �� �� � .����"
������� ���

+��"� �� �� �

�
*����� .�"

�

����� � �

�
"������� ��� (4.44)

 ���� �� � -���������� ���

where the Legendre polynomials ������ �� satisfy ����� � ���� � ���� so that
���"���� � �. We remark that Equation (4.40) is automatically satisfied by our
choice of !� and +�.

Expressions relating the coefficients .� and *� to -� are obtained by imposing
conditions (4.42) and exploiting the orthogonality of the Legendre polynomials. In
this way we deduce that

.� 
�
� � �� �


-�

and

*� 
�
� �

�-�
� �

�

�� � ���� � �� �
.� 

���
�

����� � �
�

Substituting with these results in (4.39) we deduce that

�

-�

�-�
��

� �� � ��

�
�� �

�

����� � �
� ��

� �
�

��� � ��

�
� (4.45)

From (4.45) we note that all modes evolve independently i.e., there is no cou-
pling between the modes. Also, the system is insensitive to perturbations involving
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������ ��. This is to be expected since the Legendre polynomial ������ �� corre-
sponds simply to a translation of the coordinate axes. We note also that when surface
tension effects are neglected (� � �) then the radially-symmetric steady state is un-
stable to all modes for which � � �. More generally, if � � � then the steady state
is unstable to only a finite number of modes, those for which

��� � ����� � � �
�� 	

�

����
�

Since the steady state radius � is defined in terms of the system parameters (see
Equation (4.37)), this result shows how the choice of parameter values influences the
modes to which the steady state is unstable. We note also that as � increases the
number of unstable modes declines. In particular, if �� 	

�	���� � �� there are
no integers which satisfy the above inequality and, consequently, that the radially
symmetric steady state is stable to perturbations involving Legendre polynomials of
arbitrary order. Recalling that � �

� � ���!� � ��, we deduce that this will be the
case if the external nutrient concentration !� satisfies

!� � ��
�

��

�
�����

��

���	

�

By differentiating (4.45) with respect to � we may determine the fastest growing
mode for a given set of parameter values (and, hence, for a given value of  �). After
some manipulation, we deduce that the fastest growing mode satisfies

��� � ����� � �� � �� �
�� 	

�

��
�

4.4.5 Discussion

The analysis presented above provides a mechanism which may explain how
the irregular morphology that characterises certain solid tumours may be initiated.
To understand this, consider a uniform cluster of tumour cells for which the surface
tension coefficient � is sufficiently large that the underlying radially symmetric so-
lution is stable to all Legendre polynomials. Our analysis predicts that such a cluster
will remain radially symmetric throughout the tumour’s development. Suppose that
there is a mutation which leads to a reduction in � i.e., the surface tension forces
holding the tumour cells together are weakened. If the reduction in � is large enough
then the tumour will become unstable to a finite range of asymmetric modes and will
develop an asymmetric morphology.

We stress that the above mechanism is only one possible explanation for why
solid tumours develop irregular, fractal-like morphologies. In practice, the acquisi-
tion of a blood supply, as a result of angiogenesis, may also destroy the tumour’s
radial symmetry, by making the nutrient supply rate spatially heterogeneous, and
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hence stimulatin g nonuniform growth . Whilst there are n ow a number o f realistic
models of angiogenesis and vascular tu mour growth , the development o f mathemati-
cal m o d e ls with th e p ower to inve stig ate th e p o ten tial f o r va scu lar isatio n to stim u late
asymmetric tu mour growth remain s to b e d eveloped.

There are, o f course, many alternative model modifications th at may b e stud-
ie d. The exercises at th e end of th is sectio n are designed to introduce the reader
to so m e o f th e ex ten sio n s wh ich h ave b een d o c u m en ted in th e liter a tu r e . T h e se in -
clude a consid eratio n o f more g eneral perturbations invo lv in g spherical harmonics
/����� 0� , oth er g e o m etr ies an d a stu d y o f th e stab ility o f r a d ially - sy m m e tr ic avas-
cular tumours that contain a necrotic core to asymmetric perturbations.

Th e m o d e l th a t we h ave stu d ied assu m e s th a t th e r e is a sin g le r ate- lim itin g n u -
tr ien t o r ch em ical with in th e tu m o u r env ironment. In practice, th e tumour will be
bathed in a variety of chemicals, so me of wh ich p r o m o te cell p r o lif er atio n ( e.g . ,
oxygen and glucose) and o th ers which inhibit mito sis (e.g., tumour necrosis factor,
anti-cancer drugs). These g rowth factors may be supplied to the tu mour (e.g., oxy-
gen, drugs) o r they may be produced as a by-product o f the cells’ normal functions
(e.g., tu mour necrosis factor is a by-product o f cell d eg radation). By extending our
mathematical model to include additional diffusible chemicals, it should be possi-
ble to study the impact that the presence of multiple chemicals has on the tumour’s
development [10].

An important assumption of the tumour growth model studied in this section
concerns the validity of Darcy’s law to describe cell motion within the tumour. This
issu e is d iscussed in d etail in Chapter 5 o f this volume and in [1,2,8,9,23], where
the tumour cell migration if the tumour is modelled as a two-phase material (the two
phases represent the cells and the extracellular water in which they are bathed). In
addition to providing some justification for the use of Darcy’s law to describe cell
motion, the multiphase models provide a more general theoretical framework with
which to study alternative constitutive laws (e.g., the tumour cells may be viewed
as visco-elastic materials) and for incorporating cellular heterogeneity into the mod-
els. Whereas the spatially-structured models that we have discussed thus far assume
that the tumour contains a single population of cells, in practice, solid tumours may
contain many cell types e.g., mutant subpopulations of the primary tumour cells,
extracellular matrix and immune response cells. The models also pave the way for
studies in which mechanical interactions with the tissue surrounding the tumour may
be studied [11].

4.5 Conclusions
In this chapter, we have presented three complementary modelling approaches

that have been used to study the growth of avascular tumours. These range from
spatially-averaged models, which may be formulated as systems of coupled differen-
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tia l equations, to mov in g boundary problems involving sy stems o f p artial d ifferential
eq u a tio n s. As each n ew m o d e llin g a p p r o ach wa s p resen ted we ex p lain e d h ow it is
related to the prev ious models. In this way we aimed to emphasise th e inter-relations
between th e d ifferent models and to show h ow th e n ewer models can be viewed as
natu ral extensions of th eir p redecesso rs, the demand for such modifications bein g
driven, in p art, by new b io logical in sights.

Obviously there r emain m any ways in w hich th e models we have studied could
be further modified or improved. Where appropriate, these extensions have been
discussed in the text. For ex ample, in or der to d istinguish more accurately between
a tumour’s response to a chemotherapeutic drug wh ich is noncell cycle sp ecific and
another d rug which acts only durin g a sp ecific portio n o f the cell cycle, it is n ec-
essar y to co n sid er ag e- o r cell- cy cle str u c tu r e d m o d e ls [ 1 9 ] . Wh ile it is r e lative ly
str a ightforward to d evelop and study su ch models when sp atial eff ects are neglected,
th e ex ten sio n o f th e sp a tially - str u c tu r e d models of sections 4.3 and 4.4 to include
cell-cy cle eff ects r emains an open p roblem.

A related issu e which we have ignored concerns th e relative impact of th erapy
on cancerous and normal tissu e, the m ain p roblems h ere b eing toxicity and excessive
destructio n o f h ealth y tissu e. There are several m odels wh ich compare chemother-
apeutic cell k ill in cancerous and normal ti ssu e . Howeve r t h e se models neglect cell
cy c l e a n d s p atial e ff ects a n d assu m e h ig h ly sim p listic co u p lin g s b e tween th e d iff e r-
ent cell populations.

Another important area of investigation that emerges from the models with spa-
tial str u c tu r e p r esen ted in sectio n s 4 . 3 a nd 4.4 concerns th e valid ity of Darcy’s law
as a description of tumour cell motion. Further, given that solid tumours are highly
heterogeneous, containing, for example, several clonal populations, extracellular ma-
trix, extracellular fluid, endothelial cells, macrophages, and multiple growth factors,
it is natural to want to develop models in which the evolution of each cell popula-
tion and growth factor is faithfully described. Since the different cellular species
may be subject to different ‘forces’ (e.g., macrophages migrate via chemotaxis to
hypoxic regions and the extracellular matrix is relatively immotile, although it may
be deformed by cells that crawl across it), these models will need to be fairly gen-
eral in nature. One promising avenue for further study involves the application of
multiphase models to describe the more complex and realistic scenarios [1,2,8,9,23].
The idea is to identify a finite number of volume-occupying species or phases (e.g.,
tumour cells, extracellular matrix, and extracellular fluid) which together comprise
the tumour volume. Mass and momentum balance equations are developed for each
phase. The models are then closed by making appropriate choices of constitutive
laws to describe, for example, the stress tensor in each phase and introducing addi-
tional reaction diffusion equations to describe the chemical species of interest (for
details o f th is ap p r o ach , see Ch ap ter 5 an d [ 1 , 2 , 9 ] ) . I n ad d itio n to p r ov id in g a f r a m e -
work for studying complex tumour structures, the multiphase approach also repre-
sents a natural way in which to investigate interactions between the tumour cells and
the surrounding tissue.

Since the multiphase models described above and many of the models described
in this chapter may seem rather general in nature, it is interesting to note the appear-
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ance in the literature of mathematical models that are focused on specific tumours.
For example, Swanson et al. [27] have combined reaction diffusion models of cell
migration with accurate three-dimensional geometry taken from medical atlases to
simulate the spread of gliomas through the brain. Also, Franks et al. [14] are devel-
oping models that describe the development of avascular tumours constrained within
compliant cylindrical tubes in order to simulate the early stages of breast cancer,
when the tumour cells are still localised within the breast ducts.

In conclusion, while existing models have provided valuable insight into certain
aspects of avascular tumour growth and also raised a number of interesting mathe-
matical challenges, there remain a vast array of open problems whose resolution has
the potential to make a significant contribution to the efforts being made by clinicians
to find better treatments for cancer.

4.6 Problems
Before proposing some problems to the reader, we show how the ���� con-

tributions to the normal derivative of the pressure and the curvature on the tumour
boundary may be determined.

Mean Curvature
The mean curvature , of the surface " � 1 ��� is given by

, � � �

��1 � � 1 �
� �

���

�
11�� � 1 �

� � �1 � �
1�
1
�1 � � 1 �

� �
��� �

��� �

�
� (4.46)

where subscripts denote differentiation with respect to �.
Now, on the perturbed tumour boundary we have

���� �� � " � � � � ���� ���

Setting 1 ��� �  � � � ���� �� in (4.46) and equating coefficients of ����� it is
possible to show that

, �
�

 �
� �

� �
�

�
� � �

�

��� �

�

��

�
��� �

� �

��

��
������� (4.47)

Normal Derivatives
The unit outward normal � to the surface ���� �� � � � " �  ��� �� is defined as
follows

� �
��
���� �

Thus, on the perturbed tumour boundary, where  ��� �� �  � � � ���� ��,

� �

�
� �

�� �
��

 �
� � �

� �
��

����� �
�� � � ��

 � � � ��

��

�
� (4.48)
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wh ere �� and �� are unit vectors.
Now

�+ �
�
�+

�"
�
�

"

�+

��

�
�

�
�+�
�"

� �
�+�
�"
�
�

"

�+�
��

�
�������

wh ere +�"� �� �� � +��"� � �+��"� �� �� � ���
�� . Evaluatin g �+ on th e p ertu r b ed

tu mour boundary ���� �� � � wh ere " �  � � � ���� �� we d educe

�+���������
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� � �
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�
����

������� (4.49)

Co m b in in g ( 4.48) and (4.49) we deduce finally th at on ���� �� � �

�+ � � �
�+�
�"

����
����

� �

�
 �
��+�
�"�

�
�+�
�"

�
����

������� (4.50)

4.6.1 Pro blems R elat ed t o Sect io n 4.2

1. Consider a tumour which contains���� cells at time � where

��

��
� ��

�
�� �

�

�
�

Suppose that the tumour is a spherically symmetric mass of radius  ��� and
volume �* �	. By equating the tumour volume at time � to ����, the total
number of cells at time �, show that  ��� satisfies

� 

��
� �� 

�
��  

�

��

�
�

How are the parameters �� and �� related to � and �?

[Remark: It would be difficult to derive the above differential equation for
 ��� from first principles.]

2. Consider a tumour which is being treated with a continuous infusion of a
chemotherapeutic drug. At time � the tumour contains���� cells and the local
drug concentration is ���� where

��

��
� ��

�
�� �

�

�
� ���� (4.51)

��

��
� �� � ��� (4.52)
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In Equation (4.51) the constants � and � denote the proliferation rate and car-
rying capacity of the tumour cells when no drug is present, and � represents
the rate at which the drug kills the tumour cells. In Equation (4.52), �� rep-
resents the amount of drug being infused and � its decay rate (note: we are
assuming that the rate at which the drug is degraded when it kills tumour cells
may be neglected).

Taking �� as a bifurcation parameter, show how the steady states of Equa-
tions (4.51) and (4.52) (and their stability) vary with ��. Use your results to
predict the minimum value of �� that guarantees tumour eradication.

Note: By fixing �� and varying the tumour cell proliferation rate �, we can
also use the model compare the effectiveness of the drug when it is used to
treat tumours whose proliferation rates vary.

3. The following pair of differential equations model the way in which a tumour
containing���� cells responds to a drug���� which is administered as a series
of pulses:

��

��
� �� � ���� (4.53)

��

��
� ����� ��� (4.54)

where

���� �

�
�� � � � � �� �
� �� � � � � �� ��

(4.55)

���� � �� and ���� � ���

In Equation (4.55) � denotes the duration of each period of treatment, �� the
amount of drug administered, and � the assumed constant decay rate of the
drug.

By assuming that ���� is continuous as the drug is switched on and off, show
that

���� �

����
���
��
�

�
�
�� � ��

�

�
��
������� 2 � � � 2 � �

���
�

�
�
�� � ��

�

�
��
�

�
��
������� 2 � � � � � 2 � �

where �� � ��� � 2� �2 � �� �� � � �� and

���� � ���
�
� �

��
�
��
��
� � ��� (4.56)
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By using the above expression for ���� and assuming continuity of ���� at
the switching times, show further that

���� �

�������
������

���
������ ���

��	
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�� � ��
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 �
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�� � ��
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��� ��
��������� 
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where�� � ��� � 2�, ���� � ��� � 2 � ��,

���� � ���
�� ���
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(4.57)

where
� �

��
�

�
�
�� � ��

�

�
��� ��
� � ��
�������

Note: By fixing �� � ���� � �� in Equation (4.56), we deduce that, as
���, the drug concentration settles to a periodic solution for which

�� �
��
�
��
������

From (4.57) we note that if ���� � �� then the tumour continues to grow, if
���� � �� then the drug is reducing the tumour’s size and that if���� � ��

then the tumour settles to a periodic solution. Determine the conditions for
which���� � �� .

4. The following system of differential equations describes how a tumour that
contains a drug-sensitive and a drug-resistant population of cells responds to
continuous infusion with a drug

���

��
� ����

�
�� �� ���

�

�
� ����� (4.58)

���

��
� ����

�
�� �� ���

�

�
� (4.59)

��

��
� �� � ��� (4.60)

with ����� � ���� ����� � ���� ���� � ���

In the above equations, �� and �� denote the number of drug-sensitive and
drug-resistant cells respectively, �� and �� their proliferation rates, and � their
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carrying capacity, when n o d rug is p resent. We d enote b y ���� th e d r u g con-
cen tr atio n a t tim e � , � its decay rate, and �� th e r ate a t wh ich it is d e live r e d to
th e tu m our.

Id en tif y th e eq u ilib r iu m so lu tio n s o f th e a b ove d iff er en tial e q u a tio n s f o cu sin g
on the cases �� � �� and �� � ��. In each case, determine whether it is
possible to eliminate the tumour by infu sin g th e sy stem w ith su fficien tly larg e
drug concentrations.

4.6.2 Pro blems R elat ed t o Sect io n 4.3

1. The following equations describe the growth of a one-dimensional tumour in
response to an externally supplied nutrient

� �
��!

�$�
� �#�!� !� ��

� 

��
�

� �

�

&�!��$�

where &�!� �

�
&�!� !�� ! � !�
�� ! � !�

with ! � !� at $ �  ����

�!

�$
� � at $ � ��

! � !� when $ �  � ����

!�
�!

�$
continuous across $ �  � ���

 �  � at � � ��

where �� !� � !�� !�� &� �, and  � are positive constants and !� � !� .

Assuming that  � � �, (i.e., the tumour does not possess a necrotic region),
solve for !�$� �� in terms of  ���. Use this expression to derive an expand
��3 for the tumour radius,  ���. Identify the steady state solutions of this
��3 and, hence, deduce that if

!� � !� � 

�
�!� � !�� � �

then the tumour will evolve to a nontrivial steady state which does not possess
a necrotic region.

Suppose now that �!� � !��	� � !� � !� � � and that  � �� � �� � �.
Determine the nutrient concentration in terms of ��� and � ��� and derive an

©2003 CRC Press LLC



expression relating � ��� to ���. By substituting with !�$� �� in the equation
for  ���, obtain the following��3 for  ���

� 

��
� &� � � �

�
!� � !� � �

�
� � � �  � � � �

� �

�
� � � �

Determine the steady state solutions for which � �  � �  . What parame-
ters govern the width of the proliferating rim?

2. The following equations describe the effect of an externally supplied poison �
on the growth of a radially-symmetric cluster of mold

� �
�

"�
�

�"

�
"�
��

�"

�
� ���

 � � 

��
�

� �

�

�&� ��"��"�

with
��

�"
� 4�� � ��� on " �  ����

��

�"
� � at " � ��

and  �  � at � � ��

For what size clusters does the model generate biologically realistic solutions?

For the case 4 � �, draw a bifurcation diagram, showing how the number and
size of the steady state solutions change with &	��. What concentration of
poison would you recommend to be confident of eradicating the mold?

3. The following equations describe the growth of a radially-symmetric tumour
in response to an externally-supplied nutrient such as oxygen

��

��
�

�

"�
�

�"
�"�5�� � ��!�� (4.61)

� �
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�
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where ��!� �

�
�� if ! � !�
��� if ! � !�

� 

��
� 5� � ��� (4.62)

!� � �� � !��

�!

�"
��� �� � 5��� �� � ��

!�
�!

�"
continuous across " �  � ����
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and  ��� �  ��

In the equations, ��"� �� denotes the tumour cell density, 5�"� �� the cell ve-
locity, !�"� �� the local oxygen concentration,  ��� the position of the outer
tumour radius, and  � ��� the interface between proliferating and dead cells.
The parameters �� !� � !��  �, and �� are positive constants.

By assuming that the tumour is fully occupied by tumour cells, so that � � �
for � � " �  ���, use Equation (4.61) to obtain an expression for the cell
velocity 5�"� �� in terms of ��!�. Use this result in Equation (4.62) to show
that

 � � 

��
�

� ����

�

��!�"��" �

By solving for !�"� �� and assuming that  � �  � �
%
��!� � !� �	�, ex-

plain briefly how the tumour evolves. In particular, show that, since �� � �,
the tumour eventually achieves a steady state, which you should determine.
(Note: you do NOT need to solve the ODEs for  ��� – you simply need to
derive ODE for  ��� and the corresponding algebraic equation for  � ��� �
 � � ����.)

4.6.3 Pro blems R elat ed t o Sect io n 4.4

1. Consider the following mathematical model which may be used to describe
the three-dimensional growth of an avascular tumour

� � ��!� ��

� � ��+� ��� � &�!� 
!��

� 

��
� ��� on ���� �� � " � ��� 0� �� � ��

with ! � �� + � 
, on ���� �� � ��

�!

�"
�
�+

�"
� � at � � ��

and ! � � throughout the tumour�

Eliminate � from the governing equations and suppose that the model admits
solutions of the form

! � !��"� � �.�����"
�/����� 0��

+ � +��"� � �

�
*������ &.��"

�

���6� �

�
"�/����� 0��

 �  � � �-�����/����� 0��
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where � � � and /����� 0� ��6 � 7 � 6� denote the spherical harmonics
of order 6 � � for which ��/�� � �6�6 � ��/��. Construct the leading or-
der, radially-symmetric equilibrium solutions �!�� +��  ��. Use linear stability
analysis to derive a differential equation that governs -�����, the growth rate
of the asymmetric perturbation to the tumour boundary. Does your result vary
for the ��6� �� spherical harmonics of order 6?

Note: In order to distinguish between the growth rates of the ��6��� spherical
harmonics of order 6, we must continue the expansions for !, +, and to�����
and use weakly nonlinear analysis. The special case 6 � � is discussed in [5].

2. The following system of equations has been proposed to describe the two-
dimensional growth of a nonnecrotic avascular tumour in response to an extern-
ally-supplied nutrient

� � ��!� � � ���+� &�!� ���
� 

��
� ���+ � � on ���� �� � ��

with
�!

�"
�
�+

�"
� � on � � ��

! � !� � 
,� + � � on ���� �� � " � ��� �� � ��

with ! � � throughout the tumour volume. In the above equations, , denotes
the mean curvature, and � denotes the unit outward normal to the tumour
boundary ���� �� � �.

We may determine the stability of steady, radially-symmetric model solutions
to asymmetric perturbations by seeking trial solutions of the form

! � !��"� � �!��"� �� ���
+ � +��"� � �+��"� �� ���
 �  � � � ���� ���

��
� ��� ���

Construct the leading order, radially-symmetric equilibrium solution �!�, +�,
 ��.

Assume that �!�� +��  �� can be decomposed as follows

!� � .����"
������� ���

+� �

�
*����� &.�"

�

����6� �

�
"������� ���

 � � -������� ���

where ������ �� denotes a Legendre polynomial of order � for which

�

��� �

�

��

�
��� �

���
��

�
� ���� � �����
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Use lin ear stab ility an aly sis to d e ter m in e th e g r ow th r a te o f th e a sy m m e tr ic
perturbations ������ �� . Show that if 
 � � th en only a finite number of
modes are unstable. Co mpare your resu lts with those obtained for Greensp an’s
model which were presented in section 4 .4.4.

Note: Details o f th e a b ove an aly sis ar e d escr ib ed in [ 4 ,6 ] .

3. The following partial d ifferential equations may b e u sed to describe the nutrient-
limited growth of a necrotic avascular tumour

��!� �#�!� !� � � �

���+� &�!� ��#�!� !� �� &�� � �� �#�!� � !� � ��

� 

��
� ���+ � � on ���� �� � ��

with
�!

�"
� � �

�+

�"
at � � ��

! � !�� + � 
, on ���� �� � " � ��� �� � ��

! � !� on �� ��� �� � " � � ��� �� � ��

!� +�
�!

�"
�
�+

�"
continuous across �� ��� �� � ��

Use lin ear stab ility an aly sis to ex ten d th e a n a ly sis o f sectio n 4 .4 .4 an d to in -
ve stig ate th e stability with respect to asymmetric perturbations (involving Leg-
endre polynomials ������ ��) of radially-symmetric equilibrium solutions for
which the tumour possesses a necrotic core.

Note: Details of this analysis are discussed in [4,6].

4. The following mathematical model may be used to describe the development
of a nonnecrotic spheroid in response to two chemicals � and �

��� � �� � ��

��� � �� � ��

���+� &�� � �� � ��

� 

��
� ���+ � � on ���� �� � �

with
��

�"
� � �

��

�"
�
�+

�"
at � � ��

� � ��� � � ��� + � 
, on ���� �� � � � " � ��� ���
and �� � � � throughout the tumour volume�

What roles do � and � play in the tumour’s development?
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Determine the steady, radially-symmetric solutions, and investigate how they
depend on the constants �� and ��.

Use linear stability analysis to determine the stability of the steady, radially-
symmetric solutions to asymmetric perturbations for which the dependent vari-
ables have the following form

��"� �� �� � ���"� � ���*���������� ���
 ��� �� �  � � ���-���������� ���

�
where �� ��

Note: Details of this analysis are discussed in [6].

5. Consider a nonnecrotic avascular tumour which is growing in a two-dimensional
Cartesian domain in response to a growth inhibitor �.

The governing equations may be written in the following form

���

�$�
�
���

�8�
� � � ��

��+

�$�
�
��+

�8�
�
&

�
��� �� � ��

�(

��
� ��

�
�+

�$
�
�+

�8

�
� � on ���� �� � ��

with
��

�$
�
�+

�$
� � on $ � ��

��

�8
�
�+

�8
� � on 8 � �� 4�

� � ��� + � 
, on ���� �� � $�(�8� �� � ��

and � � � throughout the tumour�

Assume that, to leading order, the tumour grows uniformly in the $-direction
and seek trial solutions of the form

��$� 8� �� � ���$� �� � ����$� �� �����*8	4�
+�$� 8� �� � +��$� �� � �+��$� �� �����*8	4�
(�8� �� � (���� � �(���� �����*8	4�

��
� ��� �� � � �� �� �� � � ���

By substituting with these expressions in the model equations and equating
coefficients of ���� and ����, determine ���� +�� (�� and state the partial
differential equations that govern ���� +�� (��. Determine ���� +�� (�� for the
special case when(���� � (�, constant.
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5.1 Introduction
When looking at a tumour at a macroscopic scale, one does not consider the sin-

gle cells and their mutual and external interaction, but attempts to describe the body
as a continuum. Roughly speaking, one looks at a tumour mass staying at a suffi-
ciently long distance so that single cells are indistinguishable. Under such a point
of view, the biological system is to be described by a system of partial differential
equations, where the unknowns are the mass density of the species and their veloc-
ity, concentration of soluble factors and so on. The mathematical model accounting
for the growth of a tumour should then read (according to someone must be) a set
of balance laws: balance of mass of the several components of the tissue, balance
of momentum, and balance of energy. However, a soft tissue is a continuum with
two peculiar characteristics that do not allow application of the classical methods of
single-continuum mechanics in a straightforward manner in its description:

� the mass of a living tissue increases (growth) or diminishes (resorption) in time
and energy is irreversibly spent in this process,

� a soft tissue is made of several components (cells, extracellular matrix), mixed
at a small spatial scale, exchanging mass with each other.

The subject of this chapter is the mathematical modelling of tumour growth by the
formalism of continuum mechanics, addressing in a specific way the two items listed
above.

The first item, the mechanics of a growing body, is related to the importance
of keeping into account mechanical loadings in studying tumour growth, a rather
recent experimental achievement. In 1997 Helmlinger et al. [13] have measured the
growth of a tumour spheroid embedded in a gel of suitably variable rigidity. They
have demonstrated that when the rigidity of the external gel is increased, so that the
loading at the boundary of the grown spheroid and the stress field inside it become
larger, the spheroid modifies its growth rate in a nontrivial fashion. Namely, the
volume of the tumour grows more slowly for increasing rigidity of the external gel
and, at a cellular level, the stress yields decreased apoptosis, no significant changes
in proliferation, and increasing cellular packing. From a macroscopic point of view
such a complex behaviour depends on the stress field in the tumour spheroid. In this
chapter we outline a mechanical framework in which the concept of stress has an
exact meaning: the framework of the mechanics of a growing continuum medium.
We believe that this is the correct setting to try to understand and reproduce the
experimental results.

The second item listed above suggests to approach the modelling problem with
the mixture theory: one does not consider the components of a soft tissue (cells
of different type, extracellular matrix, liquid, etc.) separately, in their real spatial
distribution but components co-exist at any point of the body under consideration.
This approach can be intuitively justified by taking averages of the state variables
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of the system (for instance, mass) into elementary volumes that are small enough
to contain many representatives of the species under consideration and, at the same
time, are small with respect to the macroscale.

5.2 Single Constituent Framework
The description of tumour growth requires taking quite a large number of bio-

logical effects into account. This is probably the reason why people have concen-
trated their effort on modelling the complex response of cell populations to chemical
factors and nutrients rather than on the mechanics of the ensemble of tumour cells,
i.e., the multicell spheroid. In fact, the approach usually encountered in the litera-
ture is to write down a balance equation for the cell population and a set of reac-
tion diffusion equations for those nutrients and chemical factors which are thought
to influence growth and motion. The main challenges involved in developing such
models are then in describing how cells migrate, reproduce, and die, and how various
chemicals diffuse, how they are produced, and taken up by the cells. However, the
displacement of the species occurring in the modelization is often introduced in a
rather crude way, without introducing any balance of forces.

This aspect is particularly relevant when the material exhibits mechanical prop-
erties that characterise solids (at least to some extent); in his case the knowledge of
its deformation is required to define a mechanical response. The question in this case
is: Deformation with respect to what?

Here we model the growing material as a single phase continuum, in which
growth is seen not as an increase of the number of particles, but as an increase of
the mass of the already existing particles. In the specific case of biological tissues,
a particle can be thought of as a small region of space, for example the visual field
of a microscope containing a sufficiently large number of cells. In such a case, at
any configuration of the body there can be exactly the same particles that were there
in the original configuration, so that it is possible to define a motion that connects
all of these configurations. The total mass of the body in going from the original
to the current configuration may change because the mass of the particles may have
changed.

The modelling of growth of soft tissues within a continuum mechanics frame-
work for a single constituent has been discussed in the past by Rodriguez et al. [21]
and an excellent review article on the subject is due to Taber [22]. In these papers the
basics of growth kinematics are laid down and also the influence of stress on growth
is taken into account.

In this chapter we will use the notion of multiple natural configurations [14],
[16] and the concept of growth mentioned above to study the volumetric growth of
a continuous medium in a general way, having in mind tumour growth as a specific
application. In particular, we discuss a description of the mechanical properties of

©2003 CRC Press LLC



a growing medium that splits growth and mechanical response into two separate
contributions. The biological mechanism that growth takes place depending upon
the availability of nutrients, particularly relevant for tumour growth, is also taken
into account.

5.3 Kinematics of Growth
Let a body be in the configuration �� at time � � � . Suppose that the body has

undergone growth or resorption together with the possible application of loads, so
that at current time � the configuration is �� (see Figure 5.1).

F

F
Kp

k

k k0

p

t

G

Figure 5.1

Diagram of the motion from the original unstressed configuration �� to the cur-
rent configuration ��. If we cut a generic particle out of the body and relieve its
state of stress while keeping its mass constant, it will reach its natural state at
time �. The natural configuration of the body at time � is the collection of all the
particles in their natural states at time �.

Let� be the position of a given particle at time � � �, and let � be the position
of the same particle in the current configuration ��. Since the same particles are
present in both the original and current configuration we can define the motion of the
body [23]:

� � ���� ��� (5.1)

and the corresponding deformation gradient, supposed to be invertible:

� �
��

��
� (5.2)
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The velocity is given by

� �
��

��
� (5.3)

while

� � ���� ��� (5.4)

is the density field at time � so that ����� � ������ ��� �� is the density field at time
� � � .

Consider the motion from the original unstressed configuration �� to the current
configuration �� as depicted in Figure 5.1. Each particle of the body may have grown
or been resorbed and the state of stress may be different from zero. If we cut a generic
particle out of the body and relieve its state of stress while keeping its mass constant,
it will reach a state that is in general different from the one it had in �� and also from
the one achieved in ��. This is the  natural state of that particle at time �, while the
natural configuration of the body at time � is the collection of all the particles in their
natural states at time �. As indicated in Figure 5.1, we can measure the deformation
from the natural configuration �� through the tensor ��� , while the path from �� to
the natural configuration ��, which can be seen as a path of unconstrained growth,
will be described by the tensor�. The following decomposition giving the splitting
holds:

� � ����� (5.5)

Notice that, since mass is preserved along the path from �� to ��, the tensor ���
is not directly related to growth. Hence we will assume that ��� is connected to
the stress response of the material while the tensor � is the one that is directly
connected to growth and will be therefore named growth tensor. In this way we
have separated the contribution of pure growth from the stress-inducing deformation.
The tensors ��� and � behave in the same way as the deformation gradient �:
the deformation gradient � is a mapping from a tangent space onto another tangent
space, and therefore it indicates how the body is deforming locally in going from ��
to ��. In a completely analogous way ��� tells how the body is deforming locally in
going from the natural configuration �� to ��, while� tells how the body is growing
locally. As the deformation gradient� is invertible, from Equation (5.5) follows that
��� and� are invertible too.

5.4 Balance Laws
The motion from �� to �� obeys the usual equation of balance of mass with a

source term; in Eulerian form

��

��
� div ���� � ��� � div � � ��� (5.6)
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where � is the growth rate (possibly dependent on the state variables of the problem).
The divergence operator applies to quantities calculated in a fixed position of the
space and a superscript dot �� � denotes the material time derivative.

In a Lagrangian frame of reference, thanks to Reynolds’ theorem, Equation (5.6)
rewrites

����� � ��� � (5.7)

where
� �� �	
� � �	
� �	
��� �� ����� �

Expanding the time derivative at the left hand side of Equation (5.7) one gets

���� ��� � �� ������� � ������� � (5.8)

At this stage we characterise the tensor � which arises from the splitting (5.5). We
stipulate that two of the terms appearing in Equation (5.8) satisfy the following rela-
tionships:

��� � ���� (5.9)

Then it follows that
������� � �� (5.10)

The continuity equation (5.8) is then replaced by Equation (5.10) whereas Equa-
tion (5.9) provides the form of � in terms of the growth tensor. Equation (5.10)
resembles the usual Lagrangian version of conservation of mass in the absence of
mass sources. The simplicity of this last equation is a consequence of our assump-
tion that mass is conserved from �� to ��. By simple calculations Equation (5.9) can
be rewritten as follows:


��� � � (5.11)

where�� �� sym � ������.
The knowledge of the tensor � allows us to tell whether a certain particle is

growing or being resorbed. In fact, from Equation (5.9) we have

�� 	 � �
 resorption�

�� 
 � �
 growth�
(5.12)

It might be noticed, though, that for isotropic growth, i.e., � � �� where � is a
scalar, Equation (5.9) rewrites

� ��

�
� � (5.13)

so that in this case the knowledge of � determines� completely.
The balance of linear momentum reads:

�

��
���� � div��� � ��� div � � ��� ���� (5.14)
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where� is the Cauchy stress tensor, � is the body force, and the last term at the r.h.s.
represents the contribution to the momentum due to the mass source. Using the mass
balance Equation (5.6) the momentum equation rewrites

� �� � div �� ��� (5.15)

In the case of biological tissues, the characteristic velocities are so small that we
can neglect the inertial terms in Equation (5.15) and the system can be conveniently
described as quasi-static so that the local form reduces to:

div� � ��� (5.16)

The volumetric external force is usually negligible; when this is no case, it can ac-
count for a chemotactic force inducing attraction between the cells. Sometimes a
Lagrangian approach is more convenient, in particular when the final configuration
of the body is unknown and there are traction boundary conditions. For these cases
it is useful to introduce a Lagrangian measure of the stress defined in the original
reference configuration ��, such as the first Piola-Kirchoff stress tensor defined as

	 � ����� � (5.17)

The equation for the balance of linear momentum in terms of the first Piola-
Kirchoff stress tensor simply reads:

Div 	 � �� (5.18)

where the operator Div stands for the divergence with respect to the reference con-
figuration.

5.5 Nutrient Factors
As a matter of fact, the growth of biological tissues is strongly dictated by the

availability of nutrient and by the influence of several chemical signals, e.g., growth
factors. In particular, a tumour mass in its early stages is fed by the environment
thanks to the nutrient diffusing in the interstitial liquid. When a tumour mass has
become so big that this mechanism does not provide sufficient nutrient anymore, the
internal region becomes hypoxic. At this time the tumour stimulates the creation of
a vascular structure, a stage called angiogenesis. In this paper we just focus on the
first part of tumour growth, when the availability of nutrients is essentially dictated
by its diffusion; the angiogenesis process is in fact a complex mechanism of self
organisation, discussed in other chapters of this book.

Nutrient factors are dissolved in the interstitial liquid, which in our single com-
ponent model is indistinguishable from the tumour body. Therefore we assume that
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the concentration of nutrient ���� �� obeys the following reaction-diffusion equation
[17]

��

��
� div����� div ����grad �� � ����� (5.19)

Equation (5.19) is a mass balance law for the nutrient: its concentration at a fixed
point changes in time because of the transport due to the velocity field �, because
of the diffusion due to Brownian motion and because of the uptake by the tumour
appearing at the r.h.s., where � is the absorption rate.

We assume that the concentration of � is constant at the boundary of the tumour,
so that the boundary condition reads:

�
���
��

� ��� (5.20)

The equations that describe the motion of the nutrient are coupled to the mass and
momentum balance equations by the r.h.s. of Equation (5.19) and are conveniently
rewritten in Lagrangian coordinates using Reynolds’ transport theorem (see for in-
stance [12]). For a reference system fixed on the body by standard calculations we
obtain:

�

��
����� Div

�
������ Div

�
�����

��
� �� ���� (5.21)

The equation can be further simplified observing that the time needed to get a steady
state for chemical quantities is usually much smaller than the typical time needed for
growth. In this respect, we can assume that diffusion and production always balance
in Equation (5.21):

Div
�
��� Div

�
�����

��
� ����� (5.22)

5.6 Constitutive Equations
To close the equation of motion (5.16) or (5.18), together with the balance of

mass Equation (5.11), we need to prescribe the constitutive equations that account
for the behaviour of the material as a function of the applied loads and of the avail-
able nutrient diffusing through the interior. In particular, we need to prescribe a
constitutive equation for the response of the material from the natural configuration,
i.e., for the path �� to ��, and independently, an evolution equation for the natural
configuration itself, i.e., for the path �� to ��.

In analogy with [2] we assume that the mechanical response is hyperelastic from
the natural configuration, so that the tumour will be modelled as a hyperelastic mate-
rial that is capable of growing. Of course, this is a simplification of the behaviour of
the material, which, in principle, would be better approximated using a viscoelastic
constitutive equation. Nevertheless, since in the case of tumour spheroids the char-
acteristic times of the rate dependent response of the material are much less than
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the characteristic times of growth and of mechanical loading, the material can be
thought of as a hyperelastic material without introducing a significant error. We can
then introduce an energy function ��� such as [23]

� � ��������� (5.23)

from which we can derive the Cauchy stress tensor:

� � ����

�
����

����

��

� (5.24)

where the subscript �� at � denotes the dependence of the functional on the natural
configuration. In this way the material is always elastic from the natural configura-
tion, but it might not exhibit th e sa m e elastic properties.

Once it is known how the material behaves from each natural configuration,
we need to describe how the natural configurations evolve. In general, this can be
simply done by prescribing a suitable evolution equation for the growth tensor � ,
which may depend on a variety of quantities.

�� � ���� ����
� ��� (5.25)

where

 � �������� � (5.26)

is the second Piola-Kirchoff stress tensor. The evolution equation can depend on the
applied stress, as is well known in the case of bones, in which growth is regulated by
Wolff ’s law. Other cases of stress dependent growth have also been observed [11].

Given an observer measuring a material vector x, an observer� rotated by ����
will measure the position ��. Therefore the following relations hold between the
gradient of deformation measured by the two observers:

�� �
�

��
���� � �

��

��
� ��� (5.27)

Given the splitting in Equation (5.5), the simplest transformation law for the tensors
G and F�� ensuring that the relationship (5.27) is satisfied is

���� � ���� � G� � G � (5.28)

The growth tensor � is therefore an invariant tensor, i.e., its form does not change
upon frame changes and therefore it can be differentiated directly with respect to
time [12]. Analogously, the second Piola-Kirchoff stress tensor 
 is an invariant
measure of stress and this is the reason why it has been adopted in the right hand
side of Equation (5.25).

Notice that the evolution Equation (5.25) for � involves the nutrient and the
stress, thus coupling the growth tensor with other relevant quantities of the behaviour
of the material. Therefore, in general, one cannot look at growth as being separated
from the overall mechanical response, and actually Equation (5.25) has to be solved
simultaneously with the other equations of motion. In this sense, the diagram in
Figure 5.1 means that at each time the two paths leading to �� are to be considered
jointly.
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5.7 Specific Constitutive Assumptions
In this section the general theory illustrated above is applied via specific consti-

tutive assumptions. Generally speaking, we are conscious that anisotropy is a crucial
characteristic of biological tissues. However, in the case of tumour spheroids, the
assumption of isotropy is definitely very reasonable. On the other hand, there is
experimental evidence [13] that tumour spheroids are compressible, thus we model
the response from the natural configurations as an isotropic compressible nonlinearly
elastic material. For simplicity we assume that the type of material response is the
same for each natural configuration. The specific model we refer to is a material of
Blatz-Ko type [4], one of the most widely used compressible hyperelastic materials.

The Cauchy stress tensor takes the form

� �
�

���
������

������ �� (5.29)

where ��� � ����
�
��

, � and � are material constants (� 
 �,� � �). Substituting
Equation (5.29) into Equation (5.17) we obtain the first Piola-Kirchoff stress tensor:

	 � ���������
������ � ��� ��

�� � (5.30)

The simplest form of the growth tensor is

���� �� �� � ���� �� ���� (5.31)

where the scalar function � is the growth function. Equation (5.31) implies that
growth develops in the same way in all directions, therefore it is isotropic. Growth
can be then prescribed through an evolution equation of the form

�� � ���� �� �� ��� (5.32)

If � � ����, then growth is said to be homogeneous.
Summarising, we specialise the growth model to the following governing equa-

tions:

�� � ���� � (5.33)

div � grad �� � � ��� (5.34)

div � � �� (5.35)

supplemented by the specific constitutive equations

�� � �
����� �� �� ��� (5.36)

� � �
	��

������
������ �� (5.37)

Here the unknowns are the density �, the growth function �, the nutrient �, and
the three components of the motion �, which appear in Equations (5.33) indirectly
through Equations (5.1) and (5.5).
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5.8 Simple Applications
In order to show how the general theory illustrated above can be applied, in this

section we solve some simple problems, namely the homogeneous growth inside a
rigid cylinder and the inhomogeneous growth of a sphere under no applied external
loads. The following procedure is adopted: the motion is assumed to have some
symmetry, and the function � is assumed to have a certain simple form. Then we
seek a deformation of the material that satisfies the equilibrium equation and appro-
priate boundary conditions. In the first problem, the deformation is homogeneous,
so that the equilibrium equation is automatically satisfied. In the second problem
the assumed form of the growth function gives rise to inhomogeneous deformations.
In such a case growth is accompanied by residual stresses, as described in [19]: the
stress in the material is different from zero even though there are no external forces
applied.

5.8.1 Isotropic and Homogeneous Growth Inside a Rigid Cylinder

Suppose that the body occupies the space inside a rigid cylinder, a configuration
resembling the growth of a tumour in a vessel. This representation recalls a type of
breast cancer named ductal carcinoma, in which tumour cells grow inside a breast
duct for nearly 10 cm, receiving nutrients through the walls.

Since the cylinder walls are supposed to be rigid, the motion is

� � �� � � �� � � � �� (5.38)

so that the deformation gradient is

� �

�
� � � �

� � �
� � �

	

 � Diag ��� �� �� � (5.39)

As an example we assume that growth is homogeneous

� � ����� (5.40)

This can occur when growth is triggered only if the level of nutrients is above a
threshold value ��; for instance, suppose that the growth rate is piecewise constant

� � ������ ���� (5.41)

where� is the Heaviside function, which is unity when the concentration of nutrient
is above �� and zero otherwise. In this case Equation (5.36) can be integrated to give

� � 	���������� (5.42)
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Growth inside a rigid cylinder: axial displacement of the material as a function
of � fo r d i fferent va lues of �.

From Equations (5.40), (5.39), and (5.5), it immediately follows that

��� � Diag

�
�

�
�

�

�
�

�

�

�
� (5.43)

Substituting it into Equation (5.29) we can write the Cauchy stress tensor:

� � �
��

�
Diag

�
�

��
�
�
�

��

��

�
�

��
�
�
�

��

��

�
��

��
�
�
�

��

���
� (5.44)

The relationship between � and � can be obtained by enforcing the boundary
conditions on the top and bottom surface of the cylinder. For simplicity we will
assume that these surfaces are stress free, so that �

 � � , and this in turn implies
that

� � �
����

��� � (5.45)

Equation (5.45) gives the axial displacement of the material as a function of growth.
The plot is given in Figure 5.2 for different values of �. Of course the displace-
ment is an increasing function of �, and through Equation (5.42) is an exponentially
increasing function of time.
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Growth inside a rig id cy linder: wa ll st re ss versus �.

Another important quantity that can be calculated is the stress exerted by the
growing tumour on the wall. By substituting Equation (5.45) into the first compo-
nents of the r.h.s. of Equation (5.44) we obtain

�� � �

�

��

��� � �
����

���

�
� (5.46)

The wall stress as a function of the growth function � is shown in Figure 5.3. As we
can see, the pressure of the tumour on the duct walls increases with growth and with
the axial expansion.

5.8.2 Isotropic and Nonhomogeneous Growth of a Sphere:
Residual Stresses

In this problem we look for the deformation of a sphere of initial radius ��
growing freely. Any steady radially symmetric distribution of nutrient will give rise
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to a growth tensor of the following form

� � ���� �� (5.47)

This form of growth is incompatible in the sense of Skalak et al. [20] and residual
stresses will arise as a consequence. The determination of these residual stresses is
the goal of this problem.

The total deformation will be assumed to be an isotropic volume expansion. In
spherical polar coordinates the deformation will be

� � ����� � � �� � � �� (5.48)

The deformation gradient will be

� � Diag

�
���

�

�
�

�

�

�
� (5.49)

where a superscript ���� denotes differentiation with respect to �. Analogously as
before we can calculate ��� from the expressions of � and�:

��� � Diag

�
��

�
�

�

��
�

�

��

�
� (5.50)

and plug it into the constitutive equation (5.29). For this problem it is more conve-
nient to use the first Piola-Kirchoff stress tensor (5.17) instead of the Cauchy stress
tensor:

	 � Diag � ���  ���  ��� � (5.51)

where ����������
���������

 �� � � �

�
�� ��� �

�

��

�
�

 �� �  �� � � �

�
�

�
��� �

��

�

�
�

� � ��� �
����

����
�

(5.52)

In order to find the relationship between the growth function � and the volume ex-
pansion � we need to satisfy the conservation of linear momentum and the boundary
conditions. The only nontrivial equation is

d
d�

 �� �
�

�
� �� �  ��� � �� (5.53)

Plugging the components (5.52) into Equation (5.53) we obtain an ordinary differ-
ential equation of the second order in �:

��� �

�
�

�
�
�

� ���������
�

�
��� �����

�
�� � ����������

�

�
��

�

� � ���������
����

� (5.54)
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Iso t ro pic a nd inho mo g e neo us g rowt h o f a sphere : g rowt h f unct io n � and radial
displacement ! � � �� versus ra dius.

Equation (5.54) has to be supplemented by a specific form of the growth function
����. Typically in tumour growth � is an increasing function of �: the outer shell
of the tumour spheroid receives more nutrient than the inner one and is thus able to
grow more. A particularly simple form is

���� � "
sinh �#��

�
� (5.55)

where " and # are constants.
Equation (5.54) has to be integrated with the following boundary conditions

 ��	�	 
� � �� (5.56)

�	�	� � �� (5.57)

The differential equation (5.56) has been numerically integrated by the fourth order
Runge-Kutta scheme, the boundary conditions being satisfied by a shooting method.

The results in terms of radial displacement, radial stress, hoop stress are de-
picted in Figures 5.4 and 5.5. The stress  �� of the outer layers, which grow more,
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Isotropic and inhomogeneous growth of a sphere: radial stress and hoop stress

is in compression, while the inner layers, which grow less, are kept in tension. The
radial stress  �� is in tension. The radial displacement and the density are increas-
ing functions of the undeformed radius.

5.9 A Multicellular Spheroid as a Mixture

Recently a mathematical description of avascular tumour as a multiphase sys-
tem, namely a saturated porous material, has been proposed [3], [7], [18]. This
approach starts from the observation that multicell spheroids are basically made of
two constituents: a solid skeleton constituted by an ensemble of sticky cells and by
an organic liquid filling the extra-cellular space, which is used by the cells to grow.
The introduction of such a mechanical framework allows one to deal with stresses
and with their influence on the evolution of the system. However, these models are
based on the constitutive assumption that an ensemble of cells behaves as a “viscous
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growing fluid,” so that one does not need to describe the deformations of the material
with respect to some reference configuration, but only to deal with their rates. In this
respect, it is possible to use an Eulerian framework and the mathematical description
of the “growing fluid” just involves an additional source of mass. This is the subject
of the second part of this chapter.

The determination of the movement due to the macroscopic growth of the tu-
mour mass can be addressed on the basis of the deformable porous media theory
(see for instance Bowen [6]), suitably adapted to the present biological framework.
The ensemble of cells is assumed to live in a liquid environment in which some
chemical factors diffuse. The multicell spheroid is then modelled as a living material
characterised (as all organic tissues) by a porous structure permeated by an organic
fluid. In addition, the porous structure is deformable: its constituent (the cells) move,
duplicate and die, originating deformation and volumetric growth of the tumour.

We will assume that the multicell spheroid is constituted by a single type of cells
with constant density �� , exchanging mass and momentum with the extracellular
liquid that surrounds them, having constant density ��. At any point of the cells-
liquid mixture both components are co-present, each one with its own volumetric
fraction �� and ��, respectively. Focusing on the evolution of tumour cells and of
the extracellular liquid one can write the following system of equations

������ �

��
�
 � ������� �� ���� � (5.58)

�������

��
�
 � �������� � ���� � (5.59)

����

�
���
��

� �� � 
��
�
�
 � T� �� � (5.60)

����

�
���
��

� �� � 
��
�
�
 � T� �� � (5.61)

where �� ��� are the production rates of cells and liquid, respectively, and T� �T�

are the partial stress tensor of the tumour and liquid, respectively. The momentum
supply ��� typically account for the drag due to the local interaction between
the components and for the Fickian diffusion of the single constituent. The saturation
assumption states that at any point the space is occupied by a tumour cell or by the
extracellular liquid and reads

�� � �� � � � (5.62)

As there are no external sources, the following conservation conditions for mass
and momentum are to be satisfied:

���� � ���� � � � (5.63)

� �� � ������ � ������ � � � (5.64)

Summing up the mass balance equations (5.58) and (5.59), and taking Equa-
tion (5.62) into account gives


 � ����� � ����� � �� � �� � (5.65)
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It can be noticed that, because of Equation (5.63), the r.h.s. of Equation (5.65) van-
ishes if �� � ��.

Performing experimental measures to provide a constitutive equation for the
partial stresses T� and T� is not an easy task. In fact the partial stresses are defined
in the mixture, and their properties sometimes cannot be obtained from information
on the mechanical properties of the single components by themselves. This problem
suggests to write down a momentum equation for the whole mixture. Adding up
the two momentum equations in (5.60) and (5.61), after some algebra gives the mo-
mentum equation for the multicellular spheroid, i.e., the mixture composed by the
extracellular liquid and the cells

��

�
���
��

� �� � 
��
�

� 
 � T� � (5.66)

where
�� �� ���� � ���� � (5.67)

is the density of the mixture, and

�� ��
������ � ������

��
� (5.68)

is the mass average velocity, and T� is the stress tensor of the mixture. The latter
contains convective contributions that are not included in the barycentric momentum
appearing at the left hand side of Equation (5.66).

Equations (5.65) and (5.66) can be conveniently considered instead of the mass
balance for the liquid and the momentum balance for the solid. In addition, as the
motion of cells and of the intercellular fluid is very slow, inertial terms can be ne-
glected when compared to the stress terms. The system of evolution equations then
rewrites as

���
��

�
 � ����� � � �� � (5.69)


 � ����� � ����� � �� � ��� (5.70)

�
 � T� � � � (5.71)

�
 � T� � � � (5.72)

Equation (5.70) reads as a saturation constraint on the space of the possible solutions
and therefore calls for a Lagrange multiplier  , the reaction of the mixture that
ensures the accomplishment of the constraint [5]. On the basis of thermodynamics
arguments, it can be seen that  must contribute to each partial stress proportionally
to the volume fraction, so that

T� � �T� � �� � T� � �T� � �� � (5.73)

At this point one needs to deduce constitutive equations relating stresses (T�

and T�) and interaction forces (�) to a suitable set of constitutive variables. The
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term �� has to be determined on the basis of phenomenological observation on the
duplication and death of tumour cells and �� follows from (5.63).

We model the mixture as composed by two fluids: an ideal one (the intercellular
fluid) and a fluid of cells that interact with each other by elastic repulsion and viscous
drag. Regarding the constitutive equation for T�, we assume that it is an ideal fluid.
This means that, for instance, if two cells switch place they do not tend to return
to their original position, (as is the case of an elastic solid) and the stress field is
unmodified. It is however known that cells are subject to strong short range cell-
cell interactions, which represent a resistance to their relative motion. Assuming
also isotropy and absence of memory effects, a possible constitutive equation for the
stress of the mixture accounting for the qualitative behaviour outlined above is the
following:

T� � ����� � I � �� ��� �
 � �� I � �� ��� �
�
�� � �
�� ��

��  I � (5.74)

where � accounts for the elastic interaction of the cells, and �� measures the resis-
tance of the multicell spheroid to shear, which depends on the density of cells. This
constitutive equation corresponds to an elastic viscous fluid subject to the kinemati-
cal constraint (5.65).

The momentum equation for the mixture then writes


 � ����� �
�� � 
 �� ��� �
 � �� � �
 � ��� ��� ��
�� � �
�� �� �
�
�

(5.75)
where �� � $��$�� .

Assuming that �T� � � and that the interaction force � has the form

� � ��� ���%����� � ��� �  
�� (5.76)

one gets Darcy’s law
����� � �� � � �%
 � (5.77)

Rema rk In the one-dimensional case Equation (5.65) can be integrated to give (in
Cartesian coordinates)

�� &� � ��&� � ����
 � (5.78)

For symmetry reasons in the centre of the tumour both liquid and cell veloc-
ity vanish, so that the integration constant is zero. This allows to write an explicit
expression for �� which can be back substituted in Equation (5.77) to get,

&� � %�

� 

��
� (5.79)

It is known that at the steady state the interstitial pressure is higher in the kernel
of the tumour. If  can be identified with the interstitial pressure, according to
Equation (5.79) the cells move toward the centre of the tumour while the extracellular
liquid flows toward its border (see Figure 5.6). The experiments discussed in Dorie
et al. [9,10] show that a recirculation then forms: tumour cells starve near the centre
generating reusable materials which flow to the border to feed new-born cells. This
phenomenon is reproduced in the simulation presented in the following section.
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Rela t ive mo t io n o f cells a nd e x t ra cellula r liquid in a t umo ur.

5.10 A Numerical Simulation
The aim of this section is to demonstrate the ability of the model to account in

a qualitatively correct way for the growth, the nonuniform character of compression,
the flow of the interstitial liquid, the process of internalisation of cells described in
the last section, and the existence of a steady state. The simulation is performed for a
single nutrient species, characterised by the concentration ���� ��, filtrating through
the border of the tumour and consumed by tumour cells according to Equation (5.19).
In addition, we consider the viscosity terms negligible (�� � �� � � ), equal density
(�� � ��), and use

%� � %���� �� ����� (5.80)

� �

����
���
"
��� � ���

���� � ���
�� ��

�� �� 
 ���

� �
�	 !��	�

(5.81)

Finally
�� �

�
� ��� ��� � Æ

�
�� � (5.82)

where '� is the positive part of ' , and it is assumed that the tumour boundary is
stress free.

Focusing on the evolution between the tumour midline and the border, three
phases can be recognised during the evolution (see Figure 5.7).

� At the initial stage the tumour is so small (� � ��") that all cells are able
to duplicate because the level of nutrient is everywhere larger than ��. The
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Figure 5.7

Volume ratio (a) and velocity of liquid phase (b) and of the tumour cells (c)
at �� � #��� ����, and in the stationary configuration. The dotted vertical line
shows the position of the tumour border while the axis on the left is the tumour
centerline. The numerical simulation has been performed for equations written
in nondimensional form: the tumour has initial dimensionless radius ��� and
dimensionless parameters are � � %�"�( � ���, �� � ����Æ� � ����, �Æ �
Æ�Æ� � �����, �� � ���, � � ���, and �� � ���� � ��#.
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maximum value of the volume ratio, and therefore the maximum stress, is in
the centre of the tumour. Tumour cells move from the centre to the border
of the tumour (&�  � everywhere), while the liquid moves in the opposite
direction (&� � � everywhere).

� In an intermediate stage (� � ��$#) the tumour can be divided into three
regions: a central one where the volume ratio of tumour cells is below the
stress-free value � with a minimum in the centre; an intermediate region where
the volume ratio of tumour cells is above the stress-free value and increases
till it reaches a maximum; and a border region in which the volume ratio of
tumour cells decreases. In the first two regions tumour cells move toward
the centre, while in the third one they move toward the boundary (&�  �),
pushing forward the border of the tumour. The velocity of the fluid and cells
vanishes where the volume ratio reaches its maximum. The last two regions
can be identified with the proliferating region characterised by cells moving
away from the point of maximum and organic liquid sucked toward it.

� When the tumour reaches the stationary configuration (in the present simu-
lation � � ��%#), the maximum volume ratio is reached at the border, that
does not move any more. Tumour cells, which are created in the outer region,
move toward the centre (&� � � everywhere) where they do not find enough
nutrient and die, the organic liquid moves in the opposite direction (&�  �
everywhere). This is in agreement with the phenomenon of internalisation
of cells mentioned in Dorie et al. [9,10]: tumour cells starve near the centre
generating reusable materials which flow to the border to feed new-born cells.

5.11 Concluding Remarks
In the first part of this chapter we illustrated a possible way to model growth

using the theory of materials with multiple natural configurations. Growth is seen as
a mass increase determined by an increase in volume at constant density and without
introduction of new particles. The same particles constituting the body at the initial
time change their mass according to whether there is growth or resorption. In the
second part of the chapter we introduced a multiphase description of the growth
process. We started from the idea that multicell spheroids are made of at least two
constituents: a component of sticky cells each (elastic membranes filled by organic
fluid) and an organic liquid filling the extra-cellular space, which is used by the cells
to grow.

In this framework one can give a precise meaning to the concept of stress. This
is essential for describing several phenomena involving the stress evolution inside
the growing spheroid, at the interface with the external tissues, and the mechanical
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coupling between what happens inside and outside the growing tumour. This de-
scription allows in principle to determine how the tumour uncontrolled growth may
cause compression, collapse, or rupture of the surrounding tissues and, in particular,
collapse of immature blood vessels and infiltration and rupture of ducts and capsules.
In turn, the model allows to determine how the stresses inside the tumour related to
the compression of the external tissues can interfere with tumour growth.

The careful reader might wonder which is the link between the framework of
single constituent mechanics and mixture theory, if any. In mixture theory [6] growth
reads as a mass exchange between phases, a physically more correct position. As an
example, in a tumour spheroid the growth of cells actually occurs at the expense of
the extracellular fluid. However, the theory of mixtures, while clarifying the real
nature of the mass source, yields two well known difficulties: the definition in the
form of the partial stresses, that is the stress that acts on the components in the
mixture, and the imposition of boundary conditions, that typically involve continuity
of physical quantities (mass flow, stress) that have a different meaning on the two
sides of the boundary [1].

The point to be answered experimentally is whether a tumour spheroid or some
tumours in vivo exhibit mechanical properties that characterise solids. If this is the
case, modelling a tumour as a viscous fluid is not sufficient and the intermediate
stress-free configurations discussed in the first part of the chapter must be intro-
duced. Conversely, the multiphase description is much more realistic than the single-
constituent one and it accounts for mass growth in its physically correct fashion: not
a mass source but a mass exchange. Therefore the next natural step seems to be the
statement of a theory of growing mixtures in which the exchange of mass between
species with elastic properties is accounted for in the same way as discussed here for
the single-constituent case.

From a mathematical point of view, the key point is the characterisation of the
constitutive equation for G (5.25), a problem that has to be properly addressed in
a thermodynamical framework, not introduced in this review. We just mention two
very recent papers on this subject by DiCarlo and Quiligotti [8] and Klisch et al. [15].
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6.1 Abstract
As discussed in Chapters 4 and 5, avascular tumour nodules consist structurally

of an inner necrotic core of dead cells as a result of nutrient starvation, an interme-
diate layer of quiescent cells and an outer layer of live proliferating cells. At this
stage the nodule is limited to a size of at most a few millimetres in diameter. In this
state of “dynamic equilibrium” there is a balance between mitosis and apoptosis and
disintegration of tumour cells into waste products. For any further development to
occur the tumour must initiate the process of angiogenesis — the recruitment of new
blood vessels from a pre-existing vasculature (see Chapter 1). In order to achieve
this the tumour cells first secrete angiogenic growth factors which in turn induce en-
dothelial cells lining a neighbouring blood vessel to express a proteolytic enzyme
which degrades the blood vessels basement lamina. The endothelial cells then mi-
grate towards the tumour. As they migrate the endothelial cells proliferate and form
sprouts which develop into loops and branches allowing for a micro-circulation of
blood. From these branches more sprouts form and the process continues resulting in
a capillary network. Interactions between the endothelial cells and the extracellular
matrix are fundamental to the developing network. The growing capillary network
eventually penetrates the tumour thus completing the angiogenic process and sup-
plying the tumour with the nutrients it requires for further development. This in
turn enables the tumour to rapidly grow and invade surrounding tissue. This chapter
explains how to develop continuum (macroscopic) models of angiogenesis. In par-
ticular it concentrates on the evolution of four very important ingredients involved
in tumour induced angiogenesis; namely endothelial cells, tumour angiogenic fac-
tors, proteolytic enzyme, and fibronectin, (here used as a generic term for matrix
proteins) each of which has a crucial role to play. Using the idea of reinforced
random walks and Michaelis Menten kinetics we will derive a system of coupled
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nonlinear ordinary and partial differential equations modelling the initiation of tu-
mour angiogenesis. We then develop the ideas further in order to model endothelial
cell migration and proliferation into the extra-cellular matrix leading to angiogene-
sis. The main focus here is to model possible antiangiogenic strategies. The final
part of the chapter discusses various methods of mathematical analysis which under-
pin and provide a deeper understanding of the qualitative properties of angiogenesis
models. Mathematical modelling of angiogenesis has been discussed by a number of
authors (Balding and McElwain [1], Orme and Chaplain [15], Sleeman [20], Chap-
lain and Anderson [4], Sherrat et al. [19]). These works have been mainly devoted to
modelling the macroscopic events of endothelial cell evolution and migration char-
acteristics within the ECM. The modelling ideas are based on the principles of mass
conservation and chemical kinetics. While there are some formal similarities with
the modelling strategies developed in this chapter there are several significant differ-
ences.

In the excellent review paper [2] Bellomo and Preziosi provide a survey of the
mathematical models and methods associated with the analysis and simulation of
tumour dynamic interaction with the immune system. The aim is to develop a gen-
eral framework for the expression of immuno-mathematical theories and to develop
research strategies.

6.2 Introduction

An understanding of the mechanisms of capillary sprout formation as a result
of cell migration is fundamental to the understanding of vascularisation in many
physiological and pathological situations. In the development of tumours, capillary
growth through angiogenesis leads to vascularisation of the tumour, providing it with
its own blood supply and consequently allowing for rapid growth and metastasis. It
is important to distinguish between vasculogenesis and angiogenesis. Vasculogene-
sis is defined as the formation of new vessels in sites from pluripotent mesenchymal
cells (e.g., angioblasts). Angiogenesis (our concern here) is defined as the outgrowth
of new vessels from a pre-existing network. It is fundamental to the formation of
blood vessels during placental growth, wound healing, and in tumour growth. In tu-
mour growth angiogenesis is initiated by the release of certain growth factors from
the tumour. This observation is the outcome of the fundamental work of Judah Folk-
man (see his article in [6] for an elegant overview). The most often cited growth
factors are fibroblast growth factors (FGFs), vascular endothelial cell growth factor
(VEGF), transforming growth factor alpha (TGF�), and related epidermal growth
factor (EGF). VEGF is highly specific for endothelial cells and may be induced by
hypoxia. We now discuss the major morphological components of the stable ves-
sel that are involved in the angiogenic process. Endothelial cells (EC) which make
up the linings of capillaries and other vessels [17] form a monolayer of flattened
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and extended cells inside capillaries. The surface of the capillaries is covered with
a collagenous network intermingled with laminin. This is called the basal lamina
(BL). This layer is continuous and serves as a scaffold (or exocytoskeleton) upon
which the EC rest. The BL is mainly formed by the EC while layers of EC and BL
are sheathed by fibroblasts and possibly smooth muscle cells. In response to one
or more angiogenic stimuli (we concentrate on VEGF) the EC in nearby capillar-
ies appear to thicken and produce proteolytic enzymes (es) which in turn degrade
the BL. In further response to the angiogenic factor, the cell surface begins to de-
velop pseudo-podia that penetrate the weakened BL into the extra cellular matrix
(ECM). The EC subsequently begin to accumulate in regions where the concentra-
tion of VEGF reaches a threshold value. The vessel dilates as the EC aggregate and
the proteases degrade the BL and the ECM, thus allowing the EC to migrate and
grow toward the VEGF source by chemotaxis. The EC proliferate as they move and
other cells (e.g., pericytes) move towards the migrating EC to initiate the building of
a primitive BL. In this way capillary sprouts are formed.

6.3 Biochemical Kinetics
In order to better understand how the angiogenic factor acts on the ECs we con-

sider that each cell has a certain number of receptors to which the angiogenic factors
(ligands) bind. The receptor-ligand complexes (intermediates) in turn stimulate the
cell to produce proteolytic enzymes and form new receptors. We propose to model
this process in the following manner: If � denotes a molecule (dimer) of angiogenic
factor and � denotes some receptor (also a dimer) on the endothelial cell surface to
which it binds, the activated complex so formed, �� , signals a cascade of intracel-
lular signalling events which results in the transcription of RNAs which in turn are
translated by the ribosomes into proteolytic enzyme, �. The receptor complex ��
is subsequently invaginated into the cell cytoplasm from the cell surface where it is
degraded. In the cell nucleus, the cell signal cascade activated by the receptor acti-
vate transcription factors which leads to the translation of a new receptor � which
then moves to the cell surface. The proteolytic enzyme� degrades the basal laminar
wall leaving a product � � by acting as a catalyst for fibronectin degradation. We use
classical Michaelis-Menten kinetics for this standard catalytic reaction. In symbols

� ��
��
�
�
��

���

��
��� � ���

� � �
��� ��� �� (6.1)

��� �
��� � � � ��
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The point of view adopted here is that the receptor dimers at the surface of the
cell function the same way an enzyme functions in classical enzymatic catalysis.
This is a first step in modelling a much more complicated process. It is known that
an endothelial cell will produce, in response to a single molecule of growth factor,
several, �� say, molecules of protease. The number �� will in general be quite large
and will depend on the concentrations of growth factor the cell encounters at its cell
surface [18]. This means that the mechanism (6.1) should strictly be modified to read

� ��
��
�
�
��

���

� ���
��� � ���

Here � is an overall molecular resource term which reflects the resources used in the
translation of protein from the messenger �	
.

That is, a single molecule of growth factor, by binding to an EC receptor, initi-
ates a cascade of signalling and amplification events involving�-proteins, transcrip-
tion factors, and DNA which lead to the synthesis of several molecules of protease
and a receptor cell of the initial type. Once this cascade has been initiated, the growth
factor is rendered inert along a second pathway. The sequence of kinetic events is
very long and the rate constants for each step are not known.

The overall mechanism is known as the Map-kinase signalling cascade. The
precise details have been recorded in the appendix to [12].

Let � denote position along the capillary vessel wall and  denote time. With
concentrations expressed in micro moles per litre, we define the following quantities:

� = concentration of angiogenic factor � .
� = concentration of proteolytic enzyme �.
� = density of receptors� on the cell directed into the basement lamina.
� = concentration of intermediate receptor complex �� .
� = concentration of endothelial cells.
� = concentration of fibronectin.
Applying the law of mass action to the first two equations in (6.1) we obtain

��

�
� ����� � ���� � ����� (6.2)

��

�
� ���� � ���� � ����� (6.3)

��

�
� ����� � ����� (6.4)

��

�
� ���� (6.5)

The upshot of the remarks above concerning the Map-kinase signalling cascade
would result in Equation (6.5) being replaced by

��

�
� ������

©2003 CRC Press LLC



where now the constant �� includes a resource factor involving the concentration ���
which is assumed to be in excess so that its time variation may be neglected. We
take �� � � for illustrative purposes. Applying standard Michaelis-Menten kinetics
to the third and fourth equations in (6.1) there results

��

�
� � ����

� � ���
� (6.6)

where ��=�� and �� � �����. The rate equations for protease and fibronectin are
not complete as they stand. For example, it is known that protease decays at a rate
proportional to its concentration. It is also known that the ECs produce fibronectin.
To account for these we modify Equations (6.5) and (6.6) to

��

�
� ��� � ��� (6.7)

��

�
� ���� � ���� � ����

� � ���
� (6.8)

where � � �, � � �, and �� is the density of fibronectin in the normal capillary.
The five rate equations require initial conditions for �� �� �� �, and � . Although the
number of receptors per EC is not known precisely, it is known to be of the order of
��� � ���. The next step in modelling the kinetics is to relate the receptor density �
to the endothelial cell density �. In order to do this we need to consider the underly-
ing reasoning which supports the Michaelis-Menten mechanism. We do not go into
this here but refer to the arguments, based on the pseudo steady state hypothesis, set
out in [11], [10]. The upshot of these arguments is that the kinetic equations for �
and � can be written as

��

�
�

����

� � ���
� ��� (6.9)

��

�
� � ����

� � ���
� (6.10)

6.4 Reinforced Random Walks and Cell
Movement

To model the dynamics of the EC we employ the ideas of reinforced random
walks [5] as described in [11], [10], and [16]. In order to understand the idea behind
the notion of reinforced random walks we consider the parent capillary wall to be a
one dimensional lattice with endothelial cells equally spaced and in nonoverlapping
contact located at reference points �� along the �-axis. Let ���� �W� depending on
the control substances � , be the transition probability rate per unit time for a one
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step move of an EC at site � to site � � � or site � � � respectively. Then the time
rate of change of ���� is governed by the equation

���
�

� �������� ����� � �������� ����� � ����� �� � � ���� �� ����� (6.11)

That is, ���� will be augmented by cells moving from the positions ������ to ��
and diminished by cells moving from �� to either ������ or ������. The quantity
����� �� � � ���� �� ���� is the mean waiting time at site �. It is convenient to think of
this conditional probability density as the density of endothelial cells. The transition
probability rates ���� ��� depend on the control substances we have denoted by �
and are defined on the lattice at �

��step size. For our modelling� will include the
proteolytic enzyme � and fibronectin � . Now suppose that the decision of “when to
move” is independent of the decision “where to move.” Then the mean waiting time
across the lattice is constant. Hence the transitions ���� must be suitably scaled and
normalised so that

���� �� � � ���� �� � � 	� (6.12)

where � is a scaling parameter. Let the transition rates depend on � only at the
nearest neighbours��������. Define the new jump process � by

���� �� � � 	�
�����������

����������� � �����������
�	�	��� �� (6.13)

The master equation (6.11) now reads

�

	�

���
�

� 	�������������������� �	
��������������������

� �	���������������� �	
�������������������� (6.14)

We now proceed to the continuous limit using Taylor’s expansion and by letting
��� and ��� in such a way that

� � ��	 
��
�������

���  �� (6.15)

This results in the continuum limit of the master equation, viz;

��

�
� �

�

��
���

�

��
�

�

�
�� (6.16)

where ���� � now denotes endothelial cell density and � =��� �=��� ��� ���. To
complete the model we need to impose appropriate initial and boundary conditions.
These are

���� �� � ����� � ��

���� �� � ����� � ��

���� �� � ����� � �� (6.17)
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The system is closed by taking the “no-flux” boundary condition

�
�

��
�

�

�
� � �� � � �� �� (6.18)

It is important to appreciate that when we compare Equations (6.11) and (6.16),
the connection between angiogenesis at the cell level and at the cell density level
is via modelling of the transition rate ��� �. It is a challenging and open problem
of how one should model ��� � at the individual cell level. Nevertheless at the
cell density level experimentation is easier and this fact coupled with a qualitative
knowledge of the properties of the solutions of (6.11) facilitates the modelling of
��� � considerably. To begin with we shall suppose the transition probability rate
function � to be factored as

��� ��� ��� � ����������� (6.19)

These factors are chosen in order to provide a measure of how responsive ECs
are to protease and to fibronectin. It is known that proteases stimulate the movement
of endothelial cells. Here we choose

���������� �

�
�� � �

�� � �

��� ��� � �
�� � �

���

� (6.20)

where �  �� � �  �� and �� � � � �� � �. The idea here is that ECs move
in response to fibronectin degradation by moving to lower levels of � concentration
and in response to protease by moving to higher levels of � concentration. That is,
the greater the degree of protease production the greater the degree of fibronectin
degradation. It is this mechanism that allows for the breakdown of the capillary wall.
Choosing ���������� as a rational function of � and � is to avoid singularities in the
coefficients of �	� �� which would otherwise arise in Equation (6.16) when � and
� are small. Other choices for these factors which avoid this and still preserve the
qualitative properties above are given in [12].

6.5 Numerical Experiments
In the numerical computations we choose

���� �� � ��

���� �� � ������� �!"�	#�����
���� �� � ��

���� �� � �� (6.21)

where ��, ��, and$ are positive constants. The constant �� is chosen so that� �

�

���� ��%� � ���
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Table 6.1 Value of parameters.

���� � (EC movement) � � ���	 ���� �� � ����� �� � ��� &� � ��	
���� � (EC movement) �� � ��� �� � ����� &� � ��	
� (VEGF kinetics) �� � ���� �� � ����� $ � ��� �� � ��
� (enzyme kinetics) �� � ���� �� � �����
� (fibronectin) � � ��			 �� � ���� �� � ��	�

The constant $ is to be thought of as a measure of how concentrated or localised
the angiogenic factor is. This is the type of problem one might consider if a small
amount of growth factor were supplied to the rest state suddenly, or over a very short
time scale.

Good biological constants for events occurring in vivo are notoriously hard
to find. This is further complicated by the fact that under the general rubric “fi-
bronectin,” for example, are a whole host of ECM proteins including the family of
collagens. Also, there are many different growth factors. Further complicating these
issues is the fact that much of the data available is in vitro data. In living systems, the
situation may be quite different. We have carried out an extensive literature search
and have chosen parameter values which are representative of the mechanisms pro-
posed here, (see Table 6.1, the units are given in detail in [11]).

Figures 6.1 to 6.4 present the results of numerical experimentation with the
system (6.8) to (6.10), (6.16), (6.20), and (6.21). With $ � ��� we observe that
the fibronectin density rapidly degrades in the interval ����  �  ���� which has a
length of about 6 to 10 microns. It is in this interval that the growth factor is initially
most highly concentrated. The channel width is in the range of a typical capillary
diameter.

In Figure 6.2 the response of the EC to the angiogenic stimulus is shown to
form a bimodal structure of aggregation. It is suggestive of a primitive lining to the
emerging capillary sprout. Figure 6.3 illustrates the rapid uptake of growth factor by
the EC while Figure 6.4 shows the convergence of proteolytic enzyme to a steady
state.

6.6 Antiangiogenesis Models
In the previous section we developed a model for the initiation of sprouting of

capillaries from a nearby blood vessel. Here we discuss the modelling of angio-
genesis in the ECM. We also propose two mechanisms whereby protease expressed
by ECs in the presence of growth factor may be inhibited by angiostatin, a general
antiangiogenesis agent. Several antiangiogenic agents alone or in combination with
conventional therapies are now in clinical trials [7]. These trials are based on strate-
gies that
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Figure 6.1

Time evolution of fibronectin degradation.
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Time evolution of EC distribution illustrating bimodality.
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Time evolution of growth factor.

Figure 6.4

Time evolution of protease.
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(i) interfere with angiogenic ligands;

(ii) upregulate or deliver endogenous inhibitors; or

(iii) directly target the vasculature.

However there are a number of potential problems as discussed by Carmeliet
and Jain [3] that warrant caution in clinical trials in humans. We shall concentrate on
strategies (i) and (ii).

In order to proceed we first describe the geometry of the problem and then
outline the biochemistry of angiogenesis and its inhibition. A fundamental aspect
of this is to develop the appropriate chemical considerations and then to describe a
model for the penetration of capillary sprouts into the ECM.

6.6.1 The Geometry of the Problem

Throughout we shall use Figure 6.5 as a basis for the modelling process.

Extracellular Matrix 

(ECM)

Capillary

Tumor colony

(BL)

y =  l

y = 0

x = 0 x = L

Basement Lamina

Figure 6.5

The geometry for the mathematical model.

In the � � ' plane we envisage a capillary segment of ( microns located along
the �-axis on the interval ��� (� with a tumour colony located � microns above the
�-axis.

A time dependent function defined on ��� (� 	 ��� �� will be denoted by upper
case letters ���� '� �. A function defined inside the capillary wall will be denoted
by lower case letters )��� �. Note that in general )��� � 
� ���� �� �. Although we
imagine the capillary wall to be negligibly thin we take as a measure of its penetra-
bility, the density of fibronectin ���� �.
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6.6.2 The Biochemistry of Angiogenesis and Its Inhibition

As above let � denote a molecule of angiogenic factor and � a receptor on
the EC surface. These combine to produce an intermediate complex �� which is
an activated state of the receptor that results in the production and expression of
proteolytic enzyme, � and a modified intermediate receptor ��. The receptor �� is
subsequently removed from the cell surface after which it is either regarded to form
� or a new � is then synthesised by the cell. It then moves to the cell surface.

� ��
��
�
�
��

��� (6.22)

��
��� � ��� (6.23)

6.6.3 Mechanism for the Production of Protease Inhibitors

There are several ways in which angiostatic agents might inhibit angiogene-
sis [14]. Here we restrict attention to two such mechanisms:

(1) Angiostatin as a direct inhibitor of protease [22]


� �
��� � (6.24)

where �� denotes proteolytic enzyme molecules which are inhibited by the
angiostatin 
 from functioning as a catalyst for fibronectin degradation. �

denotes those molecules which degrade fibronectin.

In terms of concentrations;

��� � ��
� � ��� � � ��
� �� (6.25)

Assuming Equation (6.22) is in equilibrium we have

��� � � ���
���
�� (6.26)

where �� is the equilibrium constant for this step and ������.

(2) Angiostatin stimulates ECs to produce inhibitor

Another possibility is to involve the endothelial cells once more. In this more
complex mechanism the angiostatin stimulates ECs to express an inhibitor *
according to the mechanism;


��

��
�
�
��


�
� (6.27)
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�
�
�
��� * ��
� (6.28)

�
 � *��� � (6.29)

Here �
 is a receptor protein on the EC, �
�
� is the intermediate complex
and * is a protease inhibitor produced by the ECs in response to the angiostatic
agent by an overall mechanism which we assume to be of Michaelis-Menten
type. �� denotes the proteolytic enzyme molecules that are inhibited by *
from functioning as a catalyst for fibronectin degradation. Assuming the step
(6.27) to be in equilibrium we have

��� � � ���* ���
�� (6.30)

6.6.4 Mechanism for the Degradation of Fibronectin

�
 � �
��
�
�
��

��
� �� (6.31)

��
� �
��� �
 � � �� (6.32)

6.7 Equations of Mass Action
Consider the case for which 
 is converted by the ECs into a protease inhibitor

* . The law of mass action applied to Equations (6.22) to (6.32) gives

��� �

�
� �������� � � ������ �� (6.33)

����

�
� �������� � � ���� � ������ �� (6.34)

���� �

�
� ������� �� ���� � ������ �� (6.35)

����

�
� ����� �� ����� (6.36)

��
�

�
� ����
���
� � �����

�� (6.37)

���
�

�
� �����
��
� � ���� � �����

�� (6.38)

���

�

�
� ���
���
�� ���� � �����

�� (6.39)

��* �

�
� ����

�� (6.40)
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When angiostatin acts directly as an inhibitor, the last four equations (6.37) to (6.40)
may be deleted.

The enzyme kinetics for fibronectin decay leads to three additional ordinary
differential equations.

It is reasonable to assume that the kinetics for degradation of fibronectin by
protease is of Michaelis-Menten type. The treble then reduces to the form

��� �

�
� ��� ��
��� �

� � ���� �
� (6.41)

In order to develop the model in terms of measurable quantities, e.g., relating
receptor densities to EC densities, we employ a number of techniques and observa-
tions, namely,

� conservation laws,

� the idea of pseudo steady states [13], and

� inner and outer singular perturbations.

For a full discussion of these arguments we refer to [11]. These ideas used in
conjunction with the following conservation equation for protease and the equilib-
rium equation of active protease

��� � ��
� � ��� � � ��
� ��

��� � � ���* ���
�� (6.42)

leads to the set

��� �

�
�
����� ����+����

� � ���� ���
� (6.43)

����

�
�
���� ����+����

� � ���� ���
� ������� (6.44)

��
�

�
�
����
����+����

� � ���
���
� (6.45)

��* �

�
�
���
����+����

� � ���
���
� (6.46)
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6.8 Chemical Transport in the Capillary and in
the ECM

We introduce the notation

Table 6.2 Notation for quantities used in the text

In the Capillary Definition In the ECM
���� � proteolytic enzyme � ���� '� �
���� � active protease �
 ���� '� �
����� � inhibited enzyme �� ���� '� �
,��� � protease inhibitor * *��� '� �
���� � fibronectin � � ��� '� �
-��� � angiostatin 
 
��� '� �
���� � EC density 	��� '� �
���� � angiogenic factor � ��� '� �

6.8.1 Chemical Transport in the Capillary

(i) Angiostatin stimulates EC to produce inhibitor

��

�
�

����
� � ���

�

��
� ����� �� (6.47)

��

�
�

���

� � ���

�

��
� ��� (6.48)

��

�
�

�

.�
�

�
�� �

��

�
�

��
� ����

� � ���
� (6.49)

�-

�
�

���-
� � ��-

�

��
� -���� �� (6.50)

�,
�

�
��-

� � ��-

�

��
� ,��� �

.���
� (6.51)

� � � � �� � ����� (6.52)

�� � ��,�� (6.53)

(ii) Angiostatin acts directly as an inhibitor

��

�
�

����
� � ���

�

��
� ����� �� (6.54)

��

�
�

���

� � ���

�

��
� ��� (6.55)
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��

�
�

�

.�
�

�
�� �

��

�
�

��
� ����

� � ���
� (6.56)

�-

�
� -���� � � -��� �

.���
� (6.57)

� � � � �� � ����� (6.58)

�� � ��,�� (6.59)

6.8.2 Chemical Transport in the ECM

Here we set down the model equations governing cell transport in the ECM. We
follow this with an important commentary.

(i) Angiostatin stimulates EC to produce inhibitor

��

�
� �� ��� ��� '���� ���� ����

� � ���

	

��
� ����� �� (6.60)

��

�
�

���

� � ���

	

��
� ��� (6.61)

��

�
� ��/��� '��� � �

.�
�

�
�� �

��

�
� ����

� � ���
� (6.62)

�


�
� �� ��
��� '���
���� ���


� � ��


	

��
� -���� ��� � �

��
�� (6.63)

�*
�

�
��


� � ��


	

��
� *��� �

.���
� (6.64)

� � � � �� � ����� (6.65)

�� � ��*�� (6.66)

(ii) Angiostatin as direct inhibitor

��

�
� �� ��� ��� '���� ���� ����

� � ���

�

��
� ����� �� (6.67)

��

�
�

���

� � ���

	

��
� ��� (6.68)

��

�
� ��/��� '��� � �

.�
�

�
�� �

��

�
� ����

� � ���
� (6.69)

�


�
� �� ��
��� '���
��� � -���� ���� �

��
�� 


.���
� (6.70)

�*
�

�
��


� � ��


	

��
� *��� �

.���
� (6.71)

� � � � �� � ����� (6.72)

�� � ��
�� (6.73)
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Remarks

(1) We assume that background fibronectin production is in much greater excess
than that of the EC. So the logistic term is independent of 	 .

(2) We assume the ECM is a porous medium.

(3) We allow for the inhomogeneous diffusion of growth factor and for angio-
statin.

(4) We need to account for the diffusion of fibronectin in the ECM.

Generally diffusion is based on Fick’s law which states that the flux of particles
is proportional to the gradient of concentration. The assumption being that the sur-
rounding medium is homogeneous, the local concentration of the diffusing particle is
small, and the particles themselves are small. Fibronectin is a high molecular weight
protein in a highly heterogeneous region which is held in the ECM by noncovalent
linkages with other proteins. To model this we use diffusion by mean curvature
(see [8]).

6.9 Cell Movement

6.9.1 Cell Movement in the Capillary

Here we recall the transport of an EC

��

�
� �

�

��
��
�

��
�

�

�
��� (6.74)

���������� �

�
�� � �

�� � �

��� ��� � �
�� � �

���

� (6.75)

where �  �� � �  �� and �� � �� �� � �.

6.9.2 Cell Movement in the ECM

This time we use a 	�� form of the reinforced random walk master equation
and write

�	

�
� �����	�
�

	

. ��� � �
��

� 0�1�

�
	 �2��� 	

��
� �����

��
�

�3�� � ����� ��	
�
� (6.76)
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We take the transition rate function . to be of the same form (although with
different parameters) as � .

0�1� is a curvature sensitivity factor.
3�� � ���� is a switch.
The second term on the right hand side of 6.76 is composed of a logistic growth

term together with a term which represents growth in response to active protease.

6.10 Transmission, Boundary, and Initial
Conditions

6.10.1 Transmission Conditions

����� � � 4�� ��� �� �� (6.77)

-� � 
�3�� .��� (6.78)

where 
� is the rate at which angiostatin is supplied.

	��� �� �� 5�3��� � ���� ������ � � �� (6.79)

��� ��� �� �
�� �

�'
� 5�� ��� �� �� ���� �� � �� (6.80)

��
��� �� �
�
�

�'
� 5��
��� �� �� -��� �� � �� (6.81)

��� ��� �� �
�� ��� �� �

�'
� �� (6.82)

together with standard transport conditions.

6.10.2 Boundary Conditions

�� ��� �� �
�� ���� �� �

�'
� ����� � � �� (6.83)

�
��� �� �
�
���� �� �

�'
� �� (6.84)

�� ��� �� �
�� ��� �� �

�'
� �� (6.85)

©2003 CRC Press LLC



��	
��
 �

� �

�'
��� �� � � 2�	 � � (6.86)

where, for example

����� � � ��
6

(
��� ����

�
	#�

(

�
���7�Æ� �

We also apply “no-flux” type boundary conditions at � � �� (�

6.10.3 Initial Conditions

���� �� � �� ���� �� � �� ���� �� � ��

���� �� � �� -��� �� � �� ,��� �� � ��

	��� '� �� � �� � ��� '� �� � �� � ��� '� �� � ��

���� '� �� � �� 
��� '� �� � �� *��� '� �� � ��

6.11 Numerical Experiments
In the first set of experiments a tumour was implanted 25 microns from an

existing capillary. In Figure 6.6 we see the advance of EC across the ECM while in
Figure 6.7 we see the degradation of fibronectin creating a channel in the ECM.

During the computations travel times at various points in the ECM were calcu-
lated. For example it was found that it takes 3.49 hours for growth factor to diffuse
across the ECM from a tumour 25 microns away from the parent capillary. It then
takes another 0.25 hours for the emerging capillary sprout to move 2.5 microns to-
wards the tumour. The mean tip speed is 0.242 mm/day. The sprout advances a
further 2.5 microns at a mean tip speed of 0.436 mm/day and so on. On extrapolat-
ing these times to a tumour implanted at 2 mm from the parent capillary obtain travel
times of the order of 16 days which is in good agreement with travel times observed
in corneal rabbit eye experiments.

In Figures 6.8 and 6.9 we give time courses for EC density and fibronectin
degradation when angiostatin allows for the expression of protease inhibitor. Angio-
statin is activated in the capillary system when the sprout has developed over 4.45
hours. Notice that the maximum EC density decreases while the fibronectin channel
narrows and shrinks. Similar phenomena are observed in numerical experiments in
which angiostatin acts directly as an inhibitor. For full details of these results and of
further experiments we refer to [8].
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Figure 6.6

Time course for EC propagation in the ECM.

Our numerical investigations suggest the more efficaciously one can tie up the
protease the more rapidly can one inhibit angiogenesis.

Several antiangiogenesis agents alone or in combination with conventional ther-
apies are now in clinical trials. These trials are based on strategies that

(1) interfere with angiogenic ligands;

(2) upregulate or deliver endogenous inhibitors; or

(3) directly target the vasculature.

However there are a number of potential problems as discussed by Carmeliet
and Jain [3] that warrant caution in clinical trials in humans. anticancer therapy is
currently a subject of considerable controversy. While it offers new hope for the
successful treatment of cancer, a degree of caution is necessary. It is hoped that the
work described here will make a positive contribution to the debate by putting the
possible mechanisms on a quantitative footing.
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Figure 6.7

Time course for fibronectin degradation in the ECM.

6.12 Mathematical Analysis
We shall be concerned with an investigation of the qualitative properties of so-

lutions to the following problem. Let �� *�� be a bounded domain with boundary
��. We seek solutions 8� 9�*���� of the system

�8

�
� ���

�
8�
�

8

��9�
�

�

�9

�
� ��8� 9�� ��� � � �	��� . �� (6.87)

subject to the “no-flux” boundary condition

8�
�
8

��9�
��� � �� ��� � � ��	��� . �� (6.88)

where � is the inward pointing normal to ��.
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Figure 6.8

Time course for EC propagation in the ECM after introduction of angiostatin.

We prescribe the initial conditions

8 ��� �� � 8���� � �� � � �� (6.89)

9��� �� � 9���� � �� (6.90)

where � � � is a constant diffusion coefficient, 8 is population density (e.g., en-
dothelial cell density), and 9 is a vector of growth factors, growth inhibitors, fi-
bronectin, protease, etc. The study of the above problem is central to understanding
tumour angiogenesis models and also the processes of aggregation and dispersal of
cells or other organisms. Key references are [9] and [21]. These papers deal almost
exclusively with qualitative properties of the system of Equations (6.88) to (6.90).
Questions of local and global existence are discussed in [23]. To begin with we
consider some remarkable exact solutions for one space dimension systems.
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Figure 6.9

Time course for fibronectin degradation in the ECM after introduction of an-
giostatin.

6.13 Exact Solutions
Consider

�8

�
� �

�

��
��8

�

��
�


8

��9�
��� (6.91)

�9

�
� �89 � �9� ��� ����	��� . �� (6.92)

8
�

��

�

8

��9�
� � �� ��� ����	��� . �� (6.93)

8 ��� �� � 8���� � �� ����� (6.94)

9��� �� � 9������� (6.95)

For ��9� we take
��9� � 9� - � ��� (6.96)
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Without loss of generality we scale and normalise the system of Equations (6.91) to
(6.96) and consider the problem;

�8

�
� �

�

��
��8

�

��
�


8

��9�
��� (6.97)

�9

�
� 89� ��� ����	��� . �� (6.98)

8	
8
� -9	

9
� �� � � �� #� (6.99)

8 ��� �� � 8���� � �� (6.100)

9��� �� � 9������� (6.101)

6.13.1 Method 1

Set
5 � 
� (6.102)

then Equations (6.97) and (6.98) are equivalent to the problem

5�� � 5		� � -�5	5��	� (6.103)

or
�5�5�� � -�5	5��	�� 5		�� �  �  #�  � � (6.104)

5	� � -5	5� � �� � � �� #� (6.105)

5��� �� � 
9��� �� � 5����� ����#� (6.106)

5���� �� � 8 ��� �� � 8����� (6.107)

� is a quasi-linear operator of the second order. It allows for a discussion of the
system (6.103) in the hodograph plane �5	� 5��. Now � is
HYPERBOLIC at ��� � if and only if

�5	�
� � �-5� � �� (6.108)

ELLIPTIC if
�5	�

� � �-5�  �� (6.109)

PARABOLIC if
�5	�

� � �-5� � �� (6.110)

Since 8 ��� � � 5���� � � � we see that ( is HYPERBOLIC if - � ��. However
if - � � then �5	�

� � �-5� can change sign even though 5� � �. We call this the
mixed type case. Now set

5��� � � :�� � ;��� �� where :�� � �� � (6.111)
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where :�� � �� � and ;��� � satisfies

;�� � -�;		 � -�;	;��	 � ;		�� (6.112)

;	� � -;	��� ;�� � �� � � �� #� (6.113)

;��� �� � 5����� �� ����#� (6.114)

;���� �� � 8���� � �� (6.115)

The idea now is to look for a solution of the form

;��� � �

��
�	�


������	������	���� (6.116)

where 
�, �, and 	 are parameters to be determined. As an example take - � �,
(mixed case), � � �� � � �. Then we can show that

8 ��� � � 5� � � � ;� � � � 		�

��
�	�

<������	������	���� (6.117)

where < is an arbitrary parameter, and 	 and � satisfy the indicial equation

�� �	�� � � �� (6.118)

If we take � to be the positive root, this solution exists as long as

  . �<�	� � �
<�	�� (6.119)

For then the series converges absolutely and uniformly on compact sets of
��� #�	��� . �. When it exists the series (6.117) can be summed to give

8 ��� � � �� 		�� 		�

�
�� <����	����� �	��

�� 	<��� �	������	�� � <����	�	��

�
(6.120)

which “blows up” at the single point ��� � � ���� . �, where ���	�� � �� and
�  ��  #. When we take � to be the negative root, then the solution will exist
for all  � � and decay to a spatially homogeneous solution. Now consider the case
when - � �� (the hyperbolic case). The same method leads to the solution

8 ��� � � � � 		�<��� �	��

�
<����	�� � ����	��

� � 	<��� �	������	�� � <����	�	��

�

(6.121)
where �� �	�� � � �. Both roots of this equation have negative real part. This
solution decays exponentially to 8 � � as ��.

6.13.2 Method 2

Set - � � and let
5 � �� :� (6.122)
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Then

:�� � �:		 � :		� � �:	:��	 � �� (6.123)

Now set

: � �
��� ;��

where � is a parameter, and seek ;��� � in the separated form

;��� � � . �������� )���

This idea is due to Yin Yang, Hua Chen, and Weian Liu [23]. After considerable
manipulations it is found that;

(i) )�� satisfies a second order ordinary differential equation with constant coef-
ficients.

(ii) . �� is an exponential function of .

(iii) )�� and . �� involve parameters which must satisfy certain compatibility con-
ditions.

The upshot of these ideas is

8 ��� � � �� 
��������� �4����������	��
�

4����������


������� �4��������	��
�

4����������

� (6.124)

9��� � �
����


������� �4��������	��
�

4����������

� (6.125)

where ��, 
, and 4 are arbitrary constants and ���� � ����
�
�� ��.

We conclude the following:

(a) If
 � 4 � �� ��  �����
�

�

�
4�
�

�

�
4��, then 8� 9 exist globally.

(b) If �  
  4� ��  �� there exists a . � � such that 8� 9 exists on �    .
and blows up in finite time . at some point �� � ��� #�.

Note: The solutions obtained here are precisely the same as those obtained in the
first method when - � � after a shift in the time axis. Case (a) corresponds to taking
the positive root of �� �	�� � � � while case (b) corresponds to the choice of the
negative root. The second type cannot be observed in numerical simulations since
the problem is very unstable and any component of the solution in a direction tangent
to the unstable manifold leads to blow up in finite time.
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6.13.3 Method 3

This method was suggested by H.F. Weinberger. Set

-� � �

then from Equation (6.112)

;�� � ;		 � -�;	;��	 � ;		�� ����#�  � � (6.126)

;	� � -;	���-� ;�� � �� � � �� #� (6.127)

;��� �� � 5���� � �� ����#� (6.128)

;���� �� � 8����� ��-� (6.129)

This time we look for solutions which are harmonic in � and , i.e.,

;�� � ;		 � ��

and also satisfy
;		� � -�;	;��	� (6.130)

Integrate Equation (6.130) to get

�;	� � -�;	;����� � ��

which implies that
;	��� � � ;	�#� ��

Now write
= � �� ,� �= � �� , � >

to see that ;��� � can be expressed in the separated form

; � � �=� ���>� (6.131)

;��� � ;��� � -

�
�

�=
�
�

�>

�
�;�� � ;���� (6.132)

We find that � and� satisfy

���� � 	-����� � 2�

���� � 	-����� � 2 (6.133)

where 2 is a separation constant. For 2=0, ��>� � �� �=� and we get

;��� � �
�

-

������2��� �� � �����2�� ���� (6.134)

for further arbitrary constants 2�, �, and �. Set 2� � 	 (an integer) then;

8 ��� � �
�

-
�

�

-

	���	�	� ��

�����	�� �� � �����	� ��

9��� � � ������� ��������	�� �� � �����	� ������� (6.135)
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(i) If - � �� ���, then 8 ��� � blows up in finite time . � ���	 at the point
�� � 	�� �	$ � ��#�		 , where $ is an integer such that ������ #�. Fur-
thermore, at the blow-up point ��� �� . �� 9���� . � � �.

(ii) If � � �� then 8 ��� �� 9��� � exists globally. Again we see that there is sensi-
tive dependence on initial conditions as � passes through � � �. The solution
set is a subset of the solution set obtained in method 1. (These solutions do not
always satisfy the boundary conditions.)

6.14 Aggregation
An important question, which is again motivated by the need to understand

how new capillaries sprout via angiogenesis from a pre-existing vasculature, is: Can
we expect solutions to the system (6.87) to possess spatially nonconstant, piecewise
constant aggregating solutions?

Definiton: 8 ��� � aggregates if it converges to a nonconstant steady state in finite
or infinite time.

Numerical experiments of Othmer and Stevens [16] show that8 ��� � can evolve
to an aggregating solution through the formation of a ’shock.’ Their experiments
were based on the system (6.87) with

��9� �
� � 9

& � 9
�

��8� 9� �
89

� � �9
� �9 � &�

8

� � 8
� (6.136)

We argue that the seeds of such shock formation are already present in the
simple hyperbolic case of Equations (6.97) and (6.98) �-  �� in the zero-diffusion
limit if -��, ��� in such a way that -� � constant. Before doing so, let us see
how Equation (6.87) can be manipulated to exploit the idea of the hodograph plane
further and the forms of ��� above.

One has to understand that the mass transport, i.e., the transport of P is always
along characteristics. For example the solution of ;� � ;	 � � has the form ; �
����� so that the solution is propagated along the characteristic lines �� � �!�".

We set &� � �, solve the equation 9� � � �8� 9� for 8 and set 5 � � �/ �

9. There results, after a long and somewhat tedious calculation, a single equation
of the form

�5 � 5����?��9�� 	�5	5	����?��9�� ��5�5		 � 5		����9� 5	� 5��
(6.137)

©2003 CRC Press LLC



where

?��9� � 9
%

%9
�,

�9� � 
 ���9���� (6.138)

and where 
�9� � 9��� � �9� and , � �� 	. The form of � need not concern us
here.

Figure 6.10

Schema t ic ske t c h o f t he cha r a c t erist ics in t he g e neric c a se.

Now one sees that the discriminant condition is 9 dependent and that the “type”
of the operator � will depend not only on the gradient of 5 but also upon the mag-
nitude of 9. Typically what is found in the physical plane is illustrated in Fig-
ure 6.10. The general situation is as follows. For a fixed value of 9 one has an
elliptic region, �� and a hyperbolic region which possesses three possible subre-
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gions, ��, ��, and �� say. In ��, the slopes of characteristics emanating from
the parabolic boundary have the same sign so that the mass transport is into region
��. (The boundary, the curve +��� � � � is the curve where the slopes change
from having the same sign to having opposite sign. It is a caustic curve.) For
some 9 the region �� may appear. It too is a hyperbolic region with a boundary
given by +���� � � � which is also a second caustic asymptotic to the first, where
+���� � � �����?��9��	��5�	���5��?��9����� Mass trapped in�� cannot
escape.

A detailed discussion of just how these regions appear as one increases constant
initial data 9��� �� � 9� with 8 ��� �� � �� <����	#�� is beyond the scope of these
notes. The situation is roughly as follows: when 9� is small and positive, there are
only the two regions��� �� as shown in Figure 6.11. Finite time blow-up will occur
on the boundary at the cusp point shown in the figure.

Figure 6.11

Schema t ic ske t c h o f t he cha r a c t erist ics w hen 9� is sma ll.

For larger values of 9�, the regions��� �� appear as time evolves (Figure 6.10).
�� is quite narrow, while a second caustic appears to be very nearly a straight line
although it is in fact a thin parabola with �� as its interior. Further increase of 9�
leads to a widening of�� and�� with the two caustics pushing together more closely
in time (see Figures 6.12 to 6.15).

For example, in the numerical simulations by Othmer and Stevens [16] (Fig-
ure 6.16) what happens is the following. The data starts in the elliptic region and

©2003 CRC Press LLC



Figure 6.12

Regions of “ellipticity” and “hyperbolicity” for small times.

aggregates toward the centre illustrated by the evolving peak at ���. Then the so-
lution 8 ��� � is so large at the centre as to cause a change in type so that it begins
to collapse leading to the plateau-like region. It cannot collapse back to a constant
because the caustic regions have since formed and the mass cannot be transported all
the way back to the ends of the interval.

Consider Equation (6.112) with � � � and where we have restored the diffusion
coefficient�, i.e.,

;�� ��-;		 ��-�;	;��	 � �;		�� (6.139)

Let ���� -��� so that -� � �� and consider the initial value problem

;�� � ;		 � �;	;��	���  �  ��
;��� �� � ;�����

;���� �� � ;����� (6.140)

Set @ � ;	� A � ;� then

A� � �@A�	 � @	�

@� � A	� (6.141)

Now look for a solution of the form

A � � �@�� �� (6.142)
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Figure 6.13

The separation of caustics more pronounced.

Figure 6.14

Further separation of caustics.
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Figure 6.15

An attempt towards blow-up in finite time.

where
;���� � � �;������ �� (6.143)

For consistency we must have

A� � �@� �A��	�

@� � �
��@�@	 � A	� (6.144)

and so
�� ��@��� � @� ��@�� � �@� � �� (6.145)

Equation (6.145) is the characteristic equation for 5�� � �5	5��	. We have

� ��@� �
�

	

�
@�
�
@� � �� �@�

�
� (6.146)

By the method of characteristics we obtain the implicit solution

@��� � � @���� �
��@��� ���

� ;����� �
��@��� ���� (6.147)

where � �@� is a nonconstant solution of (6.145). If we set

6 � �� � ��@�� (6.148)
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Figure 6.16

Shock formation and aggregation for the Othmer-Stevens systems taken from
SIAM J. Appl. Math. 57, 1044-1081, 1997.

then implicit differentiation leads to

@	��� � �
@���6�

�� @���6�� ���@�
� (6.149)

Thus if no damping is present shocks in @ will form in positive finite time along
those characteristics which are strictly convex, �� �� � �� if and only if @� � ;��� � �
somewhere or along concave characteristics if @�� � ;���  � somewhere. We can
also construct simple “wave-type” shocks under the scaling � � <� <�� [9]. These
are embedded in the travelling waves which we construct below.
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6.15 Travelling Waves
Write the partial differential equation (6.97) as a quasi-linear first-order system

and consider the Cauchy problem
�
@
A

�
�

�

�
�-A �-@
�� �

��
@
A

�
	

�

�
� �
� �

��
@
A

�
		

� (6.150)

where A � �
9�	� Set

@��� � � ;��� � � ���� ��

A��� � � ;��� �� ���� �� (6.151)

We then find that ;��� �, ���� � must satisfy the pair of equations

;� � 	�-;;	 ��;		 � ���� � 	�-��	 ���		��
;� � ;	 � �� � �	�

;��� �� � ;�����

���� �� � ������ (6.152)

This system has extremely rich dynamics which are currently under investigation.
Suppose we look for travelling waves of the form

;��� � � ;��� ��

���� � � ��� � �� (6.153)

then

;� � 	�-;;	 ��;		 � ��

�� � 	�-��	 ���		 � �� (6.154)

These are “Burger’s equations” which can be integrated to give the solutions ;����,
��� � � where

;��� � �
�� � �����-��� � ���B
� � ���-��� � ���B � B � �� � (6.155)

where �� � �� � ����-� �� � ��� ���� � �
��- with 
 � �� arbitrary.
Note that ;��� as B�� and to �� as B���. Similarly

���� � � ��� � �
�
����� -���� � �����

� � ���� -���� � �����
� � � �� � (6.156)

So our problem has solutions which are the sum of two travelling waves. This may
also be used to provide support for the existence of aggregating solutions.
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7.1 Introduction
Growth of malignant tumours beyond the diameter of 1 to 2 mm critically de-

pends on their neovascularization, which provides vital nutrients and growth factors,
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and also clears toxic waste products of cellular metabolism [1]. Indeed angiogenesis
— the formation of new blood vessels by budding from existing ones — has been
proven to have a widespread significance in clinical oncology. Its role as a target for
cancer therapy, first recognised by Folkman in 1971 [2], has received wide accep-
tance in the early 1990s following the discovery of the first specific antiangiogenic
substances by O’Reilly et al. [3,4]. This therapeutic approach seems advantageous
in being universal for different solid tumours and in lacking prominent side effects.

Intensive research during the last 15 years has led to a better understanding of
this process and to a recognition of its complexity [5–12]. Major determinants of new
vasculature formation are genetic features as well as nutrient availability. Moreover,
vascular endothelial growth factor (VEGF) and other stimulatory factors are involved
in the regulation of endothelial cell (EC) proliferation and migration [13–20]. The
dynamics of the tumour vasculature are not merely the consequence of newly formed
vessels, but also of immature vessels transformation into mature ones and the reverse
process of destabilisation. Immature vessels may also regress in response to certain
stimuli.

In order to establish successful antiangiogenic treatment protocols, the dynam-
ics of angiogenesis must be better understood [21]. But, as was mentioned above
and will be further demonstrated, the comprehensive angiogenesis dynamics are too
complex to be captured by intuition alone, since they involve several interacting os-
cillatory processes, which operate on several scales of time and space.

Theory of population dynamics in perturbed environments suggests that oscilla-
tory disease processes can be efficiently controlled when the natural temporal process
of the disease is antagonised by an additional, externally imposed, temporal process.
The latter can be either a natural process, e.g. the host immune system response in
the control of African trypanosomiasis parasitaemia [22], or an artificial one, e.g., a
well controlled periodicity of vaccination or chemotherapy efforts, as in the case of
measles “pulse vaccination strategies” [23,24], HIV chemotherapy [25,26], or cancer
chemotherapy [27–29].

In the present chapter we show how mathematical theory can contribute to the
understanding of antiangiogenic therapy. We do so by briefly describing how math-
ematical models for the angiogenic dynamics are constructed, and subsequently cal-
culated numerically. We begin by elaborating on the complexity of angiogenesis and
analysing some empirical results which relate to tumour growth and its vasculature
development, thus illustrating this complexity. Then we move to discuss the impor-
tance of modelling angiogenesis and present some alternatives for such modelling.
These alternatives are tested for their ability to demonstrate and explain phenomena
observed empirically. Using these models we test the potential effects of various
drugs and drug schedules on the biological system. We then close by introducing
some already accomplished applications of such models, along with suggesting fur-
ther potential applications.
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7.2 Defining the Challenge

As mentioned above, intensive research has led to recognition of this complex
process [5–12]. Fundamentally, the genetic features of the tumour and the availabil-
ity of the nutrients are the major determinants of new vasculature formation. Those
determinants affect through mediators in the form of growth factors. Under condi-
tions of nutrient deprivation, tumour cells secrete stimulatory factors such as VEGF,
a potent stimulator of EC proliferation and migration [13–20]. Consequently, addi-
tional blood vessels are formed and the signal for increased VEGF production dis-
appears. VEGF expression will now return to its basic, genetically determined level.
The fate of the newly formed blood vessels will depend on this basic VEGF level. If
lower than a certain given survival threshold, they will undergo regression [30–32].
This negative feedback can produce successive cycles of growth and regression of
blood vessels [33].

Direct in vivo experiments show that newly formed blood vessels are dynamic
structures, continuously undergoing growth and regression [34,35]. This dynamic
instability can come to an end by vessel maturation, a process where immature ves-
sels are covered by pericytes [34,35], which is governed by platelet derived growth
factor (PDGF) and the angiopoietin system [36–40]. The significance of the an-
giopoietin system in vessel maturation has recently become clear [38–40]. This
system includes Tie-2, the endothelium-specific receptor tyrosine kinase, its ago-
nist, angiopoietin-1 (Ang1), and its natural antagonist angiopoietin-2 (Ang2). Ang1
promotes vessel maturation, while Ang2 antagonises its action and can destabilise
mature vessels [36,37]. Ang1 and Ang2 can be expressed variably in EC or in hu-
man tumour cells, depending on the individual tumour type [36,37,41,42]. Hence,
the expression of VEGF, Ang1, Ang2, as well as PDGF, can be influenced by both
genetic and micro-environmental factors.

From the description above, it is clear that the angiogenesis process involves
several interactive sub-processes, namely tumour growth and regression, nutrient-
dependent production of angiogenic factors, vascular growth and regression, vessel
maturation, and destabilisation of mature vessels. Several angiogenic factors should
be taken into account, including VEGF, PDGF, Ang1, Ang2, and possibly more.
Moreover, the system is comprised of three scales (levels) to be considered; the
molecular level, the cellular level, and the tissue level. Hence, its modelling is a
multi-scale modelling. To demonstrate the complexity of the issue, we bring some
experimental data, of which analysis was performed. The analysis shows the need
for modelling tools in order to fully understand empirical results, all the more so if
one wishes to predict or even manipulate treatment results.
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7.2.1 Analysis of Experimental Results

In order to better understand the dynamics of vascular development and tumour
growth, analysis was conducted on experimental results, using mathematical and
statistical tools.

7.2.1.1 Description of the experiment

The data given were of an experiment performed in M. Neeman’s laboratory at
the Weizmann Institute, Israel [33,43]. The experiment was conducted on 11 mice,
and included subcutaneous implantation of a tumour spheroid in a specific location
in the mouse’s body and following its growth and angiogenesis, including vessel
maturation and functionality [44].

In essence, the data supplied contained:

1. Tumour volume

2. Vessel density – total

3. An estimate of the fraction of functional (perfused) vessels

4. An estimate of the degree of maturation of the vessels

Magnetic resonance imaging (MRI) was used for measuring tumour growth and
blood vessel density. The functionality of vessels was assessed by MRI signal inten-
sity changes in response to an elevated oxygen level, while the maturation of vessels
was assessed by MRI signal intensity changes in response to an elevated carbon
dioxide level. These tests were performed in several measurement points inside the
tumour and in certain locations in the body, relative to the tumour. These measure-
ment points (see Figure 7.1 for the definition of reference points in the mouse’s body
(left) and in the tumour (right)), are specified herein by order from inside the tumour
to the furthest point checked:
�� – Inside the tumour spheroid
��� – Any point located within the 1 mm wide rim around the tumour spheroid
�� – A close reference site, within 7 mm distance from the tumour spheroid
�� – A further distant reference site yet in the same tissue

7.2.1.2 Data processing

The above data were processed and prepared for analysis, in the following way:

� Tumour volume was measured in mm�.

� Total vessel density was presented as the average vessel density (AVD). Signal
intensities (�) were measured within the 1 mm diameter vicinity (���) of
the implanted tumour as well as in a control region about 7 mm away from
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Figure 7.1

Left- The nomenclature of locations in the mouse’s body. Right- schematisation
of the tumour and its close vicinity, demonstrating the radius measured for tu-
mour volume calculations and mature and immature vessels in its immediate
vicinity.

the tumour ����, serving as a reference point. AVD was calculated as � �
�������	����. The outcome of this processing reflects in percentage the
degree by which AVD is higher or lower than the normal level measured in the
healthy tissue (at ��).

� 
 (functionality) reflects the density of perfused (mature + immature) ves-
sels in a certain tested area. The calculation of parameter 
 is performed
using MRI measurements. As mentioned above, these measurements were
performed separately for each of the four location points defined. Under the
“calculating parameter values” section will be further demonstration of the
application of readings in different locations within the same mouse.

� Similarly, � (maturation) reflects the maturation level of the vessels in the
area tested. The calculation of parameter� is performed using MRI measure-
ments. Also in common with 
 , maturation measurements were performed
separately for each of the four location points defined above. The use of which
will be explained below.

7.2.1.3 Calculating parameter values

We defined several parameters, for later use, characterising the tumour and rep-
resenting interrelations between the selected aspects of its growth and vascularity.
For example, the rate of tumour growth was defined as:

Tumour growth rate �

�
� �����

� ���� � ��

� �
�����������������

�

where � represents the measurement day.
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In addition, the reference points �� and �� were checked in order to serve as
control over changes in readings that are immaterial to the progress of the disease. In
order to apply this, several parameters were calculated. This was carried out firstly
by calibrating the readings in points ��� or ��, using the same day and mouse read-
ings of one of the two reference points. Two parameter examples are:

1. ����
��

– denotes the calibration of a result reflecting density of mature vessels
in ��� using the reading in �� as a reference point.

2. 
 ��
�	

– denotes the calibration of a result reflecting density of functional (per-

fused) vessels in In using the matching reading in �� as a reference point.

Secondly, a calibration was performed over maturation test results in compari-
son with functionality results. This is in order to render the numerical results equiv-
alent. The source of this necessity was that maturation and functionality values are
retrieved using different procedures and may elicit numerically incomparable results,
though in normal tissue they reflect identical amounts of vessels. This was solved
by calculating the ratio between matching readings of both maturation and function,
performed in the normal tissue (either�� or�� ) since these two values are expected
to be practically equal. After such a ratio was defined (marked as � ), it served as a
correction factor for these above mentioned values, for example: � � ���	
�� .

7.2.1.4 Data analysis

While observing in vivo tumour sizes depending on time (Figure 7.2), three
growth behaviours are apparent, differing in growth rate. Thus, mice were assigned
to three groups, according to differences in growth rates and growth patterns:

� Fast growing group: The mice in this group show continuous, rapid tumour
growth with no fluctuations observed in tumour size. These mice died first,
around 20 days from implantation.

� Medium growing group: The mice in this group started a relatively slow tu-
mour growth, which increased past some point. The growth was characterised
by occasional mild fluctuations. Their survival was intermediate, in most cases
(19 to 36 days).

� Slow growing group: These mice showed a slow tumour growth rate. In addi-
tion, many fluctuations in size were apparent during their growth. These mice
survived the longest, over 70 days.

7.2.1.5 Interconnecting tumour growth rate with AVD

Further analysis was performed, by observing the relations between tumour
growth rates and AVD. This was done separately for each of the three growth pattern
groups. Figure 7.3 relates to the fast, medium, and slow groups in the upper, middle,
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Figure 7.2

Course of in vivo tumour growth. Tumour volume designated in mm� depend-
ing on time in days. Each curve describes growth of one tumour, implanted in
one mouse.

and lower parts, respectively. In the left part of Figure 7.3 are the layouts of tumour
growth rate and AVD results, per each reading performed, per each of the mice in
the group. There is no indication of the time point in the experiment at which these
readings were performed. This is because we are here interested in researching the
relation between AVD and tumour growth rate, independent of time. In each of the
groups, three to four mice are presented, each marked by a different shape. After
the layout was complete, the boundaries within which these points distributed were
marked by dashed lines. Per each of the three groups, an additional graph is pre-
sented on the right side of Figure 7.3, showing the course of growth, i.e., tumour
volume depending on time, of one mouse of that group. Note that the scales of these
three graphs (upper, middle, and lower Figure 7.3, on the right) are different, a result
of the vast differences in the growth rates.

The values of all readings of all three mice of the first group (the upper graphs)
had a minimal tumour growth rate value of one, as appears from the marked inclu-
sive range. Hence, there was no measurement where the tumour was found to have
regressed in size, rather it grew constantly from one measurement to the next.

In the example of a specific mouse of this group (upper-right) it is seen that the
volume increased rapidly and indeed, continuously, reaching a maximum of 60 mm�

in about 20 days.
As for the reading range of AVD values, it was between 0.665 to 1.2. This

relatively dense appearance (in comparison with the other groups) corresponds to a
constant growth without the fluctuations observed in other groups.
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Figure 7.3

The left column, upper, middle, and lower, contains coordinates of all read-
ings performed in the fast, medium, and slow growing groups, respectively. The
points depict the values of growth rate coinciding with AVD. In these figures, the
results of each individual mouse are marked by a different shape. The bound-
aries within which all points of a group are distributed, are marked by dashed
lines. The right column, upper, middle and lower graphs, show the tumour
volume (mm�) depending on time (days), i.e., the course of growth, of a single
individual mouse in the corresponding group. Note that the scales of these three
graphs are different, a result of the vast differences in the growth rates.
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Both the second and the third groups had a wider range of tumour growth rates,
with some of their values lower than one, indicating a decrease in tumour volume.
The AVD ranges were also wider in these two groups, with the third group having the
widest range of both growth rate and AVD, as well as the most intense fluctuations in
the tumour development. Note that in these two groups, one may find, on both ends
of the AVD range, readings of growth rate either over or under unity. This indicates
that there is no clear association between AVD value and the tumour growth trend
(rate over one, indicating increase or rate under one, indicating decrease). Below we
introduce the concept of using a time delay assumption in the analysis of these data.
This might enable establishing a relation between the two factors: tumour growth
and vessel density.

When observing the individual examples of mice from the second and third
groups, a slower growth rate compared with that of the first group is apparent. While
in the mouse of the first group a maximum of 60 mm� was reached in 21 days, in
the mouse of the second group the tumour size was about 1 mm� after 20 days and
reached a maximum of about 30 mm� within 55 days. As for the individual mouse of
the third group, tumour size was kept at a minimum around 1 mm� for about 50 days,
and grew to only 20 mm� after 70 days. While some fluctuations are observed in the
individual reading of the second group (some regression around the day five), much
more prominent fluctuations are demonstrated in the mouse from the third group.

From these observations, it seems that fluctuating and slow growth typically is
associated with drastic changes of AVD, within a relatively wide range. Clearly, AVD
is a crucial factor influencing tumour growth, and there is a mutual effect between
the two processes. Hence, it biologically makes sense that when a phenomenon of
fluctuation in size is observed, drastic changes are also apparent in AVD measure-
ments, playing both roles of effector and consequence. It would be interesting to find
a correlation between any of the relevant values measured here.

7.2.1.6 Correlation tests

The correlations between tumour growth rate and variants of vessel density were
calculated (Microsoft Excel, see Table 7.1), as well as between tumour size and the
same variants of vessels density (data not shown). As demonstrated in the previous
section regarding calculating parameter values, density relates to either mature ves-
sels or to functional vessels (i.e., those that were estimated in vivo to be perfused by
blood). These density readings, performed in a choice of locations in the tumour, are
then calibrated using different options for reference points (see Figure 7.1). Hence,
there is a variety of measurement results for “vessel density” depending on the type
of vessels tested, the location of the testing point in the tumour, and the choice of its
reference point. A result of 0.4 to 0.6 indicated an intermediate correlation while a
result of 0.6 and higher represented a strong correlation. As apparent in Table 7.1,
no correlation was found without time delay, while after introducing time delay into
the calculations, either an intermediate correlation (���� ����� ) or a strong one
(
��� � 
��� ), was found (see below for elaboration on the concept of time delay).
One may notice that in the case of mature vessels (���� ����� ) the correlation was
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Table 7.1 The correlation between the tumour growth rates (��) and vessel
density parameters ( ���� ����� � 
��� � 
��� ) of all readings of a specific mouse,
“P." ���� : Mature vessel density in point �� vs. point�� . ���� : Mature vessel
density in point ��� vs. point �� . 
��� : Functioning vessel density in point
�� vs. point �� . 
��� : Functioning vessel density in point ��� vs. point �� .
These correlations were calculated both with and without time delay. The time
delay of 3 days was found to be optimal for some of the parameters while time
delay of 4 days was found optimal for the others.

Mouse "P"
K tg ~ M i/f K tg ~ M o/f K tg ~F i/f K tg ~ F o/f

without time delay -0.174706611 0.059830672 0.305976706 0.095252136
 time delay of 3-4 days -0.493741611 -0.460786427 0.644311185 0.670577493

negative, reflecting destabilisation of the vessels in response to tumour growth.

7.2.1.7 The concept of time delay

Both the correlation table (7.1) and the previous observation that large changes
in AVD seem to correlate with slow and typically fluctuating growth (Figure 7.3),
appear to point to a physiologically expected relation between growth behaviour and
vasculature. Nevertheless, it is clear that a change in AVD cannot immediately af-
fect the tumour size and neither will changes in tumour size immediately affect the
vessel number. Rather, there must be a genetically and environmentally determined
kinetics dictating the characteristic time by which tumour growth will respond to
changes in AVD, and vice versa. Hence, the next step in our analysis was to inves-
tigate the role of different putative time-delays between changes in vessel density
and tumour growth rate. This will serve the purpose of disentangling the above
described intricate dynamics, and will enable the unification of the different angio-
genesis sub-processes into one picture. This means that instead of observing the
relations between AVD and tumour growth rate of the same reading, on the same
day, the growth rate was checked to correlate with the vessel density reading of some
specific time earlier or later. At this phase, the search concentrated on finding the
time delay at which results were to be observed, so that the relation between vessel
density and growth rate was best established.

The method used for testing the effect of time delays was a mathematical cal-
culation using a correlation function (again, Microsoft Excel). Since the experiment
performed consisted of implanting an avascular tumour, which further developed
vasculature, we chose to test the dependence of vessel densities (whether functional
or mature) upon tumour growth. Hence, per each mouse, different time delay op-
tions were checked by testing the correlation function (data not shown), between
AVD/F/M readings of certain days and the tumour growth on the suggested preced-
ing day. We then searched for the best time delay for each mouse, which were not
identical among all mice (data not shown).
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7.2.1.8 Testing the effects of time delay on the analysis outcomes

Vascular densities of different categories of vessels, mature or functional, were
calibrated for each individual mouse, according to the described in “calculating pa-
rameter values” above, similarly to the process preceding the correlation tests. For
example, ���� , stands for density of mature vessels in area �� calibrated according
to readings in area �� . In addition to vascular density readings, tumour volume was
measured as well ( � �� ). To demonstrate the relation between vascular density
measurements and � �� , we bring the diagrams in Figure 7.4, relating to the pre-
viously mentioned mouse. Measurements for each of the different vascular density
categories are represented by a curve. Entries whose coordinates are vascular density
(� axis) and � �� (� axis) of each measurement, were connected according to the
chronological order in which the measurements were taken, yielding a curve which
unfolds with time. This type of representation is denoted “phase plane.” In upper
Figure 7.4, the diagram was constructed without any time delay. This means that the
entries represent measurements of the same day for both vascular density and � �� .
In lower Figure 7.4, on the other hand, the optimal time delay found for this specific
mouse (as mentioned in the previous section) was applied into the diagram. Hence,
each entry represents a vascular density reading of a given day and a � �� reading
of a day preceding it, by the constant time delay chosen. Please note that the axes
are now principally switched compared with Figure 7.3, i.e., here the � axis relates
to � �� , and the � axis is AVD.

7.2.1.9 Conclusions from the analysis of the experiments

In both upper and lower parts of Figure 7.4, once � �� is over a certain size,
there appears to be a state of constant growth and no change in any of the vascular
density measurements. This is indicated by the lines being rather straight, horizontal,
and overlapping in that range of � �� . Nevertheless, as it appears in Figure 7.4
(upper), there is an area of intensive occurrences in the lower range of � �� i.e.,
per certain tumour sizes within that range, many different values of vessel densities
(� axis) were observed. All the more so, the directions of the lines with time indicate
that per the same value of vascular density measurement, one may find the tumour
to be either shrinking or in the process of growing. This shows that under the same
vascular density conditions, it is not yet determined whether the growth trend shall
be negative or positive.

In Figure 7.4 (lower), time delay was introduced into the system; specifically
in this case, it was 3 days (optimal time delay found according to the techniques
described above). Once applying the time delay into the results, one can appreciate
the change in the appearance of the graph, in that the areas of intensive occurrences
have cleared up. Instead, oscillations emerge (depicted as a limit cycle behaviour
in these phase planes), indicating an interdependent growth behaviour of the two
processes.
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Figure 7.4

Analysis of experimental results of mouse “P,” relating vessel density to tumour
growth. Vessel density of four different calculated parameters presented as a
function of tumour volume (� ��) measurements. ���� : Mature vessel den-
sity in point �� vs. point �� . ���� : Mature vessel density in point ��� vs.
point �� . 
��� : Functioning vessel density in point �� vs. point �� . 
��� :
Functioning vessel density in point ��� vs. point �� . The entries are con-
nected according to their chronological order. Upper: The entries are density
and � �� measured at the same day. Lower: A time delay of 3 days was ap-
plied, hence, the entries are created by the measurement of density at a given
day and � �� measured 3 days earlier.
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Analysing tumour growth, contrasting growth trends are observed under the
same vessel density, as reflected by the lines in Figure 7.4 (lower part, dotted line). In
the major loop of � �� corresponding with ���� (density of mature vessels inside
the tumour, calibrated by their density in reference point �� ) there are two entries
where ���� equals about ���. However, in the first entry (� �� ���) the tumour
is in the process of increasing, while the second entry (� �� ���) is a bifurcation
point, where a switch occurs from a phase of growth to a phase of regression in
size. This means that a single vessel density entry cannot reflect the trend of tumour
growth, which is not monotonic. It is to be expected that more complete analysis of
the system can be obtained by separating the involved elements (such as mature vs.
immature vessels, or functional vessels etc.) and checking the role of each one of
them in dictating the growth status, possibly through regression analysis.

Both maturation and functionality of vessels were separately analysed here, and
found to each have the oscillatory behaviour described above. This actually means,
that, through the process of tumour growth, both mature vessels category and the
functioning vessels category, may transiently undergo regression. The regression
of functional vessels is a decrease in the total amount of mature vessels (which are
clearly functioning) and of functioning immature vessels. The regression of ma-
ture vessels is in essence the process of destabilisation. Hence, our results infer to
the fact that immature vessels may undergo regression and mature vessels may un-
dergo destabilisation into immaturity (possibly later leading to regression), even in
the course of tumour growth.

Our analysis results (data not shown) suggest that there might be a different time
delay between mature and immature blood vessels in correlation with the tumour
growth, and this will be further investigated.

7.3 Mathematical Models of Tumour Growth and
Angiogenesis

Vascular tumour growth, including dynamics of both vasculature and malig-
nant cells, have been described in mathematical models by Hahnfeldt et al. [45],
who propose a macroscopic model, assuming logistic tumour growth. However,
this model neither takes into account vessel maturation nor does it allow for the
nutrient-dependency secretion of proangiogenic factors. Bellomo and Preziosi [46]
and De Angelis and Preziosi [47] describe the vascular tumour system on three
scales: molecules, cells, and macroscopic entities (such as tumour volume). The
latter model is much more detailed than the previous one [45], however it also does
not include maturation of new blood vessels.

In this section, we present two classes of angiogenesis models: continuous mod-
els and a discrete model. The continuous models have been fully analysed in [48].
These models generally define three major processes: tumour growth, growth factor
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production, and vessel growth. Each model defines the interrelations between the
three, with several complexity levels being analysed. The analysis of the different
continuous models relates to the empirical findings presented in the previous part.
Hence, we are attempting to identify within each of the models the observed phe-
nomenon of tumour size fluctuations accompanied by slow growth. In addition, the
importance of including a time delay into the system is being demonstrated.

The a priori advantage of the continuous models is their analytic tractability,
that is, their solution holds universally, no matter what the precise parameter values
are. However, once these models become too complex, we find ourselves lacking
the tools for solving them. This trade-off is a constraint, which makes us choose the
suitable balance between complexity and applicability. Nevertheless, since our ulti-
mate aim is to provide methods for improving drug treatment of vascular tumours,
we must take into account events both on the molecular and the organic levels, with-
out compromising our ability to analyse the global dynamics. This delicate balance
is achieved here by using both the analytically tractable models and the more com-
plex discrete models. The former are used for deciphering the universal behaviour of
angiogenesis, while the latter are used for making realistic, practical, and empirically
testable predictions.

Below we present and analyse several continuous models, which differ in com-
plexity. Subsequently, we present the discrete model, which is complex enough to
mimic real life, yet simple enough to enable simulation under many parameter sets.
This model implements an algorithm of vascular tumour growth. The algorithm fur-
ther addresses the complexity described and demonstrated above. This is performed
by taking into account all the aforementioned sub-processes constituting the mod-
elled process, along with the effects of several critical growth factors. Modelling is
carried out on three scales; the molecular level, the cellular level and the tissue level.
As we shall see in the next section, the algorithm used here enables the induction of
drug therapy as well.

7.3.1 Continuous Models

In this part we consider angiogenesis models presented by order of increased
complexity, which originates from adding dimensions to the system. In addition,
time delay is also introduced into the system. Time delay was introduced into the
analysis of empirical results in the previous section, and was shown to have a major
impact. Similarly, mathematical analysis of these models shows here that in a sense
this time delay is mandatory if one wishes to demonstrate the fluctuations observed
in experimental results.

7.3.1.1 General assumptions of the models

Each of the models described herein involves the following time dependent vari-
ables:
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� the number of tumour cells or tumour size (denoted by � )

� the amounts of growth factors known to be involved in angiogenesis supplying
the tumour defined as � . For more accurate description, � may be broken
down into several growth factors (proteins) which may differ in their effects
and/or kinetics

� the effective volume of blood vessels supplying the tumour, which again may
either be defined separately for immature and mature vessels or as the total of
both, denoted by �

All modelling alternatives are systems of ordinary differential equations with
or without time delay. In all of these models we use “sigmoid like” functions —
smooth monotonous functions having a horizontal asymptote, e.g., �		� 
 �	�
����.
These functions describe a response of the system to the relevant biological stimuli
affecting it. The reasons for such a choice of the response function are the experi-
mental observations which show that below and above certain thresholds, changes in
the intensity of the stimuli have minor effects on the response. Between the thresh-
old values (in the sensitivity region), the process rate depends monotonously on the
stimuli value. In our analysis we use only the basic properties of sigmoidal functions,
and we do not expect their exact shape to be easily determined from experiments or
otherwise.

We assume that the tumour size dynamics is determined by availability of oxy-
gen and nutrients. The amount of nutrients delivered and the oxygen supplied to the
tumour is proportional to the volume of blood vessels supplying the tumour, whether
inside the tumour or in its close vicinity. To take this into account we use effective
vessel density (EVD) which may relate to immature vessels, mature vessels, or the
total of both, denoted by ��, ��, or �, respectively. EVD is calculated by dividing
the corresponding vessel volume by the tumour size � � �

 . To simplify our mod-
els we assume that vessel wall permeability (perfusion) is the same for immature
and mature vessels. For the tumour size dynamics in all our models we assume the
Malthusian law determined by

�� � ��������� (7.1)

where �� is an increasing sigmoid function capturing the processes of cell prolifera-
tion and death:

���� � �� � �� ��
���

����� � �� (7.2)

For dynamics of protein (growth factor) compartments we assume that proteins
are produced by tumour cells or immature vessels, and degraded by an intrinsic clear-
ance process. Elaboration of the clearance process will be discussed later, suggesting
the introduction of additional consuming elements, such as the forming vessels, into
the model.
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For dynamics of vessel compartments we assume that it is a superposition of
four processes, some are contrasting some of the others: formation of immature ves-
sels, regression of immature vessels, maturation of immature vessels, and destabili-
sation of mature vessels into immature vessels. We assume that these four processes
are driven by sigmoid like responses, as described above, depending on specified
proteins. These proteins are the stimuli mentioned earlier as the effectors of these
functions.

7.3.1.2 A three-dimensional model with no time delay

The simplest modelling option presented merely captures the three independent
variables mentioned earlier: tumour size� , total vessel volume � , and the amount of
protein � . The only thing that we assume about the protein is that it drives the vessel
formation or regression in a sigmoidal way. The rate of change of � is determined
by a Malthusian law sigmoidally depending on � (representing EVD, as defined
earlier). The protein � is produced by the tumour at a rate sigmoidally dependent
on � and is decaying, by some clearance process as mentioned above, at a constant
positive rate Æ. The rate of change of the vessel volume � is sigmoidally driven by
the protein. Thus we have the system

��
�

�� � �������
�� � ������ � Æ��
�� � ���� ���

(7.3)

where

� �� is the tumour cells proliferation rate, it is an increasing function of � and
satisfies Equation (7.2).

� �� is the protein production rate, it is a decreasing function of � and satisfies

����� � � � ��
���

����� � �� (7.4)

� �� is the vessel growth rate, it is an increasing function of � and satisfies

���� � �� � � � ��
���

���� � � �� (7.5)

To simplify the analysis we make a substitution of variables � � � and get a
system

��
�

�� � �������
�� � ������ � Æ��
�� � ���� �� � �������

(7.6)

The next step towards the purpose of mathematically demonstrating the phe-
nomena observed empirically, is the analysis of Hopf bifurcation points. For mathe-
matical background on Hopf points we refer the reader to [49]. To this end, we shall
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only clarify, that Hopf points are specific cases of fixed points essentially admitting
small oscillations in their vicinity. Their biological equivalent are steady states in
which the biological system is expected to demonstrate oscillatory behaviour. Since
such a behaviour was observed in the empirical results, it was of high interest to
research the existence of such points in each of the systems suggested.

For each set of parameters which determine ��, ��, and ��, the model has one
fixed point ���� � �� ���� � ���� ����� with � ��� � �, given by

����
���� � � � ����

���� � � � � ��� �
Æ� ���

��������
�

We claim that there are no Hopf bifurcation points among this family of steady
states.

Here is an explanation: the matrix of the system linearised at such a point is

� �

�
� � � � ����

����� ���

����
���� �Æ � ����

����� ���

� � ����
�������� �� ����

��������

�
� �

�
�� � ��� ���

� �Æ ���� ���

� ������ �������

�
� �

(7.7)
where all the new parameters �� � � ����

����, � � ����
����, �� � �� ����

����, and
�� � � ����

���� are positive.
We calculate the characteristic equation

������ �� � � �� ��������
Æ�� ���Æ����
����� ��������
������ �������

(7.8)
Hopf points arise when the characteristic polynomial at the fixed point admits a pair
of pure imaginary roots. If a cubic polynomial admits such a pair �!��! � R then
it has the form

�� � 
!��� 
"� � �� � 
" � 
 !� 
!�"�� (7.9)

for some " � R. Since the coefficients of ������ �� satisfy�������� �������� �
� and ������ 
 Æ � �� ��Æ���� 
 ����� ������� � �, we have that the characteristic
polynomial cannot have pure imaginary roots and thus there are no Hopf points with
� �� � in Equation (7.6).

7.3.1.3 Introducing time delays into the three-dimensional model

While analysing empirical results (see the above section “analysis of experi-
mental results”), the introduction of time delay elicited the appearance of oscillatory
behaviour, as well as improved by far the correlation between two major processes,
namely the dynamics of vessel density and tumour growth. This correlation may
indicate that the correct way for describing the mutual dependence between the pro-
cesses must involve time delay. The oscillatory behaviour might also indicate that
Hopf points would be found if time delay is introduced into the analytical system.
Thus, the next step was to apply time delay and analyse its effect.
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Two time delays were introduced: #� in the proliferation/death response to stim-
uli and #�, in the vessel formation/regression response to stimuli.

Let ��� � ��� #��� ��� � � �� #��� then system (7.3) is modified, yielding:

��
�

�� � ���������
�� � ������ � Æ��
�� � �������� � ����������

(7.10)

This system has the same fixed points as (7.6). Again we are only interested in
the family of fixed points����. The analysis of the behaviour of 7.10 near ���� gives
rise to the following transcendental analogue of Equation (7.8):

 � 
 �� 
������ 
 Æ � 
 ���Æ� �

���� 
 �� �
���� � ���

��������� � �� (7.11)

where �� � ������� �� � ��������� ���� �� � ������ ������� are independent posi-
tive parameters.

The rigidity of the algebraic equation (7.8) is relaxed in Equation (7.11) by
the time delays which appear in the exponential factors. This enables us to find
appropriate positive parameters for ��, ��, and �� such that there are pure imaginary
solutions to Equation (7.11). (The computation is not given here and appears in [48].)
As already mentioned, existence of Hopf bifurcation points is conditioned by pure
imaginary solutions, therefore we deduce that for every �#�� #�� �� ��� �� the family
���� contains Hopf points.

7.3.1.4 A five-dimensional model with time delays

To make our models more elaborate and realistic, we introduce more compart-
ments representing vessels and proteins. First, the inclusive representation of vessels
effective volume � , is replaced by separate descriptions of the effective immature
and mature vessel volumes denoted by �� and ��, respectively. The values of ei-
ther vessel subpopulation will be separately analysed. Hence, the model allows both
maturation of immature vessels and destabilisation of mature vessels. Secondly, the
general term protein, denoted � , is now replaced by two specific proteins namely
� �$
 , denoted �� and !���, denoted ��. We assume that � �$
 is produced
by the tumour at a rate sigmoidally dependent on the effective vessel density and
decays at a constant rate Æ�, and that !��� is produced by the tumour at a constant
rate % and decays at a constant rate Æ�. Note that another growth factor, !���, is not
modelled here as an additional dimension, rather it is assumed to exist in a constant
amount. Hence, it is represented as one of the constant parameters wherever relevant
in the functions ��, ��, and ��. Let us also introduce time delays #�, #�, and #� for tu-
mour proliferation/death, immature vessel formation/regression and destabilisation,
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respectively. We get the system:

�				�
				�

�� � ���������
��� � ������ � Æ����
��� � %� � Æ����
��� � ���������� � �������� 
 �����������
��� � �������� � �����������

(7.12)

where ��, ��, and �� satisfy (7.2), (7.4), and (7.5), respectively and

� �� is the maturation rate, it is a positive increasing function of ��.

� �� is the destabilisation rate, it is a positive decreasing function of �� and
satisfies

��
����

������ � �� (7.13)

After making the substitutions �� � �� � ��	� and �� � � � �� 
 �� we get
the system

�				�
				�

�� � ���������
��� � ������ � Æ����
��� � %� � Æ����
��� � ���������� � �������� 
 ���������� ����� ����������
�� � ���������� � ���������

(7.14)

For each set of parameters which determine ��, ��, ��, ��, and ��, the model
has one fixed point ���� � �� ���� �

���
� � �

���
� � �

���
� � ����� with � ��� � � given by

the conditions

����
���� � � � ����

���
� � � � � � ��� �

Æ��
���
�

��������
�

�
���
� �

%Æ��
���
�

Æ���������
� �

���
� �

����
���
� �����

����
���
� � 
 ����

���
� �

(7.15)

while exercising on the system the same analysis (full analysis appears in [48]), we
find that for every pair �#�� #�� �� ��� ��, there always exist parameter sets such that
���� is a Hopf bifurcation point of the system (7.14).

We summarise the results about � � & and � � & models in the following
proposition:

Proposition 7.3.1 The ODE systems (7.10) and (7.14) admit a Hopf bifurcation
point if and only if at least one of the time delays is nonzero.
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7.3.1.5 Further extension of the model

We further extended the model, by allowing!��� not to be constant, but rather
to be produced by immature vessels, thus being a function of their quantity. Hence,
we introduced an additional dimension to the model. In this case, the matura-
tion/destabilisation process depends both on !��� and on !���. Here too, time
delays were implemented. The analysis of this last system (not shown), demon-
strated again the existence of Hopf points when at least one of the time delays is
nonzero.

Another possibility for extension that was exercised, was the addition of protein
consumption by growing vessels, rather than assuming it is merely constantly cleared
by entities outside the modelled system. This was performed on the � � & model
without time delay and had no Hopf points, similarly to other systems with no time
delay.

7.3.1.6 Interpreting the results

A biological observed phenomenon is a given, for which we seek an explana-
tion or at least a description. In the case of the empirical results presented above,
a major apparent phenomenon is an oscillatory behaviour. One of the means for
analytically describing oscillatory behaviour is a system of equations with Hopf bi-
furcation points. Introduced above were several modelling suggestions describing
angiogenesis, with or without time delays. As demonstrated, whenever time delay
was introduced into the system, Hopf points were found, leading to oscillatory be-
haviour. This might mean that the more appropriate candidate for describing the
biological system in question is the alternative that includes time delays. While it is
recognised that time delay will often elicit Hopf points, here it was shown that the
latter were to be found for any angiogenesis model with time delay. Note that the
introduction of time delay was also mandatory for the analysis of the empirical re-
sults. These conclusions underline the possible significance of time delays in tumour
dynamics.

7.3.2 A Discrete Model

7.3.2.1 Description of the algorithm

The algorithm of the discrete mathematical model includes six major processes
simultaneously, namely tumour cell proliferation and death, immature vessel forma-
tion and regression, immature vessel maturation, and mature vessel destabilisation
(the complete algorithm is described in detail in [50,51]). A simplified scheme of
the algorithm (Figure 7.5) presents three interconnected modules, within which these
six subprocesses are included: tumour growth (proliferation and death), angiogenesis
(immature vessel growth and regression), and maturation (formation and destabilisa-
tion of mature vessels). Each of these modules operates on three scales: molecular,
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The simplified algorithm describing the principal interactions affecting a vascu-
lar tumour growth. It defines three major entities indicated as “boxes;” tumour
growth, immature vessels (angiogenesis), and mature vessels, and conveys the
interrelationships between them. These interactions occur across three organ-
isation scales: molecular, cellular, and organ level (for a full description of this
algorithm, we refer to [50,51]).

cellular and macroscopic (tissue level).
The tumour module consists of tumour cell proliferation and death, further sub-

dividing into:

� a genetically determined block, which is cell type-specific and does not vary
in time, and

� a block which is time-variant and nutrient-dependent.

A crucial factor in the tumour module is the density of the total perfused vascu-
lature (to be denoted effective vascular density, EVD). Proliferation rate is directly
proportional to EVD and death rate is inversely proportional to it. In addition, pro-
liferation and death rates are both nutrient-dependent [52]. Two additional quantities
are calculated in this module, namely VEGF and PDGF production. They are both
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inversely related to EVD so that aggravation of nutrient depletion results in increas-
ing secretion of proangiogenic factors [7–9]. The tumour growth module interacts
with the angiogenesis and the maturation modules via the relevant regulatory pro-
teins.

In the angiogenesis module we calculate immature vessel volume. Immature
vessel volume increases proportionally to VEGF concentration, once above a given
threshold level, and regresses if VEGF is below a given, possibly different, threshold
level. The latter threshold is generally referred to as “survival level” [30] to [33].

In the maturation module, we calculate mature vessels volume according to per-
icyte concentration [52,53] and according to Ang1/Ang2 ratio [54]. Pericytes pro-
liferate proportionally to PDGF concentration [34,35]. Ang1 and Ang2 are continu-
ously secreted by tumour cells and immature vessels, respectively [36,37,41,42,52,
53,55]. Additionally, Ang2 can be secreted by tumour cells, if the latter are nutrient-
depleted [37]. We assume that maturation of immature vessels occurs if pericytes
concentration and Ang1/Ang2 ratio are above their respective threshold levels, oth-
erwise, if under these thresholds, immature vessels do not undergo maturation, while
mature vessels undergo destabilisation and become immature [38] to [42].

7.3.2.2 Numerical calculations

The above algorithm is precisely described mathematically by a large set of
formulas underlying each and every interaction in Figure 7.5 and more. This full
mathematical model has been studied by numerical simulations only, as it is much
too complex to be tractable to mathematical analysis (but see the analysis of less
complex forms of the model in the previous section, “continuous models”). Some
simulation results of the full model are presented in section 7.4.1.

Recursive numerical simulations of the model have been performed. Note that
at this point, we needed to define the parameter space within which simulations will
be conducted. Owing to the relative novelty of the field of angiogenesis, and hence,
the scarcity of experimentally evaluated parameters, we used arbitrary dimension-
less units for all model parameters. Initial conditions were 100 tumour units and
zero vascular densities. Calculation step duration is equivalent to generation time of
tumour cells, that is, to one cell cycle.

At every time step the model calculates the tumour size, which is determined as
a function of tumour cell number, the number of free endothelial cells and pericytes,
the concentrations of the regulatory factors (VEGF, PDGF, Ang1, and Ang2), and
the volume of immature and of mature vessels.

In addition, immature and mature vessel densities (the volumes of correspond-
ing vessels divided by tumour size) are calculated and summed into EVD. EVD is
defined as the sum of the densities of any perfused vessels, whether immature or ma-
ture. For simplicity we assume here that perfusion efficiency is the same in immature
and mature vessels. However, this constraint can be easily alleviated.

The model assumes several threshold-dependent and ratio-dependent effects of
regulatory factors, as follows:
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� A threshold of VEGF concentration above which endothelial cell proliferation
takes place

� A threshold of VEGF concentration under which endothelial cells, either in-
corporated into immature blood vessels or unattached, undergo apoptosis

� A threshold concentration of free unattached pericytes above which immature
vessels can mature

� Ang1/Ang2 ratio above which immature vessels mature and below which ma-
ture vessels are destabilised

7.4 Applying the Models: From Theory to the
Clinic

One can utilise angiogenesis mathematical modelling to serve several purposes.
As we saw above, empirical data may reflect very intriguing phenomena, the analysis
of which is enabled using such tools. The better understanding of such phenomena
will lead to novel ideas for research and therapy. In addition, this work gives new
options for the evaluation of novel antiangiogenic therapies. This will be demon-
strated in the results section below. Clearly, if one wishes to apply such models for
pharmaceutical or clinical uses, an additional module will have to be added to them,
addressing the question of the pharmacodynamics and pharmacokinetics of the mod-
elled drugs. This will be addressed towards the end of this section.

7.4.1 Simulation Results

The computer simulation of the tumour growth and angiogenesis discrete model
described above, was represented as time series of the measured quantities: the ef-
fective vascular density, the tumour size, the concentrations of VEGF, Ang1 and
Ang2, Ang1/Ang2 ratio, the immature and mature vessel volume, and more. Time
is measured in cell cycles, while values on the �-axes in all graphs are expressed in
arbitrary units.

7.4.1.1 Simulation of antiangiogenic and antimaturation therapies

One interesting application of this model may be the simulation of “prototyp-
ical” antiangiogenic and antimaturation therapies. Continuous administration was
simulated, of two different hypothetical drugs affecting vascular dynamics, namely
a VEGF-production inhibitor (drug A) and an Ang1 production inhibitor (drug B).
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Monotherapy by drug A only, drug B only, or combination of both drugs, were sim-
ulated and compared with disease progression with no intervention. The different
therapies were applied under similar conditions in terms of initial tumour size, re-
action coefficients, and initial total vessel volume. For each of the initial sets, the
simulated aspects of tumour growth were vascular volume, concentrations of Ang1
and Ang2, and tumour size. Those are presented in Figures 7.6 and 7.7 as a function
of time in the upper, middle, and lower graphs, respectively.

However, for some of these therapies, three different sets of initial proportions
of immature vessels were applied, being 50%, 95%, or 5%, as will be indicated in
each of the examples herein.

Figure 7.6 shows simulation results of tumor growth characteristics under no
therapy (left), drug A monotherapy (middle), and drug B monotherapy (right). The
therapies were applied under the same initial conditions for the disease and under
the assumption that initial volumes of immature and mature vessels were equal. One
may notice in these simulations that drug A therapy (middle) slows down tumour
growth without eliminating it. Rather, tumour size continues to increase nonlinearly,
even under a prolonged treatment period and increased drug dose (not shown). As
for drug B, (right) its application seems to cause a substantial deceleration in tumour
growth, yet when observed under a smaller scale (inserts of Figure 7.6, right), one
may appreciate that the trend of nonlinear growth still exists.

Figure 7.7 presents the simulation results of the combination therapy of drugs A
and B with 50%, 95%, and 5% initial immature vessel percentage (left, middle, and
right, respectively). All combination treatments simulated appear to cause prolonged
suppression of tumour growth and a significant linear decrease in average tumour
size. In the case of the immature vessel density being 95% (Figure 7.7, middle), the
suppression was much more remarkable. Hence, in addition to having an advantage
over the monotherapies simulated (Figure 7.6), it is demonstrated that the relative
deceleration in tumour growth caused by this particular combination therapy is a
function of the initial relative proportion of immature/mature vessel volume. Thus,
the suggested combination therapy seems to yield an even better result when the
proportion of immature vessels is relatively large (Figure 7.7, middle). Note that
this general result is independent of initial conditions, other than immature vessel
proportion.

In order to check whether the phenomenon of oscillatory growth behaviour, is
also apparent in simulation results, two simulations were performed, the results of
which are brought in Figure 7.8. The difference in the setting of the system between
the two simulations, is in the intrinsic level of Ang1 which is defined as genetically
determined. This Ang1 level was assumed to be 1 unit (upper Figure 7.8) or 35 units
(lower Figure 7.8). All other simulation conditions (parameters) were set as equal
in both cases. On the right side of Figure 7.8, simulated tumour growth is presented
(size as a function of time in days). Observing the left part of Figure 7.8, one may
appreciate that this simulated tumour growth is characterized by fluctuations, in both
upper and lower parts (Ang1 equals 1 and 35 respectively). This is coherent with the
findings presented in section “defining the challenge” where such fluctuations were
demonstrated in the experimental results.
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 Figure 7.6  
Simulation results of tumour growth under no therapy (left), drug A monotherapy (middle) and drug B monotherapy  
(right), where initial immature and mature vessel volume are assumed to be equal. Vascular volume, concentrations 
of Ang1 and Ang2 and tumour size are displayed in upper, middle and lower graphs, respectively. Inserted in the right 
column graphs are smaller scale magnifications of the larger scale results. 

©2003 CRC Press LLC



210
C

H
A

P
T

E
R

7
A

N
G

IO
G

E
N

IC
D

Y
N

A
M

IC
S

A
N

D
T

H
E

R
A

P
Y

 

0.00E+00

2.00E+02

0 60 120 180 240 300 360 420 480 540 600 660 720

0.00E+00

5.00E+03

0.00E+00

2.50E+03

 

0 60 120 180 240 300 360 420 480 540 600 660 720

 

0 60 120 180 240 300 360 420 480 540 600 660 720

 Figure 7.7 
Simulation results of tumour growth under combination therapy of drug A and drug B. Initial conditions were equal  
except for immature vessel percentage, being 50%, 95% and 5% (left, middle, and right, respectively). Vascular 
volume, concentrations of Ang1 and Ang2 and tumour size are presented in upper, middle, and lower graphs, respectively. 
 

©2003 CRC Press LLC



Figure 7.8

Results of two simulated situations, where the difference in the setting of the
system is in the intrinsic level of Ang1. It was assumed to be 1 unit (upper) or 35
units (lower). Left: Phase plane representation of simulation results, showing
EVD (x axis) as a function of tumour size (��� , y axis). (See phase plane
representation of the experimental results in Figure 7.4). Right: Simulation
results of tumour growth as a function of time in days.

In the first example above one may see how the utilization of the discrete math-
ematical model may help exploring therapy options and coming across new ideas
to be further empirically tested. In the latter example, we have demonstrated the
appearance of oscillatory growth phenomena in simulations of the discrete model.
Similar phenomena were observed in the preceding section “analysis of experimen-
tal results.”

7.4.2 Devising Drug Pharmacokinetic and Pharmacodynamic
Models for Angiogenesis Simulations

One of the purposes in modeling angiogenesis is to predict the outcomes of a
treatment, using a known drug and a well defined schedule. Once this is achieved,
the model could be used for more sophisticated tasks, e.g., exploring new drugs or
novel treatment protocol options for existing drugs.
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7.4.2.1 The general structure

In order to make all these applications possible, we have to implement drug
pharmacokinetics (PK) and pharmacodynamics (PD) as a part of the selected angio-
genesis model. The PK model enables calculating drug concentration in the tissues
where the drug effect occurs or in any other modeled compartments. The drug PD
model accounts for the interaction between the drug and the modeled disease. The
PD model interacts with the drug PK model, correlating the drug effect on the system
to its concentration.

The drug PK can be modeled by one of the classical PK models [56], chosen
according to the properties of the drug. The drug PK model includes a description of
drug delivery and absorption, drug distribution in the body (both in the central com-
partment and in the peripheral compartments) and drug elimination from the body.
The design of the PK model is adapted to the specific properties of the modeled drug.
Thus, delivery method, absorption characteristics, number and nature of distribution
compartments, the exchange between the compartments, and the metabolism and
elimination patterns are chosen according to the information we have on the drug.

The drug PD model applies the drug effects to all the components of the math-
ematical models which simulate the biological processes of the target tissues. The
effect of the drug is a function of the drug concentration in the target tissue or in the
central compartment. In terms of the model, this effect can be expressed as a change
in values of certain variables (e.g., the inhibition of production of a substance can
be represented as a reduction of its production rate). Practically any drug effect can
be described within this framework, given that the affected cell population or sub-
stance is represented in the disease model. Consequently, the same model can serve
for describing the side-effects of the drug, which might require implementation of
additional compartments simulating the tissues where the side effects take place.

7.4.2.2 Implementing PK/PD in the cancer model

Below we describe an example of drug PK and PD implementation in our an-
giogenesis model. The drug administration device in this example is a tablet. The
drug is absorbed from the device by a first-order kinetics process, and enters the cen-
tral compartment, which represents the blood. The volume of distribution of the drug
�� '� is not constant. Rather, it is elevating as a function of the drug amount. This
represents the effect of a concentration-dependent drug binding by tissue proteins. In
addition to the central compartment (blood), the model includes two peripheral com-
partments. One of the two represents the target tissue (in our case the tumour), where
the drug concentration defines the effect of the drug on the disease. The drug con-
centration in the target tissue can differ from that in the blood. The rate of exchange
between the blood (central compartment) and the tumour (target peripheral compart-
ment), and so the resulting target tissue drug concentration, depends on the tumour
tissue perfusion. The second peripheral compartment represents an additional distri-
bution compartment for the drug. While differing from the central compartment in
its drug distribution properties, it is implemented in order to complete the simulation
of the drug pharmacokinetics and plays no role in the effect of the drug on the dis-
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ease (pharmacodynamics). The clearance of the drug from the body is described by
elimination from the central compartment by a first order kinetics process.

The drug effect is a function of the drug concentration in the target compart-
ment. This function is of a sigmoid type: an increase in drug concentration leads to
an increase in the effect, with saturation. In our example, the drug has three indepen-
dent effects: (i) reducing the proliferation rate of the tumour cells, (ii) increasing the
apoptotic rate of the tumour cells, and (iii) inhibiting VEGF production by the tu-
mour cells. All these effects are expressed as sigmoid-like concentration-dependant
functions, altogether yielding the resulting effect of the treatment.

7.5 Discussion
The complexity of angiogenesis and its significance in potential cancer therapy

are well recognised. In experimental data brought here, several growth behaviours
have been observed. Rapid tumour growth seems to have coincided with large ranges
of vessel densities. In addition, growth seemed to be either in progress or in regress
with no apparent direct relation with vessel density at the time of measurements.
We have identified an oscillatory behaviour of tumour size in the periods in which
growth rate was mild. This oscillatory behaviour may represent a limit-cycle fixed
point, where both tumour size and vessel density fluctuate with a relatively fixed
amplitude. Since there is a mutual effect of these two processes, it would be difficult
to pinpoint cause and effect relationships. Still, one should expect to find some cyclic
behaviour in the interaction of these two processes. The graphics of the relation
between vessel density measurements and tumour size measurements, as it unfolds
with time, are presented in Figure 7.4. In Figure 7.4 (lower), where an assumption
of time delay was implemented, an oscillatory behaviour was observed, suggesting
an interdependent path of development for these two processes. The concept of time
delay falls into place with the biological intuition that there is a time gap between
the appearance of the stimulus and the response to it. It also falls to reason that the
duration of such a time gap would be variable between individuals, a function of
genetic or environmental variability.

In addition, the fact that contrasting growth trends were observed under the
same vessel density indicates that tumour growth is not a simple function of vessel
density. Rather, growth rate is a function of several coexisting effects. This stresses
the significance of separating the analysis of the involved processes, such as the
dynamics of mature vs. immature vessels, or functional vessels, and checking the
role of each one of them in controlling tumour growth status. Also, it is very likely
that different time delays should be considered when checking the correlation with
the tumour growth of each of the separate processes (e.g., the influence on growth
of immature vs. mature vessels, may be kinetically different). The comparison of
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time delays between individual cases and between different effectors, is a substantial
issue to be addressed in future work.

Tumour growth and angiogenesis were modelled both in an analytical continu-
ous way and in a discrete way, later implemented into a computer simulation.

As discussed already, the analytical model can aid in understanding the phe-
nomena under research, but carries with it an inherent limit on complexity. Analysing
the continuous models, we have shown that only if time delay is implemented into
the models, is it possible to identify Hopf points. Hopf points are stable fixed points,
which potentially can account for situations in which tumour size does not progress,
rather it fluctuates between maxima and minima that are relatively similar. The lat-
ter result underlies the global properties of angiogenic dynamics, and supports the
significance of time delay in the description of this process. It is also important for
showing how connected the mathematical description brought herein is to the bio-
logical reality.

The discrete modelling proves to be an apparatus enabling the interactive inte-
gration of many different processes which occur on different biological organisation
levels. We showed here that such an apparatus is essential for incorporating the high
level of complexity in the description of the relevant processes. Hence, this provides
an opportunity to study empirical phenomena, novel antiangiogenic drugs, new drug
combinations, new drug schedules, etc. Some of the results are summarised herein
(see [51] for complete results) and suggest that the combination of antiVEGF and
antiAng1 therapies may be advantageous over the possibility of adopting a regime
applying just one of them.

Looking into future work, we suggest that mathematical modelling can be highly
instrumental in unravelling the complexity of cancer growth and therapy. Modelling
tools may be used both for reaching a better understanding of the causality of the
processes in question, and for easily testing new drugs. Our discrete mathemati-
cal algorithm suggests that there are many points in this complex dynamics, where
suppression or stimulation by new drugs can be examined. This would require the
addition of pharmacokinetics and pharmacodynamics modelling to the work already
presented here.

7.6 Conclusions
Angiogenesis dynamics is highly complex, including several processes which

operate on different levels of the biological system. Fragile new vessels form and
regress, and at the same time can be covered by pericytes and mature into more
resilient forms which, subsequently, may still be destabilised. The rates of these
dynamics are determined by a plurality of factors, such as the genetic characteris-
tics of the organism, the availability of nutrients at certain moments, and of proteins
like VEGF and other stimulatory factors, affecting endothelial cell proliferation and
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migration during other moments. Moreover, the different dynamical processes are
interconnected by several feed-back loops, which can accelerate some of them while
decelerating others. In order to concurrently account for the interactive dynamics
of the relevant nutrients and growth factors, the different cell types, tumour mass,
and the various blood vessel types, the model of angiogenesis should necessarily be
a multi-scale one. Several continuous models with increasing complexity were dis-
cussed here. They were all shown to require the inclusion of time delays in order to
identify Hopf points, which possibly represent the oscillatory phenomena observed
empirically. The discrete model discussed here, included a highly complex descrip-
tion of the relevant processes. This description served as a basis for constructing
a simulation apparatus which offers further research opportunities. One such ap-
plication was presented here, suggesting a major advantage to the combination of
antiVEGF and antiAng1 therapy over a monotherapy, which uses just one of such
drugs. It is our hope that cancer therapy will be aided by using modelling tools such
as those presented here, both for reaching a better understanding of the processes in
question and for easily testing new therapies.
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8.1 Introduction
Cell adhesion plays a crucial role in every aspects of a cell’s life, from em-

bryogenesis, to morphogenesis, to wound healing or to the progression of cancer.
Adhesive interactions between a cell and its surrounding neighbours or extracellu-
lar matrix1 are mediated by transmembrane proteins named cell adhesion molecules
(CAMs). These proteins usually span the entire phospholipid bilayer, which isolates
the interior of the cell (cytoplasm) from the exterior. They also contain domains
extending into the aqueous medium on each side of the bilayer. They are therefore
exposed on both the external and internal surface of the cell. On the external side,
they can interact with ligands exposed either by other cells or by the components of
their extracellular matrix. On the internal side, they can interact both mechanically
(attachment) and “biochemically” with components of the cell cytoskeleton (essen-
tial for cell motility) and of the cell signalling machinery (control of cell fate). These
interactions are regulated by interconnected pathways which may arise from the cell
itself (autocrine), from a distant origin (paracrine signals from neighbouring cells
or endocrine signals mediated by molecules transported by the blood) or from very
close (juxtacrine signals going through cell junction channels, or signals due to mem-
brane attached proteins of one cell interacting with receptors on an adjacent cell).
CAMs are usually classified in four families: integrins, cadherins, immunoglobulins
and selectins. They are involved in the control of key mechanisms such as prolifera-
tion,2 differentiation,3 and migration.4 This control arises from two main functions
of the CAMs, the “mechanical” gluing function, and the signal transduction func-
tion. The aim of this chapter is to introduce these key notions on cellular adhesion
mechanisms and to show that (why and how) adhesion mechanisms should be taken
into account in models dealing with the development of cancer and metastasis.

8.2 Cell-Cell Interactions and Signalling
Cells communicate with each other through different means, in order to coordi-

nate growth, differentiation, and metabolism. Soluble signalling molecules (growth
factors, cytokines, etc.) released by cells and targeting receptors on target cells allow

1Extracellular matrix refers to the environment filling the spaces between cells. The extracellular matrix
is a complex three dimensional network of proteins and carbohydrates secreted and remodelled by the
cell. It helps bind the cells together in tissues and also provides a lattice through which cells can move.
2Refers to the process through which cells multiply to form new tissues or colonies.
3Process though which cells gain specific functions and thereby loose their pluripotency.
4Cells can leave their original place and move through adjacent tissues through the process called migra-
tion.
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distant communication. Cell adhesion molecules, which constitute the cement stabil-
ising the structure of tissues through their mechanical gluing function, also provide a
means to promote local communications between adjacent cells. The picture is even
more complicated, since soluble signalling molecules can interfere with the function
of, or cooperate with, cell adhesion molecules.

8.2.1 Extracellular Signalling and Signal Transduction

Extracellular signalling molecules synthesised and released by signalling cells
produce a specific response only in target cells that have receptors for these signalling
molecules. Whatever the origin and the route through which a signalling molecule
reaches its target, the extracellular signals must be converted into cellular responses,
a process which is known as signal transduction. Signal transduction pathways can
promote changes in gene expression,5 cell morphology, and cell movement by modu-
lating the activity of specific transcription6 factors, by affecting the adhesive contacts
between cells and between the cells and the extracellular matrix. The complexity of
these events lies in the fact that the different pathways are interconnected and form
meshes, rather than linear paths.

The interaction of cell surface receptors, with water-soluble ligands, rely on
conformational matches between the receptor and the ligand molecules. There are
four major classes of such receptors, each one possessing a specific way to trigger
signalling pathways:

� G-protein-coupled receptors: upon activation by ligand binding, they activate
or inhibit enzymes that can generate specific second messenger;7

� ion-channel receptor: change their conformation upon ligand binding so that
ions can flow through the receptor;

� tyrosine-kinase-linked receptors or cytokine receptors: stimulation upon bind-
ing induces formation of a dimeric receptor which interacts with and activates
one or more cytosolic protein-tyrosine kinases. The receptors for many cy-
tokines, interferon, human growth factor, are of this type;

� receptors with intrinsic enzymatic activity, which are activated upon ligand
binding. Some catalyse conversion from GTP to cyclic GMP (second messen-
ger), others work as protein phosphatases, removing phosphate groups from

5Gene expression is the process in which the information encoded in a particular gene is decoded in a
particular protein.
6Transcription is the process in which DNA is copied into RNA. RNA has a central role in protein syn-
thesis: messenger RNA carries instruction from DNA that specify the correct order of amino acids during
protein synthesis. Translation of mRNA, which is controlled by transfer RNA, results in the stepwise
assembly of amino acids into proteins, ribosomal RNA also helps in this process.
7Second messengers are intercellular signalling molecules which regulate various metabolic functions.
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phosphotyrosine residues in substrate proteins, thereby modifying their activ-
ity. Many growth factor receptors are ligand-triggered protein kinases (also
called receptor serine/threonine kinases or receptor tyrosine kinases). They
can phosphorylate certain residues in their own cytosolic domain, as well as
certain substrate proteins.

8.2.2 Cell Adhesion Molecules as Biochemical and Mechanical
Transducers

Cell adhesion molecules are yet another type of cell surface receptors, since
these molecules can interfere with, or even trigger, signalling pathways, in a man-
ner which is as efficient as growth factor receptors or cytokine receptors. Only two
main classes of cell adhesion molecules involved in the process of cancer metastases,
namely cadherins and integrins, are described in details in this chapter, along with
the signalling pathways which either control them or are triggered by them. But all
adhesion molecules share the common features of involving specific receptor-ligand
interactions. These interactions rely on conformational matches between the recep-
tor and the ligand molecules. Van der Waals forces, hydrophobic and electrostatic
interactions are all important, but it is the local 3D geometry of the binding pocket
of the receptor, where the ligand penetrates, that determines the characteristics of the
bond. Good conformational matches lead to strong and long-lasting bonds, whereas
poor conformational matches do the contrary [1]. The reason is that receptor-ligand
binding relies on noncovalent bonds such as hydrogen bonds, which are weak indi-
vidually, but can be strong collectively. Since hydrogen bonding operates effectively
within narrow geometric ranges, a large number of hydrogen bonds is needed for
a good conformational match between the receptor and the ligand at the binding
pocket.

It is well established that biochemical signals arising from different origins and
transiting through cells can lead to protein phosphorylation or dephosphorylation8

which can induce protein conformational changes. These conformational changes
can modify the specificity of a receptor for ligands (binding to ligand B instead
of ligand A upon deformation). Mechanical forces applied to an adhesive recep-
tor (pulling on the receptor on one side, while an attachment to the cytoskeleton
resists the traction force on the other side) may also deform the receptor and there-
fore modify the conformational match between the receptor and the ligand. These
mechanical effects could then transduce the mechanical signal into biochemical sig-
nals that result in biological responses. For instance, Bierbaum et al. [2] and Schmidt
et al. [3] showed that tyrosine phosphorylation (a biochemical response which may
trigger signalling cascades) was altered by stressing integrins, but not by stressing
nonadhesive receptors (showing the necessity for a transduction of forces). Other

8Addition of removal of a phosphate group.
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cell adhesion molecules have also been suggested to be able to transmit forces across
the cell surface to the cytoskeleton (platelet-endothelial cell adhesion molecule [4],
E-selectin [5], and E-cadherin [6]).

A review of the literature shows that adhesive receptor-ligand interactions are
usually described in biochemical terms. Nevertheless, physical analyses and mea-
surements should be performed in order to determine not only which, but also how
these molecular links transmit mechanical forces.

8.2.3 F o rce Measu remen t s fo r Est imat in g Ad h esive In t eract io n s

In order to have access to the mechanical forces, new instruments have been
developed during the past fifteen years. The range of forces is wide and depends
on the nature of the bonds or forces in presence. Van der Waals, electrostatic, steric
repulsion forces, hydrophobic interactions, as well as hydrogen bondings or covalent
bonds are present in biological systems, and these can combine to create receptor-
ligand interactions. The latter interactions have been shown to reach energies of
about 30 kT, as compared to a few kT [7] (k being the Boltzmann constant and T the
temperature). Salts (Ca2+), pH, and temperature can affect the nature of the bonds,
by changing conformations of binding pockets (i.e., with integrins), and since forces
in cellular systems are dynamic ones, the treatment of this information is rather dif-
ficult and may lead to significant differences in the levels of forces found in the
literature. Nevertheless, there exists a few interesting methods for measuring such
interactions. The AFM apparatus [8], also called SFM (scanning force microscope)
when used for surface scanning, allows the determination of forces in the range of
0.01 to 100 nN and has been used intensively for the investigation of immunoglobu-
lins, fibrinogen, and fibronectin. It can be used either in the contact, noncontact, or
tapping mode. Different tips (cone, pyramid, sphere) can also be used. In particular,
the use of a sphere makes it possible to couple it with the JKR test [9,10]. The surface
force apparatus or SFA (10 to 1000 nN) can be used also for investigating biological
molecules [11] and consists of two crossed-cylinders coated with such molecules. It
provides a unique way to have access to force versus separation distance (or energy-
distance) curves. The accuracy is about a few Angstroms. Micropipettes have also
been developed [12] in the range (0.01 to 1000 pN) and proved to be efficient for
example when studying red blood cell aggregation. The optical tweezer [13] uses a
laser beam focused through a microscope objective to move a bead attached to a cell.
It allows to measure the force exerted on the bead. This recent technique covers the
range of forces (0 to 200 pN). Finally flowing devices (microchannels, see chapter 9
of this book) are also of interest since they can monitor forces using the flow pres-
sure [14]. Thus one can have access to the shear stress required to detach cells from
a wall for example, which is related to the bonding force.

The use of such techniques is guided by the numbers of effective bonds. Some
studies deal with one single receptor-ligand interaction, whereas others concentrate
on several ones. Indeed, an additional mode of regulation of the adhesive properties
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of cell adhesion molecules lies in the cooperation of several receptor-bond interac-
tions. This is a common feature of cadherins which are found in high concentration
in adherence plaques or junctions, and of integrins, which form clusters known as
focal adhesion plaques. This cooperation is also under the control of biochemical
signals, but it may as well depend on mechanical stimuli.

8.3 Key Steps of Cancer Metastasis
The leading cause of death among cancer patients is the occurrence of metas-

tases, which are secondary tumours arising at a distant site from the primary tumour.
Tumours of comparable size and histology can have widely divergent metastatic po-
tential, depending on their genotype and their local environmental influences, such as
angiogenesis, stroma-tumour interactions, and production of cytokines by the local
tissue. Metastasis is a cascade of linked sequential steps involving multiple host-
tumour interactions mediated by cell adhesion molecules. Six steps can be defined:

1. Det a chment : Tumour cells can detach from the primary tumour probably due
to a decrease in their adhesive interactions with their neighbours. It is largely
admitted that a loss of function of E-cadherins is related to this first step. It is
also known that cell acquisition of motile properties correlates with a loss of
its ability to recognise and adhere to its neighbours [15]. Cadherins are also
involved in these events, as their function can be regulated by intracellular
proteins called catenins. A detailed description of cadherin molecules and of
their mode of action and regulation, in the framework of cancer metastasis, is
given in section 8.4 of this chapter.

2. Invasion: The detached cells may then break through the supporting basal
lamina9 by using degradative enzymes, e.g., matrix metalloproteases (MMPs).
A review on these crucial actors of cancer cell progression is beyond the
scope of this chapter and is covered by the article of Kleiner and Stetler-
Stevenson [16]. Using appropriate adhesion molecules (mainly of the integrin
family) and degradative enzymes, cancer cells may then be able to attach and
detach from the extracellular matrix and turn on the modifications of cell shape
and microrheological properties necessary to migrate through the surrounding
tissues, until they eventually reach a blood or a lymphatic vessel.

3. Intravasation: Intravasation occurs in blood or lymphatic circulation either
directly in the tumour neo-vessels or indirectly in lymphatic channels. Metas-
tasis is more likely to occur in vascularised tumours because of the leaky nature

9Basal lamina are flexible thin mats of specialised extracellular matrix that underlie all epithelial cell
sheets and tubes. They separate cells from the underlying or surrounding connective tissue.
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of neo-vasculature produced by angiogenesis, which facilitates the penetration
of tumour cells in the blood circulation. If tumour cells reach a vessel and are
able to cross the basal lamina and the endothelium lying on it, they will be able
to enter the circulation.

4. Tr a n s p ort a nd arrest: As they travel though the blood stream, invasive can-
cer cells may encounter immunocompetent cells which hopefully may put an
end to their journey through the body. Some cancer cells are nevertheless
able to survive in the circulation by disguising themselves (they would express
native leukocyte membrane molecules), and therefore escape immunological
attacks. Circulating cancer cells can also interact with blood components such
as platelets [17], leukocytes or other tumour cells [18] and form aggregates
whose size help tumour cell retention and arrest in the circulation (immobil-
isation). This type of arrest and the biochemical reactions triggered by the
release of cytokines from the platelets are believed to induce the expression of
adhesion molecules by the endothelial cells (E-selectins) which help the ex-
travasation of the cancer cells. The role of another kind of selectin, known as
P-selectin, has been hypothesised (reviewed by Krause et al. [19]). Given that,
on one hand, P-selectin is expressed on human pancreatic cell lines which are
highly metastatic in lungs of mice and that, on the other hand, the ligand of
P-selectin (sialyl Lewis-a) is also expressed on the same tumour cells, a ho-
motypic10 adhesion between cancer cells mediated by this receptor-ligand in-
teraction might therefore lead to the production of cancer cell aggregates. The
role of P-selectin in the formation of aggregates of tumour cells with platelets
is more controversial, it appears to depend on the cell lines tested.

5. Ex t r ava sation: The migration of tumour cells through the endothelial lin-
ing towards the surrounding tissues can be facilitated by different cell inter-
actions described in 4), which lead to tumour cell arrest in the circulation.
But another mechanism showing cooperation between cancer cells and blood
components in the process of extravasation has been enlightened in a recent
in vitro study [20]. These authors demonstrated that polymorphonuclear neu-
trophils (leukocytes) incubated with tumour conditioned medium (TCM) show
an ability to help cancer cells in the process of extravasation through different
endothelial cell monolayers. TCM downregulated PMNs cytocidal function,
delayed PMN apoptosis11 and upregulated PMN adhesion molecule expres-
sion. The TMC treated PMNs were shown to attach to tumour cells and to
play a role in transporting these cells through endothelial monolayers. Tumour
cells are therefore able to exploit PMNs and alter their function to facilitate
their extravasation. The more classical form of tumour cell extravasation pro-
cess, similar to that followed by leukocytes during inflammation is described
in details in Chapter 9 of this book. In this process, individual cancer cells first

10Homotypic interactions involve cells of the same type.
11Apoptosis refers to a programmed cell death.

©2003 CRC Press LLC



stop in the circulation, by developing adhesive interactions with the endothe-
lial cell lining, then develop strong adhesive interactions to spread on it and
migrate towards an endothelial cell junction through which they migrate.

6. Inva sio n o f t h e t arget organ: This step requires the same type of properties
as those described in step 2, i.e., action of MMPs and acquisition of motility.

This description of the metastasis cascade shows the importance of cell-cell
and cell-stroma adhesive interactions in the development of secondary tu-
mours. Cadherins and integrins might stabilise tissue integrity, whereas the
loss or alteration of these cell surface proteins has been shown to be associ-
ated with increased metastatic potential. The picture is nevertheless far more
complicated, due to the fact that activation of these cell surface receptors trans-
mits signals from the outside into the cell and thus directs cell behaviour. The
signalling pathways involved can suffer from crosstalks with other pathways,
resulting in the acquisition of an invasive phenotype. The signals passing from
the inside of the cell to the outside, which can result in the emergence of
paracrine or juxtacrine signals addressed to neighbouring cells, can also suffer
from crosstalks with other pathways, or “short-circuits” due to oncogenes. The
crucial role of cadherins and integrins are reviewed in sections 8.4 and 8.5.

8.4 Cadherin-Catenin Complex and Cancer
Metastasis

Cadherins have been proven to play a very important role in the pathogenesis
of different types of cancer such as prostate cancer [21] or lung cancer [15].

8.4.1 Structure and Regulat ion of Function

Cadherins belong to a family of transmembrane glycoproteins that mediate cell-
cell adhesion in the presence of extracellular calcium. There are more than 20 dif-
ferent kinds of cadherins currently classified. The most extensively studied are E-
(epithelial), N- (neuronal), and P- (placental) cadherins. Cadherins are mainly tissue
type specific, but they can be expressed in various other tissues during development.

Cell-cell adhesion is mainly mediated by homophilic12 interactions, but het-
erophilic interactions are also possible between different cadherin molecules. Clas-
sical cadherins (Figure 8.1) are composed of five cadherin repeats in the N-terminal

12Homophilic interactions = interactions between molecules of the same type (different type = het-
erotypic).
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extracellular domain, and a single transmembrane segment containing a carboxy ter-
minal in the intracellular domain. This latter mediates the anchorage of cadherins to
the cytoskeleton via a group of cytoplasmic proteins known as catenins. ���-catenin
along with �-catenin form the cytoplasmic cell adhesion complex through which
cadherin molecules are linked to the cytoskeleton, but they also regulate the func-
tion of cadherins. The assembly and turnover of the adhesion structures involving
cadherins are regulated by complex biochemistry, which involves cadherin synthesis,
degradation and the generation of external and internal signals.

E-cadherin

b-catenin

α-
ca

te
ni

n

a-actinin

actin

P120

Cell membrane cytoplasm

Figure 8.1

Structure of classical cadherins showing the proteins involved in the cytoplasmic
cell adhesion complex.

Since most, if not all cancers, arise from epithelial dysfunction, it is not sur-
prising that one of the best characterised cadherin molecules is E-cadherin, which
is the key component for adherence junctions between epithelial cells. When ep-
ithelial cells contact each other, in the presence of extracellular calcium, they use
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E-cadherin molecules to rapidly form adhesion structures in a zipper like fashion.
The E-cadherin-catenin complex begins to form during the passage of E-cadherin
to the cell membrane. The first catenin to interact with cadherin is either �-catenin
or �-catenin (plakoglobin) which can be substituted for each other in the cadherin-
catenin complex. This is followed by the recruitment of �-catenin from the cytosol,
and its binding to a short region close to the NH2 terminal of �-catenin or �-catenin.
This would result in the formation of stable bonds between the complex and the actin
cytoskeleton. Spectrin would also bind to the complex in the NH2 terminal domain
of �-catenin [22].

The role of p120, a fourth catenin-like molecule, in the regulation and stabil-
isation of adhesion is more controversial. It would have a role in the modulation
of cadherin clustering and thus the stabilisation of adhesion. Indeed, cadherin-
catenin complexes would set off a signalling pathway that results in the attraction
of E-cadherin. Freely diffusing cadherins would become trapped by the immo-
bilised cadherin-catenin complexes, and the local increase in the concentration of
E-cadherin could then strengthen cell-cell adhesion through the formation of lateral
bonds. But other studies report on the negative regulatory role of p120 on adhe-
sion. A recent model proposes that transbinding of cadherins result in the activation
of p120 and the strengthening of adhesion, whereas intracellular signalling induces
the inhibitory effects of p120 on intercellular adhesion [23]. Recent studies also
suggest that p120 promotes cell migration by recruiting and activating Rho-family
GTPases [25,26] (cf. section 8.4.2).

It has been suggested that the loss of adhesive function of E-cadherins is a
prerequisite for tumour cell invasion and metastasis formation [24,25]. Multiple
mechanisms are found to underlie the loss of E-cadherin function in cancer:

� Mutation or deletion of the E-cadherin gene itself

� Mutation of the �-catenin gene

� Transcriptional repression of the E-cadherin gene

� Aberrant tyrosine phosphorylation of the components of the cytoplasmic cell
adhesion complex

The loss of E-cadherin mediated cell-cell adhesion, leading to a detachment of
tumour cells from the primary tumour, is probably not sufficient to confer an inva-
sive phenotype to tumour cells. It seems more likely that E-cadherin downregulation
results in the activation or alteration of specific signalling pathways, which in turn,
trigger tumour cell invasion and tumour cell growth (E-cadherin could induce cell
cycle arrest via upregulation of cyclin-dependent kinase p27, [27]). Only a few stud-
ies investigated the role of the cytoskeleton upon the loss of E-cadherin mediated
cell-cell adhesion and the induction of tumour malignancy. Since cadherin based ad-
hesion complexes are functionally linked to the dynamics of actin and microtubule
cytoskeletal structures, the loss of E-cadherin mediated cell adhesion might there-
fore probably lead to dramatic cytoskeletal rearrangements. This is why the role of
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small GTPases of the Rho family, which not only modulate cadherin activity, but
also control the actin cytoskeleton, should also be considered.

Recent studies have shown that mesenchymal cadherins, in particular N-cadherin,
have an opposite effect as compared to E-cadherins: they enhance tumour cell motil-
ity and migration [25,28]. N-cadherin deleterious effect can even overcome E-
cadherin mediated cell-cell interactions. Studies also show a conversion of E-cadherins
to N-cadherins in human tumours [25,29], a well characterised phenomenon in nor-
mal development. A novel concept of ‘cadherin switch’ from epithelial to mes-
enchymal cadherins supports the transition from a benign, to an invasive malignant
tumour phenotype. Unlike E-cadherin, N-cadherin would promote a dynamic ad-
hesive state in tumours, allowing not only a dissociation of tumour cells from the
tumour mass, but also their interaction with stromal and endothelial components.
The fact that N-cadherin expressing breast carcinoma cells were specifically sensi-
tised to fibroblast growth factor (FGF-2)-induced invasion and upregulation of the
proteolytic enzyme MMP-9 seems to show that MMP can mediate the pro-invasive
effect of N-cadherins. It also shows that FGF receptor signalling has a functional in-
teraction with N-cadherins. E-cadherin has also been shown to associate with FGFR
in tumour cells of the exocrine pancreas, and in this case, FGF stimulation enhances
cell-cell adhesion. Although it seems to contradict many reports showing that FGFR
signalling decreases cell adhesion and triggers tumour cell invasion, it brings up the
possibility that FGFR can associate with different cadherins in a cell type or tumour
specific manner. So far, the cadherin switch has been described in vivo, only during
the development of malignant melanoma and prostate carcinoma and in vitro obser-
vations only suggest that it might also occur in other cancer types. What regulates
the cadherin switch is therefore a very crucial question since it may probably prove
to apply to many different types of cadherins, in a tumour specific manner.

8.4.2 Upstream and Downstream Signalling by the Cadherin-Catenin
Complex

8.4.2.1 Catenins

�-catenin, �-catenin, and armadillo share partial homology with the protein
product of the tumour suppressor gene APC. APC can stabilise the level of these
catenins by complexing with glycogen-synthetase kinase-��. Such complexes are
involved in the signalling pathway driven by the secreted glycoprotein wingless
(Wg/Wnt). This Wnt signalling pathway is an important feature in cell-cell adhe-
sion since it regulates the degradation of �-catenins. When the Wnt signal is off, a
pathway involving GSK-�� and APC leads to the degradation of �-catenin. When
it is on, degradation of �-catenin is prevented (by inhibition of GSK-3, which nor-
mally marks for its degradation). This “on” signal then allows �-catenin to accu-
mulate in the cytoplasm, eventually to translocate to the nucleus and to participate
in the regulation of gene expression (TCF-LEF-1 target genes). The target genes of

©2003 CRC Press LLC



translocated �-catenin are considered involved in apoptosis inhibition and promotion
of cellular proliferation and migration. Future investigation will probably address the
relationship between E-cadherin downregulation and �-catenin signalling during tu-
mour progression and the question of whether the loss of E-cadherin results in the
activation of the Wnt pathway, which is known to produce an invasive phenotype.
The well known ability of E-cadherin overexpression to effectively block prolifera-
tion and invasiveness of cancer cells might therefore be a consequence not directly of
cell adhesion, but instead of the ability of E-cadherin to sequester �-catenin and ef-
fectively shut off the expression of LEF/TCF/�-catenin-responsive genes [30]. Nev-
ertheless, how a cell responds to the downregulation of E-cadherin is likely to depend
on whether or not it is receiving a Wnt signal. Although catenins perform distinct
functions in E-cadherin mediated cell-cell adhesion and in Wnt signalling pathway,
there might be some crosstalk between the adhesive and signalling pathways. The
complete mechanism of action of �-catenin has not been elucidated yet. It should be
noted that tyrosine phosphorylation of �-catenin may also play a role in the acquisi-
tion of metastatic properties.

Recently, a negative signalling function of �-catenin has been discovered [30,
31]. The loss of �-catenin in the epidermis resulted in the sustained activation of the
Ras-MAP kinase pathway and the association of E-cadherin-catenin complexes with
downstream members of tyrosine kinase growth factor receptor pathways.

8.4.2.2 RhoGTPases

The Rho subfamily of GTPases, which includes Rho, Rac, and Cdc42, is in-
volved in various aspects of cytoskeletal organisation, cell polarity, and motility. For
example, Rho is involved in the regulation of stress fibers and focal adhesion forma-
tion, Rac is involved in the formation of lamellipodia and membrane ruffling, and
Cdc42 is necessary for actin microspikes/filopodia to form. These proteins cycle be-
tween two guanine-nucleotide bound states, the GTP-bound form, which is active,
and the inactive GDP-bound form. Small GTPases of the Rho-familly are known to
modulate cadherin activity. The inactivation of Rac or Rho results in the dislocation
of E-cadherin and its complex members from adherens junctions leading to the loss
of cell-cell adhesion [32,33]. Their activation leads to the converse: overexpression
of constitutively active Rac induces a greater accumulation of E-cadherin, �-catenin,
and actin at the regions of contact between epithelial cells, whereas dominant neg-
ative Rac has the opposite effect. This is due to a protein termed IQGAP, which
can only interact with Cdc42 and Rac in their GTP form. IQGAP can also associate
with �-catenin, inducing its dissociation from the cadherin-catenin complex. When
Cdc42 and Rac are in the GDP-bound inactive forms, Cdc42 and Rac cannot interact
with IQGAP, and IQGAP interacts with �-catenin, thereby dissociating �-catenin
from the cadherin-catenin complex. This state confers the weak adhesive activity.
When Cdc42 and Rac are in the GTP-bound active forms at sites of cell-cell contact,
Cdc42 and Rac1 interact with IQGAP. Then, IQGAP is unable to interact with �-
catenin, resulting in the stabilisation of the cadherin-catenin complex. Thus, Cdc42
and Rac positively regulate cell-cell adhesion by the suppression of the activity of
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IQGAP to perturb the cadherin-catenin complex. Therefore, Cdc42, Rac, and IQ-
GAP can cyclically regulate cell-cell adhesion by remodelling the cadherin-catenin
complex. The dysregulation of IQGAP has been proposed to correlate with malig-
nancy in gastric cancers [34]. On the other hand, activated Rac also promotes cell
mobility when adherens junctions are rare or absent.

In some other cells, activation of Rho proteins can contribute to the loss of
adherens junctions. In fact the ability of TGF-� to promote the loss of adherens
junctions is dependent on Rho and ROCK function. In keratinocytes, active Rac1
causes the dis-assembly of adherens junctions, and Rac function is required for the
loss of adherens junctions caused by oncogenic Ras. The effect of Rac1 is neverthe-
less dependent on the composition of the ECM with which the cells are in contact
(going from promoting to antagonising cell-cell adhesion) [35].

The regulation goes also the other way around: cell-cell adhesive interactions
through cadherins seem to regulate Rho family GTPases. Indeed, cadherin engage-
ment depresses RhoA and elevates Rac1 activity. Cell-cell interactions mediated by
E-cadherins also seem to result in Cdc42 activation. A potential pathway to Rac1
activation is suggested by the finding that adherens junction formation stimulates
PI(3)-kinase activity [36], which may have an influence on the localisation of active
Rac at adherens junctions. This is another way, in addition to PI(3)k activation, for
E-cadherin to promote actin polymerisation. Betzon et al. [37] also reported that
Rac is activated upon induction of intercellular adhesion in epithelial cells, but this
occurs even if actin polymerisation is prevented, showing that actin polymerisation
is not required for initial Rac activation. This activation is dependent on functional
cadherins, but inhibition of epidermal growth factor receptor signalling efficiently
blocks the increased Rac-GTP levels observed after adhesive interactions. Cadherin
dependent adhesion might therefore activate Rac via epidermal growth factor recep-
tor signalling.

8.5 Integrins and Metastasis

8.5.1 Structure and Regulation of Function

Integrins are receptor proteins which are of crucial importance for the interac-
tion of cells with their environment [38,39]. Functional integrins (Figure 8.2) consist
of two transmembrane glycoprotein subunits that are noncovalently bound. Those
subunits are called � and �. The �-subunits all have some homology to each other,
as do the �-subunits. The receptors always contain one �-chain and one �-chain
and are thus called heterodimeric. Both of the subunits contribute to the binding of
ligand. Until now 18 �- and 8 �-subunits have been identified. From these sub-
units some 24 integrins are formed in the nature, which implies that not all possible
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Structure of integrins and combinations of subunits.

combinations exist. The ��-subunit, for instance, can only form a heterodimer with
the ��-subunit. On the other hand the ��-subunit can form heterodimers with ten
different �-subunits. Because not all the ���-heterodimers have the same ligand
specificities, it is believed that the �-chain is at least partly involved in the ligand
specificity.

Integrins differ from other cell-surface receptors (like growth factor receptors)
in that they bind their ligands with a low affinity13 (��� to ��

� litres/mole) and that
they are usually present at 10 to 100-fold higher concentration on the cell surface.
When integrins are diffusely distributed over the cell surface, no adhesion can occur.
The integrins can only bind their ligands when they exceed a certain minimal num-
ber of integrins at certain places, called focal contacts and hemidesmosomes. During
the process of cell adhesion, integrins therefore have to cluster for their combined

13Affinity of a receptor for its ligand is related to the rate of reaction of binding of a single copy of the
ligand to a single receptor site, it is independent of the number of sites.
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weak affinities to give rise to a spot on the cell surface, which has enough adhesive
(sticking) capacity to adhere to the extracellular matrix. In this way, cells can bind
simultaneously but weakly to large numbers of matrix molecules and still have the
opportunity to explore their environment without losing all attachment to it, by build-
ing or breaking down focal contacts. If the receptors were to bind strongly to their
ligands, cells would probably be irreversibly bound to the matrix, depriving it from
motility. This problem does not arise when attachment depends on multiple weak
adhesions.

Integrins are composed of long extracellular domains which adhere to their lig-
ands, and short cytoplasmic domains, devoid of enzymatic features, that link the
receptors to the cytoskeleton of the cell. There is, however, one exception to this
rule, which is the ��-subunit, which contains a very large cytoplasmic domain of
some 1000 amino acids, while the other integrins only have cytoplasmic domains of
up to 60 amino acids. The structure of different �-subunits is very similar. All con-
tain seven homologous repeats of 30 to 40 amino acids in their extracellular domain,
spaced by stretches of 20 to 30 amino acids. The three or four repeats that are most
extracellular, contain sequences with cation-binding properties. Since the interaction
of integrins with their ligand is cation-dependent, these sequences are thought to be
involved in binding. Common integrin ligands are fibronectin and laminin, which are
both part of the extracellular matrix or basal lamina. Both of the ligands mentioned
above are recognised by multiple integrins. The capacity of many integrins to bind
their ligand is regulated by cellular signalling mechanisms through a process called
integrin activation or inside out signal transduction. The clustering of integrins is reg-
ulated by signalling enzymes like PI(3)K, PKCs, and the Ras and Rap GTPases, as
well as adaptor proteins, and seems to involve changes in the cytoskeletal structures
that allow the lateral movement of integrins. These intimate interactions between
signalling proteins and the cytoskeleton therefore appear to be very important for
regulating integrin avidity14 by inside-out signalling.

8.5.2 Upstream and Downstream Signalling by Integrins

Integrins are genuine signalling receptors. They transduce signals by associ-
ating with adapter proteins that connect them to the cytoskeleton, with cytoplasmic
kinases and with transmembrane growth factor receptors. Integrins activate various
protein tyrosine kinases, such as focal adhesion kinase, Src-family kinases, and a
serine threonine kinase named Abl.

Integrin clustering and association with cytoskeleton appear to give rise to inte-
grin growth-factor receptor complexes. Integrins therefore appear not only to signal
on their own, but are also necessary for optimal activation of growth factor recep-
tors. The mitogen activated protein kinase pathway (MAP-kinase pathway) provides

14Here, avidity refers to the total binding capacity of a cluster of receptors to multiple or multivalent
ligands.
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a very good example of this principle. Integrins play an important role in the control
of cell cycle. Normal cells require anchorage to ECM to proliferate. This is be-
cause integrins activate growth promoting signalling pathways that are responsible
for anchorage dependence. This is thought to provide another mechanism for matrix-
specific growth regulation. Cell attachment through integrins may also facilitate exit
from cell cycle and provide signal for differentiation. However, integrin signal alone
is probably only permissive for differentiation.

Integrins also play an important role in the control of cell life and death. The
loss of attachment to the ECM causes apoptosis in many normal cell types. This is
likely to be important in the maintenance of tissue architecture and in the destruc-
tion of cells that have attached to an inappropriate tissue location. But the ability
of integrins to protect from cell death is both integrin and cell-specific. Protection
against death correlates with the ability of the integrin to induce Bcl-2 expression.
Tumour cells are usually anchorage independent, this may explain their tendency to
leave their original site and metastasise.

Integrins are also one of the main actors for the control of cell shape, growth,
and survival. Indeed, integrins and receptors for soluble mitogens such as growth
factors, regulate cell spreading and migration through activation of the Rho-family
of GTPases. Among those, Cdc42 induces filipodia, Rac induces lamelipodia, and
Rho induces focal adhesions and associated stress fibres. The binding of integrins
to their ligands of the ECM therefore induces an interdependence between the ECM
and the cytoskeleton.

8.6 Introducing the Adhesive Properties in
Models of Cell Migration

In this section a few models are reviewed, which attempt to include the influ-
ence of the adhesive properties in modelling cell migration. First, cell migration is
described, then two models are presented, and finally the application of such models
to predict cancer cell migration is considered.

8.6.1 Cell Migration

Cell migration is a sophisticated mechanism which is driven by chemotaxis or
haptotaxis for example. The cell becomes polarised and develops lamellipodia which
extends far to the front [40]. This is the case for a fibroblast moving onto a rigid
surface. Behind the cell, the uropod appears, such as a tail. The nucleus of the cell
forms a bump which makes the whole cell look like a snail. Inside the cell, subtle
changes in the viscoelasticity of the cell are achieved, which preserve the total actin
concentration: actin filaments reticulate (in a gel-like manner) at the front whereas
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they become less densely packed (as in a solution, or sol) at the back or close to the
nucleus [41]. The actin-myosin complex plays a fundamental role here. In order
for the cell to move, it is required to generate traction forces to pull itself forward.
These forces are generated by focal adhesion plaques, usually consisting of integrin
clusters. Some cells can migrate very fast like the neutrophils of the immune systems
(about 1 mm/h) whereas cancer cells are more cautious and can reach velocities up
to only 0.1 mm/h. In order for the actin units (rigid helical proteins) to form a gel,
myosin molecules are required which act together with actin binding proteins (ABP)
activated at the front. Fimbrin or the �-actinin combine with myosin-II to form
respectively tight or loose bundling networks, whereas filamin is responsible for the
formation of gel-like structures. Disassembly proteins (gelsolin, CapZ, ADF, cofilin)
are also necessary for breaking this architecture away from the leading edge. The
result is that the cell develops this (these) filopodium(a)/microspike(s) consisting of
tight bundles at the front, and behind are regions where the cell is made of gels,
followed by loose bundles of actin networks further away.

The role of adhesion is important because of interactions between the cell pro-
teins involved (integrins mainly) and the ECM. Integrins bind to the cytoskeleton
which consists (at the front) of tight parallel bundles of actin filaments and this con-
fers an increased rigidity to this biological assembly which will allow the cell to
generate traction forces. As a result of these interactions with the ECM, signalling
by tyrosine kinases generates new receptors which will allow the creation of new fo-
cal sites. Such traction forces have been indeed measured on deformable substrates
with tiny beads included, the motion of which gives access to the forces generated by
a migrating fibroblast [42]. Other methods following wrinkle patterns on deformable
substrates also give interesting data in the case of keratocyte locomotion [43].

8.6.2 Modelling Cell Migration Using Adhesion Receptors

To make migration more effective, the cell needs to develop strong traction
forces, but on the other hand, these forces cannot be too large, otherwise it would
also be difficult to break the bonds at the rear of the cell. This is indeed what is
observed experimentally [44], as revealed by the evolution of the migration speed
as a function of the force exerted on the bonds. A maximum migration speed is
obtained at a typical level of force or affinity.

One way to model adhesion through this multi-step process is to use a distribu-
tion of bonds located underneath the cell. Such an idea is motivated by the obser-
vations (RICM) of adhering cells, which show that not every part of it is in contact
with the substrate. In the model of Dickinson and Tranquillo [45], distributions of
receptor-ligand bonds are assumed. In particular, one can also assume an adhesion
gradient, which may influence the directional motility of a cell. They use a stochas-
tic model to show how migration is affected by the magnitude of the force and the
distribution of ligands on the cell. Adhesion receptors undergo rapid binding, and
this results in a time-dependent motion, and levels of forces are also time-dependent.
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Mean distributions can then be obtained which lead to the determination of mean
speed, persistence time, and random motility coefficient. Note that one of the re-
sults is a bell-shape curve for the velocity of migration as a function of the so-called
adhesion concentration factor, in agreement with Palecek et al. [44].

Another former approach, by DiMilla et al. [46], is also of interest, as they
include cell polarisation, cytoskeleton force generation, and dynamic adhesion to
create cell movement. Two models for adhesion are presented, one including a spa-
tial distribution of receptor-ligand pairs due to the cell polarity, or one presenting a
spatial variation in strength. In addition, a viscoelastic model is used for the cell.
Assuming that a quasistatic motion is obtained, results are presented for the velocity
of migration. The biphasic shape of the curve speed (force) can be found also in
this case, but further results can be obtained, such as the effect of force, cell rheol-
ogy as well as the effects of receptor-ligand dynamics and the number of such pairs.
The maximum in migration speed, a parameter-dependent factor, is correlated to the
balance between contractile force and adhesiveness.

8.6.3 Cancer Cell Migration

Finally, combining the different approaches above, it may be concluded that
migration speed is somehow related to the level of affinity between cell receptors
and ligands. Also it is the short-term adhesion which seems to control this migra-
tion. On the other hand, it seems like cancer cell migration is different from model
cells which are usually studied (fibroblasts, keratocytes mainly). In particular [47],
it has been shown that tumour cells develop migrating cell clusters, therefore single
cell models might not apply. They also seem to develop stronger cell-cell inter-
actions and have a high cell polarity. Some cancer cells (melanoma, for example)
are larger and are less dynamic (more cautious) compared to migrating leukocytes.
Another aspect is the strong pulling forces that they seem to develop at attachment
sites, combined with the fact that they reorganise the matrix and seem to be more
independent of it. Finally, focal contact receptors are not necessarily associated with
integrins. Furthermore, cytoskeleton components seem to link efficiently with colla-
gen fibres. Therefore, cancer cell migration modelling is still a challenge and may
require further assessments.

8.7 Conclusion
Cell adhesion is omnipresent in the process of physiological, as well as patho-

logical life events. Its control over the progress of cancer metastasis is only starting
to be uncovered. It proves to go far beyond the well admitted mechanical role of cell
adhesion molecules as a cement of tissues (normal or pathologic). Interconnected
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signalling pathways, involving not only cell adhesion molecules, but also growth
factor receptors and other types of cell surface receptors, are at play in the control
of cell fate. These meshes of pathways offer many possibilities of cross talks and
short-circuits, which may in particular be induced by oncogenes. For example, it is
well known that short-circuiting of integrin signalling pathways by Src oncoproteins
may result in an increased phosphorylation of focal adhesion kinase, thereby giving
a false anchorage signal to cells, and leading to abnormal adhesion independent cell
survival and growth. In addition to this first and foremost anchorage independency,
invasive cancer cells must acquire specific properties in order to detach from the
primary tumour, to migrate through the tissues surrounding the primary tumour, to
escape attacks of the immune system, to migrate again, through endothelial linings,
or through the target organ. These properties are all related to the expression, or acti-
vation, of specific adhesion molecules. The hypothesis first proposed by Fidler [48],
in 1990, according to which, cells capable of forming metastasis may belong to a sub-
population differing from mean properties of cells from the initial tumour, stresses
the importance of accounting for the specificity of cells, when designing experiments
aimed at measuring cell adhesive properties. Classical experimental assays, such as
those described in Chapter 9, may only give mean properties of cell populations, and
might hide the relevant individualities. The way, in the future, to develop efficient
and precise targeting, may therefore rely on exploring cell, as well as patient’s in-
dividual properties. New approaches emerging in the postgenomic era, such as the
toponomic15 approach, will undoubtedly accelerate our understanding of the rela-
tionship between the structures, which are involved in adhesive interactions, and the
functions carried out by such structures. Knowing how linking, as well as signalling
proteins interact, to make the cell able to exhibit a given adhesive property, will prob-
ably help in developing treatments, which will be specific enough so as to preserve
normal cells or to prevent cancer cells from becoming more invasive.
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9.1 Introduction
Cellular adhesion to vascular endothelium in the fluid dynamic environment of

the circulation is an important aspect of many physiological and pathological pro-
cesses. Examples include leukocyte adhesion during recruitment to a site of tissue
injury and cancer cell adhesion during metastasis.

Circulating leukocyte emigration from vasculature into tissues (leukocyte ex-
travasation) is the central event in inflammation. Through extensive studies in recent
years, it has become clear that at least four distinct steps act in sequence to regulate
leukocyte extravasation [1]:

� selectin-carbohydrate mediated initial leukocyte tethering and rolling;

� activation of integrins on leukocyte surfaces;

� transition from rolling to firm adhesion of leukocytes on endothelial cells; and

� migration of leukocytes through interendothelial junctions (transendothelial
migration or diapedesis) to extravascular tissue space, following the guidance
of chemo-attractants.

To metastasise, tumour cells must shed into the blood stream (intravasation)
directly by invasion into the tumour-derived vasculature or indirectly by lymphatic
drainage, survive in the circulation, and finally migrate through normal vascular en-
dothelium (extravasation) and proliferate in the target organs. Tumour cell extrava-
sation plays a key role in tumour metastasis. It has been proposed in the literature
that adhesion of circulating tumour cells to the endothelium, mediated by specific
ligand-receptor interactions, is an essential prerequisite step for extravasation to oc-
cur. However, the precise mechanisms by which tumour cells penetrate the endothe-
lial cell junction remains one of the least understood aspects of extravasation [2].

Inside the body, the endothelium is continuously subjected to flow induced me-
chanical stress. These forces induce biochemical signals which can alter the surface
expression of adhesion molecules and, therefore, influence the endothelial mono-
layer’s ability to bind circulating cells. These cells contact the endothelium at a rate
dependent upon the fluid dynamics and adhere through receptor-ligand bonds with a
probability that varies with the flow rate. Thus, mechanical stresses and strains play
important roles in interactions between endothelium and circulating cells.

Due to difficulties in characterising both hemodynamic forces acting on circu-
lating cells and expression level of adhesion molecules on vascular endothelium in
vivo, different flow devices have been widely used to study such interactions under
controlled flow conditions. These include in vitro flow devices such as cone-and-
plate rheometers and parallel-plate flow chambers.

In this chapter, we first describe adhesion molecules involved in interactions be-
tween endothelium and leukocytes or tumour cells. We then discuss the in vitro de-
vices to study cell-endothelium interactions with particular emphasis on in vitro flow
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devices used to simulate flow conditions in blood vessels. Finally, w e d escr ib e ex -
perimental and m athematical modelling o f c irculating cell-endothelium interactions
under flow. Understanding the complex interplay among blood flow, cell adhesion,
and vascular b io logy at th e molecular level is crucial for developing new therapeutic
approaches against p athological in flammatio n and tu mour metastasis.

9.2 Receptors Involved in Interactions between
Endothelium a nd Leukocytes or Tumour Cells

Cell- cell in ter actio n s an d cell- m a tr ix in ter actio n s ar e m ed iated b y cellu lar a d -
hesion molecules (CAMs), a d iverse group of glycoproteins expressed at the su rface
of every cell in the body. These CAMs selectively b in d to one another, and p lay a
cr itical r o le in va r io u s f u n c tio n s o f cellu lar o rg an ism s, su c h a s tissu e d evelo p m en t
and cohesion, wound healing, cell mig ration, in flammation, and cancer metastasis.
Th e r ecr u itm en t o f leu ko cy tes in to sites of inflammation involves a cascade o f se-
quential events controlled b y the in teractio n b etween adhesion molecules expressed
by leukocytes and b y the endotheliu m. Cell migratio n across endothelial monolayers
invo lves leukocyte adherence to the endotheliu m, crawlin g o n the endothelial surface
and p enetratio n b etween endothelial clefts. This process o f leuko cy te diapedesis has
been extensively studied and may serve as a paradigm for the mechanisms involved
in tumour cell arrest and extravasation. Several adhesion receptors belonging to dif-
ferent families including integrins, selectins, immunoglobulin-like molecules, and
cadherins (Figure 9 .1) h ave b een sh own to p articipate in this m echanism [ 3]. I n the
current model, selectins are implicated in the initial rolling, while adhesion receptors
from the integrin family and the immunoglobulin superfamily are involved in the firm
attachment, flattening, and extravasation of leukocytes; cadherins, and more specifi-
cally the endothelial specific VE-cadherin, are involved in the control of endothelial
cell junctions.

9.2.1 Selectins

The selectin family comprises three proteins [4]: E-selectin (CD62E), L-selectin
(CD62L), and P-selectin (CD62P). They all contain a lectin domain, an epidermal
growth factor domain, and a variable number of short consensus repeats of 60 amino
acids present in the complement regulatory proteins. E- and P-selectins are expressed
on endothelial cells, while L-selectin expression is restricted to leukocytes. Selectins
bind to carbohydrate ligands via their lectin domain. It has been shown that tetrasac-
charides sialyl-Lewis� and sialyl-Lewis� (sLe�, sLe�) are ligands for all the three
selectins [5].
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Figure 9.1

Adhesion molecules involved in leukocyte diapedesis. Selectins, expressed by
leukocytes or endothelial cells, interact with glycosylated ligands. Members of
the immunoglobulin superfamily, like PECAM-1, can bind to another molecule
of PECAM-1 at cell-cell junctions. ICAM-1, which is also a member of the
immunoglobulin superfamily expressed by endothelial cells, is a ligand for ��
leukocyte integrins. VE-cadherin, expressed at interendothelial junction partic-
ipates in the regulation of vascular permeability.

9.2.1.1 E-selectin

E-selectin (CD62E) is a 115 kD glycoprotein, only expressed on endothelial
cells after activation by interleukin-1 (IL-1), tumour necrosis factor-� (TNF-�), or
bacterial endotoxin such as lipopolysaccharides (LPS). After endothelial cell stimu-
lation, newly synthesised E-selectin is rapidly detected with a maximal surface ex-
pression after 3 to 6 hours and a return to basal levels within 24 hours. This rapid
downregulation, has been explained by the release of a soluble form of E-selectin,
and internalisation of the molecule. This regulation of E-selectin expression might
be crucial to control leukocyte accumulation in inflammatory responses. Monoclonal
antibodies specific for E-selectin have been shown to inhibit leukocyte transmigra-
tion. It has been suggested that binding of leukocytes to E-selectin on activated en-
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dothelium upregulates CD11b (Mac-1) on the leuko cy tes, and induces an increased
adhesion th rough an ICAM-1/Mac-1 interactio n (see also Sections 9.2.2 and 9.2.3).

9.2.1.2 P-selectin

P- selectin ( CD6 2 P) is a si ngle chain glycoprotein of 140 kD, expressed in
platelets and endothelial cells and stored in intracellular o rg anelles. After activa-
tio n , P- selectin is m o b ilised to th e ex ter n a l p lasm a m em b r an e w ith in m in u tes. T h is
increase in P-selectin expression is transien t, an d th e p r o tein is r ap id ly in ter n alised
in sid e th e cell, wh er e it is d eg r a d e d o r r ecy c led . P- selectin is also u p r eg u lated tr an -
sc riptionnally by TNF-�. The prin cipal lig and for P-selectin is PSGL- 1 ( P- selectin
glycoprotein lig and-1), expressed o n all leukocytes.

9.2.1.3 L-selectin

L-selectin (CD62L), a 80-100 kD protein, is expressed specifically by a majority
of leukocytes, and interacts with glycosylated endothelial counter-receptors.

Inhibito ry experiments with antibodies as well as knock out mice have demon-
str a ted th a t th e se selectin s a r e im p o r tan t f o r th e in itiatio n o f r o llin g a n d ad h e sio n
of leukocytes. Evidence that selectin s are invo lved in metastasis comes from the
fact that sialyl-Lewis� an d its iso f o r m sialy l- Lewis� have been found on different
types o f carcinomas, and that cells expre ssin g th e se m olecules can bind to activated
endotheliu m [6].

9.2.2 In t eg rin s

Integrin s are transmembrane g ly coproteins composed of two chain s n amed �
and �, which are noncovalently linked to each other and form an ex tracellular b ind-
in g p o c ke t sp ecific to a g iven lig an d . Bo th chains are n eeded for ligand b inding. The
� chain family is composed of 18 diff erent m embers, and the � fa m ily co n sists o f 8
members, bu t only 2 4 d ifferent types o f integ rins have been identified. The intracel-
lu lar d o m ain o f integrins binds to th e cell cytoskeleton. Integrin s are characterised
by low affinity constants for th eir lig ands. This supposes th at th ey must cooperate
with each other in order to produce strong adhesion forces. This cooperation lies on
the formation of clusters at the surface of the cell membrane, where a high concen-
tration of intracellular proteins involved in linking the integrins to the cytoskeleton
is also found. These clusters, known as focal adhesion points, allow the cells to at-
tach tightly to their substrate. A more detailed description of integrins is provided in
Ch a p te r 8 .

Integrins expressed by leukocytes and tumours cells are involved in the interac-
tion with endothelial cells. �� integrins are exclusively expressed on leukocytes. ��
integrins include four different heterodimers CD11a/CD18 (LFA-1 for lymphocyte
function-associated antigen-1), CD11b/CD18 (Mac-1), CD11c/CD18 (p150,95), and
CD11d/CD18. A mutation in the gene encoding the �� (CD18) molecule results in
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a genetic diso rder: leuko cy te adhesion deficiency (LAD). LAD patients show recur-
rent bacterial infections due to a d efect in th e effective recruitment o f leuko cy tes in
response to infections, d emonstratin g the importance o f �� in teg r in s in th e in flam -
matio n p r o cess.

LFA-1 and Mac-1 are strongly involved in leuko cy te adhesion to endotheliu m
by binding to ICAM (see Sectio n 9 .2.3) expressed b y endothelial cells. Functional
analysis has d emonstrated th at CD11a/CD1 8 (LFA-1) is critical in neutrophil trans-
migration, and important in transmigration of other leukocyte subtypes. CD11b
(Mac-1) antibodies alone are not as potent an inhibito r o f n eutrophil transmigra-
tio n in vitro bu t they add significantly to th e effect of CD11a antibodies in vitro . In
vivo both CD11a and CD11b monoclonal antibodies can reduce inflammation, sug-
gestin g both redundancy and a d ependence o n the in flammato ry stimulus and o rg an
invo lved. This redundancy is also suggested by th e fact th at CD11b knock out mice
sh ow n o defect in leukocyte transmigratio n [7].

The most important member of th e �� in teg r in su b fam ily o n leu kocytes is VLA-
4 (Ve ry Late An tig en-4, CD49d/CD29). VLA-4 is expressed b y most leuko cy tes and
binds to fib ronectin and the immunoglobulin superfamily member VCAM-1 (Vascu-
lar Cell Adhesion Molecule-1). VCAM-1 binding occurs with approximately four
times greater affinity than binding to fibronectin.

On tu m o u r cells, th e expression panel of integrins is often modified when com-
pared to normal cells, but their specific invo lvement in cell extravasation is not clear
at the moment. However, over-expression of �v�3 [8] which interacts with PECAM-
1 (Platelet Endothelial Cell Adhesion Molecule-1, see Sectio n 9 .2.3), and �4�1 [9]
which interacts with VCAM-1, on invasive tumour cell participate in adhesion to
endothelium.

9.2.3 Immunoglobulin Superfamily

Many cell adhesion molecules contain one or more immunoglobulin-like do-
mains and have been classified into the immunoglobulin superfamily. These re-
ceptors are involved in both homophilic and heterophilic interactions, and play a
major role in the interactions of circulating cells with endothelial cells. Three im-
munoglobulins which are particularly important in the cascade are intercellular adhe-
sion molecule-1 (ICAM-1) or CD54, vascular cell adhesion molecule-1 (VCAM-1)
and platelet endothelial cell adhesion molecule-1 (PECAM-1).

ICAM-1 (CD54) is a single chain membrane glycoprotein of 80-115 kD, with
five immunoglobulin-like repeats in its extracellular domain [10]. ICAM-1 is mod-
erately expressed on resting endothelial cells, but release of cytokines at sites of
inflammation and immune response such as TNF-�, IL-1 or IFN-� results in aug-
mented cellular expression of ICAM-1. ICAM-1 is a ligand for leukocyte integrins
CD11a/CD18 (LFA-1) and CD11b/CD18 (Mac-1). The interaction between Mac-
1/LFA-1 (CD11a b/CD18) and endothelial ICAM-1 is a well documented adhesion
pathway, which plays an important role in the adhesion and extravasation of leuko-
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cy tes. ICAM-1 is also a r eceptor f or the m ajor group of rhinov iruses and the malaria
trophozoite plasmodium falciparum. I t h as been recently sh own that fibrinogen is a
lig and for ICAM-1, and th at fib rinogen b inding to ICAM-1 resu lts in an enhanced
adhesion of leukocytes to HUVEC m onolayers, and an increase in transendothelial
migratio n [11].

VCAM -1 (CD106) is a transmembrane glycoprotein of 110 kD expressed only
on cy tokine-activated endotheliu m. VCAM-1 is a lig and for �4�1 (VLA-4 ) an d
�4�7 integrins. VLA-4 binds VCAM-1 through the first and the fourth immunoglob-
ulin domain. Usin g monoclonal antibodies, several studies have sh own that VCAM-
1 is inv olved in the transmig ratio n o f monocytes and eosinophils, but its invo lvement
in ly mphocyte transendothelial mig ratio n remains to be clarified.

PE CA M-1 (CD31) is a 130 kD glycoprotein expressed o n endothelial cells,
platelets and so me leukocytes. CD31 is constitutively expressed o n endothelial cells,
and its expression is not modified b y cytokines. PECAM-1 can in teract both with
itself in a homophilic interaction and with other m olecules in a heterophilic inter-
action. Molecular cloning studies have sh own that CD3 1 is composed of six ex-
tr acellu lar immunoglobulin -like domains, a short transmembrane region, and a rel-
atively long cy toplasmic tail o f 118 amino-acid containing potential sites for post-
tr anslational m odifications. In endothelial cells, CD3 1 is localised at in tercellu lar
ju n c tio n s, a n d th u s p lay s a r o le in th e c o n tr o l o f vascu lar p er m eab ility. T h e h ig h leve l
of constitutive expression of PECAM-1 in endothelial cells suggests that its func-
tio n might be regulated, and phosphorylatio n o f the cy toplasmic domain h as been
demonstrated. PECAM-1 is directly invo lved in th e p r o cess o f leu ko cy te d iap ed esis
between endothelial cells, as d emonstrated by inhibition studies using anti-PECAM-
1 monoclonal antibodies and soluble recombin ant PECAM-1. Leuko cy tes b lo cked
in tr ansmig ratio n b y anti-PECAM-1 antibodies remain attached to th e endotheliu m,
clear ly im p licatin g PECAM -1 in diapedesis rather than in adhesion. PECAM-1 m ay
participate in tumour cell intravasation by controlling inter-endothelial junctions. I n
addition, PECAM can interact with the integrin �v�3 [12] which, as already men-
tioned, is over-expressed at the surface of invasive cancer cells. This interaction
could contribute to their adhesion to endothelial cells.

9.2.4 Cadherins

The calcium dependent cell adhesion molecules (cadherins) are so called be-
cause they have both adhesion and calcium binding sites. This family is described in
detail in Ch apter 8 . Evidence f or a r ole o f this family of adhesion receptors in tumour
cell extravasation is scant. However, the endothelial specific VE-cadherin, which has
been involved in the control of the intercellular endothelial junctions [13] and thus
the control of leukocyte diapedesis, may also play a role in controlling tumour cell
extravasation [14].
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9.3 Leukocy te or Tumour Cell Adhesion under
Flow Conditions

9.3.1 Mu lt ist ep Pro cess o f L eu ko cyt e A d h esio n

On e o f th e m o st im p o r tan t asp ects o f leu ko cy te ex tr avasatio n is th a t it is a m u l-
tistep p r o cess ( Fig u r e 9 .2 ) : in itial c o n tact, p r im a r y ad h e sio n ( r o llin g ) , activatio n ,
secondary adhesion, and transendothelial migration (diapedesis) [1].

LEUKOCYTE

ENDOTHELIAL CELL

SELECTINS INTEGRINS : aLb2 : LFA-1
aMb2 :Mac-1
a4b1 :VLA-4

IMMUNOGLOBULINS : ICAM-1
VCAM-1

IMMUNOGLOBULINS : ICAM-1
PECAM-1

CADHERINS : VE-Cadherin

III. MIGRATION

II. ADHESION
SPREADING

I. ROLLING

BLOOD FLUX

Figure 9.2

Leukocyte diapedesis: a multistep adhesion cascade.

Initial contact with endothelium is aided by the size of postcapillary venules,
which are the main sites of selective leukocyte extravasation [15]. The diameter
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of these venules (approximately 20 to 60 �m) is small enough to make frequent
contacts between leukocytes and endothelium, but large enough to make brief con-
tacts. The initial contact is also supported by increased vascular permeability in an
inflammatory situation. This leads to plasma leakage and an increase in local hema-
tocrit which changes the flow characteristics and thus allows more frequent contact
between leukocytes and the vessel wall [16]. Following this initial contact, leuko-
cytes roll slowly along the endothelium for some distance before establishing firm
adhesion. This rolling keeps the cells in close contact with the endothelium, and is
mediated by selectins and their ligands. They can then be activated by substances in
the local environment, by factors bound to the endothelium, or by adhesion receptors
themselves. Activation of leukocytes alters their adhesion characteristics and allows
the establishment of firm adhesion (secondary adhesion). Flattening of leukocytes
upon activation greatly increases the leukocyte-endothelial cell contact area which
allows a large number of bonds to form and decreases fluid forces on the cell. This
permits a highly shear-resistant adhesion. This strong adhesion of leukocytes on
endothelium involves leukocyte integrins (Mac-1, LFA-1, �4�1) and their ligands
on endothelial cells (ICAM-1, VCAM-1). Then, leukocytes can migrate to interen-
dothelial junctions and transmigrate (diapedesis) [3]. This last step is not completely
understood, but it has been shown that ICAM-1, and adhesive proteins expressed at
the interendothelial junctions (VE-cadherin, PECAM-1) are involved.

9.3.2 Adhesive Interactions between Cancer Cells and Endothelium

Despite the striking similarities between the process of leukocyte diapedesis
and tumour cell extravasation, there are differences between leukocytes and circu-
lating tumour cells. Leukocytes are very motile small cells whereas tumour cells
are larger, with a far less ability to migrate. However, these bigger cells can be ar-
rested easily by size constraints in the microcirculation. In addition, these cells can
form multicellular aggregate, by interacting with themselves or with leukocytes and
platelets, and it has been shown that multicellular emboli generate metastases more
efficiently. Morphological evidence indicates that only single cancer cells can enter
and be arrested in the capillaries, whereas multicellular emboli tend to arrest in larger
vessels [17]. In the case of single cancer cells, adhesive macromolecules such as se-
lectins, integrins, cadherins, and immunoglobulins govern the adhesive interactions
between cancer cells and the endothelium. Initial contacts between cancer cells and
the endothelium are weak and transient and likely to be mediated by carbohydrate-
carbohydrate recognition. This initiates activation of both the endothelium and can-
cer cells through cytokines, free radicals, bioactive lipids, and growth factors. These
mediators cause the expression of new adhesion molecules which will reinforce the
initial adhesive bonds. Then humoral mediators or integrin-related signalling path-
ways lead to endothelial cell retraction, cancer cell locomotion, and transendothelial
migration of cancer cells [18].
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9.4 In V itro Devices to Study Circula ting Cell-
Endothelial Cell Adhesion

9.4.1 St at ic A ssays

Ci rculatin g cell-endotheliu m adhesion is generally studied usin g three types o f
a ssa y s: sta tic a ssa y s, in vitro flow a ssa ys, and in vivo flow a ssa y s. Sta tic a ssa y s a r e
th e m o st str aightforward and inexpensive systems available for adhesion studies. In
th ese systems, the substrate, wh ich can be a cultu red endothelial cell monolayer or a
purified ligand, is covered with a cell ( leukocyte o r cancer cell) su sp ension for some
period of time. Nonadherent cells are then rin ced or centrifuged away, and adher-
en t cells ar e q u a n tified . T h e se sy stem s a llow c o n tr o lled stim u latio n o f cells. T h ey
also allow quantificatio n o f cells wh ich transmigrate through th e monolayer onto the
substrate (or th rough it, in case o f a porous substrate), and can give a measure o f
th e str en g th o f a d h e sio n ( w ith cen tr if u g a tio n ) [ 1 9 ] . Var ian ts u tilise a m u ltilay e r e d
artificial blood vessel wall into which cells can migrate f ollowing diapedesis to ex -
amin e transmigratio n and chemotactic stimuli [20]. The common d isadvantage o f
all static assay systems is the lack of sh ear forces asso ciated with blood flow. With
st atic assays, it is impossible to d istinguish primary and secondary adhesion events.

9.4.2 In Vit ro F low Assays

Since circulatin g cell-endotheliu m interactions take place in th e fluid dynamic
environment o f b lood circulation, one of th e o bv ious questions about th ese adhesive
in te ractions is wh ether they are capable of arrestin g circulatin g cells under the con-
ditions of fluid flow. In vitro flow d ev ices were designed to address this p roblem un-
der controlled flow conditions. Flow assays prov i d e m o r e r e a listic in f o r m atio n th a n
static assay s b y allowin g discriminatio n o f p rimary adhesion events (such as rolling)
from secondary adhesion events (like firm adhesion and transmigration). They are
also useful to examine the activation of cells under flow induced mechanical forces.
We will present three major in vitro devices for subjecting cultured cells to laminar
flow, i.e., the cone-and-plate system, the radial flow chamber, and the parallel-plate
flow chamber. Some specific configurations of the parallel-plate flow chamber will
be described in details.

9.4.2.1 Cone-and-Plate System

The cone-and-plate system consists of a stationary plate and a rotating cone
(Figure 9 .3). The volume separating the two surfaces is filled with a liquid. The
cells are either cultured adherent to the stationary plate or suspended in the medium.

©2003 CRC Press LLC



Figure 9 .3

Co ne- a nd- pla t e sy st e m.

The rotatio n o f the upper cone, with an angular velo city �, cau ses th e flu id to m ove
in a cir cu m f er en tial d ir ectio n . Th e g ap � between the cone and the plate increases
with th e r ad ial p o sitio n � (� � � ����). As the angle � between th e cone and the
plate is small, typically less th an one degree, th e flow in any local region can be
approximated as the flow b etween two p ar allel surfaces. The modified Reynolds
number ( ��� � 	�����
���) should b e less than one to ensu re a lamin ar flow with
neglig ib le secondary flows. The azimutal velocity varies as a functio n o f � (the
distance from the stationary disk ):

�� �
��

�
(9.1)

Thus, for a g iven angular velo city and conic taper, the sh ear stress exerted b y
th e m ov in g flu id is c o n stan t r eg a r d less o f th e p o sitio n a n d d e scr ib e d a s:

 �
��

�
(9.2)

With su ch a d ev ice, Dewey et al. studied th e effect of sh ear stress on endothelial
cell shape and o rientation. They sh owed th at cultu red endothelial cells aligned in the
directio n o f flow and that this cell shape change and o rientatio n is quite sensitive to
th e m ag n itude of th e applied shear stress and to the time o f applicatio n [21]. More
recently, Blackman et al. [22] transformed a traditional cone-and-plate device in or-
der to simulate physiological and pathological loading regimes (e.g., arterial wave
forms, repetitive load cycling) experienced by cells in vivo.

9.4.2.2 Radial Flow Chamber

In a r adial flow chamber ( Figure 9 .4), flu id is in tr o d u ced in th e cen tr e, m ove s o u t
radially and exits at the edge. So the radial flow apparatus provides an axisymmetric
laminar flow field between two parallel disks. In this geometry, the cross-sectional
area for flow between the two disks increases radially and the radial velocity de-
creases. Thus the wall shear stress decreases radially and this produces a continuous
range of shear stress values within a given experiment. The wall shear stress can be
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Figure 9.4

Radial flow chamber.

estimated by the following formula:

� �
���

����
(9.3)

where � is the flow rate, � the fluid viscosity, � the height of the radial flow channel,
and � the radial position. The typical geometric values are: 140 to 300 �� gap
height and 2 to 3 cm disk radius. The local Reynolds number must be less than 2000
to ensure laminar flow field. Typical wall shear stresses range from 0 to 4 Pa.

The radial flow chamber has been used in general studies of receptor-mediated
cell adhesion. For instance, Cozen-Roberts et al. [23] used this device to study the
detachment of receptor-coated latex beads from ligand-coated glass surfaces. This
device could be easily adapted to study cell-cell interactions under a range of shear
stresses. To do so, endothelial cells should be cultured on the lower disk and leuko-
cytes or cancer cells suspended in the circulating medium. However, a potential
problem is that many adhesion events are dependent on both shear stress magnitude
and suspended cell activation. Thus, increased cell adhesion near the periphery could
be due either to the lower shear stress there or to longer exposure of suspended cells
to activating substances derived from the endothelial monolayer.

9.4.2.3 Parallel-Plate Flow Chamber

The most commonly used flow device is the parallel-plate flow chamber [24–
26]. It consists of a channel with a rectangular cross section of height �, width �,
and length �. In this device a pressure gradient is created between either end of
the rectangular chamber, causing the fluid to flow inside the channel. The pressure
gradients can be established by either a hydrostatic pressure head or by active pumps.
For the flow to be two-dimensional, the channel height must be much smaller than
its width. For the velocity profile to be fully developed and parabolic over nearly
the entire length of the channel, the entrance length must be small compared to the
channel length. In this type of flow chamber, assuming Newtonian fluid behaviour,
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the wall shear stress � is independent of position and is predicted by the following
formula:

� �
���

���
(9.4)

where � is the flow rate and � the fluid viscosity. The typical geometric values are
100 to 200 �� gap height, 2 to 3 cm width, and 5 to 7 cm length. The Reynolds
number (�� � 	�
��) is generally less than 100 to ensure a laminar flow. The wall
shear stress can be varied from 0.5 to 5 Pa by changing the flow rate or the gap height
of the flow channel.

9.4.2.4 Linear Shear Stress Parallel-Plate Flow Chamber

In commonly used parallel-plate flow chambers, the shear stress in the whole
field is constant and dependent upon the flow rate and the gap between the two plates.
Whenever one wants to change the shear stress in the field, the flow rate has to be
altered or the gap height has to be changed. These procedures, however, will affect
cell-cell interactions after the cells and the surface are exposed to a different shear
stress in the previous shear flow. The properties of the two-dimensional stagnation
flow permit the design of a flow channel such that the wall shear stress is linearly
distributed along the centre line of the channel.

Usami et al. [27] realised this set up by letting the sides of a flow channel be
coincident with streamlines corresponding to a stagnation flow. The wall shear stress
depends on the axial position � and is described by:

� �
���

����

�
��

�

�

�
(9.5)

where �� is the entrance width of the flow channel. Thus, the wall shear stress de-
creases from the maximum at the entrance (� � 	) to zero at the exit (� � �). With
this design, cell-cell interactions can be studied efficiently over a wide range of shear
stresses using a single flow rate.

9.4.2.5 Side-View Parallel-Plate Flow Chamber

One of the limitations of the parallel-plate flow chamber is that it can only
provide top views of cells that are in contact with the substrate. Some important ad-
hesion and deformation parameters that are related to cell-surface contact under flow
are hard to obtain quantitatively from a top-view chamber. Cao et al. [28] developed
an in vitro side-view flow chamber that permits observations from the side of the
cells in contact with various adhesive surfaces under dynamic flow conditions. This
flow chamber consists of two precision rectangular glass tubes called microslides.
A smaller microslide is inserted into a larger one to create a flow channel with a
flat surface on which either cultured vascular endothelium can be grown or purified
adhesion molecules can be coated. Two optical prisms with a 
�� chromium-coated
surface are used along the flow channel to generate light illumination and observa-
tion pathways. The side-view image of cell-substrate contact can be obtained using
a light microscope. The characteristic data of this flow channel are: 550 �m height,

©2003 CRC Press LLC



700 �m wid th , and 5 cm long. The wall shear stress can be estim ated by th e follow-
in g f o r m u la:

� �
���

���
� (9.6)

wh ere � is th e correctio n factor for a rectangular channel with a finite aspect ratio .
Here for a �
� � ����, � va r i e s from 1 .4 to 1.5 in the central regions (����� �
��
�). Fo r shear stresses ranging from 0 to 3 Pa, th e corresponding Reynolds number
is less th an 8 0 , an d th e en tr an ce len g th less th a n 2 m m . Th is d e sig n allows to m easu r e
the eff ects o f flow on cell-su rface adhesion strength. Moreover, it permits a clo se
observation o f cell d eformation and adhesive contact to various su rfaces under flow
conditions.

9.4.2.6 Parallel-Plate Flow Chamber with a Porous Bottom Wall

Another configuratio n o f a parallel-plate flow chamber is the one with a porous
bottom wall designed by Chotard-Ghodsnia et al. [29]. It consists of two stainless
st eel parts which enclose a pair of parallel g lass plates to allow for microscope vi-
sualisation. A porous material is held on a nylon screen positioned on the bottom
plate, as sh own in the assembled v iew o f this chamber (Figure 9 .5). Thus, the cir-
culating medium can flow both along and across the porous bottom wall. The inlet
fluid (�	�� �	�) is evacuated through a tangential outlet (��
�� ��
�) and a filtrate
outlet (�� � �� ). With this flow chamber, cells adhering to the porous material can be
exposed to both a transmural pressure (��� ) and a shear stress (�). This in vitro
system thus allows a more realistic reproduction of flow conditions near the vessels’
wall in vivo. Indeed, the transmural pressure might tend to favour cell attachment to
the endothelium whereas the fluid shear stress tends to detach cells from the vessel
wall. This might also affect the signal mechanotransduction.

The hydraulic permeability, �, of the porous bottom wall (��	��	���m/(Pa s))
is similar to that of a blood vessel wall (�����	���m/(Pa s) [30]). Thus, the filtrate
flow rate �� is very small as compared to input flow rate �	�, and the tangential

Figure 9.5

Flow chamber with a porous bottom wall.
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flow can still be approximated by the plane Poiseuille law. This is confirmed by our
experimental and theoretical analysis and, consequently, the wall shear stress can be
considered as a constant along the flow channel, given by:

� �
���	�

���
(9.7)

Besides, the transmural flow is governed by Darcy’s law:

�� � � ��� ���� (9.8)

where ����, the mean transmural pressure, writes: ���� � �	� � ��
��
��
�� , since the pressure profile is linear. We first used this flow chamber to study mor-
phological and biochemical responses of fibroblasts when submitted to tangential
and normal stresses [31]. Our results constitute evidence that transmural pressure
is at least as important as shear stress in regulating cell morphology mediated by
the cAMP pathway (cyclic adenosine monophosphate: an intracellular signal trans-
ducer). Further studies should be carried out to study the influence of the transmural
pressure on circulating cell/endothelium interactions.

9.5 In Vitro Flow Studies of Circulating Cell-
Endothelium Adhesion

The rolling of leukocytes on activated endothelium is a critical step in the in-
flammatory cascade and has received considerable attention in the literature [32].
Leukocytes rolling occurs via the following steps:

1. a receptor-ligand bond forms, exerting an adhesive stress which slows cell
velocity;

2. the slower motion of the cell promotes additional bonding;

3. bonds dissociate at the back edge of contact, causing the cell to tumble forward
in the direction of flow.

These receptor-ligand bonds between the leukocyte and the endothelium exert a fric-
tion on the leukocyte, such that its velocity drops well below the hydrodynamic ve-
locity for an unencumbered leukocyte at the same separation distance and wall shear
rate. In the cell biology literature, rolling is often defined as a significant decrease in
velocity to perhaps 50% or less of the hydrodynamic velocity for an unencumbered
cell [33].

Although static assays may detect possible receptor-ligand pairs, they do not
provide information on how ligands interact with receptors under more physiologi-
cal, dynamic conditions. For cells to adhere under flow, the potential receptor-ligand
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pair must quickly react. Once a bond is formed, it m ust b e able to overcome the
drag force exerted by th e fluid. Thus, dynamic adhesion studies are b etter to d etect
recep to r- lig an d p airs th at can med iate r o llin g as co m p ared to static ex p erimen ts [ 3 4 ] .

The most commonly used device for dynamic adhesion experiments is the paral-
le l- plate flow chamber. The endothelial monolayer is cultu red o n the botto m p late of
the flow channel and leukocytes or tu mour cells are p erfused to the flow channel at a
rate that produces the d esired wall sh ear st ress. A typical observation o f leuko cy tes
rolling over an endothelial monolayer, obtained in our experimental set up, is shown
in Fig u r e 9 .6 . So m e leu ko cy tes a r e r o llin g wh e r eas so m e o th e r s ar e fir m ly ad h e r e n t
in a TNF-�-stimulated endothelial monolayer.

Figure 9.6

Leukocyte rolling on endothelial monolayer: one cell (1) is rolling while others
(2 to 5) are adhering.

Such in vitro flow studies showed that distinct sets of adhesion molecules me-
diate leukocyte rolling and firm adhesion, as widely discussed in a recent review ar-
ticle [35]: (1) L-, E-, or P-selectins are capable of tethering free flowing leukocytes.
Shear stress levels in excess of 	�	��� are required for optimal selectin-dependent
tethering and rolling of leukocytes; (2) ��-integrins are capable of supporting leuko-
cyte adhesion to activated endothelium under flow; (3) ��-integrins cannot initiate
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leukocyte adhesion under flow conditions, except possibly at wall shear stresses less
that 	�	���, but can support activation-dependent firm adhesion and subsequent mi-
gration. Moreover, it has been observed that leukocyte rolling velocity varies with
wall shear stress [24,26,36–38] and that the velocity of rolling cells varies consider-
ably with time [37,39]. Kaplanski et al. [39] observed multiple short term arrests (of
2 s duration) of neutrophils on endothelial monolayer under ���� shear rate. Dong
et al. [40] used a side-view parallel-plate flow chamber to study the influence of cell
deformation on leukocyte rolling adhesion in shear flow. They showed that changes
in shear flow and cell deformability resulted in significant changes in characteris-
tic adhesion binding time, cell-surface contact, and cell rolling velocity. Recently,
the influence of shear stress on leukocyte migration behaviour was also studied in a
parallel-plate flow chamber. Shear flow significantly increases the kinetics of leuko-
cyte transmigration as compared to static conditions [41].

In contrast to leukocytes, the effect of shear stress on cancer cell adhesion to
endothelium has received much less attention in the literature, although cancer cells
and leukocytes have been shown to share some adhesion mechanisms [42]. Several
authors have reported E-selectin-dependent rolling of varied cancer cell types on the
endothelial monolayer under flow conditions [43,44]. A recent work of Moss et al.
[45] showed the importance of studying cancer cell adhesion under flow conditions.
Using a parallel-plate flow chamber, they compared the adhesion of cancer cells
with different metastatic potential and showed that highly metastatic cells were more
adhesive to shear stimulated endothelial cells while nonmetastatic cells were more
adhesive to endothelial monolayer not stimulated. More recent experiments carried
out by Dong et al. [46] with a modified parallel-plate flow chamber, suggested that
shear flow plays a significant role in tumour cell extravasation.

9.6 Modelling of Circulating Cell-Endothelium
Interactions

Although in vitro flow experiments can be more easily controlled than in vivo
studies, there remains a large number of confounding cellular features such as: en-
dothelial cell surface heterogeneity, adhesion molecule expression, cell activation,
and cell deformability. Experimental models were developed to make it easier to
understand the biophysical basis of circulating cell/endothelium interactions. Then
mathematical models could be developed to interpret these experimental results.
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9.6.1 Experimental Modelling

Springer and coworkers simplified leukocyte endothelium systems by replacing
the cultured endothelial cells with purified P-selectin reconstituted in lipid bilay-
ers [47,48] and purified E-selectin absorbed to polystyrene slides [49]. Neutrophils
rolled over both substrata with a velocity proportional to the selectin surface density.
Kitayama and coworkers [50] compared the adhesion pattern of colon cancer cells to
that of leukocytes over an E-selectin coated substratum. Adhesive interactions to E-
selectin in laminar flow were weaker for colon cancer cells than for leukocytes. Can-
cer cells showed a “stop and roll” movement with variable rolling velocities whereas
leukocytes rolled with a relatively stable speed.

Although these experiments removed the variability of the endothelial mono-
layer, circulating cell activation and deformability was still present and caused com-
plications.

Cell-free systems were then developed to study specific molecular (receptor-
ligand) interactions without the confounding influence of rheology, roughness, sig-
nalling, and complex molecular display involved when using cells. In these systems,
coated microspheres are used to model leukocytes and coated substratum to model
endothelial surface.

Brunk and coworkers [51,52] used sLe�-coated polystyrene microspheres over
E-selectin-coated glass substratum in a parallel-plate flow chamber to model leuko-
cyte rolling over endothelium. They showed that these microspheres rolled on the
coated substratum with dynamics similar to those of leukocytes rolling over stim-
ulated endothelial cells. The particle rolling velocity was found to be a function of
wall shear stress and selectin or sLe� surface densities. Moreover, the rolling velocity
varied with time, as also seen in leukocyte/endothelium systems [37,39]. These cell-
free studies allowed to understand how the rolling velocity depends quantitatively on
receptor number, ligand density, and shear rate.

Bongrand and coworkers used cell-free systems to measure the lifetime of indi-
vidual ligand-receptor bonds with a flow chamber [53,54]. To observe the formation
and dissociation of single bonds, they operated with microspheres (2.8 �m diame-
ter) much smaller than cells under low shear rates (of the order of a few seconds��).
They determined the velocity, attachment frequency, and duration of binding arrests
of each microsphere and found that microspheres exhibited frequent arrests of fairly
constant duration (approximately 1 s). Their results suggest that the arrests observed
with low receptor densities involved single molecular bonds and the duration of these
bonds was not affected by shear forces [53]. They also showed that the rate of bond
formation is a function of microsphere-substratum distance [54,55].
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9.6.2 Mathematical Modelling

Analysis of the forces involved in leukocyte-endothelium adhesion at the equi-
librium state was pioneered by Bell [56]. Evans [57] established a theoretical frame-
work of a one-dimensional tape peeling model to compute the adhesion force be-
tween a biomembrane and a substrate with constant adhesive strength. To study the
receptor-mediated cell adhesion to a ligand-coated surface, Hammer and collabora-
tors [58] took steps from Bell’s theory and developed a cell adhesion model taking
receptor-ligand bond kinetics into consideration. This model, called “adhesive dy-
namics,” allows to interpret experimental results on rolling cells and to understand
the molecular basis of cell-free rolling systems. We now describe this mathematical
model in more details.

“Adhesive dynamics” is a computational technique that combines the fluid me-
chanics analysis of particle motion and the Monte Carlo simulation of bond for-
mation and breakage between receptors and ligands [58]. The adhesive dynamic
method has been extensively described [58–60]. Briefly, sLe�-coated microspheres
are modelled as hard spheres with receptors distributed randomly over the surface.
The planar surface coated with E-selectin is assumed to be uniformly reactive (E-
selectin density is always larger than sLe� density on the microspheres). Receptors
and ligands are modelled as adhesive springs with spring constant � and equilibrium
length �. Each adhesive molecule reacts with the substrate with an overall associ-
ation rate �� (forward reaction) and dissociation rate �� (reverse reaction). �� is
a function of ligand density, relative velocity between the particle and the surface
(slip velocity ��) and the intrinsic forward rate constant �	�. The model proposed by
Bell [56] was used to describe �� of a bond under applied force � :

�� � ��� ��� ��
��� � (9.9)

where ��� is the unstressed dissociation constant rate, �� is the Boltzmann’s con-
stant, � is the temperature, and � is the bond interaction length (also called reac-
tive compliance, it represents the sensitivity of the dissociation to the applied force).
Flow-induced forces tend to alter the rate of dissociation compared to cases where no
force acts on receptor-ligand bonds. The Bell model takes into account the influence
of these dislodging forces on the dissociation rate.

Each free receptor can become tethered in the time interval  ! with a probability:

�� � �� ������ !� (9.10)

and each tethered receptor can become free in a time interval  ! with a probability:

�� � �� ������ !� (9.11)

During each time step, bond formation and breakage are simulated by a Monte Carlo
sampling of these probability distributions. The Monte Carlo approach simulates the
fate of each individual bond to generate an ensemble of realisations. Each simulation
represents an experimental measurement and can be directly compared to it.
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At any instant, the forces, " , exerted by the tethers on the particle can be cal-
culated from the distance between the end points of the attachment, #, and using the
Hooke’s law: " � � # � ��. To obtain the net force and torque acting on the parti-
cle, the total force and torque exerted by the bonds on the cell are added to interfacial
forces and to the force and torque exerted by the fluid shear on the cell. The motion
of the particle can be fully described by the following relation:

U � MF (9.12)

where M is the mobility matrix (known for a sphere near a plane wall in a viscous
fluid [59]), U is a vector with three components of linear velocity and three compo-
nents of angular velocity, and F is a vector with three components of total force and
three components of the net torque acting on the particle. Thus, once the net force
and torque are known, the velocity of the particle can be calculated.

The simulation begins with a freely moving particle at a constant velocity and
a separation distance (40 nm) greater than the receptor-ligand bond. The position of
the free receptors and tethers, the velocity of the particle, and the net force and torque
exerted on it are known. According to the position of free receptors at time !, tethers
are formed at !�  ! following the probability of Equation (9.10). Tethers are broken
at !� ! following Equation (9.11). Then, new positions of free receptors and tethers
are calculated (from velocity and position at !), as well as new net force at ! �  !.
Finally, the velocity of the particle at ! �  ! is obtained using Equation (9.12). The
process is repeated until the particle travels across the field of view or a predefined
time is reached. After each simulation, the trajectory of the particle is recorded and
the instantaneous velocity and the average velocity (total displacement divided by
time of interactions) are calculated.

This model can recreate different adhesive behaviours ranging from unencum-
bered motion of particles to rolling and to firm adhesion [58]. It can simulate the
effect of many parameters on cell rolling and adhesion, such as the density of re-
ceptors and ligands, the rates of reaction between receptor and ligand (association
and dissociation rates), the receptor-ligand bond elasticity and the shear rate [61]. To
elucidate the relationship between receptor-ligand functional properties and the dy-
namics of adhesion, Chang et al. [32] expressed the state diagram for cell adhesion
under flow. This state diagram describes how biophysical properties of adhesion
molecules induce different states of adhesion in flow. These authors showed that
the unstressed dissociation rate, ��� , and the bond interaction length, �, are the most
important molecular properties that control the dynamics of adhesion. Their results
suggest that adhesive behaviour is primarily determined by the biophysical proper-
ties of adhesion molecules [32] however, it can be modulated by cell deformability,
morphology, and signalling.

More recently, Dong and collaborators [40] developed a 2D model that demon-
strates the influence of leukocytes rheological properties in regulating rolling on vas-
cular endothelium. This model incorporates both mechanical aspects of cell defor-
mation and biophysical aspects of adhesion bond kinetics. It was based on the as-
sumption that the fluid energy input to a rolling cell would essentially be distributed
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into two parts: cytoplasmic viscous dissipation and energy needed to break adhesion
bonds between the rolling cell and its substratum. Both extracellular and intracel-
lular flow fields were solved using finite element methods with a deformable cell
membrane represented by an elastic ring. The adhesion energy loss was calculated
based on the receptor-ligand kinetics equations. They found that the cell-substrate
contact area under high wall shear stress (���) could be nearly twice that under low
stress (	�	���) as a result of shear flow-induced cell deformation. An increase in
contact area resulted in more energy dissipation to both adhesion bonds and viscous
cytoplasm, whereas the fluid energy that is transmitted to a cell decreased due to
flattened cell shape. Their results suggest that leukocyte deformability is an essen-
tial component that aids in the adhesion process to balance the hemodynamic and
leukocyte-endothelium adhesive forces.

9.7 Conclusion
Metastasis is the growth of secondary tumours at sites distant from a primary

tumour, and is responsible for the majority of failures in cancer treatment. Cells from
a metastatic tumour are able to escape in the surrounding tissues and intravasate into
blood, where they can disseminate through the body. Endothelial cells line every
blood vessel in the organism and regulate the extravasation of blood cells. This
extravasation involves specific junctional proteins and membrane-bound receptors
that control cell-cell interactions. Leukocyte interactions with endothelial cells have
been extensively studied and serve as a model for interactions of circulating cancer
cells with the vasculature. The molecular mechanisms involved in the extravasation
of cancer cells through the endothelial monolayer is not fully understood, and better
experimental approaches are needed to understand this phenomenon. The use of in
vitro flow assays, associated with modern microscopic techniques and mathematical
modelling, will help identifying the different molecules mediating the process of
metastasis. A better understanding of the metastasis mechanisms is crucial for the
development of new therapies. The implication of adhesion molecules in the arrest
of cancer cells in the vasculature strongly suggests that inhibition of these adhesive
interactions could be helpful to inhibit metastasis at the step of extravasation.
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10.1 Introduction
The development of a primary solid tumour (e.g., a carcinoma) begins with

a single normal cell becoming transformed as a result of mutations in certain key
genes. This transformed cell differs from a normal one in several ways, one of the
most notable being its escape from the body’s homeostatic mechanisms, leading to
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inappropriate proliferation. An individual tumour cell has the potential, over succes-
sive divisions, to develop into a cluster (or nodule) of tumour cells. Further growth
and proliferation leads to the development of an avascular tumour consisting of ap-
proximately ��� cells. The avascular tumour cannot grow any further, owing to
its dependence on diffusion as the only means of receiving nutrients and removing
waste products. If the development of the solid tumour were to remain in this avas-
cular state, little or no damage would be done to the host since avascular tumours are
relatively small and remain localised in the host tissue and do not spread. However
two crucial and inter-linked processes permit the avascular tumour to grow further:
tumour-induced angiogenesis (the recruitment of blood vessels) and tissue invasion
by the tumour cells.

The tumour cells first secrete angiogenic factors which in turn induce endothe-
lial cells in a neighbouring blood vessel to degrade their basal lamina and begin to
migrate towards the tumour. Endothelial cell migration through the extracellular ma-
trix is driven by a chemotactic response to the angiogenic factors and a haptotactic
response to components in the matrix such as fibronectin and collagen. The migra-
tion is facilitated by the local degradation of the tissue by the endothelial cells. As
it migrates, the endothelium begins to form sprouts which can then form loops and
branches through which blood circulates. From these branches more sprouts form
and the whole process repeats forming a capillary network which eventually con-
nects with the tumour, completing angiogenesis and supplying the tumour with the
nutrients it needs to grow further. There is now also the possibility of tumour cells
finding their way into the circulation and being deposited in distant sites in the body,
resulting in metastasis. The complete process of metastasis involves several sequen-
tial steps, each of which must be successfully completed by cells of the primary
tumour before a secondary tumour (a metastasis) is formed. Referring also to Chap-
ters 8 and 9, a summary of the key stages of the metastatic cascade is as follows:

� growth of the initial avascular primary tumour;

� recruitment of new blood vessels (angiogenesis) and vascularisation of the pri-
mary tumour;

� escape of cancer cells from the primary tumour;

� local degradation of the surrounding tissue by cancer cells and continued mi-
gration;

� cancer cells enter the lymphatic or blood circulation system (intravasation);

� cancer cells must then survive their journey in the circulation system;

� cancer cells must escape from the blood circulation (extravasation);

� cancer cells (from the primary tumour) must then establish a new colony in
distant organs;
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� the new colony of cells must then begin to grow to form a new, secondary
tumour in the new organ.

A crucial part of the angiogenic response of the endothelial cells and the inva-
sive/metastatic process is the ability of the cancer cells to degrade the surrounding
tissue or ex t r a c e llu la r m a trix (ECM) [31,32,41,52]. The focus of this chapter will be
on one key aspect of tissue invasion: the ability of cells to produce and secrete certain
factors known as ma trix d egrading or degradative enzymes (MDEs) and then their
migratory response to their modified local tissue environment. The modelling will
therefore concentrate upon the so-called “tissu e response unit” (cf. [46] and [15])
which examines how a cell’s migratory response and interaction with the extracel-
lular matrix is controlled by soluble cytokines and insoluble matrix macromolecules
(see Figure 10.1).

Figure 10.1

Schematic diagram of the tissue response unit.

The extracellular matrix (tissue) itself is a complex mixture of proteins and
proteoglycans within and on which the normal cells of solid organs are situated.
The matrix is highly dynamic, at any one time being actively secreted and degraded.
It has become increasingly clear that the matrix has more than a passive structural
role; it can sequester growth factors and indeed be degraded to release fragments
which themselves have growth-promoting activity. Thus, while ECM may have to be
physically removed in order to allow a tumour to spread or intra- or extra-vasate, its
degradation may in addition have biological effects on the tumour cells themselves.

A number of matrix degradative enzymes (MDEs) such as the plasminogen ac-
tivator (PA) system and the large family of matrix metalloproteases (MMPs) have
been described [34,36,55]. Both PAs and the MMPs have been repeatedly implicated
in all of the above steps of tumour invasion and metastasis [1,7,9,12,25,26,29,40,47,
53,58]. Regulation of matrix-degradative activity is highly complex. In both these
enzyme systems (PAs/MMPs) there exist several endogenous inhibitors [8,28,54],
and the enzymes are often secreted as inactive precursors which must themselves be
partially degraded to reach full activity. More than one cell type may be involved in
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the activation of any one enzyme [28].

Deterministic reaction-diffusion equations have been used to model the spatial
spread of tumours both at an early stage in its growth [48] and at the later invasive
stage [23,38,42]. Modelling of a related phenomenon, embryonic implantation in-
volving invading trophoblast cells, using a reaction-diffusion approach has also been
carried out [10]. Typical solutions observed in all these models [10,23,38,42] appear
as invading travelling waves of cancer cells. While these models are able to capture
the tumour structure at the tissue level, they fail to describe the tumour at the cellular
level and subsequently the subcellular level. On the other hand, cellular automata
models provide such a description and allow a more realistic stochastic approach at
both the cellular [27,43,51] and subcellular levels [19–22].

The models presented in this chapter are an extension of earlier work by Ander-
son et al. [5] and consist of two types: a continuum, deterministic model (based on a
system of reaction-diffusion-chemotaxis equations) and a discrete, stochastic model
(based on a biased random-walk model). Initially, we derive a system of coupled
nonlinear partial differential equations, using conservation laws, to model tumour
invasion of surrounding tissue. Numerical solutions for this system in both one and
two dimensions will be presented, thus allowing the macroscopic dynamics of inva-
sion to be discussed. From a discretised form of these partial differential equations,
we derive a discrete biased random-walk model which enables the migration and
proliferation of individual cells to be considered.

The models presented here aim to:

(i) investigate the importance of ECM-tumour interactions in governing the mi-
gration of tumour cells, and

(ii) make predictions about the metastatic ability of tumour cells.

For example, by considering the cells as discrete individuals we can estimate,
for a given initial tumour, how far it will invade and the numbers of cells that mi-
grate outwith the main bulk of the tumour and thus allow for both qualitative and
quantitative comparisons with experimental and clinical data. From the clinical per-
spective, it is the escape of tumour cells beyond the boundary of detectable tumour
mass (which may be resected surgically), that gives rise to the serious problems of
local and distant recurrence.

The layout of the chapter is therefore as follows: in the next section, we for-
mulate the continuum model of invasion based on a system of partial differential
equations. In section 10.3 we present the results of numerical simulations of this
model in one and two dimensions. In section 10.4 we derive the discrete biased ran-
dom walk model (based on the model of section 10.2) and present the results of the
discrete simulations in section 10.5. In section 10.6 we discuss some recent exten-
sions of the original model and then finally in section 10.7 we discuss the clinical
implications of the results of the model and make some concluding remarks.
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10.2 The Continuum Mathematical Model
We will base our mathematical model on generic solid tumour growth, which for

simplicity we will assume is at the avascular stage. While most tumours are asymp-
tomatic at this state, it is still possible for cells to escape and migrate to the lymph
nodes and for the more aggressive tumours to invade. The model may be extended
to incorporate interactions between the tumour cells and blood vessels, thereby mod-
elling angiogenesis and vascular growth. However since one of the aims of the paper
is to focus solely on the interactions between the tumour and the surrounding tissue
we do not attempt to model interactions between the tumour and the vasculature.
In principle, our model can be extended to include such interactions and the gen-
eral form of our model will be the same for both invading vascular and avascular
tumours. In the initial model we consider the following key variables: tumour cell
density (denoted by �), MDE concentration (denoted by � ), ECM density (denoted
by � ), and endogeneous inhibitor (e.g., tissue inhibiting metallo-proteases, TIMPs)
concentration (denoted by �). Each of the variables (�, � , � , and �) is a function of
the spatial variable � and time �.

As already discussed in the introduction, MDEs are important at many stages
of tumour growth, invasion, and metastasis, and the manner in which they inter-
act with endogenous inhibitors, growth factors, and tumour cells is very complex.
In our model we assume that the tumour cells produce MDEs which degrade the
ECM locally and that the ECM responds by producing endogenous inhibitors (e.g.,
TIMPs). The ECM degradation, as well as making space into which tumour cells
may move by simple diffusion, results in the production of molecules which are ac-
tively attractive to tumour cells (e.g., fibronectin) and which then aid in tumour cell
motility. We refer to the movement of tumour cells up a gradient of such molecules
as haptotaxis. We have therefore chosen to consider tumour cell motion to be driven
only by random motility and haptotaxis in response to adhesive or attractive gradi-
ents [11,30,31,35,44] created by degradation of the matrix. This approach permits us
to investigate cell-matrix interactions in isolation. To describe the random motility
of the tumour cells we assume a flux of the form

������� � ��������� �

where ������ may be a constant or a function of either the MDE or ECM concen-
tration, the latter cases representing a chemokinetic response i.e., increased random
motility will be observed for regions of high MDE/ECM concentration. We take the
haptotactic flux to be

������ � ���� �

where � � � is the (constant) haptotactic coefficient. To enable us to focus entirely
on the cell-matrix interactions and how these interactions affect tumour cell migra-
tion, we do not consider any proliferation of tumour cells in our partial differential
equation model. However tumour cell proliferation will be included in the discrete
model in section 10.4.
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The conservation equation for the tumour cell density � is therefore given by

	�

	�
�� � ������ � ������� � ��

and hence the partial differential equation governing tumour cell motion (in the ab-
sence of cell proliferation) is,

	�

	�
� � � ����������� �� � ����� 
 (10.1)

For the initial simulations given in the next section we chose ������ � ��, a
constant, the tumour cell random motility coefficient.

The ECM is known to contain many macromolecules, including fibronectin,
laminin, and collagen, which can be degraded by MDEs [12,53]. We assume that the
MDEs degrade ECM upon contact and hence the degradation process is modelled by
the following simple equation:

	�

	�
� �Æ��� (10.2)

where Æ is a positive constant.
Active MDEs are produced (or activated) by the tumour cells, diffuse through-

out the tissue, and undergo some form of decay (either passive or active). The MDEs
are also assumed to be neutralised by the endogenous inhibitors (see below). The
equation governing the evolution of MDE concentration is therefore given by:

	�

	�
� ���

��� ������� ������ ��� ����� (10.3)

where �� is a positive constant, the MDE diffusion coefficient, � is a function mod-
elling the production of active MDEs by the tumour cells, � is a function modelling
the MDE decay, and  is a function modelling MDE neutralisation by the endoge-
nous inhibitors. For simplicity we assume that there is a linear relationship between
the density of tumour cells and the level of active MDEs in the surrounding tissues
(regardless of the amount of enzyme precursors secreted and the presence of endoge-
nous inhibitors) and so these functions are taken to be � � �� (MDE production by
the tumour cells) and � � �� (natural decay), respectively, although other func-
tional forms have also been tried (cf. [5]). Inhibitors are assumed to neutralise the
MDEs in a “one-to-one” reaction, i.e., ����� � ���.

Finally, we assume that the ECM produces endogenous inhibitors as a response
to the MDEs. These inhibitors produced as a result of tissue degradation, diffuse and
decay throughout the tissue and neutralise the MDEs. The equation governing the
evolution of inhibitor concentration is therefore given by:

	�

	�
� �	�

��� � ��� ��� ������ �� (10.4)

where �	 is a positive constant, the inhibitor diffusion coefficient, � is a function
modelling the inhibitor production,  models neutralisation of the MDEs (as above),
and we assume linear decay of the inhibitors.
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Hence the complete system of equations describing the interactions of the tu-
mour cells, ECM, MDEs, and endogenous inhibitors as detailed in the previous para-
graphs is

	�

	�
�

������ ���
�
��� �� �
���

�� �

�������
�� �� �
�� � ����� �

	�

	�
� �

��������
������
Æ�� � (10.5)
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	�
�
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�	�

�� �

����	��
��� �� �
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��� �

���������
�� 


This system is considered to hold on some spatial domain � (a region of tissue)
with appropriate initial conditions for each varaible. We assume that the tumour
cells, and consequently the MDEs, and the inhibitors all remain within the domain
of tissue under consideration and therefore no-flux boundary conditions are imposed
on 	�, the boundary of �. We can make a further simplification at this point by
assuming that for an actively invading tumour, any negative effect of the endogenous
inhibitors has effectively been overcome by the MDEs. Therefore in the remainder
of this chapter we focus our attention on the first three equations of the above system
(10.5), i.e., we assume that � � �.

In order to solve the system numerically, we first nondimensionalise the equa-
tions in the standard way. We rescale distance with an appropriate length scale �
(e.g., maximum invasion distance of a cancer cell), time with � � ���� (where �
is a reference chemical diffusion coefficient � �������	��), tumour cell density
with ��, ECM density with ��, and MDE concentration with �� (where ��, ��, and
�� are appropriate reference variables). Therefore setting


� �
�

��
� 
� �

�

��
� 
� �

�

��

� �� �
�

�
� 
� �

�

�

in Equation (10.5) and dropping the tildes for notational convenience, we obtain the
scaled system of equations:

	�

	�
�

������ ���
�
��� �� �
���

�� �

�������
�� �� �
�� � ����� �

	�

	�
� �

��������
������
��� � (10.6)
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�� �
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where

�� �
��

�
� � �

���
�

� � �
���

Æ
� �� �

��

�
� � �

����
��

� � � �� 


The zero-flux boundary conditions:

� � ������� ����� � �� (10.7)

for the cells and
� � ������� � �� (10.8)

for the MDEs are imposed on the boundaries of the domain where � is an appropriate
outward unit normal vector. In one space dimension, the scaled domain is the unit
interval ��� ��, while in two space dimensions, the scaled domain is the unit square
��� ��� ��� ��.

Initially we assume that there is a nodule of cells already present and in one
dimension and that the tumour is centred around � � � with � having the initial
density distribution,

���� �� � ���������� � � ��� ��� (10.9)

where � is a positive constant. The initial tumour density in two dimensions has a
similar form, but is centred on ��
�� �
��, i.e.,

���� �� �� � ���������� ��� �� � ��� ��� ��� ��� (10.10)

where � is as above and �� � ��� �
��� � �� � �
���.
For both the one and two dimensional results we assume that the tumour has

already degraded some of its surrounding tissue and hence we take the initial pro-
file of ECM to be ���� �� � � � �
����� ��. Finally, we assume that the initial
MDE concentration profile is proportional to the initial tumour cell density and take
���� �� � �
����� ��. These initial conditions are illustrated graphically at � � � in
each of the figures in the following section.

10.3 Numerical Simulations

10.3.1 One Dimensional Results

The following numerical results were obtained using the NAG routine D03PCF
which implements the method of lines and Gear’s method. In the following sim-
ulations, the parameter values used were as follows: �� � �
���, �� � �
���,
� � �
���, � � ��, � � �
�, � � �, and � � �
����.
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Figure 10.2

One dimensional numerical solution of the system (10.6) with constant tumour
cell diffusion showing the cell density, MDE concentration, and ECM density.
As the MDEs degrade the ECM the tumour cells invade via a combination of
diffusion and haptotaxis. Two distinct, although not completely separated, clus-
ters of cells are seen to form.

Figure 10.2 shows four snapshots in time of the tumour cell density, ECM den-
sity, and MDE concentration. The ECM profile shows clearly the degradation by
the MDEs. The tumour density distribution at � � � shows that a small cluster of
cells has built up at the leading edge of the tumour due to haptotactic migration. As
time evolves this cluster of cells migrates further from the main body of the tumour,
which continues to invade the ECM but at a slower rate. These figures indicate that
the initial cluster of tumour cells may be able to break into two separate clusters.
This becomes even more apparent in subsequent figures.

In the next simulation in Figure 10.3, we consider the effect of nonlinear diffu -
sio n on the invasion of the tumour cells by taking ������ � ��� . This represents
a chemokinetic response of the tumour cells to MDE concentration where we make
the simple assumption that the tumour cell random motility is directly proportional to
MDE concentration, i.e., where there is a high MDE concentration there is high ran-
dom cell motility. Using the same parameters as in Figure 10.2, the four snapshots in
Figure 10.3 were produced. While the MDE and ECM concentration profiles closely
resemble those obtained in Figure 10.2, the tumour density distribution has changed
considerably. By � � � we again see a build up of tumour cells at the leading edge,
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Figure 10.3

One dimensional numerical solution of the system (10.6) with tumour cell dif-
fusion dependent on MDE concentration. As the MDEs degrade the ECM, the
tumour cells invade and form two distinct clusters, those mainly driven by dif-
fusion and those driven by haptotaxis.

more pronounced than in Figure 10.2, which then breaks away from the main body
of the tumour.

This results in two quite distinct clusters, one of which migrates much further
into the ECM. The main body of the tumour however, invades more slowly than was
observed in Figure 10.2. If a small cluster of cells breaks away from the main body
of the tumour, there is then the potential for these cells to intravasate any neighbour-
ing vessels and start the metastatic cascade. Also if the main body of the tumour
were to be surgically removed (resected), the smaller cluster of cells that has invaded
further into the ECM may go unnoticed by the surgeon and lead to a possible re-
currence. These results indicate the importance of haptotaxis as a mechanism for
invasion and implicate its role in the metastatic cascade. We now investigate the
effect that changing various parameter values has on the solution.

In Figures 10.4(a) and (b) we have increased � by a factor of �� and ��� re-
spectively (all other parameters remain unchanged from Figure 10.1). These figures
show the importance of tumour-matrix interactions and haptotaxis. As � is increased,
a larger proportion of the tumour cells invade the tissue, driven forward by haptotaxis
and the gradients in the ECM. Indeed from Figure 10.4(b) we can see that almost all
the tumour cells are invading in a pulse-like travelling wave.
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One dimensional numerical solutions of the system (10.6), with parameter val-
ues as in Figure 10.1 (unless otherwise stated), showing the cell density, MDE
concentration, and ECM density. The top panel (a) shows the effect of increas-
ing � by a factor of �� (� � �
��) at � � �
� and the bottom panel (b) shows the
effect of increasing � by a factor of ��� (� � �
�) at � � �.

The importance of haptotaxis as a mechanism of invasion is obvious from these
results. This in turn emphasises the importance of gradients which appear in the
degraded ECM. Since the ECM is unlikely to be a constant homogeneous mass, in
order to make the model more realistic we must consider a spatially heterogeneous
ECM. We examine how this affects the tumour cell density distribution by consider-
ing such a heterogeneous ECM in two dimensions in the following section.

10.3.2 Two Dimensional Numerical Simulations

The aim of this section is to extend the model to a two dimensional spatial
domain and therefore to allow the spatio-temporal dynamics of the model to be ex-
plored in more detail. All of the numerical solutions presented in this section were
obtained from a finite difference approximation of the system (10.6) with boundary
and initial conditions (10.7) to (10.10). Since there are no birth and death terms in
the tumour cell equation (10.6) and we impose zero flux boundary conditions (10.7)
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then the total cell number is conserved. We used the conservation of cell number as
a check on the accuracy of our numerical scheme which was found to be accurate
to within �
���. The parameter values used in the following simulations (unless
specified otherwise) were the same as those used in the one dimensional simulations
of Figure 10.2, i.e., �� � �
���, �� � �
���, � � �
���, � � �� , � � �
�, � � � ,
and � � �
����.

Initially we assume that we have a circular initial tumour cell distribution given
by Equation (10.10) and an ECM distribution given by Figure 10.5. Finally, we
assume that the initial MDE concentration profile is proportional to the initial tumour
cell density and take ���� �� � �
����� �� . The tumour cell initial conditions are
illustrated graphically at � � � in Figure 10.6.

Figure 10.5

Pictorial representation of a hypothetical heterogeneous ECM. Gradation refers
to ECM concentration.

To examine the importance of the role of ECM in the invasive process, we con-
sider a hypothetical heterogeneous ECM with an initial distribution given in Figure
10.5, i.e., there are regions of high density of ECM and regions of low density of
ECM. Using this initial ECM data, the initial tumour cell distribution, and MDE con-
centration discussed above, we obtained the results shown in Figures 10.6 and 10.7.
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Figure 10.6

Spatio-temporal evolution of the tumour cell density from a numerical simu-
lation of system (10.6) within a heterogeneous ECM (see text for parameter
values). The effect of the ECM on the tumour cell density only becomes ap-
parent for the later values of �, where the ring of cells is seen to no longer exist.
Gradation as in Figure 10.5.

From Figure 10.6 we note that essentially the same behaviour is observed at the early
stages ( � � �
�� �
�) as for the one-dimensional results. However, by � � �
� the per-
fect symmetry of the initial tumour cell distribution is broken and there are several
regions of higher tumour cell density. At later times, from Figure 10.7, we see that
two regions of high cell density form ( � � �
�) and continue to invade ( � � ��
�).
The main body of the tumour is approximately bounded by these higher density re-
gions, although by � � ��
� the higher density regions have fragmented and a new
‘hotspot’ has appeared. The final figure at � � �� shows that the tumour cell density
has spread through most of the domain in a somewhat heterogeneous manner with a
couple of ‘hotspots.’ This form of tumour cell density distribution is closer to what
is observed in real life and further emphasises the importance of tumour cell/ECM
interactions.

The particular choice of initial ECM distribution (Figure 10.5) is perhaps some-
what exaggerated and was selected to emphasise the importance of ECM gradients.
However, other forms of initial ECM distribution would produce qualitatively similar
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Figure 10.7

Spatio-temporal evolution of the tumour cell density from a numerical simula-
tion of system (10.6) within a heterogeneous ECM, for later values of � (see text
for parameter values). The effect of the heterogeneous ECM via haptotaxis on
the tumour cells is now apparent, with the cells invading the ECM in a more
heterogeneous manner resulting in the appearance of ‘hot spots.’ Gradation as
in Figure 10.5.

final results, i.e., a heterogeneous tumour cell density distribution. The two important
factors governing the final tumour cell density distribution are ECM heterogeneity
and the haptotactic response of the cells to the gradients created in the degraded ma-
trix. These results are in qualitative agreement with actual clinical observations i.e.
it is well-known that small clusters of cells can break away from the central mass of
the tumour and invade further leading to possible metastasis.

While the results of sections 10.3.1 and 10.3.2 give an indication of the macro-
scopic behaviour of our model and produce qualitatively realistic results, they are
limited in their quantitative capacity and do not account for other important pro-
cesses such as cell proliferation, cell mutation, and individual cell-cell interactions.
In the following section we present a discrete model that has the capacity to include
all of these processes in a realistic manner and produce both spatial and temporal
data on individual invading cells.

©2003 CRC Press LLC



10.4 The Discrete Mathema tical Model

Discrete mathematical models of tumour invasion already exist in the research
literature, but these mainly involve the use of cellular automata. For example, the
work of Smolle and coworkers [49–51] concerns invasive patterns generated from
a cellular automaton which are compared statistically with experimental results in
order to detect real invasive patterns. The model allows for an estimation of cell
motility and proliferation. Qi [43] developed a cellular automaton model of can-
cerous growth which was compared with experimental growth curves and shown to
agree well. Both of these models included cell proliferation and migration terms.
Qi [43] also included the mechanical pressure within the tumour and Smolle and
Stettner [51] consider a further level of complexity with the influence of autocrine
and paracrine chemicals.

In this section we will develop a discrete mathematical model of tumour inva-
sion which will enable not only a qualitative but also a quantitative comparison with
in vivo experimental results. The particular technique which we will use to follow
the path of an individual tumour cell is a implementation of the method developed
in [6] and [4] and first of all involves discretizing (using standard finite-difference
methods) the partial differential equation governing the rate of change of tumour cell
density, i.e., Equation (10.6). We then use the resulting coefficients of the five-point
finite-difference stencil to generate the probabilities of movement of an individual
cell in response to its local milieu. This technique differs from previous discrete
models such as [51] and [43] in that the movement of individual cells is based on a
discrete form of the continuous model. However, like both of these models there is an
element of stochasticity (randomness) in the movement rules for the cells. In effect,
we will derive a biased random walk governing the motion of a single tumour cell
based on the system of partial differential equations (10.6) of section 10.2. In this
sense, our discrete model is probably most similar in formulation to the reinforced
random walk models of Othmer and Stevens [39], where cell movement is modelled
in response to a chemical stimulus by considering an equation (discrete in space and
continuous in time) governing the probability that a cell is at a given position at time
�. This equation is a function of the transition probabilities for one–step jumps to
the orthogonal neighbours. The form of the transition probabilities for the gradient
model of [39] is very similar to the probabilities of movement that will be derived
from our discrete model (see also [2] and [18]).

We now set about formulating the discrete model and deriving the movement
probabilities for an individual tumour cell in response to its surrounding matrix. The
implementation of the process of cell proliferation will be described later. We first
discretize Equation (10.6) using the Euler finite difference approximation [37]. This
involves approximating the continuous two dimensional domain ��� ��� ��� �� in the
usual way as a grid of discrete points (mesh size �), and time (�) by discrete in-
crements (magnitude ). The full discretized system is given in the Appendix. For
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clarity we only consider the tumour cell equation,

����

�� � ��


���� � ��

������ � ��


������ � ��

������ � ��


������� (10.11)

where the subscripts specify the location on the grid and the superscripts the time
steps. That is � � ��, � �  �, and � � ! where �,  , , !, and � are positive
parameters.

In a numerical simulation of the continuous model (10.6), the purpose of the
discrete equation (10.11) is to determine the tumour cell density at grid position
���  �, and time !��, by averaging the density of the four surrounding neighbours at
the previous time !. For our discrete model, we will use the five coefficients �� to ��

from (10.11) to generate the motion of an individual tumour cell. These coefficients
can be thought of as being proportional to the probabilities of the tumour cell being
stationary (��) or moving left (��), right (��), up (��), or down (��).

Each of the coefficients �� to �� consist of two components,

�� � random movement� haptotaxis (10.12)

thus showing how the discrete tumour cell equation is linked to the continuous tu-
mour cell equation of system (10.6). The coefficient �� has a similar form (see
Appendix). Equation (10.12) is very similar to the transition probabilities of the
reinforced random walk model of Othmer and Stevens [39]. In particular, their
gradient models have a random component and a “taxis” component. Othmer and
Stevens [39] used their discrete transition probabilities to then derive a partial differ-
ential equation in the continuous limit. It is possible to show this for our model by
defining transition probabilities of the form (10.12). The original equation governing
the rate of change of tumour cell density (10.6) can then be recovered by following
the analysis of [39] in the same rigorous manner.

The exact forms of �� to �� are functions of the ECM density near an individual
tumour cell (see Appendix). Therefore, if there were no ECM the values of �� to ��

would be equal, with �� smaller (or larger, depending on the precise values chosen
for the space and time steps), i.e., there is no bias in any one direction and the tumour
cell is less (more) likely to be stationary, approximating an unbiased random walk.
However, if there are gradients in the ECM, haptotaxis dominates and the coefficients
�� to �� will become biased towards the direction of increased ECM density. The
motion of an individual cell is therefore governed by its interactions with the matrix
macromolecules in its local environment.

Before proceeding to the simulation section, we first of all discuss the manner
in which we explicitly incorporate cell proliferation into the discrete model.
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10.4.1 Cell Proliferation

In our model we assume that each individual cell has the capacity for prolifer-
ation and will produce two daughter cells provided the following two conditions are
satisfied:

(i) the parent cell has reached maturity, and

(ii) there is sufficient space surrounding the parent cell for the two new daughter
cells to move into.

We defined cell maturity to be ��� discrete time steps. While this timescale
is arbitrary, with a precise estimate of parameter values in the original model, this
maturity time can be made to correspond with an actual cell cycle time for specific
cancer cells. In order to satisfy condition (ii), we assumed that a daughter cell could
arise if any one of the parent cell’s four orthogonal neighbours was empty. If more
than one of the neighbouring grid points is empty then the new cell position is chosen
randomly from these points. In order to keep the running time of simulations within
reasonable limits we have restricted the maximum number of cells to 3000, with an
initial distribution of 500 cells.

10.4.2 Simulation Process for the Discrete Model

Each time step of the simulation process involves solving the discrete form of
the system (10.6) numerically to generate the five coefficients �� to �� (see Ap-
pendix). Probability ranges are then computed by summing the coefficients to pro-
duce five ranges, "� � � to �� and "� �

����

��� �� to
��

��� ��, where � � � to
�. We then generate a random number between 0 and 1, and depending on the range
which this number falls in, the current individual tumour cell under consideration
will remain stationary ("�) or move left ("�), right ("�), up ("�), or down ("�).
The larger a particular range, the greater the probability that the corresponding coef-
ficient will be selected. Each tumour cell is therefore restricted to move to one of its
four orthogonal neighbouring grid points or remain stationary at each time step.

All the simulations of the discrete model were carried out on a ���� ��� grid,
which is a discretization of a the unit square, ��� �� � ��� ��, with a space step of
� � �
��� and a time step of  � �
���. A discrete form of the no flux bound-
ary condition (10.7) was imposed on the square grid, restricting the tumour cells to
within the grid. The initial conditions in all simulations (unless otherwise stated) are
given by discrete forms of Equations (10.9) and (10.10) with an initial number of
500 tumour cells centred around ��
�� �
��.

The parameter values used in the following simulations are the same as those
used in the previous two dimensional continuous simulations (unless otherwise stated),
i.e., �� � �
���, �� � �
���, � � �
���, � � ��, � � �, and � � �
�.
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Figure 10.8

Spatio-temporal evolution of tumour cell invasion from a numerical simulation
of the discrete model. The figure shows the tumour cells migrating from the
centre (� � �
�� � � �
�) into the heterogeneous ECM as given Figure 10.4 (see
text for parameter values). No real structure is apparent but the cell distribution
is clearly different from Figure 10.11 and again a few individual cells are seen
to invade further into the ECM.

10.5 Discrete Model S imulation Results

We examine the results of invasion by individual cancer cells in a heterogeneous
ECM. Using a discrete form of Figure 10.5 for the initial ECM concentration and
the same parameters as above, we obtained Figures 10.8 and 10.9. From the initial
cluster (at � � �
�) cells begin to migrate outward in a compact, radially symmetric
manner. However, by � � �
� the initial clustering of the cells is not seen and
this is further emphasised at � � �
�. We see individual cells migrating out further
than the main group. As time evolves we can see from Figure 10.9 (at � � �
�)
the two regions of increased cell density that are equivalent to the two regions of
higher density seen in Figure 10.7 at � � �
�. As  � increases the cells migrate
further into the ECM and become more dispersed, although, small clusters can still
be observed e.g., just below � � �
�, � � �
� for � � ��
� � ��
�. This again
is in agreement with the continuous results (Figure 10.7). By � � �� quite a few
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Figure 10.9

Spatio-temporal evolution of tumour cell invasion from a numerical simulation
of the discrete model. The figure shows the tumour cells migrating into the
heterogeneous ECM as in Figure 10.8 but for later values of � (see text for pa-
rameter values). We now observe that the overall distribution of the cells is very
similar to the continuous equivalent (Figure 10.10) and a few individual cells
have in fact reached the boundaries of the domain.

of the cells have already reached the boundary of the domain, which is something
that did not occur in the continuous model simulations. This further illustrates the
importance of the ECM structure in aiding or hindering the migration of individual
cells that have the potential to metastasise. The most striking feature of these results
is to notice that a few individual tumour cells migrate much further into the ECM
separated from the main tumour mass. These cells have the greatest potential to
metastasise further and are difficult to detect clinically. It should be emphasised that
the movements of the individual cells, while governed by the continuous model via
the discretisation, do have a genuine stochastic component, and the cell movements
can therefore deviate from the continuous results. Also since the discrete model
incorporates cell proliferation, whereas the continuous model does not, we expect to
see some differences. However, the total cell number is limited to a maximum of
3000 cells and therefore the structures seen in Figure 10.11 are produced mainly by
cell migration, i.e., random motility and haptotaxis, rather than cell proliferation.
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10.6 Model E xtensions
There are several ways in which the model could be extended. At the continuum

level explicitly considering the effects of oxygen as a nutrient for the cancer cells is
important, and at the discrete level it is crucial to consider more detailed cellular
characteristics, in particular the inclusion of cell-cell adhesion. Therefore we shall
use the following extended system of partial differential equations as a basis for the
discrete model results of this section (as was carried out in section 10.4):

	�

	�
�

������ ���
�
��� �� �
���

�� �

�������
�� �� �
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where # denotes oxygen concentration which is assumed to diffuse into the ECM,
decay naturally and be consumed by the tumour. For simplicity oxygen production
is proportional to the ECM density.

Molecules which facilitate interactions between cells and between cells and the
ECM, known as cell adhesion molecules, are now thought to be central to the inva-
sive process [24]. In the above model we already consider cell-ECM adhesion via
haptotaxis. In order to include cell-cell adhesion we assume each cell has its own in-
ternal adhesion value (� � �� � �), i.e., the number of neighbouring cells that it will
preferentially adhere to. We therefore examine the number of external neighbours
each cell has (�	) and if �	 � �� then the cell is allowed to migrate, otherwise it
remains stationary.

Since not all cells will have the same level of adhesiveness, some form of hetero-
geneity needs to be introduced. To take a small step towards including greater detail
at the cellular level we shall consider a population of individual cells that have pre-
defined phenotypic traits which specify their behaviour. We define each phenotype
to be a set of parameter values that describe the behaviour of the cell expressing it.
Therefore a particular phenotype will have a defined proliferation age, %� consump-
tion, MDE production, haptotaxis coefficient, and adhesion value. For simplicity
we consider four phenotypes (I, II, III, and IV), each progressively more aggressive
(in terms of invasiveness) than before. Type I being the least aggressive (having
the longest proliferation age, consuming the least oxygen, producing the least MDE,
having the smallest haptotaxis coefficient and having the highest adhesion value,
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�� � �), and type IV being the most aggressive (having the shortest proliferation
age, consuming the most oxygen, producing the most MDE, having the largest hap-
totaxis coefficient and having a zero adhesion value i.e. no cell-cell adhesion). For
further details on this extended model see [5].

The following simulation was carried out on a ���� ��� grid, which is a dis-
cretisation of the unit square, ��� �� � ��� ��, with a space step of � � �
���� and a
time step of  � �
����. No flux boundary conditions were imposed on the square
grid, restricting the tumour cells, MDE, ECM, and oxygen to within the grid. Ini-
tially, 50 tumour cells were centred around ��
�� �
�� with a random age, the MDE
concentration was zero throughout the domain ( ���� �� � � ), and the oxygen con-
centration was taken to be one (#��� �� � � ). There is no upper limit to the number
of cells in the simulation. Each of the initial cells are assigned phenotype I and for
each subsequent proliferation there is a small probability of further mutations occur-
ring which will lead to the daughters cells having phenotype II, and so on in a linear
fashion. All mutations are assumed to be irreversible.

The distribution of tumour cells, MDE, oxygen, and ECM at � � �� is shown in
Figure 10.10. The tumour cell distribution is now radically different geometrically
from what was produced in the previous section, showing a more connected tumour
with multiple protrusions. The depleted oxygen distribution correlates well with the
dead region of the tumour. The MDE distribution produced by the tumour cells
shows slightly more symmetry due to diffusion of the MDE, and its impact on the
ECM can clearly be seen. The tumour contains two cell types, dead cells and type IV
cells, and it is these most aggressive cells that dominate the population, throughout
the simulation, and lead the way for invasion at the boundary of the tumour. Since
these cells have no cell-cell adhesion dependence, their migration is mainly driven by
haptotaxis via the local ECM gradients, and it is these local gradients that ultimately
define the tumour geometry.

10.7 Discussion and Conclusions
This work presents a mathematical model for tumour invasion using a novel

blend of continuum, deterministic modelling, and discrete, stochastic modelling in
one and two space dimensions.

The continuum model consists of a system of nonlinear partial differential equa-
tions and examines how tumour cells respond to ECM gradients via haptotaxis, cre-
ated both by the tumour cells through MDE degradation of the matrix and those
already in existence within the matrix. The results from the one dimensional contin-
uum model simulations demonstrate the impact of interactions between tumour cells
and the ECM on possible metastasis. In particular if tumour cells move via random
migration and haptotaxis and the intensity of the random movements is dependent
upon MDE concentration then a small cluster of cells can easily break away from the
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Figure 10.10

Spatial distribution of tumour cells, MDE, ECM, and oxygen (clockwise) at time
� � ��. Graduation represents phenotype. For the MDE, ECM, and oxygen
concentration, white=high concentration, black=low concentration.

main body of the tumour (Figure 10.2). Even without this MDE dependence, it is
clear that the tumour cells can split into two groups: those driven by random migra-
tion and those driven by haptotaxis (Figure 10.1). However, this result of the model is
mainly due to the fact that the only gradients in the ECM are a result of MDE degra-
dation and hence the cells at the leading edge of the tumour are mostly affected by
haptotaxis. When ECM heterogeneity is introduced, in the two dimensional simula-
tions, this grouping of cells into those driven mainly by random migration and those
driven mainly by haptotaxis is no longer obvious because of the gradients already
existing within the ECM. The heterogeneous ECM (Figure 10.5) is more likely to
be characteristic of real ECM within the body and the resulting tumour cell density
distributions are more realistic (Figures 10.6 and 10.7), i.e., a heterogenous tumour
cell density with a few ‘hotspots.’ Indeed, in Figure 10.11, we present a figure of
an actual mammogram of a breast cancer. The contrast arises from the deposition of
calcium (microcalcification), which is a common finding in this disease. The cen-
tral tumour mass can clearly be seen, but also some contrast-bright specks around it,
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Figure 10.11

Mammogram of a breast cancer. The contrast arises from the deposition of
calcium (microcalcification), which is a common finding in this disease. Note
the central tumour mass, but also some contrast-bright specks around it, which
may represent clusters of tumour cells.

which may represent clusters of tumour cells which have already broken away from
the central mass.

The discrete model that we developed was derived from a discretized form of
the partial differential equations of the continuum model, and permits the tracking
of individual tumour cells and also enables us to explicitly incorporate rules for cell
proliferation. With reference to the larger scale, the results from the discrete model
confirm the predictions of the continuum model that haptotaxis is important for both
invasion and metastasis. On a finer scale, the discrete results show that cell prolif-
eration can aid in invasion as a result of space filling. Also, the ECM structure (via
haptotaxis) may aid individual cells in breaking from the main body of the tumour
and thus escaping to become possible metastasis (Figures 10.8 and 10.9). The dis-
crete results were also able to show that many cells invade further into the ECM than
is predicted from the continuous results — which again has important implications
for metastasis.

To some extent the discrete model is still under development and as can be
seen from the model extensions in section 10.6 we have included more individual-
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based processes such as cell-cell adhesion. However, there is even more potential
to include a wider range of cellular characteristics, e.g., genetic information about
each cell which can be stored and passed from generation to generation incorporating
the possibility of genetic mutations. These may then alter the cell proliferation rate,
migration rate, adhesion properties, or apoptotic rate. If exact parameter values were
obtained for the discrete model then it would be possible to obtain the physical cell
numbers that are falling within a given radius of the main tumour mass and could
therefore be used as a predictive tool for estimating how far a surgeon should cut to
ensure all of the tumour is removed.

The technique of using partial differential equations as the basis for discrete
models is clearly very useful, with the ability to generate movements of individual
cells based on a continuum model of a population of cells. Indeed, this technique
provides a powerful means of linking micro-scale events to macro-scale events, indi-
vidual behaviour to population behaviour, with potential application to a wide range
of problems in mathematical biology.

From a clinical point of view, these models have enormous potential. Even
at this stage, the behaviour of the simulated tumours closely parallels histological
observations, especially when a heterogeneous ECM is introduced. It is therefore
conceivable that measurement in tumours of some of the parameters used in these
models will provide precise information on the invasive behaviour of individual neo-
plasms. For example, it should then be possible to estimate the likely extent of local
infiltration by a tumour, and thereby tailor the radicality of surgical excision for that
individual situation. It may also be possible to assess more accurately than at present
the likelihood of metastatic disease, which will have important implications for ad-
juvant systemic therapy.

10.8 Appendix
To discretize the continuous system (10.6) we use Euler finite difference ap-

proximations [37], which leads to the system,
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with � � ��, � �  �, and � � &.
The coefficient ��, which is proportional to the probability of no movement,
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has the form,
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and the coefficients ��, ��, ��, and ��, which are proportional to the probabilities
of moving left, right, up, and down respectively, have the forms,
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When there is no ECM concentration in the same region as a tumour cell, �� to
�� are equal since the values of � are �. Also when there is an equal amount of ECM
on either side of an tumour cell (i.e., no gradient), the values �
���� and �
���� cancel
each other out as do �
���� and �
���� and thus �� to �� are equal. Therefore, in
both these circumstances unbiased random movements will be produced. However,
if there is more ECM on one side of the tumour cell than the other, the probabilities
(�� to ��) will no longer be equal and hence directed movement, towards the higher
concentration of ECM, will result.
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11.1 Introduction
This chapter deals with the modelling and with some mathematical problems

related to the interaction and competition between the immune system and cancer
cells. It is well understood that the above competition can play a crucial role in the
cancer self-organised defence developed by the immune system, but also in connec-
tion with therapeutic actions.

The above competition may possibly end up with the elimination of the host,
while in some cases the opposite behaviour is observed. Medical treatments may
improve the immune response by activating the immune defence and/or specialising
the ability of immune cells to identify the presence of the host.

The interested reader is addressed to the specialised literature, e.g., Delves and
Roitt [1], Forni, Foa, and Santoni [2], Greller, Tobin, and Poste [3], and Stout and
Suttles [4], to recover information on the immune mechanisms from the viewpoint
of molecular biology. Moreover, the article by Perelson and Weisbuch [5] provides a
review of various mathematical models developed by applied physicists, while some
divulgative articles, e.g., Nossal [6], and Kleinstein and Seiden [7], are addressed to
a non specialised audience.

The physical system we are dealing with is characterised by a great complexity
so that it is very difficult, maybe impossible, developing a detailed mathematical
description of all phenomena related to the immune competition. On the other hand,
if a certain type of interaction is specialised, one may attempt to develop models
suitable to describe specific phenomena at the observation and representation scale
which is selected for the modelling process.

As usual in applied mathematics, see Bellomo and Preziosi [8], different scales
can be selected toward the mathematical modelling of the same phenomenon. Specif-
ically, one may represent the immune mechanisms referred to cellular and subcellu-
lar scales by observing the interaction and competition processes for various cell
populations which play the game. On the other hand, pursuing the aim of reducing
complexity, one may consider the evolution of the statistical distribution over the
biological activities of the cell populations. A further simplification, again of the
complexity of the system, consists in looking at the system by considering each cell
population as a whole, while its behaviour is observed collectively.

In all cases, the main problem consists in deriving suitable evolution equations
toward the description of a complex system which appears to be somehow reluctant
to be constrained into a mathematical framework. While complexity is reduced,
applied mathematicians have to deal with the problem of identifying the pertinent
parameters which may lose biological meaning through the above simplification.

This chapter reports about the state-of-the-art, essentially related to the math-
ematical literature, on the above outlined topics. Special attention is paid to the
proper reference to the above mentioned representation scales. The review will be
developed by a selection and critical analysis of research papers which apply differ-
ent methods to model the immune competition in the presence of neoplastic cells.
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The contents will also refer to r esearch perspectives in the field. Ho p e f u lly, a p p lied
mathematician s will r ecove r in th is c h a p ter in d icatio n s towa r d f u tu r e r e sear ch activ -
ity.

Th e a n a ly sis will p a y a tten tio n to b if u r catio n p h e n o m en a wh ich id en tif y two
different asy mpto tic behaviours o f the so lu tio n o f mathematical models: b low-up of
tumour cells related to a progressive deactivation o f the immune sy stem; o r, con-
ve r s e l y, p r ogressive destructio n o f tumour cells r e lated to im m u n e cells wh ich r e-
main active. Indeed, in o rder to remain act iv e , t u m our cells need both f eeding from
env ir o n m en tal cells an d in h ib itio n o f th e im m u n e sy stem . On th e o th e r h an d if th e
immune sy stem remains active, then it ends up able to destroy tumour cells.

Pa r ticu lar ly r e leva n t is th e a b ility o f th e m o d e l to r ef er th e a b ove b if u r catio n
phenomena to specific parameters with well-defin ed biological meaning. Wh en th is
is possible, then therapeutic actions can be developed to activate the immune sy stem
to p r even t its in h ib itio n . On th e o th er h a n d , wh en th is actio n is n o t tech n ically p o s-
sib l e , m e dical actio n m ay be addressed to weaken th e p rogression of tu mour cells
so th at th e im m u n e co m p etitio n a g a in st th e a g g r essive an d invasive h o st m ay ex h ib it
the d esired asymptotic behaviour.

The contents are o rg anised th rough five more sections wh ich follow this intro-
duction.

Sectio n 11.2 d eals with a concise phenomenological descriptio n o f the physical sy s-
tem wh ich is th e o b ject o f th e m o d e llin g p r o cess. Th e d escr ip tio n is b ased o n th e
viewpoint of math ematicians, while technical aspects o f b io molecular theories are
lef t to th e sp ecialised liter a tu r e .

Sectio n 1 1 . 3 d eals with th e m o d e llin g a t th e cellu lar scale, n a m e ly with m o d e ls at th e
microscopic scale. Specifically, after prov id in g a co n c ise r ev iew o f the  state-of-the-
ar t, th is sectio n m ain ly r ef ers to g eneralised sh ape m odels. These models are b ased
on the idea that cells can recognise the host b y r eceptors able to recognise certain
sh a p es on th e surface of host cells.

Sectio n 11.4 contains a report o n the so -called k in etic cellu lar theory which looks at
th e sta tistical distribu tio n over the biological state o f the various in teractin g popula-
tions. This type of modelling is b ased on mathematical methods which are typical
of the kinetic theory of gases [9], and develops equations which show a substantial
sim ilar ity with th e Bo ltzm a n n o r Vlasov eq u a tio n s. T h is c lass o f m o d e l is called
generalised kinetic (Boltzmann) models [10]. As shown in th e book edited b y Bel-
lo m o an d Pu lvirenti [11], these models can be developed to d escrib e a variety o f
larg e sy stem s in ap p lied scien ces.

Sectio n 11.5 reports about fin ite models wh ich simplify the real physical sy stem by
representing the collective b ehav iour of each cell population which play the g ame.
This crude simplification g enerates, as we shall see, m o d e ls wh ich a r e stated in ter m s
of ordinary differential equations. The qualitative and quantitative analysis of the
solutions may, despite the above simplification, provide useful information on the
overall behaviour of the system.

Sectio n 1 1 . 6 finally develops a critical analysis on th e contents of th e chapter, and
addresses it to the indication of conceivable research perspectives. Indeed the math-
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ematical approach to the modelling and analysis of the complex physical system we
are dealing with is the object of a growing interest from the side of applied math-
ematicians. New mathematical results keep appearing in the literature, and a sig-
nificant number of interesting results have appeared after the book by Adam and
Bellomo [12].

The authors’ aim consists not only in offering a survey of the state-of-the-art in
the field of the competition between immune and neoplastic cells, but also in devel-
oping a critical analysis of the literature with the aim of indicating research perspec-
tives. Hopefully, the contents of this chapter will contribute to a further increase of
the attention of applied mathematicians toward the above interesting and stimulating
new frontier of applied mathematics.

11.2 Phenomenological Description and Scaling
Immune competition is a complex phenomenon which involves cells or particles

of the aggressive hosts and cells of the various populations of the immune system.
In order to avoid ambiguities related to a frequent use and, maybe abuse, of the word
complexity, it is worth mentioning that here this term is applied to state that interac-
tions are developed at different scales: the cellular dynamics are ruled by subcellular
interactions. Moreover different mechanisms operate on the same subject: mechan-
ical for the dynamics and biological for the immune competition. The proliferation
ability of the host and the defence ability of the immune system are common fea-
tures of the competition. In addition, the ability to inhibit the recognition process
plays a significant role in the competition against tumour cells, which is contrasted
by immune cells operating with different specialised activities.

The interested reader is addressed to the specialised literature, among others, to
the already quoted review papers [1] and [2] and divulgative article [6], which can
contribute to the understanding of the above phenomena from the side of applied
mathematicians and physicists. On the other hand, a careful description of immune
competition by means of the language and know-how of medicine and immunology
is not an aim of this chapter. Simply we attempt to focus on those features which are
useful to develop a mathematical modelling of the above complex system.

The evolution of a cell, as described by various authors, e.g., Forni et al. [2],
is regulated by the genes contained in its nucleus. These genes can either be ac-
tivated or suppressed, when signals stimulate receptors on the cell surface and are
then transmitted to the nucleus of the cell. The reception of a particular signal can
modify the usual behaviour of a cell. In extreme situations, a particular signal can
induce a cell to reproduce itself in the form of identical descendants giving rise to the
so-called clone expansion or mitosis, or to die giving rise to the so-called apoptosis
or programmed death.

Some theories state that genetic changes, distortion in the cell cycle and loss of
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apoptosis are related to DNA corruption, which may even be determined by external
actions. Then an interaction and competition at the cellular level is developed, which
includes activation, but also inhibition of the immune system. Later, if the number of
degenerated cells increases significantly, various phenomena such as condensation
of tumour cells into solid forms, macroscopic diffusion, and angiogenesis, can be
observed, followed by detachment of metastases and invasion.

The key objective of the mathematical research in the field is the development
of a mathematical theory able to describe the interaction and competition between
tumours and the immune system, e.g., by means of evolution equations. The dy-
namics of tumours growth follows. Probably, the above ambitious project will take
many years involving a truly multidisciplinary approach. At present research ac-
tivity simply refers to modelling specific phenomena and to the qualitative analysis
and simulations related to their application. However, even at this level challenging
mathematical problems are brought to the attention of applied mathematicians.

Referring to the modelling aspects, it is well understood that one has to deal with
multiscale modelling and simulations relating to the interaction processes acting on
a range of different spatio-temporal scales. Specifically, the characterisation of the
system suggests the identification of three natural scales which are also connected to
different stages of the disease: processes on the cellular scale are triggered by signals
stemming from the sub-cellular level and have an impact on the macroscopic scale,
i.e., on the organism, as tumour cells condense and when tumours grow and spread.

At the sub-cellular scale the evolution of a cell is regulated by the genes con-
tained in its nucleus. Receptors on the cell surface can receive signals which are
then transmitted to the cell nucleus, where the genes can be activated or suppressed.
In extreme situations, particular signals can induce a cell to reproduce itself, or to
die. Clone expansion activates a competitive-cooperative interaction between tu-
mour cells and cells of the immune system. If the immune system is active and able
to recognise the tumour cells, then it may be able to develop a destruction mech-
anism; otherwise, tumour growth may develop progressively. The activation and
deactivation of immune cells, too, can be regulated by cytokine signals.

At the cellular scale models are proposed to simulate the effects of the failure of
programmed cell death and of the loss of cell differentiation. If and when a tumour
cell is recognised by immune cells, a competition starts which may end up either with
the destruction of tumour cells or with the inhibition and depression of the immune
system. Cellular interactions are regulated by signals emitted and received by cells
through complex image recognition processes. Therefore, the connection to the sub-
cellular scale is evident. On the other hand, the development of tumour cells, if not
suppressed by the immune system, tends towards condensation into a solid form so
that macroscopic features become important.

At the macroscopic scale, tumour cells start to condense and aggregate into an
entity with “quasi fractal surface” which interacts with the outer environment, for
example normal host cells and the immune system. These interactions usually occur
on the surface and within a layer where angiogenesis (the process of formation of
new blood vessels, induced by factor secreted by the tumour, and vital for tumour
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growth) takes place. Here, one has the overlap of phenomena at the cellular level with
typical macroscopic b ehav iour su ch as diffusio n o r, more generally, phenomena that
can be related to the conservation o r evo lution o f m acroscopic variables su ch as the
tumour size. In a later stage, as described in  Chapter 4 o f this volume, th e tumour
can be characterised by three zones: an external layer in which environmental cells
penetrate and determine the detachment of tumour cells; an intermediate layer in
which there are clusters of quiescent tumour cells; and an inner zone containing
necrotic cells.

Phenomena identified at a certain scale can be related also to the higher or lower
scales. For instance, interactions, developed at the cellular level, are ruled by pro-
cesses which are performed at the sub-cellular scale. Moreover, activation and in-
hibition of cells belonging to the tumour and to the immune system can also be
induced.

Different mathematical methods and structures correspond to the above scales.
For instance models at the cellular scale are developed in terms of ordinary dif-
ferential equations, while multicellular systems are modelled by nonlinear integro-
differential equations similar to those of nonlinear kinetic theory (the Boltzmann
equation). On the other hand, macroscopic models refer to moving boundary prob-
lems for systems of nonlinear partial differential equations. Nonlinearity is an intrin-
sic feature of all models. The analysis of mathematical problems generated by the
above models leads to several sophisticated mathematical problems: some of them
will be reported in this chapter.

The above naive description retains some aspects of the way of thinking of an
applied mathematician, who has in mind transferring the phenomenological obser-
vation into equations. No problem in admitting that an immunologist can be highly
disappointed by this attitude. He will deeply look at a certain phenomenon without
an immediate aim to transfer this observation into mathematical equations.

When the phenomenological description becomes very detailed, transferring it
into mathematical equations may become a very difficult task. On the other hand,
accepting that a mathematical model may be based only on a limited amount of phe-
nomenological information, still one may expect from a model the ability to describe
phenomena which are not observed experimentally.

Although this chapter is mainly concerned with modelling at the cellular scale,
it is worth recalling that the immune competition appears also when cancer cells
condense in a solid form while immune cells operate on the outer surface and diffuse
inside the solid form. Indeed, immune cells penetrate into tumours and complex
interaction phenomena follows. Some perspectives on this interesting topic will be
given in the last section.
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11.3 Modelling at the Cellular Scale
This section provides a review of models suitable to describe the immune com-

petition at the microscopic scale. Modelling the behaviour of the immune system at
the cellular scale is tackled by many authors using a variety of different techniques
and with a variety of different aims. The first aim of modelling consists in reproduc-
ing the immune response (primary and secondary response). However many other
aspects like the auto-immune disease, selection and hyper-mutation of antibodies
during an immune reaction auto-immunity, and T-lymphocytes selection in thymus,
etc. are studied in the literature and are the object of modelling efforts.

In this general framework modelling the response to known virus-inducing can-
cer can contribute to the study of cancer vaccines, see e.g., Van der Burg, Offringa,
and Melief [13]. Of course, various models are dedicated to study HIV infections,
while the activation of the immune response in some cancers has been known since
the 1950s. Studies in this area have shown that tumour cells do have an escape-
mechanism that prevents the activation of the immune system, see Anichini and
Mortarini [14].

The panorama of immune system models is quite large. All models are essen-
tially developed within the framework of the two biological exiting theories, namely
the clone selection theory and the idiotypic network theory.

The clone selection theory of the Nobel Prize laureate Frank M. Burnet [15] was
developed following the track first highlighted by Paul Ehrlich at the beginning of the
20�� century. The theory of the clone selection states that the immune response is the
result of a selection of the “right” antibody by the antigen itself, much like the best
adapted individual is selected by the environment in the theory of natural selection of
Charles Darwin. The selected subset of B cells (and T cells) grows and differentiate;
they then turn off when the antigen concentration falls below some threshold. In the
framework of this theory, memory B cells will be responsible for acquired immune
tolerance.

The idiotypic network theory was formulated by the Nobel Prize laureate Nielse
K. Jerne [16]. According to the idiotypic network theory, the immune system is a reg-
ulated network of molecules and cells that recognise one another even in the absence
of antigens. The idiotypic network hypothesis is based on the concept that lympho-
cytes are not isolated, but communicate with each other among different species of
lymphocytes through interaction among antibodies. Accordingly the identification
of antigens is not done by a single recognising set but rather by a system-level recog-
nition of the sets connected by antigen-antibody reaction as a network. Jerne [16]
suggested that during an immune response antigen would directly elicit the produc-
tion of a first set of antibodies, ���. These antibodies would then act as antigens
and elicit the production of a second set of “anti-idiotypic” (anti-id) antibodies ���
which recognise idiotopes on ��� antibodies, and so forth.

Nowadays immunologists consider these two theories as independent, noncon-
flicting, and eventually complementary theories, see [17]. However while clone se-
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lection theory is believed to be the fundamental theory for understanding today’s
knowledge of the immune system, the idiotypic network theory is believed reliable
related to the existence of anti-idiotypic reactions, but probably is not relevant in the
control of the immune response, see [18].

In what follows we will point out only the main ideas that can guide the reader
in the wide literature of the discrete modelling of the immune system. First we will
sketch a few leading models based on cellular automata, and then, we will discuss
in some detail the Celada-Seiden model [19], which tries to reproduce the behaviour
of the immune system at the cellular scale in a sort of ab initio computation. Recent
extensive reviews on discrete models of the immune system can be found in [5], [17],
and [20].

11.3.1 An Overview of Discrete Models

While continuous models have been formulated in the framework of both im-
munological theories (see [5] and Perelson [21]), discrete models are mostly based
on Jerne’s theory [16]. Celada-Seiden’s [19] model, which may include both theo-
ries, rests its foundation on the clone selection theory.

The main task of the immune system is to perform a pattern recognition between
cell receptors and antigens. The binding mechanism, mostly unknown in details,
is based on different physical effects (short range noncovalent interactions, hydro-
gen binding, van der Walls interactions, and so on). In order for a receptor and the
molecule that it binds, a ligand, to approach each other over an appreciable portion of
their surfaces, there must be extensive regions of complementarity. As documented
in [7], Oster and Perelson called the constellation of features important in determin-
ing binding among molecules the generalised shape of the molecules. Assume that
this shape can be described by � parameters; then a point in a �-dimensional space
(shape space) specifies the generalised shape of a receptors binding region. On the
basis of these considerations Oster and Perelson estimated that in order to be com-
plete the receptor repertoire should satisfy the following conditions:

� Each receptor can recognise a set of related epitopes, each of which differs
slightly in shape.

� The repertoire size is of the order of ��� or larger.

� At least a subset of the repertoire size is distributed randomly throughout the
shape space, see [5].

Later, Farmer, Packard, and Perelson [22] introduced the idea of using binary
strings to represent the shape of a receptor. To determine the degree of comple-
mentarity between strings many string-matching algorithms are available. These
representations have been used in most discrete models.

Discrete models of the immune system have been built up using different tech-
niques. Models based on cellular automata and lattice gas go back to the last two
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decades. These model are the most used nowadays and produce interesting results,
see [17]. We will shortly describe some of these models in what follows. Models
based on spin-glass formalism have been proposed by Parisi, by the end of the 1980s,
as documented in [5].

Genetic algorithm-based models have been mainly investigated at the Santa Fe
Institute and at the University of New Mexico by Forrest and co-workers, see the
review [20] starting in the early 1990s, and [5]. This is a computer science driven
approach which brings into the field the experience of computer scientists. The guid-
ing line of this approach is a deeper comprehension of the immune system in order
to use the information processing algorithm in applications [20]. Applications can
be found in Dasgupta [23].

11.3.2 Automata-Based Models

We now consider in more detail some automata-based models. Since an ex-
haustive review is beyond the aim of this section we will present only a few of the
most representative models. Specifically, the Kaufman, Urbain, and Thomas model
(KUT) is one of the first applications of discrete automata to investigate the logic of
the normal immune response and introduced in [24].

These authors were interested in the simplest way to describe the logic of inter-
actions among a number of different cell types and their results in terms of immune
response. The original model considers five types of cells and molecules: antibod-
ies (Ab), helper cells (Th), suppressor cells (Ts), lymphocytes B (B), and antigens
or virus (Ag). Each entity is represented by a boolean variable denoting “spin up”
(high concentration) and “spin down” (low concentration). The rules modelling the
dynamic evolution of these variables are expressed by logical operations. The appli-
cation of the rules is iterated over discrete time and the dynamics is observed. The
discrete evolution rules are:

����� �� � ����� AND ���� AND ����� � (11.1)

����� �� � ����� OR ����� AND NOT �	��� � (11.2)

�	��� �� � ����� OR �	��� � (11.3)

��� � �� � ����� AND ������ OR ����� � (11.4)

����� �� � ����� AND NOT ����� 
 (11.5)

where AND, OR, and NOT are the usual logical operators. There are five fixed points
in the state space composed by �� � �� points. Fixed points identify the global state
of the immune system: naive, vaccinate, immune, paralysed, and paralysed and sick.

Later on, one has to acknowledge the Weisbuch and Atlan model (WA) [25],
which was subsequently followed by many other models. Such a model was pro-
posed on the basis of Jerne’s theory to study the special case of auto-immune dis-
eases, like multiple sclerosis, in which the immune system attacks the cells of the
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nervous system of our own body. As in [24], this model uses five binary variables
representing: killer cells (��), activated killers (��), suppressor cells (��), helpers
(��), and suppressor produced by the helpers (��). The binary state of each threshold
automaton represents the concentration of the corresponding cell type: � corresponds
to small concentration, and � to high concentration. The different types of cells influ-
ence each other with a strength which is �, �, or��. The automaton evolves with the
following rule: at the next time step, the concentration of one cell is unity if the sum
of the interactions with the various cell types is positive, otherwise the concentration
is taken as zero. Let � � ���� ��� ��� ��� ��� be the vector representing the five
binary variables and

� �

�
����
� � �� � �
� � �� � �
� � � � �
� � � � �
� � � � �

�
���� (11.6)

the matrix of the synaptic connections; then the evolution of WA network [25] can
be described by:

��� � �� � sgn �� � ����� � (11.7)

where the function sgn(�) defined on the natural numbers set � is � for �  � and �
otherwise.

This model shows the existence of only two basins of attractions over �� � ��
possible states: the empty state where all the concentrations are zero and the state
����� where activated killers have small concentration while the other four entities
have high concentrations. This corresponds to a healthy carrier state, with killer cells
only in the resting state, thus unable to harm the organism by developing an active
autoimmune reaction.

Neumann, as documented in [17], studied a different version of KUT model
using a boolean and a threshold automata which includes interactions with antigens.
Dayan et al., again as documented in [17], extended the WA model using the same
dynamics but placing the cells on a two-dimensional lattice to allow simulations in
a statistical physics way (Ising-like models). In Dayan et al. the authors use five
variables on each lattice site corresponding to five boolean concentrations (0 or 1).
The model can be classified as an integer lattice gas with � � � (five entities) and
� � � (two states per entity). Each site influences itself and its nearest neighbours
in the same way as in the WA model. For a square lattice of � � � sites there are
� � �� spins. The main difference is that in this model the evolution of a single
site includes the site itself and its nearest neighbours. This lattice-version of the WA
model is found to have simpler dynamics than the original model as the number of
fixed points is found to be smaller than in [25]. The three dimension extension of the
model was done by Wiesner, see the review [17].

Chowdhury et al., as documented in [17] and [23], proposed a unified model
of the immune system which recovers, as special cases, the KUT an WA models.
The model describes the immune response to HIV and reproduces some features of
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experimental results. Extensions of this network approach for modelling HIV and
cancer have been discussed, see [17], by Chowdhury and Stauffer.

A majority rule cellular automata was used by Agur [26] to study the signal
processing in the IS in a multilayered network. Chowdhury et al., see [17], proposed
a model to describe the interaction between various type of immunocomponent cells
considering intra- and inter-clone interactions. Many other CA approaches to study
different aspects of IS can be found in Perelson [21] and in the book edited by Atlan
and Cohen [27].

11.3.3 Shape Space Model Approach

A series of models, see [5], use the shape space approach. Each point of the
d-dimensional Euclideian space is associated with a different receptor’s generalised
shape and, as mentioned before, each coordinate represents one of the main aspects
involved in pattern recognition. Most of these models are represented on a two di-
mensional cellular automata.

The first of these models was proposed by Stewart and Varela [28]. They used
a bit-string model in a two dimensional shape space to analyse the metadynamics in
which new clones are constantly generated in the bone marrow.

De Boer, Van der Laan, and Hogeweg [29] considered a two dimensional cellu-
lar automata model with binary variables and majority rule to describe the concen-
tration of the population with lattice site. This model, as documented in [17], was
extended to higher dimensions and very large lattices.

De Boer, Segel, and Perelson (BSP model) proposed a model to describe the
time evolution of the immune repertoire. The model, as documented in [30], is the
discrete version of a set of population equations.

Each automaton, in this model, describes the time evolution of the concentra-
tion of a given clone. The update of the variables associated with the concentration
of each clone is based on an activation window driven by a function of a field which
depends on the concentration of the populations with complementary shapes of re-
ceptors. BSP considered only one and two dimensional lattices and obtained only
stable behaviours.

11.3.4 The Celada-Seiden Model

One of the most prominent attempts to reproduce, with the quest for biologi-
cal fidelity, is the Immune Simulator automaton, also known as the Celada-Seiden
model developed in [19] and [31]. The Immune Simulator belongs to the class of
immunological cellular automata, but its degree of sophistication sets it apart from
simpler CA in the Ising-like class [24].

The Celada-Seiden model explicitly implements the cellular and humoral im-
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mune response in one comprehensive set of rules which apply to a variety of cellular
and molecular entities. In particular, these include the following cells: lymphocyte
B (B), lymphocyte T helper (Th), lymphocyte T killer (cytotoxic) (Tk), macrophage
(MA), epithelial cell (as generic target cell) (EP), lymphocyte plasma B (PLB); and
the molecules: antigen (bacteria or generic virus) (Ag), antibody (Ab), and immune
complexes or Ab-Ag binding (IC). On top of that, some intracellular signals are ex-
plicitly represented like for example, interferon-� (IFN) and danger signal (D), while
other cytokines are just “implicitly” taken into account in the interaction rules. The
major difference among cellular and molecular entities is that cells may be classified
on the basis of a state attribute. The state of a cell is an artificial label introduced by
the logical representation of the cell’s behaviour.

The model represents a portion of a lymph node of a vertebrate animal as a two-
dimensional triangular lattice (six neighbour sites) � � �, with periodic boundary
conditions in both directions (up-down, left-right).

The Celada-Seiden model is based on the theory of the clone selection. For
this reason, Celada and Seiden [19] had to look for a way to represent the lympho-
cytes’ receptors shape space. The idea of using a bit string to encode the information
relative to the specificity to the antigens came from the early work of Farmer et al.
[22].

In the Celada-Seiden model a clonotypic set of cells is characterised by the
receptor which is represented by a bit-string. The bit-string length � is clearly one of
the key parameters in determining both time and space complexity of the algorithm
that simulate the behaviour of the whole set of entities as the number of potential
repertoire of receptors scales as �� (see [32]).

The bonds among the entities are described in terms of matching between bi-
nary strings with fixed directional reading frame. Bit strings represent the generic
“binding site” of both cells (read the receptor) and molecules (that is peptides, epi-
topes). Every entity is represented by a certain number of molecules, the receptor
being one of these. The repertoire is then defined as the cardinality of the set of
possible instances of entities that differ in, at least, one bit of the whole set of binary
strings used to represent its attributes.

Indeed, the cells equipped with binding sites and antibodies, have a potential
repertoire of ����, where �� indicates the number of binary strings used to represent
receptors, MHC-peptide complexes, epitopes and so on, of the entity �. Other entities
do not need to be specified by binary strings so their repertoire is just one (i.e.,
�� � �). Examples are the interleukin molecules like the interferon�� and the
danger signal.

In this model two entities equipped with receptor interact with a probability
which is a function of the Hamming distance between the binary strings representing
the entities’ binding site. This probability is called the affinity potential. For two
strings 	 and 	� such probability is max (i.e., equal to 1) when all corresponding bits
are complementary (�� �), that is, when the Hamming distance between 	 and 	� is
equal to the bit string length. A good and widely used analogy is the match between
a lock and its key.

If � is the bit string length and � is the Hamming distance between the two
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strings, the affinity potential is defined in the range �� 
 
 
 � � as

���� �

�
�

���

����

� � � ��	
� � � ��	

(11.8)

where �� � ��� �� is a free parameter which determines the slope of the function
whereas �� � ����� �
 is a cut-off (or threshold) value below which no binding is
allowed.

Equipped with their receptors, the cells are free to diffuse on the lattice sites.
At each time step, representing 8 hours of real time, cells and molecules residing on
the same lattice site take the chance to interact among each other. The rules which
implement these reactions are executed in a randomised order. Using immunological
terms, they can be grouped as follows [33]:

� Phagocytosis comprise the rules for the activity of antigen processing cells.

� Immune-activation codes for the activity of helper T lymphocytes which recog-
nise the MHC-peptide complex and activate, by releasing cytokines, B cells for
antibody production.

� Opsonisation regards the inactivation of the antigen by binding of antibodies.

� Infection is the action of virus.

� Cytotoxicity stays for all those rules which account for the kill of the virus-
infected cells by cytotoxic cells.

To complete this very short description of the model we mention the mechanism
of hematopoiesis. This takes into account both the generating activity of pluripotent
stem cells in the bone marrow which is realised by randomly adding newly formed
cells periodically (a mean-reverting process is implemented to assure that in absence
of antigenic stimulus, the number of cells is in a steady state), and the selective
activity of the thymus for what concerns the positive and negative selection of T
lymphocytes to avoid autoimmune reactions.

It is worth noticing that the model, as it is constructed, is modular, in the sense
that it allows for the addition or the modification of the cellular and molecular en-
tities together with the set of rules determining their behaviour, to study different
phenomena. Indeed this flexibility of the model has been exploited to realise a simu-
lator of the HIV infection, one for the hypersensitive reactions, and the effect of the
apoptosis mechanism on the immune response as it will be illustrated later in this
section. Moreover, as shown in [30] and [35], the model results to be independent of
the computational framework used for the simulator.

The model, with such a degree of detail, has been first used to address differ-
ent questions revealing its versatility already in the first publication by Celada and
Seiden [19]:

� What is the largest self fraction of the total repertoire that is still compatible
with reasonable alloreactivity?
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� Why is the number of different MHC per individual so small (about four to
six)?

� Why is the diversity of MHC molecules in a population so small compared to
the possible diversity?

In [35] a modification of the Celada-Seiden model has been used to study the
apoptosis mechanism. This work was driven by the in vitro experiments performed
by Jamin et al. [36]. In this case a subset of B-cell was allowed to present also
B-CD5 receptors and the behaviour of these receptors was modelled according to
[36]. During the simulation this subset was stimulated, as in the experiment, with
two injections of anti-CD5 antibodies. This naive model showed good qualitative
agreement with experimental results.

Another modification of the Celada-Seiden model which is described in this
volume in the chapter by Castiglione and Agur, has been used to study hypersensi-
tivity to a drug during anticancer treatment. In that case a major modification was
to introduce the explicit representation for a number of cytokines (IL-4, IL-12, IL-2,
and IFN-�), the subdivision of T helper cells in three classes (Th1, Th2, and Th0
or Th1/2 precursor), the subdivision of the antibodies in immunoglobulins IgE, IgG,
and IgM, and the addition of mast cells which are in charge for the release of his-
tamine and other active mediators responsible for the symptoms of type I or IgE
mediated allergy.

11.4 Modelling by Generalised Boltzmann Models
The competition between immune cells and aggressive hosts has been mod-

elled also by methods which are typical of nonequilibrium statistical mechanics. The
above approach was first proposed by Bellomo and Forni [37] and subsequently de-
veloped by various authors as documented in the review papers by Bellomo and De
Angelis [38]. The pertinent bibliography is reported in the above cited papers. The
various models proposed in the literature may differ for technical aspects, but all
refer to the mathematical framework reported in Arlotti, Bellomo, and De Angelis
[39].

The substantial difference with respect to the equations of the kinetic theory is
that the microscopic state of the cells is defined not only by mechanical variables,
say position and velocity, but also by an internal biological microscopic state related
to the typical activities of the cells of a certain population.

The above mentioned models are characterised by localised microscopic inter-
actions. This means that cells interact when they are practically in contact. On the
other hand, an alternative to the above modelling was proposed by De Angelis and
Mesin in [40], where it was assumed that interactions are distributed in space. This
paragraph refers specifically to this type of modelling which appears to be able to
provide interesting descriptions from the biomolecular point of view.

©2003 CRC Press LLC



As stated in the introduction, special attention will be paid to bifurcation phe-
nomena which may define the output of the competition: activation of the immune
system with depletion of the tumour cells, or inhibition of the immune system with
uncontrolled growth of the tumour cells.

The contents of this section is organised into four subsections. The first one
deals with the description of cell populations and their statistical description. The
second one with the design of a mathematical framework suitable to generate specific
models. The third one with the description of a specific model, while the last one
reports some simulations related to the above mentioned bifurcation analysis.

11.4.1 Cell Populations

The immune competition involves several interacting populations each one char-
acterised by a microscopic internal state which may differ from one population to the
other. In fact, the dynamics involve at least cells of the immune system and cells of
the aggressive host in the presence of environmental cells. However, in some cases,
one may even specialise the immune system into various subpopulations charac-
terised by specific activities.

The contents proposed in what follows refers to a system of three interacting
populations: cancer, immune, and environmental cells. It is plain that technical
generalisations are possible as it will be discussed in the last section. For instance
immune cells can be distinguished into a greater number of populations each charac-
terised by specific activities, see Arlotti, Gamba, and Lachowicz [41]. The limitation
to only three populations is due here to the choice, of this section, to refer essentially
to the model proposed in [40]. Despite a relative simplicity with respect to others,
this model provides a detailed description of some interesting biological phenomena.

The so called kinetic (cellular) theory developed as a generalisation either of
the Boltzmann or of the Vlasov equation (for large systems of cells) is such that the
microscopic state is defined by the vector variable which includes both mechanical
and biological microscopic states:

� � ������� � 	 � �� ��� ��� � (11.9)

where the position � � �� and the velocity � � �� are the microscopic mechanical
variables, and � � �� characterises the microscopic internal biological state of the
cells.

Consider then a system of several interacting populations each labelled with the
subscript �. The distribution functions refer to each cell population

�� � ������� � �� �	 
 �� � � � �� �� � 
 (11.10)

Interactions modify not only position and velocity, but also the above mentioned
microscopic internal state. Conversely, such a state may affect mechanical interac-
tions. Generally, not only interactions can modify the microscopic state. They can
also generate proliferation or suppression phenomena.
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It can be shown how macroscopic observable quantities can be recovered by
suitable moments of the above distribution functions. The number density of cells or
the size, at time � and position � is given, under suitable integrability properties, as
follows:

������� �

� �
�����

����������� �� �� � (11.11)

while the total number of cells at time � in a domain �� is given by

���� �

��
�	�

�
��

������� �� 
 (11.12)

In addition to the above quantities, it is possible to compute mechanical quanti-
ties such as local momentum and energy, respectively given by

������� � �
�
����

	 	
�����

������������ �� �� � (11.13)
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where

������� �
��

�	�

������� 
 (11.15)

Marginal densities such as the number density of the subjects at time �, with
position � and internal state � is given by the distribution

��������� �

�
��

����������� �� � (11.16)

and the number density at time � and internal state � in the whole domain �� is
given by

 ������ �

�
��

��������� �� 
 (11.17)

Similar calculations can be developed for higher order moments. Global quantities
are obtained integrating over the space variables.

11.4.2 A Mathematical Framework

As already mentioned, the models described in this section were developed in a
framework corresponding to a mean field description which may be considered as a
sort of generalisation of the Vlasov equation.

Referring to [40], the evolution equation is derived supposing that it is possible
to model the following two quantities:
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� The action � � ������� on the subject with microscopic state � due to the
subject with state ��, so that the resultant action is

� �� 
����� �

�
�

������� ������� ��� 
 (11.18)

� The term describing proliferation/destruction phenomena in the state� related
to pair interactions between cells of the �-th population with microscopic state
�� with cells of the !-th population with state ���:

�� 
����� �

�
�

�
�

"�������	�� ������
�� �	����

��� ��� ���� �

(11.19)
where " is a suitable proliferation–destruction function.

Therefore, the mean field equation for a system of three interacting populations
neglecting external actions and sources is given by
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"�	��
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�� ��� ���� 
 (11.20)

The above general framework is the one exploited, in a relatively simpler form,
in [40]. Such a simplified framework is obtained as follows:

� Interactions between a test cell and a field cell are homogeneously distributed
in space. They may change the state of the cells and destroy or create cells.

� The microscopic state is a scalar $ � ����� and has a different meaning for
each population: progression for tumour cells, defence ability for immune
cells, and feeding ability for environmental cells.

� The action of the field cells in the state % of the !-th population on the test
cells of the �-th population in the state $ is modelled by the superposition of
two different actions: a conservative action modelled by the function &�	 �
&�	�$�%� such that its resultant action is

���� 
��� $� �
#

#$



����� $�

��
		�

�
�

�

&�	�$�%��	��� %� �%

�
� (11.21)

and a nonconservative action assumed to be a delta function over the state �
of the interacting test cell: '�	��� %	$� � ��	��� %�Æ�$ � ��, such that its
resultant action is

(��� 
 � ����� $�

��
		�

� �

�

� �

�

��	�$�%��	��� %� �% 
 (11.22)

©2003 CRC Press LLC



The resultant structure o f the evolutio n model follows:
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 (11.23)

Sp ecialisatio n o f th e ab ove m o d e ls m a y b e related , a s we sh a ll see, to th e a n a l-
ysis of sp ecific phenomena o r therapeutic actions.

11.4.3 A Mean F ield Mo d el

The m athematical structure d escribed in subsection 11.4.2 can be exploited to
derive specific models such as those proposed in the above cited paper. Modelling
means providing a detailed description of microscopic interactions. A specific model
can be obtained, referring to Equation 11.23, by the following assumptions:

� The progression of neoplastic cells is not modified by interactions with other
cells of the same type. On the other hand, it is weakened by interaction with
immune cells (linearly depending on their activation state); and it is increased
by interactions with environmental cells (linearly depending on their feeding
ability). The effect increases with increasing values of the progression: &�� �
� � &�� � �)��%$, and &�� � )��%$.

� The defence ability of immune cells is not modified by interactions with other
cells of the same type or with environmental cells. On the other hand, it is
weakened by interaction with tumour cells (linearly depending on their activa-
tion state) due to their ability to inhibit the immune system: &�� � �)��%$
and &�� � &�� � �.

� The feeding ability of environmental cells is not modified by interactions with
other cells of the same type or with immune cells. On the other hand, it is
weakened by interaction with tumour cells linearly depending on their activa-
tion state: &�� � �)��%$ and &�� � &�� � �.

� No proliferation of neoplastic cells occurs due to interactions with other cells
of the same type. On the other hand, interactions with immune cells generate a
destruction linearly depending on their activation state; and a proliferation by
interactions with environmental cells depending on their feeding ability and
the progression of tumour cells: ��� � � � ��� � �*��%, and ��� � *���%.

� No proliferation of immune cells occurs due to interactions with other cells of
the same type and with environmental cells. On the other hand, interactions
with tumour cells generate a proliferation linearly depending on their defence
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ability and on the progression state of tumour cells: ��� � *���% and ��� �
��� � �.

� No proliferation of environmental cells occurs due to interactions with other
cells of the same type and with immune cells. On the other hand, interactions
with tumour cells generate a destruction linearly depending on the progression
state of tumour cells: ��� � �*��% and ��� � ��� � �.

The parameters ) correspond to conservative encounters, while the parameters
* refer to proliferative and destructive interactions. These parameters have to be
regarded as positive, small with respect to �, constants, to be identified by suitable
experiments.

Based on the above modelling of cell interactions, we are now able to derive the
evolution equation. Technical calculations yield

#��
#�

��� $� � ���� 
��� $� � ��������$� (11.24)

where � � �� �� �, while the detailed expression of the interaction terms is given by:
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and
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where the operator ���
 is defined as follows:

����
 �

� ��

�

%����� %� �% 
 (11.28)

11.4.4 Simulations

The application of models, specifically those described above, for the simula-
tion of phenomena of interest in immunology and medicine with particular attention
to the immune competition, needs the statement of mathematical problems properly
designed with reference to the above competition. Possibly, problems have to be
related to specific experiments or therapeutic actions.

Then a qualitative analysis may be developed with reference to existence of
solutions and their asymptotic behaviour. In particular, the analysis can be addressed
to show the existence of parameters for which a critical value, to be regarded as a
bifurcation value, separates two qualitatively different asymptotic behaviours:
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� Activa tio n o f th e im m u n e sy stem an d p r ogressive weakenin g and destructio n
of tu mour cells

� Pr o g r essive in h ib itio n o f im m u n e cells f o llowed b y a b low - u p o f tu m o u r cells
th at fin ally start to condense into a so lid form

Figure 11.1

Evo lut io n o f t umo ur cells fo r )��  )�
��.

Of course particularly interesting are those cases where the parameter is r elated
to a physical quantity which can be medica lly modified. Indeed this is the case o f
th e c lass o f m o d e ls d ealt w ith in th is sectio n . Bear in g a ll o f th e a b ove in m in d , we
refer to the qualitative an aly sis d eve lo p e d in th e p a p e r b y De An g e lis an d Jab in [ 4 2 ]
and to the simulations reported in [43]. Both p apers refer to th e model reported in
subsectio n 11.4.3.

An ex am p le o f sim u latio n is reported in Figures 11.1 and 11.2, wh ich analy se
the sensitivity of the solutions, with special attention to the asymptotic behaviour,
to the parameter ) which corresponds to the ability of progressed cells to inhibit the
immune system. Accurate simulations, as documented in [43], show how ) is a bifur-
cation parameter which separates two qualitatively different asymptotic behaviours:
blow up of progressed cells and progressive inhibition of the immune system, and
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th e opposite one, reg ression of progressed cells with effective actio n o f the immune
sy ste m .

Specifically, Figur e 11.1 shows how the evolutio n h as a trend to decrease the
number o f p rogressed cells with in creasin g number and valu e o f the progression.
This behaviour occurs wh en )�� is larg er th an a c r itical va lu e )�

��. In this case, the
im m u n e sy stem is ab le to co n tr a st th e n eoplastic growth ; tumour cells are able to
increase their aggressivene ss a n d t o i nhibit immune cells. The distribution function
of th e tumour cells evolves toward larger values o f the state $, while th e d istr ibu tio n
of th e immune cells is sh if tin g towar d low er va lu es o f $.

Figure 11.2

Evo lut io n o f t umo ur cells fo r )�� � )�
��.

On th e oth er hand the opposite behaviour is observed when )�� is b e low )�
��.

This type of evolution is observed in Figure 11.2, where the number of progressed
cells, and their activation, sh ows a trend to increase. Now the immune sy stem is not
able to control the growth of tu mour cells as sh own in Figure 11.3 which sh ows the
evolution of immune cells shifting their activation toward lower values.

It is clear, from the above simulations, the crucial role of the parameter )��

among the others parameters. Indeed, )�� selects the asymptotic behaviour of the
system. Medical therapies can be focused to modify the above parameter.
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The b ehav iour wh ich h as been described above is a common feature, as docu-
mented in [17], o f all kinetic models propos ed in the literature, including the ones
described in subsectio n 11.3.2.

Figure 11.3

Evo lut io n o f t umo ur cells fo r )�� � )�
��.

11.5 Finite Models
In the m odels considered in section 11.4, each cell population is characterised

by a typical biological activity, statistically distributed over the cells. Interactions
modify the above distribution and may generate proliferation or destruction events.
In contrast, in finite models, each population is characterised by a certain fixed ac-
tivity, while interactions simply modify the number of cells linked to the above ac-
tivities. Therefore, finite models generally stated in terms of ordinary differential
equations, simply refer to the size �� � ����� of each �-th population.

Definitively the above description has to be regarded as a crude approximation
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of physical reality, which may loose relevant features of the system we are dealing
with. On the other hand it is worth reporting about this type of modelling, which is
able, at least in some cases, to provide an immediate description of the evolution of
the immune competition. Rather than providing an overview of the various models
available in the literature, already reviewed in [5], a critical analysis of some specific
models will be offered in this section with special attention to bifurcation analysis.

An interesting model referring to the populations considered in the previous
section was proposed by Kirschner and Panetta [44]. The qualities of this paper are
the essential character of the basic assumptions on which it relies, the relatively sim-
ple analytical structure of the model (which is expressed by a system of ordinary
differential equations) and the phenomenology of conclusions which are drawn by
its study. We will devote the main part of the present section reporting on the above
paper, with the aim of illustrating the typology of finite models describing tumour
cells: immune system dynamics and, in particular, the bifurcation mechanism gener-
ally occurring.

After the description of this one, we will mention another significant model of
cancer treatment by immunotherapy (also expressed by nonlinear ordinary differ-
ential equations) introduced and studied by Nani and Freedman [45], and we will
briefly comment on the analogies and the differences between the approaches of the
two papers.

11.5.1 A Model by Kirschner and Panetta

The starting point, to motivate this model, is the realisation that, beside surgery,
chemotherapy, and radiotherapy, immunotherapy may represent a valid tool in the
fight against tumours. Prominence to such a direction has been given by the work
of Rosenberg and colleagues at the National Cancer Institute (see Stevenson [46],
Rosenberg et al. [47], and Rosenberg [48] and [49]).

Essentially, immunotherapy means a treatment addressed to enhance the im-
mune system capacity to fight tumours. More specifically, immunotherapy contem-
plates the use of cytokines, proteins which boost the immune response, the most ef-
fective of whose appears to be interleukin-� (abbreviated, IL-�) eventually combined
with the so called adoptive cellular immunotherapy (abbreviated, ACI), amounting
to injection of cultured immune cells.

The research on modelling immunotherapy relies on a side on an interplay be-
tween the clinical and experimental data and on the other side on the construction
and exploration of mathematical models, capable of grasping the main features of the
phenomena under study and possibly predicting real life observations. It is within
such a framework that paper [44] was proposed. Specifically, three interacting pop-
ulations are taken into account:

� The so called immune effector cells +���

� The tumour cells � ���
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� The concentration ,���� of cytokine interleukin-2 in the tumour site compart-
ment under examination

The dynamics of these populations can be modelled by the following system of
ordinary differential equations:��

�
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��+,�
�� � ,�

� 	� �

��
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which are studied together with initial conditions:

+��� � +� � � ��� � �� � ,���� � ,��



Here, ���� � � ���� � �� �, while 	� and 	� represent two treatment terms.
Specifically, 	� represents an external source of effector cells such as LAK (i.e.,
lymphokine-activated killer cell) or TIL (i.e., tumour infiltrating lymphocyte) cells,
and 	� represents an external input of IL-� into the system. The system involves ��
parameters: -, .�, ��, ��, ��, �, /, ��, ��, ��, and .�. Conceivable values for these
parameters, to be chosen on the basis of experimental suggestions, may be found in
the literature. We emphasise that, in particular, the value of the parameter -, which
represents the antigenicity of the tumour, sensibly varies, depending on the patient
and on the cancer.

The model is investigated from a numerical point of view, writing the equations
in dimensionless form. This leads to a scaled system.

The case is first analysed when no treatment is present, which corresponds to
having 	� � � and 	� � � in the Equations (11.5.1). Then, the case is studied
when some therapy is present. Three subcases are investigated, which contemplate
respectively the presence of:

� adoptive cellular immunotherapy (corresponding to 	�  � and 	� � �)

� input of interleukin-2 into the system (corresponding to 	� � �, 	�  �)

� immunotherapy with a combination of both ACI and IL-� (corresponding to
	�  �, 	�  �).

Let us start with the nontreatment case. It turns out that the dynamics asso-
ciated to the system (11.5.1) depends on the choice of the parameters involved. In
particular, it sensibly depends on the parameter -.

Clearly, the interest is for the asymptotic behaviour. So, the individuation
of steady states is the first objective, together with informations on their stabil-
ity/instability character. In this connection, for any equilibrium the eigenvalues of
the linearised system are investigated.
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The computational investigation performed by the authors indicates that three
different qualitative situations for the dynamics can be distinguished when varying
-. Accordingly, a bifurcation diagram is provided, which underscores that the trivial
equilibrium state +� � ��� �� �� always exists and is unstable. Indeed, one of the
eigenvalues of the Jacobian matrix at +� is positive. In addition, up to three nontrivial
steady states may exist depending on the value of the parameter -: two bifurcation
values -� and -� are singled out such that:

� If � � - � -� three nontrivial steady states exist, one of them (+�) stable, with
a large tumour mass (near the size of its carrying capacity), the other two (+�

and +�) unstable.

� If -� � - � -� the steady state +� is still present and unstable; in contrast, at
- � -�, the equilibria +� and +� disappear and a stable limit cycle develops.

� If -� � - the cycle persists, but its amplitude and period decrease; as for the
steady state +�, when - � -�, it becomes stable. The masses of the tumours
in this region are much smaller than for - � -�.

Looking for interpretation and deduction of biological implications of these out-
comes, we see that the model contemplates the possibility of a large tumour when
the antigenicity - is extremely small. Of particular interest is the detection of stable
cycles. One of the outcomes of the numerical investigation is the existence for small
- of a cycle of the tumour mass having a period of around �� years with the tumour
spending a portion of the cycle (amounting to � or � months) near its carrying ca-
pacity and the remainder with a mass near zero, say dormant. The interest of such a
result is due to the fact that clinical evidence suggests indeed the existence of similar
recurrent phenomena.

It is worthwhile noticing that in the nontreatment case, the model does not con-
template a complete clearance of the tumour.

Therefore, let us go to the treatment case. As already anticipated, three subcases
are investigated.

1. The case of adoptive cellular immunotherapy (	�  � and 	� � �).

The trivial steady state +� is lost and substituted by a nontumour equilibrium,
again denoted +� � �+�

� � �� ��. The main purpose is of knowing when the
equilibrium +� is stable. It turns out that this happens if 	� is larger than a
certain critical value 	����� . As for steady states with presence of tumour, in-
vestigation leads to a bifurcation diagram distinguishing five different regions
in the �-� 	�� parameter space. In particular, worthwhile to be mentioned are
the following facts:

� In one of these five regions a bistability phenomenon occurs: depending
on the initial conditions the solution tends to +� (so, the immune system
succeeds to clear the tumor) or to another equilibrium +� � �+�

� � �
�
� � ��

(implying that the tumor survives).
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� In another region of the �-� 	�� parameter space, a stable limit cycle is
found.

We point out that the region where +� turns out to be stable (correspondingly,
where the immune system succeeds in clearing the tumour) is the one with the
largest area in the parameter space.

Summarising, according to the model under examination, the effects of ACI
therapy can yield a tumour-free state if the treatment concentration is above a
given critical level. However, for tumours with small antigenicity bistability
can occur with the tumour-free state and a near carrying capacity state. A fact
which suggests the need of an early treatment, when the tumour is still small.

2. The case of input of interleukin-2 into the system (	� � �, 	�  �).

Here, the existence of a unique nontumour steady state +� � ��� �� ,�
�

�� which
is always unstable seems to suggest that administering IL-� alone without ACI
cannot clear the tumour.

Again, a bifurcation diagram results with (four) different regions in the �-� 	��
parameter space. Skipping on a detailed description of the situations occurring
in different regions, we point out the existence for 	� large of a stable “state”
��� �� 	��.��. This seems to describe a situation where a large amount of
administrated IL-� yields (for any value of the antigenicity) to the clearance of
the tumour, but at the expenses of an unbounded growth of the immune system.
Such a phenomenon may be put into relation with the capillary leak syndrome,
which is documented as a side effect of treatments with dose escalation of IL-�.

Summarising, according to the model under examination, for one or another
reason, no satisfactory results can be obtained through a treatment with IL-�
alone.

3. The case of immunotherapy with a combination of both ACI and IL-� (	�  �,
	�  �).

When both treatment terms are nonzero, the tumour free equilibrium is +� �
�+�

� � �� ,�
�

��, which is stable provided 	� � 	����� for a certain critical value
	����� , and 	� is larger than a certain function of 	� and of several parameters,
namely

	� 
����
/



	��.� � ��� � .�.���

.��� � 	�

�

 (11.29)

Therefore, for concentrations of IL-� administered below 	����� , it is the con-
current administering ACI which makes the difference for tumour clearance.
And, it is important that there are indeed regions in the parameter spaces where
the desired clearance may be reached. Moreover, the greater the antigenicity
of the tumour, the more likely the treatment will succeed.

Actually, it turns out that for concentrations of IL-� administered above 	�����
the tumour can be cleared too; however an overactivated immune system may
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cause problems such as capillary leak syndrome cancelling the benefits of tu-
mour clearance.

Summarising, the model under investigation seems to predict that the effects of
combined ACI and IL-� treatment may be the best case scenario.

In conclusion, the correlations appearing between the results just discussed and
data from clinical and experimental evidence identify the model treated as a signifi-
cant and interesting one.

It seems worthwhile proceeding with investigation and eventual improvement
of this model. First of all, a rigorous analytical study of the bifurcation, which has
been numerically evidentiated, is missing.

As for extensions and generalisations, a natural direction could contemplate al-
lowing the terms representing the administration of some therapy to be nonconstant.

11.5.2 A Model by Nani and Freedman

Based on analytical and qualitative rather than computational study, the paper
by Nani and Freedman [45] discusses a mathematical model of immunotherapy de-
scribed by four first order ordinary differential equations. The populations under
consideration are:

� The concentration ����� of normal/noncancer cells in a given physiological
space or organ of the human anatomy

� The concentration ����� of cancer cells in a given physiological space or organ
of the human anatomy

� The concentration %��� of cancer-killing lymphocyte binding sites such as
LAK cells in the neighbourhood of the cancer cells and normal cells

� The concentration 0��� of lymphokine (e.g., IL-�) in the neighbourhood of the
cancer cells and normal cells

If 1� [resp., 1�] denotes the rate of external intravenous reinfusion of lympho-
cyte (LAK cells) [resp., lymphokines (IL-� cells)] into the cancer patient, ������ and
������, � � �� � are respectively the birth and death rates of ��,  ����� ��� are the
specific natural competition functions between cancer and normal cells, ��%� 0� de-
notes the rate of lymphocyte (LAK) proliferation due to the induction by lymphokine
(IL-�), ����� %� the rate of cancer cell destruction by lymphocytes, ���%� and ���0�
are the rates of degradation or elimination of lymphocytes (LAK) or lymphokines
(IL-�) respectively, � and * are constants depicting binding stoichiometry and )� are
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elimination coefficients, the model equations take the form:��
�

���
��

� �������������� ���� ����� ��� �

���
��

� �������������� ���� ����� ���� ����� %� �

�%

��
� 1� � )����%� � ��%� 0�� *����� %� �

�0

��
� 1� � )����0�� ���%� 0� 


After postulating suitable regularity and technical growth conditions on the
functions involved in the model, the authors prove a series of theorems providing
conditions (on the mentioned functions) which guarantee the existence, the local sta-
bility, and the possible global asymptotic stability of certain equilibria. Moreover,
the above cited paper contains also an analysis of the boundedness of the solutions
of the differential equations, as well as the study of the dissipativity of the equations,
of their positive-invariance, and even of the persistence character of the system.

Of course, the greatest interest lies in the individuation of a globally asymptoti-
cally stable noncancer equilibrium. Between several other results, criteria for such a
case are established.

The mathematical tools employed by the authors include linearised stability
analysis, the Lyapunov direct method, persistence theory, and Hopf-Andronov-Poin-
caré bifurcation.

Indeed, bifurcation too is investigated in a section, in which the proliferation
function � is assumed to depend also on a parameter .: � � ��%� 0	.�. Within this
context, a Hopf bifurcation is established under certain conditions. Namely, a value
of the parameter . is identified, passing through which a periodic solution is found
to bifurcate from a noncancer equilibrium.

Another section of the paper is devoted to studying the case of periodic adoptive
transfusions of LAK and IL-�. Accordingly, 1� and 1� are assumed to be periodic
functions and the Floquet multipliers theory is invoked to establish stability criteria.

Once again, the overall analysis is quite suggestive: different conditions are
singled out, under which therapeutic success or therapeutic failure of the anti-cancer
immunotherapy are predicted.

The two papers [44] and [45] are quite different for several aspects (the num-
ber of differential equations in the models is different; the r.h.s. in the differential
equations are exactly specified in first paper and not in [45], where only suitable
technical and growth conditions are postulated for them; the results, and this is a
major difference, follow in [44] from computational methods, while those in [45]
rely on rigorous analytical proofs). In spite of all this, it seems that a fundamental
link between these two papers is represented by the typology of results and conclu-
sions which they contain. Which is the essential reason why we selected them as
prototypes for finite models.
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11.5.3 Other References

Finally, other aspects in the big cancer universe lead to finite models. For ex-
ample, a class of models described by a system of ordinary differential equations is
developed in the chapter by Michelson and Leith in the book [12]. The aim there
is to figure out how do tumours grow, how do they react to their adverse environ-
ment, how do they control their own growth and manipulate environments to their
own advantage. Accordingly, the equations appearing in these models describe the
interactive nature of tumour subpopulations (different kinds of cells).

A good introduction to modelling tumour growth and immune response, which
brings the reader from the philosophy and methodology of mathematical modelling,
through a discussion of several examples and basic models may be found again in
the above cited book, in the chapter by Adam.

The development of a mathematical control theory can be recovered in the paper
by Swan [50], which is related to finite models of the type we have seen in this
section.

11.6 Critical Analysis and Perspectives
This chapter has given a survey of some mathematical models designed to de-

scribe the interactions between the immune system and cancer cells. Three classes
of models have been described and critically analysed. The first one related to the
interactions developed at the cellular level; the second one referred to the kinetic
description of large systems of several interacting populations of cells with internal
biological structure; the third one referring to the traditional population dynamics
framework for cell populations each characterised by a well defined biological activ-
ity.

The common guiding line in the analysis of the above models has been that in-
teractions (microscopic dynamics) modify the evolution of the system which end up
with a certain asymptotic behaviour. The analysis has been focused on the bifurca-
tion problems related to the two biologically opposite behaviours:

� The effective action of the immune system against cancer cells which ends up
with the destruction of the aggressive host

� The progressive inhibition of the immune system due to cancer cells which
ends up with the uncontrolled growth of the aggressive host

A critical analysis of the contents of the above sections can be useful to outline
some research perspectives which will be brought to the attention of applied math-
ematicians as challenging, however, difficult targets of mathematical immunology
viewed as a new frontier of applied mathematics.

A first criticism refers to the fact that the various models known in the litera-
ture refer to different phenomena and representation scales. On the other hand we
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have seen that all phenomena are characterised by features at all conceivable scales.
Therefore developing a multiscale approach appears to be a relevant research per-
spective. Indeed, although modelling condensed matter is not dealt with in this chap-
ter, still it is worth recalling that the macroscopic scale refers to phenomena which
can be described by models developed in the framework of continuum phenomeno-
logical theories, e.g., those of continuum mechanics. These models are generally
stated in terms of partial differential equations. A mathematical model which takes
into account the above features was proposed by De Angelis and Preziosi [51]. It
is plain that continuum models need microscopic cellular descriptions. This may be
specifically related to biological rules, i.e., the information which may be transferred
from the microscopic to the multicellular scale or to the macroscopic scale, e.g., the
role of macrophages in condensed tumours, see Owen and Sherrat [52], [53].

An additional criticism is that models refer to specific physical situations, a pre-
cise reference to a general immune competition mathematical theory being missing.
Hence, an interesting and challenging research perspective refers to the construction
of a general theory suitable to include a large variety of immune competitions such
that specific interactions can be cast into the above general framework. This amounts
to developing a class of models suitable to include all particular interactions as spe-
cial cases of general rules.

Finally, we remark that the interaction between mathematics and the sciences
of medicine and immunology can certainly take advantage whenever mathematical
models refers specifically to therapeutic actions. For instance the control of angio-
genesis [54], vaccines [55], replicant viruses [56], and so on. Within such a frame-
work, models, or hopefully a mathematical theory, developed either at the cellular
scale or by means of the kinetic description, may be related to the biological mecha-
nisms which effectively are involved in the complex game we are dealing with.

This essentially means developing a mathematical theory of the immune com-
petition suitable to describe the relevant phenomena at the cellular scale. Maybe
an interesting research perspective consists in exploiting cellular models to model
microscopic interactions in the kinetic models. Dealing with the above topic by
methods of kinetic theory, means developing a statistical mechanics theory for inter-
acting subjects with internal intelligent or at least organised microscopic structure.
Various interesting papers motivate research activity exploiting the above class of
kinetic type equations. Among others, we mention the paper by Hartwell, Hopfield,
Leibner, and Murray [57], scientists operating in the field of molecular and cellular
biology, which provides various ideas concerning the modelling of large complex
biological systems by methods of applied mathematics and physics. The relevant
concept proposed in [57], refers to the fact that biological living systems are charac-
terised by specific internal structures, which operate interacting in accordance with
classical laws of physics and chemistry. Two sentences reported from [57] clarify
the above concept:

� Although living systems obey the laws of physics and chemistry, the notion of
function or purpose differentiate biology from other natural sciences.
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� Biological systems are very different from the physical or chemical systems
analysed by statistical mechanics or hydrodynamics .... the components of
physical systems are often simple entities, whereas in biology each of the com-
ponents is often a microscopic device in itself, able to transduce energy and
work far from equilibrium.

This chapter is concluded by the above statements which contain in a few words
a truly challenging research perspective.
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12.1 Overview
Most chemotherapeutic agents have proven to induce hypersensitivity. All four

types of allergic reactions have been reported in literature, but type I, or IgE-mediated
(see below) is the most common one [1]. In the clinical practice these complications
are usually overcome by means of either suitable premedication with antiallergic
agents, or by postponing drug administration. Nevertheless, the risk of a severe
anaphylactic reaction is a major concern, severity strongly depending on the drug
dose and the dosing interval between successive injections [2].

Toxic side-effects of chemotherapeutic drugs have been shown to crucially de-
pend on the dosing interval. Moreover, using mathematical modelling it has been
conjectured that intermittent delivery of cytotoxic cell-cycle phase-specific drugs, at
intervals equivalent to the mean cell-cycle time of the susceptible host cell popu-
lation (denoted Z-Method), may minimise harmful toxicity without compromising
therapeutic effects on target cells [3]. These conjectures have been proven analyti-
cally [4,5], and generalised for a large class of chemotherapy functions ([6,7]; see
also [8]). The predictions of the Z-method have been verified in experiments in lym-
phoma bearing mice, treated by repeated pulse delivery of the anti-cancer drug 1-
�-D-arabinofuranosyl cytosine (ara-C). In these experiments it has been shown that
when the dosing intervals of drug delivery roughly coincide with the characteristic
marrow cell-cycle time, animals survive and myelotoxicity is significantly reduced.
The optimal spacing of repeated treatments was determined by measurements of the
kinetics of cell movement through different cell-cycle phases [9–12].

The above experiments showed that it is feasible to control host toxicity by
rational drug scheduling. With this general concept in mind, we are set to explore
methods for reducing a patient’s hypersensitivity to a drug, by considering variations
in the drug schedule. As in the above-mentioned works, here too we make use of the
power and efficiency of the mathematical modelling research tool.

There are many reasons why modelling allergies is an intricate task. The first
and most important of these is that allergic diseases, whose origins have yet to be
fully uncovered [13], arise because of a malfunctioning of the immune system, which
is known to be among the most complicated natural systems. Moreover, modelling
allergies has to embrace different levels of biological organisation, going from the
gene level (allergies are likely to have genetic origins), to the cell level, through the
complicated machinery of cell signalling. A comprehensive mathematical descrip-
tion of this complexity at one time is quite a challenging task. Nevertheless, models
which do not take into account the gene-level but focus on the dynamics of popula-
tion of cells and molecules of the immune system, have already been able to pinpoint
very interesting features.

The model we employ is a generalisation of the stochastic cellular automata
(CA) concept [14], in that the entities and the rules are not too simplified or stylised.
Indeed a great level of description is implemented. This model has been developed
on the tracks of a well known CA model of the immune system [15] which describes
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the humoral immune response to antigens in the host organism (a downloadable C-
language version of the original model which includes also the cytotoxic response is
available [16]).

This chapter begins with a brief background on the topic of allergies and, in
particular, on type I or IgE-mediated hypersensitivity reactions. Section 12.2 recalls
some basic facts and terms related to allergies and to mathematical models of the
immune system. Section 12.3 describes the CA model employed, and the necessary
approximations made. The results of the simulations are presented in section 12.4.
Finally, in section 12.5 we discuss some implications of our results for the design of
chemotherapy administration strategies, which may minimise hypersensitivity to the
drug.

12.2 Background
The term atopic refers to people suffering certain form of allergy. For reasons

that are not yet understood, these people have a predisposition to respond to some
environmental antigens (e.g., pollen, mold spores) by producing antibodies of the IgE
class (immunoglobulin of class E). Since this trait tends to run in families, it probably
has a genetic component. It is estimated that over 30% of the world population is
atopic. Moreover, the number of people suffering from atopic diseases is increasing
in the industrialised countries, revealing a link between modern life and atopy [2].

In the case of allergy induced during the administration of anti-cancer drugs,
the patient develops the same type of hypersensitivity to one or more components of
the anti-cancer agents, usually during the first or the second cycle of chemotherapy.
Among the known cytotoxic anti-cancer drugs inducing an IgE-mediated reactions
we recall cyclophosphamide [17], peplomycin [18], hyaluronidase [19], and pacli-
taxel [20].
Although the literature about such cases of hypersensitivity is quite extensive, few ar-
ticles discuss the possible causes for this immune reaction. Instead, literature usually
focuses on elaborating methods for overcoming the problem by means of temporary
treatment interruption, administration of antiallergic substances before and during
the therapy, or on the use of desensitisation protocols to attenuate the response and
increase the probability of tolerating the drug (see reference [21] and cited).

In recent decades, scientists, clinicians, and epidemiologists have elucidated the
intracellular and the cellular mechanisms involved in allergic reactions, including the
roles of T helper subsets and interleukins [24]. However, our understanding is still
lacking as to the full sequence of events involved in disease development, and to
the key factors determining the differences between a person who is allergic to, say,
grass pollen and one who is allergic to bee venom. The only agreement seems to be
that allergenicity is a consequence of a complex series of interactions involving not
only the allergen, but also the dose, the sensitising route, sometimes an adjuvant, and
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most importantly, the genetic constitution of the recipient [2,13,22].
Many pathologies have been identified as belonging to the class of allergic reac-

tions. In order to further classify them, Peter Gell and Richard Coombs [23] proposed
a classification method which is based on the effector molecules and cells involved
in the allergic response [24]. The method distinguishes four classes of allergic dis-
orders:

� Type I, immediate type or IgE-mediated

� Type II, antibody mediated

� Type III, immune complex mediated

� Type IV, delayed type or T-helper cell-mediated

Acute or immediate type I hypersensitivity reaction is a consequence of me-
diators (histamine, leukotrienes, prostaglandin, etc.) released by mast cells (MC)
or basophils triggered via the allergen-mediated cross-linking of cell surface bond
immunoglobulin-E (IgE). Convincing evidence has accumulated, suggesting that
the immune response to allergens in atopics is biased towards the T helper type 2
(Th2) phenotype, characterised by the production of the interleukin-4 (IL-4) and
interleukin-5 (IL-5). These are key cytokines in class switching to IgE (replac-
ing IgG) in B cells and in the accumulation and activation of eosinophils respec-
tively [24]. Allergic IgE responses occur mainly on mucous membrane surfaces in
response to allergens (i.e., common environmental antigen), which enter the body
either by inhalation or ingestion. Typically, such responses manifest themselves in
localized symptoms, as hives, eczema, hay fever, food allergies, asthma, and sys-
temic anaphylaxis. Most allergens are small proteins, or protein-bound substances,
having a low molecular weight. Common antigens, associated with type I hypersen-
sitive reactions are proteins, such as foreign sera or vaccines, drugs, such as penicillin
or sulphonamides, local anaesthetics (most drugs are low molecular weight com-
pounds that are incapable of inducing immune responses, unless conjugated with
a larger molecule; these small molecules first react with proteins which work as
hapten-carriers to form drug-proteins derivatives) etc., (see [24]).

12.2.1 Immunoglobulins and the Isotype Switch

During the primary response of a normal individual, B cells produce antibodies
of the IgM type. Several hours after the onset of IgM production, stimulated by the
presence of interferon-� (IFN-�), IgG-producing B cells swing into action. Eventu-
ally, blood serum concentration of IgG antibodies increases above that of IgM, but as
long as the antigen is present in the body, both IgM and IgG antibodies continue to
be produced. Upon complete antigen removal, B cell stimulation is shut off and the
remaining antibodies are catabolised and broken down. Should the same pathogen
with the same antigens attempt to reinvade the body, it will stimulate a faster and
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Iso t y pe swit ch during prima ry a nd seco nda ry immune re spo nse. The co ncen-
tratio ns are plo tted o n a logarithmic scale. The time units are not specified be-
ca use t he kinet ics dif f e r so mewha t wit h t y pe o f a nt ig en, a dminist ra t io n ro ut e,
sp ecies, o r strain o f a nima l (adapted fro m [24]).

stronger antibody production (secondary response in Figure 12.1). This time the IgG
antibody producing cells proliferate and release IgG just as quickly as the IgM pro-
ducing cells. The above pattern of the immune reaction in a normal individual is al-
tered in hypersensitive subjects, mainly by IgE antibodies being produced instead of
IgG antibodies. This isotype switch takes place in stimulated B cells in the presence
of certain cytokines produced by T helper cells [24]. A “normal” isotype switch to
IgG occurs if the concentration of interleukin-12 (IL-12) is relatively high, whereas
a switch to IgE is dependent on the concentration of IL-4. The problem in having
high levels of IgE serum is that they bind to mast cells and basophils through the
Fc receptor on the cell membrane, thus sensitising these cells. A subsequent expo-
sure to the same allergen induces cross-linking of IgE-bound molecules on sensitised
cells. Cross-linking is a term indicating a complex series of events which signal a
cell to degranulate and release active mediators, such as histamine, serotonin, pro-
teases, eosinophil chemotactic factor (ECF-A), neutrophil chemotactic factor (NCF-
A), platelet-activating factor, leukotrienes, prostaglandinis, etc. Finally, the presence
of these active molecules provoke a sequence of events, culminating in the symptoms
of hypersensitivity. For example, the leukotrienes mediate broncho-constriction, in-
creased vascular permeability, and mucus production (as seen in asthmatics) [24,25].
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12.2.2 Cytokines Production and the Role of Th1/Th2 Shift

T helper lymphocytes are mainly classified according to the types of cytokines
they secrete [26]. Two distinct kinds of T helper lymphocytes can be distinguished,
namely Th1 and Th2 lymphocytes. Th1 lymphocytes participate in cell-mediated im-
munity. They secrete interleukin-2 (IL-2), IFN-�, and TNF to enhance inflammation
and antiviral responses, and are essential for controlling such intracellular pathogens
as listeria and mycobacterium tuberculosis (the bacillus that causes tuberculosis). In
contrast, Th2 lymphocytes provide help to B cells and, in so doing, are essential for
antibody-mediated immunity, controlling extracellular pathogens in blood and other
body fluids.

Normal immune response requires a balanced activation of Th1 and Th2 lym-
phocytes. Indeed, many pathologies are related to, or arise from, an imbalance in
the activation of these two lymphocyte populations. It has been suggested that the
activity of the immune system in utero, primed by common environmental allergens
crossing the placenta, is very important in determining the individual Th1/Th2 bal-
ance and the predisposition to hypersensitivity. This theory states that the immune
response of virtually all newborn infants is dominated by type 2 T helper cells and
that during subsequent development, the normal infant’s immune system shifts in
favour of a type 1 T helper cell-mediated response to inhaled allergens. In contrast,
in the potentially allergic infant there is a further increase in type 2 T helper cells,
which were primed in utero. Microbes are probably the chief stimuli of protective
type 1 T helper cell immunity [2,22].

A mathematical model of Th1/Th2 balance during adult immune responses has
been developed to understand the “decision” of the immune system to trigger a Th1
or Th2 immune response, and how it influences the disease outcome [27]. The model
proposes the innate immune recognition as the mechanism for the “decision-making”
process. Given this assumption, this model indicates that:

� the default response to pathogens is primarily a Th1 response, followed by a
Th1�Th2 switch, in case of a failure of the Th1 response; and

� antigen dose-dependence of the T helper ratio (high antigen levels promote
a Th1�Th2 switch) and an initial Th1 bias are crucial for the function of
selection process.

More simply, in our model, we identify, as a working assumption, the Th2 phe-
notype as being responsible for hypersensitivity (see paragraph 12.3.1).

Together with Th lymphocytes, the macrophages (MA) are the main source of
the different interleukins. Among others, they secrete IL-12 which induces Th dif-
ferentiation into the Th1 subset. Macrophages are not the only source of IL-12, as
any antigen presenting cell (e.g., B cell) is able to secrete IL-12 [24]. The inter-
leukin, IL-12, promotes Th lymphocyte’s enhanced secretion of IFN-�. Conversely,
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IFN-� promotes IL-12 secretion so that there is a positive feedback between these
two cytokines (see Figure 12.2). In contrast, by driving the Th response to the Th1
phenotype, IL-12 acts as a suppressive agent of the allergic immune response [28]
(observation cited in [29]).

12.2.3 Mathematical Models of the Immune System

The immune system has some unique features, which render it appealing for
mathematical modelling:

� It is a highly distributed system, which carries out a complex recognition and
classification task
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� It evolves and matures using combinatorial, evolutionary and adaptation mech-
anisms

� It is able to “remember”

Immune system models can generally be classified into continuous models, de-
scribing the immune process by sets of differential equations, and discrete models,
describing the immune process as a series of interactions in discrete time steps, or
utilising combinatorial methods to predict immune properties.

Traditionally, the approach to modelling the immune system involved ODE (or-
dinary differential equations) or PDE (partial differential equation) [30]. However,
in the last two decades discrete mathematical models, and most notably, the CA
approach, have become increasingly popular in the theoretical immunology commu-
nity. These new trends were largely due to the wide-range use of CA in modelling
complex phenomena in physics, biology, finance, and, more recently, sociology [31].
Below we briefly overview models belonging to each modelling group. A more de-
tailed review can be found in [30].

12.2.3.1 Continuous Models

Most mathematical models in immunology employ systems of differential equa-
tions to describe the dynamic interactions of immune cells and pathogens. The sys-
tem’s description may include equations and parameters for proliferation and death
rates of pathogens and lymphocytes, for the transitions between resting and activated
states of immune cells, or between naive and memory phenotypes, transitions of the
response between humoral and cellular activity, etc. Among the issues addressed us-
ing this approach are the maturation of the humoral immune response, exhibited by
B cell proliferation and differentiation using clonal selection and somatic hypermu-
tations [32,33], the effect of feedback in monitoring, balancing, and improving the
immune response [34], the role of cross-reactive stimulation in maintaining immune
memory [35], the threshold ratio between Th memory cells and antigen dose needed
to establish T cell memory [36], antiviral immune response in infections, such as
hepatitis B, influenza [37,38], HIV [39–42], etc.

12.2.3.2 Discrete Models

One subclass of immune system models uses methods of discrete mathematics
to evaluate characteristics of the immune system and to predict its behaviour. Perel-
son et al. [43] have employed a “shape space” model to study aspects of the immune
repertoire: how large should this repertoire be in order to be complete, and what is the
probability of recognising foreign vs. self antigens. The shape space model geomet-
rically describes the immunological receptors as points in a multi-dimensional space,
each dimension representing a binding parameter such as length, width, charge, etc.,
and each receptor can bind epitopes within a small “recognition ball” surrounding its
complement in the shape space.

A different approach was introduced by Agur et al. [44,45], who analysed the
strategy of the humoral immune response as an optimisation problem. Agur et al.
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employed dynamic programming methods for investigating the optimal mutation rate
function in B cells, which maximises the probability that the required structure of the
antigen-binding antibody will be efficiently generated during any immune response.
Analytical results have pinpointed a step-function mutation rate as the globally op-
timal strategy, transition from minimum mutation rate to the maximum biologically
possible mutation rate occurring when the size of the best performing B cell clone
exceeds a well-defined threshold.

A second subclass of discrete models is that of CA. Discrete in both space and
time, these models describe the immune system dynamics by deterministic rules of
cells, molecules and their local interactions. In [46] the concept of “evolutionary”
experiments in-machina (i.e., within computer) was introduced. Thus, computer
simulation experiments were performed, where each B cell was represented by a
two dimensional cellular automata with variable processing rules. Results of this
work suggest that efficient immune response to antigenically homogenous pathogen
favours strong contraction in phase space in antibody generation (one B-cell clone –
one antibody), whereas efficient response to antigenically varying pathogen should
favour weak contraction in phase-space in antibody generation (one B-cell clone –
many antibodies).

These type of experiments can be used prior to any in vitro or in vivo exper-
iments for qualitatively examining problems in immunology by fast, reproducible,
and cheap means. Indeed, Celada and Seiden put forward such a CA simulation
model, which attempts to capture “all” the different constituents of the immune sys-
tem in one comprehensive framework (to be denoted CS-model, [15,47,48]). This
model has been used to study various phenomena, including the optimal number of
human leukocyte antigens (HLA) [48], the autoimmunity and T lymphocytes selec-
tion in the thymus [49], antibody selection and hyper-mutation [47], and the dynam-
ics of various lymphocyte populations in the presence of viruses, which are char-
acterised by infectivity, reproduction efficiency, etc., [50]. Formally, the CS-model
belongs to a subclass called “stochastic CA.”

12.2.3.3 Stochastic Cellular Automata

Most simulators of the immune response are deterministic, assuming that a
given set of initial conditions leads to only one end-state. Typically, deterministic
models, constituted by a set of differential equations which represent the interactions
among immune cells and molecules, are solved iteratively by numerical integration.
However, the assumptions underlying the deterministic modelling method cannot
represent many intra- and inter-cellular processes, which, typically, are sensitive to
the behaviour of a relatively small number of cells and molecules. Under such cir-
cumstances any given set of initial conditions can lead to a plurality of end-states.
Stochastic CA are models designed to represent the latter systems. In these models
the caveats of the deterministic approach are avoided, since they allow for random-
ness in the activity of the system’s operators.
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12.3 A Cellular Automata Model of
Hypersensitivity

The model to be employed here for studying the role of drug schedules in the
eruption of hypersensitivity, is based on the clonal selection theory of the Nobel Price
laureate F.M. Burnet (1959) developed on the tracks first highlighted by P. Ehrlich at
the beginning of the twentieth century.

In our model, a cubic millimetre of blood serum of a vertebrate is mapped onto
a two-dimensional ��� hexagonal lattice (six neighbours), with periodic boundary
conditions. Physical proximity is modelled through the concept of lattice-site. All
interactions among cells and molecules take place within a lattice-site in a single
time step, so that there is no correlation between entities residing at different sites
at a fixed time. The diffusion of entities at the end of each time step introduces
correlations and is meant to model physical spread of cells and molecules.

Cells are added through an external compartment, which simulate the bone
marrow and the thymus. The thymus is implicitly modelled through positive and
negative selection of immature thymocytes before they get into the lymphatic sys-
tem [49]. Major classes of cells of the lymphoid lineage (lymphocytes T helper and
cytotoxic, lymphocytes B and deriving antibody-producing plasma cells) and some
of the myeloid lineage (macrophages and mast cells) are represented.
The interactions among cells and molecules determine their functional behaviour.
They may be a-specific (e.g., antigen phagocytosis by monocytes or macrophages,
binding by mast cells, etc.) or specific according to their affinity or degree of chem-
ical binding strength (e.g., Th interacting with B cells for antigen recognition, etc.).
The complete list of interactions is reported in Table 12.1.

In principle, this stochastic CA model allows all cells to interact among them-
selves. However, in practice, the interactions follow a “greedy” paradigm. That is to
say that once two cells successfully interact with each other, they are taken out of the
pool of interacting entities for that time step.

Our model is more complex than the majority of the immunological models,
as it considers an additional level of description, namely the intracellular processes
of antigen digestion and presentation. This endocytic pathway is implemented by
assuming that the exogenous antigen is digested and attached to the molecules of
class II MHC for presentation to the Th’s receptors (further details can be found in
previous publications about the original CS-model [15] and its modifications [51]).

At each time step of the simulation of our model all cells and molecules can
interact locally (i.e., on each lattice site) according to their internal state, represented
by suitable internal variables. An interaction between two cells is considered suc-
cessful if a change in their internal state has occurred.

The present model differs from the original CS-model, mainly in explicitly rep-
resenting the cytokines. Among the multitude of cytokines involved in an immune re-
sponse only a subset will be taken into account in the present model (see Figure 12.2).
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Table 12.1 Interactions among cells, or cells and molecules; antigen
digestion and presentation on class II MHC by APCs. Other modules of the
model. (IC = immunocomplex)

Interactions Entities involved MHC class
involved

B phagocytosis of antigen B, Ag
MA phagocytosis of antigen MA, Ag
MA phagocytosis of IC MA, IC
APC’s presentation to Th MA, B, Th class II
Immunoglobulins - Ag interaction IgE, IgG, IgM, Ag
Sensitisation of MC MC, IgE
Degranulation of MC MC, Ag

Digestion and presentation Entities involved MHC class
involved

B digestion B class II
MA digestion MA class II

Other procedures Entities involved
Desensitise MC MC
B’s isotype switch B
Th’s class switch Th
Clone division B,Th
Haematopoiesis B,Th,MC,MA
Plasma secretion of immunoglobulins PLB
Diffusion cells and

immunoglobulins

These are the ones which are directly involved in the allergic reactions [52,53] as fol-
lows:

� Interleukin-2 (IL-2), which is secreted by stimulated T helper cells. IL-2 is
also known as T-cell growth factor (we will be using the acronym T-GF herein,
which is not to be confused with the tumour growth factor). It promotes clonal
expansion and differentiation of additional T helper and B cells.

� Interleukin-4 (IL-4), which stimulates antibody-producing B-cells to produce
IgE instead of IgG. IL-4 inhibits IL-12 released by macrophages and Th1 pro-
liferation. It promotes Th2 clone expansion instead.

� Interleukin-12 (IL-12), which acts in a contrasting manner to IL-4. It promotes
Th1 type response and strongly stimulates T cells to synthesise IFN-� ( [54],
observation cited in [29]).

� Interferon-� (IFN-�), which is secreted by Th1 cells and induces antibody
switch to IgG. It also stimulates IL-12 production ( [55], observation cited
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in [29]) so that there is a positive feedback between IFN-� and IL-12 (see
Figure 12.2).

It is worth noting that two other cytokines which are often mentioned in the
literature to be involved in allergic type I reactions, namely IL-13 and IL-5, are not
implemented in the present model, for the following reasons:

� IL-13, which is a IL-4 homologue, is only moderately involved in isotype
switch and is not involved in Th2 polarization, although it is significant in
other proallergic functions.

� IL-5 is ignored for simplicity, since it is involved in the recruitment and devel-
opment of eosinophils, which are believed to play a central role during the late-
phase allergic reaction [56] but which are not taken into account yet. Indeed,
in a further work we will investigate the influence of IL-5 and eosinophils on
the problem under study.

Homeostasis is explicitly modelled by a mean-reverting process around the ini-
tial population of cells (but see [57] for a simple discrete model of blood cells de-
velopment, where homeostasis is maintained by simple negative feedback on the
phase-transition of each proliferating cell):

������ �
���

��
������������� (12.1)

where ����� is the number of cells or molecules of class � at time �. Equation (12.1)
guarantees that, if no antigen is injected into the system, no interactions take place
and the system fluctuates around its initial state. The parameter �� indicates the half-
life of entity �. Most of these values, reported in Table 12.2, are known from the
literature [24]. Exceptions are the half-life of memory cells and plasma cells. It is
known that some memory cells live for years or even decades, but it is very difficult
to actually estimate their half-life [58]. Plasma cells are believed to live for a few
days only, but see [58] for a different estimation. We arbitrarily choose to set the
half-life of memory cells to six months and those of plasma cells to three days.

The paracrine and autocrine nature of the action of cytokines is provided by the
fact that cytokines release from cells is local and instantaneous. That is to say that
in our model the cytokines are released at the time a cell receives the required signal
(mainly during a receptor-binding with another cell), and they are released locally,
on the lattice-site where the interaction takes place.
Here we need to make some working assumptions:

� All cells release either the same basic amount (indicated by 	) of cytokines or
they secrete an enhanced number (
 � 	) of cytokines (see Table 12.3).

� The enhancement corresponds to doubling the rate of secretion (i.e., 
 � �).

� The basic amount 	 is equal for all cytokines. This implies that all cytokines
have the same ability of exercising their action.
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Table 12.2 Half-life of cells and molecules (� is expressed in days) [24].
Half-life of memory cells is set to six months although it is believed that the
immune memory can last for several years. Half-life of the antigen is arbitrarily
set to about a year but, in practice, this value does not play a role in our
simulations, where antigen is phagocytised by antigen-processing cells in a
much shorter period of time. Histamine lasts for less than a minute but,
technically, its half-life is constrained by the time resolution adopted, which is
eight hours.

Cell � Molecule � Molecule � Molecule �
B 3.3 Ag 365 IgM 5 IFN-� 0.3
Th 3.3 IC 30 IgE 2.5 IL-4 0.3
MA 3.3 IgG 23 T-GF 0.3
MC 3.3 IL-12 0.3
PLB 3.3 HIS 0.3
B memory 180
Th memory 180

The antigen injected into the system breaks the equilibrium, bringing the col-
lective dynamics to a metastable state of infection. In other words, once we inject
the antigen, some cells move from the inactive state to the active one, through the
interaction with other cells or molecules. A cascade of events follows, leading to
the clonal expansion of lymphocytes. For example, during the antigen-recognition
process, the lymphocytes T helper interact with the antigen presenting cells and even-
tually enter the mitotic cycle.
The probability for a stimulated B cell to divide at each time step for a maximum of
� steps is given by

���	 
���
�� � �� ������� � �� �� �� ���� � (12.2)

where ����� is the total number of cells

����� � ����� � ������ ������� � ������� �������

in site � at time �,

��������� � ��

�
�

� �
�
���

�� �
�

�
������

�

�
� (12.3)

� is a constant which determines a size-effect constraint on the clonal expansion,

���� �� ���� � �� ��

�
�

� �� �
� ���

��

�
(12.4)

is the stimulation given by the local amount of cytokines T-GF, and the parameter �
represents its efficiency.
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Clone division of cells is governed by several parameters. One of these is the
number of duplication steps � (i.e., the number of times a cell creates a copy of
itself). This parameters is set to � � �. Hence, under suitable conditions (presence
of growth factor or absence of inhibitor cytokines), �� cells are created out of the
first progenitor activated cell. The parameter � in Equation (12.3) is chosen to allow
a 4- to 15-fold increase of lymphocyte counts during acute infections [24].

After division a B cell matures into either a memory cell or an antibody-producing
plasma cell, with probability 1/2.

The probability for a Th cell that has already entered the mitotic cycle to divide
is computed taking into account also cytokines’ inhibition.

����� 
���
�� � ��������� � ���� �� ���� � ������ (12.5)

where �� and �� are as in Equations (12.3) and (12.4) respectively, and

����� �

��
�

� if � � �;
��������������

�� if � � �;
��������

�
������� if � � �.

(12.6)

The factor ����� stands for the inhibition of the cytokines IL-4 and IFN-�, and is
dependent on the class � � �� �, and 2 of the Th cell: If the duplicating Th cell is
of class 1 then it is inhibited by IL-4; on the other hand, if it is a Th2 cell then it is
inhibited by IFN-�. If the cell is Th0 then �� � � and there is no inhibition. The
parameter � represents the cytokines inhibition efficiency (note that, for simplicity,
� has been taken equal for both IL-4 and IFN-�).

The switch between Th’s classes depends on the local concentration of cy-
tokines. The probability � of a Th0 cell to become a Th1 or Th2 is given by the
relative local amount of IL-4 and IFN-�

� �

�
� �

�������

�������

�
��

� (12.7)

This means that Th0�Th2 with probability � whereas Th0�Th1 with probability
�� �. If neither IL-4 nor IFN-� is present in site �, then no switch takes place. Note
that in so doing, we are actually embracing the hypothesis that it is not possible for
Th1 or Th2 committed cells to switch back to the other class. Hence Th1/Th2 are
taken as committed cells.

The isotype switch occurring to B cells is modelled through a sigmoid-Hill
function with coefficient � and �,

� �
��

�� � ��
� � � 	� � � �� (12.8)

The parameter � has been set to 	, which, in turn, determines the cytokines’ se-
cretion rate of cells. The value of parameter � has been arbitrarily chosen equal to
two.

The bound between IgE and the Fc receptor on mast cells is stable for a number
of weeks [24]. Hence we use a negative-binomial distribution for this event, and
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we “desensitise” a mast cell with probability � (meaning that the mast cell loses its
IgE bound to Fc receptors). Because the expected value of the negative binomial
distribution is ���, we set ��� � � months, that is � � ������, given that a time step
is 8 hours, as we will see in the following paragraph.

At the end of each time step, cells and immunoglobulins (but not cytokines
which purposely are not assumed to diffuse – in order to match the autocrine or
paracrine nature of cytokines signalling [24]) diffuse from one lattice site to a ran-
domly chosen neighbouring site. Each entity moves independently, the whole pro-
cess resembling a Brownian motion of particles. It should be mentioned that we are
taking equal diffusion coefficients for all modelled entities. Clearly this is only a
rough approximation. However, this does not really influence the results, since our
model assumes a uniform concentration of cells and molecules.

12.3.1 Choosing Paramet ers

All the model parameter values are given in Table 12.3. This parameter set is
considered here the standard set of parameters. In other words, parameter values
in Table 12.3 are those used in all simulations, unless specified otherwise. Most of
the values have been taken from standard immunology literature. The parameters
have been grouped as those whose value was taken from known literature, those
which are considered arbitrary and those which determine the initial conditions of
the simulation. The values of the half-life, � , are given in Table 12.2.

Antibody molecules as well as cytokines are handled in “quanta” of concen-
tration, that is, there is a minimum amount of molecules which is taken in bulk
within the interaction procedures. These quanta are one milligram per millilitre
( ��/��) for antibodies, one femptogram per millilitre (��/��) for cytokines and
one nanogram per millilitre (��/��) for histamine.
Secretion of monoclonal antibodies by hybridomas, in terms of concentration in
plasma, is at about 1-20 ��/�� during its lifetime [24]. Therefore we set the anti-
bodies secretion rate in plasma to  � �� !g/ �� per time step, which is, 8 hours.

How to set the initial proportion of Th cells in the class 1 or 2 is a major con-
cern. As a matter of fact this proportion is taken as the criterion for distinguishing
hypersensitive people from nonhypersensitive ones. In our model, hypersensitive in-
dividuals are characterised by having a larger number of initial Th2 cells. We use
two parameters for this purpose: " and �. Thus,

������ � "������

������ � ��� "��������

������ � ��� "���� ��������

where ����� is the total number of helper cells (cfr. Table 12.3). The values of "
and �, taken arbitrarily here, are given as initial condition and determine the initial
level of susceptibility to the allergen.
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Table 12.3 Standard parameter set. The initial amount of cytokines (IL-4,
IFN-�, IL-12, T-GF) is set to zero to indicate normal conditions. (� and �
indicate integers and real numbers respectively.)

Parameter Meaning Range Value

Known values
 Ab secretion rate � 10 (!g/��/8h)
� lymphocytes duplication steps � 5

 cytokines amplif. factor � 2

Arbitrary parameters
� T-GF efficiency � 50
� cytokines inhib. efficiency � 10
� histamine secretion rate � 1 (��/��/8h)

Initial conditions
� lattice dimension � 20
���� B’s init. population � 260 (cells/���)
����� Th’s init. population � 875 (cells/���)
����� MA’s init. population � 350 (cells/���)
����� MC’s initials � 300 (cells/���)
� size constraint � 10
�� " fraction of Th0 ��� �� 0.9
� fraction of Th1/Th2 ��� �� 0.2
	 cytokines secretion rate � 100 (0.1��/��)

12.3.1.1 Setting the Scale of Time and Space

The time scale of the model is determined by our assumption that a lymphocyte
completes one mitosis cycle in one time step. Since, once stimulated, a lymphocyte
divides for about three times a day, our time step corresponds to about 8 hours.

Space is not so simple to define in our model. It is the normal adult blood-cell
counts which gives us the reference value. In fact, fixing to about ��� the initial
lymphocytes’ counts our simulation space is taken to be about one ��� of blood
serum. The only arbitrary value is the initial number of mast cells, which is very low
in blood, but high in tissues.

Note that when the initial population of cells is fixed, the lattice dimension �
determines the concentration, hence the affinity to the antigen and, in general, the
interaction probability.
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12.4 Model Validation a nd Simula tion Results
In the first set of simulations we are mainly interested in validating the model

suitability for retrieving real-life hypersensitivity. To do so, we first check whether
the model can reproduce an immune response, while fulfilling the hallmarks of an
IgE-mediated hypersensitive reaction in susceptible individuals. Subsequently, a set
of simulations (paragraph 12.4.3) are performed to asses the dependence of the IgE
level on both the level of IL-4 and that of IFN-� [59].
The second set of simulations represents the core of our work. Here we investigate
the effect of the allergenic drug dosage and administration schedule on the amount
of histamine released by mast cells. Finally, in section 12.5, we briefly discuss the
main results and suggest some implications for future drug therapy.

It is worth at this point, to spend few words about the way we use the terms
“dose” and “concentration” hereafter. When we say “drug concentration” of, e.g.,
2000 ��/��, we actually mean “the dose whose resulting concentration is 2000 ��
in a millilitre of blood after a suitable delay of time,” since our simulation space is
always a millilitre of blood.

12.4.1 Healthy Subject s: Primar y and Secondar y Immune Response
to a Generic An t ig en

There are several ways in which normal immune response to a generic antigen
can be simulated using our model. For instance one can inhibit the production of
IL-4 in the model, thus “knocking-out” IL-4 activity [60]. Another possibility is to
force Th cells to be of class 1 only (i.e., � � � ). Here we mimic a healthy subject by
using the first method, that is, we set things so that no IL-4 can be released by Th2
cells. The consequence is a bias towards the Th1 response, i.e., a normal immune
response.

The drug administration protocol consists of a first injection at initiation (time
zero) and a burst injection at day 40. The drug dose for both injections is calculated
so that in one ��� the concentration is 2000 ��/�� (recall paragraph 12.4). Results
suggest that the model system reproduces a classical primary and secondary Th1-
type, response (Figure 12.3, panels a, b, and c). In panel (a) we see simulation of
the blood levels profiles of the interleukins IFN-�, IL-4, and IL-12. Note that the
first increase in all three interleukins is only marginal, occurring 14 days following
the first drug challenge. In contrast, the second drug challenge generates a much
more significant response in all the simulated interleukins. The level of T-GF is
also different during the first and the second response, but the difference from the
hypersensitive case (next paragraph) emerges only at the second injection. Panel (b)
shows the level of immunoglobulins produced by plasma cells where the IgM type
are eventually overtaken by IgG during the second response. Finally, the system
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Figure 12.3

Immune response in healthy subjects (or IL-4 knockout mice [60]). Allergenic
drug injections are scheduled to be at initiation and in day 40. No histamine is
released, because mast cells are not sensitised (not shown) given that no IgEs are
secreted (panel (b)). The immune response is of the Th1-type (panel (c)) since
IL-4 is absent (panel (a)).
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develops immune memory of the Th1-type for the specific antigen (panel (c)).
In summary, using our CA tool we retrieve

� the production of antigen-specific IgG antibody (Figure 12.3, panel (b));

� the production of IFN-� by type 1 Th cells (Figure 12.3, panel (a)); and

� a moderate degree of proliferation of helper cells (Figure 12.3, panel (c)).

Note that in our “healthy subject” model no IgEs are produced (panel (b)) and
therefore mast cells do not get sensitised (panel (a)) and no histamine is released (for
simplicity we assumed that the basic level of histamine secretion is null).

12.4.2 A llerg ic Su b ject s: Sen sit isat io n an d Hyp ersen sit ivit y t o a
Generic Allerg enic Drug

To simulate hypersensitive subjects, who develop a large amount of immuno-
globulins of the IgE isotype, we assume an initial Th1/Th2 ratio (i.e., � � ���).
Having made this assumption we expect the course of immune response in the hyper-
sensitive individual to be quite different from that of the normal individual. Letting
the simulated drug protocol be the same as in the previous experiment, we obtain
results as summarised in Figures 12.4 and 12.5. Figure 12.5b shows the population
size of Th1-Th2 cells. Comparing results to those displayed in panel (c) of Fig-
ure 12.3 one can immediately notice that the initial bias towards higher proportions
of Th2 to Th1 suffices for a Th2-type, or allergic response. This result can be in-
terpreted as follows: the first contact with the allergenic drug triggers Th2 cells to
release IL-4 (Figure 12.4a). Consequently, increased production of Th2 cells oc-
curs, resulting from the amplified IL-4 production and the inhibited IL-12 and IFN-�
release (Figure 12.4a). In fact, the inhibition of IL-12 prevents the Th0 � Th1 tran-
sition so that the Th0 � Th2 transition is now favoured. Increased proportion of Th2
cells, eventually results in the IgG to IgE isotype switch (Figure 12.4b), and IgEs
bound to the Fc receptor on mast cell’s membrane are crossed-linked by new aller-
genic drug molecules to degranulate these cells and release histamine (Figure 12.4a
bottom right).

In our model at least two bounded IgE molecules are required for a mast cell
to become sensitised. Figure 12.5a shows the changes, over time, in the proportion
of sensitised mast cells. Note, in this figure, that the counts of sensitised mast cells
are lower during the first contact with the allergenic drug. This is because IgM are
more numerous at the onset. The second injection dosing of allergenic drug finds
the system in the Th2-dominant-state so that a larger production of IL-4 induces a
large IgE isotype switch of B lymphocytes (Figure 12.4b) with consequent cross-
linking and degranulation of already sensitised mast cells. In summary, note that the
first response here is mainly IgM, while the second response is dominated by IgE
immunoglobulins. Moreover IgGs are virtually absent during the second response,
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Figure 12.4

Respo nse in hy persensit ive subj ect s. Allerg ic subj ect s have a dif f e re nt immune
re a c t i on to the a llerg en compa red to healthy (cfr. Fig ure 12.3). In particula r
la rg e pro duct io n o f IL- 4 which a mplif y Th0 t o Th2 switch ( see F ig ure 12.5) and
iso t y pe swit c h t o Ig E ( pa nel ( b) ) wit h co nsequent cro ss- linking ( i.e., sensit isa -
tion, Figure 12.5) and degranulation with release of histamine (panel (a) bottom
right). The parameter � � ���, the inject io n o f a llerg en is a s fo r F ig ure 1 2 . 3 .
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Response in hy persensitive subjects. Referring to Figure 12.4, the t op panel
shows t he a mplified Th0 t o Th2 swit ch a nd t he bo t t o m pa nel t he sensit isa t io n.

and Th proliferation (Figure 12.5a) is much larger, as compared to that of healthy
subjects.

The above simulations validate our model’s versatility in reproducing the dif-
ferences between normal and hypersensitive response.
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12.4.3 Ef fect s o f IF N -� an d IL - 4

To further validate our model we study the effect of IFN-� and IL-4 on the
development of IgE or IgG antibodies (cfr. Figure 12.6). To this end we initiate
treatment by injecting a variable amount of IL-4, or a variable amount of IFN-�. Two
weeks later we measure the amount of IgE and IgG produced. Results are shown in
Figures 12.6a and 12.6b respectively, where each point is computed averaging the
outcome of hundred independent runs.

As expected, the results in Figure 12.6 show that the level of produced IgE is
positively correlated with IL-4 dose, since IL-4 not only favours isotype switch to
IgE, but also sustains the switch of Th0 to Th2 cells, further producing IL-4 in a pos-
itive feedback. In contrast, the level of IgE is negatively correlated with the injected
IFN-� dose, since IFN-� amplifies the effects of IL-12 released by antigen process-
ing cells, and induces Th0 to undergo a class switch to Th1. In addition, IFN-�
supports isotype switch of B cells to IgG. The inverse results are obtained for the
effect of IL-4 and IFN-� on IgG production. As can be seen in Figure 12.6, our sim-
ulation results are in good agreement with real-life observations ( [24], observation
cited in [59]).

12.4.4 H yp ersen sit ivit y Dep en d en ce o n D ru g D o se

In this section we investigate the relationship between the allergenic drug dose
and the amount of histamine released. The parameter setting is the same as in the
previous experiments, the only difference being the concentration of allergenic drug
in blood and the administration schedule.

In these simulations we make use of the knowledge of the “critical histamine
level,” that is, the amount of secreted histamine above which allergic symptoms
appear, whose average value can be defined to be 1 ��/�� [61]. Nevertheless, it
should be mentioned here that in clinical practice the distinction between “normal”
and “pathologic” is not so sharp, the threshold of hypersensitivity possibly lying
anywhere in the interval 1-10 ��/��.

In the first simulation experiment we check the effects of the dose of the aller-
genic drug administered at initiation (denoted sensitisation). We do so by varying
the sensitisation dose and by measuring the peak value of histamine a few days of
simulated time following sensitisation. In Figure 12.7a we plot the average peak of
histamine measured within few days after the dosing, as computed over a hundred
independent simulations. Results show that the level of histamine release increases
proportionally to the sensitising allergen dose. Moreover, a sharp increase above
the critical allergic threshold of 1 ��/�� histamine concentration is found for drug
dosing corresponding to about �����/�� (cfr. Figure 12.7a) .

Hence a large dose of drug, administered in a single shot, is not advisable.
Therefore a different method of administration should be considered. This can be,
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IgE and IgG production as a function of the injected IL-4 and IFN-� doses.
IgE production is positively correlated with the injected IL-4 dose and nega-
tively correlated with the dose of IFN-�. The opposite holds for IgG production.
Comparison with in-vitro observations is shown (from [24], observation cited
in [59]). Concentrations on both axes are given in arbitrary units.
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Pa n e l ( a ) : H i s t a mine re lea se a s a f unct io n o f t he sensit ising a llerg enic drug do se
fo r a s i n g l e a dminist ra t io n. D if f e re nt do ses o f a llerg en a re a dminist ered a t t ime
zero. The corresponding histamine release level increases above the allerg ic
threshold of 1 ��/�� [61] fo r a n a llerg enic drug do sing co rrespo nding t o t he
critical concentration o f �����/��. One hundred independent simula t io ns a re
av e r aged; standa rd deviatio n is shown as error ba rs. Panel (b): Histamine re-
lea se fo llowing t wo a llerg enic drug do sing s o f dif f e re nt do ses. The plo t shows t he
hist a mine c o ncent r a t io n during t he seco nda ry immune re spo nse a s a f unct io n
of drug do se in t he seco nd do sing �#���� .

for example, administration in divided doses. In order to use our model for studying
the effect of such multi-dosing protocols we make another set of experiments.

These simulations are performed according to the following settings: at time 0
we inject the allergenic drug, dose being �#���� � ���, ���, ���, and ��� ��/��.
About two weeks later we administer the same variable amount �#���� (what is
called the challenge). Thus, in two administrations we check sixteen different dose-
schedules ��#����� �#�����. One hundred independent simulations are performed
for each schedule, and the amount of histamine at the peak level after the second
dosing is measured. Averages are then computed and plotted in Figure 12.7b.

Results in Figure 12.7b suggest a correlation between the first administration
dose �#���� and the amount of histamine released by mast cells. Thus, a sensitisa-
tion dose of �#���� � ��� ��/�� risks to stimulate an above-threshold release of
histamine, if followed, two weeks later, by a successive dosing above ��� ��/��.
It is also interesting to note that a strong sensitisation dosing (�#����) sets the sys-
tem to release high levels of histamine, for any positive challenge dose ����� (the
points for �#���� � ��� remain the same on the log-scale x-axis). This suggests
that a larger second dosing is not advisable unless the sensitisation is made with low
dosage. In fact, only �#���� � ��� and ��� ��/�� remain below the critical level
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Ta b l e 12.4 Parameters estimated from simulated data s hown in Figure 12.8
fo r E quation (12.9).

Allergen concentration (��/��) a b c d
1000 0.899 3.754 2.662 0.215
2000 2.778 3.422 2.676 0.377
5000 7.330 2.701 2.718 0.715

of 1 ��/�� of histamine after the challenge for the doses tried in this experiment.
This result is in line with experimental practice during immunotherapies [2,62].

12.4.5 D ep en d en ce o f H yp ersen sit ivit y o n Do sin g In t er val

In the above experiments we used schedules of two allergenic drug cycles,
where the second drug administration was constantly delayed by two weeks. In this
section we investigate how the histamine level may change under different intervals
between the two cycles � � �� � ��. The total drug concentration in a ��� in both
the sensitisation and the challenge dosing (�#���� and �#����, respectively) is set
to 1000, 2000, or 5000 ��/��. We first inject the allergenic drug at time zero and
for the second time following a variable delay ranging from 3 days to 100 days. As
usual, 100 independent simulations are performed for each setting and the amount
of histamine at peak level is measured. Averages are then computed and plotted in
Figure 12.8.

Histamine secretion as a function of the dosing interval $��� is well described
by the exponential function

$��� � % �� �� ������� ���� � &� (12.9)

with parameters given as in Table 12.4.
Some of the parameters can be assigned a biological meaning: % depends on

the secretion rate of histamine from mast cells (it is expressed in ��/��/days; cfr.
parameter � in Table 12.3),  is a free parameter, whereas & (expressed in ��/��)
determines the asymptotic level of histamine and may be an important estimation
of the level of tolerance. Note that the asymptotic value & strongly depends on the
half-life of the immune memory. In fact, if memory fades away before the second
dosing, a similar response to the first dosing is to be expected.

A most interesting result is obtained when one attempts to estimate the param-
eter � (expressed in days). This parameter determines the interval, corresponding to
the maximum of the function in Equation (12.9), which is attained at � � '�. In all
cases simulated here this value corresponds to about two weeks, regardless of the al-
lergenic drug dose. Therefore our model predicts two weeks as the delay one should
avoid when setting protocols for chemotherapy, regardless of the drug dosage; how
far one should deviate from the two-week delay is a function of the dose (see below).
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Histamine concentratio n versus � � �� � ��. Three regimes a re v isible: 1 ) t he
immune re spo nse is st ill a c t ive a nd w ipes o ut t he a llerg en; 2 ) la rg e re spo nse; a nd
3) low respo nse beca use o f t he decrea sed number o f sensit ised ma st cells. This
st ems f ro m t he f a ct t ha t Ig E- F c bo und t o mast cells can last for e.g., 1 2 weeks.
Th e 1000 ��/�� drug - do sa g e is sa f e fo r t his t wo do sing s schedule. In co nt ra st ,
fo r the 2000 and 5000 ��/�� drug - do sa g e s t here ex ist s a w indow o f dura t io ns
of the dosing interval, �� � �� (see below), between the two administrations,
which increases histamine release above the critical level of 1 ��/��.

From the simulations in section 12.4.4 we already learned that a safe value for
the drug dose would be of ��� ��/��, while ��� ��/�� risks to cause an allergic
reaction. Moreover, we already know that for intermediate drug doses there exists
a window, for the delay �, for which histamine reaches levels above the critical
value of 1 ��/�� which we call now �� . Performing some simple algebra, using
Equation (12.9), we may compute the width of the window as �� ���, where

�� � ��

�
��

�
�

 
��

%
��� &

�
�

and

�� � ��

�
��

�
�

 
��

%
��� &

�
�

for % ( ��� & and & �� ��. Hence, for example, after estimating the coefficient of the
function in Equation (12.9), we can predict whether or not a certain time-schedule
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protocol is advisable. For example, for the case of 5000 ��/�� drug administration,
we obtain �� �� �� days and �� � ����� days.

12.4.6 F ract io n at i n g t h e D ru g Dose into Multiple Dosings

We now consider the question whether hypersensitivity reaction can be avoided
by further fractionating each drug dosing within a therapy-cycle in a manner equiv-
alent to “applying slow drug administration.” In order to address such an issue we
perform a set of experiments in which two therapy-cycles are composed of a period
of administration of one, two, or three time steps each. Recall that a time step is 8
hours, so that one dosing is equivalent to an 8-hour period of infusion, two dosings
are equivalent to a 16-hour period of infusion, and so on. As usual, 100 runs for each
scenario are performed, peaks of histamine are measured and averages are shown in
Figure 12.9. Plot (a) refers to the total administration of 1000 ��/��, plot (b) to
� � ���, and (c) refers to ���. As shown, for the case (a) and (b), there is no much
difference in the hypersensitivity reaction which results from single or multiple drug
dosing of the same total dose. A more significant difference is seen in plot (c), but
this is probably due to statistical fluctuations of the results. At this time, given the
gross time-resolution adopted in the model (8 hours per time step) we are unable to
say if such a result is due to some systematic phenomenon.

12.5 Discussion
Many antitumour drugs have been shown to induce hypersensitive responses.

One of the extensively studied examples is the widely used cytotoxic drug, pacli-
taxel, which is administered in a variety of solid tumour diseases [21,63]. As hyper-
sensitivity to the drug can hamper further therapy, it may be interesting to investigate
the effects of the allergenic drug schedule, dose fractionation, dosing interval, and
rate of administration, on the resulting symptoms of hypersensitivity. To study these
questions we simulated various drug treatment scenarios, employing a CA model
of the immune system. Our results are interpreted below hoping to arrive at some
practical conclusions for future therapies.

We started by studying the dose effect of a single allergenic drug administration.
Figure 12.7a shows that there exists a critical value for the amount of allergenic drug
dose for which the allergic threshold of 1 ��/�� of histamine released is exceeded.
This critical concentration is found to lie between ��� and ��� ��/��.

We then considered the fractionation of a single dosing into two administration
cycles consisting of a single dosing each, and separated by a considerable fixed in-
terval (two weeks). For investigating the effect of the dosage in a schedule of two
successive cycles, different schedules are chosen for the simulations reported in Fig-
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Hist amine release corresponding to differe n t s l ow drug a dminist ra t io n pro t o -
cols: t wo dosing cycles performed a t day zero a nd after o ne, t wo , o r t hree weeks.
At each cycle, the dosing is performed ove r a pe r i o d of 8, 16, or 24 hours. The
total amount o f a llerg enic drug is ��� ��/�� in plo t (a), �� ��� in plo t ( b), and
��� in plo t ( c ) . The a mo unt o f a llerg enic drug is equa lly div ided fo r t he perio d
of drug a dminist ra t io n, so t ha t , fo r e x a mple, t he 1 6 ho ur a dminist ra t io n in ca se
(a), correspo nds to two consecutive do sing s (after 8 ho urs) of ���� ��� ��/��.

ure 12.7b. Interestingly, we found that the drug dose during the second cycle does not
significantly influence the histamine level released by mast cells, if the sensitisation
dosing, that is the dosing of the first cycle, is high. The most straightforward expla-
nation for this result is that, due to strong sensitisation, a large number of antibodies
are formed, which actually compete for the allergen during the challenge with the
sensitised IgE-bound mast cells. Critical concentration of histamine is reached for
high drug dosage (even for ��� ��/��), if the challenge is a large dose (for example
above ��� ��/��). Note that this is in agreement with the clinical experience in
immunotherapeutic protocols: one starts with a small amount of allergen and grad-
ually increases the amount to reach a certain maximum [2]. Indeed, in Figure 12.7b
one can easily see that, for equal total drug dose (first dosing + second dosing), the
histamine released during the challenge is higher when the first dosing is larger and,
vice versa, it is lower for lower first dosing.

The second issue to be discussed is the effect of the allergenic drug dosing
interval on hypersensitivity. Replacing the fixed dosing interval of two weeks, we
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simulated cycles of therapy with delays of variable number of days between them.
The results, summarised in Figure 12.7b, single-out a dosing interval of two weeks
as the centre of the peak in histamine release, regardless of the dose of drug injected.
The histamine increases above the critical pathological level only if the two cycles
are critically distanced, but not if they are very shortly distanced. However, when
using a larger amount of drug, both the boundaries of the critical window expand,
leftward and rightward reducing the chances for an optimal delay between cycles.

A final question arises when considering prolongation of the drug administra-
tion period within a single cycle (i.e., one or more shots). In order to address such an
issue we performed a set of experiments in which a therapy-cycle is composed either
by a single, two, or three shots. Results are those shown in Figure 12.9. As suggested
by this figure, the rate of drug administration of the same total dose has no or little
effect on hypersensitivity, if the administered dose is one or three !g/��. For higher
dosage (panel (c)) some effect arises but given the large time scale adopted in our
model (8 hours/time step) we are unable to tell more about it.

In summary, our results suggest that in order to avoid allergic reactions to drugs
during therapeutic anti-cancer treatments, one should administer a growing dosage
of drugs in the same way allergen is administered to the patient during immunother-
apies. The interval between successive cycles should be either very short (if the drug
dose is low) or very long (if the drug dosage is high) while the question if prolonged
period of infusion reduces the risk of allergic reaction remains unanswered.

12.6 Conclusions
Simulations validate the ability of the model to capture the basics of immune

phenomena in both normal and drug-hypersensitive individuals. By means of ex-
tensive numerical simulations we observe a strong correlation between histamine
release and both allergenic drug dosage and the interval between successive dosings.

Varying the interval between successive drug dosings we find that histamine
release after the burst dosing has a peak around '� � two weeks, where � is a con-
stant which seems independent of the allergenic drug dose. This result suggests the
existence of an optimal value to be used during anti-cancer therapies.

Our results, however, may be improved in two different directions.

1. At present, we considered only mast cells to be responsible for the allergic re-
action. However, it is believed that eosinophils provide further stimulation to
the mast cells, inducing degranulation during the late-phase response, which
occurs some minutes after the early phase [56]. Therefore, a possible improve-
ment of the model would be to take them into account in order to draw more
accurate conclusions.

2. In addition, a finer-grain in the definition of the time-resolution may aid in ver-
ifying whether increasing the period of drug administration, within each single

©2003 CRC Press LLC



therapeutic cycle may reduce, or, rather, increase the magnitude of hypersen-
sitive reaction.
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13.1 Introduction
Reaction-diffusio n (RD) systems are mathematical models wh ich p rovide macro-

sc opic d escrip tions for the dynamics of media in which random motio n and chemical
reactions are the majo r p layers to be kept track of. In a typical situ ation, an RD sy s-
te m consists of several coupled differential equations, p art o f which at least involve
sp ace and time d ependent variables, and are therefore o f the type known as partial
differential equations. A particularly simple bu t important case is p rovided b y single
scalar equations, o f which th e lin ear diffusio n equatio n is arguably the most relevant
ex a m ple.

Reaction-diffusio n systems have been ex tensively studied durin g the 20�� cen-
tu r y. Wh ile th e m ath e m a tical an aly sis o f g e n e r a l, n o n lin ear RD sy stem s is r ath e r
invo lved , in a n u m b e r o f cases o f in ter e st in ap p licatio n s RD equations have been
sh ow n to p o ssess a w ealth o f in ter e stin g ( and o ften in triguing) behaviours. These
correspond to classes o f p articular so lu tions, the study of wh ich o ften goes under
th e ter m o f p atter n f o r m atio n th e o r y. Th ese notes are intended to p rovide an in -
tr oductio n to that subject, which plays an important role in many problems in the
natu ral sciences. However, as it will become apparent from the list o f contents, our
choice is strongly b iased in several aspects. First, th e selectio n o f topics made pays
particular attentio n to models in biology and m edicine. On the o ther hand, at the
methodological level we h ave focused on th e u se of asymptotic methods, which are
particularly efficient wh en th e underlying dynamics invo lves different time and sp ace
scales. There is no questio n about other possible approaches having merits of th eir
ow n. It seems, however, th at th e material b eing reported upon in th e sequel is o f
primary interest f or any r esearcher appro achin g the field of math ematical biology.

Th e p lan o f th is c h a p ter is as f o llows. To star t, sectio n 1 3 . 2 d eals with a g en er al
ove r v i ew o f R D s y s tem s, f o llowed b y a sh o r t r ev iew o f r esu lts co n cer n in g th e lin ear
diffusio n equatio n and its relatio n to random walk s. Then, after quickly remarkin g o n
asymptotic states for lin ear and nonlinear sy stems, we comment on Tu ring’s classical
wo rk on diff usio n - d r iven in stab ility g e n e r a tio n in lin ear sy stem s. Af ter th a t, th e
section concludes with a description of a simple (but relevant) model of nonlinear
pattern formation, the so-called activator-inhibitor system proposed by Gierer and
Meinhardt in 1972.

Sectio n 1 3 . 3 d eals with p a r ticu lar so lu tio n s of RD sy stems o f wave type. As a
starting point, we review some classical work on scalar, semi-linear diffusion equa-
tions, including the groundbreaking 1937 paper by Kolmogorov, Petrovsky, and
Piskunov on the existence of travelling waves for a model arising in biology. We
then turn our attention to excitable systems which are of particular interest in life
sciences, and recall some relevant cases of wave propagation, including pulses, tar-
gets, and spiral waves.

Fin a lly, in sectio n 1 3 . 4 we p resent so m e se le c t ed topics on the m athematical
analysis of chemotaxis, that is, on motion of micro-organisms driven by the gradient
of an attractant (or repellent) chemical signal. After shortly reviewing the problem
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of axon growth and n eural n av ig ation, we focus o n the study of th e aggreg atio n
properties o f a much-studied model, namely th e amoeba Dictyosteliu m discoid eu m
(Dd). Phenomena such as chemotactic collapse and stream and spiral motions are
consid ered, always with th e h elp o f the asymptotic techniques already introduced in
sectio n 13.3.

The material that follows is intended to be suitable for any advanced undergrad-
uate or junior graduate student with some background in differential equations. To
keep the flow of the main arguments in the text, lengthy calculations have been omit-
ted, and arguments have been in general condensed. Whenever that occurs, reference
is made to those articles or books where additional details can be found.

Last, but not least, I wish to express my sincere thanks to the coordinator of
the European Project HPRN-CT-2000-00105, Professor Nicola Bellomo, and to the
Director of the Propriano 2001 Summer School on “Using Mathematical Models and
Computer Simulation to Improve Cancer Therapy,” Professor Luigi Preziosi, for their
continuous interest and helpful assistance in all aspects related to the preparation of
this work. I am also particularly thankful to Professors Paul Fife and Juan Velázquez
for a number of interesting remarks on topics considered in these notes.

13.2 Reaction-Diffusion Systems: Basic Results
In this section we shall recall some relevant facts concerning linear and nonlin-

ear RD systems.

13.2.1 Modelling Assumptions

A reaction-diffusion system of equations is a mathematical formulation of a
balance principle. More precisely, let us denote by ��� � � � � �� some quantities de-
pending on space (represented by a vector � � ���� � � � � ���� � � �) and time
(denoted by �). A possible rule for the evolution of the ���� is provided by

���
��

�� � �� � ������ � � � � ����� �� � � � 	 � 
 � (13.1)

The first term on the left of (13.1) corresponds to local variation of the variable
��, whereas the second term there accounts for transport of �� within the surrounding
medium. In mathematical terms, the notation � � �� means the divergence of the
quantity ��, which is termed as the local flux. A typical choice for �� is

�� � ����������� �
��
���

�������� � (13.2)
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where � � ���� � � � � ���, and���� is the diagonal matrix ���������
� � ���� �

���
� �. The

first and second terms in the right of (13.2) are usually referred to as the diffusive and
convective components of the flux, respectively: ����

� ��� (resp. ������) are known
as the diffusion (resp. convection) coefficients. For instance, assume that � � �,

 � � and ����, ��� are constants such that ����

� � �� � 	, and ��� � � when
	 � , and ��� � 	 otherwise. Then the transport term in (13.1) is given by

� � � � �
��
���

��
���

����
�

��
���

��
��

���
�

As to the forcing function (13.1), it represents a source (or sink) term, arising
for instance from chemical reactions when the �� denote substances susceptible of
recombination. Typical choices for �� are of a power-like or exponential nature. A
simple example, corresponding to the case � � 
 � �, is provided by ���� �� �� �
��� � ���, for some real numbers �, �, , and �.

13.2.2 Linear Diffusion

A particularly important example of RD systems is the linear diffusion equation,
which is obtained by setting in (13.1)
 � �, � � 	, �� � 	, and �� � � � 	 for
� � 	 � �. We then obtain

��

��
� ��� where �� �

��
���

���

����
� (13.3)

In other words, (13.3) is derived under the assumption that there is no convec-
tion in the medium, and the local flux satisfies

� � ���� �
this last statement being often termed as Fourier’s or Fick’s law. It is well known
that, in order to uniquely determine its solutions, (13.3) has to be supplemented
with suitable initial and boundary conditions, thus giving raise to a number of well-
posed mathematical problems. One of these is the so-called initial value or Cauchy
problem, given by �����

��

��
� ��� when � 	 �� and � � 	�

���� 	� � ����� when � 	 �� � � � 	 �

(13.4)

Here ����� is a given function, on which only mild requirements need to be
assumed. One may directly check that a solution of (13.4) is given by

���� �� � �
�����
�
�

�
��

��
������
��� ����� �� � (13.5)
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where as usual


�� �
� �
��
���

��� � ���� �

provided that the integral above converges in some time interval 	 � � � � � �.
When


�����
 � � ������ �

for some positive � and� , (13.5) actually yields the only solution to (13.4) (see for
instance [30]). A limit case of particular interest appears when ����� reduces to a
pointwise discharge of unit intensity (a Dirac delta, or mass, in mathematical terms),
����� � Æ������ for some �� 	 �� . This can be considered as an object satisfying�
��
Æ�� � ��� �� � � but such that Æ��� ��� � 	 for any � �� ��. A conceptually

more reassuring alternative consists in considering Æ��� ��� the limit as � � of
a sequence �������� of smooth and nonnegative functions, each of which vanishes
outside the ball ������ � �� � 
�� ��
 � ���� and is such that�

��

������ �� � � �

When such an object is taken as initial value at � � 	 in (13.4), (13.5) reduces to

����� �� � �
�����
�
� ��

������
�

��� � (13.6)

We next remark on two key properties of Equation (13.3), namely its linear-
ity and irreversibility. To begin with, if we consider (13.4) as a black box, which
provides a response (output) ���� �� whenever a stimulus (input) ����� is fed in, for-
mula (13.5) establishes that response is always proportional to stimulus (multiply-
ing ����� by a factor � yields ����� �� as a new solution). Furthermore, any finite
linear combination of solutions gives again a new solution, and the same happens
when infinite such combinations are considered, provided that convergence of the
corresponding series can be established. This fact is the basic idea behind Fourier’s
celebrated separation of variables technique, which is very useful to solve (13.3) in
bounded domains with suitable symmetry, and that consists of looking for solutions
of the form

���� �� �

��
���

���������� � (13.7)

where the ������� are a countable family of solutions of a suitable eigenvalue prob-
lem, and the ������� are the corresponding amplitudes which modulate them. Both
������� and ������� are to be determined upon substitution of (13.7) into the cor-
responding boundary value problem for (13.3); see for instance [89] for details.

A second important property of (13.3) is irreversibility, i.e., the fact that chang-
ing � by ���� does not leave (13.3) invariant. Actually, the transformed equation thus
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obtained is highly unstable. To wit, consider for instance the initial value problem�����
��

��
� ��

��

���
when � 	 �� � � 	 �

���� 	� � ���	 for some  � 	 at � � 	 �

(13.8)

A quick check reveals that ���� �� � ���		
� is a solution of (13.8) if

 � � � (13.9)

Equation (13.9) is a simple example of a dispersion relation (of which more will
be heard in the sequel). It describes the way in which different modes evolve in time
(in this case, they are amplified in an exponential way).

A related fact is that solutions to (13.4) do not keep track of most features of
their initial values �����. Indeed, (13.5) shows that even if ����� is a highly irregular,
discontinuous function, for any positive time �, ���� �� is infinitely differentiable as
a function of � and �. Moreover, if



��

� �
�
��

����� �� �� �

it then follows from (13.5) that

��� 
���� ��
 � ����
� 

��

� for some � � 	 � (13.10)

a strong regularising effect. Notice that (13.10) describes both a smoothening and a
flattening effect, since the right-hand side of (13.10) decays algebraically to zero as
� increases.

13.2.3 Diffusion and Random Walks

The linear diffusion equation (13.3) is a continuum model of a deterministic na-
ture. This means that if we consider, for instance, problem (13.4) and impose some
(mild) assumptions on �����, the corresponding solution is uniquely determined for
any subsequent times, by means of formula (13.5). Such determinism at a macro-
scopic scale (i.e., at a continuum level) is however linked to a random character at a
microscopic scale (i.e., at a discrete level) which we shortly discuss below.

Consider for simplicity a one-dimensional random walk, i.e., assume that a par-
ticle is moving along a line in the form of a series of steps of equal length, each step
being taken either in the left or right direction, with equal probability �

� . After taking
� such steps, the particle could be at any of the points

����� � �� � � � ���� 	� �� � � � � � � �� � �
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Th e f o llowin g q u e stio n n atu r ally ar ises: w h a t is th e p r o b a b ility �
��� th at
th e p ar ticle ar r ive s a t th e p o in t
 (
 bein g an integ er), after suffering� (� � 


 )
disp lacements?

Suppose for in stance th at 
 � 	. Then  �
��� is th e p r o b a b ility o f tak in g
�
	�

� � ste p s t o t h e r i ght (indeed, �� �
� must be an even number), out of a total
of � step s. I t th en tu r n s o u t th at

 �
��� � (probability corresponding to an arbitrary sequence o f p aths)

� (number o f p aths leading to p lace
 )

�

�
�

�

�
 �
�

	�
�

�
�

�
�

�

�

� �

�
	�
� ���
��� ��

� (13.11)

Fo r m u l a ( 13.11) prov id es an ex act answer, but a very cumbersome one (if you
doubt this, try counting from one to ��). However, in so me particular (but relevant)
cases, one may trade an ex act, unwield y expression by a merely approximate, but
convenient, one. This is the rationale behind many so -called asy mpto tic methods.
Fo r i n s t a nce, assu me that

� � � and



�
� � � (13.12)

th ese symbols meanin g “� is ver y larg e” an d “
�� is very small,” are admittedly
not the most precise of the statements (see [4] for a careful definition). We then may
take advantage of Stirling’s formula

� � �
�
��� ��

�


as � �� �

(cf. [4] and [29], Chapter II, Sectio n 10), o r more p recisely of its logarith mic form

�!"�� �� �

�
� �

�

�

�
�������� �

�

�
��������#

�
�

�

�
as � �� �

(13.13)
to deduce from (13.11) that

 �
��� �
�

�

��

� �

�

��
��

�
 � (13.14)

provided that (13.12) holds. Here and henceforth we shall freely use the customary
asymptotic notations � and #���. For instance, Equation (13.14) means that, under
our current assumptions, the ratio of the quantities appearing at both sides of (13.14)
tends to one as � �� (although the difference between these two quantities
need not become small for large� ). On its turn, #� �



� denotes any quantity which

in absolute value may be bounded by �



for some � � 	 as � ��. Here � may
be large, but should not depend on � . If we now set

©2003 CRC Press LLC



� � 
� � � �
�

�
�

i.e., if we assume that our particle undergoes � displacements by unit time, and
introduce a space variable equal to
 times the length � � 	 of any displacement (no
longer assumed to be of unit value), (13.14) yields

 ��� �� � �
�����
�

� ��
	�

��� � (13.15)

where

� �
���

�
� (13.16)

which is a particular case of (13.6) in space dimension � � �. Notice that the mean
squared displacement,

���� �
� �

��

�� ��� �� ��

is then such that

���� � ��� � (13.17)

Relations (13.14) to (13.16) strongly suggest that the continuum equation (13.3)
in one space dimension can be considered as a limit model for a one-dimensional
random walk when the number of flights � goes to infinity. As a matter of fact,
this also happens in higher space dimensions (see for instance [11] for a classical
presentation). The random walk just recalled is an example of a stochastic process,
a subject for which the reader is referred to [40] and [24] for further information.

13.2.4 General RD Systems: Some Relevant Questions

A type of reaction diffusion system which is often found in applications is the
following ���������������������

���
��

� �� ��� � ������ � � � � ��� �

���
��

� �� ��� � ������ � � � � ��� �
...

...
���
��

� �� ��� � ������ � � � � ��� �

(13.18)

where ��,��,� � �,�� are given positive constants, and ��� � � � � �� are given (gen-
erally nonlinear) functions, whereby coupling between variables ��� � � � � �� is es-
tablished. Equations (13.18) are said to be of semi-linear type. On setting � �
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���� � � � � ���, � � ���� � � � � ���, and denoting by � the diagonal matrix with
nonzero elements��� � � � � ��, (13.18) is conveniently recast in the form

��

��
� ���� ���� � (13.19)

The system obtained by setting � � 	 in (13.19) is usually referred to as the
associated kinetic system.

While general enough to account for a wide number of applications, (13.18) is
comparatively simple on mathematical terms, since a number of possible features of
the process whose modelisation is intended have been ignored. For instance, we have
discarded cross-diffusion (which would yield terms such as ���� � ��� in (13.18)),
nonlinear diffusion (corresponding to operators like ����� � with $ �� �), gradient-
dependent forcing terms of the form ������ ��	�

� � � � � ��
	�
� � � � � ��� � � ��, and so on.

Recalling our discussion in the previous section, we remark that equations of the
form (13.18) can be derived as limit dynamics for systems of moderately interacting,
randomly moving particles (cf. [69]). The term “moderately” (or short range) refers
to suitable assumptions to be made on the way in which the interaction between
individual particles is rescaled as the total population increases to infinity. Details
can be found in reference [69].

From a mathematical point of view, looking for general solutions of (13.18) is
not easy. For one thing, general representation formulae in the spirit of (13.5) are
virtually nonexistent (except when the kinetic terms �� are linear). Moreover, blow-
up may occur, i.e., solutions may cease to exist in finite time. This is most simply
illustrated by the ordinary differential equation (ODE for short) �� � ��, which has
solutions of the form �� ��� � �� � ���� for any � � 	. A similar phenomenon
has been extensively studied in the presence of diffusion, that is, for equations of the
type

��

��
���� �� with % � � �

Actually in this equation the interplay between the diffusion and kinetic mecha-
nisms has been shown to provide a countable set of spatio-temporal structures when
the blow-up time � (at which solutions become unbounded) is approached. How-
ever, out of all these, only that having the simplest space structure (characterised by
possessing a single maximum in suitable rescaled variables) is stable; see [37] for a
discussion of the one-dimensional case.

In general, the existence of solutions to (13.18) can only be obtained for suf-
ficiently small times. This may be achieved by means of various techniques: fixed
point methods [31,55], semigroup theory [72], a priori estimates [21,52], etc. We
should also mention that when a higher level of nonlinearity is allowed (for instance,
when nonlinear diffusion terms as ����� are considered), classical solutions, that
is, functions having all the space and time derivatives required to satisfy the system
under consideration at any point, need not exist globally in space, even for arbitrarily
short times. As a matter of fact, in that case interfaces may appear at which solu-
tions or their derivatives may develop jumps (see for instance [3] for a review on
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an important ex ample). Also, th e p resence o f nonlinear convective terms may lead
to sh o c k - wave so lu tions, which exhibit jumps along some moving shock curves or
su rfaces (cf. [90]).

However, even if g en eral solutio n formulae are not available, in many cases
one is able to detect particular so lu tions th at often p lay a key role in the dynamics
(i.e., th e evo lu tio n in sp ace an d tim e o f so lu tio n s) . Th is is clear ly illu str a ted b y th e
fo llowin g sim p le ex am p le. Co n sid er th e ODE

�� � ���� ��� (13.20)

Eq u a tio n ( 1 3 . 2 0 ) can b e ex p licitly in teg r ated . However, o u t o f all its in fin itely
many particular solutions, one of them stands out, namely �� � �. This is readily
seen from the approximate picture o f solutions recalled in Figure 13.1 b elow, that
can be obtained from elementary considerations

Figure 13.1

The behaviour of solutions of (13.20).

Indeed, �� � � is a global attractor for every solution � �� 	 of (13.20). A local
(hence weaker) version of this fact, which will be frequently observed in the less
trivial examples to follow, is quickly derived by looking for the evolution in time of
small perturbations of the explicit solution �� � �. Namely, let us set

���� � � � &��� with 	 � 
&�	�
 � � � (13.21)

Plugging (13.21) into (13.20), and using the fact that, for small &, �� � &�� �
� � �&, we readily see that &��� satisfies

&� � �� � &�� �� � &�� � � � & � �� �& � �& �
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Therefore, at least for small times, &� � �&, and the subsequent evolution
(given approximately by &��� � &�	����) will tend to further damp out the effect of
the small perturbation &�	�. This is linear stability analysis in a nutshell.

When general systems as (13.18) are considered, a key issue often consists in
obtaining relevant particular solutions, that is, solutions displaying asymptotic be-
haviours that are robust (i.e., do not depend on a particular choice of parameters
being made) and at the same time important for the underlying physical or biological
problems of which (13.18) is just a model. Consider for instance (13.18) together
with initial and boundary conditions for which solutions exist globally in time. In
view of our previous remarks, a natural question is the following: what are the pos-
sible asymptotics of solutions for large times? Recalling the smoothening feature of
linear diffusion illustrated by the regularising effect (13.10), the seemingly obvious
answer appears to be that, as time passes, solutions of (13.18) should converge to
those of the associated kinetic system, obtained by setting �� � � � � � �� � 	
there.

Indeed, there are many instances in which this is precisely what happens. Con-
sider for instance the case where  is a bounded subset of �� �� � �� with rea-
sonably smooth boundary, and assume that no-flux conditions are imposed on the
boundary of , �, viz

���
��

� � � � �
���
��

� 	 at � �

where � is the unit normal exterior vector at any point of the boundary �. Assume
also that our system admits a compact invariant region � � �

� . By this we mean
that 	 	 �, and if the initial values ����� � �������� � � � � ������� lie in the interior
of � then so does the solution � � ���� � � � � ��� for all times � � 	. Then it has been
shown in [14] that there exits a number ' � 	, depending on , � , and ��� � � � � ��
such that, if

������� � � � � ��� � ' �

then � converges to ����� as � ��, where ����� satisfies

d��
d�

� ����� � ���� � ���	� �
�




�



����� �� � (13.22)



 denotes the volume of , and 
����
 � (���� for some ( � 	. Then, for suffi-
ciently large times, (13.18) can be replaced by (13.22) under our current assumptions.
As a consequence, asymptotically stable equilibria for

d�
d�

� ���� �

conserve that character for the complete RD system (13.19). As it is well known, the
former can be characterised as those points 	� such that ��	�� � 	, and for which the
eigenvalues � given by

©2003 CRC Press LLC




���	��� �	
 � 	 �

are such that Re� � 	 (cf. for instance [7] and [12]).
It is now natural to wonder what happens if the assumptions in [14] are not

satisfied, something that can be shown to happen if some of the diffusion coefficients
in Equation (13.18) are sufficiently small. Then a pattern (that is, an asymptotic state
with nontrivial spatial structure) may arise. The simplest candidates for patterns are
the stable solutions of the stationary version of (13.18), i.e.,

����� � ������ � � � � ��� � 	 �

... (13.23)

����� � ������ � � � � ��� � 	 �

However, in many cases, patterns are hard to come by. Consider for instance
the semilinear scalar problem


���� ���� � 	 in  �
��

��
� 	 in � �

(13.24)

Then it has been shown in [56] that, if  is convex in �� , any nonconstant
solution of (13.24) is unstable. A similar result has been shown to hold for the
system �

����� ���� �� � 	 �
���� � "��� �� � 	 �

(13.25)

(cf. [48]) provided that

��

��
� 	 �

�"

��
� 	 ��  ���

��

��
�
��

��
� 	 �� � �

However, for any pair �� � 	, �� � 	, it is possible to find a domain  � �
�

(no longer convex) for which (13.25) possesses a stable, spatially inhomogeneous
equilibrium solution [57].

Our previous discussion yields some conditions under which patterns may exist.
However, no catalogue of possible patterns has been provided. On the other hand,
the question of how a given initial state should evolve into such a pattern has not
been addressed. We shall turn our attention to that issue presently.

13.2.5 Linear Theory of Pattern Formation: Turing’s Instability

In 1952, A. Turing published a most influential paper [84], in which he argued
that reaction-diffusion systems of equations could be actually used as models for
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morphogenesis (th at is, g eneratio n o f forms) in liv in g b eings. While su ch approach
wa s not without precedent (see for instance [75]) it  certainly gained momentum after
Tu r i ng’s work appeared. The author’s vision is concisely d escrib ed in th e abstract of
th e a r ticle:

“It is suggested th at a system o f chemical substances, called morphogens,
reacting together and d iffusing th rough a tissu e, is adequate to account
for the main phenomena o f morphogenesis. Su ch a system, although it
may o riginally be quite homogeneous, may later d evelop a p attern or
str u ctu r e d u e to an in stab ility o f th e h o m o g e n e o u s eq u ilib r iu m , w h ich is
tr iggered o ff by random disturbances . . . ”,

(cf. [84], p.3 7 ) . Fo llowin g [ 6 1 ] , we can illu str a te th is p o in t o f v iew b y m ean s o f th e
fo llowin g sim p le ex am p le. Co n sid er th e lin ear sy stem���������

��

��
� )
���

���
� ��� � �

��

��
� '
���

���
� �� �� �

(13.26)

wh ere � and � are some positive parameters, ) � 	, and ' � 	. Consid er first
th e k in etic sy stem o b tain e d b y settin g ) � ' � 	 in ( 1 3 . 2 6 ) . I t cer tain ly h a s a
homogenous equilibrium so lution �� � �� � 	 . To stu d y its stab ility p r o p e r ties, we
look for perturbations of the form �����, ����� with 	 � 
��
� 
��
 � �. Plugging
th ese functions in to th at kinetic sy stem, we see th at th e exponent � is su ch th at

� �
�

�
���� ��� ���� ��� � 
�

�

� � � (13.27)

so th a t �� � �� � 	 is asymptotically stable whenever Re� � 	 for both values o f �
give n in (13.27). It is now easy to d r aw a stab ility d iag r a m in ter m s o f th e p ar am eter s
� and � in ( 13.26) (see Figure 13.2).

Suppose n ow th at we set ) � � and ' � 	, and  look for solutions in the form

���� �� � ���		�� � ���� �� � ���		�� � (13.28)

for some � and . This would correspond to so lutions which o scillate in sp ace (with
period ��

�
) and decrease ( or increase) exponentia lly in time according to the sign of

�. A quick check reveals that � satisfies a n e q u a tio n sim ilar to E q u a tio n ( 1 3 . 2 7 ) wh en
one replaces there � by ��� � ����� and � by ��� � ���'�� . Therefore, when
 is va r ied , the point ����� ���� moves over the plane ��� �� describing a straight
lin e c o n sistin g o f p o in ts ������� having a slope ', namely �� � � � '�� � ���. As '
increases, the motion proceeds toward higher values of �� and smaller values of ��.

Assume now that we start from a value ��� �� located in the stability domain in
Figure 13.2. Then, if ' � 	 is sufficiently large, we may select values  � 	 for
which Re��� � 	 for one of the eigenvalues � in Equation (13.28). It then turns
out that the oscillatory spatial mode with period ��

�
will grow, and the stationary
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Figure 13.2

The dependence o f e ig enva l u e s o n coefficients � and �.

sta te � � � � 	 will become unstable with resp ect to oscillations corresponding to
th at f r e q u e n cy. Diff u sio n h as th er ef o r e d estab ilised an in itially stab le h o m o g e n e o u s
stead y state. T h is fact is o f ten ter m ed as Tu r in g ’s in stab ility. T h e r ead er is r ef er r ed
to [ 6 1 ] , Ch a p ter 5 , f o r a d iscu ssio n o f th e var io u s ty p e s o f in stab ilities th a t m ay ar ise
when systems of type (13.26) are considered in one or two space dimensions.

13.2.6 Nonlinear Pattern Formation: The Activator-Inhibitor Model by
Gierer and Meinhardt.

The analysis shortly described in our previous section lies at the heart of the
considerable development of the mathematical theory of pattern formation during
the last 50 years. Indeed, it is intellectually appealing to think of biological struc-
tures (for instance, the limbs of animals) as unfolding out of an almost homogeneous
embryo just under the interplay of reaction and diffusion of chemical substances.
However, formidable obstacles arise when fitting theory to experiments is attempted
(for instance, actual morphogens in animals have proved to be elusive to identifica-
tion). Even from a merely theoretical point of view, serious difficulties arise at once
if linear systems as (13.26) are considered.

Certainly, when it comes to solving equations, linearity is a big bonus. Further-
more, as far as we remain close enough to a given particular solution, any system can
be safely approximated by a linear one, namely that obtained by linearising around
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such a solution, much as we have done in (13.21). However, such an approximation
is no longer valid when perturbations tend to increase, for instance when Re� � 	 in
the situation considered in our former section. Once a growing perturbation sets in,
there is no way of stopping it in a linear world. To account for actual morphogene-
sis, one necessarily has to introduce saturation effects, which in mathematical terms
amounts to consider nonlinear systems. The price to be paid is that analysis becomes
more difficult, a fact that Turing was well aware of. As he explicitly mentions in [84],
p. 72, when dealing with nonlinear equations:

“. . . The difficulties are, however, such that one cannot hope to have
any very embracing theory of such processes, beyond the statement of
the equations,” although “it may be possible, however, to treat a few
particular cases in detail with the aid of a digital computer.”

While mathematical analysis and computing have greatly developed since Tur-
ing’s statement, his remarks continue to provide a sober warning to the limits of
quantitative modelling in the life sciences.

However, during the last third of the 20�� Century, analysis of nonlinear mod-
els in biology has considerably developed. In this trend, a particularly influential
model was the activator-inhibitor system proposed in 1972 by Gierer and Meinhardt
(cf. [22]) to account for tentacle formation in hydra. This last is a fresh water polyp
whose regenerative properties have attracted much attention over the last two cen-
turies (and that incidentally is also mentioned in [84]).

The main idea in [22] consists in considering a type of pattern formation arising
from the interplay of two substances. One of them (called activator), ���� ��, is
autocatalytic, and at the same time produces an antagonist (inhibitor), *��� ��. This
last counteracts the activator �, but diffuses faster than � does into the surrounding
medium. The actual interaction between � and * is prescribed so that:

� a local deviation from an average concentration should increase further (oth-
erwise no pattern would be formed), and

� the increase should not go to infinity, but instead the emerging pattern should
reach a stable steady state.

To this end, Gierer and Meinhardt proposed the following system���������
��

��
� ��

���

���
�
(��

*
� +� �

�*

��
� ��

��*

���
� (�� � ,* �

(13.29)

(cf. [22,59]), where (, +, ,,��, and�� are positive constants. Assume for simplicity
that ( � + � , � �. Then � � * � � is an equilibrium solution of Equation (13.29).
If the inhibitor concentration is kept constantly equal to one, then � � � would be an
unstable solution of the first kinetic equation in Equation (13.29), that would reduce
to
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�� � ���� �� �

However, if we allow * to change, but we assume that it rapidly achieves its
equilibrium to a given activator concentration (which amounts to require�� � ��
in Equation (13.29)), then the kinetic equation for � would be instead

�� �
��

��
� � � �� � �

for which the corresponding equilibrium � � � is now a stable one. As stated in [59],
“. . . by a convenient choice of diffusion rates we can achieve local instability with
overall stability of the system.” It is to be noticed, however, that while numerical
simulations in Equation (13.29) are comparatively easy to perform (cf. for instance
[59]), the mathematical analysis of (13.29) and related systems (as for instance the
model for the unfolding of a planar vascular net proposed in [58]) is yet far from
complete in the case of two and three space dimensions; see for instance [78] and [2].

13.3 Wave-Type Solutions
This section is devoted to the study of particular solutions of RD systems. Of

these, travelling waves (TW) are specially relevant, since they play a key role in
describing propagation phenomena. In a few words, TW are solutions which move
at constant velocity without changing shape. We begin by recalling below a classical
work which can be rightly considered as the origin of TW theory.

13.3.1 Transition from an Unstable State: The Work by Kolmogorov,
Petrovsky, and Piskunov

These authors published their seminal paper [49] in 1937. Motivated by the
genetics of natural selection (as described, for instance, in reference [20] quoted
therein), they discussed a model to describe the spread of an advantageous gene. In
this way they were led to the following problem: to find ���� �� solution of

��

��
� 
���

���
� - ��� when �� � � �� � � � 	 � (13.30)

���� 	� � .��� � (13.31)

where
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� - is a continuously differentiable function, such that - �	� � - ��� � 	 �

� - ��� � 	 for 	 � � � �� - ��	� � � � 	� - ���� � � for 	 � � � � �

(13.32)

� .��� is a discontinuous step functio n d efined as follows �

.��� � 	 wh en � � 	 � .��� � � wh en � � 	 �
(13.33)

The goal o f [49] is accurately described b y the following ex cerpts taken from
its Introduction:

“ . . . The  domain  of  densities c lo se to o n e sp r ead s o u t, a s � increases,
fro m rig h t to lef t, p u sh in g b ack th e d o m ain o f sm a ll in ten sities to th e
le ft . . . .  One  sees  that,  as � ��, the shape of the density curve
ap p r o ach es a lim itin g sh ap e. . . ”  (cf.  Figure  13.3  below).

Figure 13.3

The evolution of the density function ���� �� at times 	 � � � �� � �� � ��

“. . . The problem is to find this limit shape of the density curve and the
limiting rate of its displacement from right to left. One can show that
this last is equal to

�� � �
�
� with � � - ��	�.”

Note that the kinetic equation associated to (13.30), �� � - ���, has two con-
stant solutions, �� � 	 and �� � �. Of these, the first is unstable, as can be readily
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seen from the linearised equation &� � - ��	�&. A similar a rg u m ent shows �� � �
to be stable, so that the asymptotics just d escrib ed above actually correspond to a
tr an sitio n f r o m a n u n stab le state in to a stab le o n e .

It is remarkable th at th e a sy m p to tic sp eed o f p r o p a g a tio n o f th e so lu tio n o f
Equations (13.30) and (13.31) can be computed right away from the knowledge of
th e d iff u sio n co efficien t  and the slope � of function - ��� near � � 	. This is
rath er unusual, as th e results in th e following sections will sh ow. Incid entally, at this
juncture we are taking existence and uniqueness of a solution for granted. This is
actually the case, bu t see the r emarks on these issu es made at the end of this section.

The approach followed in [49] has b ecome classical, and nowadays is routin ely
implemented in m any p roblems in applied science. Fo r this r eason, so me of its main
aspects will be briefly sketched here.

To begin with, one looks for solutions of (13.30) of the TW form

���� �� � ��� � ��� � ��&� � 	 � (13.34)

wh ere � is unknown, and has to be determined in the course of the analysis. Plugging
(13.34) in to (13.30), we readily see that ��&� should satisfy

�
d�
d&

� 
d��
d&�

� - ��� � �� � & �� � (13.35)

Moreove r, si n c e we expect � to b e have as indicated in Figure 13.3 above, we
should also have that

��&� �	 as & � �� �
��&� �� as & �� � (13.36)

Together, (13.35) and (13.36) constitute a nonlinear eigenvalue problem, which
has to b e sim ultaneously so lve d f o r � and �. It was shown in  [49] th at th is problem
has a solution, unique up to translations, whenever � � �� � �

�
�. This was done

by rewr itin g ( 1 3 . 3 5 ) as a sy stem���������
d�
d&

� % �

d%
d&

�
�%� - ���


�

(13.37)

Then what is now considered as a standard phase-space analysis was p erformed.
First, one looks for constant solutions of Equation (13.37). These are ��� %� � �	� 	�
and ��� %� � ��� 	� . After th at, one lin earises around th em, sim ilarly to what we
did for Equation (13.20) in our previous section, to describe the local behaviour of
so lu tio n s clo se to th e se eq u ilib r ia. Wh en � � �

�
�, these  are as depicted in p ar t ��

of Figure 13.4. Having done this, the authors undertook a global analysis, eventually
sh ow in g t h a t there is a trajectory ��� %� co n n ectin g b o th e q u ilib r ia, see p ar t �� in
Figure 13.4. Such trajectory corresponds to the sought-for travelling wave, when
this last is written in terms of the ��� %� coordinates.
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(a) (b)

Figure 13.4

(a) Local portrait of trajectories and equilibria. Point �	� 	� is said to be an un-
stable node, and ��� 	� is a saddle point (cf. [7,12] for precise description of these
types of equilibria). (b) Global analysis: the trajectory labelled as I corresponds
to a TW of (13.30) when � � �

�
�.

When � � �
�
�, trajectories emanating from �	� 	� spiral around that point,

and cannot therefore provide nonnegative solutions as required in (13.34). The fore-
going argument yields the existence of a continuum of TW solutions to (13.30), each
of them actually solving the eigenvalue problem (13.35), (13.36) for a value � � ��.
A key issue in [49] consists of discussing which of these waves is relevant to describe
the large-time asymptotics of the problem under consideration. More precisely, the
following result is proven in [49] (see also [85]).

There exists a continuously differentiable function /��� such that

/���� ��� � �
�
� as � �� � and

���� /���� �� ������ as � �� �

(13.38)

where �� is the solution of Equations (13.35) and (13.36) corresponding to � �
��. Note however that /��� remains undetermined in (13.38). Actually, this “phase
indeterminacy,” as is often termed, is a property of the model (13.30), and not merely
a technical nuisance. For instance, it is known that

���� ��� �� �	 as � �� �
Furthermore, if ���� �� is a solution of (13.30) such that 	 � � � � and we

assume that ���� �� converges to some travelling wave as � ��, and if in addition

���
	���

��	���� 	� � � �� 	 ��� ���� 0 ���� 	 � 0 � � �

then the velocity of that wave must be � � �0� �
�
�
�
� (cf. [53] for details on these

results). Concerning our problem (13.30), (13.31), although it can be said that the �-
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profile of ���� �� approaches that of �� (cf. (13.38)), the delicate nature of the results
discussed in [53] call attention to possible inaccuracies in any numerical procedure
which fail to properly account for the decay of initial values for large 
�
.

We conclude this section by remarking on the way existence and uniqueness
were obtained in [49]. Uniqueness is derived by application of the so-called maxi-
mum principle (cf. [21]). Roughly speaking, one assumes the existence of at least
two different solutions �� and ��, and considers the equation satisfied by a suitable
auxiliary function related to �� � ��. Then a contradiction is achieved by examining
the sign of the various terms in that equation at the possible local extrema of �����.

The existence proof will be briefly sketched below, since it is of a constructive
nature, and therefore provides a procedure to approximate the actual solutions. To
begin with, let ����� �� be the solution of�����

��

��
� 
���

���
� �� � � �� � � � 	 �

���� 	� � .��� �

(13.39)

Actually, the argument in [49] is carried out for more general initial values than
that in Equation (13.39), but consideration of this case is enough for the discussion
that follows. A direct check shows that the function

����� �� � ����� �� � 	����� ��
� ����� �� � �

�
�
�

� �

�

�1

� �

��

�
�

�	����

�������

�
�� 1 - ����/� 1�� �/ �

is such that ����� 	� � .��� and

���
��

� 
����
���

� - ������ ��� � �� � � �� � � � 	 �

A sequence of functions ������ ��� with 	 � � can be now constructed by means
of the rule

��	���� �� � ����� �� �
�

�
�
�

� �

�

�1

� �

��

�
�

�	����

�������

�
�� 1 - ����/� 1�� �/ �

and one readily sees that ��	� solves

�����
���	�
��

� 
����	�
���

� - ������ ��� � �� � � �� � � � 	 �

��	���� 	� � .��� �

(13.40)

The argument then concludes by showing that ������ ��� converges, as 	 �
�, towards a continuous function ���� ��, in such a manner that passing to the limit
in Equation (13.40) is allowed, so that ���� �� turns out to solve (13.30) and (13.31).
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13.3.2 Bistable Media

In math em atical ter m s, b istab le m e d ia a r e r e p r esen ted b y a scalar, sem ilin ear
diffusio n equatio n that h as two steady states which are stable under sufficiently small
perturbations, and an unstable state between th em. An important feature o f these
media is that a su fficiently strong perturbation m ay induce a transition b etween the
two stable equilibria. The corresponding so lutions are called fronts o r trigger waves
(cf. for instance [17,61]), and will be shortly discussed b elow. The simplest reaction-
diff usio n e q u a tio n o f b istab le ty p e can b e wr itten a s f o llows

��

��
� �

���

���
� ���� � �� � � �� � � � 	 � (13.41)

where � � 	, and ���� is a continuously differentiable function as depicted in
Figure 13.5 b elow. Notice that such functio n ���� has two stable equilibria at � �
��� ��, and an unstable one (� � ��), as can be readily seen from the sign of � ���� at
each of these points. A front (or trigger wave) corresponding to the transition from
the state �� to the state ��, and moving with velocity ( (say, positive) is a function
���� �� (if any) of the form ���� �� � ���� (�� � ��/� which solves (13.41), so that

���� � (�� � ���� � 	 � �� � / �� � (13.42)

and

��/� ��� when / � �� � ��/� ��� when / �� � (13.43)

A major difference with the case considered in the previous section is that in
general there is no more than one wave speed ( for which the eigenvalue problem
(13.42) and (13.43) can be solved, uniquely up to translations. Such a solution corre-
sponds to a trajectory in the phase space associated to (13.42) joining the two saddle
points (��� 	) and (��� 	). In most cases, the actual value of ( can only be com-
puted numerically, again in sharp contrast with the KPP model discussed before. An
important exception is provided by the following example

��

��
�
���

���
� ���� ����� �� with 	 � � � � � (13.44)

In this case, the function

��/� �
�
� � �

��
�

��
� / � �� (� � (13.45)

is a travelling wave with speed

( �
�
�

�
�

�
� �

�
� (13.46)
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Figure 13.5

A funct io n ���� characterising a bistable medium.

No tice th at the sign of ( co in cid e s with th at o f ( �� � �). Actu ally, in the general
case (13.42) th at sign is a feature o f the wave motio n that can be easily determin ed
from the very beginning. Indeed, on assuming further that ���/� �	 as / �
�� (a fact that can be checked a posteriori, and that ( 13.45) certainly satisfies) , we
may multip ly b o th sid es o f ( 1 3 . 4 2 ) b y ���/� and then integ rate from �� to � to
ev e n t u ally o b tain

( �

�� ��

��

������

��� �

��

�������� ��

���
� (13.47)

so th a t sg n �(� � sg n
� ��
��
���� ��, and fronts move eith er way (or remain stationary)

according to the actual shape of ���� in Figure 13.5.
In th e g en er al case, b esid es p r ov in g th e ex isten ce o f tr avellin g waves f o r E q u a-

tio n ( 1 3 . 41), the questio n n aturally arises of ascertain in g to what extent such waves,
wh enever they exist, are relevant for the dynamics of the corresponding equations.
More precisely, we may wonder wheth er fronts are stable, o r if they are th e only
possible p ropagatio n p atterns in such media, what h appens wh en two such waves
co llid e, an d so o n . Also , we m ay b e in ter e sted in d iscu ssin g wave p r o p a g a tio n f o r
these types of equations in higher space dimensions. This last question will be ad-
dressed later on (cf. sectio n 13.3.4). Here we shall briefly consid er th e questio n o f
stability.

Consider again Equation (13.41), and let ����(�� � ��/� be a travelling wave
of that equation, so that ��/� solves (13.42). Then, on setting 2 � ���/�, 2 in turn
satisfies

3�2� � �2�� � (2� � � ����2 � 	 � (13.48)
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Suppose n ow that we consider so lutions initially close to the wave �, i.e., su ch
th at

���� �� � ��/� � &�/� �� ���� 	 � 
&
 � � �

at so m e in itial tim e. Th en , o n ex p a n d in g

��� � &� � ���� � � ����& � � � � �

we see th a t to the lowest order, th e p ertu rbed functio n &�/� �� should satisfy

�&

��
� 3�&� �

with 3�&� as in ( 1 3 . 4 8 ) . Sin ce th is o p e r a to r h as a zer o e ig enva lu e, wave s a r e d e ter-
mined up to translatio n s ( a s it h as alr ead y b een m e n tio n e d ) , a n d a n atu r al d e fin itio n
of stab ility wo u ld b e th is:

��/� is stab le if , w h e n eve r &�/� �� is in itially sm all�

���/� � &�/� ��� ���/ � *�  as � ��� for some finite constant *�

Th e stab ility o f f r o n ts so lv in g Eq u a tio n s ( 1 3 . 4 2 ) an d ( 1 3 . 4 3 ) wa s e stab lish e d b y
Fife and McLeod in two influential papers (cf. [18,19]). Consider for instance the
case when ���� is as in Fig u r e 1 3 . 5 w ith �� � 	 and �� � �. It is then known that
such an equation has a unique (up to translations) monotone travelling front of the
form 4���(�� (see for instance [44]). Suppose now that a continuous function5���
is given, such that 	 � 5��� � �, and

���
	���

5��� � �� � ���
	����

5��� � �� �

Then a result in [18] ensures that there exists a finite value �� such that the
solution of (13.41) over the whole line with initial value 5��� approaches toward
4��� (�� ��� exponentially in time, and uniformly on �.

There are situations in which the solution of the initial value problem (13.41)
will develop into a pair of fronts moving in opposite directions. For instance, let
���� be as before, and suppose also that

� �
�
���� �� � 	. Assume now that 5��� is a

continuous function such that 	 � 5��� � � and

���
�	����

5��� � �� � 6��� � �� � 1 for 
�
 � 7 �

where 1 and7 are some positive numbers. Then, as proven in [18], if 7 is sufficiently
large (depending on 1 and � ), there exist constants ��, ��, 8, and 9 (the last two
positive) such that the solution ���� �� of (13.41) with initial value 5��� satisfies


���� ��� 4��� (�� ���
 � 8���� when � � 	 �


���� ��� 4���� (�� ���
 � 8���� when � � 	 �
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where 4��� (�� is as in our previous case.
Front waves are known to be the only possible nontrivial patterns of (13.41)

(cf. [17,61]). From a biological point of view, bistable media are far from satisfac-
tory for many modelling purposes. In particular, a wave propagating in such medium
will leave any point forever excited after reaching it. We shall next see which modi-
fications are to be introduced in this model to dispense with this unwanted feature.

13.3.3 Excitable Systems: Pulses

In rather informal terms, an excitable system can be described by:

� having one stable equilibrium, so that any small enough perturbation around it
rapidly decays towards that point, and

� possessing such kinetic terms so as to ensure that any sufficiently large pertur-
bation around the stable equilibrium undergoes a prolonged excursion before
eventually returning to it.

In a simple case, an excitable system can be obtained from two coupled equa-
tions, corresponding respectively to a bistable medium and a restoring mechanism.
As we shall presently see, besides fronts, such systems admit a different type of trav-
elling waves named pulses. These are characterised by the fact that they approach
toward the same resting state, both ahead and behind the moving perturbation.

One of the most relevant examples of excitable systems is provided by the
FitzHugh-Nagumo (FHN) equations. These were derived as a model simpler than,
but qualitatively similar to, the celebrated Hodgkin-Huxley equations for excitation
and conduction in nerve (cf. [39] and also [15]). A particular example of the (FHN)
equations is the following

��

��
�
���

���
� & � ����� with ���� � ���� ���� � �� and 	 � � � �(13.49)

�&

��
� )� � with ) � 	 � (13.50)

In the sequel we shall closely follow the arguments in [10], and look for solu-
tions of Equations (13.49) and (13.50) of the form

���� �� � ���� :�� � &��� �� � &��� :�� for some : � 	 � (13.51)

On setting / � �� :�, we readily see that such solutions should satisfy

d��
d/�

� : d�
d/

� ����� & � 	 � (13.52)

:
d&
d/

� )� � (13.53)
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Equations (13.52) and (13.53) can be transformed into a system of three au-
tonomous, first-order d ifferential equations by writing ��

��
� *. Hence, the cor-

responding phase space of variables ��� *� &� is also three-dimensional and its phase
portr ait ( i.e., th e p lo ttin g o f its tr ajecto r ies) is m o r e invo lved th an th e two - d im en sio n a l
cases consid ered in our prev ious sections. However, the analysis of (13.52) and
(13.53) greatly simplifies if we assu me

	 � )� � � (13.54)

Indeed, introducin g a small p arameter allows us to make use o f singular pertur-
bation techniques, a most powerful tool in analysis (see for instance [4] for a detailed
account). From now on, we assu me that (13.54) holds, and proceed to describe how
a first  approximation to a pulse of (13.49), (13.50) can be obtained. What we want
is to obtain a solution of the form (13.51), such that the �-component behaves as
indicated in th e Figure 13.6.

Figure 13.6

(a) The �-component of a pulse solution of (13.49), (13.50). Various relevant re-
gions in the graph of � are denoted as I, II, III, and IV. (b) The detailed structure
of the pulse as described in the text.

We now make precise some assumptions on the form of the sought-for pulse.
To begin with, we assume : � 	 to be of order one, and expect &�/� to decay to zero
as / � ��. Setting ) � 	, we may discard the right-hand side in (13.53) to obtain

d&
d/

� 	 � &�/� �	 as / � �� �

This gives at once &�/� � 	, which upon substitution in (13.49) yields

��

��
�
���

���
� ���� ���� � �� �
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So lv in g th is e q u a tio n w ith th e c o n d itio n ��/� �	 as / � �� , we obtain
th e analogue of (13.45), viz.

�� �
�
� � �

� ��
�

��
� : � :� �

�
�

�
�

�
� �

�
� (13.55)

wh ic h accounts for th e p rofile o f � in Reg i on I in Figure 13.6a. Note that ���/� ��
as / � � , so that ���/� actually represents a front in stead of a pulse. However,
���/� is easily seen n o t to p r ov id e a u n if o r m ly va lid ap p r o x im a tio n f o r larg e valu e s
of /. Indeed, from (13.53) we see that the ex act expression for &�/� is

&�/� �
)

:

� �

��

��$� �$ �

Upon replacing ��$� by ���$� there, we read ily check that & becomes o f o rder one
(and th erefore cannot be neglected in (13.53)) at d istances / � #� �

�
� . This suggests

in tr oducin g n ew variables to analy se Region II in Figure 13.6a as follows

1 � )/ � ��1� )� � ��/� )� � ��1� )� � &�/� )� � (13.56)

Equations (13.52) and (13.53) th en transform into

)�
d��
d1�

� ): d�
d1

� ����� � � 	 � (13.57)

:
d�
d1

� � � (13.58)

On settin g a b ove : � :� (cf. (13.55)) and ) � 	 , we  obtain

����� � �� � (13.59)

which upon substitution in (13.58) gives d1 � :�
�
� �����
��

�
d��, whence

1 � :�

�
� 

�
��� � ��� � ���� � � ��� 
��
� �

�
� (13.60)

besides the trivial solution �� � 	 . Notice th a t (13.60) defin es �� as a m u ltiva lu ed
functio n o f 1. Let us wr ite ��� (resp . ����) to  denote the point where ���� achieves
its m in imum (resp . its maximum) in !	� �", and  let  us select ���1� as th e so lu tio n o f
(13.60) in th e b ranch where �� � ����. This functio n will describe (to the lowest
order) our pulse in terms of � in Reg i on II (cf. Figure 13.6). To allow for matching
with Region I, we also require

���
����

���1� � ����� � � � ���	� � 	 �

From (13.60) we deduce that ���1� decreases as 1 increases, but is bounded
from below by a positive constant in the branch under consideration. Therefore,
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patching together ���/� and ���1� still does not provide a uniformly valid repre-
sentation for the pulse. To this end, we need to introduce a further layer, where a
downjump will occur. Suppose that this will happen near a value 1 � 1�, at which
& will achieve a (unknown as yet) value 8� � 	. We then introduce new variables
given by

); � 1 � 1� � 	���;� )� � ���1� )� �
Then, on setting ����

��
� 	2�, we arrive at

� 	2�
�;

� :� 	2� � ��	��� �8� � (13.61)

together with boundary conditions

	���;� �	U as ; � �� �	���;� �	V as ; �� � (13.62)

where 	U � ���1�� and 	V are not determined yet. Note that the speed of the down-
jump has been already fixed, and is equal to :�, the corresponding value at the up-
jump. It is a most remarkable fact that, as shown in [10], this nonlinear eigenvalue
problem has a unique solution only for a particular value of 8�. More precisely, in
terms of 	��, this solution is

	���;� � 	U���� � 	V
� � ����

� (13.63)

where

�
�* � 	U� 	V � 	U � �	��

� � 	V � ����
� � and 8� � ����� �

with ��� � value of � at its inflection point, that is

��� �
�
�� �� � ����� ������ �� �

(13.64)

Incidentally, this result is obtained by looking for solutions of Equations (13.61)
and (13.62) such that 	2�	�� is a polynomial: 	2�	�� � ��	� � V��U � 	�� for some �,
where V, U are the extreme roots of ���� �8 � 	. Since :� � 	, 	 � � � �

� , and

8� � 	, by (13.64), 	V � 	, and to complete the picture a further piece is needed,
namely an outer solution which increases from � � 	V at 1 � 1� to � � 	 as 1 �
�. This solution is provided by 	��, where this time the branch where � � 	 has to
be selected. To deal with the corresponding region, it is also convenient to introduce
a new variable by setting < � );. In this way the leading approximation to the �-
component of the pulse has been sketched. Higher-order approximations (involving
powers of ) in the corrective terms derived) can then be obtained by perturbative
analysis, as is done in [10].
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Concerning the p rocedure thus sketched, some remarks are in o rder. First,
Equatio n (13.57) can be sh own to admit also so lu tions for which

: � O�
�
)� � (13.65)

(see [10], Section 4 ). Therefore, for g iven values of � and ) , two pulse solutions
are possible: a fast one (with : � O���) and a slow one (satisfying (13.65)). As
the authors of [10] observed, “. . . it is believed that the larger value of : corresponds
to a stable solution, and the smaller value to an unstable one.” As a matter of fact,
the stability of fast pulses was later proven in [43]. A second important remark is
that pulses are not the only new kind of patterns arising in (13.49), (13.50). For
instance, periodic wavetrains can be constructed by methods closely related with
those described above. We shall not pursue this matter any further here, and refer
instead to [10] and [25] for details.

Let us summarise a bit. We have just recalled how pulses can be constructed for
the FHN model (13.49), (13.50) under two key hypotheses: the precise form of ����
in (13.49) and the small parameter assumption (13.54). This last can be dispensed
with (i.e., ) can be taken to be of order one) if, instead of selecting ���� as in (13.49),
we make the explicit choice

���� � .��� ��� � with 	 � � � �

�
�

where .��� is the step function defined in (13.33). The corresponding study can be
found in [76].

To conclude this section, we point out that we have merely scratched at the
surface of a large body of results available for pulse propagation in excitable systems.
We just refer here to [77] and [45] for further glimpses at the corresponding theory.

13.3.4 Excitable Systems: Targets and Spirals

In our previous sections we have been concerned with waves propagating in
one-dimensional media. We shall consider now some particularly relevant struc-
tures appearing in higher-dimensional situations. For instance, rotating spirals and
concentric circular waves (called targets) are observed in various chemical and bio-
logical settings (see for instance [61,63]). We shall define below in a precise manner
such types of solutions, describe some reaction-diffusion systems where they appear,
and remark on the relevance of these systems from a modelling point of view.

Let us discuss spiral waves first. To this end, consider the following system in
two space dimensions ���������

��

��
� ���� ��3��� 9�3�� �

��

��
� ��� � 9�3��� ��3�� �

(13.66)
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where � � 	, and �, 9 are given functions of 3 � ��� � ���
�

� . The system of
equation (13.66) is generally referred to as a � � 9 system. A key assumption to be
made in (13.66) is the following:

for some � � 	, ��3� is a continuous, decreasing, and positive function
in an interval !	� ��, and ���� � 	�

(13.67)

Condition (13.67) ensures that the kinetic system associated to (13.66) has a
stable limit cycle, which corresponds in phase space to a monoparametric family of
periodic solutions differing from each other only in a phase shift. Such a limit cycle
has amplitude � and frequency 9���. It is often convenient to rewrite (13.66) in a
more compact manner by setting

w � �� 	� � (13.68)

in which case (13.66) reduces to

�w
��

� ��� 	9�w ���w � (13.69)

It is then natural to look for solutions of the form

w � 3��� � (13.70)

where3 is an amplitude variable, and 6 is the corresponding phase. Plugging (13.70)
into (13.69), one readily sees that 3 and 6 should satisfy���������

�3

��
� 3��3� ��3
�6
� ���3 �

�6

��
� 9�3� �

��

3
��3 � �6� ���6 �

(13.71)

An m-armed spiral wave of (13.69) is defined as a solution of the form (13.70),
where

3 � 3�$� � 6 � ��
: � =�$� � (13.72)

and �$� :� denote polar coordinates in �� , 3�$�, =�$� (respectively ) are functions
(resp. a constant) to be determined, and
 � � is a positive integer.

In view of (13.71), the corresponding equations for amplitude and phase read
then �������

��3�� �  �
�
� �3

�
��3� ���=��� � ���

��


� 	 �

�
�
=�� � � �

�
� � �

 
�=�

� � 9�3� �

(13.73)

System (13.73) has to be supplemented with suitable boundary conditions
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3�	� � =��	� � 	 � 3�$� �3��� as $ �� � (13.74)

Notice that from this and (13.73) one readily sees that

=���� �

�
��3��

�

� �

�

�  � 9�3�� � (13.75)

which in particular shows that the amplitude at infinity determines the frequency .
From now on, we shall set � � � for simplicity. It has been shown in [13] that,
when 
 � �, there exists a solution of (13.73), (13.74) provided that in addition to
(13.67) the following hypothesis is made:

9 � 9�3� is continuous in !	� �"� and there exist ) � 	 and + � 	 such that


9���� 9�3�
 � )���3��	! when 	 � 3 � � � (13.76)

More precisely, the existence proof provided in [13] (which consists in a topo-
logical fixed point argument) yields the existence of a logarithmic spiral wave, i.e., a
function 2 � �� 	� such that���

� � 3��� #�� �� : � ( ��� $ �

� � 3��� ��� �� : � ( ��� $ �
(13.77)

where

( �
�

��

� �

�

�3�����9�3�� 9�3����� �� �

Before a discussion on extensions and improvements of this early result, we
remark on the structure requirements made in (13.66) and (13.67). In this respect,
it should be noticed that a large class of RD systems can be approximated, in some
asymptotic limit, by means of ��9 equations (cf. for instance [13] and [27]). More
precisely, let us follow [27] and consider the system���������

�3�
��

� -��+�3�� 3�� �� � ����+�3�� 3���3�� �

�3�
��

� -��+�3�� 3�� �� � ����+�3�� 3���3�� �
(13.78)

where + represents some nondimensional parameter, and suppose that at some crit-
ical value + � +� the diffusionless (kinetic) equations, obtained by setting �� �
�� � 	 above, are such that a bifurcation from a stable state �3��� 3

�
�� to a stable

limit cycle occurs (in mathematical terms this is called a Hopf bifurcation). Then,
arguing as in [27], Appendix A, we assume 	 � +� +� � �, and look for solutions
of the form

3� � 3�� � �+� +�� ��3��� 	���� #�� �9�� >� � 6��� 	��� � 	 � �� �
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where 	� � �	��� 	��� � �+ � +�� �� ���� ���, �� and >� are suitable constants, and
� � �+ � +���. Then the overall amplitude and phase 3 � �3�� � 3

�
��

�

� and 6 are
shown to evolve according to the equations

�����
�3

��

3
�6

��

����� �

�� #�� & � ��� &

��� & #�� &

���� �3�3
�6
�

3�6� ��3 � �6

���

��3���3��
?3�

�� �
(13.79)

where ? and & are certain constants determined from the original system (13.78). In
particular, when�� � ��, then & � 	, and the following �� 9 system is obtained���������

�3

��
� �3�3
�6
� �3���3�� �

3
�6

��
� 3�6� ��3 � �6 � ?3� �

(13.80)

However, since 9�3� � ?3� in (13.80), condition (13.76) is not fulfilled,
and further analysis is required to ensure the existence of spiral waves in this case.
In [27], a variety of arguments (analytical and numerical) have been presented to ob-
tain the existence of Archimedean spiral waves of (13.80) (these satisfy =�$� � $
as $ � � in (13.72)) for all values of ?. More precisely, existence is proven for
? � 	, which is the startpoint to deal with the case 	 � 
?
 � � via perturbation
theory. Spiral waves are also obtained for 
?
 � �, and then a numerical continu-
ation argument is produced to derive the existence of spiral waves for intermediate
values of ?. The question of the stability of spirals is also addressed, and the author
concludes that when ? � 	, one-armed spirals are stable, while multi-armed ones
are not. It is also remarked therein that perturbative arguments strongly suggest that
one-armed spirals continue to be stable for small values of 
?
.

The results just recalled above belong to what could be called early spiral wave
theory for excitable systems. This last has greatly developed ever since, and a wealth
of analytical and numerical results are now available for a number of model RD
systems. We refer to [25,46,61,63,91,92] for further material on that topic.

Before shifting arguments, a further remark is in order. If we change variables
in (13.79) by setting  � 3��� (cf. (13.70)), we obtain the so-called Ginzburg-
Landau (GL) equation

� 

��
� 0 � @
 
� � �� � (13.81)

where 0, @, and � are some complex coefficients that can be determined from the
original system (13.78). This is a particular example of the so-called amplitude equa-
tions, that have been extensively used in the physical literature to describe pattern
formation resulting from a Hopf’s bifurcation in an underlying kinetic system. We
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shall not pursue this matter any further here, but refer instead to [51] and [16] for
additional information.

We next turn our attention to target patterns. These may be thought of as a
travelling wave train of concentric circles propagating from a centre, which is often
referred to as a pacemaker. We shall describe below a way of characterising target
patterns in RD systems, and from that we will derive some information about media
where such a type of wave propagation is sustained.

Specifically, following [26] we consider a system given in vector form by

�


��
� ��
� � )��
� )����
� � (13.82)

where 
 � �3�� 3��, � � 	, 	 � ) � �, and ����
� is a bounded function of its
arguments. On the kinetic term ��
� we assume conditions so as to ensure that the
autonomous system


� � ��
� �

has a stable time-periodic solution ���� � ���� A � for some A � 	. Thus (13.82)
can be thought of as an example of an RD system where diffusion is small, and small
also is the effect of localised impurities, represented by the last term on the right
of (13.82). We now introduce a slow-time scale � given by � � )�, and look for
solutions of (13.82) of the form


�)� ���� � 
���� ���� � )
���� ���� � )�
���� ���� � � � � � (13.83)

requiring
��
�� � � � to be bounded in time. On substituting (13.83) into (13.82) we
obtain that 
��
� should satisfy

�
�

��
� ��
�� � (13.84)

�
�

��
� � �


��
� � ��

�

��
���
� � ����
�� � (13.85)

where � �
�� denotes the jacobian matrix of ��
� particularised at 
 � 
�.
Solving (13.84) gives


� � ���� =������ � (13.86)

where the phase variable =����� is to be determined yet. From (13.85) and (13.86)
it follows that 
� has to solve

�
�

��
� � ���
� � ��� �=

��
������= ����
�=
�� � ������ � �=��� �� �

(13.87)

©2003 CRC Press LLC



We are interested in bounded solutions of (13.87). To obtain them, a suitable or-
thogonality condition has to be imposed concerning the right-hand side there. More
precisely, by (13.84) and (13.86), we know that the equation

��

��
�� ����� =��� � 	 � (13.88)

has a periodic solution � � ���� � =�. Since we are requiring (13.86) to be a
stable solution of (13.84), we need to impose that all solutions of (13.88) which are
linearly independent of ���� � =� should decay exponentially in time. Under these
assumptions, there is a unique row vector �� �� � =� which is periodic with period
A , and is such that, for all �

���

��
� ��� ����� =�� � 	 � �� ��� =������ =� � � �

Then a solution of (13.87) is bounded in time if and only if� "

�

���=��� �� �� � 	 � (13.89)

an orthogonality condition. Incidentally, this is precisely the argument that eventu-
ally yields Equations (13.79) or (13.81), except that one has to go up to higher-order
terms in the corresponding expansion to be analysed in such case (cf. [27] and [51]
for details).

From (13.89), using periodicity we eventually obtain that = should satisfy

�=

��
� ����= � $
�=
�� � 0��� � (13.90)

where �������������

�� �
�
"

� "
� �� ��������� �� �

$ � �
"

� "
�
�� ���������� �� �

0��� � �
"

� "
� �� ������������ �� �

(13.91)

Summing all these results up, we have obtained that


����� � ���� =������ �#�)� � (13.92)

Equations (13.90) to (13.92) can be thought of as providing a description of a
distributed medium consisting in a large population of individual oscillators which
are weakly coupled by diffusion, the effect of which consists in introducing a phase
shift between different points. In particular, Equation (13.90) provides a law for
the evolution in time of that shift. The reader is referred to [51,66–68,82] for the
derivation of phase equations under different assumptions, as well as for discussing
the phenomenon of synchronisation of coupled oscillators.

©2003 CRC Press LLC



Having derived (13.90) to (13.92), we are now in a position to discuss the exis-
tence of target patterns for (13.82). A first remarkable fact is that for bounded initial
conditions, targets can only exist if ����
� �� 	. Indeed, assume on the contrary
that ����
� � 	. Then, by (13.91), 0��� � 	. On setting

B � ��# � (13.93)

(13.91) reduces to

�B

��
� ���B � (13.94)

Therefore the initial value problem for Equation (13.82) can be explicitly solved
(cf. formula (13.5)) to give

=����� �
�

$
��� �
���� �

��

�
��

��%

�
$=�	���� 
�� �
�


���

�
�� �

In particular, if =�	��� is bounded, =����� converges to a constant as � �
�, and asymptotically the medium oscillates with uniform phase shift. When=�	���
is unbounded, however, target patterns can be produced (see for instance (13.34)
in [26]).

Consider now the case when impurities are present, i.e., ����
� �� 	, when
0 �� 	 in (13.91). Using (13.93), we obtain this time

�B

��
� ���B � $0���B � (13.95)

To solve (13.95), we now separate variables by setting

B����� � ������� � (13.96)

thus obtaining the following eigenvalue problem: to find � and 9 such that

����� $0���� � 9� � ���� bounded in �� � (13.97)

To proceed further, we need to introduce additional assumptions on 0���. Ba-
sically, we want to solve (13.97) explicitly, and to this end we need 0��� to be
a smooth, rapidly decaying function, so that classical spectral theory could be in-
voked. Assume for instance that 0��� is smooth and compactly supported in a
ball �$���� � �� � 
� � ��
 � C� for some �� 	 �

� and C � 	, and that�
�� 0��� �� � 	. It is then known (cf. for instance [41,79]) that (13.97) has a fi-

nite number
 � � of real eigenfunctions ������ � � � ������, which correspond to
eigenvalues 9�� � � � � 9� such that 9� � 9� � 9� � � � � � 9� � 	. Moreover
����� does not change sign. Besides that, there exists a two-dimensional contin-
uum of eigenfunctions ������. These correspond to eigenvalues ����

�� and are
given as the solutions of
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������ � ����� �
	$


��

�
��

.
���
� �
�
 
�� �
�0��������� �� � (13.98)

where .���
� is the zero-order Hankel function (see [1] for definitions and properties

of this special function). Summing up, it follows that the solutions of (13.90) can be
represented by means of (13.93), where

B����� � @��
���������

��
���

@��
���������.������

��
���

>��� ������������� �

(13.99)
and

�.����� is the solution of (13.94)� .�	��� � ��% �$=�	���� �

� @� � �
�
���

�
� ��� ���

��
�
�� ����� ��% �$=�	���� �� �

� >��� � � �
�
���

�
� ��� ���

��
�
�������.����� �� when � � � � 
 � ���

� ������ is the contribution arising form the continuum spectrum.
(13.100)

Cumbersome as they may appear, these formulae allow for deriving relevant in-
formation about the asymptotics of ������. For instance, arguing as in [26] (where
suitable estimates on ������ are obtained, and the asymptotic behaviour of eigen-
functions is used), it may be shown that in the region where

������������� � � and � � � � with � �

�
9�
��

� �

�

� (13.101)

the function.����� provides the largest contribution in (13.99). One then has that,
in such a region


����� � �

�
��

�

$

�
���.����� �

and since .����� converges to a constant for large � , it turns out that whenever
(13.101) holds the system eventually approaches toward a spatially constant solution.
On the other hand, in the region where

������������� � � � � � � � (13.102)

it is the first term in the right of (13.99) which prevails, and one then has that


����� � �

�
�� �

)9�
$

���
�

$
�������� �

�

$
��� ��

�
�#�)� � (13.103)
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Since

����� � ����$�� �

� ����� ��� ���� � � � �

and �$ � � with $ � 
�
, (13.103) yields a target pattern wave (up to corrections
of order #�)�) which is outgoing for $ � 	 and ingoing when $ � 	. Notice that
the initial value =�	��� enters (13.103) only via the phase shift �

� ��� ��.
We conclude by observing that it is possible to perform a similar analysis for

impurities 0��� located around two different points �� and ��. Then the precise
form of 0��� determines the eigenvalues around �� and ��. In particular, it can be
shown that, out of the two emanating targets, it is that having largest first eigenvalues
9�� (	 � 	� �) which eventually takes over. See [26] for details.

13.4 Models of Chemotaxis
In this section we shall deal with some RD systems that have been used to model

an important biological activity, namely chemotaxis. By this we refer in general to
motion induced by chemical substances, a widely accepted framework to describe
the ability of single cells or micro-organisms to sense the direction of external chem-
ical sources, and to migrate towards (or away from) these. Chemotaxis is known to
occur in a variety of situations, as for instance during the development of the ner-
vous system, in inflammatory and wound healing responses, and in tumour growth
and metastasis, among others. It also plays an important role in the social life of
micro-organisms, a subject that will be examined in some detail below. In the fol-
lowing, we shall briefly describe some instances where chemotaxis is a key factor,
and will examine some of the mathematical models that have been proposed to pro-
vide quantitative and qualitative insight on particular aspects on this phenomenon.

13.4.1 Axon Growth and Neuron Navigation

The nervous system of a person is known to perform a sophisticated set of func-
tions. This requires of a highly complex pattern of wiring among nervous cells
(called neurones). The number of these is of the order of �	��, each establishing
on average about �	� connections (called synaptic contacts) with various targets.
Neuronal connections form during embryonic development, when each differentiat-
ing neuron sends out an axon, tipped at its leading edge by the growth cone, which
migrates through the embryonic environment to meet its target.

Growth cones were first described by Ramón y Cajal in chicken embryos (cf.
[73]). These structures are continuously expanding and retracting; this is the way
in which growth cones integrate and transduce chemical signals arising from targets
and neighbour tissues. In 1893, Ramón y Cajal advanced the so-called chemotactic
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hypothesis (cf. [74]), according to which growth cones should be “excitable by sub-
stances secreted by some nervous cells,” their motion being guided to their eventual
targets by “chemical streams.” Experimental verification of this conjecture had to
wait for a long time; see [83] and [80] for surveys of the aspects involved.

Much is already known about the manner in which neuron navigation occurs.
For instance, as explained in [83], axon trajectories appear to be broken into short
segments. In this way, reaching a distant target is split into many simpler (and
shorter) steps, which all together allow axons to move over comparatively large dis-
tances (usually on the order of centimetres, that is, over a thousand times the diameter
of each cell body). A second feature stressed in [83] is that the wiring of the nervous
system takes place in a stepwise manner. This means that the first axons that develop
have to move within an axon-free environment. However, later moving ones have
to deal with an expanding media where earlier sailing cells make up a scaffolding
network where others should travel along.

Even if large journeys can be broken into shorter legs, the question remains of
understanding how each axon navigates any short segment. As described in [83],
axons seem to respond to the coordinate action of four types of guidance cues: at-
tractive and repulsive, which can be either short-range or long-range. Long-range
attraction and repulsion seem in turn to be produced by diffusible factors, whereas
short-range guidance appears to be provided by contact-mediated mechanisms, in-
volving nondiffusible cell surface and extracellular matrix (ECM) molecules. We
next proceed to remark on some modelling aspects of long-range, diffusive attrac-
tion, or repulsion.

13.4.1.1 Sensitivity, Adaptation, Amplification

A first modelling approach might consist in considering each biological unit
(axons in the case recalled above, but possibly lymphocytes or amoebae in the sit-
uations to be considered later) as a black box, from which some robust properties
are to be expected, irrespective of the precise way in which these are achieved. For
instance, for long-range guidance based on the detection of chemotactic gradients
to be successful, the organisms involved are expected to fulfill some requirements,
namely:

� To be able to respond reliably to small gradients of guidance cues across their
surface (sensitivity)

� As migration takes place in a medium where the basal concentration of chemi-
cal signals varies by several orders of magnitude, organisms need to constantly
re-adjust their sensitivity, a process usually termed as adaptation.

Besides that, in a living environment the detection-orientation system has to
allow for high-gain persistent, polarised signalling in response to chemoattractant
gradients (amplification).

As a matter of fact, experiments reported in [62] show that under exposure to
high levels of netrin-1 of brain-derived neurothropic factor (BDNF), growth cones
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of cultured xenopus spinal neurones undergo consecutive phases of desensitisation
and resensitisation (that is, adaptation) in their ability to detect gradients of netrin-1
of BDNF. Moreover, these cyclic phases of desensitisation and resensitisation are re-
flected in the zigzag path of alternating attractive and repulsive turning of advancing
growth cones towards their source of chemoattractant. However, in the absence of
guidance factor, no such type of path is observed, and the growth cone advances in
an irregular and unpredictable manner.

A model of amplification in growth cones has been proposed in [60]. It consists
in a system of ordinary differential equations involving three variables: a saturating,
self-enhancing activator, coupled with two antagonistic equations. Of these, one
equilibrates rapidly over the whole cell, causing competition among different surface
elements, which is won by those exposed to the highest concentration of external
cues. A second antagonistic reaction is assumed to act locally. It has a longer time
constant, and produces destabilisation of peaks after they have formed. On the other
hand, a model for adaptation different from (but also motivated by) the activator-
inhibitor models of [58–60] has recently been proposed in [50,54]. Again, three
variables are considered: a response element that can be active (denoted by C�) or
inactive, its total concentration being C�, and an active excitory (3�) and inhibitory
(D�) enzymes that catalyse the activation and inactivation of the system. Activation is
in turn regulated by receptor occupancy in the cell membrane, which is proportional
to the concentration of the local signalling molecule (E). The corresponding set of
equations is�������������������

dC�

d�
� ��C����D���� � ��C� �C�����3���� �

dD�

d�
� ��D���� � ��D� � D�����E �

d3�

d�
� ��3���� � ��3� �3�����E �

(13.104)

where letter  with different subscripts is used to denote the kinetic constants of
the various reactions involved. Assuming the presence in (13.104) of some small
parameters, asymptotic limits are identified in [50,54] for which, as � � �

C�

C�
� � 3�

D�
for some � � 	 independent of E �

so that C� will not depend on the signalling molecule concentration, whence the
system will exhibit the adaptation property.

It has been already mentioned that signal processing within the cell is mediated
by receptor occupancy at its membrane. In other words, the incoming external cue is
captured at some particular places (receptors) scattered over the cell boundary, thus
triggering an internal signalling cascade. The physical mechanism by which growth
cones sense gradients is a subject deserving considerable attention, and one in which
more needs to be known. For instance, in a situation as that of a cell, in which the

©2003 CRC Press LLC



energy due to thermal fluctuations is large enough to change the cell motion, the
question naturally arises of what are the physical limitations on a cell’s ability to
sense and respond to changes in its environment. This issue was addressed in the
work [5], where a model was produced that provided estimates for the statistical
fluctuations in the measuring of concentrations by a small sensing device. From that
model, the authors obtained estimates on sensitivity with respect to various factors
including a bound on the minimum detectable gradient. This study has been recently
taken up in [23], where comparison with experiments and limitations on its predictive
value are discussed in detail.

We conclude this section by remarking on a macroscopic, RD-model for axon
guidance. Here target cells and growth cones are represented as points in a two- or
three-dimensional space, and attention is paid to the change in the concentrations
of various chemical signals. More precisely, let us follow [32] and consider the
interaction of three types of diffusible substances:

� A chemoattractant �� that is released by target cells at a rate '� and has diffu-
sion coefficient��

� A chemoattractant �� released by the axonal growth cones at a rate '�, with
diffusion constant��

� A chemorepellent �� secreted by the axonal growth cones at a rate '� which
diffuses with a coefficient��

Here we are also denoting by ��, ��, and �� the concentrations of the signals
involved. Assuming that axon growth occurs on a much longer scale than the time
needed for diffusive fields to equilibrate (again, a small-parameter hypothesis), the
authors of [32] arrive at the following system

���������������������

�;� � ���� � � '�
��

�
�

Æ��� $����� �

�;� � ���� � � '�
��

�
�

Æ��� ��� �

�;� � ���� � �
�
�

'�Æ��� $����� �

(13.105)

where �� is the fixed position of target cell 	, $� is the location of the 0��-growth
cone at time �, � (� � 	 �  ) is the inverse diffusive length of chemical ��, and
Æ�� � �� denotes Dirac’s delta at � � �. We refer to [32] for a numerical study of
the phenomena of bundling (during navigation) and debundling (on approaching the
target). Actually, the analysis made in [32] is concerned with a number of situations,
involving not only diffusible signals but also contact interactions, but we shall omit
further details here.
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13.4.2 Aggregation in Slime Moulds: the Keller-Segel System

The second problem in this section is concerned with morphogenesis, a key fea-
ture in the development of multicellular organisms, and already an inspiring motiva-
tion behind Turing’s seminal work [84]. One of the simplest aspects of morphogen-
esis is cell aggregation. Indeed, as observed in [65], “. . . Aggregation phenomena, in
which spatially separated cells gather together, form a multicellular group and then
proceed to differentiation, are perhaps ideal for studying interactions between cells
during morphogenesis. Unfortunately, not many systems are known in which aggre-
gation occurs clearly separated in time from differentiation. Among other reasons,
this makes it particularly important to make a detail study of the one in vivo system
that is well characterised, namely the cellular slime moulds.”

The precise biological features of these organisms which are of interest here are
succinctly summarised by Bonner ( [9], p.62 ; see also [8]) as follows: “. . . Cellular
slime moulds are soil amoebae. They feed as separate individuals on bacteria, and
after they have finished the food supply, they stream together to central collection
points to form a multicellular individual of thousands of cells. This mass of amoebae
moves as a unified “slug” toward light and is also oriented by heat gradients. After
this period of migration, the anterior cells turn into stable cells that keep piling onto
the tip, while most of the posterior cells turn into spores. The spore mass is slowly
lifted into the air as the stalk elongates; the final result is a small fruiting body, in the
order of one or two millimetres high, in which a spherical spore mass is supported
on a slender stalk made up of large, vacuolate, dead stalk cells . . . .”

Out of all biological aspects mentioned above, each of which has interest on
its own, we shall focus here on aggregation toward “central collection points.” More
precisely, it is known that when food becomes scarce, some individuals start emitting
pulses of a chemical (cAMP � cyclic aminophosphatase in the case of the mould
Dictyostellium discoideum, Dd for short). Organisms then proceed to move towards
higher concentrations of the substance thus produced, and eventually concentrate
into lumps. In the course of motion, experiments reveal a variety of structures: target
and spiral waves (of which we have discussed before), but also streaming patterns.

We shall examine now an early continuum model which intends to describe this
aggregation stage. It was introduced in 1970 by Keller and Segel (cf. [47]) and, in its
simplest version, only two variables are considered. These are the concentration of
cells at any point � and time �, to be denoted by ���� ��, and that of the chemical pro-
ducing aggregation, represented by ���� ��. The conservation equations for ���� ��
and ���� �� are of the form

��

��
� �� � �� �

��

��
� �� � �� �3���� � 3 � 	 � � � 	 � (13.106)

where �� and �� are respectively the fluxes of cell and chemical concentrations,
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and terms 3� and ����� are p articularly simple choices corresponding to chemical
production and decay. As to the flu xes, these are assu med to b e g iven by

�� � ����� � �� � ������ ��<��� � (13.107)

Her e th e d iff u sio n co efficien ts ��, �� are positive, and <��� is th e so - called
ch em o tactic f u n c tio n , wh o se g r a d ien t a ttr acts cells to g a th er to g e th er. A sim p le
ch o ice is to assu m e it to b e lin ear, <��� � <� for some < � 	. Puttin g a ll p ieces
togeth er, we eventually arrive at���������

��

��
� ����� <� � ����� �

��

��
� ���� �3���� �

(13.108)

Equations (13.108) are to b e consid ered in a domain (usually bounded)  �
�

 . Natural choices for � are � � � (a reasonable approximatio n for a Petri

dish) and � �  . For th e purpose o f mathematical analysis, (13.108) has to b e
supplemented with su itable initial and boundary conditions.

In th e case o f bounded domains, it is o ften assu med that there is no flu x at the
boundary, i.e.,

��

��
�
��

��
� 	 for � 	 � and � � 	 � (13.109)

Sy st ems akin to (13.108) can be derived from an interactin g sto chastic sy stem
consistin g o f many p articles, under the assu mptio n that such interactio n is o f a mod-
erate character wh en th e populatio n size increases to in fin ity ; cf. [81] and also [38,71]
for d etails concerning th is derivation.

In th e sequel we shall follow [34] to describe so me properties o f (13.108), a
sy stem th at d e sp ite its sim p licity en co d e s a r ich str u ctu r e. To b eg in w ith , o n e m a y
wonder if the formatio n o f d ense cell aggreg ates (often referred to as chemotactic
collapse) is captu red at all in th e m odel (13.108). In m athematical terms, th is ques-
tion m ay be formulated as follows:

Do es sy stem (13.108) possess so lu tions ����� ��� ���� ��� such that ���� �� con-
verges to some Dirac mass in finite time, i.e., such that

���� �� ��Æ��� ��� as � �� � (13.110)

for some �� 	 , � � �� and� � 	?
In this approach, aggregation is represented as a type of blow-up, considered

to be the late stage of an instability arising of an initially homogeneous state. As a
matter of fact, this early stage can be analysed by means of the techniques recalled
in sectio n 1 3 . 2 . 5. To begin with, one has that ���� �� � �� and ���� �� � �� are
constant solutions of (13.108) provided that 3�� � ���. Assume now that � � �
for definiteness, and let us try on (13.108) an expansion of the form
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���� �� �� � �� � � #�� �?��� ?����
�� � � � � �

���� �� �� � �� � � #�� �?��� ?����
�� � � � � � (13.111)

where the constants �, �, ?�, and ?� ar e to b e d eter m in e d . Retain in g o n ly lin ear ter m s,
Equation (13.108) may b e replaced in a n eighbourhood of ���� ��� by���������

��

��
� ����� <���� �

��

��
� ���� �3���� �

(13.112)

Plugging (13.111) into (13.112) eventually yields

<��?
��� �' � ?����� � 	 � ?� � ?�� � ?

�
� �

��?��� �� � '���3� � 	 �

a dispersio n r elatio n sim ilar to ( bu t m o r e invo l ve d t h a n) (13.9). Sin ce we are inter-
ested in nontrivial valu es of � and �, we need to im p o se

'� � '�?���� ���� ��� � ?
�����?

��� � ��� <��3� � 	 � (13.113)

It is readily seen that a positive solution of this quadratic equation exists only if

	 � ?� � �<��3������������� �

wh ich in turn requires

<3��
���

� � � (13.114)

Actually, condition ( 13.114) implies that homogeneous steady states b ecome
(linearly) unstable whenever the initial concentration o f cells is la rg e enough.

Wh en (13.113) holds, there exists a continuum of values of ? for which (13.114)
is satisfied . I n p a r ticu lar, th e r e is a valu e ?� at which the positive root ' � '�?�� of
(13.113) achieves a maximum.

Assuming 	 � ?� � �, an approximate plot of ' against ?� can be obtained as
sh ow n i n Figure 13.7.

The argument just sketched provides a reasonable description of the initial
stages of aggregation, that may be considered to be triggered by random pertur-
bations (biological noise) around a given homogeneous state. However, it clearly
appears that chemotactic collapse cannot be fully accounted for in such way. In-
deed, the validity of this approach is confined to regions where perturbations remain
small. As remarked in [65], it cannot be excluded that, after an initial period of
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Figure 13.7

The re la t io n between '�?�� and ?� fo r 	 � ?� � �.

growth, the sy stem would “settle down to a nother stationary state, sp atially nonuni-
form, but far from aggreg ate.” After all, this is precisely what was expected from the
activator-inhibito r systems mentioned in sectio n 13.2.6. Fu rthermore, even if so me
fluctuations would produce solutions that never return to a quiescent state, they could
do so in infinite time, or even if blowing up in a finite time, they could do so in a
different manner than that prescribed by (13.110).

We now provide a quick overview of known results concerning aggregation
properties of system (13.108). As a startpoint, it was shown in [42] that in space
dimension � � �, solutions of (13.108), (13.109) exist for all times if the initial
density ��� � 

�� �



����� �� is small enough. However, radial solutions corre-

sponding to ��� sufficiently large blow up in finite time. The existence of a critical
threshold on ��� (that can be precisely characterised, see [64]) for blow up to occur
is a relevant feature of the two-dimensional case, which is known to be absent when
� �  (see [6] and [33] for results in that direction).

The actual occurrence of chemotactic collapse for radial solutions when� � �
has been shown in [35] (for a simplified version of (13.108) corresponding to the
case 	 � �� � ��) and in [36,37] (for the general system (13.108) with both
diffusion coefficients of order one). The structure of the solution which eventually
unfolds into a Dirac’s delta is better obtained by asymptotic methods. The basic idea
consists in considering separately an inner region, located in a thin layer around the
blow-up point (say, ��), and an external, outer region, where solutions change slowly
in time. At the inner region, the solution converges (in rescaled variables) toward a
stationary solution of (13.108); the (a priori unknown) radius C��� of this region
enters in the form of the scaling required for the stationary solution to eventually
form there. At the outer region, our solution can be safely approximated by that
of a linearised problem, where all information emanating from the inner region is
averaged out in the form of a lumped source term. The radius C��� is then obtained
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by requiring these two approximations (inner and outer) to match at an intermediate
region, which overlaps with the inner and outer ones. We refer to [34] for additional
details on this strategy, which is fully carried out in references [35–37].

We conclude this section by further remarking on some interesting properties
of system (13.108). To begin with, when � �  a different blow-up mechanism
appears. It consists in an imploding, smoothed out shock wave moving towards the
blow-up point (cf. [33]). On the other hand, the stability of the chemotactic collapse
obtained when � � � has been extensively discussed in [86], whereas possible
regularisations of (13.108) allowing for solutions to be continued beyond blow-up (a
natural requirement from a biological point of view) are studied in [87,88]. We also
refer to these last two papers for recent mathematical analysis on the Keller-Segel
model.

13.4.3 Modelling Some Aspects of Chemotaxis

The previous section was concerned with describing aggregation in slime moulds
from a macroscopic point of view. In this way, cells were represented as points, and
their individual evolution was reduced to the analysis of their concentration and that
of the chemical released during clustering.

While such a crude simplification may be relevant in some contexts, it is far
from being realistic in others. In particular, every aspect of the sophisticated pro-
cesses associated to signal capturing by surface receptors, and its subsequent trans-
duction to trigger a motile response in the cell, were simply ignored. Although these
issues are far from being completely elucidated to this day, models have been pro-
posed that partially account for these features. To keep this work within reasonable
bounds, only two of them will be briefly described below. In particular, the underly-
ing (and challenging) question of elaborating a comprehensive, multiscale model for
Dd will not be addressed here.

The first work to be succinctly commented in the sequel is that by Hagan and
Cohen (cf. [28]). Their goal consisted in providing a RD scenario for regulation of
cAMP in Dd. They assumed that this can be accounted for in terms of the following
variables: the extracellular (resp. intracellular) concentration of cAMP, the intracel-
lular concentration of an inhibitor, and a lumped variable representing concentration
of intracellular stored reserves. These are respectively denoted by 0��� ��, (resp.
�3), �, and E. The interplay of these variables is described in [28] by means of the

following system
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�������������������������������

�0

��
� �?�� �3� %0���0 �

� �3

��
� ���0��� � �� �3 �

��

��
� �0�E � ���� � ���� �

�E

��
�

�

�
!��0�E � ����" �

(13.115)

Let u s remark b riefly o n the various terms appearin g in (13.115). The first
equatio n therein describes changes in space and time o f the concentration o f external
cAMP. This last increases proportionally (with factor �?) to the rate �� �3 at which inter-
nal cAMP is secreted by th e cells. The second and third terms o n the right account
resp ectively for degradatio n and diffusion. The second equatio n represents synthesis
of inter n al cAMP, a n d its lo ss b y leak in g to th e ex ter n al env ir o n m en t. Activa tio n
is d u e to f u n c tio n ���0��� which is increasing in 0, and inhibited by �, so that it
ev e n t u ally satu rates in a sigmoid manner (cf. Figure 1 in [28]). The third equatio n
in (13.115) accounts for production of a feedback inhibitor � by catabolism of the
stored reserves E (at a 0-dependent rate, �0�). � is also recycled (at a rate ����)
to rebuild E, and is lost at a rate ����. Finally, the last equation describes consump-
tion of the stored reserves E at a rate � �

�
� times the net production rate of �, and its

simultaneous restoring (already discussed).
Of particular importance is the fact that � represents the number of monomers

in one polymeric unit of E, so that �� �, and we already have a small parameter in
(13.115). As pointed out in [28], use of experimental information allows for further
separation of scales in the model. For instance, degradation of 0 is rapid (between
�
� and � seconds), which suggests setting % � �

�
with 	 � ) � �. Production of

intracellular cAMP seems also to be fairly rapid (about �& seconds). On the other
hand, production of inhibitor occurs at a much slower pace (about �		 seconds).
Furthermore, since � � �, E is depleted only in a very slow scale (of the order of
hours). Thus, on setting ?� � )�?��, Æ ���0��� � ��0���, � � Æ�� with 	 � )� Æ � �,
(13.115) can be recast in the form�������������������������������

�0

��
�

�

)
�?� �30� ���0 �

� �3

��
�

�

Æ
���0���� � �3� �

��

��
� �0�E � ���� � ���� �

�E

��
�

�

�
!��0�E � ����" �

(13.116)
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One then may argue as follows. Since 0 evolves in a faster time scale than �3,
it is always near equilibrium with �3, so that 0 � ?� �3. From the first equation in
(13.116) we then obtain that

0 � ?� �3� )

�
��0� �0

��

�
� ?� �3� )

�
���?� �3�� ?� �

�3

��

�
� ?� � �3� )��� �3� �3�

�
� (13.117)

We next consider the second equation in (13.116) and set there

3 � ?� �3 � - �0��� � ?���0��� �

Taking advantage of (13.117) and using Taylor’s expansion on - �0���, we obtain

Æ
d3
d�

� - �0���� �3 (13.118)

� - �3���� �3� )
Æ
- �3��� �- �3���� �3� � )�- �3����3� � � � �

Arguing in a similar way for the third equation in (13.116), we are able to reduce
the original system (13.115) to one consisting of three equations, namely�������������������

Æ
� �3

��
� - �3���� �3� )�- �3����3 �

��

��
� �3�E � ����� ���� � )�E��3��3 �

�E

��
�

�

�
!��3�E � ����" �

(13.119)

Moreover, since E changes little in time, we may consider (13.119) as consisting
essentially of its first two equations, and having a slowly varying parameter there.
The reduced system thus obtained can be analysed in two steps. First, we may drop
the (small) diffusivity terms, and then consider the ODE system thereby obtained.
Keeping track of the variation of E, it is then possible to classify the corresponding
equilibrium states and describe the resulting dynamics in phase space. At a second
stage, we introduce back the weak coupling due to diffusion, to characterise the onset
of pulse and spiral patterns in the reduced system (13.119) (cf. [28], p. 885-898).

A question also addressed in [28] is the need of a rule connecting external cAMP
concentration with cell motion. This is assumed to be that cells move in the direction
opposite to cAMP wave propagation. In this way, evidence for the formation of
streams can be obtained in the following manner. Suppose that cells are migrating
toward a distant aggregation centre located on the �-axis. We can then write 3 and
� in the form���

3��� �� � 	3�9��� =�F� ��� E�� � � � � � F � )� �

���� �� � 	��9��� =�F� ��� E�� � � � � � (13.120)
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(recall Equations (13.82) to (13.90) in the p revious section). Here =�F� �� is th e
phase sh ift, th at may b e assu med to b e in the form of a p lane wave near th e o rigin:
= � ��>F for some , >; 2� is th e ave r a g e o f 9�E���� , a frequency d etermined b y
th e lo cal va lu e o f 9�E���� , and E� is th e ave r a g e va lu e o f E��� . Assu m i n g 9�E����
to b e alm o st constant and equal to 9� ex cept in a sm all r eg ion: �� � �� � $�� , we
may write =�F� �� in th e f o r m

=�F� �� � �� >F � A �F� �� �� � (13.121)

wh ere A represents the p erturbation caused b y the inhomogeneities o f 9 �E����
around the origin. From Equations (13.119) to (13.121), it is possible to estimate
th e ter m ��= � �� 	�� wh ich r ep r e sen ts th e r e lative direction field o f the cell m o-
tion, to eventu ally produce a streamin g p attern as th at in Figure 8 in [28].

We c onclude th is sectio n b y succinctly describing a model containing elements
already incorporated in [28] togeth er with th e explicit consid eratio n o f a (possibly
la rg e) populatio n o f mov in g o rg anisms, as in the sy stem studied in [32] and re-
called in sectio n 13.3.1. More precisely, we follow [70] and consider a family of
� organisms, assumed to be approximately circular, moving on a two-dimensional
space. The position of any cell is then characterised by the location of its centre,
C���� � ������� ������ � $���� with � � 	 � �. The model in [70] describes Dd
cells which can produce cAMP and move towards a cAMP gradient according to the
following rules: Dd cells have membrane receptors that can be either active or inac-
tive. In the active state, the receptors can bind external cAMP, thereby stimulating
the synthesis of cAMP inside the cell. This intracellular cAMP is then leaked outside
the cell, where it stimulates cAMP receptors, thereby closing a feedback loop. On
the other hand, receptors become inactive as a result of prolonged exposure to high
cAMP concentrations, which allows for refractory periods in the cell. In mathemati-
cal terms, we introduce three variables: ;�$� �� (fraction of cAMP receptors in active
state), @�$� �� (concentration of intracellular cAMP), and >�$� �� (concentration of
extracellular cAMP) and state the following relations among them

���������������������������

)�
�;

��
� �����>�;� ���>���� ;��

��
���

Æ�$ �C����� �

)�
�@

��
� �����;� >�� @�$� ���

��
���

Æ�$ �C����� �

�>

��
� ��> � �

)�
���@ � >�

��
���

Æ�$ �C����� �

(13.122)

Here functions ��, ��, and � are given, and a number of parameters appear
which allow for separation of scales in suitable asymptotic limits. For instance,
arguments are given in [70] to assume that the second equation in (13.122) is in a
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quasi-steady state (that is, the internal cAMP dynamics are very fast). Then (13.122)
can be reduced to

�������������
)�
�;

��
� �����>�;� ���>���� ;��

��
���

Æ�$ �C����� �

�>

��
� ��> � �

)�
���� >�

��
���

Æ�$ �C����� �
(13.123)

As in the case previously examined (cf. [28]), a locomotion rule needs yet to
be added to (13.123) to account for cell motion. Some choices for such rules are
discussed in [70], but to give merely a glimpse of the problems therein considered,
we just comment on one of these. Let + � +�;� >� be such that + � 	 if the following
conditions are met: either ; � ;� for some critical value ;�, or 
�>
 � :� for some
:� � 	; we take + � � otherwise. Then motion of the cells can be described by the
equation

dC�
d�

� +
�>

�>
 � for 	 � �� � � � � � � (13.124)

The mathematical analysis of (13.123), (13.124) with �� � is rather involved.
However, numerical simulations seem to be comparatively easier. A number of them
were performed in [70], which show occurrence of various types of patterns, in-
cluding stream formation and spiral motion, in suitable ranges of the parameters
appearing in (13.123), (13.124).
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