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Introduction

Earthquakes threaten the United States, as illustrated by
hazard maps for the 48 conterminous states (Fig. 1). Much of
the threat comes from unusually large earthquakes that recur
hundreds or thousands of years apart. Engineering designs,
insurance rates, and emergency plans depend on national
maps that forecast seismic shaking at various probability
levels (Fig. 1b). The study of prehistoric earthquakes —
paleoseismology — provides long-term rates of earthquake
occurrence to improve confidence in such forecasts.

Paleoseismology emerged in the last decades of the
20th century, after 1965, It draws on many kinds of re-
search, including geomorphology, stratigraphy, structural
geology, geochronology, paleoecology, oceanography, civil
engineering, archaeology, ethnology, and documentary
history. Its literature includes collected papers and workshop
proceedings (Crone & Omdahl, 1987; Ettensohn et al., 200/2;
Hancock & Michetti, 1997; Masana & Santanach, 2001; Ota
et al., 1992; Pavlides et al., 1999; Serva & Slemmons, 1995;
Shiki et al., 2000; Yeats & Prentice, 1996), national and
regional overviews (Camelbeeck, 2001; Clague, 1996; Grant
& Lettis, 2002; Ota & Okumura, 1999; Research Group for
Active Faults of Japan, 1992; Talwani & Schaeffer, 2001),
topical reviews (Jacoby, 1997, Obermeier, 1996), textbooks
(McCalpin, 1996; Noller et al., 2000; Yeats et al., 1997), and
narratives intended for general audiences (Nance, 1988; Sieh
& LeVay, 1998).

This chapter describes three North American examples
of earthquake history inferred from Quaternary geology. The
examples resemble one another by providing long-term per-
spectives unavailable from traditional seismological records.
Each example includes multiple earthquakes inferred from
widespread paleoseismic evidence. These earthquakes
suggest rates and patterns of recurrence that help define
earthquake hazards. The examples differ in tectonic setting,
in the kinds of features that record prehistoric earthquakes,
and in overlap with instrumental and written records.

Described first is evidence for infrequent surface rupture
on faults in a small part of California’s diffuse boundary
between the Pacific and North America plates. The faults
form a 50-km-wide shear zone east of the San Andreas fault.
Collectively termed the eastern California shear zone, these
faults accommodate lateral motion not absorbed by the San
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Andreas. Movement on some of them produced surface
ruptures and two large, instrumentally recorded earthquakes
in the 1990s. Prehistoric offsets exposed in trenches show
that thousands of years probably separated such ruptures in
the Holocene. Age ranges of the prehistoric ruptures overlap
among the faults. These findings suggest that the shear zone
produces large earthquakes in infrequent series.

Next we discuss earthquakes in the interior of the North
America plate — in the New Madrid seismic zone of Missouri,
Arkansas, and Tennessee. This region’s low relief and slow
rates of modern deformation belie a late Holocene history
of large earthquakes more frequent than those in the eastern
California shear zone. A series of three large earthquakes in
1811 and 1812, known from historical accounts, produced
thousands of sand blows in an alluvial area at least 200 km
by 80 km. Sand blows similarly record earlier series of New
Madrid earthquakes in A.D. 800-1000 and 1300-1600.

Our final example comes from the Cascadia subduction
zone, where oceanic lithosphere descends beneath the North
America plate in California, Oregon, Washington, and British
Columbia. Though unknown from this region’s written his-
tory, great subduction earthquakes repeatedly lowered much
of its Pacific coast by at least 0.5 m, most recently in A.D.
1700. The subsidence is marked by buried soils at estuaries.
Such soils from the past 3500 years in Washington imply
that the earthquakes recur at irregular intervals ranging from
a few hundred years to about one thousand years.

Eastern California Shear Zone

The eastern California shear zone, centered about 150 km
northeast of Los Angeles (Fig. 2), exhibits geologic evidence
for prehistoric surface ruptures during episodes thousands of
years apart.

Modern Deformation and Earthquakes

According to geodetic measurements, the shear zone absorbed
right-lateral slip at 11-14 mm/yr during the 1990s (McClusky
etal.,2001; Miller et al., 2001; Sauber et al., 1994). This slip
rate accounts for a quarter of the interplate motion, which
averages 50 mm/yr (DeMets et al., 1990, 1994).

© 2004 PUBLISHED BY ELSEVIER B.V.
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Fig. 1. Overview of earthquake hazards in the conterminous
United States.

The geodetic measurements coincided with a decade in
which the eastern California shear zone produced two unusu-
ally large earthquakes (Figs 2 and 3). The first and largest,
the 1992 Landers earthquake of moment magnitude (M) 7.3,
ruptured several north- to northwest-striking right-lateral
faults along a total length of 70 km (Sieh et al., 1993), Within
a few tens of seconds, rupture started on the southern Johnson
Valley fault, progressed northward, slowed at stepovers to and
from the Homestead Valley fault, and finally ended along the
Camp Rock fault (Cohee & Beroza, 1994; Wald & Heaton,
1994). Coseismic dextral slip at the ground surface commonly
exceeded 3 m; it reached a maximum of 6 m along the north-

ern Emerson fault. Seven years later on a parallel trend 30 km
to the northeast, the M 7.1 Hector Mine earthquake produced
as much as 5 m of surface dextral slip on the Lavic Lake and
Bullion faults (Treiman et al., 2002). This 1999 earthquake
also triggered small earthquakes over much of southern
California (Hauksson et al., 2002; Rymer et al., 2002a).

The 1992 Landers and 1999 Hector Mine earthquakes
have few historical precedents in eastern California. Before
1992, no large (M > 7.0) earthquakes had ruptured eastern
California faults since the 1872 Owens Valley earthquake,
centered 200 km north-northwest (Fig. 2a). Instead, the shear
zone’s largest events were moderate earthquakes of My
6.1 (1947 Manix), My, 5.5 (1975 Galway Lake and 1979
Homestead Valley), and M 6.2 (1992 Joshua Tree; Fig. 2b
and ¢). (M, local Richter magnitude, is similar to M in this
size range.) All these earthquakes were exceeded in size by
the 1992 M 6.5 Big Bear earthquake, an aftershock to the
Landers earthquake.

Earthquakes of the 1990s thus define an uncommon
episode of seismic activity in the eastern California shear
zone. An earlier seismic episode, farther north in east-central
California and western Nevada, occurred between 1872 and
1954 in a shear zone 500km long (Wallace, 1978, 1984).
These historical examples raise the question, do M 6-7
earthquakes in the eastern California shear zone typically
come in clusters?

Prehistoric Earthquakes

Paleoseismic studies of the eastern California shear zone be-
gan a few weeks after the 1992 Landers earthquake and even-
tually involved more than 17 trenches across eleven faults
(Fig. 2¢). The studies focused on playas where the verti-
cal component of slip produced stratigraphic offsets in fine-
grained, stratified deposits of Holocene age (Fig. 3). Evidence
for surface rupture includes faults and fissures that terminate
at buried land surfaces, folding and warping of beds, deposits
that resulted from ponding against fault scarps, and scarp-
derived colluvium. Laminated lacustrine deposits allow de-
tection of vertical separation as small as several centimeters.
Prehistoric faulting also produced noticeable offsets in allu-
vium, colluvium, and buried soils. Detrital charcoal and peat
beds have yielded radiocarbon ages that limit inferred times
of the prehistoric ruptures and related earthquakes.

The paleoseismic studies confirm that the Landers and
Hector Mine earthquakes were rare events (Fig. 4). Few of
the faults trenched show evidence for more than two surface
ruptures between 10,000 years ago and A.D. 1992. No prehis-
toric rupture of Holocene age has been found where the Lavic
Lake fault ruptured in 1999, with the possible exception of
minor slip after than A.D. 260 (Rymer et al., 2002b).

The inferred earthquakes can be grouped into three
Holocene episodes on the basis of overlapping radiocarbon
ages (episodes A, B, and C in Fig. 4). The episodes are
loosely defined because uncertainties in dating the prehis-
toric ruptures commonly span centuries (Fig. 4a). Episode
A, about 8000-9000cal yrB.P., includes the most recent
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pre-1992 events on the Kickapoo,and northern Emerson
faults. These events produced fault scarps similar in height to
the 1992 scarp. Episode A may also include the penultimate
prehistoric surface rupture on the Helendale and Mesquite
Lake faults, as well as ruptures on the Lenwood, Camp
Rock, and southern Johnson Valley faults. Episode B, about
5000~6000 cal yr B.P,, followed several thousand years of ap-
parent quiescence. Surface ruptures occurred on the Lenwood,
Johnson Valley, Bullion, and Mesquite Lake faults. The shear
zone became active again in the past 1000 years, during
episode C. This latest series of earthquakes, which continued
into the 1990s, produced surface rupture on many faults in the
shear zone. Though represented by a single rupture at most
sites, episode C includes both a prehistoric rupture and the
1992 Landers rupture on the Camp Rock fault (Fig. 4, site 4).

Implications and Challenges

The long intervals between episodes imply that the earth-
quakes of the 1990s represent an unusual peak in seismic ac-
tivity in the eastern California shear zone. However, episode
C differs too much from A and B for any of the episodes to

define the likely size and pattern of future surface ruptures.
(Rockwell er al., 2000). Viewed as part of episode C (Fig. 4),
the shear zone’s 20th-century earthquakes imply either that
additional earthquakes are likely, or that episode C is draw-
ing to a close. The Working Group of California Earthquake
Probabilities (1995), without much paleoseismic information
about the eastern California shear zone, presumed that in com-
ing decades, the zone would continue producing earthquakes
like those since 1970 (Fig. 2c).

Geophysicists have proposed various triggers for swift
series of earthquakes in the eastern California shear zone
(Freed & Lin, 2001; Harris & Simpson, 2002; Hudnut et al.,
2002; Pollitz & Sacks, 2002; Zeng, 2001). The zone’s history
of episodic Holocene earthquakes suggests that a realistic
trigger will permit thousands of years to elapse between
earthquake series.

New Madrid Seismic Zone

Paleoseismology can clarify fault location and earthquake
recurrence far from plate boundaries, in continental regions
where tectonic activity has less geomorphic or seismological



(a) Ruptures on the Emerson fault from the 1992 Landers
earthquake. A degraded older scarp runs parallel to them.

(c) Uplift at a bend in the Lavic Lake fault, 1999 Hector Mine
earthquake. Maximum uplift, 1 m; dextral slip nearby, 2 m.

(b) Trench across 1992 ruptures on playa in a. Maximum dextral
slip, 2.3 m; maximum uplift, 0.8 m. Site 6 in Figure 4a.

Ak

(d) Oblique slip along bend in Lavic Lake fault, 1999. Maximum
dextral sfip, 2.5 m; maximum uplift, 1.2 m.

L

Fig. 3. Surface ruptures of the 1992 Landers and 1999 Hector Mine earthquakes (locations, Fig. 2c).

expression than in the eastern California shear zone. One
such region is the lower Mississippi River valley (Schweig
et al., 2002). This valley contains the New Madrid seismic
zone (Fig. 5a), which during the winter of 1811-1812
produced some of the most widely felt earthquakes in the
written history of the United States. Studies of prehistoric
earthquakes in the New Madrid region have shown that the
1811-1812 earthquakes were not freak, one-time events.
The three largest shocks of the 1811-1812 sequence, of M
7.5-8.0 (Atkinson et al., 2000; Hough et al., 2000; Johnston,
1996), rank among Earth’s largest intraplate quakes (Johnston
& Kanter, 1990). They destroyed settlements along the Mis-
sissippi River, damaged buildings as far away as Cincinnati
and St. Louis (Fig. 1), and were felt at distances as great as
1,800 km (Nuttli, 1973). They induced severe liquefaction
and related ground failure throughout the New Madrid region
(Fig. 5b; Fuller, 1912; Obermeier, 1989; Saucier, 1977)
and locally as far as 250 km from inferred epicenters (e.g.
Johnston & Schweig, 1996; Street & Nuttli, 1984).
Although few faults have geomorphic expression in the
New Madrid region, numerous small modern earthquakes
illuminate several interseting faults (Fig. 5a; Chiu et al.,
1992; Pujol et al., 1997). Most of these earthquakes occur
beneath Late Wisconsin and Holocene deposits of the
Mississippi River and its tributaries. Many of the fluvial
deposits liquefied during the A.D. 1811-1812 earthquakes,
venting water and sand that formed sand blow deposits across
about 10,000 km? (Figs 5 and 6). Prehistoric sand blows in

this area provide the main evidence for two earlier episodes
of New Madrid earthquakes during the past 1200 years.

Paleoseismic Evidence

According to oral traditions of Native Americans in the Mis-
sissippi River valley, a great earthquake devastated the region
centuries before 1811 (Lyell, 1849). Geologic evidence for
such an earthquake was first reported by Fuller (1912), who
noted liquefaction-related ground failures and a history of
uplift and erosion predating 1811. He inferred that the region
had experienced “early shocks of an intensity equal to if not
greater than that of the last.”

Detailed study of pre-1811 earthquakes in the region be-
gan at the Reelfoot scarp (Fig. 5a). This landform coincides
with a northwest-trending zone of microseismicity and may
be a monocline above a blind thrust fault (Russ, 1982). As
inferred from deformed sediments exposed in trenches across
the scarp, prehistoric folding and earthquake-induced lique-
faction occurred at least twice in the past 2000 years (Russ,
1979), probably in A.D. 780-1000 and A.D. 1260-1650
(Kelson et al., 1992, 1996).

Archeological studies contributed to the recognition
that many sand blows in the New Madrid region predate
1811-1812. For example, 30 km northeast of Reelfoot scarp
at Towosahgy State Park (Fig. 5a), sand-filled fissures and two
related sand blow deposits underlie a Native American mound
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(Saucier, 1991). The liquefaction features were attributed to
two large earthquakes between about A.D. 400 and A.D. 1000.
Since the 1980s, hundreds of liquefaction features have
:been examined in the New Madrid region. These include
more than 50 sand blows that have been studied in detail,
many at archeological sites (Broughton et al., 2001; Li
et al., 1998; Tuttle et al., 1996, 1999, 2002; Vaughn, 1994;
Wesnousky & Leffler, 1992). The combination of regional
reconnaissance and detailed investigations has advanced
the dating of the region’s prehistoric earthquakes and the
assessment of its earthquake potential (Tuttle et al., 2002).
The challenge has not been finding sand blows, which
abound in the region (Figs 5 and 6), but rather finding sand

blows that can be dated well. In this agricultural region,
plowing and grading have disturbed the upper 15-20c¢m
of soils at most sites. Soils developed on 1811-1812 sand
blows are commonly thin enough to have been completely
reworked by plowing. Soils developed on prehistoric sand
blows, however, can be thick enough to retain cultural
materials below the plow zone (Fig. 7). The New Madrid
region contains thousands of Native American sites occupied
at various times during the past 2000 years (Morse &
Morse, 1983). Remains of these sites — including fire pits,
storage pits, post molds, and trench fills — have been found
on or beneath sand blows. The cultural horizons contain
wood, charcoal, and plant remains that yield minimum and
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maximum ages for earthquake-induced liquefaction features
(Tuttle, 2001).

In addition to archaeological sites, the New Madrid
region contains natural and artificial drainages that expose
cross sections through historic and prehistoric sand blows.
Reconnaissance of river and ditch banks has yielded some
of the information about the size and spatial distribution of
liquefaction features summarized in Figs 5 and 6.

Prehistoric Earthquakes

In the New Madrid region, prehistoric liquefaction features
commonly date to A.D. 800-1000 or 1300-1600. In size
and distribution, features in these age ranges resemble the
sand blows from the earthquakes of 1811-1812 (Fig. 5b—d).
Additional liquefaction features date from at least two earlier
time intervals since 3000 B.C., but too few sites have been
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studied to estimate the locations and sizes of the earthquakes
that produced them (Fig. 6).

The episodes of A.D. 800-1000 and 1300-1600 each
contained earthquakes in swift series. The serial earthquakes
of 1}81 1-1812 produced muitiple, upward-fining depositional
units, each of which probably represents an individual
earthquake (Saucier, 1989). Most prehistoric sand blows also
contain such multiple units, both from the years 800-1000
and from 1300-1600 (Tuttle et al., 2002).

Implications and Challenges

The New Madrid events of A.D. 800-1000, 1300-1600, and
18111812 together indicate recurrence intervals as short as
200 years or as long as 800 years, with a two-interval average
of about 500 years (Fig. 6). This average has been incorpo-
rated into the latest national earthquake hazard maps as the
recurrence interval for New Madrid earthquakes like those in
1811~1812 (Fig. 1; Frankel et al., 2002, p. 3). In previous
mapping of the region’s earthquake hazards, the interval used
was 1000 years.

Improved estimates of earthquake recurrence may be
obtained by further studying the liquefaction features older
than A.D. 800. These efforts may also help address other
issues at the New Madrid seismic zone, such as long-term
fault behavior (Tuttle es al., 2002), causes for large earth-
quakes in a mid-plate region (Grollimund & Zoback, 2001;
Kenner & Segall, 2000; Pollitz et al., 2001; Stuart, 2001),
and slowness of present-day deformation (Newman et al.,
1999).

Cascadia Subduction Zone

In our eastern California and New Madrid examples,
geologic records of prehistoric earthquakes resemble those
produced by historical earthquakes known from instrumental
records and eyewitness accounts. In some other places,
paleoseismic evidence has no local analog in written history.
Paleoseismology provides the only detailed knowledge of
surface ruptures on Utah's Wasatch fault (Gori & Hayes,
1992, 2000; McCalpin & Nishenko, 1996), as was anticipated
by Gilbert (1883). Prehistoric liquefaction features record
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the most recent large earthquake at the Wabash seismic zone
of Illinois and Indiana, north of the New Madrid seismic
zone (Obermeier et al., 1991). Coastal geology shows that
Washington’s Seattle fault produced its most recent large
earthquake about A.D. 900 (Bucknam et al., 1992; fault
locations in Fig. 1a).

Likewise at the Cascadia subduction zone (Fig. 8), all
carthquakes of M 8-9 predate the region’s written history.
These great earthquakes ruptured the boundary between
the subducting Juan de Fuca plate and the overriding North
America plate. Although few earthquakes attain M 9 -
the 20th century had no more than three or four examples
(Kanamori, 1977; Ruff, 1989, p. 273) - the Cascadia earth-
quake in A.D. 1700 probably did. In the 1990s, this and other
great earthquakes inferred from paleoseismology elevated
the hazard mapped along the Pacific coast from northern
California to southern British Columbia (Petersen et al.,
2002; Fig. 1b).

Coseismic Subsidence

Cascadia’s great-earthquake hazard escaped detection until
the last two decades of the 20th century. Geophysicists de-
duced that Cascadia can produce great earthquakes (Heaton
& Kanamori, 1984; Savage et al., 1981). Geologists then
began finding evidence that great Cascadia earthquakes have
happened (reviewed by Clague, 1997). Much of the geologic
evidence consists of the buried soils of former forests and
marshes that subsided into estuaries during earthquakes
(Fig. 9).

Such subsidence can lower entire regions. During great
thrust earthquakes at subduction zones, the upper plate lurches
seaward above the rupture. Where this motion elastically
stretches and thins the upper plate, the land surface drops. The
grandest modern examples of coseismic subsidence come
from earthquakes in Chile (1960, M 9.5) and Alaska (1964,
M 9.2). Each of these earthquakes produced a largely coastal
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downwarp more than 800 km long, many tens of kilometers
wide, and as much as 2.3m deep (Plafker, 1972). The
Alaskan earthquake quickly entered the stratigraphic record
at the head of a macrotidal estuary, where post-earthquake
tides killed subsided forests and meadows while burying their
soils with silt (Atwater et al., 2001; Ovenshine et al., 1976).

Estuafine stratigraphic records of coseismic subsidence
can coxzmonly be distinguished from those of other kinds
of coastal change, such as gradual rise in sea level, sudden
breaching of sand spits, and anomalous deposition by storms
or floods (Nelson et al., 1996b). To be considered evidence
for coseismic subsidence, the top of a buried soil must mark a
change from a relatively high environment (such as a forest or
the upper part of a tidal marsh) to a relatively low one (such as
an unvegetated tidal flat). Growth-position fossils of vascular
plants can record such a drop (Atwater & Hemphill-Haley,
1997, p. 44), as can assemblages of diatoms, foraminifers,
and pollen (Guilbault er al., 1996; Hemphill-Haley, 1995;
Hughes et al., 2002; Kelsey et al., 2002; Nelson et al.,
1996a; Shennan et al., 1996). The change, moreover, must
have happened suddenly, Sediment texture and fossils differ
across a sharp contact, wide outer rings show trees healthy
until their last year or two, and growth-position stems and
leaves of herbaceous plants imply rapid burial (Atwater &
Yamaguchi, 1991; Jacoby et al., 1995; Fig. 9¢).

If an earthquake produces a tsunami or liquefaction, the
earthquake may be further marked by sand that mantles a
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buried soil in a stratigraphic section otherwise free of sand.
At many Cascadia estuaries, a sand sheet suggests that
burial of a freshly subsided soil began with a tsunami (e.g.
Clague et al., 2000). Marine diatoms within and landward of
such sand sheets strengthen the case for tsunami inundation
(Fig. 9d; Hemphill-Haley, 1996). In this same stratigraphic
position at a few Cascadia estuaries, sand lenses fed by sand
dikes show that soil burial began with venting of water and
sand in response to earthquake-induced liquefaction that
happened about the time the soil subsided (Kelsey er al.,
2002, p. 309; Obermeier, 1996, p. 43).

Prehistoric Earthquakes

In the late Holocene, coseismic subsidence in coastal Wash-
ington and Oregon has recurred at intervals mostly 300-800
years long (Kelsey et al., 2002). Because of uncertainties
in correlations based solely on numerical ages, little is
known about the coastwise extent of individual subsidence
events before A.D. 1700. However, at least three estuaries of
southern Washington probably share a 3000-year history of
repeated coseismic subsidence at irregular intervals (Figs 10
and 11).

This earthquake history is based on a widely correlative
stack of buried soils exposed in low-tide outcrops (Fig. 10a
and b). The stacked soils consistently differ from one another
in organic-matter preservation and fossil-forest extent, in
ways that imply differing lengths of time between earth-
quakes (Fig. 10c and d). The better preserved a buried organic
horizon and its herbaceous fossils, the shorter the time when
this buried organic matter remained subject to degradation
in the profile of the next soil. The farther downstream a
forested site, the longer the interseismic time when gradual
uplift and sedimentation allowed forests to spread seaward
along estuarine salinity gradients (Fig. 10d; Atwater &
Hemphill-Haley, 1997, pp. 95-99; Benson et al., 2001).

These relative measures of interseismic time agree with
numerical estimates from radiocarbon dating (Fig. 10d).
Radiocarbon ages from estuaries of southwest Washington
anchor an earthquake chronology of uncommon precision
— not only because most of the ages have reported errors
of just 10-20'“Cyr, but also because many ages were
measured on the rings of earthquake-killed trees (Fig. 11;
Appendix 1). Such tree-ring samples allow exact correction
for the age of dated material relative to the time of an
inferred earthquake (Nelson er al., 1995). Other materials
set only limiting ages for the earthquakes: maximum ages
from detritus in pre-earthquake soils, minimum ages from
rhizomes (below-ground stems) of plants that colonized
post-earthquake tidal flats.

The individual ages are grouped in Fig. 11 by stratigraphic
position defined by soil preservation and paleoecology — by
field correlation of seven buried soils named J, L, N, S, U,
W and Y (Fig. 10a-c; Atwater & Hemphill-Haley, 1997).
The individual ages, many previously unpublished, yield
combined age ranges for the field-correlated events (gray
columns, Figs 10d and 11c and d). Most of these event age
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ranges are governed by times of tree death (black bars in
Fig. 11d); some are limited also by ages from pre-event
detritus or from post-event rhizomes (arrows in Fig. 11d).
To derive the age range for each event, its field-correlated
individual ages were combined under the key assumption that

they all refer to the same event —either an earthquake or a swift
series of earthquakes. The combining is based on Bayesian
statistics, which applied to an ordered sequence of ages can
yield event ages with narrowed confidence limits (Biasi &
Weldon, 1994; Ramsey, 2000). The ranges include generous
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Fig. 10. Evidence for recurrent earthquakes in southwest Washington and northwest Oregon.
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estimates of uncertainty in radiocarbon analysis (augmented
by error multipliers listed at bottom right in Fig. 11). These
procedures, in the calibration program Oxcal, yield event age
ranges that probably include 95% confidence intervals.

The age ranges for the seven events in Figs 10 and 11
define six recurrence intervals that vary in length from a few
centuries (intervals S—U and U~W) to one millennium (N-S).
Though the intervals average 500-540 years, only one of the
recurrence intervals (J-L) is close to this average. During
the longest intervals, which exceeded this average by several
centuries (N-S and W-Y), tidal forests advanced seaward as
the shallowest buried soils decomposed (Figs 9b and 10a—d).

This history of aperiodic earthquakes probably correlates
with turbidity-current deposits off the Oregon coast in
Cascadia deep-sea channel (Atwater & Hemphill-Haley,
1997, pp. 102-103). The deposits, derived from Columbia
River sediment on the continental shelf and slope, apparently
originated at submarine canyon heads above the fault ruptures
that caused coseismic subsidence in coastal Washington
(Fig. 8). The turbidity currents repeated at intervals that
averaged close to 600 years in the past 8000 years. Because
eroded pelagic deposits between turbidites are similar in
thickness (p in Fig. 10e), the repetition was first interpreted
as periodic (Adams, 1990; Griggs et al., 1969). However, the
successive turbidites vary in their depth and abundance of
animal burrows (b in Fig. 10e). This variability links the tur-
bidites with the aperiodic earthquakes inferred from estuarine
stratigraphy in coastal Washington and adjacent Oregon.

The most recent great Cascadia earthquake was dated
by radiocarbon methods to the decades around A.D. 1700
(Nelson et al., 1995; event Y in Figs 10 and 11). This era
precedes, by almost a century, the Spanish and English explo-
ration that marks the beginning of written history at Cascadia
(Hayes, 1999). Along nearly 1000km of Japan’s Pacific
coast, however, government officials and merchants noted a
puzzling tsunami in A.D. 1700 that lacked a nearby earth-
quake. The time of this orphan tsunami suggests that a great
Cascadia earthquake occurred on the evening of January 26,
1700. The tsunami’s hei_ghtf of several meters further suggests
that this earthquake atfained M 9 (Satake et al., 1996).

Tree-ring studies in southwest Washington and adjacent
Oregon support these inferences from Japan. Death and
stress in subsided trees date to the first few years after
the 1699 growing season (Jacoby et al., 1997; Yamaguchi
et al., 1997). Except for a few dozen survivors of the
earthquake (Jacoby et al., 1997), all trees in the region’s
modern tidal forests postdate 1700 (Benson et al., 2001).

Implications and Challenges

The latest version of the national earthquake hazard map gives
equal weight to two patterns of great-earthquake recurrence
at Cascadia (Frankel et al., 2002, p. 11). In one, M 9.0 earth-
quakes rupture the full 1 100-km length of the subduction zone
every 500 years. In the other, the subduction zone breaks in
segments 250 km long that behave independently of one an-
other. This style or rupture produces one earthquake of M 8.3
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every 110 years somewhere along the zone (Frankel er al.,
1996). The shorter recurrence intervals for the independent
M 8.3 earthquakes yield higher probabilistic ground motions
than does the 500-year interval for M 9.0 events.

Such hazard estimates are likely to improve as great-
earthquake history becomes better documented along the
Cascadia subduction zone. Does the zone contain segments
that sometimes rupture independently, decades or centuries
out of phase with other segments? Along a single part of
the subduction zone, do long recurrence intervals commonly
precede short ones, much as long interval N-S preceded
short intervals S—U and U-W (Fig. 10d)? Does long interval
W-Y thereby justify increasing the probabilistic hazard on
the national map (Fig. 1b)? Paleoseismic studies at Cascadia
are just beginning to address such questions.

Also needed at Cascadia — and elsewhere — are estimates
of the smallest earthquake and shortest recurrence interval
that paleoseismic records resolve. Such estimates are likely
to affect recurrence intervals and the probabilistic hazard
inferred from them.

Summary

Paleoseismology has provided engineers and public officials
with long histories of recurrent earthquakes (or histories of
recurrent series of earthquakes). Typical intervals between
the earthquakes (or series) span hundreds of years in our
New Madrid and Cascadia examples and thousands of years
in our eastern California example. In addition to enabling
such estimates of recurrence intervals, paleoseismology can
provide evidence for regional clustering of earthquakes in
seismic zones (eastern California, New Madrid) and for
aperiodic rupture along the same part of a fault (Cascadia).
Such findings have made paleoseismology an essential part
of earthquake-hazard assessment in the United States.
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