
The expansion of derivatives markets has given birth to the new profes-
sion of financial engineering. Financial engineers are the specialists who
deal with the quantitative aspects of the derivatives business and in this
chapter we discuss the evolution of this profession. We describe some of
the basic numerical tools that are used by financial engineers to price
derivatives and in risk management. We also discuss two challenging
problems that financial engineers have worked on and have now solved:
the valuation of Asian options and the pricing of complex American style
options using Monte Carlo simulation.

We saw in the last two chapters that the increased use of derivatives has
caused profound changes in financial practice. There has been an expanded
use of derivatives both by financial and non-financial corporations. Deriv-
ative instruments have become more complicated and more sophisticated.
The technology has been extended to new areas of application such as
credit, power and weather. In Chapter 6 we saw that modern risk manage-
ment often involves complex derivative strategies. The overall manage-
ment of risk is now of central importance to financial institutions and non-
financial corporations. These developments have, in turn, created a
demand for individuals with strong analytical and quantitative skills who
can handle the technical aspects of derivatives and risk management.

Individuals who work in this area have backgrounds in quantitative
disciplines such as mathematics, engineering, physics or economics. In
particular, the employment opportunities in this field are often attractive
to physicists. As many physicists made the transition to Wall Street, the
term “rocket scientists” was coined in the 1980s to describe them. This
term has now become somewhat passé and the more prosaic job title of
quantitative analyst (“quant” for short) is now widely used. Less flattering
terms such as “derivatives geek” are also used. The term “financial engi-
neer” is now the most popular to describe individuals who work as quan-
titative analysts in the derivatives and risk management fields.

Initially the demand for strong quantitative skills came mainly from
Wall Street investment banks. Traders needed advice on how to price and
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hedge different types of derivatives. Nowadays, financial engineers work
in many different types of organisations across the world and their tasks
can range from constructing models of electricity markets to implementing
a risk management system for a pension fund. They could also give advice
to accountants who may not otherwise be capable of auditing a derivatives
book. In recent years, financial engineers have been involved increasingly
in risk management, building the underlying models and creating the
necessary software.

Financial engineers use a wide range of computational tools in their
trade. These methods were already well known to the scientific commu-
nity before they were first used in financial applications because finance
has only emerged as a quantitative discipline within the last 50 years.
These tools have become very important in financial engineering as the
applications have become more complex and, because of increased
computer power, they can now solve very large-scale problems.

In this chapter, we describe some very basic numerical approaches that
are used in pricing derivatives and in risk management. These approaches
were initially used to obtain prices for simple contracts that were exten-
sions of the basic European call and put contracts but now they have much
broader applications. The spread of option pricing was greatly facilitated
by the introduction of a number of numerical methods. These methods not
only made it easier to understand the basic model: they also made it easier
to value non-standard options and compute the items required to set up
the replicating portfolio. The stimuli for the development of numerical
methods in finance were the Black, Scholes and Merton papers. When
these papers were published in 1973, they were inaccessible to most prac-
titioners and finance professors, who did not have the mathematical back-
ground to understand them or use the results. In this connection, the
binomial method played a valuable role in translating the esoteric
mysteries of the Itô calculus into a simple and intuitive numerical method
that could be understood by traders and implemented by MBA students.
It provides a flexible method of obtaining prices for some basic derivatives
contracts.

THE BINOMIAL METHOD
The idea of approximating a continuous distribution with a simpler
discrete distribution has a long history in physics and mathematics and
was used by Bachelier (1900) in his thesis. The first person to suggest using
the binomial model as a method to price options seems to have been Bill
Sharpe. He had the idea of using this model to capture both the stock price
movements as well as the essence of the hedging argument.1 The binomial
method was developed more fully by John Cox, Steve Ross and Mark
Rubinstein and published in 1979. Rubinstein summarised the method as
follows:2
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It showed in a very simple way the basic economics that underlay option-
pricing theory in a mathematically unadorned fashion.

The binomial method became much better known to the financial commu-
nity through the publication of an influential book by Cox and Rubinstein
(1985).

We introduced the binomial method in Chapter 4 and can summarise it
as follows. We divide the time period into discrete steps and assume that
in a single step the asset price can move either up or down. The size of the
up movement and the down movement remains fixed. This framework
enables us to model the uncertainty in the underlying asset’s price in a
convenient way. At any vertex there are just two possibilities: the asset
price either goes up or down. We saw that if we had another asset that was
risk-free, then at each step we could match the value of a derivative secu-
rity to that of a portfolio, which had the right investments in the under-
lying asset and the risk-free bond. As we then have a portfolio that
replicates the derivative’s value one time step ahead, we can use the no-
arbitrage principle (from Chapter 3) to find the current price of the deriv-
ative. Under the binomial approach we work backwards, one step at a
time, until we obtain the price of the derivative at the current time.

The binomial method has a number of advantages:

❑ It is a very useful way to obtain the price of a number of common deriv-
ative contracts. For example, it can be used to price an American option
because the early exercise feature can be modelled at each time step by
testing if it is better to exercise the option or hold on to it.

❑ It has the simplicity and visual clarity of a spreadsheet: one can see
directly how the method works and, just as with a spreadsheet, it is very
easy to handle on a computer.

❑ It has an elegant economic interpretation because the construction of the
replicating portfolio, which is an economic concept, ties in directly with
the structure of the binomial tree.

It is common in science for the same discovery to be made almost simul-
taneously by different people and the binomial tree model for the pricing
of stock options is a case in point. Within weeks of the publication of the
Cox–Ross–Rubinstein paper, Richard Rendleman and Brit Bartter
published a paper on the very same topic. The Cox–Ross–Rubinstein
paper was the lead paper in the September 1979 issue of the Journal of
Financial Economics3 and the Rendleman–Bartter paper was the lead paper
in the December, 1979 issue of the Journal of Finance. Bartter and
Rendleman collaborated on this project when both were on the faculty at
Northwestern University in the late 1970s.

We next turn to a discussion of two other methods that are also widely
used to obtain prices of options and other derivatives. Both these methods
were first applied to price derivatives in the early 1970s.
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The Canadian connection
We start at the University of British Columbia (UBC) in Canada. This
university became an important centre for option research in the 1970s. In
particular, it became an active research centre for option pricing. Michael
Brennan and Eduardo Schwartz (a doctoral student of Brennan’s) made
pioneering contributions to derivatives research. David Emanuel invented
the Asian option while he was an assistant professor of finance at UBC.
Another faculty member, Phelim Boyle, wrote the first paper that applied
the Monte Carlo method to finance problems. Other academics who would
later make contributions to the field also spent time at UBC. These
included Stuart Turnbull, who later worked with Robert Jarrow on the
development of credit risk models, and John Hull (1999), who was active
in the options area in mid-1980s and wrote a well-known textbook, was
also a visiting professor at UBC.

Under Brennan’s guidance, Schwartz became interested in the problem
of valuing American warrants in the Black–Scholes–Merton (BSM) frame-
work. American warrants pay dividends and their exercise prices can
change but their price still obeys the BSM differential equation. At this
time, the Cox–Ross binomial method had not been published so there was
no simple way to price them.

THE FINITE DIFFERENCE METHOD
We mentioned in Chapter 5 that the Black–Scholes equation for the price
of an option is a differential equation. Merton had shown that any type of
derivative contract written on a stock satisfied a similar type of equation.
The contractual provisions could be translated into mathematical condi-
tions known as boundary conditions. Until the advent of the BSM model
such equations were not widely used in finance. However, they had been
used for a long time in mathematics, physics, engineering and chemistry.
In a few exceptional cases these equations have closed-form solutions.
Otherwise they can be solved using finite difference methods.

Merton had set out the problem as a partial differential equation so it
was natural to use methods from this field. To get warrant prices this equa-
tion would have to be solved numerically. Schwartz discussed this
problem with Phelim Boyle, who put Schwartz in touch with Alvin
Fowler. Fowler had a background in nuclear engineering and was an
expert in computer programming.4 He was well used to solving partial
differential equations and had employed them before in physics and fluid
dynamics. With Fowler’s help, Schwartz wrote a Fortran program that was
able to provide numerical solutions to the BSM equation for American
options. This method was the finite difference method and we describe it
in more detail later.

The idea behind the finite difference method is to start at maturity
where the solution is known and then find the solution at regular time
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intervals all the way back to the present. The future is mapped into a
regular grid of stock prices and times to maturity. Figure 10.1 illustrates
this method. The vertical lines correspond to a fixed time and the hori-
zontal lines correspond to fixed stock prices. At maturity, we know the
value of the call option for each stock price so we can fill in all the matu-
rity option prices. We know how the call price evolves according to the
BSM equation. By using this equation to handle discrete time steps we can
connect the call values at two successive time points. (Wilmot, Dewynne
and Howison (1993) explain in detail how to use the finite approach to
value derivatives.) This gives a large set of equations for the call prices one
period earlier for each stock price on the grid. These equations can be
solved on a computer to give the individual option prices at each grid
point one small time step from maturity. We then repeat the process
moving backwards, one step at a time, until eventually we arrive at the
current time. Special features like dividend payments can be accommo-
dated in the program and it can also be modified to handle the early exer-
cise feature of American options.

Eduardo Schwartz used the finite difference method in two different
applications: the valuation of AT&T warrants, which were more compli-
cated than standard options, and the valuation of the guarantees
embedded in certain types of life insurance contracts.

Under these insurance contracts, the premiums were invested in a stock
portfolio and when the policy matured the policyholder would receive the
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market value of the portfolio. However, there was also a guaranteed
minimum floor in case the stock market did poorly. These guarantees were
popular in the UK and the market fall in 1974 provided a vivid reminder
of their value. Traditional actuarial methods were not really suitable for
dealing with financial guarantees of this nature. Michael Brennan noted
that these guarantees corresponded to long-term put options on equity
portfolios. In his thesis, Schwartz used the finite difference method to
obtain prices for these guarantees and also AT&T warrants. In subsequent
work, Brennan and Schwartz wielded this weapon with considerable
success.

Brennan (1999) has noted the importance of this numerical approach in
the introduction to a volume of his collected papers:

Armed with numerical skills, we discovered that the solution to a whole
range of problems was within our reach. We valued American put options
using over the counter data from Myron Scholes and found that before the
Black–Scholes era there were big differences between the Black–Scholes
prices and the market prices. Contemporaneously with Oldrich Vasicek, we
began to apply the same principles to interest rate contingent claims.
(Brennan and Schwartz (1977)); our inspiration was the humble savings bond
which gave the investor the right to redeem early and which at that time
played a major role in Canadian government finance.

The finite difference approach continues to be a useful tool for the
computation of numerical values of the prices of derivatives. This
approach can handle the early exercise feature of American options.
However, if the derivative is based on the value of several assets or vari-
ables it is generally more efficient to use another method called the Monte
Carlo method.

THE MONTE CARLO METHOD
We start with the story of how the Monte Carlo method was first used to
value options. While Eduardo Schwartz was testing his first programs to
value the European put options embedded in the insurance contracts, he
had frequent discussions with Phelim Boyle. Boyle wanted a quick way to
obtain values that would verify Schwartz’s numbers. He was motivated by
reading a working paper by Cox and Ross (1976), which showed how an
option could be valued by pretending that the stock’s average return was
equal to the risk-free return and discounting the expected value of the
option payoff under this assumption. The Monte Carlo method provides a
simple way to compute an average, so Boyle used this method and was
able to verify Schwartz’s results.

The name “Monte Carlo” comes from the city of the same name in
Monaco because the method is based on the use of so-called random
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numbers, which can be generated by a roulette wheel. The first large-scale
applications of the Monte Carlo method were in physics and arose from
work on the Manhattan Project in the 1940s. Truly random numbers are
unpredictable. For example, if you throw a six-sided die then it will land
on any one of the numbers from one to six; this is one way of generating a
random number between one and six.

Here is an example that illustrates how the Monte Carlo method can be
used to value a security using random numbers to compute the average
value. Suppose there is a security that will pay either 10, 20, 30, 40, 50 or
60 and that each of the six possible payoffs is equally likely. We could
simulate the situation by throwing a die. If the die shows a one, the secu-
rity pays 10; if the die shows a 2 the security pays 20 and so on. To estimate
the average payoff of the security using the Monte Carlo method, we
would throw the die a large number of times and find the average value of
the payoff. Instead of throwing the die, we can generate the outcomes on
a computer. The technical term used to describe the generation of a
possible outcome on the computer is a simulation trial. For example, we
used 100 simulation trials and found that the average payoff was 36.6. If
we increase the number of throws, we will obtain a more accurate
estimate. For example, based on 100,000 simulation trials we obtained an
estimate of 35.06.

For this example, we can compute the accurate value by other methods
and it works out to be 35. The Monte Carlo method has the property that,
as we increase the number of simulation trials, the estimate will converge
to the true value (35 in this case). The estimate that we obtain, however,
contains some error. Nonetheless, our estimate of the average value itself
has a distribution around the true value. In fact, it will have a normal
distribution and we can estimate our error because we can estimate the
standard deviation of this distribution. This means that when we use the
Monte Carlo method we obtain not only an estimate of the answer but
information on how accurate the results are.

The Monte Carlo method can be used to value derivatives and we illus-
trate the procedure for the case of a standard European call option. First,
we generate a possible stock price at the maturity of the option. This can
be easily carried out on a computer by selecting a random outcome from
the stock price distribution. In the BSM case, this distribution is lognormal
and we only require its expected value and the standard deviation to
generate its distribution. Second, we compute the option payoff by
comparing this stock price with the option’s strike price. If the stock price
exceeds the strike price, the call payoff will be equal to the difference. If the
stock price is below the strike price the call payoff will be zero. Third, we
repeat this process many times thus obtaining the values of the call option
at maturity for the different stock prices. Fourth, we compute the average
of these option payoffs. Finally, we convert this average payoff at option
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maturity to its current value using the risk-free interest rate. This provides
an estimate of the price of the call option.

We now give an example that will help to explain the method. Assume
we want to value a European call option on a stock whose current price is
US$100; the strike price of the option is also US$100 and it will mature in
one month. We assume that this stock does not pay any dividend during
the next three months. The standard deviation of the return on the stock is
25% and the risk-free interest rate is 6% per annum. Table 10.1 shows the
steps in the Monte Carlo method, assuming we just use 10 trials.

In the first trial, the computer generated a stock price at maturity of
US$126.81 and in this case the payoff on the call option was US$26.11. In
the third trial, the computer generated a stock price at maturity of
US$93.88 and the payoff on the call option was zero. The average of the 10
possible payoffs in the third column is 6.96. To obtain an estimate of the
current option price, we discount it for three months at 6% obtaining 6.86.
The Monte Carlo estimate of the call price is US$6.86. The accurate price in
this case, from the BSM formula, is 5.73. The Monte Carlo price differs
considerably from the accurate price because we just used 10 simulation
trials. If we had used more trials the Monte Carlo estimate would have
been closer to the accurate value. The accuracy of the Monte Carlo method
is proportional to the square root of the number of simulation trials. This
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Table 10.1  

Trial number

1

2

3

4

5

6

7

8

9

10

Stock price at maturity (US$)

126.81

122.77

  93.88

  96.57

  88.66

  92.28

  89.47

115.94

104.11

  92.26

Option payoff (US$)

26.81

22.77

  0

  0

  0

  0

  0

15.94

  4.11

  0



means that if you want to increase the accuracy by a factor of 10, you have
to increase the number of trials by a factor of 100.

The Monte Carlo method is well suited for complicated valuation prob-
lems. For example, it can be used to find the price of an equity derivative
whose payoff depends on several underlying stock prices.

Another example of the application of the Monte Carlo method would
be the valuation of the Asian option that we introduced in Chapter 2. The
payoff on the Asian option depends on the average of the asset prices over
some time. Using the Monte Carlo method we use the computer to simu-
late one possible price path. Along each path, we can simulate the asset
price path so that we obtain a value for the asset price at each point on the
path where it is needed. For instance, the contract might define the average
based on prices at the end of each day, or at the end of each week. We can
compute the average price of the asset along this path from these prices
and this average is used to compute the option’s payoff for this particular
path. Then we repeat this process and obtain the Asian option’s payoff for
each path. We take the average value of these payoffs over all the paths.
The final step is to convert this average payoff at option maturity to its
current value using the risk-free interest rate. This provides an estimate of
the price of the Asian call option.

The Monte Carlo method is now widely used in risk management appli-
cations. A common problem involves the estimation of the distribution of
the profit-and-loss statement of a portfolio at some future date. This infor-
mation may be required as an input for a value-at-risk (VAR) calculation
(see Chapter 6). The future value of the portfolio can be estimated from the
price movements of each of its component securities. The Monte Carlo
method can be used to estimate the future value of the portfolio by esti-
mating the market values of its individual parts.

The Monte Carlo method has two main drawbacks. For large-scale prob-
lems, a naive application of the method can waste a lot of computation
time. Indeed it has been described as “The most brutish of the brute force
methods”.5 However, there are tricks that can be used to make the method
more efficient. The second drawback concerns the valuation of American
options by Monte Carlo. This has proved to be a challenging numerical
problem and, at one time, it was believed that American options could not
be valued using this method. As we will see below, financial engineers
have made considerable progress in solving this problem.

ASIAN OPTIONS: THE QUEST FOR SOLUTIONS
Asian options, or average options, have their payoffs computed with refer-
ence to the average price of the underlying asset or commodity. They are
widely used for hedging commodity price risk and currency risk. This
averaging feature means that Asian options are more difficult to value
than standard options because the payoff depends on the asset price at
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many different times, not just at the time when the option contract
matures. Financial engineers have developed a number of different ways
to handle this problem. In this section, we start with a brief review of the
development of Asian options and then discuss some of the approaches
that have been developed to value them.

The idea of basing a contract on the average value of some variable has
been around for many years. For example, in some pension plans the
pension benefit is based on the plan member’s average yearly salary taken
over the five years prior to retirement. To our knowledge, David Emanuel
was the first person to propose an option based on the average when he
was an assistant professor at UBC in 1979. Emanuel also noted that if the
option payoff is based on the geometric average rather than the arithmetic
average, then there would be a simple expression for the price of the
option.6

Angelien Kemna and Ton Vorst independently discovered this result in
1987. Kemna and Vorst’s research was motivated by a commodity-linked
bond issued in 1985 by the Dutch venture capital company Oranje Nassau.
Each bond contained an embedded call option to purchase 10.5 barrels of
North Sea oil. An investor who bought the bond was entitled to the appre-
ciation (if any) in oil prices over the strike price. To pay for this feature,
Oranje Nassau was able to pay a lower coupon rate on the bond than if the
bond did not have the option feature. In order to protect itself against
possible price manipulation just prior to the option maturity, Oranje
Nassau based the settlement price of the option on the average of oil prices
over the previous year. Kemna and Vorst (1990) showed how this feature
of the contract could be valued.

The term Asian options was first coined by financial engineers and
traders working for Bankers Trust who independently invented this
concept. Bill Falloon (1995), describes the story of how they came up with
the idea.

The geographical associations can be confusing. Most Asian options can only
be exercised at maturity and hence they are of the European type. However
some Asian option contracts can be exercised early. There is no standard
name for such contracts but the meaning of the terms Asian American or
American Asian is already firmly established in the language.

We now turn to a discussion of a few of the different approaches that
have been developed by financial engineers to value Asian options. More
precisely, we will discuss options where the payoff is based on the arith-
metic average of the price of the asset and which can only be exercised at
maturity. As we have mentioned earlier, this problem can be solved
numerically using Monte Carlo simulation.

There is a clever trick that can be used in this case to speed up the
computation time if we are using Monte Carlo simulation to solve the
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problem. The trick involves using information from a related problem for
which we know the exact solution. In the case of the Asian option, the
related problem is an option based on the geometric average. In terms of
simulation, the technique is known as the control variate procedure and the
option based on the geometric average of the prices is the control variate
in our case.

We first note that the arithmetic average of a set of stock prices will be
strongly correlated with the corresponding geometric average. If the arith-
metic average is large, so is the geometric average and if the arithmetic
average is small, so too will be the geometric average.

There is a very simple formula for the price of the option based on the
geometric average used. We use the Monte Carlo method to estimate the
price of the option based on the arithmetic average and the corresponding
option based on the geometric average taking care to use the same random
numbers for both calculations. Then we compare the estimate of the
geometric average option from our simulations with the accurate price
from the formula. This comparison tells us how biased the estimate of the
geometric average option price is. It is reasonable to suppose that the esti-
mate of options based on the arithmetic average suffers from a similar bias
because it was generated using the very same random numbers. We can
use this information to remove the bias from our Monte Carlo estimate of
the arithmetic average option. This procedure gives excellent numerical
options for short to medium-term options (up to five years).

Binomial trees
The binomial method is a very inefficient tool for pricing Asian options
because it quickly leads to an enormous number of computations. This is
because in the binomial tree the number of terminal asset prices increases
at the same rate as the number of time steps. In a one-period tree we have
two possible final asset prices. In a two-period tree, we have three possible
final asset prices. (The figures in Chapter 4 illustrate this.) In a three-period
tree, there are four final asset prices. In general, when the number of
periods is equal to N the number of final asset prices is (N + 1). We describe
this pace of growth as being “linear”.

To use the binomial method to price an option based on the average, we
need to store information on all the different possible paths through the
tree. This is because we need to compute the average asset price for all the
possible price paths. The number of paths quickly becomes very large and
this is the source of the problem. In a one-period tree, there are just two
paths, in a two-period tree there are four paths and in a three-period tree
the number of different paths through the tree is eight. For a general N-
period tree, the number of different paths through the tree is 2N. The
number of paths is equal to 1,024 for a ten-period tree, over a million for a
20-period tree and over 33.5 million for a 25-period tree. If we have a one-
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year option with 50 weekly averaging points, then the number of different
paths through the 50-period tree is (1.25)1015 (a number with 16 digits).
This number of paths is much too large to deal with on a computer, which
is why the binomial method is not suitable for pricing Asian options.

It turns out that there is a closed-form solution for the price of an Asian
option, which is based on the arithmetic average. This solution is based on
fairly sophisticated mathematics.

At this point, it may be useful to explain why financial engineers find
the quest for closed-form solutions so fascinating. Recall that the towering
example of closed form solution in this field is the BSM formula for a stan-
dard European option. We described this formula in the Appendix to
Chapter 5 and saw that the price of a standard call can be written in terms
of five input variables. Closed-form solutions are often simpler and more
intuitive than numerical solutions. They can lead to fresh insights and
sometimes have an intrinsic beauty of their own. Sometimes, as in the case
of the American put option, the closed-form solution does not appear to
exist. In other cases such as the arithmetic Asian option case, it was not
known if a solution existed or not. The intellectual challenge was therefore
to find it if does exist.

The closed form solution to the Asian option involves some elegant but
complicated mathematical expressions. To the best of our knowledge the
first person to solve this problem was Eric Reiner while he was a doctoral
student in chemical engineering. Unfortunately Reiner’s solution has not
been published. Independently, Marc Yor and Hélyette Geman (Yor, 1993;
Geman and Yor, 1993) also developed a closed-form solution for the price
of an Asian option based on the arithmetic average. This closed-form solu-
tion deepens our knowledge about the theoretical structure of Asian
options. The formula is elegant from a mathematical perspective but it is
hard work to obtain numerical solutions from it in practice. Other
approaches such as finite difference methods and Monte Carlo methods
are normally used.

VALUATION OF AMERICAN OPTIONS USING MONTE CARLO
American options are harder to value than European options because they
can be exercised at any time. For some basic contracts such as an American
option on one underlying asset, either the binomial tree or the finite differ-
ence approach provides a practical and efficient method of finding the
price. For certain more complicated American-style derivatives, such as
those based on several underlying assets, both these methods become inef-
ficient. Normally, the numerical weapon of choice when there are many
variables would be the Monte Carlo simulation.

It turns out that the valuation of an American style derivative using
Monte Carlo simulation is a very hard problem to solve. Indeed, until
Tilley published a paper in 1993, it was generally believed that American
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options could not be valued using the Monte Carlo approach. We now
explain why the problem is so challenging.

The price of an American option is based on the assumption that the
holder of the option exercises it optimally. The valuation procedure has to
incorporate this decision problem. At each step, the decision is whether to
exercise the option or continue to hold it. Usually the best way to tackle
this problem is by working backwards from the option’s maturity.
However, in the Monte Carlo approach the future asset prices are gener-
ated from the current asset price and so we are marching along the price
path. At any point on the price path, the early exercise decision requires
some information about the future and, in the standard Monte Carlo
approach, all we know is the price path up to this point; the future is still
to unravel. This forward marching approach is in direct conflict with the
requirements for the valuation of an American option because we have to
use information based on the future to decide whether we should exercise
the option or hold on to it.

Tilley’s key insight was to adjust the Monte Carlo method to capture
some of the aspects of a binomial tree. He had the idea of sorting the stock
price at each time step into ordered bundles, so that the stock prices in a
given bundle were close to one another. He then assumed that all the stock
prices in a bundle had the same holding value. The holding value is the
value of the option if it is not exercised. Tilley computed the holding value
for each bundle by discounting the expected value of the option prices
associated with the successor stock prices of the bundle one step ahead. In
his own words:

The goal of this paper is to dispel the prevailing belief that American-style
options cannot be valued efficiently in a simulation model, and thus remove
what has been considered a major impediment to the use of simulation
models for valuing financial instruments. We present a general algorithm for
estimating the value of American options on an underlying instrument or
index for which the arbitrage-free probability distribution of paths through
time can be simulated. The general algorithm is tested by an example for
which the exact option premium can be determined.

Since Tilley’s paper, other authors have developed more generalised
and efficient methods to value American options by simulation, but
Tilley’s paper was of great importance because it showed that the problem
could be solved.

CONCLUSION
In this chapter, we have discussed some of the methods used by financial
engineers. We concentrated on the basic numerical methods for pricing
derivatives and provided some historical context. Nowadays the most
challenging numerical problems arise in the context of portfolios and risk
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measurement. The field of financial engineering is attracting some very
gifted graduates who are well-equipped to surmount these challenges.

1 Mark Rubinstein describes discussions with Bill Sharpe on this topic at a 1975 conference in
Israel. For details see Rubinstein (1999).

2 Derivatives Strategy, March 2000. Interview with Mark Rubinstein.
3 See Cox, Ross and Rubinstein (1979).
4 Alvin Fowler passed away on February 8, 1999. A summary of his accomplishments is

contained in the website: URL: http://www.itservices.ubc.ca/newscentre/into_it/spr99/
memoriam.shtmlA.

5 Oren Cheyette (1997), website: URL: http://www.barra.com/Newsletter/nl164/
TNCNL164.asp

6 The simplest way to explain the geometric average is by example. The geometric average of
any two numbers is the square root of their product. For example, the geometric average of
1 and 4 is 2. The arithmetic average in this case is 2.5. In the case of three numbers, the
geometric average is the cube root of their product, eg, the geometric average of 1, 3 and 9
is the cube root of 27, which is 3. The arithmetic average of these last three numbers is 4.33.
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