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Quellen und Hilfsmittel verwendet habe.

I assure the single handed composition of this thesis only supported by declared resources.

Garching, den 29 März 2011



Acknowledgment:

This thesis is based on a paper with the same title from Michael Herrmann and Christian
Grothoff, published at Privacy Enhancing Technologies Symposium (PETS) 2011.

I thank my advisor Christian Grothoff for the possibility to work with him on this thesis
and his great support. Not only was working with him very inspiring, he also pushed me
to do the best I possibly can. Also I thank Katie Haus and Nathan Evans. Katie for her
great work on the pictures in this thesis and her amazing patience to get them exactly as
I wanted them to be. Nathan always took the time when I was unsure about something
and gladly discussed with me every issue I had with this work.

Thank goes also to my father, Sarah and all my friends. They all greatly supported me
through the sometimes tough times of this thesis.

My special thanks go to my grandparents. Without their support and understanding,
studying would not have been as easy as it was. Especially I thank my grandfather, who
could not live to see the end of this thesis. He always believed in me.



Abstract:

The Invisible Internet Project (I2P) is one of the most widely used anonymizing Peer-
to-Peer networks on the Internet today. Like Tor, it uses onion routing to build tunnels
between peers as the basis for providing anonymous communication channels. Unlike Tor,
I2P integrates a range of anonymously hosted services directly with the platform. This
thesis presents a new attack on the I2P Peer-to-Peer network, with the goal of determining
the identity of peers that are anonymously hosting HTTP (Eepsite) services in the network.

Key design choices made by I2P developers, in particular performance-based peer selection,
enable a sophisticated adversary with modest resources to break key security assumptions.
Our attack first obtains an estimate of the victim’s view of the network. Then, the adver-
sary selectively targets a small number of peers used by the victim with a denial-of-service
attack while giving the victim the opportunity to replace those peers with other peers that
are controlled by the adversary. Finally, the adversary performs some simple measurements
to determine the identity of the peer hosting the service.

This thesis provides the necessary background on I2P, gives details on the attack — includ-
ing experimental data from measurements against the actual I2P network — and discusses
possible solutions.



Kurzfassung:

Das Invisible Internet Project (I2P) ist eines der am meisten verbreiteten Peer-to-Peer
Anonymisierungsnetzwerke im Internet. Grundlage für anonyme Kommunikationskanäle
sind Tunnel, die — ähnlich zu Tor — Onion Routing einsetzen. Im Gegensatz zu Tor bildet
I2P ein eigenständiges Netzwerk in dem eine Vielzahl integrierter anonymener Dienste
angeboten werden. Diese Arbeit präsentiert einen neuen Angriff auf das I2P Netzwerk
mit dem Ziel die Identität eines anonym angebotenen HTTP Dienstes (einer sogenannten
Eepsite) herauszufinden.

Nach dem I2P Protokoll wählen sich Peers gegenseitig nicht zufällig, sondern aufgrund
beobachteter Performanz aus. Diese Design-Entscheidung erlaubt es einem Angreifer mit
moderaten Ressourcen wichtige Sicherheitsannahmen zu brechen. Der Angreifer schätzt
zuerst den Blick des Opfers auf das Netzwerk ab. Danach wird er andere I2P Knoten
angreifen, von denen er glaubt, dass sie vom Opfer mit überdurchschnittlicher Performanz
bewertet wurden. Die Performanz dieser Knoten wird mit einem denial-of-service Angriff
signifikant reduziert. Gleichzeitig bietet der Angreifer dem Opfer die Möglichkeit feindliche
I2P Knoten mit guter Performanz zu verwenden. Schließlich werden einfache Messungen
durchgeführt um die Identität des Opfers zu bestimmen.

Diese Arbeit stellt das nötige Hintergundwissen von I2P vor und beschreibt detailliert
die Einzelheiten des vorgeschlagenen Angriffs. Messergebnisse, die vom I2P Netzwerk
stammen, werden ebenfalls vorgestellt und erläutert. Zusätzlich diskutiert diese Arbeit
mögliche Lösungen um den Angriff zu vermeiden bzw. zu erschweren.
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1. Introduction

An anonymous communication system aims to provide anonymity, which according to [39]
is the state of being not identifiable within a set of peers. We also differentiate between
sender-anonymity and receiver-anonymity. In the first case, the sender of a message is not
identifiable and in the latter case the receiver. Furthermore the type of communication
to anonymize has a big impact on the difficulty to design such a system. High-latency
anonymity networks are built for applications that do not require a fast response. For
instance e-mail communication is a typical representative of a high latency application.
If e-mail communication is delayed by a couple of minutes the quality of service is not
significantly reduced. On the other hand, if an user is surfing the web or uses instant com-
munication, delaying the communication more than a couple of seconds is not acceptable.
Therefore low-latency anonymity networks are needed.

One of the established techniques to provide sender- or receiver-anonymity is Onion rout-
ing [40]. It is especially applicable for building low-latency anonymous communication
systems. Two of the most widely used anonymizing networks, Tor [20] and I2P [57] are
using onion routing to achieve anonymity for low-latency applications. Furthermore, both
are open, peer-to-peer (P2P) networks. However, there are significant differences in the
details of how these networks implement the basic technique. For many of the differences,
the existing related work does not provide a clear answer as to which approach is better.

In this work, we report on our exploitations of some of the design choices in I2P to
deanonymize I2P services, specifically I2P Eepsites.1 An Eepsite is a website hosted anony-
mously within the I2P network and accessed via HTTP tunneled through the I2P network,
which also acts as an anonymizing SOCKS proxy. Our attack requires a modest amount
of resources; the only special requirement, to run I2P peers in several different /16 peers,
could be met by any Internet user for example, by using cloud based services. While this
requirement may put us outside of the I2P attacker model, our other requirements —
participation in the I2P network and a modest amount of bandwidth — are easily within
common attacker models for anonymizing P2P networks, including I2P and Tor.

Our attack is primarily based on exploiting I2P’s performance-based selection of peers for
tunnel construction, I2P’s usage of unidirectional tunnels and the fact that Eepsites are
located at a static location in the network. Using a combination of peers that participate
as monitors in the network and other peers that selectively reduce the performance of
certain other peers, our attack deduces with a high degree of certainty the identity of the

1Our basic technique could be applied to other kinds of I2P services as well.
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peer hosting the targeted Eepsite. In contrast to previous deanonymization attacks (such
as [22, 32]), our attack does not primarily rely on congestion-induced changes to latency
and is hence able to provide stronger evidence against the victim.

We have evaluated our technique not merely in simulation or a testbed but against the
real I2P network. This work presents experimental results obtained in early 2011 using
I2P version 0.8.3, modified for our attack.2

The main contributions of this thesis are as follows:

• An independent characterization of the I2P protocol

• A novel attack on anonymity based on the heuristic performance-based peer selection
for uni-directional tunnels

• Experimental evaluation of the attack

• Recommendations for improving the I2P design to thwart the attack

The rest of this work is structured as follows. In Chapter 2 we give an detailed overview
about related work. Chapter 3 provides a detailed overview of the I2P network and gives
an brief overview about the differences between Tor and I2P. Our attack is described
in Chapter 4 and Chapter 5 presents the experimental results. Finally, we discuss in
Chapter 6 possible solutions and relates our attack to previous work on deanonymization
for similar systems.

2The modified I2P version and additional data can be downloaded from http://i2p.net.in.tum.de/

http://i2p.net.in.tum.de/


2. Related Work

Research on anonymous communication systems started in 1981 with Chaum’s work [9]
on anonymous email transfer. Due the increased importance of digital communication,
also an increased interest on anonymous communication was created, generating several
techniques to build anonymous communication systems.

The goal of this chapter is to give an overview about this research. The focus is set on
literature closely related to this work, namely low latency networks and attacks on them.

In Section 2.1 we give a brief introduction on two basic techniques for building anony-
mous communication systems. Section 2.2 deals with specific proposals for anonymizing
networks. Attacks on the widely used low-latency network Tor are introduced in Section
2.3.

2.1 Basics on Anonymous Communication Systems

In the literature, the two main techniques on how to built anonymizing networks are mix
networks and onion routing. Since mix networks have a minor impact on this work, we
only give a brief overview of them in Section 2.1.1. Onion routing is a key concept to
achieve anonymous communication. We introduce it in Section 2.1.2.

2.1.1 MIX

A mix [9] is a node in an network serving as a proxy. Its goal is to hide the relationship
between ingoing and outgoing messages and thereby providing anonymity to its users.
Multiple mixes are combined into a mix network, in order to increase anonymity. Originally
mixes were designed for high-latency communication, such as email communication or
online voting.

A mix network can use multiple strategies to hide the relationship between messages going
through the network. A message might be transformed cryptographically or might be
delayed. Also a mix network might add dummy traffic. Since mix networks are outside
the scope of this work, for theoretical works on mix networks the reader is referred to
[6, 12, 13, 18, 21, 24, 25, 27, 33, 35, 37, 42, 51] and for anonymous communication networks
based on mixes the reader is referred to [5, 8, 16, 17, 43, 45, 47]. Information about attacks
on mix networks can be found in [1, 14, 15, 34, 48, 56].
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2.1.2 Onion Routing

Onion Routing [40] is a technique to hide a peer seeking for anonymity behind a set of
peers. In Figure 2.1 Onion Routing with three other peers is shown. After a buildup
phase, node S sends a message with layers of encryption — thus the name onion — down
the path. Every layer is encrypted with a key only the desired receiver knows. After the
receiver decrypted the message he finds information on where to send the message next. As
in Figure 2.1 shown, the sender S sends a message to node n1, which has been encrypted
with a secret only S and n1 share. Additionally, after n1 removed one layer of encryption
it finds the information to forward the message to node n2. When such a message receives
its destination, i.e. no layers of encryption are left, receiver R evaluates the message.

n2n1S
msg

Enc R

Inf R Enc n2

msg

Inf n2

Enc R

Inf R Enc n2

Enc n1

R
msg

Enc R

Figure 2.1: Onion routing.

Advantages of this approach are that no intermediary node is able to learn the information
of the message, and through the embedded routing information, it is assured that only
nodes who are supposed to participate know how to forward the package. Finally, with the
exception of the sender, every node on the path only knows its predecessor and successor.
Consequently, the originator of a message remains anonymous.

2.1.3 Garlic Routing

Garlic routing [19], shown in (Figure 2.2), is a variation of onion routing. The key difference
is that the creator of a garlic can combine multiple messages, which can themselves be
garlic encrypted, when creating a “clove”. After the corresponding decryption step the
decrypting peer, finding multiple messages, can either find another layer of encryption and
forward the encapsulated messages to the next targets or find fully decrypted messages
and process those as specified by the protocol.

    msg
 1

    msg 2

n2n1S

Inf X

msg 1 msg 2

Enc X

Enc n2

Inf n1

msg 1 msg 2

Enc R

Inf R Enc n2

Enc n1

Inf X

msg 1 msg 2

Enc X

Enc n2

msg 1 msg 2

Enc R

Enc n2

msg 1 msg 2

Enc R R

msg 1 msg 2

Enc X

Figure 2.2: Garlic routing

2.2 Anonymizing Networks

In this section, we introduce systems proposed to achieve anonymity. These systems can
be separated in two categories. One category, we introduce in Section 2.2.1, is proposed
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to offer anonymous and censorship-resistant data exchange. The other category, which
is introduced in Section 2.2.2, is low latency networks. These networks aim to offer fast
low latency on anonymous communication and thus they are aplicable for applications like
web-browsing or instant messaging.

2.2.1 Anonymous Storage

Systems providing anonymous storage, aim to enable people to store and exchange infor-
mation censorship-resistant on the Internet. This means, that if a person stores or reads
information in the network, a third party should not be able to identify the person. All
systems have the two basic operations storing and reading in common.

The first work on this topic was published by Anderson in his Eternity Service [2]. Its goal
was merely to store information on different computers accessible via the Internet, thereby
ensuring that it is impossible to completely delete a particular piece of information. The
system itself is not designed to ensure anonymity or to use cryptography. In [4], Benes
proposed The Strong Eternity Service as a advancement of the original Eternity Service.
Advancements of this work are the establishment of persistent pseudonyms for the users
and to provide a fully distributed name space. Also, for storing and requesting data, mix
networks are used, in order to provide anonymity.

In [44] another censorship resistant system is proposed. The key idea of the system is
to add a level of indirection between the nodes storing data and the nodes visible in the
network.

The Free Haven Project [19] is a design for a system of anonymous storage. Several
anonymity definitions, a censorship-resistant system should meet, are provided:

Publisher Anonymity It is impossible for an adversary to link a publisher to a docu-
ment.

Reader Anonymity An Adversary cannot determine which other users reads a certain
document.

Server Anonymity It is impossible for an adversary to determine the servers storing a
certain document.

Document Anonymity A server does not know which documents it is storing.

To request previously stored data, a node performs a broadcast. Furthermore a reputation
system is sketched. Every server stores about every other server two values: reputation and
credibility. Reputation represents the belief on how the other server will obey the protocol.
Credibility represents a belief on how valuable the information of the other server are. Some
of the suggestions of the paper have been implemented, in order to research their impact
and effectiveness. However, to the best of our knowledge, this project is currently under
no active development.

In [52] another attempt of a censorship-resistant network named Publius is presented.
There also exists a software version from 20011. Unlike the Free Haven Project, a user is
able to update or revoke previously published documents. Naturally, this leads to security
risks, because an attacker might exploit these mechanisms and delete or tamper with a
document.

1http://www.cs.nyu.edu/˜waldman/publius/software download.html

http://www.cs.nyu.edu/~waldman/publius/software_download.html
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All already mentioned suggestions on censorship-resistant storage systems have either not
been implemented or only a prototype was developed. There are also systems, that have
been implemented and that are in use today.

StealthNet2 aims to provide anonymous communication with acceptable download rates.
In MUTE3 and ANts P2p4, file exchange partners do not have any direct contact, but the
communication happens encrypted via intermediary peers.

Freenet is a peer-to-peer information storage and retrieval system that provides sender and
receiver anonymity. The key concept of Freenet is plausible deniability achieved through
the routing algorithm. For both, storing and requesting data, requests are transmitted
hop by hop, thus the next hop never knows if the predecessor was the initiator or an
intermediary node. Furthermore, Freenet uses a closeness measure to achieve that similar
content gets stored on close nodes.

In general GNUnet is a framework for secure peer-to-peer communication. We list it in this
section, because at its current state, it provides censorship-resistant file-sharing. Similar
to Freenet, requests in GNUnet are transferred hop by hop through the network. If the
file matching the request is available, the reply is routed back on the same path. Peers
choose next hops based on their closeness to the target and their observed performance
(hot paths). In GNUnet requests are prioritized and peers monitor each other in order
to reward better performing peers also with a better service. Another key design choice
is a mechanism called shortcut feature. According to this feature, peers react different on
requests based on their current load, in order to achieve better network performance. If
a peer has resources left it follows the protocol. If the resources are exhausted, it simply
forwards the request or may even drop it. This means that if a peer A sends a request to
the peer B and B has resources left, B replaces contact information of A with its own and
contacts the next peer C. If B does not have enough resources, it just forwards the traffic
to C, whereby C learns that the predecessor of B was A.

Achieving anonymity in information exchange comes with a lot overhead and thereby
quality of service is significantly decreased. OneSwarm was proposed to mitigate this
problem. It aims to provide anonymous information sharing with a low performance
overhead. A user can define several anonymity levels for its published files. A piece of
information can be publicly available, thereby OneSwarm behaves like BitTorrent [10]. A
piece of information can also be configured with permissions, which means that this piece
of information is only accessible for a well defined number of peers. These peers built
the swarm to exchange the information under each other. The last possible configuration
is to define the information without attribution. In that case, data is relayed through a
unknown number of peers, thus achieving sender and receiver anonymity.

2.2.2 Anonymous Communication Systems

Unlike systems for anonymous storage, there have been several proposed networks to
anonymize real-time Internet communication, like web-browsing or instant messaging.
Most proposals were analyzed and simulated, but, to the best of our knowledge, most
were never widely deployed. In the following we give a brief overview of these networks.

The first attempt to achieve anonymity for HTTP communication was done by Anonymizer5.
Clients do not request a web page directly, moreover they send their requests to the single
anonymizer proxy. This proxy requests the web page on behalf of the original requester

2http://www.stealthnet.de/
3http://mute-net.sourceforge.net/
4http://antsp2p.sourceforge.net/
5http://www.anonymizer.com

http://www.stealthnet.de/
http://mute-net.sourceforge.net/
http://antsp2p.sourceforge.net/
http://www.anonymizer.com
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and sends the reply back. Thereby the IP address of the requester is hidden from the web
server. Obviously, the user has to trust the proxy provider.

In order to remove this single instance of trust Crowds [49] tries to hide the requester
behind a crowd of other peers, that are also participating in the network. An original
requester sends the request to an arbitrary other peer. This peer flips a coin and based on
the result either forwards the request to another peer or does the actual HTTP request.
However, a drawback of this attempt is that a passive adversary might still be able to
determine the originator of the request.

P5 [46] uses cover traffic to make statistical analysis by a passive adversary infeasible.

A system using multicast routing is proposed with Hordes [28]. The idea is to construct
the forward path as with Crowds, but for the return path to send the message to a
multicast group, instead to a single computer. With this strategy the authors develop an
anonymous communication system with better performance but with less anonymity than
Onion Routing. A drawback of this approach is that every peer has to know every other
peer in the network.

SAS [54] is an approach to let the user decide about the tradeoff between anonymity and
quality of service he wants to use by defining an anonymity level. This level determines
the type and the number of nodes on a message’s path. Nodes with lower levels will use
fewer hops to reach the target than nodes with higher levels. Based on its anonymity level,
a node is also assigned a load level. The higher the load level, the more likely it is that
this node is picked as hop by another node sending a message.

In Tor [20], each peer retrieves a list of candidate mixes from a set of hard-coded directory
servers. Every peer can introduce itself to the directory server, provide state information
and become a Onion Router (OR). Based on this information, the directory servers achieve
an overview about the current state of the network and spread OR information around.
The path through the mix network in Tor is called a circuit, which by default consists of
three ORs. The first node in the circuit is particularly important for privacy and is called
a guard node. A peer in the Tor network tries to stick with a small set of guard nodes. The
last node in the circuit is typically an exit node which allows the user to establish a TCP
connection to the Internet. Exit policies are used to describe which TCP connections
a particular exit node is willing to support and Tor has to respect these policies when
constructing a circuit for a particular application. The middle node is selected at random
from the list of available peers, but biased towards peers with high bandwidth.

Since all ORs can be learned from the Tor network, a network provider could prevent
computers from connecting to any OR. Consequently, people could be stopped from using
Tor. To overcome this problem, Tor introduced in December 2007 the bridge concept. A
bridge is a Tor peer, that voluntarily participates in circuits and unlike ORs is not listed
in the Director Server. Bridges can be learned from the bridge authority. To avoid that
all bridges can be learned by a single attacker, peers only can learn bridges from the same
/24 subnet.

Tor also allows users to anonymously host so-called hidden services within the Tor network.
Here, the peer providing the hidden service creates a circuit to an introduction point, a
peer in the Tor network that serves as a point of contact to the hidden service. Next,
information about the introduction point is published in the Tor DHT. Another peer
can then contact the introduction points with information about a rendezvous point, a
peer acting as the crossover-node between two circuits. Finally, both peers communicate
anonymously via two circuits to the rendezvous point.

Tarzan [23] is a completely peer-to-peer based anonymous communication network, that
— in contrast to Tor — does without special nodes. Tarzan differs in two ways to all
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other proposals. At first a peer connects — and thereby communicates — to only a few
particular peers, such called mimics. Secondly, to address the threat of an global passice
adversary, cover traffic is used on the connections to these mimics. Another characteristic
of Tarzan is that it assumes every peer knows virtually every other peer. This is achieved
by the gossip protocol. In this protocol a new peer learns from existing peers about all
other peers in the network. To confirm that every learned peer actually exists, every peer
is contacted once.

In comparison to Tor, SHALON [36] is another network using onion routing. By abdi-
cation of link layer encryption, SHALON slightly reduces the level of anonymity in order
to increase performance. Furthermore the network is completely based on standardized
protocols, like HTTP and SSL.

The Invisible Internet Project (I2P) [57] is in the focus of this work. In Section 3 we will
give a detailed explanation of this network.

2.3 Attacks on Tor

Tor is a widely used anonymous communication system and is thus the dominant target
of attacks. The goal of Tor is to be secure against a locally active attacker, who controls
some peers in the network that might not follow the Tor protocol. This is appropriate,
because to control most of the network, an attacker has to be extremely strong. Also it
is easy to see, that such a strong attacker — or an attacker able to observe most of the
traffic — can deanonymize Tor. In this section we give an overview about published and
implemented attacks on Tor. All of these attacks use a locally active attacker and some of
them have also an impact on other anonymous communication systems.

In [32] a low cost traffic analysis attack on Tor is presented. The authors exploit the fact,
that Tor ORs serve a number of Tor peers in a round-robin fashion. Since ORs have only
limited resources, they delay traffic if they are confronted with high load. This delay can
be measured by a malicious Tor. Furthermore this delay can be increased by causing traffic
on a particular OR. In the attack, the authors assume that a Tor peer, seeking anonymity,
requests data from a malicious server. The server responds in data bursts, instead of
steady data flow, thereby increasing the load on ORs participating in the victims circuit.
Consequently, this results in an increase of the delay time and the three Onion Routers
being used can be identified, which reduces the anonymity of Tor. Note that this attack
has been deployed in a lightly loaded Tor network with only 13 ORs. As shown in [22],
the attack is no longer practical in today’s Tor network.

The authors of [32] state, that the attack found on Tor probably works for any low latency
anonymous communication network. In [53] it is shown, that the descibed attack is not
applicable for Tarzan and MorphMix [41]. For the latter, this attack is not applicable,
because the malicious peer, measuring the latency of the other nodes, cannot know all
MorphMix peers. For Tarzan it is not clear if this attack might work. According to the
gossip protocol, a corrupt Tarzan peer can be assumed to know all other peers in the
network. The mimics concept in Tarzan influences the attack in two ways. At first cover
traffic between mimics hides communication pattern and thereby the delay of nodes might
not change. Consequently, the delay of a node might not change even if it is involved in
the response path. The authors state, that the only way to ensure this point is to measure
in the actual Tarzan network. Secondly, since a node only connects to its mimics, it is
questionable if a corrupt Tarzan peer can connect to every other peer, in order to measure
it.

The attack in [3] deanonymizes Tor peers, while they are building circuits. Naturally,
if a peer builds a circuit with three collaborating peers, the initiator can be identified.
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The attack aims to reduce the probability for that scenario in two steps. At first, it is
not necessary that all three peers in the curcuit are attacker peers; the guard and exit
node are sufficient. The middle node is not necessary because the timing information of
the circuit builtup can be observed and the attacker can recognize ORs. Secondly, the
attacker exploits, that the performance claims of peers, sent to the directory servers, are
not being verified. Thus attacker peers are able to claim having lots of resources, which
causes other peers to use them more frequently for circuit building.

In [31] the authors attack Hidden Services of Tor. The attack assumes an attacker who
knows several computers, that might host a hidden service in Tor. To verify which com-
puter is the actual host, the authors stress a hidden service by continually requesting a
10 MB file from the hidden service. After that, for another two hours no requests are
performed. By this experiment the attackers first — due to stressing the host — heats the
CPU up after which the CPU cools down. While continually requesting TCP timestamps
[26] of the suspects outside the Tor network, a clock skew, caused by the temperature
change of the CPU, is identifiable and thereby the host of the hidden service.

The attacks in [55] also uses clock skews to deanonymize Hidden Services. Unlike the
attack in [31], the new attacks do not need the attacker to stress the possible hosts. Basic
idea of all new proposed attacks is to also measure the clock skew on timestamps requested
in the Tor network. Note that TCP timestamps are not available in the Tor network, since
TCP headers are modified on the circuit. This only leaves the usage of HTTP timestamps,
which have a lower resolution and thus being less accurate. In the first new attack, the
change of the clock skew — every computer has — is measured inside network from the
Hidden Service and outside of the Tor network of all possible candidates over some time.
The clock skew pattern obtained from outside the Tor network that is most similar to
the clock skew pattern of the Hidden Service reveals the identity of the host. The second
attack is a faster version of the first one. The attack exploits that the difference of clock
skews on different machines is significant.

As already mentioned, the low cost traffic analysis attack in [32] is in today’s Tor network
is no longer practical. Another congestion attack, that works on today’s Tor network,
is proposed in [22]. For the attack three Tor features are crucial. At first ORs do not
delay data packages, thus latency of OR is observable. Secondly, an attacker is able to
learn about all ORs in the network, because they can be requested from the Directory
Servers. Finally, genuine Tor peers build circuits of length three, but the Tor protocol
does not constrain the length of a circuit, enabling an attacker to build circuits of arbitrary
length. One drawback of the low cost traffic analysis attack in [32] is that an attacker has
to measure all ORs simultaneously, which is impractical for a large number ORs. The
proposed attack in [22] injects a piece of JavaScript on the web browser of the victim that
periodically requests a malicious web site outside of the Tor network. In every request, the
script adds a timestamp and thereby the attacker can detect possible congestion on one
of the ORs in the circuit. To actually induce congestion to a possible circuit participant
the attacker builds a long circuit whose peers are iterations of the same three ORs over
and over again. This has an excessive impact on the number of circuits an OR has to deal
with, since every time an OR receives a circuit request, it naturally assumes that it does
not participate already in this circuit. If the attacker now induces traffic in a long circuit,
every OR in the circuit has to transfer it multiple times. This increases the load on the
OR and thereby the attacker induces delay. If an attacked OR is used as a circuit of the
victim, this delay is traceable in the periodic HTTP requests.

An attack using Tor bridges is introduced in [30]. The attack deanonymizes a user running
a bridge and accesses a pseudoanonymous web site (for example a forum) through the Tor
network. Crucial for the attack is the fact that a user, whenever online in the Tor network,
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also serves as a bridge. At first the proposed attack circumvents the restriction that one
user only is allowed to learn a small set of bridges. Actually all ORs are supposed to be
treated with one virtual IP address, because otherwise an attacker can build circuits with
different ORs and thereby send requests from different /24 networks. Unfortunately this
was not the case and so the authors were able to learn many more bridges. In the next step
of the attack, the online times of the bridges are compared with the pseudoanonymous
activities on the web. Consequently, a patient attacker is able to track down the bridge
that is always online during the pseudoanonymous activities on the web.

Low latency networks like Tor are vulnerable to two latency attacks proposed in [50]. In
the first attack called passive linkability attack a malicious server measures the latency of
the circuit, by causing the victim’s browser to establish many additional connections to the
malicious server. For every connection, the exit node has first to establish a TCP session,
after which the victim is being notified that the session is established. On a connection
established signal, the victim sends a HTTP GET request. The server measures the time
difference between the TCP ACK signal and the time the HTTP GET request is received,
as the latency of the circuit. The more similar these round trip times are, the more
likely it is, that two Tor users used the same circuit. For the second attack, the authors
exploit that subnetworks have distinct latencies. If the attacker possesses distinct latency
measures from all possible routable IP address prefixes, the measured latency of the victim
can be compared with them. Thus the uncertainty of the victim’s position can be reduced.



3. Background: I2P

I2P is a multi-application framework for anonymous P2P networking written in Java.
Figure 3.1 gives an overview of the I2P architecture.

HTTP

JVM

TCP/IP

Browser

I2P Router

SSUNTCP

Syndie
(Forum)

...I2PSnark 
(Filesharing)

I2PHex
(Filesharing)

Figure 3.1: Scheme of the I2P architecture. On top of TCP/IP, I2P provides two connec-
tion oriented protocols NTCP and UDP. The I2P Router is the core block of the architec-
ture. On top of the router there are several applications, which are usually configured by
a web browser interface.

On top of the native Internet protocol, I2P specifies the use of two different peer-to-peer
transport protocols. The first is called NIO-based TCP (NTCP), where NIO refers to
the Java New I/O library. It extends basic TCP for key exchange and encrypted com-
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munication. The second is called Secure Semireliable UDP (SSU), providing UDP-based
message transfer. SSU extends the basic UDP protocol and provides areliable, encrypted,
connection-oriented, point-to-point data transport. Generally I2P prefers NTCP to SSU,
but if one protocol does not work, the other one is used.1

The core of the I2P framework is the I2P router, which implements key components of
the I2P protocol. Tasks of the I2P router include: maintaining peer statistics, performing
encryption/decryption, building tunnels and sending/receiving provided by NTCP or SSU.
Tunnels are the key abstraction of I2P to achieve anonymity. They are composed of sev-
eral peers and implement garlic routing as introduced in Section 2.1.2. I2P differentiates
between four types of tunnels, based on their direction and their required performance.
Inbound tunnels are for communication from the I2P network towards the tunnel owner
and outbound tunnels are for the opposite direction. An inbound and outbound tunnel can
be either an exploratory tunnel or a client tunnel, hence the four different tunnel types.
Exploratory tunnels are used by the I2P router itself and client tunnels are used by I2P
applications. A detailed explanation on tunnels is given in Section 3.2. I2P applications
rely on the anonymizing tunnels provided by the I2P router for privacy protection; conse-
quently, the I2P router is central to the security of all I2P applications and the analysis
presented in this thesis.

Many Internet applications can be implemented on top of the I2P router. An application
provided by a particular I2P peer is referred as a service. For example, I2P includes services
to host HTTP servers, to provide IRC-based communication and to perform POP/SMTP-
based email transfer. An extensive list of services currently available for I2P is given in
Table 3.1. Note that all services are provided anonymously inside the I2P network. Most
I2P services are controlled and used via a web browser interface.

3.1 Peer and Service Discovery

Like most other P2P networks, I2P has to deal with the problem of finding peers and
subsequently the services offered by those peers. Every peer in the I2P network is uniquely
identified by a data structure called routerInfo. This data structure holds all the key
information about the peer, including public keys of the peer, a 256 bit hash-identifier and
information about how the peer can be contacted.

I2P addresses the bootstrapping problem, the problem of initially discovering some other
peers in the network, by using a non-anonymous HTTP download of a list of routerInfos
for available I2P peers from a fixed location [11].

3.1.1 I2P’s DHT: the netDB

After bootstrapping, I2P uses a super-peer DHT to build a network database, called the
netDB, with information about all the peers and services available in the network. The
super-peers that maintain this database are called floodfill peers; each floodfill peer is
responsible for the information closest to its ID. Proximity is determined using Kademlia’s
XOR distance metric [29]. If a peer has sufficient bandwidth and its configuration allows
it, a peer can promote itself to floodfill status and will do so as soon as the number of
active floodfill peers in the network drops below a certain threshold.

3.1.2 Storing data in the netDB

Information about how to contact a service provided by an I2P peer is stored in the netDB
in so-called leaseSets. A leaseSet primarily specifies a set of entry points (called leases) to
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Table 3.1: Services build into I2P

Anonymous service Description

Eepsites HTTP servers provided by I2P
peers based on Jetty2

susidns Address book for mappings from
Eepsites to identifiers

BOB API to connect arbitrary appli-
cation to the I2P network

I2PSnark As web application integrated
bittorrent client

Robert I2P bittorrent client using BOB

i2p-bt Command-line based bittorrent
client

Transmission for I2P Port of the bittorrent client
Transmission to I2P

I2Phex Client for creating and joining
Gnutella based peer-to-peer net-
works

iMule Filesharing program based on
aMule 3

Susimail E-mail web application to access
an e-mail server voluntarily pro-
vided in the I2P network

I2P-Bote Decentral e-mail communication
system

I2P-Messenger Instant messaging system for I2P

Syndiemedia (Syndie) Blogging tool

F

X

outbound client tunnel

inbound client tunnel

1.store:
leaseX EncF{ {

2.reply msg
F

F

3.on the 7 other
  Floodfill peers,

leaseXstore:

inbound/outbound tunnel participants

other nodesFloodfill peersF

store initiatorX

Figure 3.2: I2P uses tunnels to store a lease in the floodfill database to hide the identity
of the (HTTP) server.
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the service. An entry point is the identification of an inbound tunnel at a peer currently
serving as an inbound gateway to the service.

The lookup and storage of leaseSets and routerInfos is achieved by sending the respective
requests to a floodfill server. Figure 3.2 illustrates the storage process for a leaseSet.
Figure 3.3 shows the storage process of a routerInfo.
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Figure 3.3: I2P stores routerInfos directly in the floodfill database.

The only difference between storing a routerInfo and a leaseSet is that in the latter case
communication happens via a (client) tunnel in order to anonymize the peer offering the
service. The information of which routerInfo belongs to which machine is not a goal of
anonymization and is thus not sent through a tunnel. In both cases, after a floodfill peer
receives a request, it replicates the received information at seven additional closest floodfill
peers and sends a confirmation back to the initiator. In case of confirming a leaseSet, the
floodfill peer sends the confirmation back via the inbound tunnel.

Finally, after 10 seconds, the initiator performs a test lookup for the previously stored
data structure at another floodfill peer. The store operation is repeated if the test fails.

3.1.3 Retrieving Data from the netDB

Retrieving routerInfos and leaseSets are performed via exploratory outbound tunnels. The
request is transmitted to the two — with respect to the destination address — closest
floodfill peers known to the requester. If a floodfill peer does not have the requested
information, a list of other close floodfill peers is sent back. The replies are transmitted to
the initiator using an exploratory inbound tunnel. If both floodfill peers do not have the
requested information, the requesting peer queries two other floodfill peers until all known
floodfill peers are contacted. An example for a lookup process in the I2P network is given
in Figure 3.4.

1For a detailed discussion on the preference of NTCP and SSU, please see http://www.i2p2.de/ntcp
discussion.html

http://www.i2p2.de/ntcp_discussion.html
http://www.i2p2.de/ntcp_discussion.html


3.2. I2P Tunnels 15
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inbound exploratory
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request:
lookup lease/router info

response:
lookup lease/router info

inbound/outbound tunnel participants

other nodesFloodfill peersF

store initiatorX

Figure 3.4: Looking up a Router Info or Lease using exploratory tunnels.

3.2 I2P Tunnels

I2P uses tunnels to hide the IP address of a participant in an online interaction. I2P tunnels
closely resemble onion routing as implemented in Tor with circuits [20]: the initiator selects
the route through the network, no artificial delays are introduced when forwarding, and
link- and layered-encryption are used to protect the data against observers.

3.2.1 I2P Tunnels are Unidirectional

Tunnels in I2P only transfer payload data in one direction. In order to achieve bi-
directional communication, I2P uses inbound and outbound tunnels. Inbound tunnels
are used to transmit data to the peer that constructed the tunnel and outbound tunnels
are used to transfer data from the peer that constructed the tunnel. Note that only the
peer that constructed the tunnel knows all of the peers in the tunnel. Figure 3.5 shows an
example of inbound and outbound tunnel message flow.

For outbound tunnels, multiple layers of encryption are added by the creator of a message;
each one is then removed by the corresponding peer as the message traverses the outbound
tunnel.

For inbound tunnels, adding all layers of encryption at the first peer is not possible;
this would require the first inbound node to know the secret tunnel keys for all of the
participants of the tunnel. Instead, every node in an inbound tunnel adds an additional
layer of encryption. Finally, the creator of the tunnel, who knows the tunnel keys used by
each peer from the tunnel construction phase, removes all layers of encryption to obtain
the original message.

3.2.2 Tunnel Diversity

Every I2P peer creates multiple tunnels; the specific number of tunnels and the tunnel
length depend on the peer configuration. The length of the tunnel is considered to be
a trade-off between speed and anonymity and I2P gives the end-user control over this
setting. The user specifies two non-negative numbers, x and y. For each tunnel, I2P
selects a random number r ∈ [−y, y] and constructs a tunnel of length max(x + r, 0).
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Figure 3.5: Message flow for an inbound and an outbound tunnel of an I2P peer. For the
inbound direction, layers of encryption are added while the message moves towards the
receiver. For the outbound direction, layers of encryption are removed.

In addition to the distinction between inbound and outbound tunnels based on the tun-
nel’s transfer direction, I2P further distinguishes between exploratory and client tunnels.
Exploratory tunnels are for requesting data from the netDB and for tunnel management.
They are not used for application operations. Client tunnels are used for all typical appli-
cation level network messages, like leases lookup, to anonymize requests from clients and
to provide inbound/outbound tunnels for I2P services, such as Eepsites.

3.2.3 Tunnel Construction

In order to select peers for tunnel construction, I2P first categorizes all known peers into
tiers. Depending on the type of tunnel that is being created, the peer selection algorithm
then attempts to select peers exclusively from a particular tier. In addition to selecting
peers from particular tiers, I2P also avoids the selection of multiple peers from the same
/16 (IPv4) network for the same tunnel.

After selecting peers for the tunnel, the initiator sends tunnel construction requests (via
that partially built tunnel) to the selected peers. A peer receiving a tunnel construction
request is free to either accept to participate in the tunnel or to reject the request, indi-
cating a reason for the refusal. Naturally, tunnels can still fail if peers that accepted a
tunnel construction request are later unable to sustain the tunnel. The behavior of a peer
faced with tunnel construction requests (including the reason given for rejection) as well
as tunnel failures is important for the performance evaluation of peers, which is used for
assigning peers to tiers.

3.2.4 Tier-based Peer Selection

An I2P peer chooses other peers randomly from a particular tier depending on the type
of the tunnel. A tier consists of peers that share certain performance characteristics. I2P
categorizes peers into four tiers:

Fast Peers with high throughput

High-capacity Peers that will accept a tunnel request with high probability.

Well-integrated Peers that claim to know many other peers
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Not-failing All known peers

Every (known) peer is always considered to be in the “not-failing” tier; peers can addition-
ally be in the high-capacity and well-integrated tiers. Peers must be in the high-capacity
tier to be eligible for the fast tier.

The fast tier is considered the most valuable tier and is used for constructing client tunnels.
In the theoretical case where the fast tier does not have a sufficient number of peers, I2P
falls back to using peers from the high-capacity (or even well-integrated and not-failing)
tiers for peer selection in the construction of client tunnels. In practice, we were unable
to observe this behavior since the fast tier was always sufficiently populated during our
evaluation.

The high-capacity tier is the default choice for exploratory tunnels, the well-integrated
and non-failing tiers are only used as fallback options (also unlikely in practice).

Peers are placed into tiers based on certain performance metrics. A peer is put in a
particular tier if its corresponding performance value exceeds a threshold calculated by
I2P for that tier.4 The size of the fast and high-capacity tiers is bounded. For the fast tier
the number of peers is between 8 and 30 and for the high-capacity tier between 10 and 75.
If the number of peers in those tiers drops below the threshold, the best-performing peers
from lower tiers are promoted. If the number of peers in a tier exceeds the upper limit the
lowest rated peers are demoted.

The I2P router keeps track of various performance statistics in order to sort peers into the
correct tiers. A flow chart diagram of the tier placing algorithm is given in Figure 3.6.
Performance metrics are gathered more often for peers in the fast and high-capacity tiers,
since performance metrics are always gathered if a peer is used for a tunnel. Furthermore,
performance scores are cumulative; this generally results in higher performance values for
peers in the fast and high-capacity tiers and reduces fluctuation.

3.2.5 Metrics for Tier Assignment

I2P is careful about only including performance metrics that are hard to manipulate,
relying only on measurements entirely controlled by the peer for throughput and tunnel
maintenance properties. In particular, information about tunnels created by other peers
is not taken into consideration.

The capacity value of a peer is based on the number of times the peer accepts a tunnel
request, the number of tunnel rejections and the number of tunnel failures that happen
after a peer accepted to participate in a tunnel. The actual capacity calculation of the
current I2P version differs from the only I2P design paper authored by members of the
I2P community [57].

The goal of the capacity calculation is to estimate how a peer is likely to behave in the
future in terms of its participation in tunnels. The calculation is primarily based on the
accept, reject and failure actions of that peer. Furthermore, if the peer rejected events
in the last 5 minutes, the reason given for the rejection is also considered. A detailed
description of the capacity calculation algorithm can be found in Appendix A.1; the main
point for this thesis is that peers accepting tunnel requests score high, peers rejecting
tunnel requests score low and peers failing tunnel requests score very low in terms of their
capacity value.

4The complex threshold calculation is described in detail in Appendix A.3 since these details are not
necessary for the understanding of this work.
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Figure 3.6: Flow chart diagram of the peer placement algorithm. A peer is always in
the not-failing tier. To be in the high-capacity or well-integrated tier, its corresponding
performance value must exceed the threshold. For the fast-tier, a peers speed value must
also exceed the speed threshold and the peer has also to be in the high capacity tier.

A peer’s speed value is the mean of its three highest, one second throughput measurements
in any tunnel established by the measuring peer over the course of the last day. Throughput
is measured whenever data is sent through a peer via a tunnel created by the measuring
peer. Naturally, throughput is bounded by the throughput capacity of the measuring peer
as well as, for each individual measurement, the slowest peer in the tunnel. While it would
be nice to be able to influence speed values of other peers, the fact that I2P uses the
observed maximum over an entire day makes this unattractive: attacking a peer to reduce
its speed for a whole day is simply too expensive.

The integration value of a peer is a measure of how well a peer is integrated in the network.
To accomplish this, the I2P router keeps track of how many new peers it has learned from
the particular peer. The integration value is not relevant to our attack; details for how it
is calculated are presented in Appendix A.2.

3.3 Eepsites

The I2P software comes with the Jetty web server. Using Jetty, every I2P user can offer
HTTP web pages to the I2P network using a domain under the .i2p TLD. Given such
a domain name, I2P creates inbound and outbound client tunnels for the service and
(periodically) publishes a leaseSet in the netDB.
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When a user decides to create a new domain, a 516 character Base64 encoded identifier
based on a public key and a signing key, is created locally. The creator of the Eepsite
can share this identifier with any other I2P user to provide access to the service. This
mechanism requires, similar to an IPv6 Internet without DNS, the memorization and
sharing of a cryptic set of numbers.

To overcome this issue, the local I2P application addressbook can be used to store a
mapping of pet domain names and corresponding identifiers, similar to the /etc/hosts

file on UNIX systems. With this, an I2P user can contact the web server by typing the pet
domain name in its browser. A canonical hosts file is shipped with the I2P distribution.

Accessing an Eepsite involves several steps (illustrated in Figure 3.7):

1. The Eepsite host (server) creates inbound and outbound tunnels for sender-anonymity
and publishes gateway information as a leaseSet in the netDB (as described in Sec-
tion 3.1). Fresh tunnels and corresponding leaseSet updates are published at least
every 10 minutes.

2. The peer running the HTTP client (client) uses a tunnel to access the netDB and
retrieves the leaseSet information.

3. The client uses inbound and outbound tunnels (for receiver-anonymity) to contact
the gateways from the leaseSet.

4. A handshake is performed via the tunnels for end-to-end encryption between server
and client, using the public key in the leaseSet.

5. The HTTP request is transmitted through the outbound tunnel of the client and the
inbound tunnel of the server.

6. The HTTP response is transmitted through the outbound tunnel of the server and
the inbound tunnel of the client.

msg

Eepsiterequester

outbound client tunnel inbound client tunnel

msg

outbound client tunnelinbound client tunnel

msg

message with end-to-end encryption

message with layered encryption

msg

msg
msg

msg

msgmsg

msg

Figure 3.7: Accessing an I2P Eepsite.

Steps 5 and 6 can then be repeated; I2P reuses the resulting channel for subsequent HTTP
requests to improve performance. This is somewhat relevant to the attack presented in
this thesis since it allows an attacker to repeatedly query the HTTP server without the
need to perform the costly tunnel setup operations each time.
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3.4 Threat Model

The I2P project does not specify a formal threat model, it instead provides a list of possible
well-known attack vectors (such as intersection / partitioning, tagging, DoS, harvesting,
sybil and analysis attacks) and the authors discuss how the design relates to these attack
vectors.5

Based on the scenarios described, I2P’s attacker model closely resembles that of Tor:
malicious peers are allowed to participate in the network, collect data and actively perform
requests. However, the attacker is assumed to be unable to monitor the entire network
traffic, should not control a vast number of peers (80% is used as an example) and should
not be able to break cryptographic primitives.

3.5 Summary: I2P vs. Tor

On the technical side I2P resembles Tor in many ways, but its developers often use slightly
different terminology for almost identical features. Table 3.2 provides a mapping between
the different terms used by the two projects.

Table 3.2: Terminology: Terms used by Tor vs. I2P. This list includes the
terms relevant to this thesis where the technical differences are also sufficiently min-
imal. A more extensive (but not always technically close) mapping can be found at
http://www.i2p2.de/how_networkcomparisons.

Tor I2P

cell message

circuit tunnel

directory NetDb

directory server floodfill router

exit node outproxy

hidden service Eepsite or destination

hidden service descriptor lease set

introduction point inbound gateway

onion routing garlic routing

The key philosophical difference between the well-known Tor network and I2P is that
I2P tries to move existing Internet services into the I2P network and provide service
implementations within the framework whereas Tor enables anonymous access to external
Internet services implemented and operated separately. While Tor has hidden services
and I2P has exit nodes, the canonical usage of Tor is accessing external services and I2Ps
canonical usage is accessing internal services.

I2P and Tor also differ in a number of technical details, some of which are key to the attack
presented in the following section. Table 3.3 summarizes the main technical differences
between the two projects.

5http://www.i2p2.de/how_threatmodel.html
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Table 3.3: Key technical differences between Tor and I2P.

Tor I2P

3-hop tunnels user-configurable, randomized
number of hops

bi-directional tunnels uni-directional tunnels

guards, bandwidth-based peer
selection

performance-based peer selection

7 directory servers with complete
data

super-peer DHT (floodfill peers)

link- and layered-encryption,
but not (necessarily) end-to-end-
encryption

end-to-end-, link- and layered-
encryption

many exit nodes, few hidden ser-
vices

one exit node, many services

hidden services are external TCP
servers

build-in servers for many services

implemented in C implemented in Java

transport over TCP only (for
now)

transport over TCP or UDP
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4. Our Attack

Our attack assumes an adversary that actively participates in the network with less than
70 nodes, ideally located in different subnets. The adversary should be distributed in
order to work around I2P’s restriction of one node per subnet per tunnel and to provide
reasonably well-performing malicious peers as neighbors regardless of the location of the
victim on the Internet. Each of the participating peers is expected to have resources
comparable to typical normal peers in the I2P network. The peers participate in the I2P
network according to the network protocol. Our adversary does not have the capability
to monitor the traffic of any other node. Our attack influences the performance of I2P
peers likely to be chosen by the host of an Eepsite — the victim — for creating its client
tunnels. Therefore 40 adversary peers using all their resources to attack other peers to
make it more likely that the rest of our peers are chosen as tunnel participants, in order
to deanonymize the victim.

The goal of the attacker is to identify the peer “anonymously” hosting a given Eepsite with
high probability. Furthermore, it is assumed that the Eepsite is available to the entire
I2P network for the duration of the attack and hence resists intersection and partitioning
attacks. We have implemented and tested the attack on the extant I2P network in early
2011, making this type of attacker a credible real-world adversary.

For our attack, the adversary uses three types of I2P peers (illustrated in Figure 4.1).
The first type, a monitor peer, simply participates in the I2P network as “normal” peer,
but reports certain statistics about tunnel operations back to the adversary. The most
expensive operation (in terms of time and/or bandwidth) is getting the victim to select
these monitor peers as its direct neighbors during tunnel construction. While there is
always a (small) chance that the victim will select the adversary’s monitor peers, the
attack uses a second type of peer, an attack peer, which performs a limited type of DoS
attack to influence the victim’s tiers to the adversary’s benefit. Finally, the adversary also
uses one peer to act as a “normal” visitor to the Eepsite, querying the I2P NetDB for
leaseSets and issuing HTTP requests to the Eepsite. The leaseSets are used to determine
which peers should be attacked (by the attack peers), and the HTTP requests are used to
create a pattern which is detected by the monitor peers.

4.1 Taking over the Fast Tier

The main challenge for the adversary is to control the nodes closest to the victim in the
inbound and outbound tunnels of the Eepsite. The adversary’s goal is to force the victim to
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Figure 4.1: Our attack on I2P uses several participating peers in different roles. Monitor
peers gather statistical evidence, attack peers accelerate getting the monitor peers into the
right position and the control server orchestrates activities.

use the adversary’s monitoring peers in its fast tier. Naturally, this requires the adversary
to run several well-behaved and fast (monitor) peers. Since I2P never picks multiple peers
from the same /16 IPv4 network, the adversary must operate monitor peers in at least a
few different /16 IPv4 networks.

Clearly, depending on the size of the I2P network, just having a few monitor peers par-
ticipate in the network would make it unlikely that the victim chooses these peers. Our
attack takes advantage of the peer selection algorithm of I2P, which tries to select only
well-performing peers for the tunnels. Thus, the adversary can increase its chances of en-
tering the fast tier by actively hampering the performance of the peers that are currently
in the fast tier. While our goal is to enter the victim’s fast tier, I2P’s use of the highest
observed speed over the last 24h makes it impractical to remove peers from the fast tier
directly. Furthermore, the adversary may not be able to simply perform faster than the
fastest 30 peers in the network — not to mention the victim may normally take a long
time to even evaluate nodes controlled by the adversary. Thus, our attack makes use of the
fact that I2P only allows high-capacity peers to remain in the fast tier; hence our attack
influences the peer selection algorithm by causing peers to reject tunnels, which in turn
makes it likely that they will be removed from the high-capacity tier (and thereby also
the fast tier). This increases the chance that the victim will then select the adversary’s
monitoring peers as replacements.

Before the adversary can get peers from the victim’s fast tier to reject tunnel requests, the
current nodes in the victim’s fast tier must be identified. Our attack uses nodes that were
recently specified in the leaseSet of the Eepsite as good targets. After all, nodes that are
in the leaseSet must be in the fast tier of the victim at that time, and are thus likely to
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remain in the fast tier for a while. We found that this method worked better than trying
to predict the fast tier from performance measurements done by adversarial nodes.

Given a (small) set of peers that are likely in the fast tier, the adversary performs a
denial-of-service (DoS) attack against these peers. Possible venues we considered were
attacks against the CPU (by forcing the victims to perform many public key operations)
and bandwidth exhaustion. In the end, overloading the peers with a large number of idle
tunnels turned out to be the most cost-effective strategy for the current I2P release. It
should be noted that the specifics of the DoS attack are not terribly relevant to the big
picture of the attack, and alternative strategies such as long paths [22] would likely work
as well.

4.2 Confirmation via Traffic Analysis

Eventually the adversary should succeed with placing a few of his nodes into the fast tier
of the victim and the victim will then likely choose these nodes for its tunnels. While
this will happen eventually, the adversary cannot directly observe that this has actually
happened. Furthermore, the adversary’s nodes will not necessarily remain in the fast tier
indefinitely. As a consequence, the adversary must run the statistical pattern detection
described in this section in parallel with the attack algorithm that facilitates its entry into
the fast tier.
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Figure 4.2: A periodic signal is induced by the control server and detected by the mon-
itor nodes. They report likely Eepsite hosts to the control server which aggregates the
information.

The statistical pattern we use to identify the correct tunnels at the monitor peers is,
similar to [32], a periodic HTTP request issued by the control server at a fixed frequency
t (Figure 4.2). For our experiments we use t = 15s. For each tunnel, each monitoring peer
counts the number of packets received in buckets representing time intervals of packet
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arrival times modulo t. If the total number of packets is smaller than those transmitted
by the adversary to the Eepsite, the circuit is ignored. If the number of packets is close
to the expected number, the monitoring peers compute how many standard deviations
the largest bucket size is from the average bucket size. If the resulting factor is large, the
packets were not equally distributed. Then, to exclude false-positives from short, non-
periodic bursts, the monitoring peers perform the same calculation, this time for a time
interval modulo q where gcd(t, q) = 1 and |t − q| is small (we use q = 16s). If the signal
had a frequency of t, the resulting factor should be very small; however, if a burst caused
a false-positive, the resulting factor should be about as big as for the calculation modulo
t. If the distribution is normalized modulo q, the tunnel is reported to the adversary as
detected. If two monitoring peers report a peer between them at the same time, that peer is
flagged likely to be the Eepsite host. The sensitivity used for the standard deviation factor
threshold determines how often the same peer needs to be flagged before the adversary
can be certain.



5. Experimental Results

For our experiments, we deployed a number of I2P nodes on PlanetLab [38]. Each node
was configured to use at most 64 kb/s upstream and downstream bandwidth. We set up
the control peer on a machine controlled by us to minimize jitter. Furthermore, one of
our peers was set up to host an Eepsite to serve as a victim for testing. For our tests,
we used up to 40 attack peers and 30 monitor peers. All tests were performed by having
all of our peers join the live I2P network and participate normally (except, of course, for
attack-specific behavior).

5.1 Tier Evolution

First, we wanted to see how well we would be able to predict the victim’s fast tier. This
determines how big the impact of our attack actually is. Our first attempt was to combine
the knowledge of several attacker peers, which turned out to be infeasible. The number
of correct guesses for candidates of an random victim peer grows indeed, unfortunately
the number of possible candidates grows even more. Table 5.1 shows a summary of this
experiment. All details can be found in B.1.

Table 5.1: Accuracy of the prediction for the fast tier of an arbitrary peer using the
combined fast tiers of several attackers.

Number of Number of Number of Resulting
attacker fast tier hits candidates fraction

1 5 30 16.7%

2 6 53 11.32%

3 8 74 10.81%

4 11 93 11.82%

5 12 110 10.91%

Our next approach was to use the information an Eepsite leaks about its fast tier. Leases
of an Eepsite are public information in the I2P network. Table 5.2 shows what fraction
of the last n peers observed in the leaseSet were actually in the fast tier of the victim at
the time. We configured the victim to use only one inbound and one outbound tunnel.
Obviously, this data describes a worst case, since with more tunnels also more leases can
be learned.
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Table 5.2: Accuracy of the prediction for peers in the fast and high-capacity tiers using
the n most recently observed peers from the lease set. The given percentage refers to the
fraction of the peers from the n most recent leases that are actually in the respective tier.
The fast tier typically consists of 30 peers, the high-capacity tier typically has 75 peers.
At the time of the measurement, the I2P network contained at least 1921 peers in total.

# leases % nodes from lease set
(most recent) in fast tier in high-capacity tier

5 60% 60%

10 40% 50%

15 40% 47%

20 45% 55%

25 36% 52%

30 30% 50%

5.2 Attack Effectiveness

Next, we determined the impact of the DoS attack, first on the attacked peers (to confirm
that the attack works as expected), and then on peer fluctuation in the fast and high
capacity tier. Table 5.3 shows the impact of our attack on a single peer. It compares the
tunnel request acceptance rate of an ordinary peer with the acceptance rate when that
peer is attacked by several attackers. Table 5.4 shows the typical churn rate for peers
in the high-capacity and fast tier of the victim ordinarily and while under attack. The
data corresponds to the adversary attacking the last 30 peers observed as leases (with
the expected inaccuracies as listed in Table 5.2). The data shows that the DoS attack is
effective at obstructing tunnel operations and that the victim reacts to these obstructions
by replacing peers in its high-capacity and fast tiers more often.

Table 5.3: Direct impact of the tunnel acceptance rate of a peer under attack from various
number of attackers with a configured bandwith limit of 64 kb/s. Note that an increasing
number of attackers not only causes the peer under attack to reject tunnels, but addition-
ally causes requests for tunnels to be lost and hence not be answered at all.

under attack, number attacker

normal 2 3 5 7 10

Tunnels accepted 82% 63% 52% 16% 9% 1%

Tunnels rejected 18% 36% 41% 40% 36% 28%

Tunnels lost 0% 1% 7% 44% 55% 71%

5.3 Deanonymization

Finally, we measured how effective our statistical analysis is at determining the victim
once the measurement nodes are in place.

We provide some examples for what the statistical patterns observed by the monitor peers
(Section 4.2) look like. Figure 5.1, Figure 5.2 and Figure 5.3 are showing representative
patterns for the case where the adversary deanonymizes the victim with the signal and
performs the statistical analysis using the correct modulus (here t = 15). Internals of
the I2P implementation (which we can no fully explain) seem often to create two distinct
peaks at about a close distance. Additionally those figures show the same data using a
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Table 5.4: Impact of the DoS attack on the network using 40 peers with a configured
bandwidth limit of 64 kb/s. This table shows the increase in the churn for the high-
capacity and fast tiers of the victim that the attacker tries to deanonymize. Each value
represents the churn of nodes per 45 seconds tier evaluation cycle of the victim. Note that
the attack uses our (limited-precision) leaseSet-based prediction heuristic (Section 4.1) to
determine which peers to attack. If the attacker could be certain about which peers are
in the respective tiers, the increase in churn would be significantly higher. Monitor peers
provided by the attacker are not subjected to the attack.

normal under attack

High-capacity tier churn 0.89 peers/cycle 3.41 peers/cycle

Fast tier churn 0.76 peers/cycle 1.71 peers/cycle

different modulus (here q = 16), resulting in the peaks being destroyed. This would not
be the case if the signal was not due to requests at the adversaries frequency of t.

Finally, Figure 5.4 and Figure 5.5 are showing a typical pattern for a deanonymization
that does not contain the signal. It should be noted that most circuits do not reach the
required minimum number of messages and are hence filtered long before this analysis is
even performed.

Table 5.5 lists the number of times the measurement nodes identified the correct host of
the Eepsite (the target of the attack) vs. the second highest score assigned to any of
the other peers in the I2P network (false positives). Since the statistical analysis uses a
threshold, we report the data for different possible thresholds. The data was obtained over
the course of four hours with the attacker controlling the entire fast tier of the victim.

Table 5.5: Final result of the statistical analysis for both the actual target for the
deanonymization and the highest-ranked false-positive (FP) peer for different thresholds.
The table shows the number of times the respective peer exceeded the given statistical
threshold (for the correct signal frequency, minus the statistical significance computed for
a non-signal frequency) for the duration of the measurement.

Detection 1-hop tunnel 2-hop tunnel
Threshold Target top FP Target top FP

1 Std. Dev. 78 130 60 45

2 Std. Dev. 69 28 47 6

3 Std. Dev. 48 2 42 2

4 Std. Dev. 41 2 36 2

5 Std. Dev. 30 0 26 0

6 Std. Dev. 30 0 21 0

7 Std. Dev. 28 0 19 0

8 Std. Dev. 23 0 19 0

9 Std. Dev. 15 0 17 0

10 Std. Dev. 12 0 15 0
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(a) (b)

(c) (d)

Figure 5.1: Graph (a) and graph (b) show the observed data of the predecessor and
successor in the case the victim got deanonymized and the data was calculated with the
correct modulus q. Graph (c) and graph (d) show the same data, but calculated with the
wrong modulus t.
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(a) (b)

(c) (d)

Figure 5.2: Graph (a) and graph (b) show the observed data of the predecessor and
successor in the case the victim got deanonymized and the data was calculated with the
correct modulus q. Graph (c) and graph (d) show the same data, but calculated with the
wrong modulus t.
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(a) (b)

(c) (d)

Figure 5.3: Graph (a) and graph (b) show the observed data of the predecessor and
successor in the case the victim got deanonymized and the data was calculated with the
correct modulus q. Graph (c) and graph (d) show the same data, but calculated with the
wrong modulus t.
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(a) (b)

Figure 5.4: Subfigure (a) and (b) show the observed data of the predecessor and successor
in the case the victim got wrongly deanonymized.

(a) (b)

Figure 5.5: Subfigure (a) and (b) show the observed data of the predecessor and successor
in the case the victim got wrongly deanonymized.
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6. Discussion

This work confirms the well-known result [7] that attacks on availability or reliability of
an anonymizing service can be used to compromise anonymity. What we have shown
specifically is that anonymizing networks that have a strong bias towards well-performing
peers for tunnel construction are particularly vulnerable to this type of attack. Once the
tunnel is compromised, other researchers have shown that latency measurements could be
used to determine the likely identity of the victim [50].

Because of the uni-directional nature of the I2P tunnels the attacker has to wait a longer
time to possibly deanonymize a victim. Monitoring peers have to be in the correct position
for both the inbound and the outbound tunnel. Thus, with a being the number of monitor
peers in the fast tier of the victim, the probability for deanonymization in a fast tier of
size 30 is:

( a

30

)2
(6.1)

For bi-directional tunnels the attacker would only need one peer in the correct position,
resulting in the probability:

a

30
(6.2)

However, the significance of a deanonymization is different for both cases, due to the
probability of deanonymizing the wrong peer (false-positive). For the uni-directional, I2P
case the probability to deanonymize the wrong peer requires the same ordinary tunnel
participant in certain positions. At first the victim has to choose an ordinary, non-malicious
peer for the inbound tunnel. This happens with probability a−30

30 . The same peer also needs
to be in the outbound tunnel, which happens with probability 1

30 . Additionally the victim
has to choose a monitor peer for the second hop of one inbound and one outbound tunnel,
which happens with probability

(
a
29

)2
. Combining all these probabilities, the probability

for false positives with uni-directional tunnels is1:

1Note that in principle this deanonymization setting of uni-directional path possibly leads to another
case of false positives. Whenever in a tunnel an ordinary peer has an monitor peer as predecessor and
as successor, this ordinary peer can falsely be identified to be the victim. However, since we induce our
signals with HTTP requests/responses, it is possible to create a certain, distinguishable ratio between the
data packets of the request and response. Obviously, since in this additional case the data ratio does not
change, we do not need to take this case into account.
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30− a

30

1

30

( a

29

)2
=

30− a

302

( a

29

)2
≈ a2

30− a

304
(6.3)

With bi-directional tunnels, the probability for a false positive is higher, because any other
peer between a monitor peer and the victim can falsely be accused. The overall probability
for this case is:

30− a

30

a

29
≈ a

30− a

302
(6.4)

Correlating the probability of deanonymization and the probability for getting a false pos-
itive in the uni-directional and bi-directional case shows the difference in the significance.
Dividing Equation 6.1 and Equation 6.2 results in a

30 and shows that the attacker has to
wait 30 times longer in the uni-directional case than in the bi-directional case to be in
a position to possibly deanonymize the victim. Doing the same with Equation 6.3 and
Equation 6.4 results in a

302
and shows that the accuracy for the uni-directional case is 900

times bigger than in the bi-directional case.

This result indicates that uni-directional tunnels help an attacker due to the higher cer-
tainty an attacker can get from possible deanonymizations. Consequently, using uni-
directional seems to be a bad design decision. Figure 6.1 clarifies the trade-off for an
attacker. Especially when the attacker managed to control around the half of the victims
fast tier, the false positive rate increases up to 25%.

Consequently, with choosing between uni-directional and bi-directional tunnels, the de-
velopers of anonymous communication systems can influence the certainty and the speed
an attacker can deanonymize a peer. We want to stress that the false positive rate of bi-
directional path is not tremendously high and might also be manageable for an attacker.
But since Eepsites in I2P are accessible for a long time, time is not an issue and we think
that uni-directional paths helps us to clearly deanonymize the victim.

Figure 6.1: Showing the probability of false positive deanonymizations for both uni-
directional and bi-directional case. The rate is much higher for bi-directional tunnels.
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While making the I2P network more robust towards DoS attacks is always a good goal,
we do not believe that this would address the main problem, the ability of the adversary
to influence peer selection. While I2P’s heuristics seem to make it hard for an adversary
to directly influence the metrics used for peer selection, influencing performance itself is
likely always possible. Hence, a better solution would be to limit churn in the fast and
high-capacity tiers, similar to how Tor uses a limited set of guard nodes.

Another problem is the fact that Eepsites allow repeated measurements, giving the attacker
the opportunity to possibly collect data for many months. This problem is not unique to
I2P, but also applies in exactly the same way to Tor’s hidden services. However, since
philosophically I2P services are more integrated, I2P’s design may offer a solution, at least
for static content: instead of having a single peer act as the HTTP server, I2P should allow
HTTP services to be offered in a distributed fashion. The secure distributed filesystem
Tahoe2 is currently be ported to I2P, which may address this concern.

Most importantly, I2P should avoid leaking information about its fast tier by using random
peers, that are in the not-failing tier but not in the fast tier, for the leases. This would
make it harder for an adversary to determine which peers should be attacked with the DoS
attack while maintaining performance advantages for the rest of the tunnel.

2http://tahoe-lafs.org/˜warner/pycon-tahoe.html

http://tahoe-lafs.org/~warner/pycon-tahoe.html
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7. Conclusion

Biasing peer selection towards well-performing peers has previously been seen as a mostly
theoretical issue. This work shows that combined with a limited, selective DoS attack on
a few peers it enables an adversary to compromise the anonymity of long-running services.
When our DoS-attack was detected by the I2P developers, they decided to make the peer
selection algorithm switch peers even faster in response to performance anomalies for the
next release. This work shows that peers reacting, and especially reacting quickly, to
changes in observed network performance can be a bad idea for anonymizing networks.
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A. I2P Heuristics in Detail

This appendix gives details on the various heuristics in the original I2P codebase that
have been described in the paper. For our attack, the specifics given in this section are not
significant; modest variations in how these heuristics are implemented would not change
the attack.

A.1 Capacity calculation

Actions from the distant past are not considered to be as relevant as more recent events;
hence the capacity calculation considers event counts for different time intervals, specifi-
cally 10 minutes, 30 minutes, 60 minutes and 24 hours.

For every time interval a capacity value is calculated, and the weighted corresponding
results give the final value. If cap is the capacity calculation function, the capacity value
for a peer p is:

capacityp = 0.4 cap(10 min) + 0.3 cap(30 min)+

0.2 cap(60 min) + 0.1 cap(24 h)
(A.1)

The calculation of the cap function itself is also separated into two steps. At first, the
counted events of accepting and rejecting tunnel requests are considered. More specifically,
the events in the particular time interval and the last time interval are summed up. For
example in the cap calculation for the 10 minutes time interval, the data of the current
10 minutes and the previous 10 minutes are considered. Let a be the amount of accepted
tunnel requests for the current and the last period and r be the corresponding rejection
rate, then the temporary capacity value is calculated by ctemp = a2

a+r . In the next step ctemp

is adjusted by possible tunnel failures. If failures happened, let f be the amount of failures
in the current and the previous period, the capacity amount subtracted is csub = 0.5+ 4f

100 .

Since a negative capacity is not considered in I2P, the result of the cap function is:

cap = max

(
a2

a + r
− (0.5 +

4f

100
), 0

)
(A.2)

In the second step of the overall capacity calculation the, the capacity value is adjusted
if a rejection happened in the last five minutes, corresponding to the rejection reason. If
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a rejection reason indicates a high request overload, the capacity value is set to 1. If a
rejection reason was probabilistic nature, the capacity value is decremented by a random
number r, with r ∈)0, 5].

A.2 Integration value calculation

If intcur is a function giving the amount of successful peer lookups or received stores of
a peer p for the current time interval and intprev is the function for the corresponding
previous time interval, then the integration value of p is:

integrationp = 96 intcur(1h) + 12 intcur(6h) + 8 intprev(6h) + intcur(1d) (A.3)

A.3 Threshold Calculation

In order to identify high performing peers, the I2P router needs to calculate additionally
to the performance measures for every known peer, for every tier a threshold value. In the
following, we introduce the threshold calculation for every tier.

The capacity threshold calculation depends on a list listall, containing all known peers
ordered by the capacity value, and the following values:

minhC The minimum number of peers needed for the high capacity tier.

exceedhC The number of peers in listall, that exceed the current capacity threshold.

meanhC The mean value of listall.

medianhC The median value of listall.

cap(minhC) The capacity value of the element in listall at position listall.

cap(last) The capacity value of the element in listall at the last position.

With these values, the capacity threshold is calculated as follows:

• If minhC < exceedhC: The capacity threshold becomes meanhC.

• If previous condition is false and meanhC > medianhC and listall is at least two times
more than minhC: The capacity threshold becomes cap(minhC).

• If the previous condition is false and listall is at least two times more than minhC:
The capacity threshold becomes medianhC.

• In any other case, the capacity value becomes: cap(last).

For the well integrated tier, the threshold is the mean value of the integration value of all
known peers. For the fast tier the speed threshold is the mean of the speed value of all
peers in the high capacity tier.



B. Tiers in Detail

B.1 Tier Prediction

Table B.1 shows the data of collaborating peers combining their tier-knowledge in order
to predict the tiers of another peer.

Table B.1: Showing the benefit of several peers combining their tiers to guess the high-
capacity (HC), fast (F), well-integrated (WI) and not-failing (NF) tier of a single peer,
located in Aachen. The more peers collaborate, the more peers the team and Aachen have
in common. However, for the team, the number of peers in a tier gets also larger.

Tier
Team Tier Member HC F WI NF

Berlin HC 75 27 12 20 67
F 30 9 5 7 30
WI 49 21 9 33 49
NF 595 68 28 48 453

Berlin HC 130 34 15 29 119
Kaiserslautern F 53 13 6 13 53

WI 60 26 11 42 60
NF 777 74 30 48 541

Berlin HC 173 37 16 38 156
Kaiserslautern F 74 17 8 23 73
Ilmenau WI 68 28 12 47 68

NF 867 75 30 48 561

Berlin HC 208 40 18 41 187
Kaiserslautern F 93 22 11 27 92
Ilmenau WI 69 28 12 47 69
Hannover NF 932 75 30 48 574
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