PROPERTIES OF DICE

by Klaus A. Mogensen
Proper Dice

Gamers use all sorts of dice. Dice are usually ssoneof regular polyhedra. Best
known are the Pythagorean solids, the classical@4q8, d12, and d20, but other
shapes are also used, primarily the d10. In addibdhese, a d30 and a d100 are
available in well-stocked game stores. Considanataf symmetry tells us that all
of these except the d100 are "proper” dice sirlcaf #heir faces are equivalent.
The d100 is less certain, since its surfaces asleditly defined. The questions I'm
going to answer is, can this d100 be a proper @dh clearly equal chances of
landing on all faces)? Are there more proper diem those we know? And, can
you make dice with curved surfaces that can't beéeméth flat surfaces?

The requirements for a die with a certifiably equl@nce of landing on each face,
are that all the faces must be identical (thouglmansymmetry is allowed), and
must be placed identically in relation to each ntheother words, the faces on the
die must be indistinguishable barring mirror symmpiethe die must be also be
convex (it can't curve in on itself), or it woulé@ bnable to land on some faces.

We now turn to the math. This isn't too complex, dbit time-consuming, so you
may want to jump directly to the results.

Euler's equation, which is good for any convex petifon of three or more faces
(curved or otherwise), states that V + N = E + 2ekehV is the number of vertices
in the polyhedron, N the number of faces, and Enthraber of edges. Since the
faces on a proper die are identical, they mugstalk the same number of sides
(and corners), a number we'll call M. We have E N2 which tells us that N
only can be odd if M is even (or E won't be a whalenber). Using this
substitution, Euler's equation becomes:

(1) V=NM/2-1)+2

This equation does not cover the situations wher® M=M=1. These, however,
only have one solution each, namely:

(A) N=1, M=0, V=0 (a sphere)
(B) N=2, M=1, V=0 (a lens)

In the case M=2, (1) simplifies to V = 2. This lsadutions for all N greater than 2,
but requires curved surfaces. The shape of these™dre prisms that taper in both
ends, with N-sided cross sections:

(C) N>=3, M=2, V=2 (edged cigar shapes)



As will be shown later, this is the only way to reakce with an odd number of
faces (not counting the sphere).

We turn to the cases M > 2. Since a vertex musiaao@at least three face corners,
we have that 3V =< N*M, which with (1) tells us thd =< 6 - 12/N, which means
that M <6. The faces must thus be triangles, qurades, or pentagons.

While we require that all the faces on the diceeaya@valent, the same is not true
for the vertices. There can theoretically be asyngpes of vertices as there is
types of corners in the faces. Since a given tym®mer must always be part of
the same type of vertex (or the faces wouldn'tchevalent), there can't be more
types of vertices than there are corners, but tbenebe less (everal types of
corners may meet in one type of vertex).

Let's label the different types of vertices withuanber i, i=1,2,... up to the number
of different vertices. Let's call the number ofroens that meet in a vertex thank

of the vertex, and label that raRk. Similarly, we label the number a vertex type
occursVi, and the number of different corners a vertexaslenout oMi. We get:

(2) V = SUM(VI) (i=1,2,...)
(3) M = SUM(Mi) (i=1,2,...)
(4) Vi = N*Mi/Ri

The two first are obvious: The total number of vesics the sum of the numbers of
the individual vertices, and the total number ahess on a face is the sum of the
corners that are part of different vertices. (4ptre true since all the corners in
vertices must be provided by the faces, and vicsave

Combining (2), (3), and (4) with (1) gives us:
(5) SUM(N*Mi/Ri) = N(M/2 - 1) + 2

Which reduces to:

(6) N = 2/(SUM(MI/Ri) - M/2 + 1)

In the cases where there's only one type of vaeveekave Mi=M, and (6) becomes
N = 2/(M/R - M/2 + 1), which has these solutions:

(D) N=4, M=3, R=3, V=4 (tetrahedron, standard d4)

(E) N=8, M=3, R=4, V=6 (octahedron, standard d8)

(F) N=20, M=3, R=5, V=12 (icosahedron, standard)d20
(G) N=6, M=4, R=3, V=8 (cube, standard d6)

(H) N=12, M=5, R=3, V=20 (dodecahedron, standarg)d1

Some or all the corners on the die faces may bagut. By this | mean that they
can't be told apart when looking at the face (bhgrmirroring or rotation) and are



part of the same type of vertex. An example of ihihe cube: Each face has four
corners, but the vertices only have three cornemwstnif the four corners of the
faces all were different, some of the vertices wabviously also be different, and
the faces would end up being aligned differently.

Equivalent faces must all belong to the same typeéx (or else they could be
told apart by their placement, and thus wouldn'¢dpivalent). Thus, if all the
corners are equivalent, we can only have one typertex, and get the solutions
shown above.

In the cases 2 < M < 6, unless all the cornergquévalent, the only rotational
symmetry is for a 180 degree rotation: There @ in a quadrangle for three-
way symmetry, or in a pentagon for three-way ordfeay symmetry. Thus, at
most two corners can be equivalent (through 18@esetation or mirroring),
though quadrangles and pentagons may have twopstiich In other words, unless
all the corners are equivalent, the corners mtis¢ebesinglets or doublets.

For triangles, we find two possible combinationstoliblet plus 1 singlet, and 3
singlets.

For quadrangles, we find three possible combinati@rdoublets (either side-by-
side or opposite corners), 1 doublet plus 2 sisdl&ith the doublet being two
opposite corners), and 4 singlets.

For pentagons, we find two possible combinatiordo@blets plus 1 singlet (with
one doublet being the corners on either side os$itglet, and the other doublet
being the remaining two corners), and 5 singl&tsu(can't have 1 doublet plus 3
singlets: the doublet corners could not be plagedhsetrically if the other three
corners are different.)

Let's examine a vertex consisting of only one typeooner. If this corner has two
different adjacent corner types, then if the vetag odd rank, those two different
corners will be forced together in one of the a€ljgwertices. This observation can
be expressed as follows:

(7) If a type of corner belongs to a vertex thattams no other types of corners,
and the two corners adjacent to this corner typa'ta doublet pair, then the vertex
must have even rank, or the adjacent vertices omngtin both adjacent corners
types.

A vertex can consist of more than one type of arngince a specific type of
corner only can be part of one type of vertex,fthlewing must be true (since all
corners must occur an equal number of times irptighedron):



(8) If a vertex consists of more than one typeasher, they must occur in
proportion to their singlet/doublet status (difiersinglets equally, different
doublets equally, a doublet twice as often as gleip

E.g., if a vertex is made up of a singlet and a tiiupes of corners, the vertex
must contain 1 singlet corner plus 2 doublet carnar multiples thereof. The rank
of such a vertex must be a multiple of three. Havel a vertex only consists of
one type of doublet corner, there is no requirertfaitthe rank is even (see the
example with the cube abgv&imilarly, if it consists of two types of double
corners, (8) would be satisfied if it containedetiicorners of each type.

With the restrictions provided by (7) and (8), vemsolve (6) for all the shapes
described above. We only examine the cases where'shmore than one type of
vertex, since if there's only one, we just getdbleitions (D) to (H) above.

Let's start with the triangular case of 1 doubledirlet. If the singlet and doublet
corners are part of different types of vertice$ a@plies to the doublet vertices,
which must have even rank. We get N = 2/(2/R1 ®21/R/2), R1 even, which has
the solutions:

() N even (N>=6), M=3, R1=4, V1=N/2, R2=N/2, V2€@ouble pyramid)

(J) N=12, M=3, R1=6, V1=4, R2=3, V2=4 (pyramidstetrahedron faces)
(K) N=24, M=3, R1=6, V1=8, R2=4, V2=6 (pyramids octahedron faces)
(L) N=60, M=3, R1=6

, V1=20, R2=5, V2=12 (pyramids @odecahedron faces)
(M) N=24, M=3, R1=8, V1=6, R2=3, V2=8 (pyramids oube faces)
(N) N=60, M=3, R1=10, V1=12, R2=3, V2=20 (pyramms icosahedron faces)

1l
0

By "pyramids" in the above | mean any number ohtdml triangles meeting in a
vertex. The standard d8 is a special case of @yabwhich only if N/2 is even has
opposing faces (and thus an "up" face when lying table).

In the triangular case of 3 singlets, let's fimhsider the case where two types of
corners are part of the same type of vertex. W thiat the equation becomes the
same as for the case above, with R1 forced to be ky (8) rather than (7). Same
equation = same solutions. We get nothing new.

If all three corners are part of different typeweftices, (7) requires that all the
vertices have even rank. We get N = 2/(1/R1 + H#R2R3 - 1/2), all Ri even. We
get the solutions:

(O) N=8,12,16,.., M=3, R1=R2=4, V1=V2=N/4, R3=NX23=2 (variant of (I)
above)

(P) N=24, M=3, R1=4, V1=4, R2=R3=6, V2=V3=4 (vatiarf (K) above)

(Q) N=48, M=3, R1=4, V1=12, R2=6, V2=8, R3=8, V3fhape seen in crystals)
(R) N=120, M=3, R1=4, V1=30, R2=6, V2=20, R3=10,212 (largest non-bipolar
die)



By "variant" in the above, | mean that the shapes@pologically equivalent, the
way that a cube elongated by pulling out oppossi#ices is equivalent to an
undeformed cube. Essentially, (O) and (P) are defawsions of (1) and (K). You
can build (Q) and (R) by putting squeezed pyraroidshe rhombic faces of (T)
and (U) below, respectively.

We now turn to quadrangles. In the case 2 doubletget N = 2/(2/R1 + 2/R2 - 1).
We see that either R1 or R2 must be smaller th&f the two possible ways of
having 2 doublets, only the one where the doulaletopposite corners (i.e.,
rhombic faces) allow non-even ranks according Jo\\#e get the solutions:

(S) N=6, M=4, R1=3, V1=4, R2=3, V2=4 (elongated eud variant of (G))
(T) N=12, M=4, R1=3, V1=8, R2=4, V2=6 (rhombic dodkedron)
(U) N=30, M=4, R1=3, V1=20, R2=5, V2=12 (the d30dsim game shops)

The next case is 1 doublet, 2 singlets (kites). Wée donsider the case where the
two singlets are part of the same type of verteg.ght the same equation as above
(with the added limitation by (8) that R2 must bem®), thus no new solutions.

Next we consider the case where the doublet andbiie singlets are part of the
same type of vertex. We get the equation N = 2A3/R/R2 - 1), but we know

from (8) that R1 must be a multiple of 3. We gés golution only:

(V) N even (N>=6), M=4, R1=3, V1=N, R2=N/2, V2=20able cone made from
Kites)

The cube and the d10 are both special cases ocOf\W.if N/2 is odd do these
shapes have opposing faces (and thus an "up"” faer lying on a flat surface).

If the doublet and both singlets all form their overtices, we get the equation N =
2/(2/IR1 + 1/R2 + 1/R3 - 1), and we know from (7attR2 must be even. We get
the solutions:

(W) N=12, M=4, R1=4, V1
(X) N=24, M=4, R1
(Y) N=60, M=4, R1

6, R2=R3=3, V2=V3=4 (a \at of (T))
4,V1=12, R2=3, V2=8, R3=4, V3ffhape seen in crystals)
4,V1=30, R2=3, V2=20, R3=5, V&1

You can make (X) by replacing each face of a cuibke four kites, and (Y) in a
similar manner from a dodecahedron.

The last case with quadrangles is where all theersrare singlets. If all belong to
different corners, we get the equation N = 2/(14RI/R2 + 1/R3 + 1/R4 - 1). We
know from (7) that all Ri must be even, and thus greater. No solutions can
satisfy that. If two corner types are part of thme type of vertex, this vertex must
have even rank according to (8). You thus can'elaw double-singlet vertices
(this would require that all Ri are even, which have shown has no solution). If
the two corner types belonging to the same vemexdjacent, both singlet vertices



must also have even rank (= no solutions), sowloecbrner types must be
opposite. This gives us the same equation that ga¢e/), (X), and (Y), and the
same solutions. Similarly, in the case where tisneglets are part of the same type
of vertex, we reproduce solution (V). Thus, we firmnew solutions by only
having singlet corners.

We now turn to pentagons. We start with the caseddublets and 1 singlet. If
both doublets are part of the same type of vertexget N = 2/(4/R1 + 1/R2 - 3/2).
R1 must be even according to (8), and thus 4 atgreNo solutions can satisfy
that. If one doublet and the singlet are part efsame type of vertex, we get the
equation N = 2/(3/R1 + 2/R2 - 3/2), R1 a multipfedoWe get one solution:

(2) N=12, M=5, R1=3, V1=12, R2=3, V2=8 (a deform dodhedron)

Next we have the case where both doublets andribketsare part of different
types of vertices. We get N = 2/(2/R1 + 2/R2 + 1/R12). From (7) we know that
R1 and R2 both must be even, and thus 4 or gresateve get no solutions.

We turn to the last case, namely all singlet cotyyees. If all but one are part of
one type of vertex, we get N = 2/(4/R1 + 1/R2 ) 3&hd R1 even. We have
already shown that this has no solutions. Next evesicler the case where 3 corner
types are part of one type of vertex, and the reimgitwo both are part of another
type. We get N = 2/(3/R1 + 2/R2 - 3/2), with R2 ewand R1 a multiple of 3 (from
(8)). This has no solutions. The next case hasypeedf vertex with three corner
types, and two vertices with one corner type. Wd\ge 2/(3/R1 + 1/R2 + 1/R3 -
3/2), R1 a multiple of 3. This has these solutions:

(/) N=12, M=5, R1=3, V1=12, R2=R3=3, V2=V3=4 (ar@tkeform
dodecahedron)

(D) N=24, M=5, R1=3, V1=24, R2=3, V2=8, R3=4, V3=6

(A) N=60, M=5, R1=3, V1=60, R2=3, V=20, R3=5, V3=12

We can make (@) by placing sets of four pentagonsach face of a cube, turned a
bit to make the corners interlace. (A) can be nmiadesimilar manner from a
dodecahedron. Even though the faces connect asyioatlgt these polyhedrons
can be built with faces that have bilateral symgnéfryou don't consider how they
connect).

The next case has two vertex types each with twoetdypes, and one vertex type
with only one. We get N = 2/(2/R1 + 2/R2 + 1/R32)3R1 and R2 both even
(from (8)). This has no solutions. The next casedree vertex type with two corner
types, and three vertex types with only one cotyge. We get N = 2/(2/R1 + 1/R2
+ 1/R3 + 1/R4 - 3/2), R1 even, and this also hasalations. The last case has five
different vertexes, each made from one corner tyfjeequires all of the vertices
to have even rank, which cannot have a solution.



We now have gone through all the possibilities. €eam be no proper dice except
those mentioned in the solutions (A) to (A) abde have made no requirements
that the faces or edges must be non-curving, lmaintoe shown (by example) that
all the solutions for M = 3, 4, or 5 can be mad#hwion-curving faces and edges,
as | have suggested in the text (and will shows@one in illustrations below). In
fact, I'm pretty sure (but offer no proof) thatallthese can be made so all vertex
points touch an enclosing sphere.

While it may be considered interesting that som#hefsolutions are more-or-less
deform versions of each other, we are only interest topologically distinct
shapes for the purposes of using them as dice. Wighestriction, (E) and (O) are
subsumed by (1), (G) and (S) are subsumed by &))afd (&) are subsumed by
(H), (P) is subsumed by (K), and (W) is subsumedT)yWe can put the
remaining, topologically different solutions intdable:

TABLE OF PROPER DICE
The top three illustrations are done by me, thearestione by Ed Pegg, Jr.

| N M[R1V1|R2V2[R3|vV3]  Notes | llustration
1 |0f-|- |- /|-/|-]- Sphere
2 |2 -||-1-1-1-1- Lens

>2 |2|-| - |- |-1]-- |Hascurved faces




Triangular

Dihedron
Even, N/2|N/2
>4 : 1
(opposing faces
if N/2 even)
Trapezoidal
Even, Dihedron
o4 N [N/2 _
(opposing faces
if N/2 odd)
Regular
4 4 - Tetrahedron
Triakis
12 403 Tetrahedron
12 s 4 Rhombic

Dodecahedron




Regular

12 20 Dodecahedron
20 12 Regular
Icosahedron
Tetrakis
24 8 Hexahedron
Triakis
24 6 Octahedron
Trapezoidal
24 12 Icositetrahedror
ot ” Pentagonal

Icositetrahedron




30 3120 12 i Trialzgﬁgﬁigdron
48 4112 8 6 Otltea);laegfon
60 620 12 - Doggcr:];%gron
60 |3 /10|12 20| - | - Ic;r;iﬁaon
60 4130 20| 512 Helgi%ithLd:clircm




Pentagonal

60 5| 3|60) 3120512}, econtahedron

Hexakis
Icosahedron
120 /3|4 |30 6 |20|10 12
(largest non-
bipolar die)

The regular octahedron (d8) and the cube (d6) areiapases of the infinite series
having M=3 and M=4, respectively. The d10 also bg#to the latter of these.

The d100 you can buy in some gaming stores canniotunel on the list (it clearly
doesn't belong to any of the infinite series)a't be trusted absolutely. The d30
you can buy in gaming stores is on this list andttan be trusted.

Dice Probabilities

The following formulae can be used to find the ptolitg of rolling a sum S using
N dice of M faces. The formulae provide the numidgrepmutations that give the
desired result; to obtain tipeobability as an absolute number, divide by M”N.

In the formulae, {A:B} is the binomial coefficiert!/B!/(A-B)!, 0!=1, and
SUM[i=0,j]( Xi) is the sum of Xi for all values affrom 0 to j.

Number of permutations that give sum = S:
P(S,N,M) = SUM[i=0,j]( (-1)™ * {N:i} * {(S-I*M-1): (N-1)})
Where j = Int((S-N)/M).

For large S the identity P(S) = P(Z), where Z = N{M-S, can be used to simplify
the calculation.




Number of permutations that give sum =< T:
P(=<T,N,M) = SUM[i=0,jJ( (-1)N * {N:i} * {(T-*M):N })
Where j = Int((T-N)/M).

For large T the identity P(=<T) = 1-P(=<Y), where Y*(M+1)-T-1, can be used
to simplify the calculation.

In some games you roll a pool of dice and havetmtthe number of dice that
have a certain value or higher. For that and sirpitablems, the following
formulae can be used to find the probability ofimas results. The notation is the
same as above.

Number of permutations that have exactly | dice iognup with a value of exactly
J:
P(1,J,N,M) = (M-1)~(N-I) * {N:I}

Number of permutations that have exactly | dice iognup with a value of J or
higher:
P(,>=J,N,M) = (J-1)(N-I) * (M-J+21)" * {N:1}

Number of permutations that have exactly | dice iognup with a value of J or
less:
P(l,<=J,N,M) = (M-2)(N-1) * M * {N:I}



