

Occupational exposure to chemicals and hearing impairment - the need for a noise notation.

Ann-Christin Johnson

PhD

Karolinska Institutet
Dept. Clinical Science, intervention and technique

Section of Audiology

Aknowledgement

The work with the NEG-document

Chemicals and Hearing

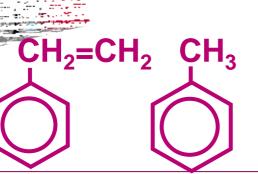
have been preformed by me together with

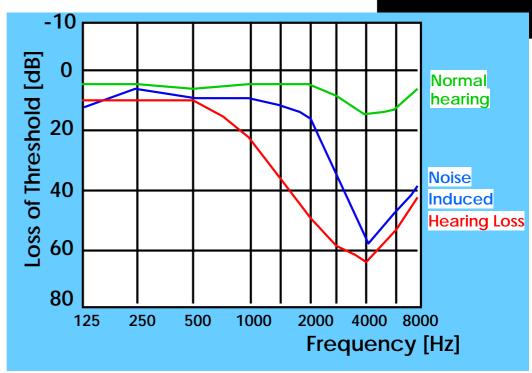
Dr Thais Morata

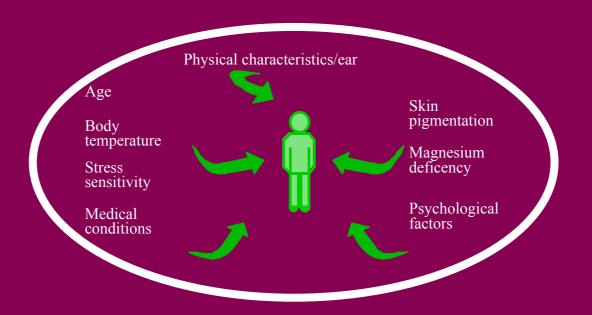
National Institute for Occupational Health, USA

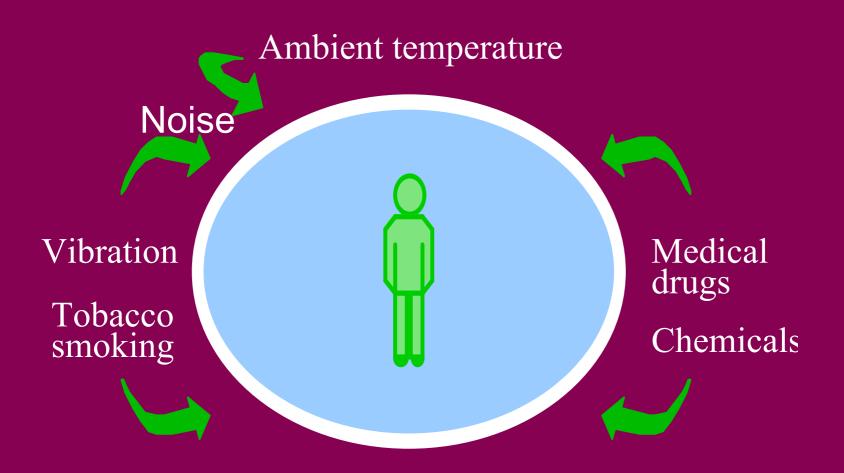
Without her this document would never have been done!

What causes hearing loss?







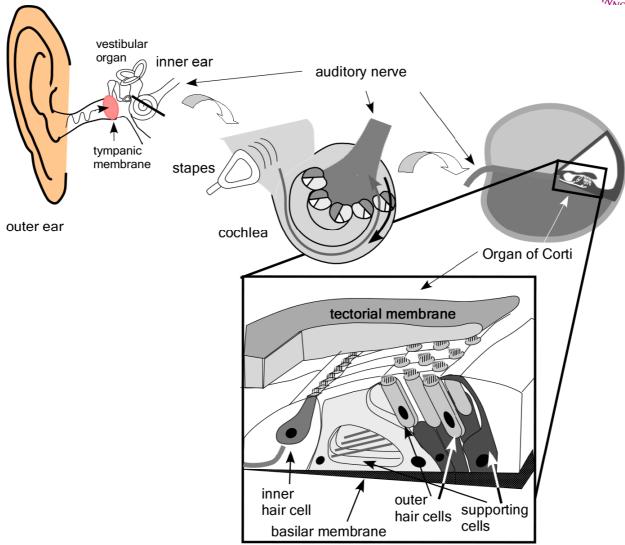


Risk factors for hearing loss Endogenous

Risk factors for hearing loss Exogenous

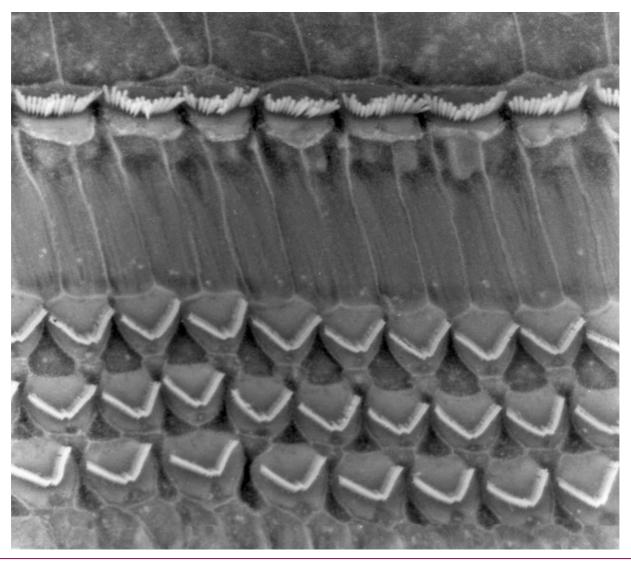
Definitions

Ototraumatic


→ any agent that has the potential to cause permanent hearing loss

Ototoxic

→ a substance that causes functional impairment or cellular damage in the inner ear (hearing or balance) or the VIII cranial nerve – the vestibulo-cochlear nerve


The inner ear

Normal cochlea

Is this new? - Discovery of ototoxic substances

Therapeutic class	Ototoxicity recognized	Examples	
Heavy metals	11th century	mercury	
Antimalarial drugs	1843	quinine, chloroquine	
Non-steroidal anti-infl ammatory drugs	1877	salicylate (aspirin), fenprofen, ibuprofen, indomethacin, naproxen, phenylbutazone, sulindac	
Anthelmintics	late 19th century	oil of chenopodium (worm seed oil)	
Arsenicals	early 20th century	atoxyl, salvarsan	
Aminoglycosides	1945	streptomycin, amikacin, gentamicin, kanamycin, neomycin, netilmicin, paromomycin, tobramycin	
Other antimicrobial agents	1960s	chloramphenicol, colistin, erythromycin, minocycline, polymyxin B, vancomycin	
Loop diuretics	1960s	ethacrynic acid, bumetanide, furosemide	
Industrial solvents and chemicals	1970s	toluene, organotins, carbon monoxide, potassium bromate	
Topical disinfectants	1970s	chlorhexidine	
Antineoplastic drugs	1970s	bleomycin, carboplatin, cisplatin, dichloro-methotrexate, nitrogen mustard, vinblastine, vincristine	
Chelating agents	after 1980	deferoxamine	

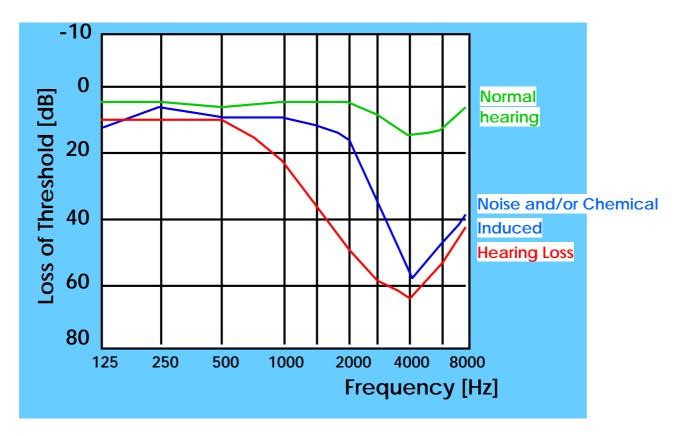
Schacht J, Hawkins JE. 2006 Sketches of otohistory. Part 11: Ototoxicity: drug-induced hearing loss. Audiol Neurootol. 2006;11(1):1-6.

Hearing loss from noise or chemicals

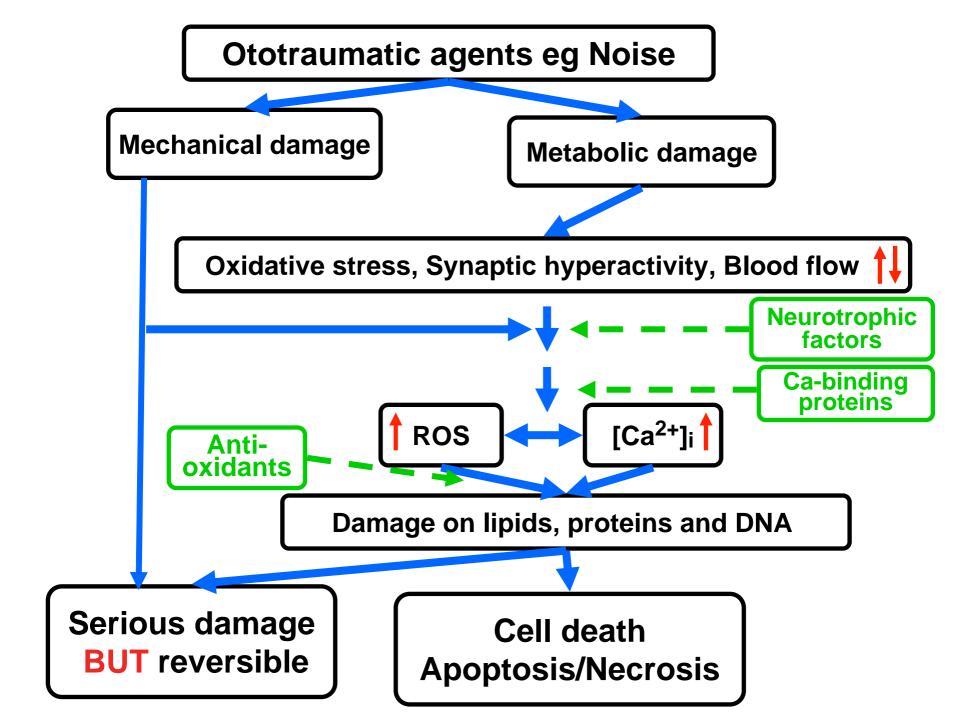
Similarities and differences

- Test methods in humans
 - → Pure tone audiometry The golden standard

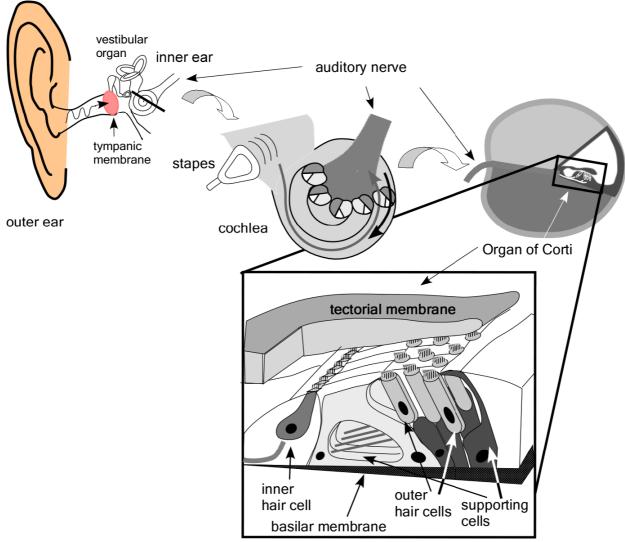
audiogram


- → Test for central effects on hearing Speech tests
- Test methods in animals
 - → Electrophysiology
 - → Behavioral tests
 - → Morphological examination OHC-loss
- Mechanisms

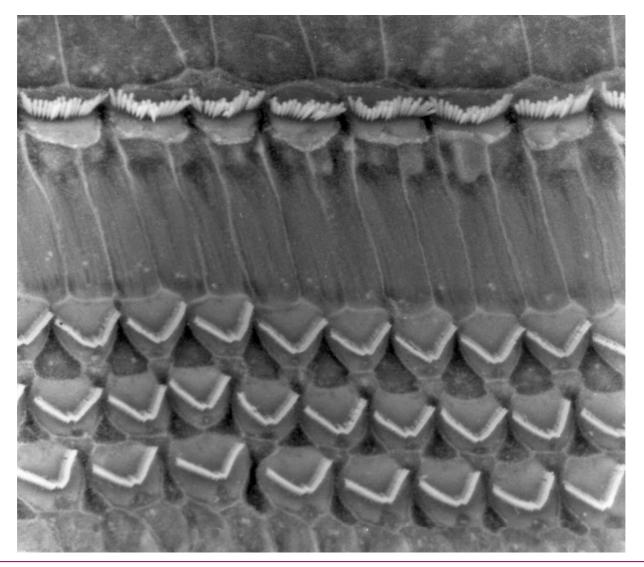
pathways

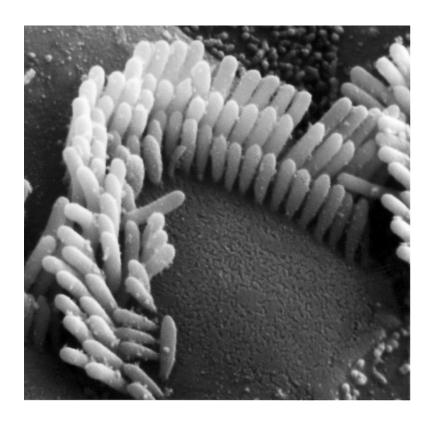

Hearing loss from noise or chemicals

- The audiogram

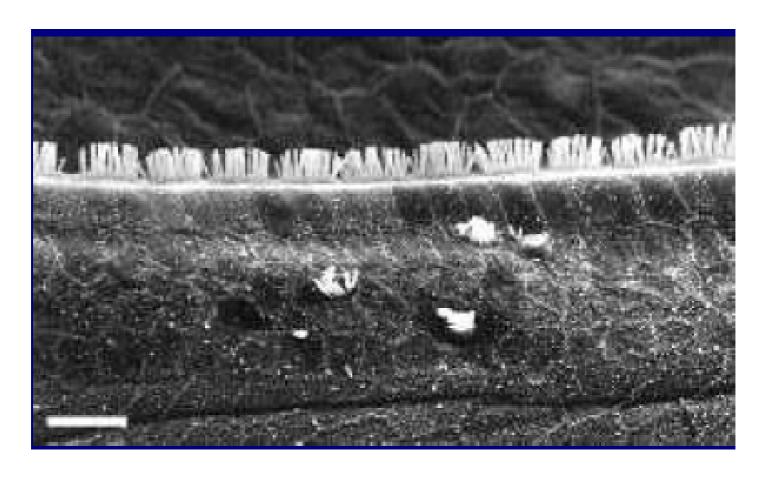


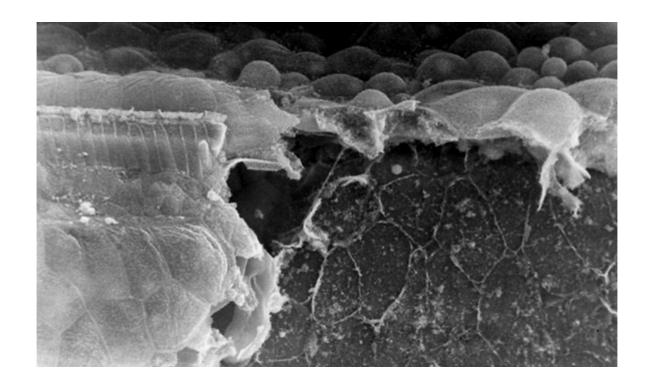
Return


The inner ear


Normal cochlea

Noise damage




Noise damage

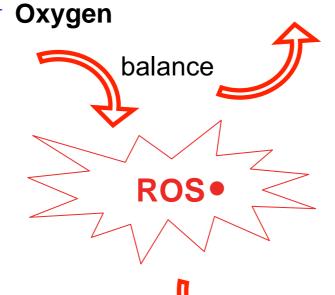
Impulse noise damage

http://www.sickkids.ca/auditorysciencelab/images/haircells.jpg

You have all heard of anti-oxidants?

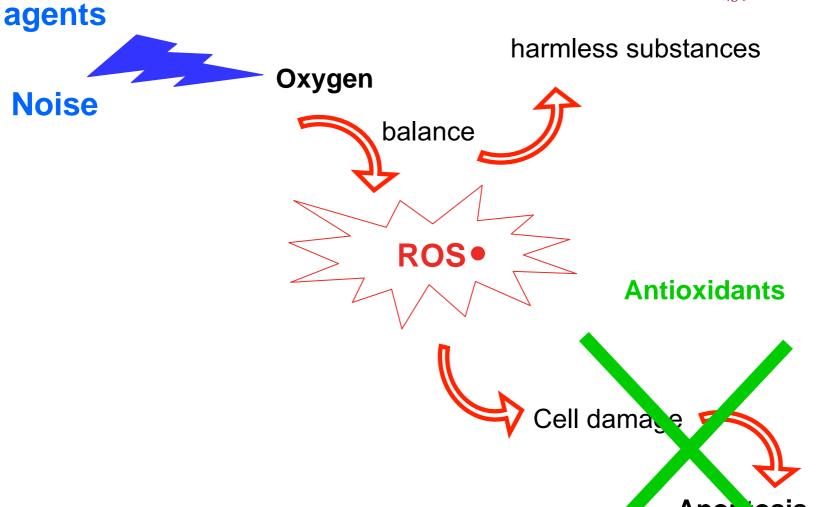
Why are they good for you?

What do they protect from?


Reactive Oxygen Species - ROS

Ototoxic agents

Noise



Ototoxic agents

Apoplosis
Hearing loss

Which chemicals are ototoxic?

Drugs

Metals

Solvents

- Other chemicals
 - → Asphyxiants CO & HCN
 - → Pesticides
 - → PCBs

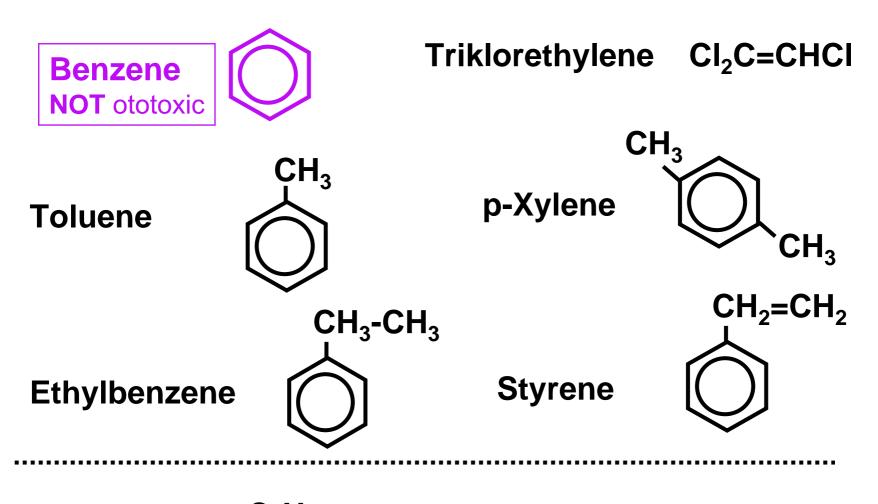
Drugs

- Anti-malarial drugs
- Antibiotics
- Anti-inflammatory drugs (non-steriodal)
- Anti-neoplastic agents
- Diuretics

Solvents are ototoxic

23

Animal studies have shown:


- Ototoxic effects in rats, mice, chinchillas also in guinea pigs
- Cochlear damage
- Noise not a necessary factor
- Interaction and potentiation with other ototraumatic agents

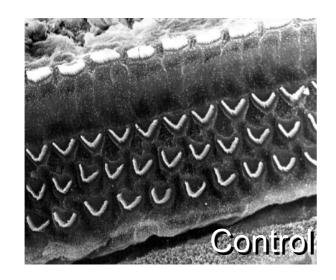
Human studies have shown

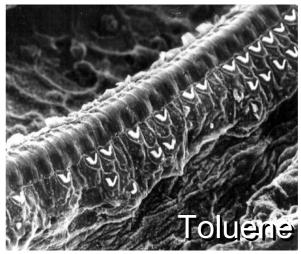
- Solvent abuse cause hearing damage
- Occupational exposure to toluene, styrene and mixtures cause hearing loss
- Interaction with noise
- Also at low noise levels

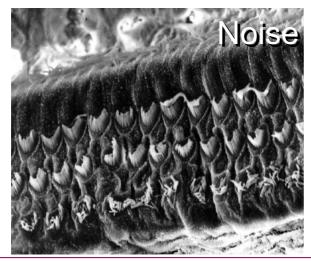
Ototoxic solvents

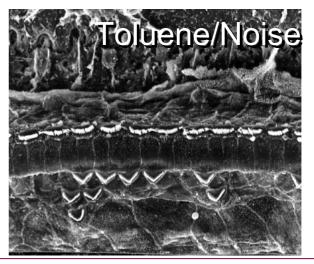
n-Hexane C₆H₁₄ Carbon disulphide CS₂

Animal studies

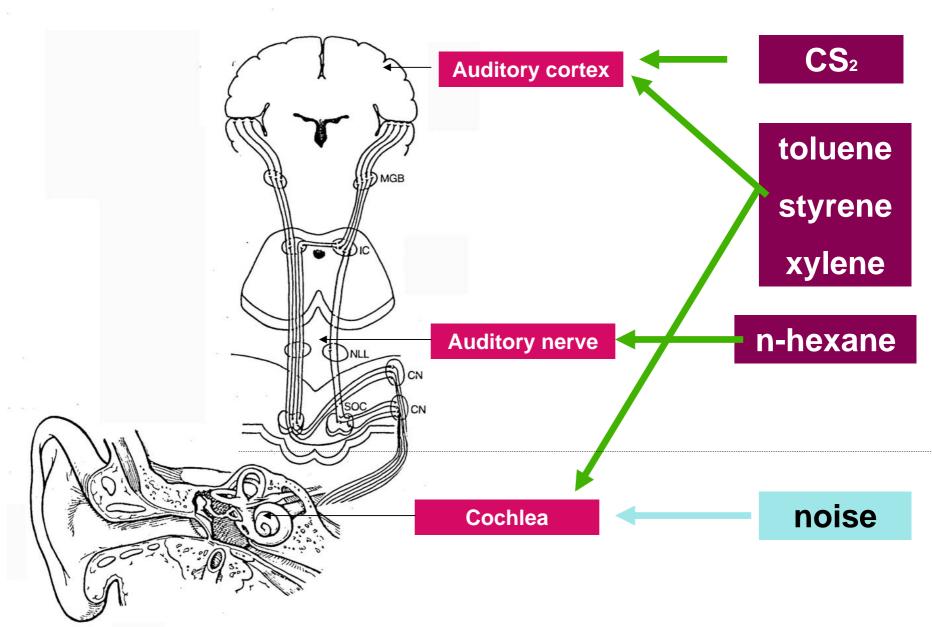





NOAEL	LOAEL	Exposure duration	Reference		
Styrene - only					
-	250 ppm – 500 ppm	Gavage or Inhalation 3 w – 4 w	Chen et al., 2007 ; Lataye et al., 2005		
300	600	Inhalation 4 w	Mäkitie, et al 2002		
-combined with noise (N)					
- 300+ 100-105 dB SPL	400 + 85 dB Leq8h 600 + 100-105 dB SPL	Inhalation and N 4 w Inhalation and N 4 w	Lataye et al., 2005 Mäkitie et al., 2003		
Toluene - only					
-	900 -1000	Inhalation14 h/d, 14 w or 6 h/d, 2-4 w	Pryor et al 1983a; Johnson et al 1988		
700	1 000	Inhalation 14 h/d,16 w	Pryor et al 1984b		
-combined with noise (N)					
500 + 87 dB Leq8h 500+90 dB Leq8h	- 1 000 + 90–100 dB Leg8h	Inhalation and N 90 d Inhalation and N 10 d	Lund and Kristiansen 2008 Brandt-Lassen et al 2000		
Xylene - only	. 000 00 100 d2 20qo		2.4.14. 24666.1. 6.4.4. 2666		
450 <i>p</i> -XYL	900 <i>p</i> -XYL	Inhalation 13 w	Gagnaire et al 2001		
-combined with noise (N)					
No data					
Trichloroethylene - only					
-	2 000	Inhalation 3 w	Rebert et al 1991		
800	2 500	Inhalation 13 w	Albee at al 2006		
-combined with noise (N)					
-	3 000 + 95 dB SPL	Inhalation and N: 18 h/d, 3 w	Muijser et al 2000		



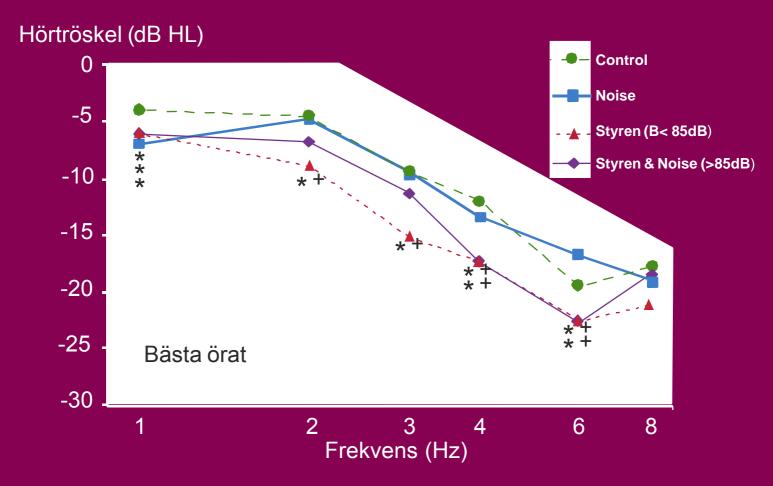
Toluene-Noise Interaction (rats)



Lataye and Campo, Neurotoxicol Teratol 1997; 19:373-382

Solvents - Possible Mechanisms

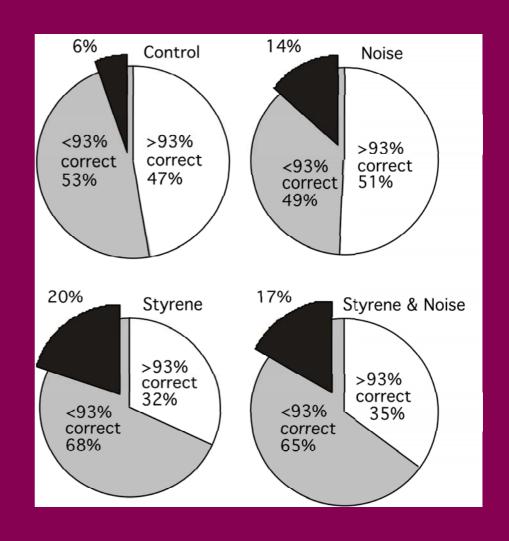
- Effect on isolated OHC
 - → Dose-response shortening of OHC, more pronounced in apical end of cochlea
 - → Free intracellular Ca²⁺ increased
- Intoxication Route via Organ of Corti
 - → Toluene/Styrene concentrations highest in stria vascularis
 - → Lower concentrations in supporting cells near to Organ of Corti
- Inhibit the auditory efferent system
 - → modifying the response of the protective acoustic reflexes
- ROS formation
 - → apoptotic cell death


Human studies – Styrene OEL 20-100 ppm

Exposure levels S= Styrene, N= Noise	Styrene groups	Evidence of HL shown	References
S: Mean 3,5 ppm N: S+N mean 89 dBA	65, S 89, S and N; 81 controls	++	Morata et al, 2002, Johnson et al, 2007
S: Mean ca 5 ppm (biol. monit) N: 73 dB(A)	32 S 60 controls (agematched)	++	Mascagni et al, 2007
S : Mean 8 ppm N: < 85 dB	44, S; 49 S in mixt 33 controls	++	Morioka <i>et al.</i> , 1999
S: Mean 11-38 ppm N: 70-93 dBA (>85 S+N)	220 S 70 S and N 157 controls	+++	Sliwinska-Kowalska et al, 2003
S: Mean ca 22 ppm (biol. monit) N: not given	16 S 16 controls	-	Hoffman et al, 2006
S : < 26 ppm. N : 80 to 89 dBA	170 dir exp 86 indir exp 43 controls	-	Sass-Kortsak <i>et al,</i> 1995
S : < 25 ppm. N not given	18 S Comp to reference pop.	+ ++ Bal	Möller et al, 1990
S: Mean < 30 ppm N : S + N =76 dBA	23 S and N 12 controls	++	Morioka <i>et al</i> , 2000
S : < 35 ppm. N :< 85 dBA	59 S 94 controls	+	Muijser <i>et al,</i> 1988
S: < 54 ppm N not given	20 S	- ++ Bal	Calabrese et al, 1996

Results - Audiometry

Results - Interupted speech



Korsan - Bengtsson 1973

93% correct = mean of normal population

<78% correct = 93% - 3 STD abnormal result

Human studies on occupational exposure to Styrene

- 11 studies 10 different groups of workers
- Different designs and out-come measures used
- Majority of studies showed effects on hearing
 - →PTA not the best indicator AND Central effects also present
- Styrene exposure levels in all studies were low
- Noise not a necessary factor
 - → BUT interactions with noise occur
- Styrene IS a risk factor for hearing loss

Conclusion Effects seen at levels below 20 ppm (current exposure and low noise level at time of studies).

Human studies – Toluene OEL 50-100 ppm

Exposure levels Current exposures T= Toluene, N= Noise	Toluene groups	Evidence of HL shown	References
T: low 3 ppm N 82 dBA T: high 26 ppm N 81 dBA	152 low T 181 high T	-	Schäper et al., 2003
T: 20 ppm N: Not given	49 TOL 59 controls	(+)	Vrca et al., 1996
T: ~ 97ppm N: Not given	40 T 40 controls	(+)	Abate et al., 1993
T + N 9-37 ppm 88-98 dBA N 88-98 dBA	50 T+N 50 N 40 controls	++ with N	Bernardi, 2000
T + N ≤50 ppm (in 109 workers; biol. monit.) 71-93 dBA	124 T (in mixture)+N	+ with N	Morata et al., 1997
Cumulative expo index T + N 176-2 265 year-ppm 79-87 dBA N 83-90 dBA	58 TOL+N 58 N 58 controls	++ with N	Chang et al., 2006
T + N 100-365 ppm 88-98 dBA N 88-98 dBA	50 N 51 T+N 50 controls	+++ with N	Morata et al., 1993

Human studies on occupational exposure to Toluene

- 7 studies
- Different designs and out-come measures used
- Majority of studies showed effects on hearing
 - → PTA not the best indicator AND Central effects also present
- Toluene exposure levels in studies were moderate to high
- Noise was always present
- Toluene IS a risk factor for hearing loss at least with noise

Conclusion Effects seen at approximately 50-100 ppm (current exposure and low noise level at time of studies).

Other solvents – with human studies

CS₂

- → Central auditory effects shown in rats [Hirata et al 1992; Rebert and Becker 1986]
 - NOAEL 200 ppm (5 w) or 400 ppm (11 w)
 - LOAEL 800 ppm
- → Central auditory effects and hearing loss shown in workers after chronic exposure [Hirata et al 1992; Kowalska et al.,2000; Chang et al.,2003]
 - Around 14 ppm current exposure

Mixtures (Xylene often included)

- → In animal studies additive effects have been shown for solvent pairs in high doses
- → In humans many studies with solvent mixtures have shown HL at low current exposure levels
 - Due to differences in exposure content and levels evidence available is not sufficient for the identification of the NOAELs and LOAELs inhumans.

Metals

Study finds Beethoven died of lead poisoning

By Rick Weiss

Washington Post

By focusing the most powerful Xray beam in the Western Hemisphere
on six of Ludwig van Beethoven's
treatments which in the 10th core

which evidence now suggests occurred over many years. Among the possibilities are his liberal indulgence in wine consumed from lead cups or perhaps a lifetime of medical treatments, which in the 10th continu

Metals

Was the Mad Hatter Deaf?

Fig. 2. 'Mad Hatter' from Lewis Carroll's *Alice's Adventures in Wonderland*. Illustration by John Tenniel. New York, Heritage Press, 1941, p 96.

Schacht J, Hawkins JE. 2006 Sketches of otohistory. Part 11: Ototoxicity: drug-induced hearing loss. Audiol Neurootol. 2006;11(1):1-6.

Metals

Mercury

- → neurotoxicity and sensorineural hearing deficits
- → excitatory effects on central auditory structures
- → potassium channels may be targets

Lead

- → dysfunction of the eighth cranial nerve in rats
- → cochlear effects were reported in studies with monkeys
- → central auditory effects in humans

Organotins - trimethyltin

- → hair cell damage and vascular damage in the cochlea
- → disrupts function at the synapse between the inner hair cell and the Type 1 spiral ganglion cell

Metals – Animal studies

NOAEL	LOAEL	Exposure duration	Referenc-G		
Lead (blood lead level)- only					
-	30 μg/dl	In diet: birth to 13 years of age	Rice 1997		
35 μg/dl	55 μg/dl	In diet: prenatal to ~10 years of age	Lilienthal and Winneke, 1996		
Mercury - only					
-	0.4 mg/kg bw HgCl ₂	Gavage: daily in 12 weeks (rats)	Fazakas et al 2005		
	10 μg/kg/d HgCH ₃ Cl	Orally: gestation to 4 y of age	Rice 1998		
Trimethyltins - only					
	0.2 mg/kg bw	single i.p. injection Guinea pigs	Liu and Fechter, 1994		
2 mg/kg bw	3 mg/kg bw	single i.p. injection Rats OHC-loss	Crofton et al.,1990		

Metals – Human studies

- Lead
 - → NOAEL is not known
 - → Effects seen at blood lead concentrations of 12-64 µg/dl
 - Murata et al., 1993; Jacob, 2000; Wu et al., 2000
 - → No interaction between lead (57 µg/dl) and noise found
 - One study only (Wu et al., 2000)
 - → Auditory effects begin to appear at blood lead levels found in the general population
 - WesternEurope (37 μg/dl) and North America (17 μg/dl) (Sv Krit gruppen, 2005)
- Mercury
 - → Effects shown in central auditory tests at concentration in air of 0.008 mg/m₃ and mean blood mercury levels of 0.5 μg/l
 - (Moshe et al., 2002)
- Trimthyltins
 - → No human studies

Other chemicals

- Asphyxiants
- Interfere with cell "breathing"
- Not ototoxic alone
 BUT potentiates other ototoxic agents and Noise
 - → Maybe by ROS formation
- Carbon monoxide CO
 - Smoking
- Hydrogen cyanide
 - → Other nitrils

Carbon monoxide – animal studies

NOAEL	LOAEL	Exposure duration	Reference		
Carbon monoxide - only					
1 500 ppm		Inhalation 3.5-9.5 h	Chen and Fechter 1999		
-combined with noise (N)					
300 ppm + 95 or 100 dB	500 ppm + 95 or 100 dB	Inhalation 3.5-9.5 h, 5 d N 2 or 4 h, 5 d	Chen and Fechter 2000; Fechter et al 2000		
300 ppm + 87 dB SPL Leq8h impulse noise	500 ppm + 87 dB SPL Leq8h impulse noise	Inhalation and N: 6 h/d, 10 d	Lund et al 2003		
Hydrogen cyanide - only					
50 ppm		Inhalation: 3.5 h	Fechter et al 2002		
-combined with noise (N)					
10 ppm + 100 dB	30 ppm + 100 dB	Inhalation: 3.5 h N: 2 h	Fechter et al 2002		

Many stressors makes it worse -

Exposure to CO, noise AND Toluene caused even more HL than CO and noise alone (Lund, Kristiansen and Campo, 2008)

Carbon monoxide

- Animal studies
 - →Interaction and synergism with noise shown
 - NOAEL without noise 1500 ppm
 - NOAEL with noise 300 ppm
 - LOAEL with noise 500 ppm
- Human studies
 - → Few studies of auditory effects
 - →Type of interaction between carbon monoxide and noise in human studies has not been established
 - →Lowest level is inconclusive,
 - One study suggested that effects occur at approximately
 20 ppm without excessive noise exposure (Ahn et al., 2006)

Other chemicals

Pesticides

- → Many different substances
- → Limited evidence because of the heterogenicity
- → No risk evaluation possible

PCBs

- → Only investigated in animal studies
- → Some PCBs give auditory effects in the offspring after dosage during gestation
 - NOAEL: 0.25 µg/kg body weight/day (Crofton and Rice, 1999), or 1mg/kg (Powers et al., 2006) depending of PCB mixture
 - LOAEL:1 μg/kg body weight/day (Crofton and Rice, 1999), 1 mg/kg body weight/day (Herr et al, 1996) or 3 mg/kg (Powers et al., 2006) depending of PCB mixture

Is there evidence for the ototoxicity of § chemicals in ocuupational settings?

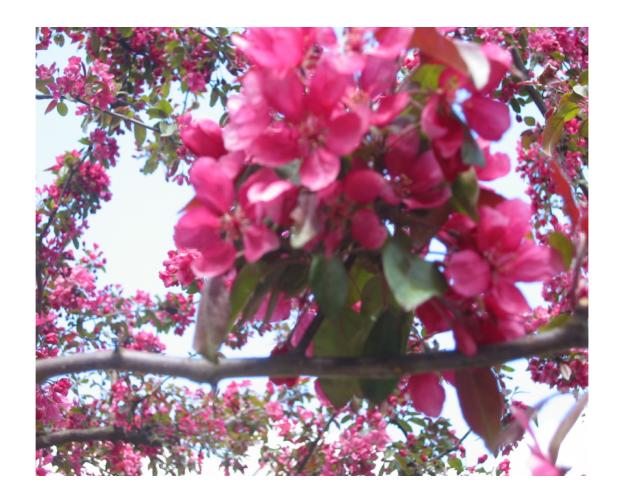
YES – I think there is!

- Strongest evidence for
 - → Styrene
 - → Toluene
 - → Mixtures of solvents
 - → Lead
 - → Carbon monoxide
- Dose response relationship not possible from the human studies
 - → Meta analyzes needed
- Strong support from animal studies
 - → Increased risk with more exposure factors

Occupational exposure to chemicals

- Ototoxic chemicals DO increase the risk for hearing loss
- OELs for chemicals do not account for ototoxicity
- New EU Noise directive
 - → Acknowledge ototoxic substances
- Workers exposed to ototoxic chemicals should be included in Hearing Conservation Programs

Information and knowledge important


Which chemicals are ototoxic?

Acknowledge ototoxic substances – HOW??

- How do we get this message through?
- A need for a "noise" or "ototoxin" notation!

Noise notation suggested by

Hoet P, Lison D. Ototoxicity of toluene and styrene: state of current knowledge. Crit Rev Toxicol.2008;38(2):127-70

Questions?! Discussion!